1
|
Wang W, Guan F, Sagratini G, Yan J, Xie J, Jin Z, Liu M, Liu H, Liu J. Ginsenoside Rd attenuated hyperglycemia via Akt pathway and modulated gut microbiota in streptozotocin-induced diabetic rats. Curr Res Food Sci 2023; 6:100491. [PMID: 37033737 PMCID: PMC10074500 DOI: 10.1016/j.crfs.2023.100491] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/07/2022] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Ginsenoside Rd is a protopanaxadiol abundant in Panax ginseng and Panax notoginseng. It has been reported that ginsenoside Rd possesses various health benefits, such as anti-diabetic, anti-tumor and anti-inflammatory. This work explored the effects of ginsenoside Rd on hyperglycemia and gut microbiota in streptozotocin-induced diabetic rats. Results showed that 5-week ginsenoside Rd (20 mg/kg) treatment significantly improved hyperglycemia in diabetic rats. Besides, ginsenoside Rd promoted glycogen synthesis via activating Akt pathway. It also inhibited hepatic gluconeogenesis, which was associated with inhibiting phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. We further found that ginsenoside Rd treatment increased the diversity of gut microbiota, increased the abundance of beneficial bacteria, such as SMB53, rc4-4 and Ruminococcus, and reduced the abundance of conditional pathogenic bacteria. These results indicated that ginsenoside Rd has the potential for diabetic intervention.
Collapse
Affiliation(s)
- Wei Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Fengtao Guan
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- National Engineering Research Center for Wheat and Corn Further Processing, Changchun, Jilin, 130118, China
| | - Gianni Sagratini
- School of Pharmacy, University of Camerino, Camerino, 62032, Italy
| | - Jie Yan
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Jiahan Xie
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China
- National Engineering Research Center for Wheat and Corn Further Processing, Changchun, Jilin, 130118, China
| | - Zhibo Jin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China
- National Engineering Research Center for Wheat and Corn Further Processing, Changchun, Jilin, 130118, China
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China
- National Engineering Research Center for Wheat and Corn Further Processing, Changchun, Jilin, 130118, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China
- National Engineering Research Center for Wheat and Corn Further Processing, Changchun, Jilin, 130118, China
- Corresponding author. College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China
- National Engineering Research Center for Wheat and Corn Further Processing, Changchun, Jilin, 130118, China
- Corresponding author. College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| |
Collapse
|
2
|
Derosa G, D'Angelo A, Maffioli P. The role of selected nutraceuticals in management of prediabetes and diabetes: An updated review of the literature. Phytother Res 2022; 36:3709-3765. [PMID: 35912631 PMCID: PMC9804244 DOI: 10.1002/ptr.7564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 01/05/2023]
Abstract
Dysglycemia is a disease state preceding the onset of diabetes and includes impaired fasting glycemia and impaired glucose tolerance. This review aimed to collect and analyze the literature reporting the results of clinical trials evaluating the effects of selected nutraceuticals on glycemia in humans. The results of the analyzed trials, generally, showed the positive effects of the nutraceuticals studied alone or in association with other supplements on fasting plasma glucose and post-prandial plasma glucose as primary outcomes, and their efficacy in improving insulin resistance as a secondary outcome. Some evidences, obtained from clinical trials, suggest a role for some nutraceuticals, and in particular Berberis, Banaba, Curcumin, and Guar gum, in the management of prediabetes and diabetes. However, contradictory results were found on the hypoglycemic effects of Morus, Ilex paraguariensis, Omega-3, Allium cepa, and Trigonella faenum graecum, whereby rigorous long-term clinical trials are needed to confirm these data. More studies are also needed for Eugenia jambolana, as well as for Ascophyllum nodosum and Fucus vesiculosus which glucose-lowering effects were observed when administered in combination, but not alone. Further trials are also needed for quercetin.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and TherapeuticsUniversity of PaviaPaviaItaly
- Centre of Diabetes, Metabolic Diseases, and DyslipidemiasUniversity of PaviaPaviaItaly
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and AtherosclerosisFondazione IRCCS Policlinico San MatteoPaviaItaly
- Italian Nutraceutical Society (SINut)BolognaItaly
- Laboratory of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Angela D'Angelo
- Department of Internal Medicine and TherapeuticsUniversity of PaviaPaviaItaly
- Laboratory of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Pamela Maffioli
- Centre of Diabetes, Metabolic Diseases, and DyslipidemiasUniversity of PaviaPaviaItaly
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and AtherosclerosisFondazione IRCCS Policlinico San MatteoPaviaItaly
- Italian Nutraceutical Society (SINut)BolognaItaly
| |
Collapse
|
3
|
The Efficacy of Ginseng (Panax) on Human Prediabetes and Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:nu14122401. [PMID: 35745129 PMCID: PMC9227417 DOI: 10.3390/nu14122401] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Results from different clinical trials on the effects of ginseng on prediabetes and type 2 diabetes (T2DM) are still inconsistent. To fill this knowledge gap, we investigated the overall effects of ginseng supplementation on improving cardiometabolic biomarkers among these patients. A systematic literature search was conducted on PubMed/MEDLINE, Scopus, Web of Science, and Cochrane library. A random-effect model was applied to estimate the weighted mean difference and 95% CI for each outcome. Overall, 20 eligible RCTs were included. Meta-analyses revealed that ginseng supplementation significantly reduced serum concentration of FPG, TC, IL-6, and HOMA-IR values. It also increased HR and TNF-α levels. Ginseng supplementation changed HOMA-IR and HDL-C significantly based on dose and changed HOMA-IR and LDL-C significantly based on study duration in a non-linear fashion. Furthermore, meta-regression analyses indicated a linear relationship between ginseng dose and absolute changes in HDL-C. Moreover, subgroup analyses showed that ginseng supplementation changed TC and LDL-C when the supplementation dose was ≥2 g/day. Our findings suggest that ginseng supplementation may be an effective strategy for improving cardiometabolic profiles in individuals with prediabetes and T2DM.
