51
|
Wang Z, Xing K, Ding N, Wang S, Zhang G, Lai W. Lateral flow immunoassay based on dual spectral-overlapped fluorescence quenching of polydopamine nanospheres for sensitive detection of sulfamethazine. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127204. [PMID: 34555767 DOI: 10.1016/j.jhazmat.2021.127204] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Herein, we propose a lateral flow immunoassay (LFIA) based on the dual spectral-overlapped fluorescence quenching of polydopamine nanospheres (PDANs) caused by the inner filter effect to sensitively detect sulfamethazine (SMZ). The fluorescence quenching LFIA device consists of four parts: absorbent pad, polyvinyl chloride pad, sample pad, and nitrocellulose membrane. Compared with traditional quenchers such as gold nanoparticles (AuNPs) with single spectral-overlapped quenching ability, PDANs can quench the excitation light and emission light of three fluorescence donors (aggregation-induced emission fluorescent microsphere, AIEFM; fluorescent microsphere, FM; and quantum dot bead, QB). The fluorescence intensity changes (ΔF) are numerically larger for PDANs-LFIA (ΔFAIEFM = 2315, ΔFFM = 979, ΔFQB = 910) than those for AuNPs-LFIA (ΔFAIEFM = 1722, ΔFFM = 833, ΔFQB =;520). AIEFM-based PDANs-LFIA exhibits a large ΔF (2315) in response to the changes in the SMZ concentration, and produces a high signal-to-noise ratio. The limit of detection (LOD) and visual LOD of LFIA based on PDANs quenching AIEFM for the detection of SMZ in chicken are 0.043 and 0.5 ng/mL, respectively. The results confirm that the proposed method can be used for the detection of hazardous materials in practical applications.
Collapse
|
52
|
Fang B, Peng J, Zhang G, Xing K, Chen W, Liu D, Shan S, Xiong Y, Lai W. I 2/I --mediated fluorescence quenching of an Ag +-doped gold nanocluster-based immunoassay for sensitive detection of Escherichia coli O157:H7 in milk. J Dairy Sci 2022; 105:2922-2930. [PMID: 35086713 DOI: 10.3168/jds.2021-21281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022]
Abstract
Escherichia coli O157:H7 is a type of hazardous bacteria in the field of food safety. A sensitive and effective method is urgently needed to detect it, avoiding enormous harm for the human health. In this study, we synthesized stable Ag+-doped gold nanoclusters (Ag-AuNC) with a fluorescence intensity 4.8 times stronger than that of AuNC. It was further demonstrated that Ag0 existing in the AuNC core and a fraction of Ag+ anchored on the AuNC shell eliminated the surface defects and improved the luminescent properties of AuNC. A combination of I2 and I- was used to quench fluorescence-enhanced Ag-AuNC, which was first applied in ELISA for detecting E. coli O157:H7 to improve the sensitivity. In the presence of E. coli O157:H7, the biotinylated anti-E. coli O157:H7 mAb and streptavidin-alkaline phosphatase would be immobilized and catalyze l-ascorbic acid 2-phosphate sesquimagnesium salt hydrate to produce ascorbic acid. After addition of KIO3, I2/I- were generated. The I2 could trigger oxidative etching of Ag-AuNC and I- could combine with Ag+ to decrease the Ag+ concentration of Ag-AuNC, which resulted in fluorescence quenching of Ag-AuNC. Under optimal conditions, the linear range of I2/I--mediated fluorescence quenching of Ag-AuNC-based immunoassay for detecting E. coli O157:H7 was 3.3 × 103 to 106 cfu/mL, with a detection limit of 9.2 × 102 cfu/mL, 10.7-fold lower than that of the traditional ELISA. The proposed immunoassay exhibits excellent sensitivity, specificity, recovery, and accuracy, which is useful for quantitative detection of E. coli O157:H7 in food safety.
Collapse
|
53
|
Bao H, Yuan M, Xiao C, Liu D, Lai W. Development of a signal-enhanced LFIA based on tyramine-induced AuNPs aggregation for sensitive detection of danofloxacin. Food Chem 2021; 375:131875. [PMID: 34959139 DOI: 10.1016/j.foodchem.2021.131875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/02/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022]
Abstract
A signal-enhanced LFIA based on tyramine (TYR)-induced AuNPs aggregation has been developed for the sensitive detection of danofloxacin (DAN). In the model, the hydroxyl radical produced by HRP catalyzing H2O2 can trigger the TYR-AuNPs to aggregate on the T or C line for enhancing the detection signal. The linear range of TYR-AuNPs LFIA was 0.25-5 ng mL-1 with the limit of detection (LOD) of 0.032 ng mL-1, and the LOD was 8-fold lower than that of the traditional AuNPs LFIA (0.26 ng mL-1). The TYR-AuNPs LFIA could be used with the naked eyes to qualitatively detect DAN with a cut-off limit of 2.5 ng mL-1, which was 4-fold lower than that of the traditional AuNPs LFIA (10 ng mL-1). The recoveries of TYR-AuNPs LFIA were 86.04-105.14% and 92.41-110.19%, with the coefficient of variation of 1.71-2.05% and 4.42-5.89% in chicken and pork, respectively.
