1
|
Quyen TLT, Hsieh YC, Li SW, Wu LT, Liu YZ, Pan YJ. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii group in Taiwan. mSphere 2025; 10:e0079324. [PMID: 39745372 PMCID: PMC11774041 DOI: 10.1128/msphere.00793-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/21/2024] [Indexed: 01/29/2025] Open
Abstract
Acinetobacter, particularly the Acinetobacter baumannii group, is a major cause of nosocomial infections, and carbapenem-resistant Acinetobacter spp. are important human pathogens. We collected 492 Acinetobacter spp. strains from two hospitals in Taiwan and classified them using MALDI-TOF MS and blaOXA-51-like PCR; 94.5% were A. baumannii, and 5.5% were non-A. baumannii (NAB). We confirmed their identity by rpoB gene sequencing of 239 randomly selected A. baumannii strains and all 27 NAB strains. Our analysis revealed that the rpoB alleles of OXA51-like-negative strains matched those of two NAB species, A. seifertii and A. nosocomialis, while all OXA51-like-positive strains matched A. baumannii, as per the Pasteur MLST scheme database. Among the 492 strains, 240 exhibited carbapenem resistance, including 237 carbapenem-resistant A. baumannii (CRAB) strains and three CR-NAB strains. All CRAB strains were positive for blaOXA-51-like; 72.6% also carried blaOXA-23-like, 22.8% carried blaOXA-24-like, 3.4% co-carried blaOXA-23-like+blaOXA-24-like, and 1.27% carried blaOXA-51-like alone. Among the three CR-NAB strains, one carried blaNDM-1, and two co-carried blaOXA-58-like+blaIMP. We also established a new multiplex PCR method for rapid screening of common capsular types (KL), which showed a difference between CRAB and carbapenem-susceptible A. baumannii (CSAB). KL2, KL10, KL22, and KL52 accounted for 76.6% of CRAB strains, whereas about half of the CSAB strains were other KL types. Of the remaining CSAB strains, KL14 was the most predominant type at 10.3%. We further conducted MLST Pasteur typing for 262 isolates and found that the carbapenemase genes were correlated with either ST or KL types. Additionally, KL types showed correlations with ST types, carbapenem resistance, and certain clinical records. Whole-genome sequencing of a blaNDM-1-carrying A. seifertii strain revealed a plasmid transferable via in vitro conjugation, suggesting A. seifertii may be a reservoir for NDM-1 plasmids.IMPORTANCECarbapenem-resistant Acinetobacter spp. have been identified by the World Health Organization as a top priority for new antibiotic development. We established a rapid KL-typing method for efficient screening of Acinetobacter baumannii strains to enable epidemiological surveillance and provide a foundation for effective infection control. Our investigation of the molecular epidemiology of the A. baumannii group isolates revealed the prevalence of carbapenemase genes and major KL types among CR and CS strains of A. baumannii and NAB. We identified an A. seifertii strain carrying a Ti-type conjugative operon on a small plasmid that harbored genes encoding the NDM-1 carbapenemase alongside genes conferring resistance to aminoglycosides and bleomycin and closely resembled sequences detected in A. soli and A. pittii in Taiwan and China, respectively, suggesting its potential for transmitting multidrug resistance and contributing to the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Tran Lam Tu Quyen
- Department of Biological Science and Technology, College of Life Science, China Medical University, Taichung, Taiwan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chia Hsieh
- Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Shiao-Wen Li
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Lii-Tzu Wu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ya-Zhu Liu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Jiun Pan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Kamani J, Nachum-Biala Y, Bukar L, Shand M, Harrus S. Molecular detection of Bartonella quintana, Acinetobacter baumannii and Acinetobacter haemolyticus in Pediculus humanus lice in Nigeria, West Africa. Zoonoses Public Health 2024; 71:48-59. [PMID: 37787179 DOI: 10.1111/zph.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/18/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023]
Abstract
The human lice Pediculus humanus is distributed worldwide but, it thrives and flourishes under conflict situations where people are forced to live in crowded unhygienic conditions. Molecular methods were used to identify and screen human lice for the DNA of pathogens of public health importance in an area that has been under insurgency related to religious and political conflicts with tens of thousands of internally displaced people (IDP). DNA of Bartonella quintana, Acinetobacter baumannii and Acinetobacter haemolyticus was detected in 18.3%, 40.0% and 1.7%, respectively, of human lice collected from children in Maiduguri, Nigeria. More body lice than head lice were positive for pathogen's DNA (64.3% vs. 44.4%; χ2 = 1.3, p = 0.33), but the difference was not significant. Two lice samples were found to harbour mixed DNA of B. quintana and A. baumannii. Phylogenetic analysis of the cytochrome b (cytb) gene sequences of the positive lice specimens placed them into clades A and E. This is the first report on the molecular identification of human lice and the detection of the DNA of pathogens of public health importance in lice in Nigeria, West Africa. The findings of this study will assist policy makers and medical practitioners in formulating a holistic healthcare delivery to IDPs.