Collapse
|
4
|
Huang R, Zhang M, Tong Y, Teng Y, Li H, Wu W. Studies on Bioactive Components of Red Ginseng by UHPLC-MS and Its Effect on Lipid Metabolism of Type 2 Diabetes Mellitus. Front Nutr 2022; 9:865070. [PMID: 35571895 PMCID: PMC9094573 DOI: 10.3389/fnut.2022.865070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/25/2022] [Indexed: 11/09/2022] Open
Abstract
Objectives Red ginseng is a processed product of Panax ginseng C.A. Meyer, which is one of the widely used medicinal and edible herbs for the treatment of type 2 diabetes mellitus (T2DM). Ginsenosides are its main pharmacologically active ingredient. This study aims to clarify the material basis of total ginsenosides of red ginseng (RGW) and verify the activity of RGW in treating lipid metabolism disorders caused by T2DM. Methods An ultrahigh performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS) technology was applied to quantitatively analyze RGW. A T2DM rat model was established to verify the activity of RGW in treating lipid metabolism disorders caused by diabetes. First, the changes in diabetes-related parameters were observed, then the biochemical parameters of the rat serum and liver were measured, and finally, the pathological sections of the rat liver were observed, and the content of short-chain fatty acids in stools was measured. The in vitro activity of RGW was verified by fatty degenerated HepG2 cells. Results A total of 10 ginsenosides were identified and quantitatively analyzed in RGW. Experimental results demonstrated that RGW can improve lipid metabolism disorders. RGW significantly reduced the fasting blood glucose and TG and TC levels in T2DM rats, and hepatic steatosis was significantly ameliorated. In vitro experiments by RGW treatment also significantly attenuated lipid deposition in HepG2 cells. RGW upregulated the content of 5 short-chain fatty acids in rat stools, which are related to lipid oxidation and liver gluconeogenesis. Conclusion The total RGW were quantitatively analyzed by UHPLC-MS, and its effect on lipid metabolism of T2DM was studied. The experiment demonstrated that red ginseng can regulate lipid metabolism and improve lipid deposition, which provides a promising development for red ginseng as a functional food.
Collapse
|
5
|
Liu Y, Zhang H, Dai X, Zhu R, Chen B, Xia B, Ye Z, Zhao D, Gao S, Orekhov AN, Zhang D, Wang L, Guo S. A comprehensive review on the phytochemistry, pharmacokinetics, and antidiabetic effect of Ginseng. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153717. [PMID: 34583224 DOI: 10.1016/j.phymed.2021.153717] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/08/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Radix Ginseng, one of the well-known medicinal herbs, has been used in the management of diabetes and its complications for more than 1000 years. PURPOSE The aim of this review is devoted to summarize the phytochemistry and pharmacokinetics of Ginseng, and provide evidence for the antidiabetic effects of Ginseng and its ingredients as well as the underlying mechanisms involved. METHODS For the purpose of this review, the following databases were consulted: the PubMed Database (https://pubmed.ncbi.nlm.nih.gov), Chinese National Knowledge Infrastructure (http://www.cnki.net), National Science and Technology Library (http://www.nstl.gov.cn/), Wanfang Data (http://www.wanfangdata.com.cn/) and the Web of Science Database (http://apps.webofknowledge.com/). RESULTS Ginseng exhibits glucose-lowering effects in different diabetic animal models. In addition, Ginseng may prevent the development of diabetic complications, including liver, pancreas, adipose tissue, skeletal muscle, nephropathy, cardiomyopathy, retinopathy, atherosclerosis and others. The main ingredients of Ginseng include ginsenosides and polysaccharides. The underlying mechanisms whereby this herb exerts antidiabetic activities may be attributed to the regulation of multiple signaling pathways, including IRS1/PI3K/AKT, LKB1/AMPK/FoxO1, AGEs/RAGE, MAPK/ERK, NF-κB, PPARδ/STAT3, cAMP/PKA/CERB and HIF-1α/VEGF, etc. The pharmacokinetic profiles of ginsenosides provide valuable information on therapeutic efficacy of Ginseng in diabetes. Although Ginseng is well-tolerated, dietary consumption of this herb should follow the doctors' advice. CONCLUSION Ginseng may offer an alternative strategy in protection against diabetes and its complications through the regulations of the multi-targets via various signaling pathways. Efforts to understand the underlying mechanisms with strictly-controlled animal models, combined with well-designed clinical trials and pharmacokinetic evaluation, will be important subjects of the further investigations and weigh in translational value of this herb in diabetes management.
