1
|
Stern ST, Affonso de Oliveira JF, Gatus J, Edmondson E, Neun BW, Dobrovolskaia MA, Steinmetz NF. Preclinical SC and IV repeat-dose toxicology of a cowpea mosaic virus - A cancer immunotherapy candidate. Toxicol Rep 2025; 14:102022. [PMID: 40276251 PMCID: PMC12019203 DOI: 10.1016/j.toxrep.2025.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/26/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Cancer immunotherapies focus on boosting the immune system to recognize and eliminate tumor cells. Amongst the various biologics under development for cancer immunotherapy, our team has focused on the study of plant viruses in this context. We have shown that intratumoral administration of cowpea mosaic virus (CPMV) relieves the immunosuppressive tumor microenvironment and elicits a potent, systemic and durable anti-tumor immune response. The potency of CPMV has been demonstrated in several tumor mouse models and in companion canine cancer patients. Toward clinical development, we here studied the pharmacology and safety of CPMV. The repeat-dose toxicity of CPMV was evaluated in female Sprague Dawley rats. Rats received three weekly treatments (subcutaneous or intravenous) of a fixed dose (∼20 mg/kg), and complete necropsy was performed either 24 hrs (acute toxicity group) or 14 day (recovery group) post-dose. All animals reached the scheduled euthanasia times, and no clinical abnormalities were noted during the study period. Important clinical chemistry, hematology and histopathology findings included decreased albumin/globulin ratio, leukocytosis, neutrophilia, monocytosis, and lymphoid hyperplasia (Dunnett's test, p<0.05) - these changes support the immunostimulatory mode of action for CPMV. All other changes were considered mild, within historical range for the model, and/or not biologically significant. Neither a maximum tolerated dose (MTD) nor a no-observable adverse effect level (NOAEL) was established in this study. Overall, data indicate a good safety profile for the CPMV cancer immunotherapy candidate.
Collapse
Affiliation(s)
- Stephan T. Stern
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Jessica Fernanda Affonso de Oliveira
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, La Jolla, CA 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Jamie Gatus
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, La Jolla, CA 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Elijah Edmondson
- Molecular Histopathology Laboratory, Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, 8560 Progress Drive, Frederick, MD 21701, USA
| | - Barry W. Neun
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Marina A. Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Nicole F. Steinmetz
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, La Jolla, CA 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Center for Engineering in Cancer, Institute of Engineering Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Omole AO, Affonso de Oliveira JF, Sutorus L, Karan S, Zhao Z, Neun BW, Cedrone E, Clogston JD, Xu J, Sierk M, Chen Q, Meerzaman D, Dobrovolskaia MA, Steinmetz NF. Cellular fate of a plant virus immunotherapy candidate. Commun Biol 2024; 7:1382. [PMID: 39443610 PMCID: PMC11499861 DOI: 10.1038/s42003-024-06982-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
Cowpea mosaic virus (CPMV) is a plant virus that is currently being developed for intratumoral immunotherapy. CPMV relieves the immune system from tumor-induced immunosuppression; reprograms the tumor microenvironment to an activated state whereby the treated and distant tumors are recognized and eradicated. Toward translational studies, we investigated the safety of CPMV, specifically addressing whether pathogenicity would be induced in mammalian cells. We show that murine macrophage immune cells recognize CPMV; however, there is no indication of de novo viral protein synthesis or RNA replication. Furthermore, we show that CPMV does not induce hemolysis, platelet aggregation and plasma coagulation amongst other assays in human blood and immune cells. Taken together, we anticipate that these results will reinforce the development of CPMV as an immunotherapeutic platform.
Collapse
Affiliation(s)
- Anthony O Omole
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Jessica Fernanda Affonso de Oliveira
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Lucas Sutorus
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Sweta Karan
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Zhongchao Zhao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Barry W Neun
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Edward Cedrone
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Jeffrey D Clogston
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Jie Xu
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Michael Sierk
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Qingrong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Nicole F Steinmetz
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA.
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA.
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, USA.
- Center for Engineering in Cancer, Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Prosper P, Rodríguez Puertas R, Guérin DMA, Branda MM. Computational method for designing vaccines applied to virus-like particles (VLPs) as epitope carriers. Vaccine 2024; 42:3916-3929. [PMID: 38782665 DOI: 10.1016/j.vaccine.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/06/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Nonenveloped virus-like particles (VLPs) are self-assembled oligomeric structures composed of one or more proteins that originate from diverse viruses. Because these VLPs have similar antigenicity to the parental virus, they are successfully used as vaccines against cognate virus infection. Furthermore, after foreign antigenic sequences are inserted in their protein components (chimVLPs), some VLPs are also amenable to producing vaccines against pathogens other than the virus it originates from (these VLPs are named platform or epitope carrier). Designing chimVLP vaccines is challenging because the immunogenic response must be oriented against a given antigen without altering stimulant properties inherent to the VLP. An important step in this process is choosing the location of the sequence modifications because this must be performed without compromising the assembly and stability of the original VLP. Currently, many immunogenic data and computational tools can help guide the design of chimVLPs, thus reducing experimental costs and work. In this study, we analyze the structure of a novel VLP that originate from an insect virus and describe the putative regions of its three structural proteins amenable to insertion. For this purpose, we employed molecular dynamics (MD) simulations to assess chimVLP stability by comparing mutated and wild-type (WT) VLP protein trajectories. We applied this procedure to design a chimVLP that can serve as a prophylactic vaccine against the SARS-CoV-2 virus. The methodology described in this work is generally applicable for VLP-based vaccine development.
Collapse
Affiliation(s)
- Pascalita Prosper
- Instituto de Física Aplicada - INFAP, Universidad Nacional de San Luis/CONICET, Argentina, Av. Ejército de los Andes 950, 5700 San Luis, San Luis, Argentina
| | - Rafael Rodríguez Puertas
- Universidad del País Vasco (UPV/EHU), Dept. Farmacología, Facultad de Medicina, B° Sarriena S/N, 48940 Leioa, Vizcaya, Spain; Neurodegenerative Diseases, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Diego M A Guérin
- Universidad del País Vasco (UPV/EHU) and Instituto Biofisika (CSIC, UPV/EHU), B° Sarriena S/N, 48940 Leioa, Vizcaya, Spain
| | - María Marta Branda
- Instituto de Física Aplicada - INFAP, Universidad Nacional de San Luis/CONICET, Argentina, Av. Ejército de los Andes 950, 5700 San Luis, San Luis, Argentina.
| |
Collapse
|
4
|
Jung E, Chung YH, Mao C, Fiering SN, Steinmetz NF. The Potency of Cowpea Mosaic Virus Particles for Cancer In Situ Vaccination Is Unaffected by the Specific Encapsidated Viral RNA. Mol Pharm 2023; 20:3589-3597. [PMID: 37294891 PMCID: PMC10530639 DOI: 10.1021/acs.molpharmaceut.3c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plant virus nanoparticles can be used as drug carriers, imaging reagents, vaccine carriers, and immune adjuvants in the formulation of intratumoral in situ cancer vaccines. One example is the cowpea mosaic virus (CPMV), a nonenveloped virus with a bipartite positive-strand RNA genome with each RNA packaged separately into identical protein capsids. Based on differences in their densities, the components carrying RNA-1 (6 kb) denoted as the bottom (B) component or carrying RNA-2 (3.5 kb) denoted as the middle (M) component can be separated from each other and from a top (T) component, which is devoid of any RNA. Previous preclinical mouse studies and canine cancer trials used mixed populations of CPMV (containing B, M, and T components), so it is unclear whether the particle types differ in their efficacies. It is known that the CPMV RNA genome contributes to immunostimulation by activation of TLR7. To determine whether the two RNA genomes that have different sizes and unrelated sequences cause different immune stimulation, we compared the therapeutic efficacies of B and M components and unfractionated CPMV in vitro and in mouse cancer models. We found that separated B and M particles behaved similarly to the mixed CPMV, activating innate immune cells to induce the secretion of pro-inflammatory cytokines such as IFNα, IFNγ, IL-6, and IL-12, while inhibiting immunosuppressive cytokines such as TGF-β and IL-10. In murine models of melanoma and colon cancer, the mixed and separated CPMV particles all significantly reduced tumor growth and prolonged survival with no significant difference. This shows that the specific RNA genomes similarly stimulate the immune system even though B particles have 40% more RNA than M particles; each CPMV particle type can be used as an effective adjuvant against cancer with the same efficacy as native mixed CPMV. From a translational point of view, the use of either B or M component vs the mixed CPMV formulation offers the advantage that separated B or M alone is noninfectious toward plants and thus provides agronomic safety.