Collapse
Affiliation(s)
- Joshua Kamani
- National Veterinary Research Institute (NVRI), Vom, Plateau State, Nigeria
| | - Yaarit Nachum-Biala
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Laminu Bukar
- National Veterinary Research Institute (NVRI), Vom, Plateau State, Nigeria
| | - Mike Shand
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, UK
| | - Shimon Harrus
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
3
|
Kayani H, Rasheed MA, Alonazi WB, Jamil F, Hussain A, Yan C, Ahmed R, Ibrahim M. Identification and genome-wide analysis provide insights into the genetic diversity and biotechnological potentials of novel cold-adapted Acinetobacter strain. Extremophiles 2023; 27:14. [PMID: 37354217 DOI: 10.1007/s00792-023-01301-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
Extreme cold environments, such as polar regions or high-altitude mountains, are known for their challenging conditions including low temperatures, high salinity, and limited nutrient availability. Microbes that thrive in these environments have evolved specialized strategies to survive and function under such harsh conditions. The study aims to identify, sequence the genome, perform genome assembly, and conduct a comparative genome-wide analysis of Acinetobacter sp. strain P1, which was isolated from the Batura glacier regions of Pakistan. A basic local alignment search tool of NCBI using 16 s RNA gene sequence confirmed the strain Acinetobacter following phylogenetic analysis revealed that strain P1 clustered with Acinetobacter sp. strain AcBz01. The high-throughput Genome sequencing was done by the NovaSeq 6000 sequencing system following de novo genome assembly reported 23 contigs, a genome size of 3,732,502 bp containing approximately 3489 genes and 63 RNAs (60 tRNA, 3 rRNA). The comparative genome analysis revealed that Acinetobacter sp. strain P1 exhibited the highest homology with the Acinetobacter baumannii ATCC 17978 genome and encompassed 1668 indispensable genes, 1280 conserved genes 1821 specific genes suggesting high genomic plasticity and evolutionary diversity. The genes with functional assignments include exopolysaccharide phosphotransferase enzyme, cold-shock proteins, T6SS, membrane modifications, antibiotic resistance, and set of genes related to a wide range of metabolic characteristics such as exopolysaccharides were also present. Moreover, the structural prediction analysis of EPS proteins reveals that structural flexibility allows for conformational modifications during catalysis, which boosts or increases the catalytic effectiveness at lower temperatures. Overall, the identification of Acinetobacter, a cold-adapted bacterium, offers promising applications in bioremediation, enzyme production, food preservation, pharmaceutical development, and astrobiology. Further research and exploration of these microorganisms can unlock their full biotechnological potential and contribute to various industries and scientific endeavors.
Collapse
Affiliation(s)
- Hajra Kayani
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Muhammad Asif Rasheed
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Wadi B Alonazi
- Health Administration Department, College of Business Administration, King Saud University, Riyadh, Saudi Arabia
| | - Farrukh Jamil
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Annam Hussain
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - ChangHui Yan
- Department of Computer Science, North Dakota State University Fargo United State of America, Fargo, USA
| | - Raza Ahmed
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
- Health Administration Department, College of Business Administration, King Saud University, Riyadh, Saudi Arabia
- Department of Computer Science, North Dakota State University Fargo United State of America, Fargo, USA
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Muhammad Ibrahim
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan.
