1
|
Bouakaz A, Michel Escoffre J. From concept to early clinical trials: 30 years of microbubble-based ultrasound-mediated drug delivery research. Adv Drug Deliv Rev 2024; 206:115199. [PMID: 38325561 DOI: 10.1016/j.addr.2024.115199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Ultrasound mediated drug delivery, a promising therapeutic modality, has evolved remarkably over the past three decades. Initially designed to enhance contrast in ultrasound imaging, microbubbles have emerged as a main vector for drug delivery, offering targeted therapy with minimized side effects. This review addresses the historical progression of this technology, emphasizing the pivotal role microbubbles play in augmenting drug extravasation and targeted delivery. We explore the complex mechanisms behind this technology, from stable and inertial cavitation to diverse acoustic phenomena, and their applications in medical fields. While the potential of ultrasound mediated drug delivery is undeniable, there are still challenges to overcome. Balancing therapeutic efficacy and safety and establishing standardized procedures are essential areas requiring attention. A multidisciplinary approach, gathering collaborations between researchers, engineers, and clinicians, is important for exploiting the full potential of this technology. In summary, this review highlights the potential of using ultrasound mediated drug delivery in improving patient care across various medical conditions.
Collapse
Affiliation(s)
- Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | | |
Collapse
|
2
|
Li N, Sun Y, Ouyang J, Che Y, Chen C, Li W, Wu C. A TiN-based nanophotosensitizer for enhanced photothermal therapy with the aid of ultrasound. Biochem Biophys Res Commun 2023; 679:82-89. [PMID: 37677981 DOI: 10.1016/j.bbrc.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/08/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND AND PURPOSE Targeting and uptake are the most important strategies for enhancing the efficacy of cancer photothermal therapy (PTT) and reducing damage to surrounding normal tissues. In this study, a kind of nanophotosensitizer based on nanobubbles and TiN was prepared for synergetic therapy for hepatocellular carcinoma. METHODS The photothermal agent titanium nitride (TiN) was wrapped in nanobubbles by membrane hydration method and verified in cells and animals. CCK-8, cell death staining, and JC-1 were used to verify the pernicious effect of photothermal combined with Ultrasound Targeted Nanobubble Destruction (UTND) and then injected into animals through the tail vein to observe its photothermal effect and in vivo inhibitory effect. A hemolysis test and body weight change verified its safety. RESULTS The average diameter of the novel nanophotosensitizer was 300.3 ± 12.7 nm, with a consistent nanospheres morphology. The UTND technology was utilized to improve the penetration of TiN into tumor cells through the physical energy of ultrasound irradiation. The therapeutic effects of the synergistic therapy of UTND and PTT were verified in vitro and in vivo. CONCLUSION The research has established NBs@C3F8-TiN as a suitable ultrasound photothermal agent due to its appropriate size and efficient photothermal efficacy for visual photothermal therapy for HCC.
Collapse
Affiliation(s)
- Nan Li
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, China
| | - Yunfeng Sun
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, China
| | - Jiabao Ouyang
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, China
| | - Yuna Che
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, China
| | - Chen Chen
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, China
| | - Wen Li
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, China
| | - Changjun Wu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, China.
| |
Collapse
|
3
|
Kaykanat SI, Uguz AK. The role of acoustofluidics and microbubble dynamics for therapeutic applications and drug delivery. BIOMICROFLUIDICS 2023; 17:021502. [PMID: 37153864 PMCID: PMC10162024 DOI: 10.1063/5.0130769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/18/2023] [Indexed: 05/10/2023]
Abstract
Targeted drug delivery is proposed to reduce the toxic effects of conventional therapeutic methods. For that purpose, nanoparticles are loaded with drugs called nanocarriers and directed toward a specific site. However, biological barriers challenge the nanocarriers to convey the drug to the target site effectively. Different targeting strategies and nanoparticle designs are used to overcome these barriers. Ultrasound is a new, safe, and non-invasive drug targeting method, especially when combined with microbubbles. Microbubbles oscillate under the effect of the ultrasound, which increases the permeability of endothelium, hence, the drug uptake to the target site. Consequently, this new technique reduces the dose of the drug and avoids its side effects. This review aims to describe the biological barriers and the targeting types with the critical features of acoustically driven microbubbles focusing on biomedical applications. The theoretical part covers the historical developments in microbubble models for different conditions: microbubbles in an incompressible and compressible medium and bubbles encapsulated by a shell. The current state and the possible future directions are discussed.
Collapse
Affiliation(s)
- S. I. Kaykanat
- Department of Chemical Engineering, Boğaziçi University, 34342 Bebek, Istanbul, Türkiye
| | | |
Collapse
|
4
|
Lai B, Ouyang X, Mao S, Cao J, Li H, Li S, Wang J. Target tumor therapy in human gastric cancer cells through the combination of docetaxel-loaded cationic lipid microbubbles and ultrasound-triggered microbubble destruction. Funct Integr Genomics 2023; 23:59. [PMID: 36757623 DOI: 10.1007/s10142-022-00952-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 02/10/2023]
Abstract
It is well accepted that ultrasound-induced microbubble (USMB) cavitation is a promising method for drug delivery. Ultrasound-targeted destruction of cytotoxic drug-loaded lipid microbubbles (LMs) is used to promote the treatment of cancer. This study aimed to investigate the antitumor effects from a combination of docetaxel-loaded cationic lipid microbubbles (DLLM+) and ultrasound (US)-triggered microbubble destruction (UTMD) on gastric cancer (GC). It was found that the functional dose of DOC in this study was 1 × 10-9 mol/L. We found that DLLM combined with the UTMD group showed greater growth inhibition of the cultured human gastric cancer cells (HGCCs) when compared with the other five groups by arresting the G2/M phase in the cell cycle. However, DLLM+ combined with UTMD showed a higher inhibition rate of tumor growth than DLLM combined with UTMD and that of the RC/CMV-p16 combined with UTMD in vitro and in vivo experiments. DLLM+ combined with UTMD significantly suppressed proliferation and promoted the apoptosis of HGCCs with more cells arrested in the G2/M phase. In addition, DLLM+ combined with UTMD suppressed the proliferation and induced apoptosis by arresting cells in the G2/M phase, which led to a great inhibition of GC progression. Thus, our results indicated that the combination of DLLM+ and UTMD might represent a novel and promising approach to chemotherapy for GC.
Collapse
Affiliation(s)
- Bin Lai
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xi Ouyang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengxun Mao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaqin Cao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honglang Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Song Li
- Mudanjiang Medical College, Mudanjiang, China
| | - Jiwei Wang
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Donghu District, Nanchang, China.
| |
Collapse
|
5
|
Hybrid Ultrasound-Activated Nanoparticles Based on Graphene Quantum Dots for Cancer Treatment. Int J Pharm 2022; 629:122373. [DOI: 10.1016/j.ijpharm.2022.122373] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
6
|
Zhang L, Lin Z, Zeng L, Zhang F, Sun L, Sun S, Wang P, Xu M, Zhang J, Liang X, Ge H. Ultrasound-induced biophysical effects in controlled drug delivery. SCIENCE CHINA. LIFE SCIENCES 2022; 65:896-908. [PMID: 34453275 DOI: 10.1007/s11427-021-1971-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/27/2021] [Indexed: 12/30/2022]
Abstract
Ultrasound is widely used in biomedical engineering and has applications in conventional diagnosis and drug delivery. Recent advances in ultrasound-induced drug delivery have been summarized previously in several reviews that have primarily focused on the fabrication of drug delivery carriers. This review discusses the mechanisms underlying ultrasound-induced drug delivery and factors affecting delivery efficiency, including the characteristics of drug delivery carriers and ultrasound parameters. Firstly, biophysical effects induced by ultrasound, namely thermal effects, cavitation effects, and acoustic radiation forces, are illustrated. Secondly, the use of these biophysical effects to enhance drug delivery by affecting drug carriers and corresponding tissues is clarified in detail. Thirdly, recent advances in ultrasound-triggered drug delivery are detailed. Safety issues and optimization strategies to improve therapeutic outcomes and reduce side effects are summarized. Finally, current progress and future directions are discussed.
Collapse
Affiliation(s)
- Lulu Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Zhuohua Lin
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Lan Zeng
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Fan Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Lihong Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Ping Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Menghong Xu
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Jinxia Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.
| | - Huiyu Ge
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
7
|
Application of Ultrasound Combined with Microbubbles for Cancer Therapy. Int J Mol Sci 2022; 23:ijms23084393. [PMID: 35457210 PMCID: PMC9026557 DOI: 10.3390/ijms23084393] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023] Open
Abstract
At present, cancer is one of the leading causes of death worldwide. Treatment failure remains one of the prime hurdles in cancer treatment due to the metastatic nature of cancer. Techniques have been developed to hinder the growth of tumours or at least to stop the metastasis process. In recent years, ultrasound therapy combined with microbubbles has gained immense success in cancer treatment. Ultrasound-stimulated microbubbles (USMB) combined with other cancer treatments including radiation therapy, chemotherapy or immunotherapy has demonstrated potential improved outcomes in various in vitro and in vivo studies. Studies have shown that low dose radiation administered with USMB can have similar effects as high dose radiation therapy. In addition, the use of USMB in conjunction with radiotherapy or chemotherapy can minimize the toxicity of high dose radiation or chemotherapeutic drugs, respectively. In this review, we discuss the biophysical properties of USMB treatment and its applicability in cancer therapy. In particular, we highlight important preclinical and early clinical findings that demonstrate the antitumour effect combining USMB and other cancer treatment modalities (radiotherapy and chemotherapy). Our review mainly focuses on the tumour vascular effects mediated by USMB and these cancer therapies. We also discuss several current limitations, in addition to ongoing and future efforts for applying USMB in cancer treatment.
