1
|
Abdelrahim M, Khudri M, Elnakib A, Shehata M, Weafer K, Khalil A, Saleh GA, Batouty NM, Ghazal M, Contractor S, Barnes G, El-Baz A. AI-based non-invasive imaging technologies for early autism spectrum disorder diagnosis: A short review and future directions. Artif Intell Med 2025; 161:103074. [PMID: 39919468 DOI: 10.1016/j.artmed.2025.103074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 12/05/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025]
Abstract
Autism Spectrum Disorder (ASD) is a neurological condition, with recent statistics from the CDC indicating a rising prevalence of ASD diagnoses among infants and children. This trend emphasizes the critical importance of early detection, as timely diagnosis facilitates early intervention and enhances treatment outcomes. Consequently, there is an increasing urgency for research to develop innovative tools capable of accurately and objectively identifying ASD in its earliest stages. This paper offers a short overview of recent advancements in non-invasive technology for early ASD diagnosis, focusing on an imaging modality, structural MRI technique, which has shown promising results in early ASD diagnosis. This brief review aims to address several key questions: (i) Which imaging radiomics are associated with ASD? (ii) Is the parcellation step of the brain cortex necessary to improve the diagnostic accuracy of ASD? (iii) What databases are available to researchers interested in developing non-invasive technology for ASD? (iv) How can artificial intelligence tools contribute to improving the diagnostic accuracy of ASD? Finally, our review will highlight future trends in ASD diagnostic efforts.
Collapse
Affiliation(s)
- Mostafa Abdelrahim
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Mohamed Khudri
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ahmed Elnakib
- School of Engineering, Penn State Erie-The Behrend College, Erie, PA 16563, USA
| | - Mohamed Shehata
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Kate Weafer
- Neuroscience Program, Departments of Biology and Psychology, Bellarmine University, Louisville, KY, USA
| | | | - Gehad A Saleh
- Diagnostic and Interventional Radiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Nihal M Batouty
- Diagnostic and Interventional Radiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed Ghazal
- Electrical, Computer and Biomedical Engineering Department, Abu Dhabi University, 59911 Abu Dhabi, United Arab Emirates
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Gregory Barnes
- Department of Neurology, Pediatric Research Institute, University of Louisville, Louisville, KY 40202, USA
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
2
|
Sun B, Xu Y, Kat S, Sun A, Yin T, Zhao L, Su X, Chen J, Wang H, Gong X, Liu Q, Han G, Peng S, Li X, Liu J. Exploring the most discriminative brain structural abnormalities in ASD with multi-stage progressive feature refinement approach. Front Psychiatry 2024; 15:1463654. [PMID: 39483728 PMCID: PMC11524921 DOI: 10.3389/fpsyt.2024.1463654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024] Open
Abstract
Objective Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by increasing prevalence, diverse impairments, and unclear origins and mechanisms. To gain a better grasp of the origins of ASD, it is essential to identify the most distinctive structural brain abnormalities in individuals with ASD. Methods A Multi-Stage Progressive Feature Refinement Approach was employed to identify the most pivotal structural magnetic resonance imaging (MRI) features that distinguish individuals with ASD from typically developing (TD) individuals. The study included 175 individuals with ASD and 69 TD individuals, all aged between 7 and 18 years, matched in terms of age and gender. Both cortical and subcortical features were integrated, with a particular focus on hippocampal subfields. Results Out of 317 features, 9 had the most significant impact on distinguishing ASD from TD individuals. These structural features, which include a specific hippocampal subfield, are closely related to the brain areas associated with the reward system. Conclusion Structural irregularities in the reward system may play a crucial role in the pathophysiology of ASD, and specific hippocampal subfields may also contribute uniquely, warranting further investigation.
Collapse
Affiliation(s)
- Bingxi Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yingying Xu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Siuching Kat
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Anlan Sun
- Yizhun Medical AI Co., Ltd, Algorithm and Development Department, Beijing, China
| | - Tingni Yin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Liyang Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xing Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jialu Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Hui Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiaoyun Gong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Qinyi Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Gangqiang Han
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Shuchen Peng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xue Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
3
|
Wang XH, Wu P, Li L. Predicting individual autistic symptoms for patients with autism spectrum disorder using interregional morphological connectivity. Psychiatry Res Neuroimaging 2024; 341:111822. [PMID: 38678667 DOI: 10.1016/j.pscychresns.2024.111822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Intelligent predictive models for autistic symptoms based on neuroimaging datasets were beneficial for the precise intervention of patients with ASD. The goals of this study were twofold: investigating predictive models for autistic symptoms and discovering the brain connectivity patterns for ASD-related behaviors. To achieve these goals, we obtained a cohort of patients with ASD from the ABIDE project. The autistic symptoms were measured using the Autism Diagnostic Observation Schedule (ADOS). The anatomical MRI datasets were preprocessed using the Freesurfer package, resulting in regional morphological features. For each individual, the interregional morphological network was constructed using a novel feature distance-based method. The predictive models for autistic symptoms were built using the support vector regression (SVR) algorithm with feature selection method. The predicted autistic symptoms (i.e., ADOS social score, ADOS behavior) were significantly correlated to the original measures. The most predictive features for ADOS social scores were located in the bilateral fusiform. The most predictive features for ADOS behavior scores were located in the temporal pole and the lingual gyrus. In summary, the autistic symptoms could be predicted using the interregional morphological connectivity and machine learning. The interregional morphological connectivity could be a potential biomarker for autistic symptoms.
Collapse
Affiliation(s)
- Xun-Heng Wang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Peng Wu
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, 310018, China
| |
Collapse
|
4
|
Wang C, Xiao Z, Xu Y, Zhang Q, Chen J. A novel approach for ASD recognition based on graph attention networks. Front Comput Neurosci 2024; 18:1388083. [PMID: 38659616 PMCID: PMC11039788 DOI: 10.3389/fncom.2024.1388083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Early detection and diagnosis of Autism Spectrum Disorder (ASD) can significantly improve the quality of life for affected individuals. Identifying ASD based on brain functional connectivity (FC) poses a challenge due to the high heterogeneity of subjects' fMRI data in different sites. Meanwhile, deep learning algorithms show efficacy in ASD identification but lack interpretability. In this paper, a novel approach for ASD recognition is proposed based on graph attention networks. Specifically, we treat the region of interest (ROI) of the subjects as node, conduct wavelet decomposition of the BOLD signal in each ROI, extract wavelet features, and utilize them along with the mean and variance of the BOLD signal as node features, and the optimized FC matrix as the adjacency matrix, respectively. We then employ the self-attention mechanism to capture long-range dependencies among features. To enhance interpretability, the node-selection pooling layers are designed to determine the importance of ROI for prediction. The proposed framework are applied to fMRI data of children (younger than 12 years old) from the Autism Brain Imaging Data Exchange datasets. Promising results demonstrate superior performance compared to recent similar studies. The obtained ROI detection results exhibit high correspondence with previous studies and offer good interpretability.
Collapse
Affiliation(s)
- Canhua Wang
- School of Computer, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhiyong Xiao
- School of Electronic & Information Engineering, Jiangxi Institute of Economic Administrators, Nanchang, China
| | - Yilu Xu
- School of Software, Jiangxi Agricultural University, Nanchang, China
| | - Qi Zhang
- Department of Medical Imaging, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jingfang Chen
- Department of Medical Imaging, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Xiao Q, Xu H, Chu Z, Feng Q, Zhang Y. Margin-Maximized Norm-Mixed Representation Learning for Autism Spectrum Disorder Diagnosis With Multi-Level Flux Features. IEEE Trans Biomed Eng 2024; 71:183-194. [PMID: 37432838 DOI: 10.1109/tbme.2023.3294223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Early diagnosis and timely intervention are significantly beneficial to patients with autism spectrum disorder (ASD). Although structural magnetic resonance imaging (sMRI) has become an essential tool to facilitate the diagnosis of ASD, these sMRI-based approaches still have the following issues. The heterogeneity and subtle anatomical changes place higher demands for effective feature descriptors. Additionally, the original features are usually high-dimensional, while most existing methods prefer to select feature subsets in the original space, in which noises and outliers may hinder the discriminative ability of selected features. In this article, we propose a margin-maximized norm-mixed representation learning framework for ASD diagnosis with multi-level flux features extracted from sMRI. Specifically, a flux feature descriptor is devised to quantify comprehensive gradient information of brain structures on both local and global levels. For the multi-level flux features, we learn latent representations in an assumed low-dimensional space, in which a self-representation term is incorporated to characterize the relationships among features. We also introduce mixed norms to finely select original flux features for the construction of latent representations while preserving the low-rankness of latent representations. Furthermore, a margin maximization strategy is applied to enlarge the inter-class distance of samples, thereby increasing the discriminative ability of latent representations. The extensive experiments on several datasets show that our proposed method can achieve promising classification performance (the average area under curve, accuracy, specificity, and sensitivity on the studied ASD datasets are 0.907, 0.896, 0.892, and 0.908, respectively) and also find potential biomarkers for ASD diagnosis.
Collapse
|
6
|
Meng F, Li F, Wu S, Yang T, Xiao Z, Zhang Y, Liu Z, Lu J, Luo X. Machine learning-based early diagnosis of autism according to eye movements of real and artificial faces scanning. Front Neurosci 2023; 17:1170951. [PMID: 37795184 PMCID: PMC10545898 DOI: 10.3389/fnins.2023.1170951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/17/2023] [Indexed: 10/06/2023] Open
Abstract
Background Studies on eye movements found that children with autism spectrum disorder (ASD) had abnormal gaze behavior to social stimuli. The current study aimed to investigate whether their eye movement patterns in relation to cartoon characters or real people could be useful in identifying ASD children. Methods Eye-tracking tests based on videos of cartoon characters and real people were performed for ASD and typically developing (TD) children aged between 12 and 60 months. A three-level hierarchical structure including participants, events, and areas of interest was used to arrange the data obtained from eye-tracking tests. Random forest was adopted as the feature selection tool and classifier, and the flattened vectors and diagnostic information were used as features and labels. A logistic regression was used to evaluate the impact of the most important features. Results A total of 161 children (117 ASD and 44 TD) with a mean age of 39.70 ± 12.27 months were recruited. The overall accuracy, precision, and recall of the model were 0.73, 0.73, and 0.75, respectively. Attention to human-related elements was positively related to the diagnosis of ASD, while fixation time for cartoons was negatively related to the diagnosis. Conclusion Using eye-tracking techniques with machine learning algorithms might be promising for identifying ASD. The value of artificial faces, such as cartoon characters, in the field of ASD diagnosis and intervention is worth further exploring.