Collapse
Affiliation(s)
- Eunkyeong Jung
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Young Hun Chung
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Chenkai Mao
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, New Hampshire 03755, United States
| | - Steven N Fiering
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, New Hampshire 03755, United States
- Dartmouth Cancer Center, Dartmouth Geisel School of Medicine, Hanover, New Hampshire 03755, United States
| | - Nicole F Steinmetz
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California 92093, United States
- Institute for Materials Design and Discovery, University of California San Diego, La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Zhao Z, Ortega-Rivera OA, Chung YH, Simms A, Steinmetz NF. A co-formulated vaccine of irradiated cancer cells and cowpea mosaic virus improves ovarian cancer rejection. J Mater Chem B 2023. [PMID: 36861401 DOI: 10.1039/d2tb02355e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Ovarian cancer ranks fifth in cancer deaths amongst women, and most patients are diagnosed with late-stage and disseminated diseases. Surgical debulking and chemotherapy remove most of the tumor burden and provide a short period of remission; however, most patients experience cancer relapse and eventually succumb to the disease. Therefore, there is an urgent need for the development of vaccines to prime anti-tumor immunity and prevent its recurrence. Here we developed vaccine formulations composed of a mixture of irradiated cancer cells (ICCs, providing the antigen) and cowpea mosaic virus (CPMV) adjuvants. More specifically we compared the efficacy of co-formulated vs. mixtures of ICCs and CPMV. Specifically, we compared co-formulations where the ICCs and CPMV are bonded through natural CPMV-cell interactions or chemical coupling vs. mixtures of PEGylated CPMV and ICCs, where PEGylation of CPMV prevents ICC interactions. Flow cytometry and confocal imaging provided insights into the composition of the vaccines and their efficacy was tested using a mouse model of disseminated ovarian cancer. 67% of the mice receiving the co-formulated CPMV-ICCs survived the initial tumor challenge, and 60% of the surviving mice rejected tumors in a re-challenge experiment. In stark contrast, simple mixtures of the ICCs and (PEGylated) CPMV adjuvants were ineffective. Overall, this study highlights the importance of the co-delivery of cancer antigens and adjuvants in ovarian cancer vaccine development.
Collapse
Affiliation(s)
- Zhongchao Zhao
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA. .,Center for Nano-ImmunoEngineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.,Moores Cancer Center, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Oscar A Ortega-Rivera
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| | - Young Hun Chung
- Moores Cancer Center, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.,Department of Bioengineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Andrea Simms
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA. .,Center for Nano-ImmunoEngineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.,Moores Cancer Center, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.,Department of Bioengineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.,Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.,Institute for Materials Discovery and Design, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.,Center for Engineering in Cancer, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| |
Collapse
|
6
|
Bragard C, Baptista P, Chatzivassiliou E, Gonthier P, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Stefani E, Thulke H, Van der Werf W, Civera AV, Yuen J, Zappalà L, Streissl F, Carluccio AV, Chiumenti M, Di Serio F, Rubino L, Reignault PL. Pest categorisation of cowpea mosaic virus. EFSA J 2023; 21:e07847. [PMID: 36846393 PMCID: PMC9951085 DOI: 10.2903/j.efsa.2023.7847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The EFSA Panel on Plant Health conducted a pest categorisation of cowpea mosaic virus (CPMV) for the EU territory. The identity of CPMV, a member of the genus Comovirus (family Secoviridae), is established and detection and identification methods are available. The pathogen is not included in the Commission Implementing Regulation (EU) 2019/2072. It has been reported from the Americas, and several countries in Africa and Asia and it is not known to be present in the EU in natural conditions. CPMV is considered a major pathogen of cowpea on which it causes symptoms ranging from mild to severe mosaic, chlorosis and necrosis. The virus has been reported sporadically on some other cultivated species of the family Fabaceae, including soybean and some common bean varieties. CPMV is transmitted by cowpea seeds, with uncertainty on the transmission rate. There is uncertainty on seed transmission by other Fabaceae host species due to lack of information. CPMV is also transmitted by several beetle species, one of which, Diabrotica virgifera virgifera, is present in the EU. Seeds for sowing of cowpea are identified as the major entry pathway. The cultivated area and production of cowpea in the EU territory are mainly limited to local varieties cultivated at a small scale in Mediterranean EU Member States. Should the pest establish in the EU, an impact is expected on cowpea crops at local scale. There is high uncertainty on the potential impact that CPMV would cause on other natural hosts cultivated in the EU due to the lack of information from the areas of CPMV's current distribution. Despite the uncertainty concerning the potential impact on bean and soybean crops in the EU, CPMV satisfies the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest.
Collapse
|
7
|
The Plant Viruses and Molecular Farming: How Beneficial They Might Be for Human and Animal Health? Int J Mol Sci 2023; 24:ijms24021533. [PMID: 36675043 PMCID: PMC9863966 DOI: 10.3390/ijms24021533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Plant viruses have traditionally been studied as pathogens in the context of understanding the molecular and cellular mechanisms of a particular disease affecting crops. In recent years, viruses have emerged as a new alternative for producing biological nanomaterials and chimeric vaccines. Plant viruses were also used to generate highly efficient expression vectors, revolutionizing plant molecular farming (PMF). Several biological products, including recombinant vaccines, monoclonal antibodies, diagnostic reagents, and other pharmaceutical products produced in plants, have passed their clinical trials and are in their market implementation stage. PMF offers opportunities for fast, adaptive, and low-cost technology to meet ever-growing and critical global health needs. In this review, we summarized the advancements in the virus-like particles-based (VLPs-based) nanotechnologies and the role they played in the production of advanced vaccines, drugs, diagnostic bio-nanomaterials, and other bioactive cargos. We also highlighted various applications and advantages plant-produced vaccines have and their relevance for treating human and animal illnesses. Furthermore, we summarized the plant-based biologics that have passed through clinical trials, the unique challenges they faced, and the challenges they will face to qualify, become available, and succeed on the market.
Collapse
|
8
|
Chung YH, Volckaert BA, Steinmetz NF. Metastatic Colon Cancer Treatment Using S100A9-Targeted Cowpea Mosaic Virus Nanoparticles. Biomacromolecules 2022; 23:5127-5136. [PMID: 36375170 PMCID: PMC9772157 DOI: 10.1021/acs.biomac.2c00873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peritoneal metastases (PMs) occur due to the metastasis of gynecological and gastrointestinal cancers such as ovarian, colon, pancreatic, or gastric tumors. PM outgrowth is often fatal, and patients with PMs have a median survival of 6 months. Cowpea mosaic virus (CPMV) has been shown, when injected intratumorally, to act as an immunomodulator reversing the immunosuppressive tumor microenvironment, therefore turning cold tumors hot and priming systemic antitumor immunity. However, not all tumors are injectable, and PMs especially will require targeted treatments to direct CPMV toward the disseminated tumor nodules. Toward this goal, we designed and tested a CPMV nanoparticle targeted to S100A9, a key immune mediator for many cancer types indicated in cancer growth, invasiveness, and metastasis. Here, we chose to use an intraperitoneal (IP) colon cancer model, and analysis of IP gavage fluid demonstrates that S100A9 is upregulated following IP challenge. S100A9-targeted CPMV particles displaying peptide ligands specific for S100A9 homed to IP-disseminated tumors, and treatment led to improved survival and decreased tumor burden. Targeting CPMV to S100A9 improves preclinical outcomes and harbors the potential of utilizing CPMV for the treatment of IP-disseminated diseases.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Britney A. Volckaert
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Nicole F. Steinmetz
- Corresponding Author: Nicole F. Steinmetz – Department of Bioengineering, Moores Cancer Center, Department of NanoEngineering, Department of Radiology, Institute for Materials Discovery and Design, Center for Nano-Immuno Engineering, and Center for Engineering in Cancer, University of California, San Diego, La Jolla, California 92093-0021, United States;
| |
Collapse
|
9
|
Switalski K, Fan J, Li L, Chu M, Sarnello E, Jemian P, Li T, Wang Q, Zhang Q. Direct measurement of Stokes-Einstein diffusion of Cowpea mosaic virus with 19 µs-resolved XPCS. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1429-1435. [PMID: 36345751 PMCID: PMC9641563 DOI: 10.1107/s1600577522008402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Brownian motion of Cowpea mosaic virus (CPMV) in water was measured using small-angle X-ray photon correlation spectroscopy (SA-XPCS) at 19.2 µs time resolution. It was found that the decorrelation time τ(Q) = 1/DQ2 up to Q = 0.091 nm-1. The hydrodynamic radius RH determined from XPCS using Stokes-Einstein diffusion D = kT/(6πηRH) is 43% larger than the geometric radius R0 determined from SAXS in the 0.007 M K3PO4 buffer solution, whereas it is 80% larger for CPMV in 0.5 M NaCl and 104% larger in 0.5 M (NH4)2SO4, a possible effect of aggregation as well as slight variation of the structures of the capsid resulting from the salt-protein interactions.
Collapse
Affiliation(s)
- Kacper Switalski
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Jingyu Fan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Luxi Li
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Miaoqi Chu
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Erik Sarnello
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Pete Jemian
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Qingteng Zhang
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| |
Collapse
|
10
|
Philips JG, Martin-Avila E, Robold AV. Horizontal gene transfer from genetically modified plants - Regulatory considerations. Front Bioeng Biotechnol 2022; 10:971402. [PMID: 36118580 PMCID: PMC9471246 DOI: 10.3389/fbioe.2022.971402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Gene technology regulators receive applications seeking permission for the environmental release of genetically modified (GM) plants, many of which possess beneficial traits such as improved production, enhanced nutrition and resistance to drought, pests and diseases. The regulators must assess the risks to human and animal health and to the environment from releasing these GM plants. One such consideration, of many, is the likelihood and potential consequence of the introduced or modified DNA being transferred to other organisms, including people. While such gene transfer is most likely to occur to sexually compatible relatives (vertical gene transfer), horizontal gene transfer (HGT), which is the acquisition of genetic material that has not been inherited from a parent, is also a possibility considered during these assessments. Advances in HGT detection, aided by next generation sequencing, have demonstrated that HGT occurrence may have been previously underestimated. In this review, we provide updated evidence on the likelihood, factors and the barriers for the introduced or modified DNA in GM plants to be horizontally transferred into a variety of recipients. We present the legislation and frameworks the Australian Gene Technology Regulator adheres to with respect to the consideration of risks posed by HGT. Such a perspective may generally be applicable to regulators in other jurisdictions as well as to commercial and research organisations who develop GM plants.
