26
|
Wang Q, Notay K, Downey GP, McCulloch CA. The Leucine-Rich Repeat Region of CARMIL1 Regulates IL-1-Mediated ERK Activation, MMP Expression, and Collagen Degradation. Cell Rep 2020; 31:107781. [PMID: 32610117 PMCID: PMC8713033 DOI: 10.1016/j.celrep.2020.107781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/29/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023] Open
Abstract
CARMILs are large, multidomain, membrane-associated proteins that regulate actin assembly and Rho-family GTPases, but their role in inflammatory signaling is not defined. Tandem mass tag mass spectrometry indicated that, in fibroblasts, CARMIL1 associates with interleukin (IL)-1 signaling molecules. Immunoprecipitation of cells transfected with CARMIL1 mutants showed that the leucine-rich repeat (LRR) region of CARMIL1 associates with IL-1 receptor type 1 (IL-1R1) and IL-1 receptor-associated kinase (IRAK). Knockout of CARMIL1 by CRISPR-Cas9 reduced IL-1-induced ERK activation by 72% and MMP3 expression by 40%. Compared with CARMIL1 wild-type (WT), cells expressing mutant CARMIL1 lacking its LRR domain exhibited 45% lower ERK activation and 40% lower MMP3 expression. In fibroblasts transduced with a cell-permeable, TAT CARMIL1 peptide that competed with IL-1R1 and IRAK binding to the LRR of CARMIL1, collagen degradation was reduced by 43%. As the LRR of CARMIL1 evidently regulates IL-1 signaling, CARMIL1 could become a target for anti-inflammatory drug development.
Collapse
|
27
|
Arora PD, Nakajima K, Nanda A, Plaha A, Wilde A, Sacks DB, McCulloch CA. Flightless anchors IQGAP1 and R-ras to mediate cell extension formation and matrix remodeling. Mol Biol Cell 2020; 31:1595-1610. [PMID: 32432944 PMCID: PMC7521798 DOI: 10.1091/mbc.e19-10-0554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tractional remodeling of collagen fibrils by fibroblasts requires long cell extensions that mediate fibril alignment. The formation of these cell extensions involves flightless I (FliI), an actin-binding protein that contains a leucine-rich-repeat (LRR), which binds R-ras and may regulate cdc42. We considered that FliI interacts with small GTPases and their regulators to mediate assembly of cell extensions. Mass spectrometry analyses of FliI immunoprecipitates showed abundant Ras GTPase-activating-like protein (IQGAP1), which in immunostained samples colocalized with FliI at cell adhesions. Knockdown of IQGAP1 reduced the numbers of cell extensions and the alignment of collagen fibrils. In experiments using dominant negative mutants, cdc42 activity was required for the formation of short extensions while R-ras was required for the formation of long extensions. Immunoprecipitation of wild-type and mutant constructs showed that IQGAP1 associated with cdc42 and R-ras; this association required the GAP-related domain (1004–1237 aa) of IQGAP1. In cells transfected with FliI mutants, the LRR of FliI, but not its gelsolin-like domains, mediated association with cdc42, R-ras, and IQGAP1. We conclude that FliI interacts with IQGAP1 and co-ordinates with cdc42 and R-ras to control the formation of cell extensions that enable collagen tractional remodeling.
Collapse
|
28
|
Chen A, Arora PD, Lai CC, Copeland JW, Moraes TF, McCulloch CA, Lavoie BD, Wilde A. The scaffold-protein IQGAP1 enhances and spatially restricts the actin-nucleating activity of Diaphanous-related formin 1 (DIAPH1). J Biol Chem 2020; 295:3134-3147. [PMID: 32005666 DOI: 10.1074/jbc.ra119.010476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/24/2020] [Indexed: 11/06/2022] Open
Abstract
The actin cytoskeleton is a dynamic array of filaments that undergoes rapid remodeling to drive many cellular processes. An essential feature of filament remodeling is the spatio-temporal regulation of actin filament nucleation. One family of actin filament nucleators, the Diaphanous-related formins, is activated by the binding of small G-proteins such as RhoA. However, RhoA only partially activates formins, suggesting that additional factors are required to fully activate the formin. Here we identify one such factor, IQ motif containing GTPase activating protein-1 (IQGAP1), which enhances RhoA-mediated activation of the Diaphanous-related formin (DIAPH1) and targets DIAPH1 to the plasma membrane. We find that the inhibitory intramolecular interaction within DIAPH1 is disrupted by the sequential binding of RhoA and IQGAP1. Binding of RhoA and IQGAP1 robustly stimulates DIAPH1-mediated actin filament nucleation in vitro In contrast, the actin capping protein Flightless-I, in conjunction with RhoA, only weakly stimulates DIAPH1 activity. IQGAP1, but not Flightless-I, is required to recruit DIAPH1 to the plasma membrane where actin filaments are generated. These results indicate that IQGAP1 enhances RhoA-mediated activation of DIAPH1 in vivo Collectively these data support a model where the combined action of RhoA and an enhancer ensures the spatio-temporal regulation of actin nucleation to stimulate robust and localized actin filament production in vivo.