| |
Collapse
|
4
|
Hematian A, Goudarzi H, Ghalavand Z, Goudarzi M, Shafieian M, Hashemi A, Ghafourian S. The relationship between phoH and colistin-heteroresistant in clinical isolates of Acinetobacter baumannii. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Skowronek M, Sajnaga E, Kazimierczak W, Lis M, Wiater A. Screening and Molecular Identification of Bacteria from the Midgut of Amphimallon solstitiale Larvae Exhibiting Antagonistic Activity against Bacterial Symbionts of Entomopathogenic Nematodes. Int J Mol Sci 2021; 22:ijms222112005. [PMID: 34769435 PMCID: PMC8584744 DOI: 10.3390/ijms222112005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
Entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) are a group of organisms capable of infecting larvae of insects living in soil, including representatives of the family Scarabaeidae. Their insecticidal activity is related to the presence of symbiotic bacteria Xenorhabdus spp. or Photorhabdus spp. in the alimentary tract, which are released into the insect body, leading to its death caused by bacterial toxins and septicemia. Although the antibacterial activities of symbionts of entomopathogenic nematodes have been well described, there is insufficient knowledge of the interactions between these bacteria and microorganisms that naturally inhabit the alimentary tract of insects infested by nematodes. In this study, 900 bacterial strains isolated from midgut samples of Amphimallon solstitiale larvae were tested for their antagonistic activity against the selected five Xenorhabdus and Photorhabdus species. Cross-streak tests showed significant antibacterial activity of 20 isolates. These bacteria were identified as Bacillus [Brevibacterium] frigoritolerans, Bacillus toyonensis, Bacillus wiedmannii, Chryseobacterium lathyri, Chryseobacterium sp., Citrobacter murliniae, Enterococcus malodoratus, Paenibacillus sp., Serratia marcescens and Serratia sp. Since some representatives of the intestinal microbiota of A. solstitiale are able to inhibit the growth of Xenorhabdus and Photorhrhabdus bacteria in vitro, it can be assumed that this type of bacterial interaction may occur at certain stages of insect infection by Steinernema or Heterorhabditis nematodes.
Collapse
Affiliation(s)
- Marcin Skowronek
- Laboratory of Biocontrol, Production and Application of EPN, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland; (E.S.); (W.K.); (M.L.)
- Correspondence: (M.S.); (A.W.)
| | - Ewa Sajnaga
- Laboratory of Biocontrol, Production and Application of EPN, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland; (E.S.); (W.K.); (M.L.)
| | - Waldemar Kazimierczak
- Laboratory of Biocontrol, Production and Application of EPN, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland; (E.S.); (W.K.); (M.L.)
| | - Magdalena Lis
- Laboratory of Biocontrol, Production and Application of EPN, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland; (E.S.); (W.K.); (M.L.)
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-033 Lublin, Poland
- Correspondence: (M.S.); (A.W.)
| |
Collapse
|
6
|
Askari P, Namaei MH, Ghazvini K, Hosseini M. In vitro and in vivo toxicity and antibacterial efficacy of melittin against clinical extensively drug-resistant bacteria. BMC Pharmacol Toxicol 2021; 22:42. [PMID: 34261542 PMCID: PMC8281584 DOI: 10.1186/s40360-021-00503-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Melittin is one of the most studied antimicrobial peptides, and several in vitro experiments have demonstrated its antibacterial efficacy. However, there is evidence showing melittin has non-promising effects such as cytotoxicity and hemolysis. Therefore, concerns about unwanted collateral toxicity of melittin lie ahead in the path toward its clinical development. With these considerations, the present study aimed to fill the gap between in vitro and in vivo studies. METHODS In the first step, in vitro toxicity profile of melittin was assessed using cytotoxicity and hemolysis tests. Next, a maximum intraperitoneal (i.p.) sub-lethal dose was determined using BALB/c mice. Besides toxicity, antimicrobial efficacy of melittin against extensively drug-resistant (XDR) Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus (MRSA), and KPC-producing Klebsiella pneumonia (KPC-KP) pathogens were tested using both in vitro and in vivo methods. RESULTS Melittin showed extensive hemolysis (HD50 = 0.44 µg/mL), and cytotoxicity (IC50 = 6.45 µg/mL) activities with i.p. LD50 value of 4.98 mg/kg in BALB/c mice. In vitro antimicrobial evaluation showed melittin MIC range from 8 to 32 µg/mL for the studied pathogens. Treatment of infected mice with repeated sub-lethal doses of melittin (2.4 mg/kg) displayed no beneficial effect on their survival and peritoneal bacterial loads. CONCLUSIONS These results indicate that melittin at its safe dose could not exhibit antimicrobial activity, which hinders its application in clinical practice.