Collapse
|
11
|
Liu T, Li L, Cheng C, He B, Jiang T. Emerging prospects of protein/peptide-based nanoassemblies for drug delivery and vaccine development. NANO RESEARCH 2022; 15:7267-7285. [PMID: 35692441 PMCID: PMC9166156 DOI: 10.1007/s12274-022-4385-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 05/09/2023]
Abstract
Proteins have been widely used in the biomedical field because of their well-defined architecture, accurate molecular weight, excellent biocompatibility and biodegradability, and easy-to-functionalization. Inspired by the wisdom of nature, increasing proteins/peptides that possess self-assembling capabilities have been explored and designed to generate nanoassemblies with unique structure and function, including spatially organized conformation, passive and active targeting, stimuli-responsiveness, and high stability. These characteristics make protein/peptide-based nanoassembly an ideal platform for drug delivery and vaccine development. In this review, we focus on recent advances in subsistent protein/peptide-based nanoassemblies, including protein nanocages, virus-like particles, self-assemblable natural proteins, and self-assemblable artificial peptides. The origin and characteristics of various protein/peptide-based assemblies and their applications in drug delivery and vaccine development are summarized. In the end, the prospects and challenges are discussed for the further development of protein/peptide-based nanoassemblies.
Collapse
Affiliation(s)
- Taiyu Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Lu Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Cheng Cheng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| |
Collapse
|
12
|
Koellhoffer EC, Mao C, Beiss V, Wang L, Fiering SN, Boone CE, Steinmetz NF. Inactivated Cowpea Mosaic Virus in Combination with OX40 Agonist Primes Potent Antitumor Immunity in a Bilateral Melanoma Mouse Model. Mol Pharm 2022; 19:592-601. [PMID: 34978197 PMCID: PMC9207558 DOI: 10.1021/acs.molpharmaceut.1c00681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Viral immunotherapies are being recognized in cancer treatment, with several currently approved or undergoing clinical testing. While contemporary approaches have focused on oncolytic viral therapies, our efforts center on the development of plant virus-based cancer immunotherapies. In a previous work, we demonstrated the potent efficacy of the cowpea mosaic virus (CPMV), a plant virus that does not replicate in animals, applied as an in situ vaccine. CPMV is an immunostimulatory drug candidate, and intratumoral administration remodels the tumor microenvironment leading to activation of local and systemic antitumor immunity. Efficacy has been demonstrated in multiple tumor mouse models and canine cancer patients. As wild-type CPMV is infectious toward various legumes and because shedding of infectious virus from patients may be an agricultural concern, we developed UV-inactivated CPMV (termed inCPMV) which is not infectious toward plants. We report that as a monotherapy, wild-type CPMV outperforms inCPMV in mouse models of dermal melanoma or disseminated colon cancer. Efficacy of inCPMV is less than that of CPMV and similar to that of RNA-free CPMV. Immunological investigation using knockout mice shows that inCPMV does not signal through TLR7 (toll-like receptor); structure-function studies indicate that the RNA is highly cross-linked and therefore unable to activate TLR7. Wild-type CPMV signals through TLR2, -4, and -7, whereas inCPMV more closely resembles RNA-free CPMV which signals through TLR2 and -4 only. The structural features of inCPMV explain the increased potency of wild-type CPMV through the triple pronged TLR activation. Strikingly, when inCPMV is used in combination with an anti-OX40 agonist antibody (administered systemically), exceptional efficacy was demonstrated in a bilateral B16F10 dermal melanoma model. Combination therapy, with in situ vaccination applied only into the primary tumor, controlled the progression of the secondary, untreated tumors, with 10 out of 14 animals surviving for at least 100 days post tumor challenge without development of recurrence or metastatic disease. This study highlights the potential of inCPMV as an in situ vaccine candidate and demonstrates the power of combined immunotherapy approaches. Strategic immunocombination therapies are the formula for success, and the combination of in situ vaccination strategies along with therapeutic antibodies targeting the cancer immunity cycle is a particularly powerful approach.
Collapse
Affiliation(s)
- Edward C Koellhoffer
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Chenkai Mao
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Veronique Beiss
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Lu Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Steven N Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755, United States
- Norris Cotton Cancer Center, Geisel School of Medicine and Dartmouth Hitchcock Medical System, Lebanon, New Hampshire 03755, United States
| | - Christine E Boone
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Nicole F Steinmetz
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute for Materials Design and Discovery, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
13
|
Maciá E. Aperiodic crystals in biology. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:123001. [PMID: 34920447 DOI: 10.1088/1361-648x/ac443d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Biological systems display a broad palette of hierarchically ordered designs spanning over many orders of magnitude in size. Remarkably enough, periodic order, which profusely shows up in non-living ordered compounds, plays a quite subsidiary role in most biological structures, which can be appropriately described in terms of the more general aperiodic crystal notion instead. In this topical review I shall illustrate this issue by considering several representative examples, including botanical phyllotaxis, the geometry of cell patterns in tissues, the morphology of sea urchins, or the symmetry principles underlying virus architectures. In doing so, we will realize that albeit the currently adopted quasicrystal notion is not general enough to properly account for the rich structural features one usually finds in biological arrangements of matter, several mathematical tools and fundamental notions belonging to the aperiodic crystals science toolkit can provide a useful modeling framework to this end.
Collapse
Affiliation(s)
- Enrique Maciá
- Dpto. Física de Materiales, Facultad CC. Fisicas, Universidad Complutense de Madrid, E-28040, Spain
| |
Collapse
|
14
|
Shin MD, Hochberg JD, Pokorski JK, Steinmetz NF. Bioconjugation of Active Ingredients to Plant Viral Nanoparticles Is Enhanced by Preincubation with a Pluronic F127 Polymer Scaffold. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59618-59632. [PMID: 34890195 PMCID: PMC11729460 DOI: 10.1021/acsami.1c13183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Proteinaceous nanoparticles can be used to deliver large payloads of active ingredients, which is advantageous in medicine and agriculture. However, the conjugation of hydrophobic ligands to hydrophilic nanocarriers such as plant viral nanoparticles (plant VNPs) can result in aggregation by reducing overall solubility. Given the benefits of hydrophilic nanocarrier platforms for targeted delivery and multivalent ligand display, coupled with the versatility of hydrophobic drugs, contrast agents, and peptides, this is an issue that must be addressed to realize their full potential. Here, we report two preincubation strategies that use a Pluronic F127 polymer scaffold to prevent the aggregation of conjugated plant VNPs: a plant VNP-polymer precoat (COAT) and an active ingredient formulation combined with a plant VNP-polymer precoat (FORMCOAT). The broad applications of these modified conjugation strategies were highlighted by testing their compatibility with three types of bioconjugation chemistry: N-hydroxysuccinimide ester-amine coupling, maleimide-thiol coupling, and copper(I)-catalyzed azide-alkyne cycloaddition (click chemistry). The COAT and FORMCOAT strategies promoted efficient bioconjugation and prevented the aggregation that accompanies conventional bioconjugation methods, thus improving the stability, homogeneity, and translational potential of plant VNP conjugates in medicine and agriculture.
Collapse
Affiliation(s)
- Matthew D Shin
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Justin D Hochberg
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Jonathan K Pokorski
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| |
Collapse
|
15
|
Ortega-Rivera O, Shin MD, Chen A, Beiss V, Moreno-Gonzalez MA, Lopez-Ramirez MA, Reynoso M, Wang H, Hurst BL, Wang J, Pokorski JK, Steinmetz NF. Trivalent Subunit Vaccine Candidates for COVID-19 and Their Delivery Devices. J Am Chem Soc 2021; 143:14748-14765. [PMID: 34490778 PMCID: PMC8442557 DOI: 10.1021/jacs.1c06600] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic highlights the need for platform technologies enabling rapid development of vaccines for emerging viral diseases. The current vaccines target the SARS-CoV-2 spike (S) protein and thus far have shown tremendous efficacy. However, the need for cold-chain distribution, a prime-boost administration schedule, and the emergence of variants of concern (VOCs) call for diligence in novel SARS-CoV-2 vaccine approaches. We studied 13 peptide epitopes from SARS-CoV-2 and identified three neutralizing epitopes that are highly conserved among the VOCs. Monovalent and trivalent COVID-19 vaccine candidates were formulated by chemical conjugation of the peptide epitopes to cowpea mosaic virus (CPMV) nanoparticles and virus-like particles (VLPs) derived from bacteriophage Qβ. Efficacy of this approach was validated first using soluble vaccine candidates as solo or trivalent mixtures and subcutaneous prime-boost injection. The high thermal stability of our vaccine candidates allowed for formulation into single-dose injectable slow-release polymer implants, manufactured by melt extrusion, as well as microneedle (MN) patches, obtained through casting into micromolds, for prime-boost self-administration. Immunization of mice yielded high titers of antibodies against the target epitope and S protein, and data confirms that antibodies block receptor binding and neutralize SARS-CoV and SARS-CoV-2 against infection of human cells. We present a nanotechnology vaccine platform that is stable outside the cold-chain and can be formulated into delivery devices enabling single administration or self-administration. CPMV or Qβ VLPs could be stockpiled, and epitopes exchanged to target new mutants or emergent diseases as the need arises.