Collapse
Affiliation(s)
- Yage Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hao Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xuan Dai
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ruyuan Zhu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Beibei Chen
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bingke Xia
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zimengwei Ye
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dandan Zhao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Sihua Gao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia
| | - Dongwei Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Lili Wang
- Department of TCM Pharmacology, School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Shuzhen Guo
- Department of Scientific Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
6
|
Sajadimajd S, Khosravifar M, Bahrami G. Anti-Diabetic Effects of Isolated Lipids from Natural Sources through Modulation of Angiogenesis. Curr Mol Pharmacol 2021; 15:589-606. [PMID: 34473620 DOI: 10.2174/1874467214666210902121337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/10/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aberrant angiogenesis plays a fateful role in the development of diabetes and diabetic complications. Lipids, as a diverse group of biomacromolecules, are able to relieve diabetes through the modulation of angiogenesis. OBJECTIVE Owing to the present remarkable anti-diabetic effects with no or few side effects of lipids, the aim of this study was to assess the state-of-the-art research on anti-diabetic effects of lipids via the modulation of angiogenesis. METHODS To study the effects of lipids in diabetes via modulation of angiogenesis, we have searched the electronic databases including Scopus, PubMed, and Cochrane. RESULTS The promising anti-diabetic effects of lipids were reported in several studies. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil (FO) were reported to significantly induce neovasculogenesis in high glucose (HG)-mediated endothelial progenitor cells (EPCs) neovasculogenic dysfunction in type 2 diabetic mice. Linoleic acid, mono-epoxy-tocotrienol-α (MeT3α), and ginsenoside Rg1 facilitate wound closure and vessel formation. N-Palmitoylethanolamine (PEA), α-linolenic acid (ALA), omega-3 (ω3) lipids from flaxseed (FS) oil, ω-3 polyunsaturated fatty acids (PUFA), lipoic acid, taurine, and zeaxanthin (Zx) are effective in diabetic retinopathy via suppression of angiogenesis. Lysophosphatidic acid, alkyl-glycerophosphate, crocin, arjunolic acid, α-lipoic acid, and FS oil are involved in the management of diabetes and its cardiac complications. Furthermore, in two clinical trials, R-(+)-lipoic acid (RLA) in combination with hyperbaric oxygenation therapy (HBOT) for treatment of chronic wound healing in DM patients, as well as supplementation with DHA plus antioxidants along with intravitreal ranibizumab were investigated for its effects on diabetic macular edema. CONCLUSION Proof-of-concept studies presented here seem to well shed light on the anti-diabetic effects of lipids via modulation of angiogenesis.
Collapse
Affiliation(s)
- Soraya Sajadimajd
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| | - Mina Khosravifar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Gholamreza Bahrami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
The Effects of New Zealand Grown Ginseng Fractions on Cytokine Production from Human Monocytic THP-1 Cells. Molecules 2021; 26:molecules26041158. [PMID: 33671522 PMCID: PMC7926829 DOI: 10.3390/molecules26041158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/18/2022] Open
Abstract
Pro-inflammatory cytokines and anti-inflammatory cytokines are important mediators that regulate the inflammatory response in inflammation-related diseases. The aim of this study is to evaluate different New Zealand (NZ)-grown ginseng fractions on the productions of pro-inflammatory and anti-inflammatory cytokines in human monocytic THP-1 cells. Four NZ-grown ginseng fractions, including total ginseng extract (TGE), non-ginsenoside fraction extract (NGE), high-polar ginsenoside fraction extract (HPG), and less-polar ginsenoside fraction extract (LPG), were prepared and the ginsenoside compositions of extracts were analyzed by HPLC using 19 ginsenoside reference standards. The THP-1 cells were pre-treated with different concentrations of TGE, NGE, HPG, and LPG, and were then stimulated with lipopolysaccharide (LPS). The levels of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and anti-inflammatory cytokines, such as interleukin-10 (IL-10), and transforming growth factor beta-1 (TGF-β1), were determined by enzyme-linked immunosorbent assay (ELISA). TGE at 400 µg/mL significantly inhibited LPS-induced TNF-α and IL-6 productions. NGE did not show any effects on inflammatory secretion except inhibited IL-6 production at a high dose. Furthermore, LPG displayed a stronger effect than HPG on inhibiting pro-inflammatory cytokine (TNF-α, IL-1β, and IL-6) productions. Particularly, 100 µg/mL LPG not only significantly inhibited the production of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, but also remarkably enhanced the production of anti-inflammatory cytokine IL-10. NZ-grown ginseng exhibited anti-inflammatory effects in vitro, which is mainly attributed to ginsenoside fractions (particularly less-polar ginsenosides) rather than non-saponin fractions.