Collapse
Affiliation(s)
- Parvin Askari
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hasan Namaei
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mehran Hosseini
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
7
|
Skowronek M, Sajnaga E, Pleszczyńska M, Kazimierczak W, Lis M, Wiater A. Bacteria from the Midgut of Common Cockchafer ( Melolontha melolontha L.) Larvae Exhibiting Antagonistic Activity Against Bacterial Symbionts of Entomopathogenic Nematodes: Isolation and Molecular Identification. Int J Mol Sci 2020; 21:ijms21020580. [PMID: 31963214 PMCID: PMC7013910 DOI: 10.3390/ijms21020580] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/27/2022] Open
Abstract
The mechanisms of action of the complex including entomopathogenic nematodes of the genera Steinernema and Heterorhabditis and their mutualistic partners, i.e., bacteria Xenorhabdus and Photorhabdus, have been well explained, and the nematodes have been commercialized as biological control agents against many soil insect pests. However, little is known regarding the nature of the relationships between these bacteria and the gut microbiota of infected insects. In the present study, 900 bacterial isolates that were obtained from the midgut samples of Melolontha melolontha larvae were screened for their antagonistic activity against the selected species of the genera Xenorhabdus and Photorhabdus. Twelve strains exhibited significant antibacterial activity in the applied tests. They were identified based on 16S rRNA and rpoB, rpoD, or recA gene sequences as Pseudomonas chlororaphis, Citrobacter murliniae, Acinetobacter calcoaceticus, Chryseobacterium lathyri, Chryseobacterium sp., Serratia liquefaciens, and Serratia sp. The culture filtrate of the isolate P. chlororaphis MMC3 L3 04 exerted the strongest inhibitory effect on the tested bacteria. The results of the preliminary study that are presented here, which focused on interactions between the insect gut microbiota and mutualistic bacteria of entomopathogenic nematodes, show that bacteria inhabiting the gut of insects might play a key role in insect resistance to entomopathogenic nematode pressure.
Collapse
Affiliation(s)
- Marcin Skowronek
- Laboratory of Biocontrol, Application and Production of EPN, Centre for Interdisciplinary Research, Faculty of Biotechnology and Environmental Sciences, John Paul II Catholic University of Lublin, ul. Konstantynów 1J, 20-708 Lublin, Poland; (E.S.); (W.K.); (M.L.)
- Correspondence: (M.S.); (A.W.)
| | - Ewa Sajnaga
- Laboratory of Biocontrol, Application and Production of EPN, Centre for Interdisciplinary Research, Faculty of Biotechnology and Environmental Sciences, John Paul II Catholic University of Lublin, ul. Konstantynów 1J, 20-708 Lublin, Poland; (E.S.); (W.K.); (M.L.)
| | - Małgorzata Pleszczyńska
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland;
| | - Waldemar Kazimierczak
- Laboratory of Biocontrol, Application and Production of EPN, Centre for Interdisciplinary Research, Faculty of Biotechnology and Environmental Sciences, John Paul II Catholic University of Lublin, ul. Konstantynów 1J, 20-708 Lublin, Poland; (E.S.); (W.K.); (M.L.)
| | - Magdalena Lis
- Laboratory of Biocontrol, Application and Production of EPN, Centre for Interdisciplinary Research, Faculty of Biotechnology and Environmental Sciences, John Paul II Catholic University of Lublin, ul. Konstantynów 1J, 20-708 Lublin, Poland; (E.S.); (W.K.); (M.L.)