Collapse
|
29
|
Pakshir P, Alizadehgiashi M, Wong B, Coelho NM, Chen X, Gong Z, Shenoy VB, McCulloch CA, Hinz B. Author Correction: Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nat Commun 2019; 10:2286. [PMID: 31110254 PMCID: PMC6527548 DOI: 10.1038/s41467-019-10344-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
30
|
Patteson AE, Pogoda K, Byfield FJ, Mandal K, Ostrowska-Podhorodecka Z, Charrier EE, Galie PA, Deptuła P, Bucki R, McCulloch CA, Janmey PA. Loss of Vimentin Enhances Cell Motility through Small Confining Spaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903180. [PMID: 31721440 PMCID: PMC6910987 DOI: 10.1002/smll.201903180] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/22/2019] [Indexed: 05/28/2023]
Abstract
The migration of cells through constricting spaces or along fibrous tracks in tissues is important for many biological processes and depends on the mechanical properties of a cytoskeleton made up of three different filaments: F-actin, microtubules, and intermediate filaments. The signaling pathways and cytoskeletal structures that control cell motility on 2D are often very different from those that control motility in 3D. Previous studies have shown that intermediate filaments can promote actin-driven protrusions at the cell edge, but have little effect on overall motility of cells on flat surfaces. They are however important for cells to maintain resistance to repeated compressive stresses that are expected to occur in vivo. Using mouse embryonic fibroblasts derived from wild-type and vimentin-null mice, it is found that loss of vimentin increases motility in 3D microchannels even though on flat surfaces it has the opposite effect. Atomic force microscopy and traction force microscopy experiments reveal that vimentin enhances perinuclear cell stiffness while maintaining the same level of acto-myosin contractility in cells. A minimal model in which a perinuclear vimentin cage constricts along with the nucleus during motility through confining spaces, providing mechanical resistance against large strains that could damage the structural integrity of cells, is proposed.
Collapse
|
31
|
Mezawa M, Tsuruya Y, Yamazaki-Takai M, Takai H, Nakayama Y, McCulloch CA, Ogata Y. IL-1β enhances cell adhesion through laminin 5 and β4 integrin in gingival epithelial cells. J Oral Sci 2019; 61:491-497. [PMID: 31548457 DOI: 10.2334/josnusd.18-0434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The junctional epithelium and dental enamel adhere because of hemidesmosomes containing laminin 5 and α6β4 integrin, which are important adhesion molecules in the internal basal lamina. Interleukin (IL)-1 is important in the pathogenesis of periodontal disease. IL-1β induces bone resorption by activating osteoclasts; however, its effects on adhesion of epithelial cells remain to be clarified. Laminin β3, β4 integrin, and focal adhesion kinase mRNA levels were higher after 1 h and 3 h of stimulation with IL-1β (1 ng/mL), and IL-1β, type I α1, and type IV α1 collagen mRNA levels were higher after 1 h and lower after 3 h of stimulation with IL-1β. After IL-1β stimulation, colocalization of laminin 5 and β4 integrin was increased after 1 h, colocalization of β4 integrin and plectin was increased after 1 h and decreased after 3 h, and colocalization of β4 integrin and type IV collagen was decreased after 3 h. Wound healing assays showed that IL-1β treatment (3 h) delayed wound healing. These results suggest that IL-1β enhances cell adhesion by altering localization of epithelial adhesion molecules.