Collapse
|
8
|
Sarhene M, Ni JY, Duncan ES, Liu Z, Li S, Zhang J, Guo R, Gao S, Gao X, Fan G. Ginsenosides for cardiovascular diseases; update on pre-clinical and clinical evidence, pharmacological effects and the mechanisms of action. Pharmacol Res 2021; 166:105481. [PMID: 33549726 DOI: 10.1016/j.phrs.2021.105481] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/20/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD) remains the major cause of death worldwide, accounting for almost 31% of the global mortality annually. Several preclinical studies have indicated that ginseng and the major bioactive ingredient (ginsenosides) can modulate several CVDs through diverse mechanisms. However, there is paucity in the translation of such experiments into clinical arena for cardiovascular ailments due to lack of conclusive specific pathways through which these activities are initiated and lack of larger, long-term well-structured clinical trials. Therefore, this review elaborates on current pharmacological effects of ginseng and ginsenosides in the cardiovascular system and provides some insights into the safety, toxicity, and synergistic effects in human trials. The review concludes that before ginseng, ginsenosides and their preparations could be utilized in the clinical treatment of CVDs, there should be more preclinical studies in larger animals (like the guinea pig, rabbit, dog, and monkey) to find the specific dosages, address the toxicity, safety and synergistic effects with other conventional drugs. This could lead to the initiation of large-scale, long-term well-structured randomized, and placebo-controlled clinical trials to test whether treatment is effective for a longer period and test the efficacy against other conventional therapies.
Collapse
Affiliation(s)
- Michael Sarhene
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Jing Yu Ni
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Esi Sophia Duncan
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Zhihao Liu
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Sheng Li
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Jing Zhang
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Rui Guo
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Shan Gao
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China.
| |
Collapse
|
9
|
Phu HT, Thuan DTB, Nguyen THD, Posadino AM, Eid AH, Pintus G. Herbal Medicine for Slowing Aging and Aging-associated Conditions: Efficacy, Mechanisms and Safety. Curr Vasc Pharmacol 2020; 18:369-393. [PMID: 31418664 DOI: 10.2174/1570161117666190715121939] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/12/2022]
Abstract
Aging and aging-associated diseases are issues with unsatisfactory answers in the medical field. Aging causes important physical changes which, even in the absence of the usual risk factors, render the cardiovascular system prone to some diseases. Although aging cannot be prevented, slowing down the rate of aging is entirely possible to achieve. In some traditional medicine, medicinal herbs such as Ginseng, Radix Astragali, Ganoderma lucidum, Ginkgo biloba, and Gynostemma pentaphyllum are recognized by the "nourishing of life" and their role as anti-aging phytotherapeutics is increasingly gaining attention. By mainly employing PubMed here we identify and critically analysed 30 years of published studies focusing on the above herbs' active components against aging and aging-associated conditions. Although many plant-based compounds appear to exert an anti-aging effect, the most effective resulted in being flavonoids, terpenoids, saponins, and polysaccharides, which include astragaloside, ginkgolide, ginsenoside, and gypenoside specifically covered in this review. Their effects as antiaging factors, improvers of cognitive impairments, and reducers of cardiovascular risks are described, as well as the molecular mechanisms underlying the above-mentioned effects along with their potential safety. Telomere and telomerase, PPAR-α, GLUTs, FOXO1, caspase-3, bcl-2, along with SIRT1/AMPK, PI3K/Akt, NF-κB, and insulin/insulin-like growth factor-1 pathways appear to be their preferential targets. Moreover, their ability to work as antioxidants and to improve the resistance to DNA damage is also discussed. Although our literature review indicates that these traditional herbal medicines are safe, tolerable, and free of toxic effects, additional well-designed, large-scale randomized control trials need to be performed to evaluate short- and long-term effects and efficacy of these medicinal herbs.
Collapse
Affiliation(s)
- Hoa T Phu
- Department of Biochemistry, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Duong T B Thuan
- Department of Biochemistry, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Thi H D Nguyen
- Department of Physiology, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Anna M Posadino
- Department of Biomedical Sciences, Faculty of Medicine, University of Sassari, Sassari, Italy
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, Faculty of Medicine, University of Sassari, Sassari, Italy.,Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
10
|
Karmazyn M, Gan XT. Chemical components of ginseng, their biotransformation products and their potential as treatment of hypertension. Mol Cell Biochem 2020; 476:333-347. [PMID: 32940821 DOI: 10.1007/s11010-020-03910-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
Ginseng is an ancient perennial herb belonging to the family Araliaceae and genus Panax which has been used for medical therapeutics for thousands of years, particularly in China and other Asian cultures although increasing interest in ginseng has recently emerged in western societies. Ginseng is a complex substance containing dozens of bioactive and potentially effective therapeutic compounds. Among the most studied are the ginsenosides, which are triterpene saponins possessing a wide array of potential therapeutic effects for many conditions. The quantity and type of ginsenoside vary greatly depending on ginseng species and their relative quantity in a given ginseng species is greatly affected by extraction processes as well as by subjecting ginseng to various procedures such as heating. Adding to the complexity of ginsenosides is their ability to undergo biotransformation to bioactive metabolites such as compound K by enteric bacteria following ingestion. Many ginsenosides exert vasodilatating effects making them potential candidates for the treatment of hypertension. Their vascular effects are likely dependent on eNOS activation resulting in the increased production of NO. One proposed end-mechanism involves the activation of calcium-activated potassium channels in vascular smooth cells resulting in reduced calcium influx and a vasodilatating effect, although other mechanisms have been proposed as discussed in this review.