Collapse
|
8
|
Escoffre JM, Sekkat N, Oujagir E, Bodard S, Mousset C, Presset A, Chautard R, Ayoub J, Lecomte T, Bouakaz A. Delivery of anti-cancer drugs using microbubble-assisted ultrasound in digestive oncology: From preclinical to clinical studies. Expert Opin Drug Deliv 2022; 19:421-433. [PMID: 35363586 DOI: 10.1080/17425247.2022.2061459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The combination of microbubbles (MBs) and ultrasound (US) is an emerging method for the noninvasive and targeted enhancement of intratumor chemotherapeutic uptake. This method showed an increased local drug extravasation in tumor tissue while reducing the systemic adverse effects in various tumor models. AREA COVERED We focused on preclinical and clinical studies investigating the therapeutic efficacy and safety of this technology for the treatment of colorectal, pancreatic and liver cancers. We discussed the limitations of the current investigations and future perspectives. EXPERT OPINION The therapeutic efficacy and the safety of delivery of standard chemotherapy regimen using MB-assisted US have been mainly demonstrated in subcutaneous models of digestive cancers. Although some clinical trials on pancreatic ductal carcinoma and hepatic metastases from various digestive cancers have shown promising results, successful evaluation of this method in terms of US settings, chemotherapeutic schemes and MBs-related parameters will need to be addressed in more relevant preclinical models of digestive cancers, in small and large animals before fully and successfully translating this technology for clinic use. Ultimately, a clear evidence of the correlation between the enhanced intratumoral concentrations of therapeutics and the increased therapeutic response of tumors have to be provided in clinical trials.
Collapse
Affiliation(s)
| | - Najib Sekkat
- Université de Tours, UMR 1253, iBrain, Inserm, Tours, France
| | - Edward Oujagir
- Université de Tours, UMR 1253, iBrain, Inserm, Tours, France
| | - Sylvie Bodard
- Université de Tours, UMR 1253, iBrain, Inserm, Tours, France
| | - Coralie Mousset
- Université de Tours, UMR 1253, iBrain, Inserm, Tours, France
| | - Antoine Presset
- Université de Tours, UMR 1253, iBrain, Inserm, Tours, France
| | - Romain Chautard
- Inserm UMR 1069, Nutrition, Croissance et Cancer (N2C), Université de Tours, Tours, France.,Department of Hepato-Gastroenterology & Digestive Oncology, CHRU de Tours, Tours, France
| | - Jean Ayoub
- Université de Tours, UMR 1253, iBrain, Inserm, Tours, France.,Departement of Echography & Doppler, CHRU de Tours, Tours, France
| | - Thierry Lecomte
- Inserm UMR 1069, Nutrition, Croissance et Cancer (N2C), Université de Tours, Tours, France.,Department of Hepato-Gastroenterology & Digestive Oncology, CHRU de Tours, Tours, France
| | - Ayache Bouakaz
- Université de Tours, UMR 1253, iBrain, Inserm, Tours, France
| |
Collapse
|
9
|
Evaluation of Liposome-Loaded Microbubbles as a Theranostic Tool in a Murine Collagen-Induced Arthritis Model. Sci Pharm 2022. [DOI: 10.3390/scipharm90010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by severe inflammation of the synovial tissue. Here, we assess the feasibility of liposome-loaded microbubbles as theranostic agents in a murine arthritis model. First, contrast-enhanced ultrasound (CEUS) was used to quantify neovascularization in this model since CEUS is well-established for RA diagnosis in humans. Next, the potential of liposome-loaded microbubbles and ultrasound (US) to selectively enhance liposome delivery to the synovium was evaluated with in vivo fluorescence imaging. This procedure is made very challenging by the presence of hard joints and by the limited lifetime of the microbubbles. The inflamed knee joints were exposed to therapeutic US after intravenous injection of liposome-loaded microbubbles. Loaded microbubbles were found to be quickly captured by the liver. This resulted in fast clearance of attached liposomes while free and long-circulating liposomes were able to accumulate over time in the inflamed joints. Our observations show that murine arthritis models are not well-suited for evaluating the potential of microbubble-mediated drug delivery in joints given: (i) restricted microbubble passage in murine synovial vasculature and (ii) limited control over the exact ultrasound conditions in situ given the much shorter length scale of the murine joints as compared to the therapeutic wavelength.
Collapse
|
10
|
杨 健, 曾 妍, 吴 小, 王 志. [Effect of DR5-mediated docetaxel-loaded lipid microbubble combined with ultrasoundtargeted microbubble destruction on HepG2 cell proliferation and apoptosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1220-1225. [PMID: 34549714 PMCID: PMC8527229 DOI: 10.12122/j.issn.1673-4254.2021.08.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the effect of DR5-mediated docetaxel-targeted lipid microbubbles (MBs) combined with ultrasound-targeted microbubble destruction on apoptosis and expressions of Bcl-2, nuclear factor-κB(NF-κB), caspase-8, and DR5 in human HepG2 cells. METHODS HepG2 cells were treated with docetaxel at its 50% inhibitory concentration (IC50) of 5 nmol/L, docetaxel combined with ultrasound, blank MBs, blank MBs combined with ultrasound (0.5 W/cm2 for 45 s), drugloaded lipid MBs (DLLM), DLLM combined with ultrasound, DR5-mediated DLLM (DR5-DLLM), or DR5-DLLM combined with ultrasound.After the treatments, the cells were further cultured for 24 h, and CCK-8 assay, TUNEL staining and flow cytometry were used to assess cell proliferation, apoptosis, and cell cycle changes; the changes in mRNA and protein expression levels of Bcl-2, NF-κB, caspase-8, and DR5 were detected with RT-qPCR and Western blotting. RESULTS Among all the treatments, DR5-DLLM combined with ultrasound produced the strongest effects to inhibit the proliferation (P < 0.001), promote apoptosis (P < 0.001), and cause G2/M cell cycle arrest (P < 0.001) in HepG2 cells.The combined treatment with DR5-DLLM and ultrasound also significantly downregulated Bcl-2 and NF-κB (P < 0.001) and upregulated DR5 and caspase-8 expressions (P < 0.001) at both the mRNA and protein levels. CONCLUSION DR5-DLLM combined with ultrasound-targeted microbubble destruction can induce G2/M cell cycle arrest, proliferation inhibition and apoptosis in HepG2 cells by downregulating Bcl-2 and NF-κB and upregulating DR5 and caspase-8 expressions, indicating its value as a novel ultrasoundtargeted therapy for liver cancer.
Collapse
Affiliation(s)
- 健 杨
- 重庆医科大学附属第一医院消化内科, 重庆 400016Department of Gastroenterology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - 妍 曾
- 重庆医科大学附属第二医院精神心理科, 重庆 400010Department of Psychology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - 小翎 吴
- 重庆医科大学附属第二医院消化内科, 重庆 400010Department of Gastroenterology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - 志刚 王
- 重庆医科大学超声影像学研究所, 重庆 400010Institue of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
11
|
Drug Delivery by Ultrasound-Responsive Nanocarriers for Cancer Treatment. Pharmaceutics 2021; 13:pharmaceutics13081135. [PMID: 34452096 PMCID: PMC8397943 DOI: 10.3390/pharmaceutics13081135] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Conventional cancer chemotherapies often exhibit insufficient therapeutic outcomes and dose-limiting toxicity. Therefore, there is a need for novel therapeutics and formulations with higher efficacy, improved safety, and more favorable toxicological profiles. This has promoted the development of nanomedicines, including systems for drug delivery, but also for imaging and diagnostics. Nanoparticles loaded with drugs can be designed to overcome several biological barriers to improving efficiency and reducing toxicity. In addition, stimuli-responsive nanocarriers are able to release their payload on demand at the tumor tissue site, preventing premature drug loss. This review focuses on ultrasound-triggered drug delivery by nanocarriers as a versatile, cost-efficient, non-invasive technique for improving tissue specificity and tissue penetration, and for achieving high drug concentrations at their intended site of action. It highlights aspects relevant for ultrasound-mediated drug delivery, including ultrasound parameters and resulting biological effects. Then, concepts in ultrasound-mediated drug delivery are introduced and a comprehensive overview of several types of nanoparticles used for this purpose is given. This includes an in-depth compilation of the literature on the various in vivo ultrasound-responsive drug delivery systems. Finally, toxicological and safety considerations regarding ultrasound-mediated drug delivery with nanocarriers are discussed.
Collapse
|
12
|
Deprez J, Lajoinie G, Engelen Y, De Smedt SC, Lentacker I. Opening doors with ultrasound and microbubbles: Beating biological barriers to promote drug delivery. Adv Drug Deliv Rev 2021; 172:9-36. [PMID: 33705877 DOI: 10.1016/j.addr.2021.02.015] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
Apart from its clinical use in imaging, ultrasound has been thoroughly investigated as a tool to enhance drug delivery in a wide variety of applications. Therapeutic ultrasound, as such or combined with cavitating nuclei or microbubbles, has been explored to cross or permeabilize different biological barriers. This ability to access otherwise impermeable tissues in the body makes the combination of ultrasound and therapeutics very appealing to enhance drug delivery in situ. This review gives an overview of the most important biological barriers that can be tackled using ultrasound and aims to provide insight on how ultrasound has shown to improve accessibility as well as the biggest hurdles. In addition, we discuss the clinical applicability of therapeutic ultrasound with respect to the main challenges that must be addressed to enable the further progression of therapeutic ultrasound towards an effective, safe and easy-to-use treatment tailored for drug delivery in patients.
Collapse
Affiliation(s)
- J Deprez
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - G Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Y Engelen
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - S C De Smedt
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - I Lentacker
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
13
|
Abstract
For a chemotherapeutic agent to be effective, it must conquer the presence of blood-brain barrier (BBB), which limits the penetration of drugs into the brain. Tumours in the brain compromise the integrity of BBB and result in a highly heterogeneous vasculature, known as blood-brain tumour barrier (BBTB). In this chapter, we firstly highlight the cellular and molecular characteristics of the BBB and BBTB as well as the challenges aroused by BBB/BBTB for drug delivery. Secondly, we discuss the current strategies overcoming the challenges in invasive and non-invasive manners. Finally, we highlight the emerging strategy using focused ultrasound (FUS) with systemic microbubbles to transiently and reversibly enhance the permeability of these barriers for drug delivery.