Collapse
|
32
|
Rajshankar D, Wang B, Worndl E, Menezes S, Wang Y, McCulloch CA. Focal adhesion kinase regulates tractional collagen remodeling, matrix metalloproteinase expression, and collagen structure, which in turn affects matrix‐induced signaling. J Cell Physiol 2019; 235:3096-3111. [DOI: 10.1002/jcp.29215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/03/2019] [Indexed: 11/08/2022]
|
33
|
Coelho NM, Wang A, McCulloch CA. Discoidin domain receptor 1 interactions with myosin motors contribute to collagen remodeling and tissue fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118510. [PMID: 31319111 DOI: 10.1016/j.bbamcr.2019.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
Abstract
Discoidin Domain Receptor (DDR) genes and their homologues have been identified in sponges, worms and flies. These genes code for proteins that are implicated in cell adhesion to matrix proteins. DDRs are now recognized as playing central regulatory roles in several high prevalence human diseases, including invasive cancers, atherosclerosis, and organ fibrosis. While the mechanisms by which DDRs contribute to these diseases are just now being delineated, one of the common themes involves cell adhesion to collagen and the assembly and organization of collagen fibers in the extracellular matrix. In mammals, the multi-functional roles of DDRs in promoting cell adhesion to collagen fibers and in mediating collagen-dependent signaling, suggest that DDRs contribute to multiple pathways of extracellular matrix remodeling, which are centrally important processes in health and disease. In this review we consider that interactions of the cytoplasmic domains of DDR1 with cytoskeletal motor proteins may contribute to matrix remodeling by promoting collagen fiber alignment and compaction. Poorly controlled collagen remodeling with excessive compaction of matrix proteins is a hallmark of fibrotic lesions in many organs and tissues that are affected by infectious, traumatic or chemical-mediated injury. An improved understanding of the mechanisms by which DDRs mediate collagen remodeling and collagen-dependent signaling could suggest new drug targets for treatment of fibrotic diseases.
Collapse
|
34
|
Smith PC, Martínez C, Martínez J, McCulloch CA. Role of Fibroblast Populations in Periodontal Wound Healing and Tissue Remodeling. Front Physiol 2019; 10:270. [PMID: 31068825 PMCID: PMC6491628 DOI: 10.3389/fphys.2019.00270] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 02/28/2019] [Indexed: 12/31/2022] Open
Abstract
After injury to periodontal tissues, a sequentially phased healing response is initiated that enables wound closure and partial restoration of tissue structure and function. Wound closure in periodontal tissues involves the tightly regulated coordination of resident cells in epithelial and connective tissue compartments. Multiple cell populations in these compartments synergize their metabolic activities to reestablish a mucosal seal that involves the underlying periodontal connective tissues and the attachment of these tissues to the tooth surface. The formation of an impermeable seal around the circumference of the tooth is of particular significance in oral health since colonization of tooth surfaces by pathogenic biofilms promotes inflammation, which can contribute to periodontal tissue degradation and tooth loss. The reformation of periodontal tissue structures in the healing response centrally involves fibroblasts, which synthesize and organize the collagen fibers that link alveolar bone and gingiva to the cementum covering the tooth root. The synthesis and remodeling of nascent collagen matrices are of fundamental importance for the reestablishment of a functional periodontium and are mediated by diverse, multi-functional fibroblast populations that reside within the connective tissues of gingiva and periodontal ligament. Notably, after gingival wounding, a fibroblast sub-type (myofibroblast) arises, which is centrally involved in collagen synthesis and fibrillar remodeling. While myofibroblasts are not usually seen in healthy, mature connective tissues, their formation is enhanced by wound-healing cytokines. The formation of myofibroblasts is also modulated by the stiffness of the extracellular matrix, which is mechanosensed by resident precursor cells in the gingival connective tissue microenvironment. Here, we consider the cellular origins and the factors that control the differentiation and matrix remodeling functions of periodontal fibroblasts. An improved understanding of the regulation and function of periodontal fibroblasts will be critical for the development of new therapies to optimize the restoration of periodontal structure and function after wounding.
Collapse
|
35
|
Brooks PJ, Glogauer M, McCulloch CA. An Overview of the Derivation and Function of Multinucleated Giant Cells and Their Role in Pathologic Processes. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1145-1158. [PMID: 30926333 DOI: 10.1016/j.ajpath.2019.02.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
Monocyte lineage cells play important roles in health and disease. Their differentiation into macrophages is crucial for a broad array of immunologic processes that regulate inflammation, neoplasia, and infection. In certain pathologic conditions, such as foreign body reactions and peripheral inflammatory lesions, monocytes fuse to form large, multinucleated giant cells (MGCs). Currently, our knowledge of the fusion mechanisms of monocytes and the regulation of MGC formation and function in discrete pathologies is limited. Herein, we consider the types and function of MGCs in disease and assess the mechanisms by which monocyte fusion contributes to the formation of MGCs. An improved understanding of the cellular origins and metabolic functions of MGCs will facilitate their identification and ultimately the treatment of diseases and disorders that involve MGCs.
Collapse
|
36
|
Hinz B, McCulloch CA, Coelho NM. Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Exp Cell Res 2019; 379:119-128. [PMID: 30910400 DOI: 10.1016/j.yexcr.2019.03.027] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Activated fibroblasts promote physiological wound repair following tissue injury. However, dysregulation of fibroblast activation contributes to the development of fibrosis by enhanced production and contraction of collagen-rich extracellular matrix. At the peak of their activities, fibroblasts undergo phenotypic conversion into highly contractile myofibroblasts by developing muscle-like features, including formation of contractile actin-myosin bundles. The phenotype and function of fibroblasts and myofibroblasts are mechanically regulated by matrix stiffness using a feedback control system that is integrated with the progress of tissue remodelling. The actomyosin contraction machinery and cell-matrix adhesion receptors are critical elements that are needed for mechanosensing by fibroblasts and the translation of mechanical signals into biological responses. Here, we focus on mechanical and chemical regulation of collagen contraction by fibroblasts and the involvement of these factors in their phenotypic conversion to myofibroblasts.