Collapse
Affiliation(s)
- Oscar
A. Ortega-Rivera
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
| | - Matthew D. Shin
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
| | - Angela Chen
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
| | - Veronique Beiss
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
| | - Miguel A. Moreno-Gonzalez
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
| | - Miguel A. Lopez-Ramirez
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
| | - Maria Reynoso
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
- Institute
for Antiviral Research, Utah State University, Logan, Utah 84322, United States
| | - Hong Wang
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
| | - Brett L. Hurst
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
- Institute
for Antiviral Research, Utah State University, Logan, Utah 84322, United States
| | - Joseph Wang
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
| | - Jonathan K. Pokorski
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
| | - Nicole F. Steinmetz
- Department
of NanoEngineering, Center for Nano-ImmunoEngineering, Institute for Materials
Discovery and Design, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California−San Diego, La Jolla, California 92039, United States
| |
Collapse
|
16
|
Park J, Wen AM, Gao H, Shin MD, Simon DI, Wang Y, Steinmetz NF. Designing S100A9-Targeted Plant Virus Nanoparticles to Target Deep Vein Thrombosis. Biomacromolecules 2021; 22:2582-2594. [PMID: 34060817 DOI: 10.1021/acs.biomac.1c00303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Thromboembolic conditions are a leading cause of death worldwide, and deep vein thrombosis (DVT), or occlusive venous clot formation, is a critical and rising problem that contributes to damage of vital organs, long-term complications, and life-threatening conditions such as pulmonary embolism. Early diagnosis and treatment are correlated to better prognosis. However, current technologies in these areas, such as ultrasonography for diagnostics and anticoagulants for treatment, are limited in terms of their accuracy and therapeutic windows. In this work, we investigated targeting myeloid related protein 14 (MRP-14, also known as S100A9) using plant virus-based nanoparticle carriers as a means to achieve tissue specificity aiding prognosis and therapeutic intervention. We used a combinatorial peptide library screen to identify peptide ligands that bind MRP-14. Candidates were selected and formulated as nanoparticles by using cowpea mosaic virus (CPMV) and tobacco mosaic virus (TMV). Intravascular delivery of our MRP-14-targeted nanoparticles in a murine model of DVT resulted in enhanced accumulation in the thrombi and reduced thrombus size, suggesting application of nanoparticles for molecular targeting of MRP-14 could be a promising direction for improving DVT diagnostics, therapeutics, and therefore prognosis.
Collapse
Affiliation(s)
- Jooneon Park
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Huiyun Gao
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Matthew D Shin
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Daniel I Simon
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Yunmei Wang
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States.,Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States.,Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States.,Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States.,Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States.,Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
17
|
Nkanga CI, Steinmetz NF. The pharmacology of plant virus nanoparticles. Virology 2021; 556:39-61. [PMID: 33545555 PMCID: PMC7974633 DOI: 10.1016/j.virol.2021.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
The application of nanoparticles for medical purposes has made enormous strides in providing new solutions to health problems. The observation that plant virus-based nanoparticles (VNPs) can be repurposed and engineered as smart bio-vehicles for targeted drug delivery and imaging has launched extensive research for improving the therapeutic and diagnostic management of various diseases. There is evidence that VNPs are promising high value nanocarriers with potential for translational development. This is mainly due to their unique features, encompassing structural uniformity, ease of manufacture and functionalization by means of expression, chemical biology and self-assembly. While the development pipeline is moving rapidly, with many reports focusing on engineering and manufacturing aspects to tailor the properties and efficacy of VNPs, fewer studies have focused on gaining insights into the nanotoxicity of this novel platform nanotechnology. Herein, we discuss the pharmacology of VNPs as a function of formulation and route of administration. VNPs are reviewed in the context of their application as therapeutic adjuvants or nanocarrier excipients to initiate, enhance, attenuate or impede the formulation's toxicity. The summary of the data however also underlines the need for meticulous VNP structure-nanotoxicity studies to improve our understanding of their in vivo fates and pharmacological profiles to pave the way for translation of VNP-based formulations into the clinical setting.
Collapse
Affiliation(s)
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, 92039, United States; Department of Bioengineering, Department of Radiology, Center for NanoImmunoEngineering, Moores Cancer Center, Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, CA, 92039, United States.
| |
Collapse
|
18
|
Preparation, Functionalization, Modification, and Applications of Nanostructured Gold: A Critical Review. ENERGIES 2021. [DOI: 10.3390/en14051278] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gold nanoparticles (Au NPs) play a significant role in science and technology because of their unique size, shape, properties and broad range of potential applications. This review focuses on the various approaches employed for the synthesis, modification and functionalization of nanostructured Au. The potential catalytic applications and their enhancement upon modification of Au nanostructures have also been discussed in detail. The present analysis also offers brief summaries of the major Au nanomaterials synthetic procedures, such as hydrothermal, solvothermal, sol-gel, direct oxidation, chemical vapor deposition, sonochemical deposition, electrochemical deposition, microwave and laser pyrolysis. Among the various strategies used for improving the catalytic performance of nanostructured Au, the modification and functionalization of nanostructured Au produced better results. Therefore, various synthesis, modification and functionalization methods employed for better catalytic outcomes of nanostructured Au have been summarized in this review.
Collapse
|
19
|
Brogan APS. Preparation and application of solvent-free liquid proteins with enhanced thermal and anhydrous stabilities. NEW J CHEM 2021. [DOI: 10.1039/d1nj00467k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This perspective details a robust chemical modification strategy to protect proteins from temperature, aggregation, and non-aqueous environments.
Collapse
|
20
|
Aljabali AA, Obeid MA. Inorganic-organic Nanomaterials for Therapeutics and Molecular Imaging Applications. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2210681209666190807145229] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
Surface modification of nanoparticles with targeting moieties can be
achieved through bioconjugation chemistries to impart new Functionalities. Various polymeric
nanoparticles have been used for the formulation of nanoparticles such as naturally-occurring
protein cages, virus-like particles, polymeric saccharides, and liposomes. These polymers have
been proven to be biocompatible, side effects free and degradable with no toxicity.
Objectives::
This paper reviews available literature on the nanoparticles pharmaceutical and medical
applications. The review highlights and updates the customized solutions for selective drug
delivery systems that allow high-affinity binding between nanoparticles and the target receptors.
Methods::
Bibliographic databases and web-search engines were used to retrieve studies that assessed
the usability of nanoparticles in the pharmaceutical and medical fields. Data were extracted
on each system in vivo and in vitro applications, its advantages and disadvantages, and its ability to
be chemically and genetically modified to impart new functionalities. Finally, a comparison
between naturally occurring and their synthetic counterparts was carried out.
Results::
The results showed that nanoparticles-based systems could have promising applications in
diagnostics, cell labeling, contrast agents (Magnetic Resonance Imaging and Computed Tomography),
antimicrobial agents, and as drug delivery systems. However, precautions should be taken
to avoid or minimize toxic effect or incompatibility of nanoparticles-based systems with the biological
systems in case of pharmaceutical or medical applications.
Conclusion::
This review presented a summary of recent developments in the field of pharmaceutical
nanotechnology and highlighted the challenges and the merits that some of the nanoparticles-
based systems both in vivo and in vitro systems.
Collapse
Affiliation(s)
- Alaa A.A. Aljabali
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarmouk University, P.O. BOX 566, Irbid 21163, Jordan
| | - Mohammad A. Obeid
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarmouk University, P.O. BOX 566, Irbid 21163, Jordan
| |
Collapse
|
21
|
Shukla S, Wang C, Beiss V, Cai H, Washington T, Murray AA, Gong X, Zhao Z, Masarapu H, Zlotnick A, Fiering S, Steinmetz NF. The unique potency of Cowpea mosaic virus (CPMV) in situ cancer vaccine. Biomater Sci 2020; 8:5489-5503. [PMID: 32914796 PMCID: PMC8086234 DOI: 10.1039/d0bm01219j] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immunosuppressive tumor microenvironment enables cancer to resist immunotherapies. We have established that intratumoral administration of plant-derived Cowpea mosaic virus (CPMV) nanoparticles as an in situ vaccine overcomes the local immunosuppression and stimulates a potent anti-tumor response in several mouse cancer models and canine patients. CPMV does not infect mammalian cells but acts as a danger signal that leads to the recruitment and activation of innate and subsequently, adaptive immune cells. In the present study we addressed whether other icosahedral viruses or virus-like particles (VLPs) of plant, bacteriophage and mammalian origin can be similarly employed as intratumoral immunotherapy. Our results indicate that CPMV in situ vaccine outperforms Cowpea chlorotic mottle virus (CCMV), Physalis mosaic virus (PhMV), Sesbania mosaic virus (SeMV), bacteriophage Qβ VLPs, or Hepatitis B virus capsids (HBVc). Furthermore, ex vivo and in vitro assays reveal unique features of CPMV that makes it an inherently stronger immune stimulant.