Collapse
Affiliation(s)
- Fanchao Meng
- The National Clinical Research Center for Mental Disorder & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Fenghua Li
- Key Lab of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Shuxian Wu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tingyu Yang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhou Xiao
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, Guangdong, China
| | - Yujian Zhang
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Chengdu, Sichuan, China
| | - Zhengkui Liu
- Key Lab of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Jianping Lu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, Guangdong, China
| | - Xuerong Luo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Chen Z, Hu B, Liu X, Becker B, Eickhoff SB, Miao K, Gu X, Tang Y, Dai X, Li C, Leonov A, Xiao Z, Feng Z, Chen J, Chuan-Peng H. Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry. BMC Med 2023; 21:241. [PMID: 37400814 DOI: 10.1186/s12916-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The development of machine learning models for aiding in the diagnosis of mental disorder is recognized as a significant breakthrough in the field of psychiatry. However, clinical practice of such models remains a challenge, with poor generalizability being a major limitation. METHODS Here, we conducted a pre-registered meta-research assessment on neuroimaging-based models in the psychiatric literature, quantitatively examining global and regional sampling issues over recent decades, from a view that has been relatively underexplored. A total of 476 studies (n = 118,137) were included in the current assessment. Based on these findings, we built a comprehensive 5-star rating system to quantitatively evaluate the quality of existing machine learning models for psychiatric diagnoses. RESULTS A global sampling inequality in these models was revealed quantitatively (sampling Gini coefficient (G) = 0.81, p < .01), varying across different countries (regions) (e.g., China, G = 0.47; the USA, G = 0.58; Germany, G = 0.78; the UK, G = 0.87). Furthermore, the severity of this sampling inequality was significantly predicted by national economic levels (β = - 2.75, p < .001, R2adj = 0.40; r = - .84, 95% CI: - .41 to - .97), and was plausibly predictable for model performance, with higher sampling inequality for reporting higher classification accuracy. Further analyses showed that lack of independent testing (84.24% of models, 95% CI: 81.0-87.5%), improper cross-validation (51.68% of models, 95% CI: 47.2-56.2%), and poor technical transparency (87.8% of models, 95% CI: 84.9-90.8%)/availability (80.88% of models, 95% CI: 77.3-84.4%) are prevailing in current diagnostic classifiers despite improvements over time. Relating to these observations, model performances were found decreased in studies with independent cross-country sampling validations (all p < .001, BF10 > 15). In light of this, we proposed a purpose-built quantitative assessment checklist, which demonstrated that the overall ratings of these models increased by publication year but were negatively associated with model performance. CONCLUSIONS Together, improving sampling economic equality and hence the quality of machine learning models may be a crucial facet to plausibly translating neuroimaging-based diagnostic classifiers into clinical practice.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China.
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Bowen Hu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xuerong Liu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, Chengdu, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kuan Miao
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Xingmei Gu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xin Dai
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Chao Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Artemiy Leonov
- School of Psychology, Clark University, Worcester, MA, USA
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
8
|
Zaretskaya N, Fink E, Arsenovic A, Ischebeck A. Fast and functionally specific cortical thickness changes induced by visual stimulation. Cereb Cortex 2023; 33:2823-2837. [PMID: 35780393 DOI: 10.1093/cercor/bhac244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Structural characteristics of the human brain serve as important markers of brain development, aging, disease progression, and neural plasticity. They are considered stable properties, changing slowly over time. Multiple recent studies reported that structural brain changes measured with magnetic resonance imaging (MRI) may occur much faster than previously thought, within hours or even minutes. The mechanisms behind such fast changes remain unclear, with hemodynamics as one possible explanation. Here we investigated the functional specificity of cortical thickness changes induced by a flickering checkerboard and compared them to blood oxygenation level-dependent (BOLD) functional MRI activity. We found that checkerboard stimulation led to a significant thickness increase, which was driven by an expansion at the gray-white matter boundary, functionally specific to V1, confined to the retinotopic representation of the checkerboard stimulus, and amounted to 1.3% or 0.022 mm. Although functional specificity and the effect size of these changes were comparable to those of the BOLD signal in V1, thickness effects were substantially weaker in V3. Furthermore, a comparison of predicted and measured thickness changes for different stimulus timings suggested a slow increase of thickness over time, speaking against a hemodynamic explanation. Altogether, our findings suggest that visual stimulation can induce structural gray matter enlargement measurable with MRI.
Collapse
Affiliation(s)
- Natalia Zaretskaya
- Department of Cognitive Psychology and Neuroscience, Institute of Psychology, University of Graz, Universitaetsplatz 2, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
| | - Erik Fink
- Department of Cognitive Psychology and Neuroscience, Institute of Psychology, University of Graz, Universitaetsplatz 2, 8010 Graz, Austria
| | - Ana Arsenovic
- Department of Cognitive Psychology and Neuroscience, Institute of Psychology, University of Graz, Universitaetsplatz 2, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
| | - Anja Ischebeck
- Department of Cognitive Psychology and Neuroscience, Institute of Psychology, University of Graz, Universitaetsplatz 2, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
| |
Collapse
|
9
|
Chen Z, Liu X, Yang Q, Wang YJ, Miao K, Gong Z, Yu Y, Leonov A, Liu C, Feng Z, Chuan-Peng H. Evaluation of Risk of Bias in Neuroimaging-Based Artificial Intelligence Models for Psychiatric Diagnosis: A Systematic Review. JAMA Netw Open 2023; 6:e231671. [PMID: 36877519 PMCID: PMC9989906 DOI: 10.1001/jamanetworkopen.2023.1671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
IMPORTANCE Neuroimaging-based artificial intelligence (AI) diagnostic models have proliferated in psychiatry. However, their clinical applicability and reporting quality (ie, feasibility) for clinical practice have not been systematically evaluated. OBJECTIVE To systematically assess the risk of bias (ROB) and reporting quality of neuroimaging-based AI models for psychiatric diagnosis. EVIDENCE REVIEW PubMed was searched for peer-reviewed, full-length articles published between January 1, 1990, and March 16, 2022. Studies aimed at developing or validating neuroimaging-based AI models for clinical diagnosis of psychiatric disorders were included. Reference lists were further searched for suitable original studies. Data extraction followed the CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A closed-loop cross-sequential design was used for quality control. The PROBAST (Prediction Model Risk of Bias Assessment Tool) and modified CLEAR (Checklist for Evaluation of Image-Based Artificial Intelligence Reports) benchmarks were used to systematically evaluate ROB and reporting quality. FINDINGS A total of 517 studies presenting 555 AI models were included and evaluated. Of these models, 461 (83.1%; 95% CI, 80.0%-86.2%) were rated as having a high overall ROB based on the PROBAST. The ROB was particular high in the analysis domain, including inadequate sample size (398 of 555 models [71.7%; 95% CI, 68.0%-75.6%]), poor model performance examination (with 100% of models lacking calibration examination), and lack of handling data complexity (550 of 555 models [99.1%; 95% CI, 98.3%-99.9%]). None of the AI models was perceived to be applicable to clinical practices. Overall reporting completeness (ie, number of reported items/number of total items) for the AI models was 61.2% (95% CI, 60.6%-61.8%), and the completeness was poorest for the technical assessment domain with 39.9% (95% CI, 38.8%-41.1%). CONCLUSIONS AND RELEVANCE This systematic review found that the clinical applicability and feasibility of neuroimaging-based AI models for psychiatric diagnosis were challenged by a high ROB and poor reporting quality. Particularly in the analysis domain, ROB in AI diagnostic models should be addressed before clinical application.
Collapse
Affiliation(s)
- Zhiyi Chen
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Xuerong Liu
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Qingwu Yang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kuan Miao
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Zheng Gong
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Yang Yu
- School of Psychology, Third Military Medical University, Chongqing, China
| | - Artemiy Leonov
- Department of Psychology, Clark University, Worcester, Massachusetts
| | - Chunlei Liu
- School of Psychology, Qufu Normal University, Qufu, China
| | - Zhengzhi Feng
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
10
|
Teng J, Mi C, Liu W, Shi J, Li N. mTBI-DSANet: A deep self-attention model for diagnosing mild traumatic brain injury using multi-level functional connectivity networks. Comput Biol Med 2023; 152:106354. [PMID: 36481760 DOI: 10.1016/j.compbiomed.2022.106354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
The main approach for analyzing resting-state functional magnetic resonance imaging (rs-fMRI) is the low-order functional connectivity network (LoFCN) based on the correlation between two brain regions. Based on LoFCN, researchers recently proposed the topographical high-order FCN (tHoFCN) and the associated high-order FCN (aHoFCN) to explore the high-order interactions among brain regions. In this work, we designed a Deep Self-Attention (DSA) framework called mTBI-DSANet to diagnose mild traumatic brain injury (mTBI) using multi-level FCNs, including LoFCN, tHoFCN, and aHoFCN. The multilayer perceptron and self-attention mechanism in mTBI-DSANet were designed to capture important features for the mTBI diagnosis. We evaluated the mTBI-DSANet's performance on the real rs-fMRI dataset, which was collected by Third Xiangya Hospital of Central South University from April 2014 to February 2021. We compared the performance of mTBI-DSANet with distinct FCNs and their combinations under 10-fold cross-validation. Based on the LoFCN+aHoFCN combination, the average performance of mTBI-DSANet achieved the best accuracy of 0.834, which is significantly better than peer methods. The experiments demonstrated the potential of the mTBI-DSANet in assisting mTBI diagnosis.
Collapse
Affiliation(s)
- Jing Teng
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China.
| | - Chunlin Mi
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China.
| | - Wuyi Liu
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China.
| | - Jian Shi
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Na Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
11
|
Moridian P, Ghassemi N, Jafari M, Salloum-Asfar S, Sadeghi D, Khodatars M, Shoeibi A, Khosravi A, Ling SH, Subasi A, Alizadehsani R, Gorriz JM, Abdulla SA, Acharya UR. Automatic autism spectrum disorder detection using artificial intelligence methods with MRI neuroimaging: A review. Front Mol Neurosci 2022; 15:999605. [PMID: 36267703 PMCID: PMC9577321 DOI: 10.3389/fnmol.2022.999605] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 12/04/2022] Open
Abstract
Autism spectrum disorder (ASD) is a brain condition characterized by diverse signs and symptoms that appear in early childhood. ASD is also associated with communication deficits and repetitive behavior in affected individuals. Various ASD detection methods have been developed, including neuroimaging modalities and psychological tests. Among these methods, magnetic resonance imaging (MRI) imaging modalities are of paramount importance to physicians. Clinicians rely on MRI modalities to diagnose ASD accurately. The MRI modalities are non-invasive methods that include functional (fMRI) and structural (sMRI) neuroimaging methods. However, diagnosing ASD with fMRI and sMRI for specialists is often laborious and time-consuming; therefore, several computer-aided design systems (CADS) based on artificial intelligence (AI) have been developed to assist specialist physicians. Conventional machine learning (ML) and deep learning (DL) are the most popular schemes of AI used for diagnosing ASD. This study aims to review the automated detection of ASD using AI. We review several CADS that have been developed using ML techniques for the automated diagnosis of ASD using MRI modalities. There has been very limited work on the use of DL techniques to develop automated diagnostic models for ASD. A summary of the studies developed using DL is provided in the Supplementary Appendix. Then, the challenges encountered during the automated diagnosis of ASD using MRI and AI techniques are described in detail. Additionally, a graphical comparison of studies using ML and DL to diagnose ASD automatically is discussed. We suggest future approaches to detecting ASDs using AI techniques and MRI neuroimaging.