Collapse
|
14
|
Xiaoting ZBS, Zhifei DP. Micro/Nanobubbles Driven Multimodal Imaging and Theragnostics of Cancer. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2021. [DOI: 10.37015/audt.2021.200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
15
|
Kim D, Lee JH, Moon H, Seo M, Han H, Yoo H, Seo H, Lee J, Hong S, Kim P, Lee HJ, Chung JW, Kim H. Development and evaluation of an ultrasound-triggered microbubble combined transarterial chemoembolization (TACE) formulation on rabbit VX2 liver cancer model. Am J Cancer Res 2021; 11:79-92. [PMID: 33391462 PMCID: PMC7681087 DOI: 10.7150/thno.45348] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Transarterial chemoembolization (TACE) is an image-guided locoregional therapy used for the treatment of patients with primary or secondary liver cancer. However, conventional TACE formulations are rapidly dissociated due to the instability of the emulsion, resulting in insufficient local drug concentrations in the target tumor. Methods: To overcome these limitations, a doxorubicin-loaded albumin nanoparticle-conjugated microbubble complex in an iodized oil emulsion (DOX-NPs-MB complex in Lipiodol) has been developed as a new ultrasound-triggered TACE formulation. Results: (1) Microbubbles enhanced therapeutic efficacy by effectively delivering doxorubicin- loaded nanoparticles into liver tumors via sonoporation under ultrasound irradiation (US+). (2) Microbubbles constituting the complex retained their function as an ultrasound contrast agent in Lipiodol. In a rabbit VX2 liver cancer model, the in vivo study of DOX-NPs-MB complex in Lipiodol (US+) decreased the viability of tumor more than the conventional TACE formulation, and in particular, effectively killed cancer cells in the tumor periphery. Conclusion: Incorporation of doxorubicin-loaded microbubble in the TACE formulation facilitated drug delivery to the tumor with real-time monitoring and enhanced the therapeutic efficacy of TACE. Thus, the enhanced TACE formulation may represent a new treatment strategy against liver cancer.
Collapse
|
16
|
Lee S, Kim JH, Moon H, Lee HJ, Han JK. Combined treatment of sorafenib and doxorubicin-loaded microbubble-albumin nanoparticle complex for hepatocellular carcinoma: A feasibility study. PLoS One 2020; 15:e0243815. [PMID: 33306731 PMCID: PMC7732110 DOI: 10.1371/journal.pone.0243815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose To assess the feasibility of the combined sorafenib (SOR) and doxorubicin-loaded microbubble-albumin nanoparticle complex (DOX-MAC) treatment effect in an orthotopic rat model of hepatocellular carcinoma (HCC). Materials and methods Sixty-two rats with N1-S1 hepatoma were divided into four groups according to the treatment methods, i.e. G1 (SOR and DOX-MAC; n = 12), G2 (SOR; n = 15), G3 (DOX-MAC; n = 12), G4 (DOX; n = 11), and G5 (normal saline; n = 12). We performed the theragnostic, contrast-enhanced ultrasound examination and treatment at the baseline, one-week, and two-weeks. Tumor volume and perfusion parameters were compared at each time point and the differences between all of the groups over time were analyzed using repeated measures ANOVA. We also analyzed the apoptotic index and microvessel density (MVD) per each tumor specimen in all of the groups. Results The tumors increased from the beginning in all of the groups to the final follow-up, whereas the tumor growth in the G1 group and the G2 group was inhibited during the treatment period compared to the baseline tumor volume (P = 0.016 and P = 0.031). The G1 group resulted in tumor growth inhibition compared to the control group (P = 0.008). The G1 group showed that the peak enhancement and wash-in area under the curve were lower than that of the G4 group (P = 0.010 and 0.022). However, there was no difference in perfusion parameters in the other treated group compared to control group. The MVD of the G1 group tumor was lower than that of the G4 group (P = .016). Conclusion Our results suggest that the combination therapy of SOR and DOX-MAC can cause inhibition of tumor growth after treatment and that this therapy can be adequately monitored using the theragnostic DOX-MAC agent.
Collapse
Affiliation(s)
- Seunghyun Lee
- Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul, Republic of Korea
| | - Jung Hoon Kim
- Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Jongno-gu, Seoul, Republic of Korea
- * E-mail:
| | - Hyungwon Moon
- IMGT Co., Ltd., Bundang-gu, Seongnam, Republic of Korea
| | - Hak Jong Lee
- Department of Radiology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
- IMGT Co., Ltd., Bundang-gu, Seongnam, Republic of Korea
- Department of Radiology, Seoul National University Bundang Hospital, Bundang-gu, Seongnam, Republic of Korea
| | - Joon Koo Han
- Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Jongno-gu, Seoul, Republic of Korea
| |
Collapse
|
17
|
Recent advances in ultrasound-triggered drug delivery through lipid-based nanomaterials. Drug Discov Today 2020; 25:2182-2200. [PMID: 33010479 DOI: 10.1016/j.drudis.2020.09.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/24/2020] [Accepted: 09/22/2020] [Indexed: 12/28/2022]
Abstract
The high prescribed dose of anticancer drugs and their resulting adverse effects on healthy tissue are significant drawbacks to conventional chemotherapy (CTP). Ideally, drugs should have the lowest possible degree of interaction with healthy cells, which would diminish any adverse effects. Therefore, an ideal scenario to bring about improvements in CTP is the use of technological strategies to ensure the efficient, specific, and selective transport and/or release of drugs to the target site. One practical and feasible solution to promote the efficiency of conventional CTP is the use of ultrasound (US). In this review, we highlight the potential role of US in combination with lipid-based carriers to achieve a targeted CTP strategy in engineered smart drug delivery systems.
Collapse
|
18
|
Vicente‐Ruiz S, Serrano‐Martí A, Armiñán A, Vicent MJ. Nanomedicine for the Treatment of Advanced Prostate Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sonia Vicente‐Ruiz
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Antoni Serrano‐Martí
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Ana Armiñán
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| |
Collapse
|
19
|
Chowdhury SM, Abou-Elkacem L, Lee T, Dahl J, Lutz AM. Ultrasound and microbubble mediated therapeutic delivery: Underlying mechanisms and future outlook. J Control Release 2020; 326:75-90. [PMID: 32554041 DOI: 10.1016/j.jconrel.2020.06.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Beyond the emerging field of oncological ultrasound molecular imaging, the recent significant advancements in ultrasound and contrast agent technology have paved the way for therapeutic ultrasound mediated microbubble oscillation and has shown that this approach is capable of increasing the permeability of microvessel walls while also initiating enhanced extravasation and drug delivery into target tissues. In addition, a large number of preclinical studies have demonstrated that ultrasound alone or combined with microbubbles can efficiently increase cell membrane permeability resulting in enhanced tissue distribution and intracellular drug delivery of molecules, nanoparticles, and other therapeutic agents. The mechanism behind the enhanced permeability is the temporary creation of pores in cell membranes through a phenomenon called sonoporation by high-intensity ultrasound and microbubbles or cavitation agents. At low ultrasound intensities (0.3-3 W/cm2), sonoporation may be caused by microbubbles oscillating in a stable motion, also known as stable cavitation. In contrast, at higher ultrasound intensities (greater than 3 W/cm2), sonoporation usually occurs through inertial cavitation that accompanies explosive growth and collapse of the microbubbles. Sonoporation has been shown to be a highly effective method to improve drug uptake through microbubble potentiated enhancement of microvascular permeability. In this review, the therapeutic strategy of using ultrasound for improved drug delivery are summarized with the special focus on cancer therapy. Additionally, we discuss the progress, challenges, and future of ultrasound-mediated drug delivery towards clinical translation.
Collapse
Affiliation(s)
- Sayan Mullick Chowdhury
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Lotfi Abou-Elkacem
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Taehwa Lee
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeremy Dahl
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Amelie M Lutz
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
20
|
Han H, Kim D, Jang Y, Seo M, Kim K, Lee JB, Kim H. Focused ultrasound-triggered chemo-gene therapy with multifunctional nanocomplex for enhancing therapeutic efficacy. J Control Release 2020; 322:346-356. [DOI: 10.1016/j.jconrel.2020.03.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/08/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
|
21
|
Antitumor Efficacy of Focused Ultrasound-MFL Nanoparticles Combination Therapy in Mouse Breast Cancer Xenografts. MATERIALS 2020; 13:ma13051099. [PMID: 32121631 PMCID: PMC7084991 DOI: 10.3390/ma13051099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/11/2020] [Accepted: 02/28/2020] [Indexed: 11/20/2022]
Abstract
High doses of chemotherapy agents can cause adverse effects. To address this issue, drug-loaded vesicles with minimum drug loss, guided by an external element for precise delivery, are desired. Combinational therapy of both a focused ultrasound-induced drug delivery method and membrane fusogenic liposomes (MFLs) as drug delivery vehicles can satisfy such premises. In this study, we confirmed that the use of a small quantity of docetaxel-loaded membrane fusogenic liposomes (DTX-MFL) with focused ultrasound can induce better antitumor response in a xenograft mouse model compared to conventional docetaxel monotherapy and DTX-MFL only.
Collapse
|
22
|
Drug-Loaded Microbubbles Combined with Ultrasound for Thrombolysis and Malignant Tumor Therapy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6792465. [PMID: 31662987 PMCID: PMC6791276 DOI: 10.1155/2019/6792465] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/22/2019] [Accepted: 09/14/2019] [Indexed: 12/14/2022]
Abstract
Cardiac-cerebral thrombosis and malignant tumor endanger the safety of human life seriously. Traditional chemotherapy drugs have side effects which restrict their applications. Drug-loaded microbubbles can be destroyed by ultrasound irradiation at the focus position and be used for thrombolysis and tumor therapy. Compared with traditional drug treatment, the drug-loaded microbubbles can be excited by ultrasound and release drugs to lesion sites, increasing the local drug concentration and the exposure dose to nonfocal regions, thus reducing the cytotoxicity and side effects of drugs. This article reviews the applications of drug-loaded microbubbles combined with ultrasound for thrombolysis and tumor therapy. We focus on highlighting the advantages of using this new technique for disease treatment and concluding with recommendations for future efforts on the applications of this technology.