Collapse
|
54
|
Liu Z, Sun H, Lai W, Hu M, Zhang Y, Bai C, Liu J, Ren H, Li F, Yan S. Genome-wide re-sequencing reveals population structure and genetic diversity of Bohai Black cattle. Anim Genet 2021; 53:133-136. [PMID: 34783059 DOI: 10.1111/age.13155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
Bohai Black (BHB) cattle, one of eight representative indigenous breeds in China, is well known for its high resistance to disease, endurance under unfavorable feeding conditions and excellent meat quality. Over recent, the number of BHB cattle has decreased sharply. To investigate the population structure and genetic diversity of this breed, the whole-genome data of 35 individuals from a conservation farm were obtained using the Illumina 150 bp paired-end platform. The results of the genetic structure and diversity analyses showed that BHB cattle had mixed Bos taurus and Bos indicus ancestry, close phylogenic relationships with Jiaxian Red and Luxi cattle and abundant genetic diversity. The bulls tested here could be divided into six families. This study presents a comprehensive evaluation of the genetic structure and diversity of the BHB cattle, and lays the theoretical basis for conservation and utilization of the valuable germplasm resource.
Collapse
|
55
|
Chen Y, Li X, Lai W, Zhu F, Tan X, Xian W, Kang P, Wang H. [RIP1/RIP3-MLKL signaling pathway correlates with occurrence, progression and prognosis of chronic heart failure]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1534-1539. [PMID: 34755669 DOI: 10.12122/j.issn.1673-4254.2021.10.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To detect plasma levels of receptor-interacting protein kinase 1 (RIP1), RIP3 and mixed lineage kinase domain-like protein (MLKL) in patients with chronic heart failure and explore the expression pattern of programmed necrosis signaling pathway RIP1/RIP3-MLKL in the progression of heart failure. METHODS The patients with chronic heart failure (NYHA class Ⅱ-Ⅳ) admitted in our hospital between February, 2020 and March, 2021 were prospectively enrolled in this study, with 21 healthy volunteers as the control group. The enrolled patients included 20 with grade Ⅱ, 33 with grade Ⅲ, and 43 with grade Ⅳ cardiac function. Fasting venous blood was collected from all the participants for detecting plasma levels of RIP1, RIP3, and MLKL and protein expressions of RIP1/RIP3-MLKL pathway using enzyme-linked immunosorbent assay (ELISA) and Western blotting. The patients with grade Ⅳ cardiac function were followed up for 5 months to evaluate the clinical prognostic indicators. RESULTS Compared with the healthy volunteers, the patients with grade Ⅱ, Ⅲ and Ⅳ cardiac function had significantly increased plasma levels of RIP1, RIP3, and MLKL (P < 0.01), and their levels were significantly higher in grade Ⅲ/Ⅳ patients than in those with grade Ⅱ cardiac function (P < 0.01); the plasma levels of RIP1 and MLKL were significantly higher in grade Ⅳ patients than in grade Ⅲ patients (P < 0.05). The results of Western blotting also showed increased expressions of the proteins in the RIP1/RIP3-MLKL pathway in patients with heart failure. Pearson correlation analysis suggested that in patients with heart failure, the expression levels of RIP1, RIP3, and MLKL were positively correlated with SCR, AST, LVEDD and NT-proBNP (P < 0.05). Follow-up study of the patients with grade Ⅳ cardiac function showed that higher expression levels of RIP1/RIP3-MLKL were associated with a poorer prognosis of the patients. CONCLUSION The expressions of RIP1, RIP3 and MLKL are significantly upregulated in patients with heart failure in positive correlation with the severity of the disease condition, and the activation of the RIP1/RIP3-MLKL signaling pathway may contribute to the occurrence, development and prognosis of chronic heart failure.
Collapse
|
56
|
Wang Z, Chen S, Zhu Q, Wu Y, Xu G, Guo G, Lai W, Chen J, Zhong S. Using a Two-Sample Mendelian Randomization Method in Assessing the Causal Relationships Between Human Blood Metabolites and Heart Failure. Front Cardiovasc Med 2021; 8:695480. [PMID: 34595216 PMCID: PMC8476837 DOI: 10.3389/fcvm.2021.695480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/10/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Heart failure (HF) is the main cause of morbidity and mortality worldwide, and metabolic dysfunction is an important factor related to HF pathogenesis and development. However, the causal effect of blood metabolites on HF remains unclear. Objectives: Our chief aim is to investigate the causal relationships between human blood metabolites and HF risk. Methods: We used an unbiased two-sample Mendelian randomization (MR) approach to assess the causal relationships between 486 human blood metabolites and HF risk. Exposure information was obtained from Sample 1, which is the largest metabolome-based genome-wide association study (mGWAS) data containing 7,824 Europeans. Outcome information was obtained from Sample 2, which is based on the results of a large-scale GWAS meta-analysis of HF and contains 47,309 cases and 930,014 controls of Europeans. The inverse variance weighted (IVW) model was used as the primary two-sample MR analysis method and followed the sensitivity analyses, including heterogeneity test, horizontal pleiotropy test, and leave-one-out analysis. Results: We observed that 11 known metabolites were potentially related to the risk of HF after using the IVW method (P < 0.05). After adding another four MR models and performing sensitivity analyses, we found a 1-SD increase in the xenobiotics 4-vinylphenol sulfate was associated with ~22% higher risk of HF (OR [95%CI], 1.22 [1.07–1.38]). Conclusions: We revealed that the 4-vinylphenol sulfate may nominally increase the risk of HF by 22% after using a two-sample MR approach. Our findings may provide novel insights into the pathogenesis underlying HF and novel strategies for HF prevention.