Collapse
|
11
|
Shaito A, Thuan DTB, Phu HT, Nguyen THD, Hasan H, Halabi S, Abdelhady S, Nasrallah GK, Eid AH, Pintus G. Herbal Medicine for Cardiovascular Diseases: Efficacy, Mechanisms, and Safety. Front Pharmacol 2020; 11:422. [PMID: 32317975 PMCID: PMC7155419 DOI: 10.3389/fphar.2020.00422] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a significant health burden with an ever-increasing prevalence. They remain the leading causes of morbidity and mortality worldwide. The use of medicinal herbs continues to be an alternative treatment approach for several diseases including CVDs. Currently, there is an unprecedented drive for the use of herbal preparations in modern medicinal systems. This drive is powered by several aspects, prime among which are their cost-effective therapeutic promise compared to standard modern therapies and the general belief that they are safe. Nonetheless, the claimed safety of herbal preparations yet remains to be properly tested. Consequently, public awareness should be raised regarding medicinal herbs safety, toxicity, potentially life-threatening adverse effects, and possible herb–drug interactions. Over the years, laboratory data have shown that medicinal herbs may have therapeutic value in CVDs as they can interfere with several CVD risk factors. Accordingly, there have been many attempts to move studies on medicinal herbs from the bench to the bedside, in order to effectively employ herbs in CVD treatments. In this review, we introduce CVDs and their risk factors. Then we overview the use of herbs for disease treatment in general and CVDs in particular. Further, data on the ethnopharmacological therapeutic potentials and medicinal properties against CVDs of four widely used plants, namely Ginseng, Ginkgo biloba, Ganoderma lucidum, and Gynostemma pentaphyllum, are gathered and reviewed. In particular, the employment of these four plants in the context of CVDs, such as myocardial infarction, hypertension, peripheral vascular diseases, coronary heart disease, cardiomyopathies, and dyslipidemias has been reviewed, analyzed, and critically discussed. We also endeavor to document the recent studies aimed to dissect the cellular and molecular cardio-protective mechanisms of the four plants, using recently reported in vitro and in vivo studies. Finally, we reviewed and reported the results of the recent clinical trials that have been conducted using these four medicinal herbs with special emphasis on their efficacy, safety, and toxicity.
Collapse
Affiliation(s)
- Abdullah Shaito
- Department of Biological and Chemical Sciences, Lebanese International University, Beirut, Lebanon
| | - Duong Thi Bich Thuan
- Department of Biochemistry, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Hoa Thi Phu
- Department of Biochemistry, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Thi Hieu Dung Nguyen
- Department of Physiology, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Hiba Hasan
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Sarah Halabi
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Gheyath K Nasrallah
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Ali H Eid
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Biomedical Sciences, Faculty of Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
12
|
Chen H, Yang H, Fan D, Deng J. The Anticancer Activity and Mechanisms of Ginsenosides: An Updated Review. EFOOD 2020. [DOI: 10.2991/efood.k.200512.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
13
|
Review of Ginseng Anti-Diabetic Studies. Molecules 2019; 24:molecules24244501. [PMID: 31835292 PMCID: PMC6943541 DOI: 10.3390/molecules24244501] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/22/2022] Open
Abstract
Ginseng is one of the most valuable and commonly used Chinese medicines not only in ancient China but also worldwide. Ginsenosides, also known as saponins or triterpenoids, are thought to be responsible for the beneficial effects of ginseng. In this review, we summarize recent publications on anti-diabetic studies of ginseng extracts and ginsenosides in cells, animals, and humans. It seems that the anti-diabetic effect of ginseng is positive for type 2 diabetic patients but has no significant impact on prediabetes or healthy adults. Regulation of insulin secretion, glucose uptake, anti-oxidative stress, and anti-inflammatory pathways may be the mechanisms involved with ginseng's anti-diabetic effects. Taken together, this summary provides evidence for the anti-diabetes effects of ginseng extracts and ginsenosides as well as the underlying mechanisms of their impact on diabetes.