Collapse
|
23
|
Lee L, Cavalieri F, Ashokkumar M. Exploring New Applications of Lysozyme-Shelled Microbubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9997-10006. [PMID: 31088060 DOI: 10.1021/acs.langmuir.9b00896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This feature article provides a review of recent work on the synthesis of biopolymer-shelled microbubbles using various techniques with a particular focus on ultrasonic methodology that offers advantages over other conventional methods for tuning their physical and functional properties. A detailed discussion on the role of surface chemistry in fabricating functional lysozyme-shelled microbubbles has also been presented. Highlights on the applications of lysozyme-shelled microbubbles, particularly recent findings on their use for potential theranostic applications in lung diseases, have also been presented.
Collapse
Affiliation(s)
- Lillian Lee
- School of Engineering , RMIT University , Melbourne , VIC 3000 , Australia
| | | | | |
Collapse
|
24
|
Focused Ultrasonography-Mediated Blood-Brain Barrier Disruption in the Enhancement of Delivery of Brain Tumor Therapies. World Neurosurg 2019; 131:65-75. [PMID: 31323404 DOI: 10.1016/j.wneu.2019.07.096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 01/06/2023]
Abstract
Glioblastoma is the most common intracranial malignancy in adults and carries a poor prognosis. Chemotherapeutic treatment figures prominently in the management of primary and recurrent disease. However, the blood-brain barrier presents a significant and formidable impediment to the entry of oncotherapeutic compounds to target tumor tissue. Several strategies have been developed to effect disruption of the blood-brain barrier and in turn enhance the efficacy of cytotoxic chemotherapy, as well as newly developed biologic agents. Focused ultrasonography is one such treatment modality, using acoustic cavitation of parenterally administered microbubbles to mechanically effect disruption of the vascular endothelium. We review and discuss the preclinical and clinical studies evaluating the biophysical basis for, and efficacy of, focused ultrasonography in the enhancement of oncotherapeutic agent delivery. Further, we provide some perspectives regarding future directions for the role of focused ultrasound in facilitating and improving the safe and effective delivery of oncotherapeutic agents in the treatment of glioblastoma.
Collapse
|
25
|
Lai B, Zhu P, Li H, Hu L, Wang J. Effect of docetaxel-loaded lipid microbubble in combination with ultrasound-triggered microbubble destruction on the growth of a gastric cancer cell line. Oncol Lett 2019; 18:442-448. [PMID: 31289515 DOI: 10.3892/ol.2019.10289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/03/2019] [Indexed: 12/16/2022] Open
Abstract
Although gastric cancer therapy has been improved, more efficient treatment strategies still need to be developed. In the present study, a docetaxel (DOC)-loaded lipid microbubble (DLLD) was prepared and the effect of DLLD combined with ultrasound-triggered microbubble destruction (UTMD) on the growth of a gastric cancer cell line was investigated. The following four groups were included in the present study: Control, DOC, DLLD and DLLD plus UTMD. The determined entrapment efficiency of DLLD is 76±3.5%. The present study demonstrated that treatment with DLLD plus UTMD could significantly inhibit the growth of the cultured gastric cancer cell line BGC-823 via arresting the cell cycle in G2/M phase, inhibiting cell DNA synthesis, promoting cell apoptosis and disrupting mitochondrial membrane potential, as compared with treatment with DOC or DLLD alone. Furthermore, the expression of p53, p21 and Bax were identified to be significantly upregulated, while that of Bcl-2 was significantly downregulated in the DLLD plus UTMD group. Therefore, treatment with DLLD plus UTMD was more efficient in inhibiting cell proliferation and inducing cell apoptosis in the gastric cancer cell line, when compared with treatment with DOC or DLLD alone, suggesting that DLLD plus UTMD could serve as a promising strategy for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Bin Lai
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Peiqian Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Honglang Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lin Hu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiwei Wang
- Department of Ultrasonography, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
26
|
Wu CH, Liu HL, Ho CT, Hsu PH, Fan CH, Yeh CK, Kang ST, Chen WS, Wang FN, Peng HH. Monitoring of acoustic cavitation in microbubble-presented focused ultrasound exposure using gradient-echo MRI. J Magn Reson Imaging 2019; 51:311-318. [PMID: 31125166 DOI: 10.1002/jmri.26801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/13/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Gadolinium-based contrast agents can be used to identify the blood-brain barrier (BBB) opening after inducing a focused ultrasound (FUS) cavitation effect in the presence of microbubbles. However, the use of gadolinium may be limited for frequent routine monitoring of the BBB opening in clinical applications. PURPOSE To use a gradient-echo sequence without contrast agent administration for monitoring of acoustic cavitation. STUDY TYPE Animal and phantom prospective. PHANTOM/ANIMAL MODEL Static and flowing gel phantoms; six normal adult male Sprague-Dawley rats. FIELD STRENGTH/SEQUENCE 3T, 7T; fast low-angle shot sequence. ASSESSMENT Burst FUS with acoustic pressures = 1.5, 2.2, 2.8 MPa; pulse repetition frequencies = 1, 10,100 Hz; and duty cycles = 2%, 5%, 10% were transmitted to the chamber of a static phantom with microbubble concentrations = 10%, 1%, 0.1%. MR slice thicknesses = 3, 6, 8 mm were acquired. In flowing phantom experiments, 0.1%, 0.25%, 0.5%, 0.75%, and 1% microbubbles were infused and transmitted by burst FUS with an acoustic pressure = 0.4 and 1 MPa. In in vivo experiments, 0.25% microbubbles was infused and 0.8 MPa burst FUS was transmitted to targeted brain tissue beneath the superior sagittal sinus. The mean signal intensity (SI) was normalized using the mean SI from pre-FUS. STATISTICAL TESTS Two-tailed Student's t-test. P < 0.05 was considered statistically significant. RESULTS In the static phantom, the time courses of normalized SI decreases to minimum SI levels of 70-80%. In the flowing phantom, substantial normalized SI of 160-230% was present with variant acoustic pressures and microbubble concentrations. Compared with in vivo control rats, the brain tissue of experimental rats with transmission of FUS pulses exhibited considerable decreases of normalized SI (P < 0.001) because of the cavitation-induced perturbation of flow. DATA CONCLUSION Observing gradient-echo SI changes can help monitor the targeted location of microbubble-enhanced FUS, which in turn assists the monitoring of the BBB opening. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2020;51:311-318.
Collapse
Affiliation(s)
- Chen-Hua Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, Chang-gung University, Taoyuan, Taiwan.,Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Tao Ho
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Po-Hung Hsu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Shih-Tsung Kang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan.,Division of Medical Engineering Research, National Health Research Institutes, Miaoli, Taiwan.,Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Fu-Nien Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsu-Hsia Peng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
27
|
Lee JH, Moon H, Han H, Lee IJ, Kim D, Lee HJ, Ha SW, Kim H, Chung JW. Antitumor Effects of Intra-Arterial Delivery of Albumin-Doxorubicin Nanoparticle Conjugated Microbubbles Combined with Ultrasound-Targeted Microbubble Activation on VX2 Rabbit Liver Tumors. Cancers (Basel) 2019; 11:cancers11040581. [PMID: 31022951 PMCID: PMC6521081 DOI: 10.3390/cancers11040581] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/20/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022] Open
Abstract
Image-guided intra-arterial therapies play a key role in the management of hepatic malignancies. However, limited clinical outcomes suggest the need for new multifunctional drug delivery systems to enhance local drug concentration while reducing systemic adverse reactions. Therefore, we developed the albumin-doxorubicin nanoparticle conjugated microbubble (ADMB) to enhance therapeutic efficiency by sonoporation under exposure to ultrasound. ADMB demonstrated a size distribution of 2.33 ± 1.34 µm and a doxorubicin loading efficiency of 82.7%. The echogenicity of ADMBs was sufficiently generated in the 2–9 MHz frequency range and cavitation depended on the strength of the irradiating ultrasound. In the VX2 rabbit tumor model, ADMB enhanced the therapeutic efficiency under ultrasound exposure, compared to free doxorubicin. The intra-arterial administration of ADMBs sufficiently reduced tumor growth by five times, compared to the control group. Changes in the ADC values and viable tumor fraction supported the fact that the antitumor effect of ADMBs were enhanced by evidence of necrosis ratio (over 70%) and survival tumor cell fraction (20%). Liver toxicity was comparable to that of conventional therapies. In conclusion, this study shows that tumor suppression can be sufficiently maximized by combining ultrasound exposure with intra-arterial ADMB administration.
Collapse
Affiliation(s)
- Jae Hwan Lee
- Department of Radiology, Seoul National University Bundang Hospital, 82 Gumi-ro 173, Bundang-gu, Seongnam 13620, Korea.
| | - Hyungwon Moon
- Department of Radiology, Seoul National University Bundang Hospital, 82 Gumi-ro 173, Bundang-gu, Seongnam 13620, Korea.
| | - Hyounkoo Han
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea.
| | - In Joon Lee
- Department of Radiology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang 10408, Korea.
| | - Doyeon Kim
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea.
| | - Hak Jong Lee
- Department of Radiology, Seoul National University Bundang Hospital, 82 Gumi-ro 173, Bundang-gu, Seongnam 13620, Korea.
- Department of Radiology, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul 03080, Korea.
- IMGT Co., Ltd., 172 Dolma-ro, Bundang-gu, Seongnam 13605, Korea.
| | - Shin-Woo Ha
- IMGT Co., Ltd., 172 Dolma-ro, Bundang-gu, Seongnam 13605, Korea.
| | - Hyuncheol Kim
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea.
| | - Jin Wook Chung
- Department of Radiology, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul 03080, Korea.