Collapse
Affiliation(s)
- Sourabh Shukla
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA.
| | - Chao Wang
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA.
| | - Veronique Beiss
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA.
| | - Hui Cai
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA.
| | - Torus Washington
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA.
| | - Abner A Murray
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xingjian Gong
- Department of Bioengineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zhongchao Zhao
- Molecular and Cellular Biochemistry Department, Indiana University Bloomington, IN 47405, USA
| | - Hema Masarapu
- Department of Virology, Sri Venkateswara University, Tirupati 517502, India
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University Bloomington, IN 47405, USA
| | - Steven Fiering
- Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA. and Department of Bioengineering, University of California-San Diego, La Jolla, CA 92039, USA and Department of Radiology, University of California-San Diego, La Jolla, CA 92039, USA and Moores Cancer Center, University of California-San Diego, La Jolla, CA 92039, USA and Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA 92039, USA
| |
Collapse
|
22
|
Dickmeis C, Kauth L, Commandeur U. From infection to healing: The use of plant viruses in bioactive hydrogels. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1662. [PMID: 32677315 DOI: 10.1002/wnan.1662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Plant viruses show great diversity in shape and size, but each species forms unique nucleoprotein particles that are symmetrical and monodisperse. The genetically programed structure of plant viruses allows them to be modified by genetic engineering, bioconjugation, or encapsulation to form virus nanoparticles (VNPs) that are suitable for a broad range of applications. Plant VNPs can be used to present foreign proteins or epitopes, to construct inorganic hybrid materials, or to carry molecular cargos, allowing their utilization as imaging reagents, immunomodulators, therapeutics, nanoreactors, and biosensors. The medical applications of plant viruses benefit from their inability to infect and replicate in human cells. The structural properties of plant viruses also make them useful as components of hydrogels for tissue engineering. Hydrogels are three-dimensional networks composed of hydrophilic polymers that can absorb large amounts of water. They are used as supports for tissue regeneration, as reservoirs for controlled drug release, and are found in contact lenses, many wound healing materials, and hygiene products. They are also useful in ecological applications such as wastewater treatment. Hydrogel-based matrices are structurally similar to the native extracellular matrix (ECM) and provide a scaffold for the attachment of cells. To fully replicate the functions of the ECM it is necessary to augment hydrogels with biological cues that regulate cellular interactions. This can be achieved by incorporating functionalized VNPs displaying ligands that influence the mechanical characteristics of hydrogels and their biological properties, promoting the survival, proliferation, migration, and differentiation of embedded cells. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Christina Dickmeis
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Louisa Kauth
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
23
|
Wilson DP. Unveiling the Hidden Rules of Spherical Viruses Using Point Arrays. Viruses 2020; 12:v12040467. [PMID: 32326043 PMCID: PMC7232142 DOI: 10.3390/v12040467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/16/2022] Open
Abstract
Since its introduction, the Triangulation number has been the most successful and ubiquitous scheme for classifying spherical viruses. However, despite its many successes, it fails to describe the relative angular orientations of proteins, as well as their radial mass distribution within the capsid. It also fails to provide any critical insight into sites of stability, modifications or possible mutations. We show how classifying spherical viruses using icosahedral point arrays, introduced by Keef and Twarock, unveils new geometric rules and constraints for understanding virus stability and key locations for exterior and interior modifications. We present a modified fitness measure which classifies viruses in an unambiguous and rigorous manner, irrespective of local surface chemistry, steric hinderance, solvent accessibility or Triangulation number. We then use these point arrays to explain the immutable surface loops of bacteriophage MS2, the relative reactivity of surface lysine residues in CPMV and the non-quasi-equivalent flexibility of the HBV dimers. We then explain how point arrays can be used as a predictive tool for site-directed modifications of capsids. This success builds on our previous work showing that viruses place their protruding features along the great circles of the asymmetric unit, demonstrating that viruses indeed adhere to these geometric constraints.
Collapse
Affiliation(s)
- David P Wilson
- Department of Physics, Kalamazoo College, Kalamazoo, MI 49006, USA
| |
Collapse
|
24
|
Capsid Structure of a Marine Algal Virus of the Order Picornavirales. J Virol 2020; 94:JVI.01855-19. [PMID: 32024776 DOI: 10.1128/jvi.01855-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
The order Picornavirales includes viruses that infect different kinds of eukaryotes and that share similar properties. The capsid proteins (CPs) of viruses in the order that infect unicellular organisms, such as algae, presumably possess certain characteristics that have changed little over the course of evolution, and thus these viruses may resemble the Picornavirales ancestor in some respects. Herein, we present the capsid structure of Chaetoceros tenuissimus RNA virus type II (CtenRNAV-II) determined using cryo-electron microscopy at a resolution of 3.1 Å, the first alga virus belonging to the family Marnaviridae of the order Picornavirales A structural comparison to related invertebrate and vertebrate viruses revealed a unique surface loop of the major CP VP1 that had not been observed previously, and further, revealed that another VP1 loop obscures the so-called canyon, which is a host-receptor binding site for many of the mammalian Picornavirales viruses. VP2 has an N-terminal tail, which has previously been reported as a primordial feature of Picornavirales viruses. The above-mentioned and other critical structural features provide new insights on three long-standing theories about Picornavirales: (i) the canyon hypothesis, (ii) the primordial VP2 domain swap, and (iii) the hypothesis that alga Picornavirales viruses could share characteristics with the Picornavirales ancestor.IMPORTANCE Identifying the acquired structural traits in virus capsids is important for elucidating what functions are essential among viruses that infect different hosts. The Picornavirales viruses infect a broad spectrum of hosts, ranging from unicellular algae to insects and mammals and include many human pathogens. Those viruses that infect unicellular protists, such as algae, are likely to have undergone fewer structural changes during the course of evolution compared to those viruses that infect multicellular eukaryotes and thus still share some characteristics with the Picornavirales ancestor. This article describes the first atomic capsid structure of an alga Marnavirus, CtenRNAV-II. A comparison to capsid structures of the related invertebrate and vertebrate viruses identified a number of structural traits that have been functionally acquired or lost during the course of evolution. These observations provide new insights on past theories on the viability and evolution of Picornavirales viruses.
Collapse
|
25
|
Demchuk AM, Patel TR. The biomedical and bioengineering potential of protein nanocompartments. Biotechnol Adv 2020; 41:107547. [PMID: 32294494 DOI: 10.1016/j.biotechadv.2020.107547] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/21/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
Protein nanocompartments (PNCs) are self-assembling biological nanocages that can be harnessed as platforms for a wide range of nanobiotechnology applications. The most widely studied examples of PNCs include virus-like particles, bacterial microcompartments, encapsulin nanocompartments, enzyme-derived nanocages (such as lumazine synthase and the E2 component of the pyruvate dehydrogenase complex), ferritins and ferritin homologues, small heat shock proteins, and vault ribonucleoproteins. Structural PNC shell proteins are stable, biocompatible, and tolerant of both interior and exterior chemical or genetic functionalization for use as vaccines, therapeutic delivery vehicles, medical imaging aids, bioreactors, biological control agents, emulsion stabilizers, or scaffolds for biomimetic materials synthesis. This review provides an overview of the recent biomedical and bioengineering advances achieved with PNCs with a particular focus on recombinant PNC derivatives.
Collapse
Affiliation(s)
- Aubrey M Demchuk
- Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, Canada.
| | - Trushar R Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming, School of Medicine, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 1N4, Canada; Li Ka Shing Institute of Virology and Discovery Lab, Faculty of Medicine & Dentistry, University of Alberta, 6-010 Katz Center for Health Research, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
26
|
Franconetti A, López Ó, Fernandez-Bolanos JG. Carbohydrates: Potential Sweet Tools Against Cancer. Curr Med Chem 2020; 27:1206-1242. [DOI: 10.2174/0929867325666180719114150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 04/25/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
:Cancer, one of the most devastating degenerative diseases nowadays, is one of the main targets in Medicinal Chemistry and Pharmaceutical industry. Due to the significant increase in the incidence of cancer within world population, together with the complexity of such disease, featured with a multifactorial nature, access to new drugs targeting different biological targets connected to cancer is highly necessary.:Among the vast arsenal of compounds exhibiting antitumor activities, this review will cover the use of carbohydrate derivatives as privileged scaffolds. Their hydrophilic nature, together with their capacity of establishing selective interactions with biological receptors located on cell surface, involved in cell-to-cell communication processes, has allowed the development of an ample number of new templates useful in cancer treatment.:Their intrinsic water solubility has allowed their use as of pro-drug carriers for accessing more efficiently the pharmaceutical targets. The preparation of glycoconjugates in which the carbohydrate is tethered to a pharmacophore has also allowed a better permeation of the drug through cellular membranes, in which selective interactions with the carbohydrate motifs are involved. In this context, the design of multivalent structures (e.g. gold nanoparticles) has been demonstrated to enhance crucial interactions with biological receptors like lectins, glycoproteins that can be involved in cancer progression.:Moreover, the modification of the carbohydrate structural motif, by incorporation of metal complexes, or by replacing their endocyclic oxygen, or carbon atoms with heteroatoms has led to new antitumor agents.:Such diversity of sugar-based templates with relevant antitumor activity will be covered in this review.
Collapse
Affiliation(s)
- Antonio Franconetti
- Departamento de Quimica Organica, Facultad de Quimica, Universidad de Sevilla, Sevilla, Spain
| | - Óscar López
- Departamento de Quimica Organica, Facultad de Quimica, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
27
|
Recent Advances in the Use of Plant Virus-Like Particles as Vaccines. Viruses 2020; 12:v12030270. [PMID: 32121192 DOI: 10.3390/v12030270] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Vaccination is one of the most effective public health interventions of the 20th century. All vaccines can be classified into different types, such as vaccines against infectious diseases, anticancer vaccines and vaccines against autoimmune diseases. In recent decades, recombinant technologies have enabled the design of experimental vaccines against a wide range of diseases using plant viruses and virus-like particles as central elements to stimulate protective and long-lasting immune responses. The analysis of recent publications shows that at least 97 experimental vaccines have been constructed based on plant viruses, including 71 vaccines against infectious agents, 16 anticancer vaccines and 10 therapeutic vaccines against autoimmune disorders. Several plant viruses have already been used for the development of vaccine platforms and have been tested in human and veterinary studies, suggesting that plant virus-based vaccines will be introduced into clinical and veterinary practice in the near future.