Collapse
|
57
|
Zhou Y, Chen Y, Liu W, Fang H, Li X, Hou L, Liu Y, Lai W, Huang X, Xiong Y. Development of a rapid and sensitive quantum dot nanobead-based double-antigen sandwich lateral flow immunoassay and its clinical performance for the detection of SARS-CoV-2 total antibodies. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 343:130139. [PMID: 34035562 DOI: 10.1016/j.snb.2021.130169] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 05/28/2023]
Abstract
Owing to the over-increasing demands in resisting and managing the coronavirus disease 2019 (COVID-19) pandemic, development of rapid, highly sensitive, accurate, and versatile tools for monitoring total antibody concentrations at the population level has been evolved as an urgent challenge on measuring the fatality rate, tracking the changes in incidence and prevalence, comprehending medical sequelae after recovery, as well as characterizing seroprevalence and vaccine coverage. To this end, herein we prepared highly luminescent quantum dot nanobeads (QBs) by embedding numerous quantum dots into polymer matrix, and then applied it as a signal-amplification label in lateral flow immunoassay (LFIA). After covalently linkage with the expressed recombinant SARS-CoV-2 spike protein (RSSP), the synthesized QBs were used to determine the total antibody levels in sera by virtue of a double-antigen sandwich immunoassay. Under the developed condition, the QB-LFIA can allow the rapid detection of SARS-CoV-2 total antibodies within 15 min with about one order of magnitude improvement in analytical sensitivity compared to conventional gold nanoparticle-based LFIA. In addition, the developed QB-LFIA performed well in clinical study in dynamic monitoring of serum antibody levels in the whole course of SARS-CoV-2 infection. In conclusion, we successfully developed a promising fluorescent immunological sensing tool for characterizing the host immune response to SARS-CoV-2 infection and confirming the acquired immunity to COVID-19 by evaluating the SRAS-CoV-2 total antibody level in the crowd.
Collapse
|
58
|
Zhou Y, Chen Y, Liu W, Fang H, Li X, Hou L, Liu Y, Lai W, Huang X, Xiong Y. Development of a rapid and sensitive quantum dot nanobead-based double-antigen sandwich lateral flow immunoassay and its clinical performance for the detection of SARS-CoV-2 total antibodies. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 343:130139. [PMID: 34035562 PMCID: PMC8137357 DOI: 10.1016/j.snb.2021.130139] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 05/18/2023]
Abstract
Owing to the over-increasing demands in resisting and managing the coronavirus disease 2019 (COVID-19) pandemic, development of rapid, highly sensitive, accurate, and versatile tools for monitoring total antibody concentrations at the population level has been evolved as an urgent challenge on measuring the fatality rate, tracking the changes in incidence and prevalence, comprehending medical sequelae after recovery, as well as characterizing seroprevalence and vaccine coverage. To this end, herein we prepared highly luminescent quantum dot nanobeads (QBs) by embedding numerous quantum dots into polymer matrix, and then applied it as a signal-amplification label in lateral flow immunoassay (LFIA). After covalently linkage with the expressed recombinant SARS-CoV-2 spike protein (RSSP), the synthesized QBs were used to determine the total antibody levels in sera by virtue of a double-antigen sandwich immunoassay. Under the developed condition, the QB-LFIA can allow the rapid detection of SARS-CoV-2 total antibodies within 15 min with about one order of magnitude improvement in analytical sensitivity compared to conventional gold nanoparticle-based LFIA. In addition, the developed QB-LFIA performed well in clinical study in dynamic monitoring of serum antibody levels in the whole course of SARS-CoV-2 infection. In conclusion, we successfully developed a promising fluorescent immunological sensing tool for characterizing the host immune response to SARS-CoV-2 infection and confirming the acquired immunity to COVID-19 by evaluating the SRAS-CoV-2 total antibody level in the crowd.