Collapse
|
37
|
Patel VB, Zhabyeyev P, Chen X, Wang F, Paul M, Fan D, McLean BA, Basu R, Zhang P, Shah S, Dawson JF, Pyle WG, Hazra M, Kassiri Z, Hazra S, Vanhaesebroeck B, McCulloch CA, Oudit GY. PI3Kα-regulated gelsolin activity is a critical determinant of cardiac cytoskeletal remodeling and heart disease. Nat Commun 2018; 9:5390. [PMID: 30568254 PMCID: PMC6300608 DOI: 10.1038/s41467-018-07812-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
Biomechanical stress and cytoskeletal remodeling are key determinants of cellular homeostasis and tissue responses to mechanical stimuli and injury. Here we document the increased activity of gelsolin, an actin filament severing and capping protein, in failing human hearts. Deletion of gelsolin prevents biomechanical stress-induced adverse cytoskeletal remodeling and heart failure in mice. We show that phosphatidylinositol (3,4,5)-triphosphate (PIP3) lipid suppresses gelsolin actin-severing and capping activities. Accordingly, loss of PI3Kα, the key PIP3-producing enzyme in the heart, increases gelsolin-mediated actin-severing activities in the myocardium in vivo, resulting in dilated cardiomyopathy in response to pressure-overload. Mechanical stretching of adult PI3Kα-deficient cardiomyocytes disrupts the actin cytoskeleton, which is prevented by reconstituting cells with PIP3. The actin severing and capping activities of recombinant gelsolin are effectively suppressed by PIP3. Our data identify the role of gelsolin-driven cytoskeletal remodeling in heart failure in which PI3Kα/PIP3 act as negative regulators of gelsolin activity.
Collapse
|
38
|
Arora PD, He T, Ng K, McCulloch CA. The leucine-rich region of Flightless I interacts with R-ras to regulate cell extension formation. Mol Biol Cell 2018; 29:2481-2493. [PMID: 30091651 PMCID: PMC6233052 DOI: 10.1091/mbc.e18-03-0147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Flightless I (FliI) is a calcium-dependent, actin severing and capping protein that localizes to cell matrix adhesions, contributes to the generation of cell extensions, and colocalizes with Ras. Currently, the mechanism by which FliI interacts with Ras to enable assembly of actin-based cell protrusions is not defined. R-Ras, but not K-ras, H-ras, or N-ras, associated with the leucine-rich region (LRR) of FliI. Mutations of the proline-rich region of R-ras (P202A, P203A) prevented this association. Knockdown of Ras GTPase-activating SH3 domain-binding protein (G3BP1) or Rasgap120 by small interfering RNA inhibited the formation of cell extensions and prevented interaction of R-ras and G3BP1 in FliI wild-type (WT) cells. Pull-down assays using G3BP1 fusion proteins showed a strong association of R-ras with the C-terminus of G3BP1 (amino acids 236-466), which also required the LRR of FliI. In cells that expressed the truncated N-terminus or C-terminus of G3BP1, the formation of cell extensions was blocked. Endogenous Rasgap120 interacted with the N-terminus of G3BP1 (amino acids 1-230). We conclude that in cells plated on collagen FliI-LRR interacts with R-ras to promote cell extension formation and that FliI is required for the interaction of Rasgap120 with G3BP1 to regulate R-ras activity and growth of cell extensions.
Collapse
|
39
|
Wang Y, Galli M, Shade Silver A, Lee W, Song Y, Mei Y, Bachus C, Glogauer M, McCulloch CA. IL1β and TNFα promote RANKL-dependent adseverin expression and osteoclastogenesis. J Cell Sci 2018; 131:jcs.213967. [PMID: 29724913 DOI: 10.1242/jcs.213967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/23/2018] [Indexed: 12/20/2022] Open
Abstract
Adseverin is an actin-binding protein involved in osteoclastogenesis, but its role in inflammation-induced bone loss is not well-defined. Here, we examined whether IL1β and TNFα regulate adseverin expression to control osteoclastogenesis in mouse primary monocytes and RAW264.7 cells. Adseverin was colocalized with subcortical actin filaments and was enriched in the fusopods of fusing cells. In precursor cells, adseverin overexpression boosted the formation of RANKL-induced multinucleated cells. Both IL1β and TNFα enhanced RANKL-dependent TRAcP activity by 1.6-fold and multinucleated cell formation (cells with ≥3 nuclei) by 2.6- and 3.3-fold, respectively. However, IL1β and TNFα did not enhance osteoclast formation in adseverin-knockdown cells. RANKL-dependent adseverin expression in bone marrow cells was increased by both IL1β (5.4-fold) and TNFα (3.3-fold). Luciferase assays demonstrated that this expression involved transcriptional regulation of the adseverin promoter. Activation of the promoter was restricted to a 1118 bp sequence containing an NF-κB binding site, upstream of the transcription start site. TNFα also promoted RANKL-induced osteoclast precursor cell migration. We conclude that IL1β and TNFα enhance RANKL-dependent expression of adseverin, which contributes to fusion processes in osteoclastogenesis.