- Institute of Radiation Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul 03080, Korea.
| |
Collapse
|
28
|
Feng Y, He Z, Mao C, Shui X, Cai L. Therapeutic Effects of Resveratrol Liposome on Muscle Injury in Rats. Med Sci Monit 2019; 25:2377-2385. [PMID: 30936416 PMCID: PMC6457134 DOI: 10.12659/msm.913409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In this study we prepared liposome microbubbles loading resveratrol (LMLR) and evaluated its therapeutic effect on injury of gastrocnemius muscle in rats. MATERIAL AND METHODS LMLR was prepared and characterized by particle size, potential, and microscopy, and a rat model of acute blunt injury of gastrocnemius muscle was established. After treatments with resveratrol or LMLR, the therapeutic effects were evaluated by hematoxylin-eosin (HE) staining. The expression of MHCIIB and vimentin in mRNA level was measured by real-time PCR. The expression of desmin and collagen I protein was assessed by immunohistochemistry. RESULTS LMLR showed regular cycle shape in a size of ~1000 nm. LMLR was negatively charged (-30 mV). The in vitro release of LMLR was close to 80% at 10 h and 90% at 48 h. Acute gastrocnemius muscle injury was established in rats and tissue recovery was observed after LMLR treatment as evidenced by HE staining, decreased expression of MHCIIB, and increased expression of vimentin. Moreover, LMLR treatment obviously facilitated desmin expression and reduced collagen I expression. CONCLUSIONS LMLR is effective in treating acute blunt injury of gastrocnemius muscle in rats.
Collapse
Affiliation(s)
- Yongzeng Feng
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, P.R. China
| | - Zili He
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, P.R. China
| | - Cong Mao
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, P.R. China
| | - Xiaolong Shui
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, P.R. China
| | - Leyi Cai
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|
29
|
Upadhyay A, Dalvi SV. Microbubble Formulations: Synthesis, Stability, Modeling and Biomedical Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:301-343. [PMID: 30527395 DOI: 10.1016/j.ultrasmedbio.2018.09.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 05/12/2023]
Abstract
Microbubbles are increasingly being used in biomedical applications such as ultrasonic imaging and targeted drug delivery. Microbubbles typically range from 0.1 to 10 µm in size and consist of a protective shell made of lipids or proteins. The shell encapsulates a gaseous core containing gases such as oxygen, sulfur hexafluoride or perfluorocarbons. This review is a consolidated account of information available in the literature on research related to microbubbles. Efforts have been made to present an overview of microbubble synthesis techniques; microbubble stability; microbubbles as contrast agents in ultrasonic imaging and drug delivery vehicles; and side effects related to microbubble administration in humans. Developments related to the modeling of microbubble dissolution and stability are also discussed.
Collapse
Affiliation(s)
- Awaneesh Upadhyay
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Sameer V Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India.
| |
Collapse
|
30
|
McMahon D, Poon C, Hynynen K. Evaluating the safety profile of focused ultrasound and microbubble-mediated treatments to increase blood-brain barrier permeability. Expert Opin Drug Deliv 2019; 16:129-142. [PMID: 30628455 DOI: 10.1080/17425247.2019.1567490] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Treatment of several diseases of the brain are complicated by the presence of the skull and the blood-brain barrier (BBB). Focused ultrasound (FUS) and microbubble (MB)-mediated BBB treatment is a minimally invasive method to transiently increase the permeability of blood vessels in targeted brain areas. It can be used as a general delivery system to increase the concentration of therapeutic agents in the brain parenchyma. AREAS COVERED Over the past two decades, the safety of using FUS+MBs to deliver agents across the BBB has been interrogated through various methods of imaging, histology, biochemical assays, and behavior analyses. Here we provide an overview of the factors that affect the safety profile of these treatments, describe methods by which FUS+MB treatments are controlled, and discuss data that have informed the assessment of treatment risks. EXPERT OPINION There remains a need to assess the risks associated with clinically relevant treatment strategies, specifically repeated FUS+MB treatments, with and without therapeutic agent delivery. Additionally, efforts to develop metrics by which FUS+MB treatments can be easily compared across studies would facilitate a more rapid consensus on the risks associated with this intervention.
Collapse
Affiliation(s)
- Dallan McMahon
- a Physical Sciences Platform , Sunnybrook Research Institute , Toronto , ON , Canada.,b Department of Medical Biophysics , University of Toronto , Toronto , ON , Canada
| | - Charissa Poon
- a Physical Sciences Platform , Sunnybrook Research Institute , Toronto , ON , Canada.,c Institute of Biomaterials and Biomedical Engineering , University of Toronto , Toronto , ON , Canada
| | - Kullervo Hynynen
- a Physical Sciences Platform , Sunnybrook Research Institute , Toronto , ON , Canada.,b Department of Medical Biophysics , University of Toronto , Toronto , ON , Canada.,c Institute of Biomaterials and Biomedical Engineering , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
31
|
Gao Y, Huang W, Yang C, Liu Z, Meng H, Yang B, Xu Y, Guo C. Targeted photothermal therapy of mice and rabbits realized by macrophage-loaded tungsten carbide. Biomater Sci 2019; 7:5350-5358. [DOI: 10.1039/c9bm00911f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This work realized successful photothermal ablation of solid tumor on both mice and rabbits modal in a targetable way.
Collapse
Affiliation(s)
- Yan Gao
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Weicheng Huang
- Condensed Matter Science and Technology Institute
- School of Instrumentation Science and Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Chunyu Yang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Zhao Liu
- Department of Ultrasound
- Harbin Medical University Cancer Hospital
- Harbin 150080
- China
| | - Hongxue Meng
- Department of Ultrasound
- Harbin Medical University Cancer Hospital
- Harbin 150080
- China
| | - Bin Yang
- Condensed Matter Science and Technology Institute
- School of Instrumentation Science and Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Yanling Xu
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Chongshen Guo
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
| |
Collapse
|
32
|
Qu N, Shi D, Shang M, Duan S, Guo L, Ning S, Li J. Breast Cancer Cell Line Phenotype Affects Sonoporation Efficiency Under Optimal Ultrasound Microbubble Conditions. Med Sci Monit 2018; 24:9054-9062. [PMID: 30546004 PMCID: PMC6302661 DOI: 10.12659/msm.910790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Ultrasound/microbubble (USMB)-mediated sonoporation is a new strategy with minimal procedural invasiveness for targeted and site-specific drug delivery to tumors. The purpose of this study was to explore the effect of different breast cancer cell lines on sonoporation efficiency, and then to identify an optimal combination of USMB parameters to maximize the sonoporation efficiency for each tumor cell line. Material/Methods Three drug-sensitive breast cell lines – MCF-7, MDA-MB-231, and MDA-MB-468 – and 1 multidrug resistance (MDR) cell line – MCF-7/ADR – were chosen. An orthogonal array experimental design approach based on 3 levels of 3 parameters (A: microbubble concentration, 10%, 20%, and 30%, B: sound intensity, 0.5, 1.0, and 1.5 W/cm2, C: irradiation time, 30, 60, and 90 s) was employed to optimize the sonoporation efficiency. Results The optimal USMB parameter combinations for different cell lines were diverse. Under optimal parameter combinations, the maximum sonoporation efficiency differences between different breast tumor cell lines were statistically significant (MDA-MB-231: 46.70±5.79%, MDA-MB-468: 53.44±5.69%, MCF-7: 59.88±5.53%, MCF-7/ADR: 65.39±4.01%, P<0.05), so were between drug-sensitive cell line and MDR cell line (MCF-7: 59.88±5.53%, MCF-7/ADR: 65.39±4.01%, p=0.026). Conclusions Different breast tumor cell lines have their own optimal sonoporation. Drug-resistant MCF-7/ADR cells had higher sonoporation efficiency than drug-sensitive MCF-7 cells. The molecular subtype of tumors should be considered when sonoporation is applied, and optimal parameter combination may have the potential to improve drug-delivery efficiency by increasing the sonoporation efficiency.