Collapse
|
59
|
Hu ZX, Bian HN, Ma D, Luo HM, Sun CW, Lai W. [Analysis of the clinical features and prognostic influencing factors of toxic epidermal necrolysis]. ZHONGHUA SHAO SHANG ZA ZHI = ZHONGHUA SHAOSHANG ZAZHI = CHINESE JOURNAL OF BURNS 2021; 37:738-746. [PMID: 34404158 DOI: 10.3760/cma.j.cn501120-20200416-00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To investigate the clinical features and prognostic influencing factors of toxic epidermal necrolysis (TEN). Methods: A retrospective observational study was conducted. From January 2008 to March 2019, a total of 46 TEN patients who met the inclusion criteria were admitted to Guangdong Provincial People's Hospital. The gender, age, and hospital admission diagnosis of the 46 patients, the category of department admitted of patients complicated with sepsis, death ratio of the sepsis patients with or without treatment history in intensive care unit (ICU)/department of burns and wound repair, and the cause of death of the deceased patients were recorded. Depending on whether complicated with sepsis, the patients were divided into sepsis group (32 cases) and non-sepsis group (14 cases). According to whether died or not, the patients were divided into death group (9 cases) and survival group (37 cases). The specific conditions of suspected pathogenic agents and combined underlying diseases, the abnormality of transaminase/bilirubin, creatinine, and platelet count in blood on admission, and the detection of pathogenic microorganisms and drug resistance during the course of disease of patients were recorded in both sepsis group and non-sepsis group. The gender, age, lesion area, severity of illness score for TEN (SCORTEN) system score, combined underlying diseases on admission, and blood microbial culture positivity, hormone use, and gamma globulin use during the course of disease of patients between sepsis group and non-sepsis group, death group and survival group were compared respectively. Data were statistically analyzed with chi-square test, Fisher's exact probability test, and Mann-Whitney U test. The factors with statistically significant differences between sepsis group and non-sepsis group, death group and survival group were selected for binary multivariate logistic regression analysis, so as to screen the independent risk factors affecting sepsis and death in TEN patients. Results: Of the 46 TEN patients, 30 were male and 16 were female, aged from 8 months to 92.0 years, with 11 cases (23.91%) of epidermolysis bullosa, 9 cases (19.57%) of exfoliative dermatitis, 9 cases (19.57%) of TEN, 7 cases (15.22%) of epidermolysis bullosa, 6 cases (13.04%) of Stevens-Johnson syndrome, and 4 cases (8.70%) of severe drug rash for hospital admission diagnosis. The patients complicated with sepsis were admitted to 11 departments, and the death ratio of patients with treatment history in ICU/department of burns and wound repair was similar to that of patients without such department treatment history (P>0.05). All the deceased patients were complicated with sepsis, which was also the main cause of death. On admission, the suspected pathogenic agents of patients in sepsis group were mainly allopurinol (8 cases) and non-steroidal anti-inflammatory drugs (4 cases), while those in non-sepsis group were allopurinol (3 cases) and psychotropic drugs (3 cases). Patients in sepsis group combined as many as 10 underlying diseases, while those in non-sepsis group combined only 4 underlying diseases. The proportions of patients with increased creatinine (χ2=13.349, P<0.01) and decreased platelet count (P<0.01) in sepsis group were significantly higher than those in non-sepsis group, while the transaminase/bilirubin abnormality was similar to that in non-sepsis group (P>0.05). A wide variety of pathogens were detected in the blood, respiratory tract secretions, and skin secretions of 21 patients in sepsis group, and 14 patients were infected with drug-resistant bacteria; among the 9 strains cultured from the blood samples, 8 were drug-resistant bacteria and 6 were Gram-positive bacteria. In non-sepsis group, pathogens were detected in blood, respiratory tract secretions, and skin secretions of 8 patients, with fewer species, and 6 patients were infected with drug-resistant bacteria. The gender, age, lesion area, blood microbial culture positivity, hormone use, and gamma globulin use of patients in sepsis group were similar to those in non-sepsis group (P>0.05). The proportion of patients combined with underlying diseases (χ2=4.493, P<0.05) and the proportion of patients with SCORTEN system score of 4-6 points (P<0.01) of patients in sepsis group were significantly higher than those in non-sepsis group. The gender, combined underlying diseases, lesion area, blood microbial culture positivity, hormone use, and gamma globulin use of patients were similar between survival group and death group (P>0.05). The proportion of patients with age≥60 years and the proportion of patients with SCORTEN system score of 4-6 points of patients in death group were significantly higher than those in survival group (χ2=4.412, 11.627, P<0.05 or P<0.01). The SCORTEN system score was an independent risk factor affecting sepsis and death in TEN patients (odds ratio=3.025, 2.757, 95% confidence interval=1.352-6.769, 1.244-6.110, P<0.05 or P<0.01). Conclusions: The diagnosis of TEN is difficult on admission. Male population is susceptible to TEN, and allopurinol is the common pathogenic agent. The proportion of patients combined with underlying diseases is high in TEN patients complicated with sepsis, with mainly drug-resistant bacteria and mostly Gram-positive bacteria in blood-borne infections. The deceased patients are older than the survived, and the main cause of death is sepsis. The SCORTEN system score is an independent risk factor affecting sepsis and death in TEN patients.