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland;
- Correspondence: (M.S.); (A.W.)
| |
Collapse
|
8
|
Abstract
Acinetobacter species have emerged as one of the most clinically important pathogens. The phenotypic techniques which are currently available are insufficient in accurately identifying and differentiating the closely related and clinically important Acinetobacter species. Here, we discuss the advantages and limitations of the conventional phenotypic methods, automated identification systems, molecular methods and MALDI-TOF in the precise identification and differentiation of Acinetobacter species. More specifically, several species of this genus are increasingly reported to be of high clinical importance. Molecular characterization such as of blaOXA-51-like PCR together with rpoB sequencing has high discriminatory power over the conventional methods for Acinetobacter species identification, especially within the Acinetobacter calcoaceticus–Acinetobacter baumannii complex. Acinetobacter species are considered to be one of the most important pathogens and associated with increased mortality. The species within the Acinetobacter calcoaceticus–Acinetobacter baumannii complex have emerged as high priority pathogens, especially in intensive care units, thereby posing a challenge to infection management practices. However, identification of Acinetobacter to the species level is difficult. Clear differentiation among various Acinetobacter species with available standard biochemical methods and automated systems is challenging. Although various molecular methods are available, they are not regularly used in diagnostic laboratories. The advantages and disadvantages of different methods useful in the accurate identification of Acinetobacter species are discussed in this review.
Collapse
|
9
|
Cerezales M, Xanthopoulou K, Ertel J, Nemec A, Bustamante Z, Seifert H, Gallego L, Higgins PG. Identification of Acinetobacter seifertii isolated from Bolivian hospitals. J Med Microbiol 2018; 67:834-837. [DOI: 10.1099/jmm.0.000751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mónica Cerezales
- Faculty of Medicine and Nursing; Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Barrio Sarriena s/n 48940 Bilbao, Spain
| | - Kyriaki Xanthopoulou
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelstrasse 19-21 50935 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Julia Ertel
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelstrasse 19-21 50935 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Alexandr Nemec
- Laboratory of Bacterial Genetics, National Institute of Public Health, Šrobárova 48, 100 42, Prague, Czech Republic
| | - Zulema Bustamante
- Faculty of Biochemistry and Pharmacy, Universidad Mayor de San Simón, Avenida Aniceto Arce s/n frente al parque La Torre Cochabamba, Bolivia
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelstrasse 19-21 50935 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Lucia Gallego
- Faculty of Medicine and Nursing; Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Barrio Sarriena s/n 48940 Bilbao, Spain
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelstrasse 19-21 50935 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
10
|
Jain AL, Harding CM, Assani K, Shrestha CL, Haga M, Leber A, Munson RS, Kopp BT. Characteristics of invasive Acinetobacter species isolates recovered in a pediatric academic center. BMC Infect Dis 2016; 16:346. [PMID: 27449800 PMCID: PMC4957376 DOI: 10.1186/s12879-016-1678-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 06/14/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Acinetobacter species are associated with increasing mortality due to emerging drug-resistance. Pediatric Acinetobacter infections are largely undefined in developed countries and clinical laboratory identification methods do not reliably differentiate between members of the Acinetobacter calcoaceticus-baumannii complex, leading to improper identification. Therefore we aimed to determine risk factors for invasive Acinetobacter infections within an academic, pediatric setting as well as defining microbiologic characteristics of predominant strains. METHODS Twenty-four invasive Acinetobacter isolates were collected from 2009-2013. Comparative sequence analysis of the rpoB gene was performed coupled with phenotypic characterization of antibiotic resistance, motility, biofilm production and clinical correlation. RESULTS Affected patients had a median age of 3.5 years, and 71 % had a central catheter infection source. rpoB gene sequencing revealed a predominance of A. pittii (45.8 %) and A. baumannii (33.3 %) strains. There was increasing incidence of A. pittii over the study. Two fatalities occurred in the A. pittii group. Seventeen percent of isolates were multi-drug resistant. A pittii and A. baumannii strains were similar in motility, but A pittii strains had significantly more biofilm production (P value = 0.018). CONCLUSIONS A. pittii was the most isolated species highlighting the need for proper species identification. The isolated strains had limited acute mortality in children, but the occurrence of more multi-drug resistant strains in the future is a distinct possibility, justifying continued research and accurate species identification.
Collapse
Affiliation(s)
- Avish L Jain
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Christian M Harding
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kaivon Assani
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Chandra L Shrestha
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Mercedees Haga
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Amy Leber
- Department of Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Robert S Munson
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Benjamin T Kopp
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Nationwide Children's Hospital, Section of Pulmonary Medicine, 700 Children's Drive, Columbus, OH, 43205, USA.
| |
Collapse
|