Collapse
Affiliation(s)
- Parisa Moridian
- Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Navid Ghassemi
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahboobeh Jafari
- Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran
| | - Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Delaram Sadeghi
- Department of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Marjane Khodatars
- Department of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Afshin Shoeibi
- Data Science and Computational Intelligence Institute, University of Granada, Granada, Spain
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC, Australia
| | - Sai Ho Ling
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, NSW, Australia
| | - Abdulhamit Subasi
- Faculty of Medicine, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Computer Science, College of Engineering, Effat University, Jeddah, Saudi Arabia
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC, Australia
| | - Juan M. Gorriz
- Data Science and Computational Intelligence Institute, University of Granada, Granada, Spain
| | - Sara A. Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - U. Rajendra Acharya
- Ngee Ann Polytechnic, Singapore, Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore, Singapore
| |
Collapse
|
12
|
Peng L, Liu X, Ma D, Chen X, Xu X, Gao X. The Altered Pattern of the Functional Connectome Related to Pathological Biomarkers in Individuals for Autism Spectrum Disorder Identification. Front Neurosci 2022; 16:913377. [PMID: 35600614 PMCID: PMC9120576 DOI: 10.3389/fnins.2022.913377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Autism spectrum disorder (ASD) is a common neurodevelopmental disorder characterized by the development of multiple symptoms, with incidences rapidly increasing worldwide. An important step in the early diagnosis of ASD is to identify informative biomarkers. Currently, the use of functional brain network (FBN) is deemed important for extracting data on brain imaging biomarkers. Unfortunately, most existing studies have reported the utilization of the information from the connection to train the classifier; such an approach ignores the topological information and, in turn, limits its performance. Thus, effective utilization of the FBN provides insights for improving the diagnostic performance. Methods We propose the combination of the information derived from both FBN and its corresponding graph theory measurements to identify and distinguish ASD from normal controls (NCs). Specifically, a multi-kernel support vector machine (MK-SVM) was used to combine multiple types of information. Results The experimental results illustrate that the combination of information from multiple connectome features (i.e., functional connections and graph measurements) can provide a superior identification performance with an area under the receiver operating characteristic curve (ROC) of 0.9191 and an accuracy of 82.60%. Furthermore, the graph theoretical analysis illustrates that the significant nodal graph measurements and consensus connections exists mostly in the salience network (SN), default mode network (DMN), attention network, frontoparietal network, and social network. Conclusion This work provides insights into potential neuroimaging biomarkers that may be used for the diagnosis of ASD and offers a new perspective for the exploration of the brain pathophysiology of ASD through machine learning.
Collapse
Affiliation(s)
- Liling Peng
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Xiao Liu
- School of Business Administration, José Rizal University, Mandaluyong, Philippines
| | - Di Ma
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Xiaofeng Chen
- College of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing, China
| | - Xiaowen Xu
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Xiaowen Xu,
| | - Xin Gao
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
- Xin Gao,
| |
Collapse
|
13
|
Duan Y, Zhao W, Luo C, Liu X, Jiang H, Tang Y, Liu C, Yao D. Identifying and Predicting Autism Spectrum Disorder Based on Multi-Site Structural MRI With Machine Learning. Front Hum Neurosci 2022; 15:765517. [PMID: 35273484 PMCID: PMC8902595 DOI: 10.3389/fnhum.2021.765517] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Although emerging evidence has implicated structural/functional abnormalities of patients with Autism Spectrum Disorder(ASD), definitive neuroimaging markers remain obscured due to inconsistent or incompatible findings, especially for structural imaging. Furthermore, brain differences defined by statistical analysis are difficult to implement individual prediction. The present study has employed the machine learning techniques under the unified framework in neuroimaging to identify the neuroimaging markers of patients with ASD and distinguish them from typically developing controls(TDC). To enhance the interpretability of the machine learning model, the study has processed three levels of assessments including model-level assessment, feature-level assessment, and biology-level assessment. According to these three levels assessment, the study has identified neuroimaging markers of ASD including the opercular part of bilateral inferior frontal gyrus, the orbital part of right inferior frontal gyrus, right rolandic operculum, right olfactory cortex, right gyrus rectus, right insula, left inferior parietal gyrus, bilateral supramarginal gyrus, bilateral angular gyrus, bilateral superior temporal gyrus, bilateral middle temporal gyrus, and left inferior temporal gyrus. In addition, negative correlations between the communication skill score in the Autism Diagnostic Observation Schedule (ADOS_G) and regional gray matter (GM) volume in the gyrus rectus, left middle temporal gyrus, and inferior temporal gyrus have been detected. A significant negative correlation has been found between the communication skill score in ADOS_G and the orbital part of the left inferior frontal gyrus. A negative correlation between verbal skill score and right angular gyrus and a significant negative correlation between non-verbal communication skill and right angular gyrus have been found. These findings in the study have suggested the GM alteration of ASD and correlated with the clinical severity of ASD disease symptoms. The interpretable machine learning framework gives sight to the pathophysiological mechanism of ASD but can also be extended to other diseases.
Collapse
Affiliation(s)
- YuMei Duan
- Department of Computer and Software, Chengdu Jincheng College, Chengdu, China
| | - WeiDong Zhao
- College of Computer, Chengdu University, Chengdu, China
| | - Cheng Luo
- The Key Laboratory for Neuro Information of Ministry of Education, Center for Information in Bio Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - XiaoJu Liu
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Jiang
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - YiQian Tang
- College of Computer, Chengdu University, Chengdu, China
| | - Chang Liu
- College of Computer, Chengdu University, Chengdu, China
- The Key Laboratory for Neuro Information of Ministry of Education, Center for Information in Bio Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - DeZhong Yao
- The Key Laboratory for Neuro Information of Ministry of Education, Center for Information in Bio Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
14
|
Xu M, Calhoun V, Jiang R, Yan W, Sui J. Brain imaging-based machine learning in autism spectrum disorder: methods and applications. J Neurosci Methods 2021; 361:109271. [PMID: 34174282 DOI: 10.1016/j.jneumeth.2021.109271] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/25/2021] [Accepted: 06/19/2021] [Indexed: 01/09/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition with early childhood onset and high heterogeneity. As the pathogenesis is still elusive, ASD diagnosis is comprised of a constellation of behavioral symptoms. Non-invasive brain imaging techniques, such as magnetic resonance imaging (MRI), provide a valuable objective measurement of the brain. Many efforts have been devoted to developing imaging-based diagnostic tools for ASD based on machine learning (ML) technologies. In this survey, we review recent advances that utilize machine learning approaches to classify individuals with and without ASD. First, we provide a brief overview of neuroimaging-based ASD classification studies, including the analysis of publications and general classification pipeline. Next, representative studies are highlighted and discussed in detail regarding different imaging modalities, methods and sample sizes. Finally, we highlight several common challenges and provide recommendations on future directions. In summary, identifying discriminative biomarkers for ASD diagnosis is challenging, and further establishing more comprehensive datasets and dissecting the individual and group heterogeneity will be critical to achieve better ADS diagnosis performance. Machine learning methods will continue to be developed and are poised to help advance the field in this regard.
Collapse
Affiliation(s)
- Ming Xu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China 100190; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China 100049
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA 30303
| | - Rongtao Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China 100190
| | - Weizheng Yan
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA 30303
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China 100088.
| |
Collapse
|
15
|
He Q, Wang Q, Wu Y, Yi L, Wei K. Automatic classification of children with autism spectrum disorder by using a computerized visual-orienting task. Psych J 2021; 10:550-565. [PMID: 33847077 DOI: 10.1002/pchj.447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 12/04/2020] [Accepted: 03/09/2021] [Indexed: 11/09/2022]
Abstract
Early screening and diagnosis of autism spectrum disorder (ASD) primarily rely on behavioral observations by qualified clinicians whose decision process can benefit from the combination of machine learning algorithms and sensor data. We designed a computerized visual-orienting task with gaze-related or non-gaze-related directional cues, which triggered participants' gaze-following behavior. Based on their eye-movement data registered by an eye tracker, we applied the machine learning algorithms to classify high-functioning children with ASD (HFA), low-functioning children with ASD (LFA), and typically developing children (TD). We found that TD children had higher success rates in obtaining rewards than HFA children, and HFA children had higher rates than LFA children. Based on raw eye-tracking data, our machine learning algorithm could classify the three groups with an accuracy of 81.1% and relatively high sensitivity and specificity. Classification became worse if only data from the gaze or nongaze conditions were used, suggesting that "less-social" directional cues also carry useful information for distinguishing these groups. Our findings not only provide insights about visual-orienting deficits among children with ASD but also demonstrate the promise of combining classical behavioral paradigms with machine learning algorithms for aiding the screening for individuals with ASD.
Collapse
Affiliation(s)
- Qiao He
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Qiandong Wang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Yaxue Wu
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Li Yi
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Kunlin Wei
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
16
|
Hu Z, Wang J, Zhang C, Luo Z, Luo X, Xiao L, Shi J. Uncertainty Modeling for Multi center Autism Spectrum Disorder Classification Using Takagi-Sugeno-Kang Fuzzy Systems. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2021.3073368] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhongyi Hu
- Intelligent Information Systems Institute, Wenzhou University, Wenzhou 325035, China. (e-mail: )
| | - Jun Wang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Ins titute for Advanced Communication and Data Science, School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Chunxiang Zhang
- School of Artificial Intelligence and Computer Science, Jiangnan University, WuXi 214122, China
| | - Zhenzhen Luo
- Intelligent Information Systems Institute, Wenzhou University, Wenzhou 325035, China
| | - Xiaoqing Luo
- School of Artificial Intelligence and Computer Science, Jiangnan University, WuXi 214122, China
| | - Lei Xiao
- Intelligent Information Systems Institute, Wenzhou University, Wenzhou 325035, China
| | - Jun Shi
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Ins titute for Advanced Communication and Data Science, School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
17
|
Najafpour Z, Fatemi A, Goudarzi Z, Goudarzi R, Shayanfard K, Noorizadeh F. Cost-effectiveness of neuroimaging technologies in management of psychiatric and insomnia disorders: A meta-analysis and prospective cost analysis. J Neuroradiol 2021; 48:348-358. [PMID: 33383065 DOI: 10.1016/j.neurad.2020.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND The optimal diagnostic strategy for patients with psychiatric and insomnia disorders has not been established yet. PURPOSE The purpose of this study was to perform cost-effectiveness analysis of six neuroimaging technologies in diagnosis of patients with psychiatric and insomnia disorders. METHODS An economic evaluation study was conducted in three parts, including a systematic review for determining diagnostic accuracy, a descriptive cross-sectional study with Activity-Based Costing (ABC) technique for tracing resource consumption, and a cost-effectiveness analysis using a short-term decision-analytic model. RESULTS In the first phase, 93 diagnostic accuracy studies were included in the systematic review. The accumulated results (meta-analysis) showed that the highest diagnostic accuracy for psychiatric and insomnia disorders was attributed to PET (sensitivity of 90% and specificity of 80%) and MRI (sensitivity of 76% and specificity of 78%) respectively. In the second phase of the study, we calculated the cost of each technology. The results showed that MRI has the lowest cost. Based on the results in the model of cost-effectiveness sMRI ($ 50.08 per accurate diagnosis) and MRI ($ 58.54 per accurate diagnosis) were more cost-effective neuroimaging technologies. CONCLUSION In psychiatric disorders, no single strategy was characterized by both low cost and high accuracy. However, MRI and PET scan had lower cost and higher accuracy for psychiatric disorders, respectively. MRI was the least costly with the highest diagnostic accuracy in insomnia disorders. Based on our model, sMRI in psychiatric disorders and MRI in insomnia disorders were the most cost-effective technologies.
Collapse
Affiliation(s)
- Zhila Najafpour
- Department of Health Care Management, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Asieh Fatemi
- Dpartment of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Faculty of Paramedical sciences, Rafsanjan University of Medical Sciences, Iran.
| | - Zahra Goudarzi
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Goudarzi
- Health Services Management Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Farsad Noorizadeh
- Basir Eye Health Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Ma X, Wang XH, Li L. Identifying individuals with autism spectrum disorder based on the principal components of whole-brain phase synchrony. Neurosci Lett 2020; 742:135519. [PMID: 33246027 DOI: 10.1016/j.neulet.2020.135519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/03/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Abstract
Autism spectrum disorder (ASD) is a brain disorder that develops during an early stage of childhood. Previous neuroimaging-based diagnostic models for ASD were based on static functional connectivity (FC). The nonlinear complexity of brain connectivity remains unexplored for ASD diagnosis. This study aimed to build intelligent discriminative models for ASD based on phase synchrony (PS). To this end, data from 49 patients with ASD and 41 healthy controls were obtained from the Autism Brain Imaging Data Exchange (ABIDE) project. PS between brain regions was determined using Hilbert transform. Principal component analysis (PCA) and support vector machines (SVMs) were used to build the discriminative models. PS-based models (AUC = 0.81) outperformed static FC-based models (AUC = 0.71). Furthermore, embedded functional biomarkers were discovered. Moreover, significant correlations were found between PCA-PS and the clinical severity of ASD. Together, intelligent discriminative models based on PS were established for ASD identification. The performance of the diagnostic models suggested the potential benefits of PS for clinical applications. The discriminative patterns indicated that PCA-PS features could be additional biomarkers for ASD research. Furthermore, the significant relationships between the PCA-PS features and clinical scores implied their potential use for personalized medication strategies.