Collapse
|
14
|
Xi G, Wang Y, Yin L, Wang Y, Zhou S. De novo transcriptome analysis of gene responses to pest feeding in leaves of Panax ginseng C. A. Meyer. Mol Med Rep 2019; 20:433-444. [PMID: 31180519 PMCID: PMC6580019 DOI: 10.3892/mmr.2019.10275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/07/2019] [Indexed: 11/15/2022] Open
Abstract
The aim of the present study was to investigate the transcriptomic differences between Panax ginseng [Renshen (RS)] plants bitten by pests (n=3, test group; samples defined as RS11-13) or not (n=3, control group; samples defined as RS1-3) using de novo RNA sequencing on an Illumina HiSeq™ 2000 platform. A total of 51,097,386 (99.6%), 49,310,564 (99.5%), 59,192,372 (99.6%), 60,338,540 (99.5%), 56,976,410 (99.6%) and 54,226,588 (99.6%) clean reads were obtained for RS11, RS12, RS13, RS1, RS2 and RS3, respectively. De novo assembly generated 370,267 unigenes, 927 of which were differentially expressed genes (DEGs), including 782 significantly upregulated and 145 significantly downregulated genes. Function enrichment analysis revealed that these DEGs were located in 28 significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways, including phenylpropanoid biosynthesis (for example, TRINITY_DN30766_c0_g2_i1, encoding peroxidase 20) and mitogen-activated protein kinase (MAPK) signaling (TRINITY_DN85589_c0_g1_i1, encoding WRKY transcription factor 75). Weighted gene co-expression network analysis identified modules including TRINITY_DN85589_c0_g1_i1, TRINITY_DN58279_c0_g1_i1 [encoding aspartyl protease (AP)] and TRINITY_DN74866_c0_g2_i1 [encoding 12-oxophytodienoate reductase (OPR)] that may be the most significantly associated with pest responses. In this module, TRINITY_DN85589_c0_g1_i1 may co-express with TRINITY_DN58279_c0_g1_i1 or TRINITY_DN74866_c0_g2_i1. WRYK and AP have been suggested to promote the activity of antioxidant peroxidase. Collectively, the findings from the present study suggested that a MAPK-WRKY-OPR/AP-peroxidase signaling pathway may be a potentially important mechanism underlying defense responses against pests in ginseng plants.
Collapse
Affiliation(s)
- Guangsheng Xi
- Pharmaceutical Engineering Department, College of Chemical Engineering and Resource Reuse, Wuzhou University, Wuzhou, Guangxi 543000, P.R. China
| | - Yanling Wang
- Pharmaceutical Engineering Department, College of Chemical Engineering and Resource Reuse, Wuzhou University, Wuzhou, Guangxi 543000, P.R. China
| | - Le Yin
- Department of Chinese Medicine, College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, Jilin 132101, P.R. China
| | - Yunjia Wang
- Department of Mapping and Geographic Information, College of Environment and Mapping, China University of Mining and Technology, Xuzhou, Jiangsu 221116, P.R. China
| | - Shengxue Zhou
- Department of Chinese Medicine, College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, Jilin 132101, P.R. China
| |
Collapse
|
15
|
Chen W, Balan P, Popovich DG. Comparison of the ginsenoside composition of Asian ginseng (Panax ginseng) and American ginseng (Panax quinquefolius L.) and their transformation pathways. BIOACTIVE NATURAL PRODUCTS 2019. [DOI: 10.1016/b978-0-12-817901-7.00006-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Karmazyn M, Gan XT. Ginseng for the treatment of diabetes and diabetes-related cardiovascular complications: a discussion of the evidence 1. Can J Physiol Pharmacol 2018; 97:265-276. [PMID: 30395481 DOI: 10.1139/cjpp-2018-0440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder associated with elevated blood glucose levels due either to insufficient insulin production (type 1 DM) or to insulin resistance (type 2 DM). The incidence of DM around the world continues to rise dramatically with more than 400 million cases reported today. Among the most serious consequences of chronic DM are cardiovascular complications that can have deleterious effects. Although numerous treatment options are available, including both pharmacological and nonpharmacological, there is substantial emerging interest in the use of traditional medicines for the treatment of this condition and its complications. Among these is ginseng, a medicinal herb that belongs to the genus Panax and has been used for thousands of years as a medicinal agent especially in Asian cultures. There is emerging evidence from both animal and clinical studies that ginseng, ginseng constituents including ginsenosides, and ginseng-containing formulations can produce beneficial effects in terms of normalization of blood glucose levels and attenuation of cardiovascular complications through a multiplicity of mechanisms. Although more research is required, ginseng may offer a useful therapy for the treatment of diabetes as well as its complications.
Collapse
|
17
|
Ren G, Wu C, Teng C, Yao Y. Synergistic effect of combined protopanaxatiol and ginsenoside Rh2 on antiproliferative activity in MDA-MB-231 human breast cancer cells in vitro. FOOD AGR IMMUNOL 2018. [DOI: 10.1080/09540105.2018.1490700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Guixing Ren
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu City, People’s Republic of China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, People’s Republic of China
| | - Cong Teng
- Chinese Academy of Agricultural Sciences, Institute of Crop Science, Beijing, People’s Republic of China
| | - Yang Yao
- Chinese Academy of Agricultural Sciences, Institute of Crop Science, Beijing, People’s Republic of China
| |
Collapse
|
18
|
Guo M, Guo G, Xiao J, Sheng X, Zhang X, Tie Y, Cheng YK, Ji X. Ginsenoside Rg3 stereoisomers differentially inhibit vascular smooth muscle cell proliferation and migration in diabetic atherosclerosis. J Cell Mol Med 2018; 22:3202-3214. [PMID: 29566305 PMCID: PMC5980205 DOI: 10.1111/jcmm.13601] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/17/2018] [Indexed: 01/13/2023] Open
Abstract
Ginsenoside 20(R/S)‐Rg3, as a natural peroxisome proliferator‐activated receptor gamma (PPARγ) ligand, has been reported to exhibit differential biological effects. It is of great interest to understand the stereochemical selectivity of 20(R/S)‐Rg3 and explore whether differential PPARγ activation by Rg3 stereoisomers, if it exists, could lead to differential physiological outcome and therapeutic effects in diabetic atherosclerosis. Here, we investigated the binding modes of 20(R/S)‐Rg3 stereoisomers in the PPARγ ligand‐binding domain (PPARγ‐LBD) using molecular modelling and their effects on smooth muscle cell proliferation and migration induced by advanced glycation end products (AGEs). The results revealed that 20(S)‐Rg3 exhibited stronger antiproliferative and antimigratory effects due to stronger PPARγ activation. To validate the in vitro results, we used a mice model with diabetic atherosclerosis and obtained that 20(S)‐Rg3 markedly reduced the plaque size secondary to reducing the proliferation and migration of VSMCs, while the plaques were more stable due to improvements in other plaque compositions. The results shed light on the structural difference between Rg3 stereoisomers that can lead to significant differential physiological outcome, and the (S)‐isomer seems to be the more potent isomer to be developed as a promising drug for diabetic atherosclerosis.