Collapse
|
28
|
Meshcheriakova Y, Lomonossoff GP. Amino acids at the exposed C-terminus of the S coat protein of cowpea mosaic virus play different roles in particle formation and viral systemic movement. J Gen Virol 2019; 100:1165-1170. [PMID: 31169482 PMCID: PMC7414441 DOI: 10.1099/jgv.0.001285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/17/2019] [Indexed: 02/04/2023] Open
Abstract
The icosahedral capsid of cowpea mosaic virus is formed by 60 copies of the large (L) and small (S) coat protein subunits. The 24-amino-acid C-terminal peptide of the S coat protein can undergo proteolytic cleavage without affecting particle stability or infectivity. Mutagenic studies have shown that this sequence is involved in particle assembly, virus movement, RNA encapsidation and suppression of gene silencing. However, it is unclear how these processes are related, and which part(s) of the sequence are involved in each process. Here, we have analysed the effect of mutations in the C-terminal region of the S protein on the assembly of empty virus-like particles and on the systemic movement of infectious virus. The results confirmed the importance of positively charged amino acids adjacent to the cleavage site for particle assembly and revealed that the C-terminal 11 amino acids are important for efficient systemic movement of the virus.
Collapse
Affiliation(s)
- Yulia Meshcheriakova
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney Ln, Norwich, NR4 7UH, UK
| | - George P. Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney Ln, Norwich, NR4 7UH, UK
| |
Collapse
|
29
|
Audette GF, Yaseen A, Bragagnolo N, Bawa R. Protein Nanotubes: From Bionanotech towards Medical Applications. Biomedicines 2019; 7:biomedicines7020046. [PMID: 31234611 PMCID: PMC6630890 DOI: 10.3390/biomedicines7020046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/21/2023] Open
Abstract
Nanobiotechnology involves the study of structures found in nature to construct nanodevices for biological and medical applications with the ultimate goal of commercialization. Within a cell most biochemical processes are driven by proteins and associated macromolecular complexes. Evolution has optimized these protein-based nanosystems within living organisms over millions of years. Among these are flagellin and pilin-based systems from bacteria, viral-based capsids, and eukaryotic microtubules and amyloids. While carbon nanotubes (CNTs), and protein/peptide-CNT composites, remain one of the most researched nanosystems due to their electrical and mechanical properties, there are many concerns regarding CNT toxicity and biodegradability. Therefore, proteins have emerged as useful biotemplates for nanomaterials due to their assembly under physiologically relevant conditions and ease of manipulation via protein engineering. This review aims to highlight some of the current research employing protein nanotubes (PNTs) for the development of molecular imaging biosensors, conducting wires for microelectronics, fuel cells, and drug delivery systems. The translational potential of PNTs is highlighted.
Collapse
Affiliation(s)
- Gerald F Audette
- Department of Chemistry and the Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada.
| | - Ayat Yaseen
- Department of Chemistry and the Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada.
| | - Nicholas Bragagnolo
- Department of Chemistry and the Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada.
| | - Raj Bawa
- Patent Law Department, Bawa Biotech LLC, Ashburn, VA 20147, USA.
- Guanine Inc., Rensselaer, NY 12144-3463, USA.
- Pharmaceutical Research Institute of Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA.
| |
Collapse
|
30
|
Affimer reagents as tools in diagnosing plant virus diseases. Sci Rep 2019; 9:7524. [PMID: 31101847 PMCID: PMC6525157 DOI: 10.1038/s41598-019-43945-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
Plant viruses can cause devastating losses to agriculture and are therefore a major threat to food security. The rapid identification of virally-infected crops allowing containment is essential to limit such threats, but plant viral diseases can be extremely challenging to diagnose. An ideal method for plant virus diagnosis would be a device which can be implemented easily in the field. Such devices require a binding reagent that is specific for the virus of interest. We chose to investigate the use of Affimer reagents, artificial binding proteins and a model plant virus Cowpea Mosaic virus (CPMV) empty virus like particles (eVLPs). CPMV-eVLP mimic the morphology of wild-type (WT) CPMV but lack any infectious genomic material and so do not have biocontainment issues. We have produced and purified an Affimer reagent selected for its ability to bind to CPMV-eVLP and have shown that the selected Affimer also specifically binds to WT CPMV. We have produced a 3.4 Å structure of WT CPMV bound to the Affimer using cryo-electron microscopy. Finally, we have shown that this Affimer is capable of reliably detecting the virus in crude extracts of CPMV-infected leaves and can therefore form the basis for the future development of diagnostic tests.
Collapse
|
31
|
Balke I, Zeltins A. Use of plant viruses and virus-like particles for the creation of novel vaccines. Adv Drug Deliv Rev 2019; 145:119-129. [PMID: 30172923 DOI: 10.1016/j.addr.2018.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 07/24/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022]
Abstract
In recent decades, the development of plant virology and genetic engineering techniques has resulted in the construction of plant virus-based vaccines for protection against different infectious agents, cancers and autoimmune diseases in both humans and animals. Interaction studies between plant viruses and mammalian organisms have suggested that plant viruses and virus-like particles (VLPs) are safe and noninfectious to humans and animals. Plant viruses with introduced antigens are powerful vaccine components due to their strongly organized, repetitive spatial structure; they can elicit strong immune responses similar to those observed with infectious mammalian viruses. The analysis of published data demonstrated that at least 73 experimental vaccines, including 61 prophylactic and 12 therapeutic vaccines, have been constructed using plant viruses as a carrier structure for presentation of different antigens. This information clearly demonstrates that noninfectious viruses are also applicable as vaccine carriers. Moreover, several plant viruses have been used for platform development, and corresponding vaccines are currently being tested in human and veterinary clinical trials. This review therefore discusses the main principles of plant VLP vaccine construction, emphasizing the physical, chemical, genetic and immunological aspects. Results of the latest studies suggest that several plant virus-based vaccines will join the list of approved human and animal vaccines in the near future.
Collapse
Affiliation(s)
- Ina Balke
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga LV1067, Latvia
| | - Andris Zeltins
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga LV1067, Latvia.
| |
Collapse
|
32
|
Kerstetter-Fogle A, Shukla S, Wang C, Beiss V, Harris PLR, Sloan AE, Steinmetz NF. Plant Virus-Like Particle In Situ Vaccine for Intracranial Glioma Immunotherapy. Cancers (Basel) 2019; 11:cancers11040515. [PMID: 30974896 PMCID: PMC6521079 DOI: 10.3390/cancers11040515] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
Despite aggressive multi-modality treatment with surgery, radiation and chemotherapies, malignant glioma inevitably recurs and has dismal survival rates. Recent progress in immunotherapy has led to a resurgence of interest, and immunotherapies are being investigated for treatment of glioma. However, the unique brain anatomy and a highly immunosuppressive glioma microenvironment pose significant challenges to achieving efficacy. Thus, there is a critical need for assessment of next-generation immunotherapies for glioma. In this study, we have investigated the efficacy of the nanoparticle platform technology based on plant-derived Cowpea mosaic virus like particles (empty CPMV or eCPMV) to instigate a potent immune response against intracranial glioma. CPMV immunotherapy has been shown to efficiently reverse the immunosuppressive tumor microenvironments in pre-clinical murine models of dermal melanoma and metastatic melanoma, metastatic breast cancer, intraperitoneal ovarian cancer and in canine patients with oral melanoma. In the present study, we demonstrate that in situ administration of CPMV immunotherapy in the setting of glioma can effectively recruit unique subset of effector innate and adaptive immune cells to the brain parenchyma while reducing immune suppressive cellular population, leading to regression of intracranial glioma. The in situ CPMV nanoparticle vaccine offers a potent yet safe and localized immunotherapy for intracranial glioma.
Collapse
Affiliation(s)
- Amber Kerstetter-Fogle
- Department of Neurological Surgery, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Sourabh Shukla
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Chao Wang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Veronique Beiss
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Peggy L R Harris
- Department of Neurological Surgery, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Andrew E Sloan
- Department of Neurological Surgery, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
- University Hospitals-Cleveland Medical Center & the Seidman Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
33
|
Röder J, Dickmeis C, Commandeur U. Small, Smaller, Nano: New Applications for Potato Virus X in Nanotechnology. FRONTIERS IN PLANT SCIENCE 2019; 10:158. [PMID: 30838013 PMCID: PMC6390637 DOI: 10.3389/fpls.2019.00158] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/29/2019] [Indexed: 05/08/2023]
Abstract
Nanotechnology is an expanding interdisciplinary field concerning the development and application of nanostructured materials derived from inorganic compounds or organic polymers and peptides. Among these latter materials, proteinaceous plant virus nanoparticles have emerged as a key platform for the introduction of tailored functionalities by genetic engineering and conjugation chemistry. Tobacco mosaic virus and Cowpea mosaic virus have already been developed for bioimaging, vaccination and electronics applications, but the flexible and filamentous Potato virus X (PVX) has received comparatively little attention. The filamentous structure of PVX particles allows them to carry large payloads, which are advantageous for applications such as biomedical imaging in which multi-functional scaffolds with a high aspect ratio are required. In this context, PVX achieves superior tumor homing and retention properties compared to spherical nanoparticles. Because PVX is a protein-based nanoparticle, its unique functional properties are combined with enhanced biocompatibility, making it much more suitable for biomedical applications than synthetic nanomaterials. Moreover, PVX nanoparticles have very low toxicity in vivo, and superior pharmacokinetic profiles. This review focuses on the production of PVX nanoparticles engineered using chemical and/or biological techniques, and describes current and future opportunities and challenges for the application of PVX nanoparticles in medicine, diagnostics, materials science, and biocatalysis.