Collapse
|
40
|
Coelho NM, McCulloch CA. Mechanical signaling through the discoidin domain receptor 1 plays a central role in tissue fibrosis. Cell Adh Migr 2018; 12:348-362. [PMID: 29513135 PMCID: PMC6363045 DOI: 10.1080/19336918.2018.1448353] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 02/08/2023] Open
Abstract
The preservation of tissue and organ architecture and function depends on tightly regulated interactions of cells with the extracellular matrix (ECM). These interactions are maintained in a dynamic equilibrium that balances intracellular, myosin-generated tension with extracellular resistance conferred by the mechanical properties of the extracellular matrix. Disturbances of this equilibrium can lead to the development of fibrotic lesions that are associated with a wide repertoire of high prevalence diseases including obstructive cardiovascular diseases, muscular dystrophy and cancer. Mechanotransduction is the process by which mechanical cues are converted into biochemical signals. At the core of mechanotransduction are sensory systems, which are frequently located at sites of cell-ECM and cell-cell contacts. As integrins (cell-ECM junctions) and cadherins (cell-cell contacts) have been extensively studied, we focus here on the properties of the discoidin domain receptor 1 (DDR1), a tyrosine kinase that mediates cell adhesion to collagen. DDR1 expression is positively associated with fibrotic lesions of heart, kidney, liver, lung and perivascular tissues. As the most common end-point of all fibrotic disorders is dysregulated collagen remodeling, we consider here the mechanical signaling functions of DDR1 in processing of fibrillar collagen that lead to tissue fibrosis.
Collapse
|
41
|
Yuda A, Lee WS, Petrovic P, McCulloch CA. Novel proteins that regulate cell extension formation in fibroblasts. Exp Cell Res 2018; 365:85-96. [PMID: 29476834 DOI: 10.1016/j.yexcr.2018.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 01/05/2023]
Abstract
Cell extensions are critical structures that enable matrix remodeling in wound healing and cancer invasion but the regulation of their formation is not well-defined. We searched for new proteins that mediated cell extension formation over collagen by tandem mass tagged mass spectrometry analysis of purified extensions in 3T3 fibroblasts. Unexpectedly, importin-5, ENH isoform 1b (PDLIM5) and 26 S protease regulatory subunit 6B (PSMC4) were more abundant (> 10-fold) in membrane-penetrating cell extensions than cell bodies, which was confirmed by immunostaining and immunoblotting and also observed in human gingival fibroblasts. After siRNA knockdown of these proteins and plating cells on grid-supported floating collagen gels for 6 h, formation of cell extensions and collagen remodeling were examined. Knockdown of importin-5 reduced collagen compaction (1.9-fold), pericellular collagen degradation (~ 1.8-fold) and number of cell extensions (~ 69%). Knockdown of PSMC4 reduced collagen compaction (~ 1.5-fold), pericellular collagen degradation (~ 1.7-fold) and number of cell extensions (~ 42%). Knockdown of PDLIM5 reduced collagen compaction (~ 1.6-fold) and number of cell extensions (~ 21%). Inhibition of the TGF-β RI kinase, Smad3 or ROCK-II signaling pathways reduced the abundance of PDLIM5 in cell extensions but PSMC4 and importin-5 were reduced only by Smad3 or ROCK-II inhibitors. We conclude that these novel proteins are required for cell extension formation and their recruitment into extensions involves the Smad3 and ROCK signaling pathways.