Collapse
Affiliation(s)
- Xueke Ma
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xun-Heng Wang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
19
|
Zheng W, Zhao Z, Zhang Z, Liu T, Zhang Y, Fan J, Wu D. Developmental pattern of the cortical topology in high-functioning individuals with autism spectrum disorder. Hum Brain Mapp 2020; 42:660-675. [PMID: 33085836 PMCID: PMC7814766 DOI: 10.1002/hbm.25251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/24/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
A number of studies have indicated alterations of brain morphology in individuals with autism spectrum disorder (ASD); however, how ASD influences the topological organization of the brain cortex at different developmental stages is not yet well characterized. In this study, we used structural images of 492 high‐functioning participants in the Autism Brain Imaging Data Exchange database acquired from 17 international imaging centers, including 75 autistic children (age 7–11 years), 91 adolescents with ASD (age 12–17 years), and 80 young adults with ASD (age 18–29 years), and 246 typically developing controls (TDCs) that were age, gender, handedness, and full‐scale IQ matched. Cortical thickness (CT) and surface area (SA) were extracted and the covariance between cortical regions across participants were treated as a network to examine developmental patterns of the cortical topological organization at different stages. A center‐paired resampling strategy was developed to control the center bias during the permutation test. Compared with the TDCs, network of SA (but not CT) of individuals with ASD showed reduced small‐worldness in childhood, and the network hubs were reorganized in the adulthood such that hubs inclined to connect with nonhub nodes and demonstrated more dispersed spatial distribution. Furthermore, the SA network of the ASD cohort exhibited increased segregation of the inferior parietal lobule and prefrontal cortex, and insular‐opercular cortex in all three age groups, resulting in the emergence of two unique modules in the autistic brain. Our findings suggested that individuals with ASD may undergo remarkable remodeling of the cortical topology from childhood to adulthood, which may be associated with the altered social and cognitive functions in ASD.
Collapse
Affiliation(s)
- Weihao Zheng
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhe Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Tingting Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Jin Fan
- Department of Psychology, Queens College, The City University of New York, New York, New York, USA
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
20
|
Wang J, Zhang L, Wang Q, Chen L, Shi J, Chen X, Li Z, Shen D. Multi-Class ASD Classification Based on Functional Connectivity and Functional Correlation Tensor via Multi-Source Domain Adaptation and Multi-View Sparse Representation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3137-3147. [PMID: 32305905 DOI: 10.1109/tmi.2020.2987817] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The resting-state functional magnetic resonance imaging (rs-fMRI) reflects functional activity of brain regions by blood-oxygen-level dependent (BOLD) signals. Up to now, many computer-aided diagnosis methods based on rs-fMRI have been developed for Autism Spectrum Disorder (ASD). These methods are mostly the binary classification approaches to determine whether a subject is an ASD patient or not. However, the disease often consists of several sub-categories, which are complex and thus still confusing to many automatic classification methods. Besides, existing methods usually focus on the functional connectivity (FC) features in grey matter regions, which only account for a small portion of the rs-fMRI data. Recently, the possibility to reveal the connectivity information in the white matter regions of rs-fMRI has drawn high attention. To this end, we propose to use the patch-based functional correlation tensor (PBFCT) features extracted from rs-fMRI in white matter, in addition to the traditional FC features from gray matter, to develop a novel multi-class ASD diagnosis method in this work. Our method has two stages. Specifically, in the first stage of multi-source domain adaptation (MSDA), the source subjects belonging to multiple clinical centers (thus called as source domains) are all transformed into the same target feature space. Thus each subject in the target domain can be linearly reconstructed by the transformed subjects. In the second stage of multi-view sparse representation (MVSR), a multi-view classifier for multi-class ASD diagnosis is developed by jointly using both views of the FC and PBFCT features. The experimental results using the ABIDE dataset verify the effectiveness of our method, which is capable of accurately classifying each subject into a respective ASD sub-category.
Collapse
|
21
|
Nogay HS, Adeli H. Machine learning (ML) for the diagnosis of autism spectrum disorder (ASD) using brain imaging. Rev Neurosci 2020; 31:/j/revneuro.ahead-of-print/revneuro-2020-0043/revneuro-2020-0043.xml. [PMID: 32866134 DOI: 10.1515/revneuro-2020-0043] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/25/2020] [Indexed: 02/24/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental incurable disorder with a long diagnostic period encountered in the early years of life. If diagnosed early, the negative effects of this disease can be reduced by starting special education early. Machine learning (ML), an increasingly ubiquitous technology, can be applied for the early diagnosis of ASD. The aim of this study is to examine and provide a comprehensive state-of-the-art review of ML research for the diagnosis of ASD based on (a) structural magnetic resonance image (MRI), (b) functional MRI and (c) hybrid imaging techniques over the past decade. The accuracy of the studies with a large number of participants is in general lower than those with fewer participants leading to the conclusion that further large-scale studies are needed. An examination of the age of the participants shows that the accuracy of the automated diagnosis of ASD is higher at a younger age range. ML technology is expected to contribute significantly to the early and rapid diagnosis of ASD in the coming years and become available to clinicians in the near future. This review is aimed to facilitate that.
Collapse
Affiliation(s)
- Hidir Selcuk Nogay
- Department of Electrical and Energy, Kayseri University, Kayseri, Turkey
- The Ohio State University, Mathematical Bioscience Institute, Columbus, OH, USA
| | - Hojjat Adeli
- Departments of Biomedical Informatics and Neuroscience, The Ohio State University, Columbus, US
| |
Collapse
|
22
|
Rashid B, Calhoun V. Towards a brain-based predictome of mental illness. Hum Brain Mapp 2020; 41:3468-3535. [PMID: 32374075 PMCID: PMC7375108 DOI: 10.1002/hbm.25013] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 01/10/2023] Open
Abstract
Neuroimaging-based approaches have been extensively applied to study mental illness in recent years and have deepened our understanding of both cognitively healthy and disordered brain structure and function. Recent advancements in machine learning techniques have shown promising outcomes for individualized prediction and characterization of patients with psychiatric disorders. Studies have utilized features from a variety of neuroimaging modalities, including structural, functional, and diffusion magnetic resonance imaging data, as well as jointly estimated features from multiple modalities, to assess patients with heterogeneous mental disorders, such as schizophrenia and autism. We use the term "predictome" to describe the use of multivariate brain network features from one or more neuroimaging modalities to predict mental illness. In the predictome, multiple brain network-based features (either from the same modality or multiple modalities) are incorporated into a predictive model to jointly estimate features that are unique to a disorder and predict subjects accordingly. To date, more than 650 studies have been published on subject-level prediction focusing on psychiatric disorders. We have surveyed about 250 studies including schizophrenia, major depression, bipolar disorder, autism spectrum disorder, attention-deficit hyperactivity disorder, obsessive-compulsive disorder, social anxiety disorder, posttraumatic stress disorder, and substance dependence. In this review, we present a comprehensive review of recent neuroimaging-based predictomic approaches, current trends, and common shortcomings and share our vision for future directions.
Collapse
Affiliation(s)
- Barnaly Rashid
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
| | - Vince Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
23
|
Vargason T, Grivas G, Hollowood-Jones KL, Hahn J. Towards a Multivariate Biomarker-Based Diagnosis of Autism Spectrum Disorder: Review and Discussion of Recent Advancements. Semin Pediatr Neurol 2020; 34:100803. [PMID: 32446437 PMCID: PMC7248126 DOI: 10.1016/j.spen.2020.100803] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An ever-evolving understanding of autism spectrum disorder (ASD) pathophysiology necessitates that diagnostic standards also evolve from being observation-based to include quantifiable clinical measurements. The multisystem nature of ASD motivates the use of multivariate methods of statistical analysis over common univariate approaches for discovering clinical biomarkers relevant to this goal. In addition to characterization of important behavioral patterns for improving current diagnostic instruments, multivariate analyses to date have allowed for thorough investigation of neuroimaging-based, genetic, and metabolic abnormalities in individuals with ASD. This review highlights current research using multivariate statistical analyses to quantify the value of these behavioral and physiological markers for ASD diagnosis. A detailed discussion of a blood-based diagnostic test for ASD using specific metabolite concentrations is also provided. The advancement of ASD biomarker research promises to provide earlier and more accurate diagnoses of the disorder.
Collapse
Affiliation(s)
- Troy Vargason
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Genevieve Grivas
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Kathryn L Hollowood-Jones
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Juergen Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY.
| |
Collapse
|
24
|
Big data approaches to develop a comprehensive and accurate tool aimed at improving autism spectrum disorder diagnosis and subtype stratification. LIBRARY HI TECH 2020. [DOI: 10.1108/lht-08-2019-0175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeAutism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is difficult to diagnose accurately due to its heterogeneous clinical manifestations. Comprehensive models combining different big data approaches (e.g. neuroimaging, genetics, eye tracking, etc.) may offer the opportunity to characterize ASD from multiple distinct perspectives. This paper aims to provide an overview of a novel diagnostic approach for ASD classification and stratification based on these big data approaches.Design/methodology/approachMultiple types of data were collected and recorded for three consecutive years, including clinical assessment, neuroimaging, gene mutation and expression and response signal data. The authors propose to establish a classification model for predicting ASD clinical diagnostic status by integrating the various data types. Furthermore, the authors suggest a data-driven approach to stratify ASD into subtypes based on genetic and genomic data.FindingsBy utilizing complementary information from different types of ASD patient data, the proposed integration model has the potential to achieve better prediction performance than models focusing on only one data type. The use of unsupervised clustering for the gene-based data-driven stratification will enable identification of more homogeneous subtypes. The authors anticipate that such stratification will facilitate a more consistent and personalized ASD diagnostic tool.Originality/valueThis study aims to utilize a more comprehensive investigation of ASD-related data types than prior investigations, including proposing longitudinal data collection and a storage scheme covering diverse populations. Furthermore, this study offers two novel diagnostic models that focus on case-control status prediction and ASD subtype stratification, which have been under-explored in the prior literature.