Collapse
Affiliation(s)
- Mengqi Guo
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Guanlun Guo
- Hubei Key Laboratory of Advanced Technology for Automotive Components & Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan, Hubei, China
| | - Jie Xiao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xi Sheng
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xinyu Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuanyuan Tie
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuen-Kit Cheng
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Hong Kong city, Hong Kong
| | - Xiaoping Ji
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
19
|
Schultz WM, Mahlof EN, Dhindsa DS, Varghese T, Heinl RE, Cai HC, Sandesara PB, Eapen DJ, Sperling LS. Cardiovascular disease risk reduction in diabetes through conventional and natural approaches. Cardiovasc Endocrinol 2017; 6:128-135. [PMID: 31646130 PMCID: PMC6768523 DOI: 10.1097/xce.0000000000000134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022] Open
Abstract
Type 2 diabetes mellitus (DM) is a significant cause of premature complications and mortality in patients with cardiovascular disease (CVD). In addition to lifestyle modifications, conventional treatment of DM consists of oral hypoglycemic agents, insulin sensitizers, and subcutaneous insulin. In diabetic individuals with or at risk for CVD, aspirin and statin therapy reduce CVD morbidity and mortality. Several natural or herbal supplements have shown potential benefit in patients with CVD and DM. We provide an overview of the current guidelines for treatment of DM and CVD. We then review the literature to describe the efficacy of natural approaches to CVD risk reduction in diabetic patients, with a focus on physical activity, dietary modification, and natural/herbal supplements. Activity and diet improve cardiovascular outcomes in patients with CVD and DM. Natural and herbal supplements have potential for benefit but require further research to determine their efficacy and safety.
Collapse
Affiliation(s)
| | | | | | - Tina Varghese
- Department of Medicine, Emory University School of Medicine
| | | | | | - Pratik B. Sandesara
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, USA
| | - Danny J. Eapen
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, USA
| | - Laurence S. Sperling
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Deng J, Liu Y, Duan Z, Zhu C, Hui J, Mi Y, Ma P, Ma X, Fan D, Yang H. Protopanaxadiol and Protopanaxatriol-Type Saponins Ameliorate Glucose and Lipid Metabolism in Type 2 Diabetes Mellitus in High-Fat Diet/Streptozocin-Induced Mice. Front Pharmacol 2017; 8:506. [PMID: 28824430 PMCID: PMC5539091 DOI: 10.3389/fphar.2017.00506] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022] Open
Abstract
Ginsenoside is a major active component of ginseng, which exhibits various pharmacological properties such as hepatoprotection, tumor suppression and diabetes resistance. In this study, the anti-diabetic effects of protopanaxadiol (PPD) and protopanaxatriol (PPT)-type saponins were explored and compared in high-fat diet/streptozocin-induced type 2 diabetes mellitus (T2DM) mice. Our results showed that low or high dose (50 mg/kg bodyweight or 150 mg/kg bodyweight) PPD and PPT significantly reduced fasting blood glucose, improved glucose tolerance and insulin resistance in T2DM mice. PPD and PPT also regulated serum lipid-related markers such as reduced total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol in T2DM mice. In addition, PPD and PPT dramatically ameliorated the inflammatory responses by suppressing the secretion of pro-inflammatory cytokines like tumor necrosis factor-alpha and interleukin-6 in serum level and gene expression in liver level, and improved the antioxidant capacity by increasing the superoxide dismutase and decreasing malondialdehyde levels in the serum of T2DM mice. Moreover, the anti-diabetic effect of PPD and PPT appeared to be partially mediated by the suppression of hepatic metabolism genes expression such as peroxisome proliferator-activated receptor gamma coactivator 1-alpha, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase, as well as facilitating lipid metabolism genes expression such as microsomal TG transfer protein in the liver tissues of T2DM mice. Taken together, our results indicated that PPD and PPT might potentially act as natural anti-diabetic compounds to be used for preventing and treating the T2DM and its complications in the future.