Collapse
|
60
|
Shan S, Huang Y, Huang Z, Long Z, Liu C, Zhao X, Xing K, Xiao X, Liu J, Huang Y, Lai W, Liu D. Detection of stx1 and stx2 and subtyping of Shiga toxin-producing Escherichia coli using asymmetric PCR combined with lateral flow immunoassay. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
61
|
Xiao X, Hu S, Lai X, Peng J, Lai W. Developmental trend of immunoassays for monitoring hazards in food samples: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
62
|
Huang Z, Ning B, Yang HS, Youngquist BM, Niu A, Lyon CJ, Beddingfield BJ, Fears AC, Monk CH, Murrell AE, Bilton SJ, Linhuber JP, Norton EB, Dietrich ML, Yee J, Lai W, Scott JW, Yin XM, Rappaport J, Robinson JE, Saba NS, Roy CJ, Zwezdaryk KJ, Zhao Z, Hu TY. Sensitive tracking of circulating viral RNA through all stages of SARS-CoV-2 infection. J Clin Invest 2021; 131:146031. [PMID: 33561010 DOI: 10.1172/jci146031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/03/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUNDCirculating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA may represent a more reliable indicator of infection than nasal RNA, but quantitative reverse transcription PCR (RT-qPCR) lacks diagnostic sensitivity for blood samples.METHODSA CRISPR-augmented RT-PCR assay that sensitively detects SARS-CoV-2 RNA was employed to analyze viral RNA kinetics in longitudinal plasma samples from nonhuman primates (NHPs) after virus exposure; to evaluate the utility of blood SARS-CoV-2 RNA detection for coronavirus disease 2019 (COVID-19) diagnosis in adults cases confirmed by nasal/nasopharyngeal swab RT-PCR results; and to identify suspected COVID-19 cases in pediatric and at-risk adult populations with negative nasal swab RT-qPCR results. All blood samples were analyzed by RT-qPCR to allow direct comparisons.RESULTSCRISPR-augmented RT-PCR consistently detected SARS-CoV-2 RNA in the plasma of experimentally infected NHPs from 1 to 28 days after infection, and these increases preceded and correlated with rectal swab viral RNA increases. In a patient cohort (n = 159), this blood-based assay demonstrated 91.2% diagnostic sensitivity and 99.2% diagnostic specificity versus a comparator RT-qPCR nasal/nasopharyngeal test, whereas RT-qPCR exhibited 44.1% diagnostic sensitivity and 100% specificity for the same blood samples. This CRISPR-augmented RT-PCR assay also accurately identified patients with COVID-19 using one or more negative nasal swab RT-qPCR results.CONCLUSIONResults of this study indicate that sensitive detection of SARS-CoV-2 RNA in blood by CRISPR-augmented RT-PCR permits accurate COVID-19 diagnosis, and can detect COVID-19 cases with transient or negative nasal swab RT-qPCR results, suggesting that this approach could improve COVID-19 diagnosis and the evaluation of SARS-CoV-2 infection clearance, and predict the severity of infection.TRIAL REGISTRATIONClinicalTrials.gov. NCT04358211.FUNDINGDepartment of Defense, National Institute of Allergy and Infectious Diseases, National Institute of Child Health and Human Development, and the National Center for Research Resources.
Collapse
|
63
|
Chen H, Wang Z, Qin M, Zhang B, Lin L, Ma Q, Liu C, Chen X, Li H, Lai W, Zhong S. Comprehensive Metabolomics Identified the Prominent Role of Glycerophospholipid Metabolism in Coronary Artery Disease Progression. Front Mol Biosci 2021; 8:632950. [PMID: 33937325 PMCID: PMC8080796 DOI: 10.3389/fmolb.2021.632950] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/09/2021] [Indexed: 01/14/2023] Open
Abstract
Background: Coronary stenosis severity determines ischemic symptoms and adverse outcomes. The metabolomic analysis of human fluids can provide an insight into the pathogenesis of complex disease. Thus, this study aims to investigate the metabolomic and lipidomic biomarkers of coronary artery disease (CAD) severity and to develop diagnostic models for distinguishing individuals at an increased risk of atherosclerotic burden and plaque instability. Methods: Widely targeted metabolomic and lipidomic analyses of plasma in 1,435 CAD patients from three independent centers were performed. These patients were classified as stable coronary artery disease (SCAD), unstable angina (UA), and myocardial infarction (MI). Associations between CAD stages and metabolic conditions were assessed by multivariable-adjusted logistic regression. Furthermore, the least absolute shrinkage and selection operator logistic-based classifiers were used to identify biomarkers and to develop prediagnostic models for discriminating the diverse CAD stages. Results: On the basis of weighted correlation network analysis, 10 co-clustering metabolite modules significantly (p < 0.05) changed at different CAD stages and showed apparent correlation with CAD severity indicators. Moreover, cross-comparisons within CAD patients characterized that a total of 72 and 88 metabolites/lipid species significantly associated with UA (vs. SCAD) and MI (vs. UA), respectively. The disturbed pathways included glycerophospholipid metabolism, and cysteine and methionine metabolism. Furthermore, models incorporating metabolic and lipidomic profiles with traditional risk factors were constructed. The combined model that incorporated 11 metabolites/lipid species and four traditional risk factors represented better discrimination of UA and MI (C-statistic = 0.823, 95% CI, 0.783–0.863) compared with the model involving risk factors alone (C-statistic = 0.758, 95% CI, 0.712–0.810). The combined model was successfully used in discriminating UA and MI patients (p < 0.001) in a three-center validation cohort. Conclusion: Differences in metabolic profiles of diverse CAD subtypes provided a new approach for the risk stratification of unstable plaque and the pathogenesis decipherment of CAD progression.