Collapse
|
25
|
Zhao F, Chen Z, Rekik I, Lee SW, Shen D. Diagnosis of Autism Spectrum Disorder Using Central-Moment Features From Low- and High-Order Dynamic Resting-State Functional Connectivity Networks. Front Neurosci 2020; 14:258. [PMID: 32410930 PMCID: PMC7198826 DOI: 10.3389/fnins.2020.00258] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/09/2020] [Indexed: 01/06/2023] Open
Abstract
The sliding-window-based dynamic functional connectivity networks (D-FCNs) derived from resting-state functional magnetic resonance imaging (rs-fMRI) are effective methods for diagnosing various neurological diseases, including autism spectrum disorder (ASD). However, traditional D-FCNs are low-order networks based on pairwise correlation between brain regions, thus overlooking high-level interactions across multiple regions of interest (ROIs). Moreover, D-FCNs suffer from the temporal mismatching issue, i.e., subnetworks in the same temporal window do not have temporal correspondence across different subjects. To address the above problems, we first construct a novel high-order D-FCNs based on the principle of “correlation’s correlation” to further explore the higher level and more complex interaction relationships among multiple ROIs. Furthermore, we propose to use a central-moment method to extract temporal-invariance properties contained in either low- or high-order D-FCNs. Finally, we design and train an ensemble classifier by fusing the features extracted from conventional FCN, low-order D-FCNs, and high-order D-FCNs for the diagnosis of ASD and normal control subjects. Our method achieved the best ASD classification accuracy (83%), and our results revealed the features extracted from different networks fingerprinting the autistic brain at different connectional levels.
Collapse
Affiliation(s)
- Feng Zhao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China.,Shandong Co-Innovation Center of Future Intelligent Computing, Yantai, China
| | - Zhiyuan Chen
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China.,Shandong Co-Innovation Center of Future Intelligent Computing, Yantai, China
| | - Islem Rekik
- BASIRA Lab, CVIP Group, Computing, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Seong-Whan Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Dinggang Shen
- Department of Radiology and Biomedical Research Imaging Central, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
26
|
Moon SJ, Hwang J, Kana R, Torous J, Kim JW. Accuracy of Machine Learning Algorithms for the Diagnosis of Autism Spectrum Disorder: Systematic Review and Meta-Analysis of Brain Magnetic Resonance Imaging Studies. JMIR Ment Health 2019; 6:e14108. [PMID: 31562756 PMCID: PMC6942187 DOI: 10.2196/14108] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/10/2019] [Accepted: 09/24/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In the recent years, machine learning algorithms have been more widely and increasingly applied in biomedical fields. In particular, their application has been drawing more attention in the field of psychiatry, for instance, as diagnostic tests/tools for autism spectrum disorder (ASD). However, given their complexity and potential clinical implications, there is an ongoing need for further research on their accuracy. OBJECTIVE This study aimed to perform a systematic review and meta-analysis to summarize the available evidence for the accuracy of machine learning algorithms in diagnosing ASD. METHODS The following databases were searched on November 28, 2018: MEDLINE, EMBASE, CINAHL Complete (with Open Dissertations), PsycINFO, and Institute of Electrical and Electronics Engineers Xplore Digital Library. Studies that used a machine learning algorithm partially or fully for distinguishing individuals with ASD from control subjects and provided accuracy measures were included in our analysis. The bivariate random effects model was applied to the pooled data in a meta-analysis. A subgroup analysis was used to investigate and resolve the source of heterogeneity between studies. True-positive, false-positive, false-negative, and true-negative values from individual studies were used to calculate the pooled sensitivity and specificity values, draw Summary Receiver Operating Characteristics curves, and obtain the area under the curve (AUC) and partial AUC (pAUC). RESULTS A total of 43 studies were included for the final analysis, of which a meta-analysis was performed on 40 studies (53 samples with 12,128 participants). A structural magnetic resonance imaging (sMRI) subgroup meta-analysis (12 samples with 1776 participants) showed a sensitivity of 0.83 (95% CI 0.76-0.89), a specificity of 0.84 (95% CI 0.74-0.91), and AUC/pAUC of 0.90/0.83. A functional magnetic resonance imaging/deep neural network subgroup meta-analysis (5 samples with 1345 participants) showed a sensitivity of 0.69 (95% CI 0.62-0.75), specificity of 0.66 (95% CI 0.61-0.70), and AUC/pAUC of 0.71/0.67. CONCLUSIONS The accuracy of machine learning algorithms for diagnosis of ASD was considered acceptable by few accuracy measures only in cases of sMRI use; however, given the many limitations indicated in our study, further well-designed studies are warranted to extend the potential use of machine learning algorithms to clinical settings. TRIAL REGISTRATION PROSPERO CRD42018117779; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=117779.
Collapse
Affiliation(s)
- Sun Jae Moon
- Ewha Womans University Mokdong Hospital, Ewha Womans University Medical Center, Seoul, Republic of Korea
| | - Jinseub Hwang
- Department of Computer Science and Statistics, Daegu University, Gyeongsangbuk-do, Republic of Korea
| | - Rajesh Kana
- Department of Psychology, University of Alabama at Tuscaloosa, Tuscaloosa, AL, United States
| | - John Torous
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jung Won Kim
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
27
|
Georgescu AL, Koehler JC, Weiske J, Vogeley K, Koutsouleris N, Falter-Wagner C. Machine Learning to Study Social Interaction Difficulties in ASD. Front Robot AI 2019; 6:132. [PMID: 33501147 PMCID: PMC7805744 DOI: 10.3389/frobt.2019.00132] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 11/13/2019] [Indexed: 11/27/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a spectrum of neurodevelopmental conditions characterized by difficulties in social communication and social interaction as well as repetitive behaviors and restricted interests. Prevalence rates have been rising, and existing diagnostic methods are both extremely time and labor consuming. There is an urgent need for more economic and objective automatized diagnostic tools that are independent of language and experience of the diagnostician and that can help deal with the complexity of the autistic phenotype. Technological advancements in machine learning are offering a potential solution, and several studies have employed computational approaches to classify ASD based on phenomenological, behavioral or neuroimaging data. Despite of being at the core of ASD diagnosis and having the potential to be used as a behavioral marker for machine learning algorithms, only recently have movement parameters been used as features in machine learning classification approaches. In a proof-of-principle analysis of data from a social interaction study we trained a classification algorithm on intrapersonal synchrony as an automatically and objectively measured phenotypic feature from 29 autistic and 29 typically developed individuals to differentiate those individuals with ASD from those without ASD. Parameters included nonverbal motion energy values from 116 videos of social interactions. As opposed to previous studies to date, our classification approach has been applied to non-verbal behavior objectively captured during naturalistic and complex interactions with a real human interaction partner assuring high external validity. A machine learning approach lends itself particularly for capturing heterogeneous and complex behavior in real social interactions and will be essential in developing automatized and objective classification methods in ASD.
Collapse
Affiliation(s)
- Alexandra Livia Georgescu
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Psychiatry and Psychotherapy, University Hospital of Cologne, Cologne, Germany
| | - Jana Christina Koehler
- Department of Psychiatry and Psychotherapy, Medical Faculty, LMU Munich, Munich, Germany
| | - Johanna Weiske
- Department of Psychiatry and Psychotherapy, Medical Faculty, LMU Munich, Munich, Germany
| | - Kai Vogeley
- Department of Psychiatry and Psychotherapy, University Hospital of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Center Juelich, Jülich, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Medical Faculty, LMU Munich, Munich, Germany
| | - Christine Falter-Wagner
- Department of Psychiatry and Psychotherapy, Medical Faculty, LMU Munich, Munich, Germany.,Institute of Medical Psychology, Medical Faculty, LMU Munich, Munich, Germany
| |
Collapse
|
28
|
Wang XH, Jiao Y, Li L. A unified framework for mapping individual interregional high-order morphological connectivity based on regional cortical features from anatomical MRI. Magn Reson Imaging 2019; 66:232-239. [PMID: 31704393 DOI: 10.1016/j.mri.2019.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/16/2019] [Accepted: 11/03/2019] [Indexed: 01/21/2023]
Abstract
Building individual brain networks form the single volume of anatomical MRI is a challenging task. Furthermore, the high-order connectivity of morphological networks remains unexplored. This paper aimed to investigate the individual high-order morphological connectivity from anatomical MRI. Towards this goal, a unified framework based on six feature distances (euclidean, seuclidean, mahalanobis, cityblock, minkowski, and chebychev) was proposed to derive high-order interregional morphological features. The test-retest datasets and the healthy aging datasets were applied to analyze the reliability and the inter-subject variability of the novel features. In addition, the predictive models based on these novel features were established for age estimation. The proposed six neuroanatomical features exhibited significant high-to-excellent reliability. Certain connections were significantly correlated to biological age based on the six novel metrics (p < .05, FDR corrected). Moreover, the predicted age were significantly correlated to the original age in each regression task (r > 0.5, p < 10-6). The results suggested that the novel high-order metrics were reliable and could reflect individual differences, which could be beneficial for current methods of individual brain connectomes.
Collapse
Affiliation(s)
- Xun-Heng Wang
- Institute of Biomedical Engineering and Instrumentation, School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Yun Jiao
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China.
| |
Collapse
|
29
|
Li W, Qiao L, Zhang L, Wang Z, Shen D. Functional Brain Network Estimation With Time Series Self-Scrubbing. IEEE J Biomed Health Inform 2019; 23:2494-2504. [PMID: 30668484 PMCID: PMC6904893 DOI: 10.1109/jbhi.2019.2893880] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Functional brain network (FBN) is becoming an increasingly important measurement for exploring cerebral mechanisms and mining informative biomarkers that assist diagnosis of some neurodegenerative disorders. Despite its effectiveness to discover valuable hidden patterns in the human brain, the estimated FBNs are often heavily influenced by the quality of the observed data (e.g., blood oxygen level dependent signal series). In practice, a preprocessing pipeline is usually employed for improving data quality. With this in mind, some data points (volumes or time course in the time series) are still not clean enough, due to artifacts including spurious resting-state processes (head movement, mind-wandering). Therefore, not all volumes in the fMRI time series can contribute to the subsequent FBN estimation. To address this issue, we propose a novel FBN estimation method by introducing a latent variable as an indicator of the data quality, and develop an alternating optimization algorithm for jointly scrubbing the data and estimating FBN simultaneously. To further illustrate the effectiveness of the proposed method, we conduct experiments on two public datasets to identify subjects with mild cognitive impairment from normal controls based on the estimated FBNs, and achieve improved accuracies than the baseline methods.
Collapse
Affiliation(s)
- Weikai Li
- School of Mathematics Science, Liaocheng University, Liaocheng 252000, China; College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106 China
| | - Lishan Qiao
- School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Limei Zhang
- School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Zhengxia Wang
- College of Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
30
|
Ansel A, Posen Y, Ellis R, Deutsch L, Zisman PD, Gesundheit B. Biomarkers for Autism Spectrum Disorders (ASD): A Meta-analysis. Rambam Maimonides Med J 2019; 10:RMMJ.10375. [PMID: 31675302 PMCID: PMC6824829 DOI: 10.5041/rmmj.10375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To compare the reported accuracy and sensitivity of the various modalities used to diagnose autism spectrum disorders (ASD) in efforts to help focus further biomarker research on the most promising methods for early diagnosis. METHODS The Medline scientific literature database was searched to identify publications assessing potential clinical ASD biomarkers. Reports were categorized by the modality used to assess the putative markers, including protein, genetic, metabolic, or objective imaging methods. The reported sensitivity, specificity, area under the curve, and overall agreement were summarized and analyzed to determine weighted averages for each diagnostic modality. Heterogeneity was measured using the I2 test. RESULTS Of the 71 papers included in this analysis, each belonging to one of five modalities, protein-based followed by metabolite-based markers provided the highest diagnostic accuracy, each with a pooled overall agreement of 83.3% and respective weighted area under the curve (AUC) of 89.5% and 88.3%. Sensitivity provided by protein markers was highest (85.5%), while metabolic (85.9%) and protein markers (84.7%) had the highest specificity. Other modalities showed degrees of sensitivity, specificity, and overall agreements in the range of 73%-80%. CONCLUSIONS Each modality provided for diagnostic accuracy and specificity similar or slightly higher than those reported for the gold-standard Autism Diagnostic Observation Schedule (ADOS) instrument. Further studies are required to identify the most predictive markers within each modality and to evaluate biological pathways or clustering with possible etiological relevance. Analyses will also be necessary to determine the potential of these novel biomarkers in diagnosing pediatric patients, thereby enabling early intervention.