Collapse
Affiliation(s)
| | | | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
34
|
Lecorre F, Lai-Kee-Him J, Blanc S, Zeddam JL, Trapani S, Bron P. The cryo-electron microscopy structure of Broad Bean Stain Virus suggests a common capsid assembly mechanism among comoviruses. Virology 2019; 530:75-84. [PMID: 30782565 DOI: 10.1016/j.virol.2019.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 01/31/2023]
Abstract
The Broad bean stain virus (BBSV) is a member of the genus Comovirus infecting Fabaceae. The virus is transmitted through seed and by plant weevils causing severe and widespread disease worldwide. BBSV has a bipartite, positive-sense, single-stranded RNA genome encapsidated in icosahedral particles. We present here the cryo-electron microscopy reconstruction of the BBSV and an atomic model of the capsid proteins refined at 3.22 Å resolution. We identified residues involved in RNA/capsid interactions revealing a unique RNA genome organization. Inspection of the small coat protein C-terminal domain highlights a maturation cleavage between Leu567 and Leu568 and interactions of the C-terminal stretch with neighbouring small coat proteins within the capsid pentameric turrets. These interactions previously proposed to play a key role in the assembly of the Cowpea mosaic virus suggest a common capsid assembly mechanism throughout all comovirus species.
Collapse
Affiliation(s)
- François Lecorre
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Univ. Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Joséphine Lai-Kee-Him
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Univ. Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Stéphane Blanc
- INRA, Virus Insect Plant Laboratory, Joint Research Unit UMR 385 BGPI, Campus International de Baillarguet, Montpellier, France
| | - Jean-Louis Zeddam
- IRD, Cirad, Montpellier University, Joint Research Unit UMR 186 IPME, Montpellier, France.
| | - Stefano Trapani
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Univ. Montpellier, 29 rue de Navacelles, 34090 Montpellier, France.
| | - Patrick Bron
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Univ. Montpellier, 29 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
35
|
Application of Plant Viruses as a Biotemplate for Nanomaterial Fabrication. Molecules 2018; 23:molecules23092311. [PMID: 30208562 PMCID: PMC6225259 DOI: 10.3390/molecules23092311] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
Viruses are widely used to fabricate nanomaterials in the field of nanotechnology. Plant viruses are of great interest to the nanotechnology field because of their symmetry, polyvalency, homogeneous size distribution, and ability to self-assemble. This homogeneity can be used to obtain the high uniformity of the templated material and its related properties. In this paper, the variety of nanomaterials generated in rod-like and spherical plant viruses is highlighted for the cowpea chlorotic mottle virus (CCMV), cowpea mosaic virus (CPMV), brome mosaic virus (BMV), and tobacco mosaic virus (TMV). Their recent studies on developing nanomaterials in a wide range of applications from biomedicine and catalysts to biosensors are reviewed.
Collapse
|
36
|
|
37
|
Abstract
Within the materials science community, proteins with cage-like architectures are being developed as versatile nanoscale platforms for use in protein nanotechnology. Much effort has been focused on the functionalization of protein cages with biological and non-biological moieties to bring about new properties of not only individual protein cages, but collective bulk-scale assemblies of protein cages. In this review, we report on the current understanding of protein cage assembly, both of the cages themselves from individual subunits, and the assembly of the individual protein cages into higher order structures. We start by discussing the key properties of natural protein cages (for example: size, shape and structure) followed by a review of some of the mechanisms of protein cage assembly and the factors that influence it. We then explore the current approaches for functionalizing protein cages, on the interior or exterior surfaces of the capsids. Lastly, we explore the emerging area of higher order assemblies created from individual protein cages and their potential for new and exciting collective properties.
Collapse
Affiliation(s)
- William M Aumiller
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
38
|
Czapar AE, Tiu BDB, Veliz FA, Pokorski JK, Steinmetz NF. Slow-Release Formulation of Cowpea Mosaic Virus for In Situ Vaccine Delivery to Treat Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700991. [PMID: 29876220 PMCID: PMC5979803 DOI: 10.1002/advs.201700991] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/17/2018] [Indexed: 05/06/2023]
Abstract
The plant viral nanoparticle cowpea mosaic virus (CPMV) is shown to be an effective immunotherapy for ovarian cancer when administered as in situ vaccine weekly, directly into the intraperitoneal (IP) space in mice with disseminated tumors. While the antitumor efficacy is promising, the required frequency of administration may pose challenges for clinical implementation. To overcome this, a slow release formulation is developed. CPMV and polyamidoamine generation 4 dendrimer form aggregates (CPMV-G4) based on electrostatic interactions and as a function of salt concentration, allowing for tailoring of aggregate size and release of CPMV. The antitumor efficacy of a single administration of CPMV-G4 is compared to weekly administration of soluble CPMV in a mouse model of peritoneal ovarian cancer and found to be as effective at reducing disease burden as more frequent administrations of soluble CPMV; a single injection of soluble CPMV, does not significantly slow cancer development. The ability of CPMV-G4 to control tumor growth following a single injection is likely due to the continued presence of CPMV in the IP space leading to prolonged immune stimulation. This enhanced retention of CPMV and its antitumor efficacy demonstrates the potential for viral-dendrimer hybrids to be used for delayed release applications.
Collapse
Affiliation(s)
- Anna E. Czapar
- Departments of PathologyCase Western Reserve University2109 Adelbert RoadClevelandOH44106USA
| | - Brylee David B. Tiu
- Department of Biomedical EngineeringCase Western Reserve University2109 Adelbert RoadClevelandOH44106USA
| | - Frank A. Veliz
- Department of Biomedical EngineeringCase Western Reserve University2109 Adelbert RoadClevelandOH44106USA
| | - Jonathan K. Pokorski
- Departments of Macromolecular Science and EngineeringDivision of General Medical Sciences‐OncologyCase Western Reserve University2109 Adelbert RoadClevelandOH44106USA
| | - Nicole F. Steinmetz
- Department of Biomedical EngineeringCase Western Reserve University2109 Adelbert RoadClevelandOH44106USA
- Departments of Macromolecular Science and EngineeringDivision of General Medical Sciences‐OncologyCase Western Reserve University2109 Adelbert RoadClevelandOH44106USA
- Departments of Materials Science and EngineeringDivision of General Medical Sciences‐OncologyCase Western Reserve University2109 Adelbert RoadClevelandOH44106USA
- Departments of RadiologyDivision of General Medical Sciences‐OncologyCase Western Reserve University2109 Adelbert RoadClevelandOH44106USA
- Departments of Case Comprehensive Cancer CenterDivision of General Medical Sciences‐OncologyCase Western Reserve University2109 Adelbert RoadClevelandOH44106USA
| |
Collapse
|
39
|
Röder J, Dickmeis C, Fischer R, Commandeur U. Systemic Infection of Nicotiana benthamiana with Potato virus X Nanoparticles Presenting a Fluorescent iLOV Polypeptide Fused Directly to the Coat Protein. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9328671. [PMID: 29662905 PMCID: PMC5831704 DOI: 10.1155/2018/9328671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/25/2017] [Indexed: 02/01/2023]
Abstract
Plant virus-based nanoparticles can be produced in plants on a large scale and are easily modified to introduce new functions, making them suitable for applications such as vaccination and drug delivery, tissue engineering, and in vivo imaging. The latter is often achieved using green fluorescent protein and its derivatives, but the monovalent fluorescent protein iLOV is smaller and more robust. Here, we fused the iLOV polypeptide to the N-terminus of the Potato virus X (PVX) coat protein, directly or via the Foot-and-mouth disease virus 2A sequence, for expression in Nicotiana benthamiana. Direct fusion of the iLOV polypeptide did not prevent the assembly or systemic spread of the virus and we verified the presence of fusion proteins and iLOV hybrid virus particles in leaf extracts. Compared to wild-type PVX virions, the PVX particles displaying the iLOV peptide showed an atypical, intertwined morphology. Our results confirm that a direct fusion of the iLOV fluorescent protein to filamentous PVX nanoparticles offers a promising tool for imaging applications.
Collapse
Affiliation(s)
- Juliane Röder
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52072 Aachen, Germany
| | - Christina Dickmeis
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52072 Aachen, Germany
| | - Rainer Fischer
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52072 Aachen, Germany
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52072 Aachen, Germany
| |
Collapse
|
40
|
Abstract
Empty (containing no genomic material) CPMV virus-like particles are loaded within the virus capsid with metal or metal oxide. Metal ions are allowed to diffuse through pores in the capsid surface and are reduced or hydrolyzed to metallic nanoparticles. The external surface of the virus-like particles remains amenable to further chemical modification.
Collapse
Affiliation(s)
| | - David J Evans
- John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
41
|
Tiu BDB, Advincula RC, Steinmetz NF. Nanomanufacture of Free-Standing, Porous, Janus-Type Films of Polymer-Plant Virus Nanoparticle Arrays. Methods Mol Biol 2018; 1776:143-157. [PMID: 29869239 DOI: 10.1007/978-1-4939-7808-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a facile method for preparing hierarchical assemblies of cowpea mosaic virus (CPMV) nanoparticles adsorbed onto patterned polypyrrole copolymer arrays, which can be released as a freely standing and microporous polymer-protein membrane with a Janus-type structure. The patterning protocol is based on colloidal sphere lithography wherein a sacrificial honeycomb pattern composed of colloidal polystyrene (PS) microspheres is assembled on an electrode. A thin layer of polypyrrole film is electropolymerized within the interstices of the template and monitored using an electrochemical quartz crystal microbalance with dissipation (EC-QCM-D) and microscopy. Dissolving the PS template reveals an inverse opaline pattern capable of electrostatically capturing the CPMV particles. Through an electrochemical trigger, the polypyrrole-CPMV delaminates from the surface producing a self-sustaining polymer-protein membrane that can potentially be used for sensing and nanocargo applications.