Collapse
|
64
|
Wang Z, Chen H, Qin M, Liu C, Ma Q, Chen X, Zhang Y, Lai W, Zhang X, Zhong S. Associations of Mitochondrial Variants With Lipidomic Traits in a Chinese Cohort With Coronary Artery Disease. Front Genet 2021; 12:630359. [PMID: 33841498 PMCID: PMC8027325 DOI: 10.3389/fgene.2021.630359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Plasma lipids have been at the center stage of the prediction and prevention strategies for cardiovascular diseases (CVDs), and novel lipidomic traits have been recognized as reliable biomarkers for CVD risk prediction. The mitochondria serve as energy supply sites for cells and can synthesize a variety of lipids autonomously. Therefore, investigating the relationships between mitochondrial single nucleotide polymorphism (SNPs) and plasma lipidomic traits is meaningful. Here, we enrolled a total of 1,409 Han Chinese patients with coronary artery disease from three centers and performed linear regression analyses on the SNPs of mitochondrial DNA (mtDNA) and lipidomic traits in two independent groups. Sex, age, aspartate aminotransferase, estimated glomerular filtration rate, antihypertensive drugs, hypertension, and diabetes were adjusted. We identified three associations, namely, D-loopm.16089T>C with TG(50:4) NL-16:0, D-loopm.16145G>A with TG(54:5) NL-18:0, and D-loopm.16089T>C with PC(16:0_16:1) at the statistically significant threshold of FDR < 0.05. Then, we explored the relationships between mitochondrial genetic variants and traditional lipids, including triglyceride, total cholesterol (TC), low-density lipoprotein cholesterol (LDLC), and high-density lipoprotein cholesterol. Two significant associations were found, namely MT-ND6m.14178T>C with TC and D-loopm.215A>G with LDLC. Furthermore, we performed linear regression analysis to determine on the SNPs of mtDNA and left ventricular ejection fraction (LVEF) and found that the SNP D-loopm.16145G>A was nominally significantly associated with LVEF (P = 0.047). Our findings provide insights into the lipidomic context of mtDNA variations and highlight the importance of studying mitochondrial genetic variants related to lipid species.
Collapse
|
65
|
Wang Z, Hu S, Bao H, Xing K, Liu J, Xia J, Lai W, Peng J. Immunochromatographic assay based on time-resolved fluorescent nanobeads for the rapid detection of sulfamethazine in egg, honey, and pork. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:684-692. [PMID: 32705699 DOI: 10.1002/jsfa.10681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/17/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Sulfamethazine (SMZ), a veterinary drug widely used in animal husbandry, is harmful to human health when excess residues are present in food. In this study, a fast, reliable, and sensitive immunochromatographic assay (ICA) was developed on the basis of the competitive format by using time-resolved fluorescent nanobeads (TRFN) as label for the detection of SMZ in egg, honey, and pork samples. RESULTS Under optimized working conditions, this method had limits of detection of 0.016, 0.049, and 0.029 ng mL-1 and corresponding linear ranges of 0.05 to 1.00, 0.05 to 5.00, and 0.05 to 1.00 ng mL-1 in egg, honey, and pork samples, respectively. The recovery experiments showed that the average recoveries ranged from 90.5% to 113.9%, 82.4% to 112.0%, and 79.8% to 93.4% with corresponding coefficients of variation of 4.1% to 11.7%, 7.5% to 11.5%, and 4.8% to 8.7% for egg, honey, and pork samples, respectively. The developed TRFN-ICA was also systematically compared with high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) by analyzing 45 actual samples from egg, honey, and pork. CONCLUSION Overall, the developed TRFN-ICA had high reliability and excellent potential for the ultrasensitive detection of SMZ for food safety monitoring, also providing a universal platform for the on-site detection of other targets. © 2020 Society of Chemical Industry.
Collapse
|
66
|
Wang Z, Zhu Q, Liu Y, Chen S, Zhang Y, Ma Q, Chen X, Liu C, Lei H, Chen H, Wang J, Zheng S, Li Z, Xiong L, Lai W, Zhong S. Genome-wide association study of metabolites in patients with coronary artery disease identified novel metabolite quantitative trait loci. Clin Transl Med 2021; 11:e290. [PMID: 33634981 PMCID: PMC7839954 DOI: 10.1002/ctm2.290] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 11/11/2022] Open
|
67
|
Lai X, Zhang G, Zeng L, Xiao X, Peng J, Guo P, Zhang W, Lai W. Synthesis of PDA-Mediated Magnetic Bimetallic Nanozyme and Its Application in Immunochromatographic Assay. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1413-1423. [PMID: 33346647 DOI: 10.1021/acsami.0c17957] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Immunochromatographic assay (ICA) is widely applied in various fields. However, severe matrix interference and weak signal output present major challenges in achieving accurate and ultrasensitive detection in ICA. Here, a polydopamine (PDA)-mediated magnetic bimetallic nanozyme (Fe3O4@PDA@Pd/Pt) with peroxidase-like activity was synthesized and used as a probe in ICA. The magnetic property of Fe3O4@PDA@Pd/Pt enabled effective magnetic enrichment of targets, thereby reducing the matrix interference in the sample. PDA coating on the magnetic bimetallic nanozyme was employed as a mediator and a stabilizer. It improved the catalytic ability and stability of the magnetic bimetallic nanozyme by providing more coordination sites for Pd/Pt growth and functional groups (-NH and -OH). In addition, the Pd/Pt bimetallic synergistic effect could further enhance the catalytic ability of the nanozyme. A method was developed by integrating Fe3O4, PDA, and Pd/Pt into Fe3O4@PDA@Pd/Pt as a probe in ICA. With the proposed method, human chorionic gonadotropin and Escherichia coli O157:H7 were successfully detected to be as low as 0.0094 mIU/mL in human blood serum and 9 × 101 CFU/mL in the milk sample, respectively. This method may be readily adapted for accurate and ultrasensitive detection of other biomolecules in various fields.