Collapse
Affiliation(s)
| | - Yehudit Posen
- Cell-El Therapeutics Ltd, Jerusalem, Israel
- PSW Ltd, Rehovot, Israel
| | - Ronald Ellis
- Cell-El Therapeutics Ltd, Jerusalem, Israel
- Biotech & Biopharma Consulting, Jerusalem, Israel
| | - Lisa Deutsch
- Biostats Statistical Consulting Ltd, Modiin, Israel
| | | | - Benjamin Gesundheit
- Cell-El Therapeutics Ltd, Jerusalem, Israel
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
31
|
Wolfers T, Floris DL, Dinga R, van Rooij D, Isakoglou C, Kia SM, Zabihi M, Llera A, Chowdanayaka R, Kumar VJ, Peng H, Laidi C, Batalle D, Dimitrova R, Charman T, Loth E, Lai MC, Jones E, Baumeister S, Moessnang C, Banaschewski T, Ecker C, Dumas G, O’Muircheartaigh J, Murphy D, Buitelaar JK, Marquand AF, Beckmann CF. From pattern classification to stratification: towards conceptualizing the heterogeneity of Autism Spectrum Disorder. Neurosci Biobehav Rev 2019; 104:240-254. [DOI: 10.1016/j.neubiorev.2019.07.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022]
|
32
|
Quantifying individual differences in brain morphometry underlying symptom severity in Autism Spectrum Disorders. Sci Rep 2019; 9:9898. [PMID: 31289283 PMCID: PMC6617442 DOI: 10.1038/s41598-019-45774-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 06/14/2019] [Indexed: 01/12/2023] Open
Abstract
The neurobiology of heterogeneous neurodevelopmental disorders such as autism spectrum disorders (ASD) are still unclear. Despite extensive efforts, most findings are difficult to reproduce due to high levels of individual variance in phenotypic expression. To quantify individual differences in brain morphometry in ASD, we implemented a novel subject-level, distance-based method on subject-specific attributes. In a large multi-cohort sample, each subject with ASD (n = 100; n = 84 males; mean age: 11.43 years; mean IQ: 110.58) was strictly matched to a control participant (n = 100; n = 84 males; mean age: 11.43 years; mean IQ: 110.70). Intrapair Euclidean distance of MRI brain morphometry and symptom severity measures (Social Responsiveness Scale) were entered into a regularised machine learning pipeline for feature selection, with rigorous out-of-sample validation and permutation testing. Subject-specific structural morphometry features significantly predicted individual variation in ASD symptom severity (19 cortical thickness features, p = 0.01, n = 5000 permutations; 10 surface area features, p = 0.006, n = 5000 permutations). Findings remained robust across subjects and were replicated in validation samples. Identified cortical regions implicate key hubs of the salience and default mode networks as neuroanatomical features of social impairment in ASD. Present results highlight the importance of subject-level markers in ASD, and offer an important step forward in understanding the neurobiology of heterogeneous disorders.
Collapse
|
33
|
Bussu G, Jones EJH, Charman T, Johnson MH, Buitelaar JK. Prediction of Autism at 3 Years from Behavioural and Developmental Measures in High-Risk Infants: A Longitudinal Cross-Domain Classifier Analysis. J Autism Dev Disord 2019; 48:2418-2433. [PMID: 29453709 PMCID: PMC5996007 DOI: 10.1007/s10803-018-3509-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We integrated multiple behavioural and developmental measures from multiple time-points using machine learning to improve early prediction of individual Autism Spectrum Disorder (ASD) outcome. We examined Mullen Scales of Early Learning, Vineland Adaptive Behavior Scales, and early ASD symptoms between 8 and 36 months in high-risk siblings (HR; n = 161) and low-risk controls (LR; n = 71). Longitudinally, LR and HR-Typical showed higher developmental level and functioning, and fewer ASD symptoms than HR-Atypical and HR-ASD. At 8 months, machine learning classified HR-ASD at chance level, and broader atypical development with 69.2% Area Under the Curve (AUC). At 14 months, ASD and broader atypical development were classified with approximately 71% AUC. Thus, prediction of ASD was only possible with moderate accuracy at 14 months.
Collapse
Affiliation(s)
- G Bussu
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands.
| | - E J H Jones
- Centre for Brain and Cognitive Development, Birkbeck, University of London, 32 Torrington Square, London, WC1E 7JL, UK
| | - T Charman
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK
| | - M H Johnson
- Centre for Brain and Cognitive Development, Birkbeck, University of London, 32 Torrington Square, London, WC1E 7JL, UK
| | - J K Buitelaar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| | | |
Collapse
|
34
|
Nguyen DT, Ryu S, Qureshi MNI, Choi M, Lee KH, Lee B. Hybrid multivariate pattern analysis combined with extreme learning machine for Alzheimer's dementia diagnosis using multi-measure rs-fMRI spatial patterns. PLoS One 2019; 14:e0212582. [PMID: 30794629 PMCID: PMC6386400 DOI: 10.1371/journal.pone.0212582] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/05/2019] [Indexed: 12/20/2022] Open
Abstract
Background Early diagnosis of Alzheimer’s disease (AD) and Mild Cognitive Impairment (MCI) is essential for timely treatment. Machine learning and multivariate pattern analysis (MVPA) for the diagnosis of brain disorders are explicitly attracting attention in the neuroimaging community. In this paper, we propose a voxel-wise discriminative framework applied to multi-measure resting-state fMRI (rs-fMRI) that integrates hybrid MVPA and extreme learning machine (ELM) for the automated discrimination of AD and MCI from the cognitive normal (CN) state. Materials and methods We used two rs-fMRI cohorts: the public Alzheimer’s disease Neuroimaging Initiative database (ADNI2) and an in-house Alzheimer’s disease cohort from South Korea, both including individuals with AD, MCI, and normal controls. After extracting three-dimensional (3-D) patterns measuring regional coherence and functional connectivity during the resting state, we performed univariate statistical t-tests to generate a 3-D mask that retained only voxels showing significant changes. Given the initial univariate features, to enhance discriminative patterns, we implemented MVPA feature reduction using support vector machine-recursive feature elimination (SVM-RFE), and least absolute shrinkage and selection operator (LASSO), in combination with the univariate t-test. Classifications were performed by an ELM, and its efficiency was compared to linear and nonlinear (radial basis function) SVMs. Results The maximal accuracies achieved by the method in the ADNI2 cohort were 98.86% (p<0.001) and 98.57% (p<0.001) for AD and MCI vs. CN, respectively. In the in-house cohort, the same accuracies were 98.70% (p<0.001) and 94.16% (p<0.001). Conclusion From a clinical perspective, combining extreme learning machine and hybrid MVPA applied on concatenations of multiple rs-fMRI biomarkers can potentially assist the clinicians in AD and MCI diagnosis.
Collapse
Affiliation(s)
- Duc Thanh Nguyen
- Department of Biomedical Science and Engineering (BMSE), Institute of Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Seungjun Ryu
- Department of Biomedical Science and Engineering (BMSE), Institute of Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Muhammad Naveed Iqbal Qureshi
- Translational Neuroimaging Laboratory, The McGill University Research Center for Studies in Aging (MCSA), McGill University, Montreal, Canada
- Alzheimer’s Disease Research Unit, Douglas Mental Health University Institute, McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
- Montreal Neurological Institute and Hospital, Montreal, Canada
| | - Min Choi
- Department of Biomedical Science and Engineering (BMSE), Institute of Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Kun Ho Lee
- National Research Center for Dementia, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
| | - Boreom Lee
- Department of Biomedical Science and Engineering (BMSE), Institute of Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
35
|
Chen G, Zhang J, Zhang Y, Dong B, Shen D, Yap PT. Multi-channel framelet denoising of diffusion-weighted images. PLoS One 2019; 14:e0211621. [PMID: 30726257 PMCID: PMC6364918 DOI: 10.1371/journal.pone.0211621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/17/2019] [Indexed: 11/18/2022] Open
Abstract
Diffusion MRI derives its contrast from MR signal attenuation induced by the movement of water molecules in microstructural environments. Associated with the signal attenuation is the reduction of signal-to-noise ratio (SNR). Methods based on total variation (TV) have shown superior performance in image noise reduction. However, TV denoising can result in stair-casing effects due to the inherent piecewise-constant assumption. In this paper, we propose a tight wavelet frame based approach for edge-preserving denoising of diffusion-weighted (DW) images. Specifically, we employ the unitary extension principle (UEP) to generate frames that are discrete analogues to differential operators of various orders, which will help avoid stair-casing effects. Instead of denoising each DW image separately, we collaboratively denoise groups of DW images acquired with adjacent gradient directions. In addition, we introduce a very efficient method for solving an ℓ0 denoising problem that involves only thresholding and solving a trivial inverse problem. We demonstrate the effectiveness of our method qualitatively and quantitatively using synthetic and real data.
Collapse
Affiliation(s)
- Geng Chen
- Department of Radiology and Biomedical Research Imaging Center (BRIC) University of North Carolina, Chapel Hill, United States of America
| | - Jian Zhang
- Department of Radiology and Biomedical Research Imaging Center (BRIC) University of North Carolina, Chapel Hill, United States of America
- School of Information and Electrical Engineering, Hunan University of Science & Technology, Xiangtan, China
| | - Yong Zhang
- Vancouver Research Center, Huawei, Burnaby, Canada
| | - Bin Dong
- Beijing International Center for Mathematical Research, Peking University, Beijing, China
| | - Dinggang Shen
- Department of Radiology and Biomedical Research Imaging Center (BRIC) University of North Carolina, Chapel Hill, United States of America
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
| | - Pew-Thian Yap
- Department of Radiology and Biomedical Research Imaging Center (BRIC) University of North Carolina, Chapel Hill, United States of America
| |
Collapse
|
36
|
Neuroinflammation in preterm babies and autism spectrum disorders. Pediatr Res 2019; 85:155-165. [PMID: 30446768 DOI: 10.1038/s41390-018-0208-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Genetic anomalies have a role in autism spectrum disorders (ASD). Each genetic factor is responsible for a small fraction of cases. Environment factors, like preterm delivery, have an important role in ASD. Preterm infants have a 10-fold higher risk of developing ASD. Preterm birth is often associated with maternal/fetal inflammation, leading to a fetal/neonatal inflammatory syndrome. There are demonstrated experimental links between fetal inflammation and the later development of behavioral symptoms consistent with ASD. Preterm infants have deficits in connectivity. Most ASD genes encode synaptic proteins, suggesting that ASD are connectivity pathologies. Microglia are essential for normal synaptogenesis. Microglia are diverted from homeostatic functions towards inflammatory phenotypes during perinatal inflammation, impairing synaptogenesis. Preterm infants with ASD have a different phenotype from term born peers. Our original hypothesis is that exposure to inflammation in preterm infants, combined with at risk genetic background, deregulates brain development leading to ASD.