Collapse
Affiliation(s)
- Nina Qu
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland).,Department of Ultrasound, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China (mainland)
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Mengmeng Shang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Sujuan Duan
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Lu Guo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Song Ning
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
33
|
Liu Z, Zhang J, Tian Y, Zhang L, Han X, Wang Q, Cheng W. Targeted delivery of reduced graphene oxide nanosheets using multifunctional ultrasound nanobubbles for visualization and enhanced photothermal therapy. Int J Nanomedicine 2018; 13:7859-7872. [PMID: 30538464 PMCID: PMC6255282 DOI: 10.2147/ijn.s181268] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ultrasound molecular imaging as a promising strategy, which involved the use of molecularly targeted contrast agents, combined the advantages of contrast-enhanced ultrasound with the photothermal effect of reduced graphene oxide (rGO). Methods and results The heparin sulfate proteoglycan glypican-3 (GPC3) is a potential molecular target for hepatocellular carcinoma (HCC). In this study, we covalently linked biotinylated GPC3 antibody to PEGylated nano-rGO to obtain GPC3-modified rGO-PEG (rGO-GPC3), and then combined rGO-GPC3 with avidinylated nanobubbles (NBs) using biotin-avidin system to prepare NBs-GPC3-rGO with photothermal effect and dispersibility, solubility in physiological environment. The average size of NBs-GPC3-rGO complex was 700.4±52.9 nm due to the polymerization of biotin-avidin system. Scanning electron microscope (SEM) showed NBs-GPC3-rGO attached to human hepatocellular carcinoma HepG2 cell. The ultrasound-targeted nanobubble destruction (UTND) technology make use of the physical energy of ultrasound exposure for the improvement of rGO delivery. Compared with other control groups, the highest nanobubble destruction efficiency of NBs-GPC3-rGO was attributed to the dissection effect of rGO on UTND. This is a positive feedback effect that leads to an increase in the concentration of rGO around the HepG2 cell. So NBs-GPC3-rGO using UTND and near-infrared (NIR) irradiation resulted in cell viability within 24 h, 48 h, 72 h lower than other treatment groups. Conclusion This work established NBs-GPC3-rGO as an ultrasonic photothermal agent due to its suitable size, imaging capability, photothermal efficiency for visual photothermal therapy in vitro.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Nangang District, Harbin 150080, China,
| | - Jia Zhang
- Key Laboratory of Microsystems and Microstructure Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150080, China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Nangang District, Harbin 150080, China,
| | - Lei Zhang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Nangang District, Harbin 150080, China,
| | - Xue Han
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Nangang District, Harbin 150080, China,
| | - Qiucheng Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Nangang District, Harbin 150080, China,
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Nangang District, Harbin 150080, China,
| |
Collapse
|
34
|
Tian Y, Liu Z, Zhang L, Zhang J, Han X, Wang Q, Cheng W. Apatinib-loaded lipid nanobubbles combined with ultrasound-targeted nanobubble destruction for synergistic treatment of HepG2 cells in vitro. Onco Targets Ther 2018; 11:4785-4795. [PMID: 30127626 PMCID: PMC6091478 DOI: 10.2147/ott.s170786] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Apatinib, an oral small-molecule antiangiogenetic medicine, is used to treat patients with advanced hepatocellular carcinoma. However, its systemic toxic side effects cannot be ignored. The ultrasound (US)-targeted nanobubble destruction technology can minimize systemic drug exposure and maximize therapeutic efficacy. The aim of this study was to develop novel GPC3-targeted and drug-loaded nanobubbles (NBs) and further assess the associated therapeutic effects on hepatocellular carcinoma cells in vitro. Materials and methods Apatinib-loaded NBs were prepared by a mechanical vibration method. GPC3, a liver tumor homing peptide, was coated onto the surface of apatinib-loaded NBs through biotin–avidin interactions to target liver cancer HepG2 cells. The effects of different treatment groups on cell proliferation, cell cycle, and apoptosis of HepG2 cells were tested. Results The NBs could achieve 68% of optimal drug encapsulation. In addition, ligand binding assays demonstrated that attachment of targeted NBs to human HepG2 liver cancer cells was highly efficient. Furthermore, cell proliferation assays indicated that the antiproliferative activities of GPC3-targeted and apatinib-loaded NBs in combination with US (1 MHz, 1 W/cm2, 30 s) were, respectively, 44.11%±2.84%, 57.09%±6.38%, and 67.51%±2.89% after 24, 48, and 72 h of treatment. Treatment with GPC3-targeted and apatinib-loaded NBs also resulted in a higher proportion of cells in the G1 phase compared with other treatment groups such as apatinib only and nontargeted apatinib-loaded NBs when US was utilized. Conclusion US-targeted and drug-loaded nanobubble destruction successfully achieved selective growth inhibition and apoptosis in HepG2 cells in vitro. Therefore, GPC3-targeted and apatinib-loaded NBs can be considered a novel chemotherapeutic approach for treating liver cancer in combination with US.
Collapse
Affiliation(s)
- Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin 150080, People's Republic of China,
| | - Zhao Liu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin 150080, People's Republic of China,
| | - Lei Zhang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin 150080, People's Republic of China,
| | - Jia Zhang
- Department of Microsystems and Microstructure Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Xue Han
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin 150080, People's Republic of China,
| | - Qiucheng Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin 150080, People's Republic of China,
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin 150080, People's Republic of China,
| |
Collapse
|
35
|
Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F, Lammers T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Deliv Rev 2018; 130:17-38. [PMID: 30009886 PMCID: PMC6130746 DOI: 10.1016/j.addr.2018.07.007] [Citation(s) in RCA: 827] [Impact Index Per Article: 118.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022]
Abstract
The tumor accumulation of nanomedicines relies on the enhanced permeability and retention (EPR) effect. In the last 5-10 years, it has been increasingly recognized that there is a large inter- and intra-individual heterogeneity in EPR-mediated tumor targeting, explaining the heterogeneous outcomes of clinical trials in which nanomedicine formulations have been evaluated. To address this heterogeneity, as in other areas of oncology drug development, we have to move away from a one-size-fits-all tumor targeting approach, towards methods that can be employed to individualize and improve nanomedicine treatments. To this end, efforts have to be invested in better understanding the nature, the complexity and the heterogeneity of the EPR effect, and in establishing systems and strategies to enhance, combine, bypass and image EPR-based tumor targeting. In the present manuscript, we summarize key studies in which these strategies are explored, and we discuss how these approaches can be employed to enhance patient responses.
Collapse
Affiliation(s)
- Susanne K Golombek
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Jan-Niklas May
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Benjamin Theek
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Lia Appold
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Natascha Drude
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Department of Nuclear Medicine, RWTH Aachen University Clinic, Aachen, Germany
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Department of Pharmaceutics, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
36
|
Shi D, Guo L, Duan S, Shang M, Meng D, Cheng L, Li J. Influence of tumor cell lines derived from different tissue on sonoporation efficiency under ultrasound microbubble treatment. ULTRASONICS SONOCHEMISTRY 2017; 38:598-603. [PMID: 27562907 DOI: 10.1016/j.ultsonch.2016.08.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/14/2016] [Accepted: 08/15/2016] [Indexed: 06/06/2023]
Abstract
To reveal the effect of tumor cell lines derived from different tissue on sonoporation efficiency under ultrasound microbubble (USMB) treatment, and meanwhile to determine the optimum parameter combination for each tumor cell line. Human breast tumor (MCF-7), ovarian tumor (A2780), liver tumor (Bel7402) and thyroid tumor (ARO) were exposed to ultrasound in the presence of SonoVue MBs. The major parameters for the designed experiments including MB concentration (A1:10%, A2:20%, A3:30%), sound intensity (B1:0.5, B2:1.0, B3:1.5W/cm2), irradiation time (C1:30, C2:60, C3:90s). An orthogonal array experimental design based on three levels L9 (33) of the above three parameters was employed to optimize the sonoporation efficiency. MTT experiment was used to calculate cell survival rate. FD500 uptake assay and cytometry were performed to evaluate transference percentage. The optimum parameter combination for each tumor cell line was different (MCF-7: A3B1C1, A2780: A1B3C3, Bel7402: A2B3C2, ARO: A2B3C2). Under their own optimum parameter combination, four kinds of tumor cell line exhibited different optimum sonoporation efficiency (MCF-7: 55.05±5.29%; A2780: 45.62±7.35%; Bel7402: 39.37±4.11%; ARO: 53.37±3.94%). Multiple comparison with LSD-t test showed that the sonoporation efficiency between four kinds of cell line was statistically significant (P<0.05), with the exception of MCF-7 VS. ARO (P=0.487). Tumor cell lines derived from different tissue can impact the sonoporation efficiency, and optimizing the exposure parameters can safely and efficiently increase the cell membrane permeability.
Collapse
Affiliation(s)
- Dandan Shi
- Department of Ultrasound, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Lu Guo
- Department of Ultrasound, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Sujuan Duan
- Department of Ultrasound, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Mengmeng Shang
- Department of Ultrasound, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Dong Meng
- Department of Ultrasound, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Lin Cheng
- Department of Ultrasound, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital, Shandong University, Jinan 250012, China.
| |
Collapse
|
37
|
Fan CH, Lin CY, Liu HL, Yeh CK. Ultrasound targeted CNS gene delivery for Parkinson's disease treatment. J Control Release 2017; 261:246-262. [DOI: 10.1016/j.jconrel.2017.07.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 10/19/2022]
|
38
|
Ultrasound-triggered PLGA microparticle destruction and degradation for controlled delivery of local cytotoxicity and drug release. Int J Biol Macromol 2017; 106:1211-1217. [PMID: 28851638 DOI: 10.1016/j.ijbiomac.2017.08.125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 11/21/2022]
Abstract
In this study, we investigated the low intensity ultrasound (US)-controlled delivery of local cytotoxicity and drug release via induced destruction and degradation of microparticles (MPs) made of poly(lactic-co-glycolic acid) (PLGA). This study was conducted in vitro with potential application towards tumor treatment in conjunction with direct injection. MPs, either loaded with or without doxorubicin (DOX), were prepared using a double-emulsion solvent-evaporation technique. First, the MPs were exposed to US with duty cycle (DC)-modulation. The destruction and degradation of MPs were evaluated using light and scanning electron microscopy. Second, the effects of US-mediated destruction/degradation of MPs on the local cytotoxicity as well as DOX release were evaluated. US-triggered MP destruction/degradation significantly enhanced nearby cell death and DOX release. These affects occurred in proportion to the DC. Our findings indicate that controlled cytotoxicity and DOX release by US could be useful in developing the minimally invasive therapeutic applications for tumor treatment.
Collapse
|
39
|
Mullick Chowdhury S, Lee T, Willmann JK. Ultrasound-guided drug delivery in cancer. Ultrasonography 2017; 36:171-184. [PMID: 28607323 PMCID: PMC5494871 DOI: 10.14366/usg.17021] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/23/2017] [Accepted: 05/01/2017] [Indexed: 12/14/2022] Open
Abstract
Recent advancements in ultrasound and microbubble (USMB) mediated drug delivery technology has shown that this approach can improve spatially confined delivery of drugs and genes to target tissues while reducing systemic dose and toxicity. The mechanism behind enhanced delivery of therapeutics is sonoporation, the formation of openings in the vasculature, induced by ultrasound-triggered oscillations and destruction of microbubbles. In this review, progress and challenges of USMB mediated drug delivery are summarized, with special focus on cancer therapy.