Collapse
|
42
|
Wang Q, Delcorde J, Tang T, Downey GP, McCulloch CA. Regulation of IL-1 signaling through control of focal adhesion assembly. FASEB J 2018; 32:3119-3132. [PMID: 29401618 DOI: 10.1096/fj.201700966r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
IL-1 signaling is adhesion-restricted in many cell types, but the mechanism that drives it is not defined. We screened for proteins recruited to nascent adhesions in IL-1-treated human fibroblasts with tandem mass tag-mass spectrometry. We used fibronectin bead preparations to enrich 10 actin-associated proteins. There was a 1.2 times log 2-fold enrichment of actin capping protein (ACP) at 30 min after IL-1 stimulation. Knockdown (KD) of ACP by siRNA reduced IL-1-induced ERK activation(by 56%, matrix metalloproteinase-3 (MMP-3) expression by 48%, and MMP-9 expression by 62% (in all reductions, P < 0.01). Confocal or structured illumination microscopy showed that ACP was diffused throughout the cytosol but strongly accumulated at the ruffled border of spreading cells. ACP colocalized with nascent paxillin- and vinculin-containing adhesions at the ruffled border, but not with mature adhesions in the center. ACP KD promoted the formation of large, stable adhesions. Immunoprecipitation and proximity ligation analysis showed that ACP was associated with the IL-1 signal transduction proteins myeloid differentiation factor 88 (MyD88) and IL-1 receptor-associated kinase (IRAK) at the ruffled border of the leading edge. IL-1-induced phospho-ERK and MyD88 or IRAK colocalized at the leading edge. We concluded that ACP is required for recruitment and function of IL-1 signaling complexes in nascent adhesions at the leading edge of the cell.-Wang, Q., Delcorde, J., Tang, T., Downey, G. P., McCulloch, C. A. Regulation of IL-1 signaling through control of focal adhesion assembly.
Collapse
|
43
|
Yuda A, McCulloch CA. A Screening System for Evaluating Cell Extension Formation, Collagen Compaction, and Degradation in Drug Discovery. SLAS DISCOVERY 2017; 23:132-143. [PMID: 28957641 DOI: 10.1177/2472555217733421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The generation of cell extensions is critical for matrix remodeling in tissue invasion by cancer cells, but current methods for identifying molecules that regulate cell extension formation and matrix remodeling are not well adapted for screening purposes. We applied a grid-supported, floating collagen gel system (~100 Pa stiffness) to examine cell extension formation, collagen compaction, and collagen degradation in a single assay. With the use of cultured diploid fibroblasts, a fibroblast cell line, and two cancer cell lines, we found that compared with attached collagen gels (~2800 Pa), the mean number and length of cell extensions were respectively greater in the floating gels. In assessing specific processes in cell extension formation, compared with controls, the number of cell extensions was reduced by latrunculin B, β1 integrin blockade, and a formin FH2 domain inhibitor. Screening of a kinase inhibitor library (480 compounds) with the floating gel assay showed that compared with vehicle-treated cells, there were large reductions of collagen compaction, pericellular collagen degradation, and number of cell extensions after treatment with SB431542, SIS3, Fasudil, GSK650394, and PKC-412. These data indicate that the grid-supported floating collagen gel model can be used to screen for inhibitors of cell extension formation and critical matrix remodeling events associated with cancer cell invasion.
Collapse
|
44
|
Cao Y, Wang Y, Sprangers S, Picavet DI, Glogauer M, McCulloch CA, Everts V. Deletion of Adseverin in Osteoclasts Affects Cell Structure But Not Bone Metabolism. Calcif Tissue Int 2017; 101:207-216. [PMID: 28389691 PMCID: PMC5498625 DOI: 10.1007/s00223-017-0271-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/20/2017] [Indexed: 11/30/2022]
Abstract
Adseverin is an actin-severing/capping protein that may contribute to osteoclast differentiation in vitro but its role in bone remodeling of healthy animals is not defined. We analyzed bone and osteoclast structure in adseverin conditional null mice at alveolar and long bone sites. In wild-type and adseverin null mice, as measured by dual-energy X-ray absorptiometry, there were no differences of bone mineral content or bone mineral density, indicating no change of bone metabolism. In tibiae, TRAcP+ osteoclasts were formed in comparable numbers in adseverin null and wild-type mice. Ultrastructural analysis showed normal and similar abundance of ruffled borders, sealing zones, and mitochondria, and with no difference of osteoclast nuclear numbers. In contrast, analyses of long bone showed that in the absence of adseverin osteoclasts were smaller (120 ± 13 vs. 274 ± 19 µm2; p < 0.05), as were nuclear size and the surface area of cytoplasm. The nuclei of adseverin null osteoclasts exhibited more heterochromatin (31 ± 3%) than wild-type cells (8 ± 1%), suggesting that adseverin affects cell differentiation. The data indicate that in healthy, developing tissues, adseverin contributes to the regulation of osteoclast structure but not to bone metabolism in vivo.