Collapse
Affiliation(s)
- Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Department of Food Science and Engineering, Northwest UniversityShaanxi, China.,Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest UniversityShaanxi, China
| | - Yao Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Department of Food Science and Engineering, Northwest UniversityShaanxi, China.,Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest UniversityShaanxi, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Department of Food Science and Engineering, Northwest UniversityShaanxi, China.,Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest UniversityShaanxi, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Department of Food Science and Engineering, Northwest UniversityShaanxi, China.,Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest UniversityShaanxi, China
| | - Junfeng Hui
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Department of Food Science and Engineering, Northwest UniversityShaanxi, China.,Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest UniversityShaanxi, China
| | - Yu Mi
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Department of Food Science and Engineering, Northwest UniversityShaanxi, China.,Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest UniversityShaanxi, China
| | - Pei Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Department of Food Science and Engineering, Northwest UniversityShaanxi, China.,Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest UniversityShaanxi, China
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Department of Food Science and Engineering, Northwest UniversityShaanxi, China.,Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest UniversityShaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Department of Food Science and Engineering, Northwest UniversityShaanxi, China.,Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest UniversityShaanxi, China
| | - Haixia Yang
- Department of Nutrition and Food Safety, College of Public Health, Xi'an Jiaotong UniversityShaanxi, China
| |
Collapse
|
21
|
Shi Y, Wan X, Shao N, Ye R, Zhang N, Zhang Y. Protective and anti-angiopathy effects of ginsenoside Re against diabetes mellitus via the activation of p38 MAPK, ERK1/2 and JNK signaling. Mol Med Rep 2016; 14:4849-4856. [DOI: 10.3892/mmr.2016.5821] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 08/09/2016] [Indexed: 11/06/2022] Open
|
22
|
Liu HH, Chen FP, Liu RK, Lin CL, Chang KT. Ginsenoside Rg1 improves bone marrow haematopoietic activity via extramedullary haematopoiesis of the spleen. J Cell Mol Med 2015; 19:2575-86. [PMID: 26153045 PMCID: PMC4627563 DOI: 10.1111/jcmm.12643] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/28/2015] [Indexed: 12/12/2022] Open
Abstract
Cyclophosphamide (CY) is a chemotherapeutic agent used for cancer and immunological diseases. It induces cytotoxicity of bone marrow and causes myelosuppression and extramedullary haematopoiesis (EMH) in treated patients. EMH is characterized with the emergence of multipotent haematopoietic progenitors most likely in the spleen and liver. Previous studies indicated that a Chinese medicine, ginsenoside Rg1, confers a significant effect to elevate the number of lineage (Lin−) Sca-1+ c-Kit+ haematopoietic stem and progenitor cells (HSPCs) and restore the function of bone marrow in CY-treated myelosuppressed mice. However, whether the amelioration of bone marrow by Rg1 accompanies an alleviation of EMH in the spleen was still unknown. In our study, the cellularity and weight of the spleen were significantly reduced after Rg1 treatment in CY-treated mice. Moreover, the number of c-Kit+ HSPCs was significantly decreased but not as a result of apoptosis, indicating that Rg1 alleviated EMH of the spleen induced by CY. Unexpectedly, the proliferation activity of c-Kit+ HSPCs was only up-regulated in the spleen, but not in the bone marrow, after Rg1 treatment in CY-treated mice. We also found that a fraction of c-Kit+/CD45+ HSPCs was simultaneously increased in the circulation after Rg1 treatment. Interestingly, the effects of Rg1 on the elevation of HSPCs in bone marrow and in the peripheral blood were suppressed in CY-treated splenectomized mice. These results demonstrated that Rg1 improves myelosuppression induced by CY through its action on the proliferation of HSPCs in EMH of the spleen and migration of HSPCs from the spleen to the bone marrow.
Collapse
Affiliation(s)
- Hua-Hsing Liu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Fei-Peng Chen
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Rong-Kai Liu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chun-Lin Lin
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ko-Tung Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
23
|
Rapid preparation of rare ginsenosides by acid transformation and their structure-activity relationships against cancer cells. Sci Rep 2015; 5:8598. [PMID: 25716943 PMCID: PMC4341195 DOI: 10.1038/srep08598] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/28/2015] [Indexed: 01/16/2023] Open
Abstract
The anticancer activities of ginsenosides are widely reported. The structure-activity relationship of ginsenosides against cancer is not well elucidated because of the unavailability of these compounds. In this work, we developed a transformation method to rapidly produce rare dehydroxylated ginsenosides by acid treatment. The optimized temperature, time course, and concentration of formic acid were 120°C, 4 h and 0.01%, respectively. From 100 mg of Rh1, 8.3 mg of Rk3 and 18.7 mg of Rh4 can be produced by acid transformation. Similarly, from 100 mg of Rg3, 7.4 mg of Rk1 and 15.1 mg of Rg5 can be produced. From 100 mg of Rh2, 8.3 mg of Rk2 and 12.7 mg of Rh3 can be generated. Next, the structure-activity relationships of 23 ginsenosides were investigated by comparing their cytotoxic effects on six human cancer cells, including HCT-116, HepG2, MCF-7, Hela, PANC-1, and A549. The results showed that: (1) the cytotoxic effect of ginsenosides is inversely related to the sugar numbers; (2) sugar linkages rank as C-3 > C-6 > C-20; (3) the protopanaxadiol-type has higher activities; (4) having the double bond at the terminal C20-21 exhibits stronger activity than that at C20-22; and (5) 20(S)-ginsenosides show stronger effects than their 20(R)-stereoisomers.
Collapse
|