Collapse
|
37
|
A systematic review of structural MRI biomarkers in autism spectrum disorder: A machine learning perspective. Int J Dev Neurosci 2018; 71:68-82. [DOI: 10.1016/j.ijdevneu.2018.08.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 11/19/2022] Open
|
38
|
Mateos-Pérez JM, Dadar M, Lacalle-Aurioles M, Iturria-Medina Y, Zeighami Y, Evans AC. Structural neuroimaging as clinical predictor: A review of machine learning applications. NEUROIMAGE-CLINICAL 2018; 20:506-522. [PMID: 30167371 PMCID: PMC6108077 DOI: 10.1016/j.nicl.2018.08.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 01/22/2018] [Accepted: 08/09/2018] [Indexed: 11/26/2022]
Abstract
In this paper, we provide an extensive overview of machine learning techniques applied to structural magnetic resonance imaging (MRI) data to obtain clinical classifiers. We specifically address practical problems commonly encountered in the literature, with the aim of helping researchers improve the application of these techniques in future works. Additionally, we survey how these algorithms are applied to a wide range of diseases and disorders (e.g. Alzheimer's disease (AD), Parkinson's disease (PD), autism, multiple sclerosis, traumatic brain injury, etc.) in order to provide a comprehensive view of the state of the art in different fields.
Collapse
Affiliation(s)
| | - Mahsa Dadar
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | - Yashar Zeighami
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Alan C Evans
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
39
|
Wang XH, Jiao Y, Li L. Diagnostic model for attention-deficit hyperactivity disorder based on interregional morphological connectivity. Neurosci Lett 2018; 685:30-34. [PMID: 30031733 DOI: 10.1016/j.neulet.2018.07.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/22/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
Abstract
Previous brain morphology-related diagnostic models for attention-deficit hyperactivity disorder (ADHD) were based on regional features. However, building a model of individual interregional morphological connectivity is a challenging task. This study aimed to identify children with ADHD utilizing a novel interregional morphological connectivity model and discover the discriminative patterns in patients. Therefore, novel interregional morphological patterns rather than regional patterns were extracted via surface-based analysis. The interregional morphological features were trained and tested using a hybrid machine learning method, which was implemented using the leave-one-out cross-validation (LOOCV) method to produce the optimized discriminative model and discriminative patterns. The inclusion of interregional morphological connectivity significantly improved the performance of the diagnostic models compared to the performance of the model constructed using regional features. The optimized discriminative model exhibited a total accuracy of 74.65%, a sensitivity of 75% and a specificity of 74.29%. The brain regions displaying altered morphological connectivity included the insula, the caudal anterior cingulate cortex, the frontal pole, and the postcentral cortex, among others. In addition, the altered connections correlated with the clinical symptoms. In summary, patients with ADHD exhibited altered morphological connectivity, which might be a potential biomarker for the classification of ADHD. The discriminative features will potentially benefit studies investigating the brain network mechanisms of ADHD.
Collapse
Affiliation(s)
- Xun-Heng Wang
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Yun Jiao
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Lihua Li
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
40
|
Mitelman SA, Bralet MC, Haznedar MM, Hollander E, Shihabuddin L, Hazlett EA, Buchsbaum MS. Diametrical relationship between gray and white matter volumes in autism spectrum disorder and schizophrenia. Brain Imaging Behav 2018; 11:1823-1835. [PMID: 27882449 DOI: 10.1007/s11682-016-9648-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorders and schizophrenia have been variously characterized as separate nosological entities with overlapping deficits in social cognition or diametrical extremes of a phenotypic continuum. This study aimed to determine how these models apply to comparative morphometric data. MRI scans of the brain were obtained in 49 subjects with schizophrenia, 20 subjects with autism and 39 healthy controls. Images were parcellated into 40 Brodmann areas and entered into repeated-measures ANOVA for between-group comparison of global and localized gray and white matter volumes. A pattern of lower gray mater volumes and greater white matter volumes was found in subjects with schizophrenia in comparison to subjects with autism. For both gray and white matter, this pattern was most pronounced in regions associated with motor-premotor and anterior frontal cortex, anterior cingulate, fusiform, superior and middle temporal gyri. Patient groups tended to diverge from healthy controls in opposite directions, with greater-than-normal gray matter volumes and lower-than-normal white matter volumes in subjects with autism and reversed patterns in subjects with schizophrenia. White matter reductions in subjects with autism were seen in posterior frontal lobe and along the cingulate arch. Normal hemispheric asymmetry in the temporal lobe was effaced in subjects with autism and schizophrenia, especially in the latter. Nearly identical distribution of changes and diametrically divergent volumetry suggest that autism and schizophrenia may occupy opposite extremes of the same cognitive continuum.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY, 11373, USA.
| | - Marie-Cecile Bralet
- Crisalid Unit (FJ5), CHI Clermont de l'Oise, 2 rue des finets, 60607, Clermont, France.,Inserm Unit U669, Maison de Solenn, Universities Paris 5-11, 75014, Paris, France.,GDR 3557 Recherche Psychiatrie, Paris, France
| | - M Mehmet Haznedar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Outpatient Psychiatry Care Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Eric Hollander
- Autism and Obsessive-Compulsive Spectrum Program, Anxiety and Depression Program, Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10467, USA
| | - Lina Shihabuddin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Erin A Hazlett
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Research and Development and VISN 3 Mental Illness Research, Education, and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Monte S Buchsbaum
- Departments of Psychiatry and Radiology, San Diego School of Medicine, NeuroPET Center, University of California, 11388 Sorrento Valley Road, Suite #100, San Diego, CA, 92121, USA
| |
Collapse
|
41
|
Zhao F, Zhang H, Rekik I, An Z, Shen D. Diagnosis of Autism Spectrum Disorders Using Multi-Level High-Order Functional Networks Derived From Resting-State Functional MRI. Front Hum Neurosci 2018; 12:184. [PMID: 29867410 PMCID: PMC5960713 DOI: 10.3389/fnhum.2018.00184] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
Functional brain networks derived from resting-state functional magnetic resonance imaging (rs-fMRI) have been widely used for Autism Spectrum Disorder (ASD) diagnosis. Typically, these networks are constructed by calculating functional connectivity (FC) between any pair of brain regions of interest (ROIs), i.e., using Pearson's correlation between rs-fMRI time series. However, this can only be called as a low-order representation of the functional interaction, because the relationship is investigated just between two ROIs. Brain disorders might not only affect low-order FC, but also high-order FC, i.e., the higher-level relationship among multiple brain regions, which might be more crucial for diagnosis. To comprehensively characterize such relationship for better diagnosis of ASD, we propose a multi-level, high-order FC network representation that can nicely capture complex interactions among brain regions. Then, we design a feature selection method to identify those discriminative multi-level, high-order FC features for ASD diagnosis. Finally, we design an ensemble classifier with multiple linear SVMs, each trained on a specific level of FC networks, for boosting the final classification accuracy. Experimental results show that the integration of both low-order and first-level high-order FC networks achieves the best ASD diagnostic accuracy (81%). We further investigated those selected discriminative low-order and high-order FC features and found that the high-order FC features can provide complementary information to the low-order FC features in the ASD diagnosis.
Collapse
Affiliation(s)
- Feng Zhao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Han Zhang
- Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC, United States
| | - Islem Rekik
- BASIRA Lab, CVIP Group, Computing, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Zhiyong An
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC, United States.,Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
42
|
Katuwal GJ, Cahill ND, Baum SA, Michael AM. The predictive power of structural MRI in Autism diagnosis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2015:4270-3. [PMID: 26737238 DOI: 10.1109/embc.2015.7319338] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Diagnosis of Autism Spectrum Disorder (ASD) using structural magnetic resonance imaging (sMRI) of the brain has been a topic of significant research interest. Previous studies using small datasets with well-matched Typically Developing Controls (TDC) report high classification accuracies (80-96%) but studies using the large heterogeneous ABIDE dataset report accuracies less than 60%. In this study we investigate the predictive power of sMRI in ASD using 373 ASD and 361 TDC male subjects from the ABIDE. Brain morphometric features were derived using FreeSurfer and classification was performed using three different techniques: Random Forest (RF), Support Vector Machine (SVM) and Gradient Boosting Machine (GBM). Although high classification accuracies were possible in individual sites (with a maximum of 97% in Caltech), the highest classification accuracy across all sites was only 60% (sensitivity = 57%, specificity = 64%). However, the accuracy across all sites improved to 67% when IQ and age information were added to morphometric features. Across all three classifiers, volume and surface area had more discriminative power. In general, important features for classification were present in the frontal and temporal regions and these regions have been implicated in ASD. This study also explores the effect of demographics and behavioral measures on the predictive power of sMRI. Results show that classification accuracy increases with autism severity and that ASD detection with sMRI is easier before the age of 10 years.
Collapse
|
43
|
The effect of feature selection on multivariate pattern analysis of structural brain MR images. Phys Med 2018; 47:103-111. [DOI: 10.1016/j.ejmp.2018.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 03/01/2018] [Accepted: 03/03/2018] [Indexed: 01/13/2023] Open
|
44
|
Zhou Z, Wang JB, Zang YF, Pan G. PAIR Comparison between Two Within-Group Conditions of Resting-State fMRI Improves Classification Accuracy. Front Neurosci 2018; 11:740. [PMID: 29375288 PMCID: PMC5767225 DOI: 10.3389/fnins.2017.00740] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/19/2017] [Indexed: 11/13/2022] Open
Abstract
Classification approaches have been increasingly applied to differentiate patients and normal controls using resting-state functional magnetic resonance imaging data (RS-fMRI). Although most previous classification studies have reported promising accuracy within individual datasets, achieving high levels of accuracy with multiple datasets remains challenging for two main reasons: high dimensionality, and high variability across subjects. We used two independent RS-fMRI datasets (n = 31, 46, respectively) both with eyes closed (EC) and eyes open (EO) conditions. For each dataset, we first reduced the number of features to a small number of brain regions with paired t-tests, using the amplitude of low frequency fluctuation (ALFF) as a metric. Second, we employed a new method for feature extraction, named the PAIR method, examining EC and EO as paired conditions rather than independent conditions. Specifically, for each dataset, we obtained EC minus EO (EC—EO) maps of ALFF from half of subjects (n = 15 for dataset-1, n = 23 for dataset-2) and obtained EO—EC maps from the other half (n = 16 for dataset-1, n = 23 for dataset-2). A support vector machine (SVM) method was used for classification of EC RS-fMRI mapping and EO mapping. The mean classification accuracy of the PAIR method was 91.40% for dataset-1, and 92.75% for dataset-2 in the conventional frequency band of 0.01–0.08 Hz. For cross-dataset validation, we applied the classifier from dataset-1 directly to dataset-2, and vice versa. The mean accuracy of cross-dataset validation was 94.93% for dataset-1 to dataset-2 and 90.32% for dataset-2 to dataset-1 in the 0.01–0.08 Hz range. For the UNPAIR method, classification accuracy was substantially lower (mean 69.89% for dataset-1 and 82.97% for dataset-2), and was much lower for cross-dataset validation (64.69% for dataset-1 to dataset-2 and 64.98% for dataset-2 to dataset-1) in the 0.01–0.08 Hz range. In conclusion, for within-group design studies (e.g., paired conditions or follow-up studies), we recommend the PAIR method for feature extraction. In addition, dimensionality reduction with strong prior knowledge of specific brain regions should also be considered for feature selection in neuroimaging studies.