Collapse
|
45
|
Arora PD, Di Gregorio M, He P, McCulloch CA. TRPV4 mediates the Ca 2+ influx required for the interaction between flightless-1 and non-muscle myosin, and collagen remodeling. J Cell Sci 2017; 130:2196-2208. [PMID: 28526784 DOI: 10.1242/jcs.201665] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/14/2017] [Indexed: 12/15/2022] Open
Abstract
Fibroblasts remodel extracellular matrix collagen, in part, through phagocytosis. This process requires formation of cell extensions, which in turn involves interaction of the actin-binding protein flightless-1 (FliI) with non-muscle myosin IIA (NMMIIA; heavy chain encoded by MYH9) at cell-matrix adhesion sites. As Ca2+ plays a central role in controlling actomyosin-dependent functions, we examined how Ca2+ controls the generation of cell extensions and collagen remodeling. Ratio fluorimetry demonstrated localized Ca2+ influx at the extensions of fibroblasts. Western blotting and quantitative (q)PCR showed high expression levels of the Ca2+-permeable transient receptor potential vanilloid-4 (TRPV4) channel, which co-immunoprecipitated with β1 integrin and localized to adhesions. Treatment with α2β1-integrin-blocking antibody or the TRPV4-specific antagonist AB159908, as well as reduction of TRPV4 expression through means of siRNA, blocked Ca2+ influx. These treatments also inhibited the interaction of FliI with NMMIIA, reduced the number and length of cell extensions, and blocked collagen remodeling. Pulldown assays showed that Ca2+ depletion inhibited the interaction of purified FliI with NMMIIA filaments. Fluorescence resonance energy transfer experiments showed that FliI-NMMIIA interactions require Ca2+ influx. We conclude that Ca2+ influx through the TRPV4 channel regulates FliI-NMMIIA interaction, which in turn enables generation of the cell extensions essential for collagen remodeling.
Collapse
|
46
|
Coelho NM, Arora PD, van Putten S, Boo S, Petrovic P, Lin AX, Hinz B, McCulloch CA. Discoidin Domain Receptor 1 Mediates Myosin-Dependent Collagen Contraction. Cell Rep 2017; 18:1774-1790. [DOI: 10.1016/j.celrep.2017.01.061] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/20/2016] [Accepted: 01/24/2017] [Indexed: 01/04/2023] Open
|
47
|
Civitarese RA, Kapus A, McCulloch CA, Connelly KA. Role of integrins in mediating cardiac fibroblast–cardiomyocyte cross talk: a dynamic relationship in cardiac biology and pathophysiology. Basic Res Cardiol 2016; 112:6. [DOI: 10.1007/s00395-016-0598-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/14/2016] [Indexed: 12/16/2022]
|
48
|
Embry AE, Mohammadi H, Niu X, Liu L, Moe B, Miller-Little WA, Lu CY, Bruggeman LA, McCulloch CA, Janmey PA, Miller RT. Biochemical and Cellular Determinants of Renal Glomerular Elasticity. PLoS One 2016; 11:e0167924. [PMID: 27942003 PMCID: PMC5152842 DOI: 10.1371/journal.pone.0167924] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022] Open
Abstract
The elastic properties of renal glomeruli and their capillaries permit them to maintain structural integrity in the presence of variable hemodynamic forces. Measured by micro-indentation, glomeruli have an elastic modulus (E, Young's modulus) of 2.1 kPa, and estimates from glomerular perfusion studies suggest that the E of glomeruli is between 2 and 4 kPa. F-actin depolymerization by latrunculin, inhibition of acto-myosin contractility by blebbistatin, reduction in ATP synthesis, and reduction of the affinity of adhesion proteins by EDTA reduced the glomerular E to 1.26, 1.7, 1.5, and 1.43 kPa, respectively. Actin filament stabilization with jasplakinolide and increasing integrin affinity with Mg2+ increased E to 2.65 and 2.87 kPa, respectively. Alterations in glomerular E are reflected in commensurate changes in F/G actin ratios. Disruption of vimentin intermediate filaments by withaferin A reduced E to 0.92 kPa. The E of decellularized glomeruli was 0.74 kPa, indicating that cellular components of glomeruli have dominant effects on their elasticity. The E of glomerular basement membranes measured by magnetic bead displacement was 2.4 kPa. Podocytes and mesangial cells grown on substrates with E values between 3 and 5 kPa had actin fibers and focal adhesions resembling those of podocytes in vivo. Renal ischemia and ischemia-reperfusion reduced the E of glomeruli to 1.58 kPa. These results show that the E of glomeruli is between 2 and 4 kPa. E of the GBM, 2.4 kPa, is consistent with this value, and is supported by the behavior of podocytes and mesangial cells grown on variable stiffness matrices. The podocyte cytoskeleton contributes the major component to the overall E of glomeruli, and a normal E requires ATP synthesis. The reduction in glomerular E following ischemia and in other diseases indicates that reduced glomerular E is a common feature of many forms of glomerular injury and indicative of an abnormal podocyte cytoskeleton.