Collapse
Affiliation(s)
- Brylee David B Tiu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Rigoberto C Advincula
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
42
|
Wołek K, Cieplak M. Self-assembly of model proteins into virus capsids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:474003. [PMID: 29027904 PMCID: PMC7104874 DOI: 10.1088/1361-648x/aa9351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/29/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
We consider self-assembly of proteins into a virus capsid by the methods of molecular dynamics. The capsid corresponds either to SPMV or CCMV and is studied with and without the RNA molecule inside. The proteins are flexible and described by the structure-based coarse-grained model augmented by electrostatic interactions. Previous studies of the capsid self-assembly involved solid objects of a supramolecular scale, e.g. corresponding to capsomeres, with engineered couplings and stochastic movements. In our approach, a single capsid is dissociated by an application of a high temperature for a variable period and then the system is cooled down to allow for self-assembly. The restoration of the capsid proceeds to various extent, depending on the nature of the dissociated state, but is rarely complete because some proteins depart too far unless the process takes place in a confined space.
Collapse
Affiliation(s)
- Karol Wołek
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Marek Cieplak
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
43
|
Combining high-resolution cryo-electron microscopy and mutagenesis to develop cowpea mosaic virus for bionanotechnology. Biochem Soc Trans 2017; 45:1263-1269. [PMID: 29101307 PMCID: PMC5730940 DOI: 10.1042/bst20160312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 01/26/2023]
Abstract
Particles of cowpea mosaic virus (CPMV) have enjoyed considerable success as nanoparticles. The development of a system for producing empty virus-like particles (eVLPs) of the virus, which are non-infectious and have the potential to be loaded with heterologous material, has increased the number of possible applications for CPMV-based particles. However, for this potential to be realised, it was essential to demonstrate that eVLPs were accurate surrogates for natural virus particles, and this information was provided by high-resolution cryo-EM studies of eVLPs. This demonstration has enabled the approaches developed for the production of modified particles developed with natural CPMV particles to be applied to eVLPs. Furthermore, a combination of cryo-EM and mutagenic studies allowed the development of particles which are permeable but which could still assemble efficiently. These particles were shown to be loadable with cobalt, indicating that they can, indeed, be used as nano-containers.
Collapse
|
44
|
Poudel L, Twarock R, Steinmetz NF, Podgornik R, Ching WY. Impact of Hydrogen Bonding in the Binding Site between Capsid Protein and MS2 Bacteriophage ssRNA. J Phys Chem B 2017; 121:6321-6330. [PMID: 28581757 DOI: 10.1021/acs.jpcb.7b02569] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MS2 presents a well-studied example of a single-stranded RNA virus for which the genomic RNA plays a pivotal role in the virus assembly process based on the packaging signal-mediated mechanism. Packaging signals (PSs) are multiple dispersed RNA sequence/structure motifs varying around a central recognition motif that interact in a specific way with the capsid protein in the assembly process. Although the discovery and identification of these PSs was based on bioinformatics and geometric approaches, in tandem with sophisticated experimental protocols, we approach this problem using large-scale ab initio computation centered on critical aspects of the consensus protein-RNA interactions recognition motif. DFT calculations are carried out on two nucleoprotein complexes: wild-type and mutated (PDB IDs: 1ZDH and 5MSF ). The calculated partial charge distribution of residues and the strength of hydrogen bonding (HB) between them enabled us to locate the exact binding sites with the strongest HBs, identified to be LYS43-A-4, ARG49-C-13, TYR85-C-5, and LYS61-C-5, due to the change in the sequence of the mutated RNA.
Collapse
Affiliation(s)
- Lokendra Poudel
- Department of Physics and Astronomy, University of Missouri-Kansas City , Kansas City, Missouri 64110, United States
| | - Reidun Twarock
- Department of Mathematics and Biology and York Centre for Complex Systems Analysis, University of York , York YO10 5DD, United Kingdom
| | | | - Rudolf Podgornik
- Department of Theoretical Physics, J. Stefan Institute , SI-1000 Ljubljana, Slovenia.,Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana , SI-1000 Ljubljana, Slovenia
| | - Wai-Yim Ching
- Department of Physics and Astronomy, University of Missouri-Kansas City , Kansas City, Missouri 64110, United States
| |
Collapse
|
45
|
Hesketh EL, Meshcheriakova Y, Thompson RF, Lomonossoff GP, Ranson NA. The structures of a naturally empty cowpea mosaic virus particle and its genome-containing counterpart by cryo-electron microscopy. Sci Rep 2017; 7:539. [PMID: 28373698 PMCID: PMC5428714 DOI: 10.1038/s41598-017-00533-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/28/2017] [Indexed: 11/09/2022] Open
Abstract
Cowpea mosaic virus (CPMV) is a picorna-like plant virus. As well as an intrinsic interest in CPMV as a plant pathogen, CPMV is of major interest in biotechnology applications such as nanotechnology. Here, we report high resolution cryo electron microscopy (cryo-EM) maps of wild type CPMV containing RNA-2, and of naturally-formed empty CPMV capsids. The resolution of these structures is sufficient to visualise large amino acids. We have refined an atomic model for each map and identified an essential amino acid involved in genome encapsidation. This work has furthered our knowledge of Picornavirales genome encapsidation and will assist further work in the development of CPMV as a biotechnological tool.
Collapse
Affiliation(s)
- Emma L Hesketh
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Yulia Meshcheriakova
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK
| | - Rebecca F Thompson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - George P Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
46
|
Hirai Y, Wakiya T, Yabu H. Virus-like particles composed of sphere-forming polystyrene-block-poly(t-butyl acrylate) (PS-b-PtBA) and control of surface morphology by homopolymer blending. Polym Chem 2017. [DOI: 10.1039/c7py00013h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Submicron-sized virus-like particles comprising asymmetric PS-b-PtBA diblock copolymer particles having dot patterns on their surface were successfully prepared by a simple solvent evaporation process.
Collapse
Affiliation(s)
- Yutaro Hirai
- Graduate School of Engineering
- Tohoku University
- Sendai 980-8579
- Japan
| | | | - Hiroshi Yabu
- WPI-Advanced Institute for Materials Research (AIMR)
- Tohoku University
- Sendai 980-8577
- Japan
| |
Collapse
|
47
|
Schwarz B, Uchida M, Douglas T. Biomedical and Catalytic Opportunities of Virus-Like Particles in Nanotechnology. Adv Virus Res 2016; 97:1-60. [PMID: 28057256 DOI: 10.1016/bs.aivir.2016.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Within biology, molecules are arranged in hierarchical structures that coordinate and control the many processes that allow for complex organisms to exist. Proteins and other functional macromolecules are often studied outside their natural nanostructural context because it remains difficult to create controlled arrangements of proteins at this size scale. Viruses are elegantly simple nanosystems that exist at the interface of living organisms and nonliving biological machines. Studied and viewed primarily as pathogens to be combatted, viruses have emerged as models of structural efficiency at the nanoscale and have spurred the development of biomimetic nanoparticle systems. Virus-like particles (VLPs) are noninfectious protein cages derived from viruses or other cage-forming systems. VLPs provide incredibly regular scaffolds for building at the nanoscale. Composed of self-assembling protein subunits, VLPs provide both a model for studying materials' assembly at the nanoscale and useful building blocks for materials design. The robustness and degree of understanding of many VLP structures allow for the ready use of these systems as versatile nanoparticle platforms for the conjugation of active molecules or as scaffolds for the structural organization of chemical processes. Lastly the prevalence of viruses in all domains of life has led to unique activities of VLPs in biological systems most notably the immune system. Here we discuss recent efforts to apply VLPs in a wide variety of applications with the aim of highlighting how the common structural elements of VLPs have led to their emergence as paradigms for the understanding and design of biological nanomaterials.
Collapse
Affiliation(s)
- B Schwarz
- Indiana University, Bloomington, IN, United States
| | - M Uchida
- Indiana University, Bloomington, IN, United States
| | - T Douglas
- Indiana University, Bloomington, IN, United States.
| |
Collapse
|
48
|
Nikitin NA, Trifonova EA, Karpova OV, Atabekov JG. Biosafety of plant viruses for human and animals. ACTA ACUST UNITED AC 2016. [DOI: 10.3103/s0096392516030081] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Ozboyaci M, Martinez M, Wade RC. An Efficient Low Storage and Memory Treatment of Gridded Interaction Fields for Simulations of Macromolecular Association. J Chem Theory Comput 2016; 12:4563-77. [DOI: 10.1021/acs.jctc.6b00350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Musa Ozboyaci
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, Heidelberg University, INF 205, 69120 Heidelberg, Germany
| | - Michael Martinez
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Rebecca C. Wade
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, INF 282, 69120 Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, INF 205, 69120 Heidelberg, Germany
| |
Collapse
|
50
|
Zhang Y, Ardejani MS, Orner BP. Design and Applications of Protein-Cage-Based Nanomaterials. Chem Asian J 2016; 11:2814-2828. [DOI: 10.1002/asia.201600769] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Zhang
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals; College of Chemical Engineering; Nanjing Forestry University; Nanjing 210037 P.R. China
| | - Maziar S. Ardejani
- Department of Chemistry; The Scripps Research Institute; La Jolla CA 92037 United States
| | - Brendan P. Orner
- Department of Chemistry; King's College London; London SE1 1DB United Kingdom
| |
Collapse
|