Collapse
Affiliation(s)
- Zhen Zhou
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Jian-Bao Wang
- Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| | - Gang Pan
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Andrews DS, Marquand A, Ecker C, McAlonan G. Using Pattern Classification to Identify Brain Imaging Markers in Autism Spectrum Disorder. Curr Top Behav Neurosci 2018; 40:413-436. [PMID: 29626339 DOI: 10.1007/7854_2018_47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social interaction and communication, as well as repetitive and restrictive behaviours. The etiological and phenotypic complexity of ASD has so far hindered the development of clinically useful biomarkers for the condition. Neuroimaging studies have been valuable in establishing a biological basis for ASD. Increasingly, neuroimaging has been combined with 'machine learning'-based pattern classification methods to make individual diagnostic predictions. Moving forward, the hope is that these techniques may not only facilitate the diagnostic process but may also aid in fractionating the ASD phenotype into more biologically homogeneous sub-groups, with defined pathophysiology, predictable outcomes and/or responses to targeted treatments and/or interventions. This review chapter will first introduce 'machine learning' and pattern recognition methods in general, with a focus on their application to diagnostic classification. It will highlight why such approaches to biomarker discovery may have advantages over more conventional analytical methods. Magnetic resonance imaging (MRI) findings of atypical brain structure, function and connectivity in ASD will be briefly reviewed before we describe how pattern recognition has been applied to generate predictive models for ASD. Last, we will discuss some limitations and pitfalls of pattern recognition analyses in ASD and consider how the field can advance beyond the prediction of binary outcomes.
Collapse
Affiliation(s)
- Derek Sayre Andrews
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioural Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA.,Department of Forensic and Neurodevelopmental Sciences, The Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andre Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.,Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Christine Ecker
- Department of Forensic and Neurodevelopmental Sciences, The Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Universitätsklinikum Frankfurt am Main, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Sciences, The Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. .,South London and Maudsley NHS Foundation Trust, London, UK.
| |
Collapse
|
46
|
Cardon GJ, Hepburn S, Rojas DC. Structural Covariance of Sensory Networks, the Cerebellum, and Amygdala in Autism Spectrum Disorder. Front Neurol 2017; 8:615. [PMID: 29230189 PMCID: PMC5712069 DOI: 10.3389/fneur.2017.00615] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/03/2017] [Indexed: 11/13/2022] Open
Abstract
Sensory dysfunction is a core symptom of autism spectrum disorder (ASD), and abnormalities with sensory responsivity and processing can be extremely debilitating to ASD patients and their families. However, relatively little is known about the underlying neuroanatomical and neurophysiological factors that lead to sensory abnormalities in ASD. Investigation into these aspects of ASD could lead to significant advancements in our general knowledge about ASD, as well as provide targets for treatment and inform diagnostic procedures. Thus, the current study aimed to measure the covariation of volumes of brain structures (i.e., structural magnetic resonance imaging) that may be involved in abnormal sensory processing, in order to infer connectivity of these brain regions. Specifically, we quantified the structural covariation of sensory-related cerebral cortical structures, in addition to the cerebellum and amygdala by computing partial correlations between the structural volumes of these structures. These analyses were performed in participants with ASD (n = 36), as well as typically developing peers (n = 32). Results showed decreased structural covariation between sensory-related cortical structures, especially between the left and right cerebral hemispheres, in participants with ASD. In contrast, these same participants presented with increased structural covariation of structures in the right cerebral hemisphere. Additionally, sensory-related cerebral structures exhibited decreased structural covariation with functionally identified cerebellar networks. Also, the left amygdala showed significantly increased structural covariation with cerebral structures related to visual processing. Taken together, these results may suggest several patterns of altered connectivity both within and between cerebral cortices and other brain structures that may be related to sensory processing.
Collapse
Affiliation(s)
- Garrett J Cardon
- Department of Psychology, Colorado State University, Fort Collins, CO, United States
| | - Susan Hepburn
- Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO, United States
| | - Donald C Rojas
- Department of Psychology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
47
|
Rasheed W, Neoh YY, Bin Hamid NH, Reza F, Idris Z, Tang TB. Early visual analysis tool using magnetoencephalography for treatment and recovery of neuronal dysfunction. Comput Biol Med 2017; 89:573-583. [PMID: 28551109 DOI: 10.1016/j.compbiomed.2017.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 04/12/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
Functional neuroimaging modalities play an important role in deciding the diagnosis and course of treatment of neuronal dysfunction and degeneration. This article presents an analytical tool with visualization by exploiting the strengths of the MEG (magnetoencephalographic) neuroimaging technique. The tool automates MEG data import (in tSSS format), channel information extraction, time/frequency decomposition, and circular graph visualization (connectogram) for simple result inspection. For advanced users, the tool also provides magnitude squared coherence (MSC) values allowing personalized threshold levels, and the computation of default model from MEG data of control population. Default model obtained from healthy population data serves as a useful benchmark to diagnose and monitor neuronal recovery during treatment. The proposed tool further provides optional labels with international 10-10 system nomenclature in order to facilitate comparison studies with EEG (electroencephalography) sensor space. Potential applications in epilepsy and traumatic brain injury studies are also discussed.
Collapse
Affiliation(s)
- Waqas Rasheed
- Centre for Intelligent Signal and Imaging Research (CISIR), Department of Electrical & Electronic Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
| | - Yee Yik Neoh
- Department of Neurosciences, School of Medical Sciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia Health Campus, Kota Bharu, Kelantan, Malaysia
| | - Nor Hisham Bin Hamid
- Centre for Intelligent Signal and Imaging Research (CISIR), Department of Electrical & Electronic Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
| | - Faruque Reza
- Department of Neurosciences, School of Medical Sciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia Health Campus, Kota Bharu, Kelantan, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia Health Campus, Kota Bharu, Kelantan, Malaysia
| | - Tong Boon Tang
- Centre for Intelligent Signal and Imaging Research (CISIR), Department of Electrical & Electronic Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia.
| |
Collapse
|
48
|
Uddin LQ, Dajani DR, Voorhies W, Bednarz H, Kana RK. Progress and roadblocks in the search for brain-based biomarkers of autism and attention-deficit/hyperactivity disorder. Transl Psychiatry 2017; 7:e1218. [PMID: 28892073 PMCID: PMC5611731 DOI: 10.1038/tp.2017.164] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/07/2017] [Indexed: 11/22/2022] Open
Abstract
Children with neurodevelopmental disorders benefit most from early interventions and treatments. The development and validation of brain-based biomarkers to aid in objective diagnosis can facilitate this important clinical aim. The objective of this review is to provide an overview of current progress in the use of neuroimaging to identify brain-based biomarkers for autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), two prevalent neurodevelopmental disorders. We summarize empirical work that has laid the foundation for using neuroimaging to objectively quantify brain structure and function in ways that are beginning to be used in biomarker development, noting limitations of the data currently available. The most successful machine learning methods that have been developed and applied to date are discussed. Overall, there is increasing evidence that specific features (for example, functional connectivity, gray matter volume) of brain regions comprising the salience and default mode networks can be used to discriminate ASD from typical development. Brain regions contributing to successful discrimination of ADHD from typical development appear to be more widespread, however there is initial evidence that features derived from frontal and cerebellar regions are most informative for classification. The identification of brain-based biomarkers for ASD and ADHD could potentially assist in objective diagnosis, monitoring of treatment response and prediction of outcomes for children with these neurodevelopmental disorders. At present, however, the field has yet to identify reliable and reproducible biomarkers for these disorders, and must address issues related to clinical heterogeneity, methodological standardization and cross-site validation before further progress can be achieved.
Collapse
Affiliation(s)
- L Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA,Department of Psychology, University of Miami, P.O. Box 248185-0751, Coral Gables, FL 33124, USA. E-mail:
| | - D R Dajani
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - W Voorhies
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - H Bednarz
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - R K Kana
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
49
|
Zhao F, Qiao L, Shi F, Yap PT, Shen D. Feature fusion via hierarchical supervised local CCA for diagnosis of autism spectrum disorder. Brain Imaging Behav 2017; 11:1050-1060. [PMID: 27535871 PMCID: PMC5315688 DOI: 10.1007/s11682-016-9587-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Early diagnosis of autism spectrum disorder (ASD) is critical for timely medical intervention, for improving patient quality of life, and for reducing the financial burden borne by the society. A key issue in neuroimaging-based ASD diagnosis is the identification of discriminating features and then fusing them to produce accurate diagnosis. In this paper, we propose a novel framework for fusing complementary and discriminating features from different imaging modalities. Specifically, we integrate the Fisher discriminant criterion and local correlation information into the canonical correlation analysis (CCA) framework, giving a new feature fusion method, called Supervised Local CCA (SL-CCA), which caters specifically to local and global multimodal features. To alleviate the neighborhood selection problem associated with SL-CCA, we further propose a hierarchical SL-CCA (HSL-CCA), by performing SL-CCA with the gradually varying neighborhood sizes. Extensive experiments on the multimodal ABIDE database show that the proposed method achieves superior performance. In addition, based on feature weight analysis, we found that only a few specific brain regions play active roles in ASD diagnosis. These brain regions include the putamen, precuneus, and orbitofrontal cortex, which are highly associated with human emotional modulation and memory formation. These finding are consistent with the behavioral phenotype of ASD.
Collapse
Affiliation(s)
- Feng Zhao
- School of Computer Science and Technology, Shandong Institute of Business and Technology, YanTai, China
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Carolina, North, USA
| | - Lishan Qiao
- School of Mathematics, Liaocheng University, Liaocheng, China
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Carolina, North, USA
| | - Feng Shi
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Carolina, North, USA
| | - Pew-Thian Yap
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Carolina, North, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Carolina, North, USA.
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
50
|
Wang J, Wang Q, Peng J, Nie D, Zhao F, Kim M, Zhang H, Wee C, Wang S, Shen D. Multi-task diagnosis for autism spectrum disorders using multi-modality features: A multi-center study. Hum Brain Mapp 2017; 38:3081-3097. [PMID: 28345269 PMCID: PMC5427005 DOI: 10.1002/hbm.23575] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/22/2016] [Accepted: 03/08/2017] [Indexed: 01/11/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopment disease characterized by impairment of social interaction, language, behavior, and cognitive functions. Up to now, many imaging-based methods for ASD diagnosis have been developed. For example, one may extract abundant features from multi-modality images and then derive a discriminant function to map the selected features toward the disease label. A lot of recent works, however, are limited to single imaging centers. To this end, we propose a novel multi-modality multi-center classification (M3CC) method for ASD diagnosis. We treat the classification of each imaging center as one task. By introducing the task-task and modality-modality regularizations, we solve the classification for all imaging centers simultaneously. Meanwhile, the optimal feature selection and the modeling of the discriminant functions can be jointly conducted for highly accurate diagnosis. Besides, we also present an efficient iterative optimization solution to our formulated problem and further investigate its convergence. Our comprehensive experiments on the ABIDE database show that our proposed method can significantly improve the performance of ASD diagnosis, compared to the existing methods. Hum Brain Mapp 38:3081-3097, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jun Wang
- School of Digital MediaJiangnan UniversityWuxiJiangsu214122China
- Department of Radiology and Biomedical Research Imaging CenterUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27599
| | - Qian Wang
- Med‐X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
| | - Jialin Peng
- Department of Radiology and Biomedical Research Imaging CenterUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27599
| | - Dong Nie
- Department of Radiology and Biomedical Research Imaging CenterUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27599
| | - Feng Zhao
- Department of Radiology and Biomedical Research Imaging CenterUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27599
| | - Minjeong Kim
- Department of Radiology and Biomedical Research Imaging CenterUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27599
| | - Han Zhang
- Department of Radiology and Biomedical Research Imaging CenterUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27599
| | - Chong‐Yaw Wee
- Department of Biomedical Engineering, Faculty of EngineeringNational University of SingaporeSingapore119077
| | - Shitong Wang
- School of Digital MediaJiangnan UniversityWuxiJiangsu214122China
| | - Dinggang Shen
- Department of Radiology and Biomedical Research Imaging CenterUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27599
- Department of Brain and Cognitive EngineeringKorea UniversitySeoulKorea
| |
Collapse
|