Collapse
|
68
|
Zhou Y, Chen Y, Liu Y, Fang H, Huang X, Leng Y, Liu Z, Hou L, Zhang W, Lai W, Xiong Y. Controlled copper in situ growth-amplified lateral flow sensors for sensitive, reliable, and field-deployable infectious disease diagnostics. Biosens Bioelectron 2021; 171:112753. [PMID: 33120235 PMCID: PMC7575433 DOI: 10.1016/j.bios.2020.112753] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 01/10/2023]
Abstract
A polyethyleneimine (PEI)-assisted copper in-situ growth (CISG) strategy was proposed as a controlled signal amplification strategy to enhance the sensitivity of gold nanoparticle-based lateral flow sensors (AuNP-LFS). The controlled signal amplification is achieved by introducing PEI as a structure-directing agent to regulate the thermodynamics of anisotropic Cu nanoshell growth on the AuNP surface, thus controlling shape and size of the resultant AuNP@Cu core-shell nanostructures and confining free reduction and self-nucleation of Cu2+ for improved reproducibility and decreased false positives. The PEI-CISG-enhanced AuNP-LFS showed ultrahigh sensitivities with the detection limits of 50 fg mL-1 for HIV-1 capsid p24 antigen and 6 CFU mL-1 for Escherichia coli O157:H7. We further demonstrated its clinical diagnostic efficacy by configuring PEI-CISG into a commercial AuNP-LFS detection kit for SARS-CoV-2 antibody detection. Altogether, this work provides a reliable signal amplification platform to dramatically enhance the sensitivity of AuNP-LFS for rapid and accurate diagnostics of various infectious diseases.
Collapse
|
69
|
Fang B, Xu S, Huang Y, Su F, Huang Z, Fang H, Peng J, Xiong Y, Lai W. Gold nanorods etching-based plasmonic immunoassay for qualitative and quantitative detection of aflatoxin M1 in milk. Food Chem 2020; 329:127160. [DOI: 10.1016/j.foodchem.2020.127160] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022]
|
70
|
Fang B, Xu S, Huang Z, Wang S, Chen W, Yuan M, Hu S, Peng J, Lai W. Glucose oxidase-induced colorimetric immunoassay for qualitative detection of danofloxacin based on iron (Ⅱ) chelation reaction with phenanthroline. Food Chem 2020; 328:127099. [PMID: 32474238 DOI: 10.1016/j.foodchem.2020.127099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 03/07/2020] [Accepted: 05/17/2020] [Indexed: 01/05/2023]
Abstract
In this study, we developed a competitive colorimetric immunoassay for qualitative detection of DAN based on oxidation of iron (Ⅱ) (Fe2+) in the presence of glucose oxidase (GOx) and color change induced by Fe2+-phenanthroline (Phen) chromogenic system. Streptavidin (SA) acted as a linker between biotinylated anti-DAN-monoantibody (bio-mAb) and biotinylated GOx (bio-GOx) to form the immunocomplexes bio-mAb-SA-bio-GOx. In the absence of DAN, the immunocomplexes bio-mAb-SA-bio-GOx combining with coated DAN-ovalbumin (DAN-OVA) will be immobilized and catalyze glucose to produce H2O2. Fe2+ is oxidized to Fe3+ by H2O2, giving rise to a colorless result. In the presence of DAN, Fe2+ produces a chelation reaction with Phen, leading to orange-red color. Under optimal conditions, the detection limit (LOD) by naked eyes was 2.5 ng mL-1 in milk, chicken, beef, and pork samples. Low LOD, no matrix effect, and no signal reader requirement make it possibly applied to quickly screen DAN on site.
Collapse
|
71
|
Huang Z, Tian D, Liu Y, Lin Z, Lyon CJ, Lai W, Fusco D, Drouin A, Yin X, Hu T, Ning B. Ultra-sensitive and high-throughput CRISPR-p owered COVID-19 diagnosis. Biosens Bioelectron 2020; 164:112316. [PMID: 32553350 PMCID: PMC7245202 DOI: 10.1016/j.bios.2020.112316] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/24/2022]
Abstract
Recent research suggests that SARS-CoV-2-infected individuals can be highly infectious while asymptomatic or pre-symptomatic, and that an infected person may infect 5.6 other individuals on average. This situation highlights the need for rapid, sensitive SARS-CoV-2 diagnostic assays capable of high-throughput operation that can preferably utilize existing equipment to facilitate broad, large-scale screening efforts. We have developed a CRISPR-based assay that can meet all these criteria. This assay utilizes a custom CRISPR Cas12a/gRNA complex and a fluorescent probe to detect target amplicons produced by standard RT-PCR or isothermal recombinase polymerase amplification (RPA), to allow sensitive detection at sites not equipped with real-time PCR systems required for qPCR diagnostics. We found this approach allowed sensitive and robust detection of SARS-CoV-2 positive samples, with a sample-to-answer time of ~50 min, and a limit of detection of 2 copies per sample. CRISPR assay diagnostic results obtained nasal swab samples of individuals with suspected COVID-19 cases were comparable to paired results from a CDC-approved quantitative RT-PCR (RT-qPCR) assay performed in a state testing lab, and superior to those produced by same assay in a clinical lab, where the RT-qPCR assay exhibited multiple invalid or inconclusive results. Our assay also demonstrated greater analytical sensitivity and more robust diagnostic performance than other recently reported CRISPR-based assays. Based on these findings, we believe that a CRISPR-based fluorescent application has potential to improve current COVID-19 screening efforts.