Collapse
Affiliation(s)
| | - Taehwa Lee
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jürgen K. Willmann
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
40
|
Yang Y, Wang F, Zheng K, Deng L, Yang L, Zhang N, Xu C, Ran H, Wang Z, Wang Z, Zheng Y. Injectable PLGA/Fe3O4 implants carrying cisplatin for synergistic magnetic hyperthermal ablation of rabbit VX2 tumor. PLoS One 2017; 12:e0177049. [PMID: 28472102 PMCID: PMC5417648 DOI: 10.1371/journal.pone.0177049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/23/2017] [Indexed: 11/30/2022] Open
Abstract
Magnetic hyperthermia ablation has attracted wide attention in tumor therapy for its minimal invasion. Although the chemo-hyperthermal synergism has been proven to be effective in subcutaneously xenografted tumors of nude mice in our previous experiment, the occurrence of residual tumors due to incomplete ablation is more common in relatively larger and deeper-seated tumors in anti-tumor therapy. Thus, a larger tumor and larger animal model are needed for further study of the therapeutic efficacy. In this study, we tested the efficiency of this newly developed technique using a rabbit tumor model. Furthermore, we chose cisplatin (DDP), which has been confirmed with high efficiency in enhancing hyperthermia therapy as the chemotherapeutic drug for the synergistic magnetic hyperthermal ablation therapy of tumors. In vitro studies demonstrated that developed DDP-loaded magnetic implants (DDP/PLGA-Fe3O4) have great heating efficacy and the drug release can be significantly boosted by an external alternating magnetic field (AMF). In vivo studies showed that the phase-transitional DDP/PLGA-Fe3O4 materials that are ultrasound (US) and computerized tomography (CT) visible can be well confined in the tumor tissues after injection. When exposed to AMF, efficient hyperthermia was induced, which led to the cancer cells’ coagulative necrosis and accelerating release of the drug to kill residual tumors. Furthermore, an activated anti-tumor immune system can promote apoptosis of tumor cells. In conclusion, the DDP/PLGA-Fe3O4 implants can be used efficiently for the combined chemotherapy and magnetic-hyperthermia ablation of rabbit tumors.
Collapse
Affiliation(s)
- Yang Yang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengjuan Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kaiyuan Zheng
- Department of Nephrology, Chongqing People’s Hospital, Chongqing, China
| | - Liming Deng
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Yang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nan Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunyan Xu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaoxia Wang
- Department of Ultrasound, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanyi Zheng
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University affiliated Shanghai Sixth People's Hospital, Shanghai, China
- * E-mail:
| |
Collapse
|
41
|
Song W, Luo Y, Zhao Y, Liu X, Zhao J, Luo J, Zhang Q, Ran H, Wang Z, Guo D. Magnetic nanobubbles with potential for targeted drug delivery and trimodal imaging in breast cancer: an in vitro study. Nanomedicine (Lond) 2017; 12:991-1009. [PMID: 28327075 DOI: 10.2217/nnm-2017-0027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aim: The aim of this study was to improve tumor-targeted therapy for breast cancer by designing magnetic nanobubbles with the potential for targeted drug delivery and multimodal imaging. Materials & methods: Herceptin-decorated and ultrasmall superparamagnetic iron oxide (USPIO)/paclitaxel (PTX)-embedded nanobubbles (PTX-USPIO-HER-NBs) were manufactured by combining a modified double-emulsion evaporation process with carbodiimide technique. PTX-USPIO-HER-NBs were examined for characterization, specific cell-targeting ability and multimodal imaging. Results: PTX-USPIO-HER-NBs exhibited excellent entrapment efficiency of Herceptin/PTX/USPIO and showed greater cytotoxic effects than other delivery platforms. Low-frequency ultrasound triggered accelerated PTX release. Moreover, the magnetic nanobubbles were able to enhance ultrasound, magnetic resonance and photoacoustics trimodal imaging. Conclusion: These results suggest that PTX-USPIO-HER-NBs have potential as a multimodal contrast agent and as a system for ultrasound-triggered drug release in breast cancer.
Collapse
Affiliation(s)
- Weixiang Song
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Rd, Yuzhong District, 400010 Chongqing, China
| | - Yindeng Luo
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Rd, Yuzhong District, 400010 Chongqing, China
| | - Yajing Zhao
- Department of Ultrasound, the First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Rd, Yuzhong District, 400016 Chongqing, China
| | - Xinjie Liu
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Rd, Yuzhong District, 400010 Chongqing, China
| | - Jiannong Zhao
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Rd, Yuzhong District, 400010 Chongqing, China
| | - Jie Luo
- Department of Ultrasound, the First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Rd, Yuzhong District, 400016 Chongqing, China
| | - Qunxia Zhang
- Department of Ultrasound, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Rd, Yuzhong District, 400010 Chongqing, China
| | - Haitao Ran
- Department of Ultrasound, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Rd, Yuzhong District, 400010 Chongqing, China
| | - Zhigang Wang
- Department of Ultrasound, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Rd, Yuzhong District, 400010 Chongqing, China
| | - Dajing Guo
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Rd, Yuzhong District, 400010 Chongqing, China
| |
Collapse
|
42
|
Wang XQ, Li ZN, Wang QM, Jin HY, Gao Z, Jin ZH. Lipid nano-bubble combined with ultrasound for anti-keloids therapy. J Liposome Res 2016; 28:5-13. [PMID: 27733083 DOI: 10.1080/08982104.2016.1239633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Keloids were characterized by excessive growth of fibrous tissues, and shared several pathological characteristics with cancer. They did put physical and emotional stress on patients in that keloids could badly change appearance of patients. N-(4-hydroxyphenyl) retinamide (4HPR) showed cytotoxic activity on a wide variety of invasive-growth cells. Our work was aim to prepare N-(4-hydroxyphenyl) retinamide-loaded lipid microbubbles (4HPR-LM) combined with ultrasound for anti-keloid therapy. 4HPR-loaded liposomes (4HPR-L) were first prepared by film evaporation method, and then 4HPR-LM were manufactured by mixing 4HPR-L and perfluoropentane (PFP) with ultrasonic cavitation method. The mean particle size and entrapment efficiency 4HPR-LM were 113 nm and 95%, respectively. The anti-keloids activity of 4HPR-LM was assessed with BALB/c nude mice bearing subcutaneous xenograft keloids model. 4HPR-LM, combined with ultrasound, could significantly induce apoptosis of keloid fibroblasts in vitro and inhibited growth of keloids in vivo. Thus, 4HPR-LM could be considered as a promising agent for anti-keloids therapy.
Collapse
Affiliation(s)
- Xiao Qing Wang
- a State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China.,b Yanbian University Hospital , Yanji , China , and.,c Jining No.1 People's Hospital , Jining , China
| | - Zhou-Na Li
- a State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China.,b Yanbian University Hospital , Yanji , China , and
| | - Qi-Ming Wang
- a State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Hong-Yan Jin
- b Yanbian University Hospital , Yanji , China , and
| | - Zhonggao Gao
- a State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Zhe-Hu Jin
- b Yanbian University Hospital , Yanji , China , and
| |
Collapse
|
43
|
Affiliation(s)
- Yuqi Zhang
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics,
UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jicheng Yu
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics,
UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hunter N. Bomba
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yong Zhu
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Department
of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhen Gu
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics,
UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
44
|
Zhang Y, Chang R, Li M, Zhao K, Zheng H, Zhou X. Docetaxel-loaded lipid microbubbles combined with ultrasound-triggered microbubble destruction for targeted tumor therapy in MHCC-H cells. Onco Targets Ther 2016; 9:4763-71. [PMID: 27536139 PMCID: PMC4975142 DOI: 10.2147/ott.s102101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Efficient and targeted delivery of cytotoxic drugs is still a challenge in the fight against cancer. Ultrasound-targeted destruction of cytotoxic drug-loaded lipid microbubbles (LMs) might be a promising method. This study aimed to explore the antitumor effects of docetaxel-loaded LM (DLLM) combined with ultrasound-targeted microbubble destruction (UTMD) on liver cancer. MATERIALS AND METHODS DLLMs were made by a mechanical vibration technique. The effects of docetaxel, DLLM alone, and DLLM + UTMD on cell viability and cell proliferation (Cell Counting Kit-8 assay) of MHCC-H cells and HepG2 cells were tested. The effects on cell cycle (flow cytometry) and apoptosis (flow cytometry and immunoblotting) of MHCC-H cells were tested. Solid fast-growing tumor mouse models were established and were randomized to blank LM + UTMD (controls) or DLLM + UTMD. Tumor volume was compared between the two groups. RESULTS DLLMs had an 18%±7% drug-loading capacity, an 80%±3% encapsulation efficiency, and a mean particle size of 2,845 nm (75% range 1,527-5,534 nm). Compared to the other groups, DLLM + UTMD decreased the proliferation and increased the apoptosis of MHCC-H cells. DLLM + UTMD resulted in the inhibition of a higher proportion of cells in the G1 phase. Compared to the control group, the tumor volume in mice receiving DLLM + UTMD was smaller. CONCLUSION DLLM + UTMD can increase the proportion of cells arrested in the G1 phase, decrease tumor cell proliferation, and induce MHCC-H cell apoptosis. The growth of solid tumors in mice was inhibited. These results could provide a novel targeted strategy against liver cancer.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Ultrasound, Xijing Hospital
| | | | - Muqiong Li
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an
| | - Kun Zhao
- Department of Cardiothoracic Surgery, The Third Chinese People's Liberation Army Hospital, Baoji, Shaanxi Province
| | - Hongzhi Zheng
- Department of Ultrasound, The 534 Hospital, Luoyang, Henan Province, People's Republic of China
| | | |
Collapse
|
45
|
Lv Y, Hao L, Hu W, Ran Y, Bai Y, Zhang L. Novel multifunctional pH-sensitive nanoparticles loaded into microbubbles as drug delivery vehicles for enhanced tumor targeting. Sci Rep 2016; 6:29321. [PMID: 27378018 PMCID: PMC4932494 DOI: 10.1038/srep29321] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/16/2016] [Indexed: 12/29/2022] Open
Abstract
This study fabricated novel multifunctional pH-sensitive nanoparticles loaded into microbubbles (PNP-MB) with the combined advantages of two excellent drug delivery vehicles, namely, pH-sensitive nanoparticles and microbubbles. As an antitumor drug, resveratrol (RES) was loaded into acetylated β-cyclodextrin nanoparticles (RES-PNP). The drug-loaded nanoparticles were then encapsulated into the internal space of the microbubbles. The characterization and morphology of this vehicle were investigated through dynamic light scattering and confocal laser scanning microscopy, respectively. In vitro drug release was performed to investigate the pH sensitivity of RES-PNP. The antitumor property of RES-loaded PNP-MB (RES-PNP-MB) was also analyzed in vivo to evaluate the antitumor effect of RES-PNP-MB. Results suggested that PNP exhibited pH sensitivity, and was successfully encapsulated into the microbubbles. RES-PNP-MB exhibit effective tumor growth suppressing in vivo. Therefore, such drug delivery vehicle should be of great attention in tumor therapy.