Collapse
|
49
|
Rajshankar D, Wang Y, McCulloch CA. Osteogenesis requires FAK-dependent collagen synthesis by fibroblasts and osteoblasts. FASEB J 2016; 31:937-953. [PMID: 27881487 DOI: 10.1096/fj.201600645r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/14/2016] [Indexed: 11/11/2022]
Abstract
Focal adhesion kinase (FAK) is critical in adhesion-dependent signaling, but its role in osteogenesis in vivo is ill defined. We deleted Fak in fibroblasts and osteoblasts in Floxed-Fak mice bred with those expressing Cre-recombinase driven by 3.6-kb α1(I)-collagen promoter. Compared with wild-type (WT), conditional FAK-knockout (CFKO) mice were shorter (2-fold; P < 0.0001) and had crooked, shorter tails (50%; P < 0.0001). Microcomputed tomography analysis showed reduced bone volume (4-fold in tails; P < 0.0001; 2-fold in mandibles; P < 0.0001), whereas bone surface area/bone volume increased (3-fold in tails; P < 0.0001; 2.5-fold in mandibles; P < 0.001). Collagen density and fiber alignment in periodontal ligament were reduced by 4-fold (P < 0.0001) and 30% (P < 0.05), respectively, in CFKO mice. In cultured CFKO osteoblasts, mineralization at d 7 and mineralizing colony-forming units at d 21 were 30% (P < 0.0001) and >3-fold less than WT, respectively. Disruptions of FAK function in osteoblasts by conditional knockout, siRNA-knockdown, or FAK inhibitor reduced mRNA and protein expression of Runx2 (>30%), Osterix (>25%), and collagen-1 (2-fold). Collagen synthesis was abrogated in WT osteoblasts with Runx2 knockdown and in Fak-null fibroblasts transfected with an FAK kinase domain mutant or a kinase-impaired mutant (Y397F). These data indicate that FAK regulates osteogenesis through transcription factors that regulate collagen synthesis.-Rajshankar, D., Wang, Y., McCulloch, C. A. Osteogenesis requires FAK-dependent collagen synthesis by fibroblasts and osteoblasts.
Collapse
|
50
|
Patel VB, Zhabyeyev P, McLean BA, Fan D, Basu R, DesAulniers J, Kassiri Z, Vanhaesebroeck B, McCulloch CA, Oudit GY. Abstract 80: PI3Kα Regulates Biomechanical Stress-induced Cytoskeletal Remodeling: A Critical Role of Gelsolin. Circ Res 2016. [DOI: 10.1161/res.119.suppl_1.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
Biomechanical stress and cytoskeletal remodeling are key determinants in pressure overload-induced heart failure. Class Ia phosphoinositide 3-kinases (PI3Ks) mediate a variety of cellular activities, in response to agonist binding to cell-surface receptors, by generating the phosphatidylinositol (3,4,5)-trisphosphate (PIP
3
) phosphoinositide lipid. Gelsolin is a Ca
2+
- and phosphoinositide-regulated actin filament severing and capping protein that is upregulated in failing human hearts and animal models of heart failure.
Hypothesis:
We hypothesize that PI3Kα regulates cytoskeletal remodeling through PIP
3
-mediated regulation of gelsolin. In addition, loss of gelsolin could attenuate the adverse cytoskeletal remodeling and result in increased resistance to the development of heart failure in response to pressure-overload.
Methods and Results:
Loss of p110α kinase activity, in two different transgenic models (PI3Kα dominant-negative (PI3KαDN) and cardiomyocyte-specific PI3Kα-null), resulted in dilated cardiomyopathy and markedly worsened cardiac dysfunction in response to transverse aortic constriction-induced pressure overload. Increased levels of mechanosensor proteins along with decreased F/G-actin ratio exhibited an uncoupling between cardiac mechanotransduction and cytoskeletal remodeling in p110α-null mice. Gelsolin activity was markedly increased in the p110α-null hearts in response to pressure-overload, whereas loss of gelsolin in PI3KαDN/gelsolin-null double mutant mice prevented the adverse cytoskeletal remodeling and preserved the cardiac function. In a murine model of chronic heart failure, loss of gelsolin prevented the pressure overload-induced cardiac dysfunction, fibrosis, and impaired cardiomyocyte contractility resulting in increased survival. Loss of gelsolin also mitigated the biomechanical stress-induced adverse cytoskeletal remodeling, via the attenuation of actin severing activity.
Conclusions:
We have identified a novel role of gelsolin as a mediator of adverse cytoskeletal remodeling leading to heart failure, where PI3Kα is a key regulator of gelsolin activity.
Collapse
|