Collapse
|
72
|
Luo M, Xing K, Guo Z, Guo D, Lai W, Peng J. Sensitive immunoassays based on a monoclonal antibody for detection of marbofloxacin in milk. J Dairy Sci 2020; 103:7791-7800. [DOI: 10.3168/jds.2019-18108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/06/2020] [Indexed: 12/31/2022]
|
73
|
Qin M, Zhu Q, Lai W, Ma Q, Liu C, Chen X, Zhang Y, Wang Z, Chen H, Yan H, Lei H, Zhang S, Dong X, Wang H, Huang M, Lian Q, Zhong S. Insights into the prognosis of lipidomic dysregulation for death risk in patients with coronary artery disease. Clin Transl Med 2020; 10:e189. [PMID: 32997403 PMCID: PMC7522592 DOI: 10.1002/ctm2.189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dyslipidaemia contributes to the progression of coronary artery disease (CAD) toward adverse outcomes. Plasma lipidomic measure may improve the prognostic performances of clinical endpoints of CAD. Our research is designed to identify the correlations between plasma lipid species and the risks of death, major adverse cardiovascular event (MACE) and left ventricular (LV) remodeling in patients with CAD. METHODS A total of 1569 Chinese patients with CAD, 1011 single-centre patients as internal training cohort, and 558 multicentre patients as external validation cohort, were enrolled. The concentration of plasma lipids in both cohorts was determined through widely targeted lipidomic profiling. Least absolute shrinkage and selection operator Cox and multivariate Cox regressions were used to develop prognostic models for death and MACE, respectively. RESULTS Ten (Cer(d18:1/20:1), Cer(d18:1/24:1), PE(30:2), PE(32:0), PE(32:2), PC(O-38:2), PC(O-36:4), PC(16:1/22:2), LPC(18:2/0:0) and LPE(0:0/24:6)) and two (Cer(d18:1/20:1) and LPC(20:0/0:0)) lipid species were independently related to death and MACE, respectively. Cer(d18:1/20:1) and Cer(d18:1/24:1) were correlated with LV remodeling (P < .05). The lipidic panel incorporating 10 lipid species and two traditional biomarkers for predicting 5-year death risk represented a remarkable higher discrimination than traditional model with increased area under the curve from 76.56 to 83.65%, continuous NRI of 0.634 and IDI of 0.131. Furthermore, the panel was successfully used in differentiating multicentre patients with low, middle, or high risks (P < .0001). Further analysis indicated that the number of double bonds of phosphatidyl choline and the content of carbon atoms of phosphatidyl ethanolamines were negatively associated with death risk. CONCLUSIONS Improvement in the prediction of death confirms the effectiveness of plasma lipids as predictors to risk classification in patients with CAD. The association between the structural characteristics of long-chain polyunsaturated fatty acids and death risk highlights the need for mechanistic research that characterizes the role of individual lipid species in disease pathogenesis.
Collapse
|
74
|
Lai X, Lv X, Zhang G, Xiong Z, Lai W, Peng J. Highly Specific Anti-tylosin Monoclonal Antibody and Its Application in the Quantum Dot Bead-Based Immunochromatographic Assay. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01846-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
75
|
Liang H, Hu H, Shan D, Lyu J, Yan X, Wang Y, Jian F, Li X, Lai W, Long H. CGRP Modulates Orofacial Pain through Mediating Neuron-Glia Crosstalk. J Dent Res 2020; 100:98-105. [PMID: 32853530 DOI: 10.1177/0022034520950296] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Calcitonin gene-related peptide (CGRP) plays a crucial role in the modulation of orofacial pain, and we hypothesized that CGRP mediated a neuron-glia crosstalk in orofacial pain. The objective of this study was to elucidate the mechanisms whereby CGRP mediated trigeminal neuron-glia crosstalk in modulating orofacial pain. Orofacial pain was elicited by ligating closed-coil springs between incisors and molars. Trigeminal neurons and satellite glial cells (SGCs) were cultured for mechanistic exploration. Gene and protein expression were determined through immunostaining, polymerase chain reaction, and Western blot. Orofacial pain was evaluated through the rat grimace scale. Our results revealed that the expressions of CGRP were elevated in both trigeminal neurons and SGCs following the induction of orofacial pain. Intraganglionic administration of CGRP and olcegepant exacerbated and alleviated orofacial pain, respectively. The knockdown of CGRP through viral vector-mediated RNA interference was able to downregulate CGRP expressions in both neurons and SGCs and to alleviate orofacial pain. CGRP upregulated the expression of inducible nitric oxide synthase through the p38 signaling pathway in cultured SGCs. In turn, L-arginine (nitric oxide donor) was able to enhance orofacial pain by upregulating CGRP expressions in vivo. In cultured trigeminal neurons, L-arginine upregulated the expression of CGRP, and this effect was diminished by cilnidipine (N-type calcium channel blocker) while not by mibefradil (L-type calcium channel blocker). In conclusion, CGRP modulated orofacial pain through upregulating the expression of nitric oxide through the p38 signaling pathway in SGCs, and the resulting nitric oxide in turn stimulated CGRP expression through N-type calcium channel in neurons, building a CGRP-mediated positive-feedback neuron-glia crosstalk.
Collapse
|