Collapse
Affiliation(s)
- Yongjiu Lv
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lan Hao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wenjing Hu
- Chongqingshi Shapingba District People’s Hospital, Chongqing 400030, P.R. China
| | - Ya Ran
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yan Bai
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Liangke Zhang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
46
|
Helfield B, Black JJ, Qin B, Pacella J, Chen X, Villanueva FS. Fluid Viscosity Affects the Fragmentation and Inertial Cavitation Threshold of Lipid-Encapsulated Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:782-94. [PMID: 26674676 PMCID: PMC4744112 DOI: 10.1016/j.ultrasmedbio.2015.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 10/16/2015] [Accepted: 10/27/2015] [Indexed: 05/04/2023]
Abstract
Ultrasound and microbubble optimization studies for therapeutic applications are often conducted in water/saline, with a fluid viscosity of 1 cP. In an in vivo context, microbubbles are situated in blood, a more viscous fluid (∼4 cP). In this study, ultrahigh-speed microscopy and passive cavitation approaches were employed to investigate the effect of fluid viscosity on microbubble behavior at 1 MHz subject to high pressures (0.25-2 MPa). The propensity for individual microbubble (n = 220) fragmentation was found to significantly decrease in 4-cP fluid compared with 1-cP fluid, despite achieving similar maximum radial excursions. Microbubble populations diluted in 4-cP fluid exhibited decreased wideband emissions (up to 10.2 times), and increasingly distinct harmonic emission peaks (e.g., ultraharmonic) with increasing pressure, compared with those in 1-cP fluid. These results suggest that in vitro studies should consider an evaluation using physiologic viscosity perfusate before transitioning to in vivo evaluations.
Collapse
Affiliation(s)
- Brandon Helfield
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - John J Black
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Bin Qin
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - John Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
47
|
Theek B, Baues M, Ojha T, Möckel D, Veettil SK, Steitz J, van Bloois L, Storm G, Kiessling F, Lammers T. Sonoporation enhances liposome accumulation and penetration in tumors with low EPR. J Control Release 2016; 231:77-85. [PMID: 26878973 DOI: 10.1016/j.jconrel.2016.02.021] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/04/2016] [Accepted: 02/10/2016] [Indexed: 12/22/2022]
Abstract
The Enhanced Permeability and Retention (EPR) effect is a highly variable phenomenon. To enhance EPR-mediated passive drug targeting to tumors, several different pharmacological and physical strategies have been evaluated over the years, including e.g. TNFα-treatment, vascular normalization, hyperthermia and radiotherapy. Here, we systematically investigated the impact of sonoporation, i.e. the combination of ultrasound (US) and microbubbles (MB), on the tumor accumulation and penetration of liposomes. Two different MB formulations were employed, and their ability to enhance liposome accumulation and penetration was evaluated in two different tumor models, which are both characterized by relatively low levels of EPR (i.e. highly cellular A431 epidermoid xenografts and highly stromal BxPC-3 pancreatic carcinoma xenografts). The liposomes were labeled with two different fluorophores, enabling in vivo computed tomography/fluorescence molecular tomography (CT-FMT) and ex vivo two-photon laser scanning microscopy (TPLSM). In both models, in spite of relatively high inter- and intra-individual variability, a trend towards improved liposome accumulation and penetration was observed. In treated tumors, liposome concentrations were up to twice as high as in untreated tumors, and sonoporation enhanced the ability of liposomes to extravasate out of the blood vessels into the tumor interstitium. These findings indicate that sonoporation may be a useful strategy for improving drug targeting to tumors with low EPR.
Collapse
Affiliation(s)
- Benjamin Theek
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH-Aachen University, Aachen, Germany
| | - Maike Baues
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH-Aachen University, Aachen, Germany
| | - Tarun Ojha
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH-Aachen University, Aachen, Germany
| | - Diana Möckel
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH-Aachen University, Aachen, Germany
| | - Seena Koyadan Veettil
- Institute for Laboratory Animal Science, University Clinic, RWTH-Aachen University, Aachen, Germany
| | - Julia Steitz
- Institute for Laboratory Animal Science, University Clinic, RWTH-Aachen University, Aachen, Germany
| | - Louis van Bloois
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Fabian Kiessling
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH-Aachen University, Aachen, Germany.
| | - Twan Lammers
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH-Aachen University, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
48
|
Ren ST, Shen S, He XY, Liao YR, Sun PF, Wang B, Zhao WB, Han SP, Wang YL, Tian T. The Effect of Docetaxel-Loaded Micro-Bubbles Combined with Low-Frequency Ultrasound in H22 Hepatocellular Carcinoma-Bearing Mice. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:549-560. [PMID: 26651601 DOI: 10.1016/j.ultrasmedbio.2015.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/18/2015] [Accepted: 10/14/2015] [Indexed: 06/05/2023]
Abstract
A novel lipid micro-bubble (MB) loaded with docetaxel (DOC-MB) was investigated in a previous study. However, its anti-tumor effects and mechanism of action in combination with low-frequency ultrasound (LFUS) in vivo are still unclear. DOC-MBs containing 5.0 mg of DOC were prepared by lyophilization with modification via ultrasonic emulsification. Then, the effects of DOC-MBs combined with LFUS on tumor growth, proliferating cell nuclear antigen (PCNA) expression and cell apoptosis, as well as local DOC delivery, were investigated in H22 hepatocellular carcinoma (HCC)-bearing mice. Compared with the previously prepared DOC-MBs (1.6 mg of DOC loaded), the encapsulation efficiency (81.2% ± 3.89%) and concentration ([7.94 ± 0.04] × 10(9) bubbles/mL) of the DOC-MBs containing 5.0 mg of DOC were higher, but the bubble size (1.368 ± 0.004 μm) was smaller. After treatment with the DOC-MBs and LFUS, the H22 HCC growth inhibition rate was significantly increased, PCNA expression in tumor tissue was significantly inhibited and local release of DOC was induced. In conclusion, new DOC-MBs containing 5.0 mg of DOC were successfully prepared with a high encapsulation efficiency and superior bubble size and concentration, and their combination with LFUS significantly enhanced the anti-tumor effect of DOC in H22 HCC-bearing mice by inhibiting tumor cell proliferation and increasing local drug delivery.
Collapse
Affiliation(s)
- Shu-Ting Ren
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| | - Shu Shen
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China; Second Division of In Vitro Diagnostic Reagents, National Institute of Food and Drug Control, Beijing, China
| | - Xin-Ying He
- Department of Pathology, Xi'an Medical University, Xi'an, China
| | - Yi-Ran Liao
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Peng-Fei Sun
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Bing Wang
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China; Therapeutic Vaccines Engineering Center of Shaanxi Province, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wen-Bao Zhao
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Shui-Ping Han
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yi-Li Wang
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China; Institute of Cancer Research, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Tian Tian
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
49
|
Li Z, Hao L, Yuan P, Hu W, Zhang L. Encapsulation of honokiol-loaded nanoparticles in lecithin microbubbles for targeted tumor therapy. RSC Adv 2016. [DOI: 10.1039/c6ra10047c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study aimed to develop a new drug delivery system that combines honokiol-loaded albumin nanoparticles (HKNs) with perfluorocarbon-filled microbubbles (MBs) to improve the target delivery of honokiol (HK).
Collapse
Affiliation(s)
- Zhen Li
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- Chongqing Research Center for Pharmaceutical Engineering
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Lan Hao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Institute of Ultrasound Imaging
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Pei Yuan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- Chongqing Research Center for Pharmaceutical Engineering
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Wenjing Hu
- Chongqingshi Shapingba District People's Hospital
- Chongqing 400030
- P. R. China
| | - Liangke Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- Chongqing Research Center for Pharmaceutical Engineering
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| |
Collapse
|
50
|
Peng HH, Wu CH, Kang ST, Zhang JW, Liu HL, Chen WS, Wang CH, Yeh CK. Real-time monitoring of inertial cavitation effects of microbubbles by using MRI: In vitro experiments. Magn Reson Med 2015; 77:102-111. [PMID: 26714923 DOI: 10.1002/mrm.26082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 12/23/2022]
Abstract
PURPOSE To investigate the feasibility of half-Fourier acquisition single-shot turbo spin-echo (HASTE) for real-time monitoring of signal changes because of water flow induced by inertial cavitation (IC) during microbubbles (MBs)-present focused ultrasound (FUS) exposure. THEORY AND METHODS Strong turbulence produced in MB solution at the onset of IC results in the difficulty to refocus signal echoes and thus the decrease in signal intensity (SI). Fundamental investigations were conducted using an agar phantom containing MB dilutions exposed to 1.85-MHz FUS. The effects of various experimental conditions including MB concentrations, imaging slice thicknesses, chamber diameters, acoustic pressures, duty cycles, and pulse repetition frequencies (PRFs) were discussed. RESULTS Continuous 2.8 MPa FUS exposure resulted in SI changed from 11% to 55% when MBs concentrations increased from 0.025% to 0.1%. When slice thickness increased from 3 mm to 6 or 8 mm, smaller SI changes were observed (84%, 59%, and 46%). Images acquired with chamber diameter of 6 and 3 mm showed SI changes of 84% and 35%, respectively. In burst modes, higher duty cycles exhibited higher SI changes, and lower PRFs exhibited smaller and longer SI decrease. CONCLUSION Under various conditions, substantial signal changes were observable, suggesting the feasibility of applying HASTE to real-time monitor IC effect under FUS exposure. Magn Reson Med 77:102-111, 2017. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hsu-Hsia Peng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chen-Hua Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Shih-Tsung Kang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Jia-Wei Zhang
- Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Division of Medical Engineering Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chung-Hsin Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|