1
|
Ferreiro-Posse A, Granados G, Salvador S, Pilia MF, Espejo D, Romero C, Ojanguren I, Muñoz X, Villar A. Retrospective Analysis of Predictive Biomarkers of Survival in Acute Exacerbation of Fibrosing Interstitial Lung Disease: A Single-Center Study in Spain. J Clin Med 2025; 14:1974. [PMID: 40142785 PMCID: PMC11942987 DOI: 10.3390/jcm14061974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/18/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Fibrosing interstitial lung diseases can evolve into acute exacerbations, which significantly impact morbidity and mortality. Currently, no routinely used clinical biomarkers can discern the potential progression in these patients. This study aims to analyze different biological markers used in routine clinical practice as possible predictive biomarkers for patients with acute fibrosing interstitial lung disease exacerbation. Methods: We conducted a retrospective, single-center study including patients diagnosed with acute exacerbation of fibrosing interstitial lung disease who required hospitalization between 2018 and 2019 at Vall d'Hebron Hospital, Spain. Patient demographics, clinical data, respiratory function, and comorbidities were collected at baseline. The primary outcome was survival at 30 days, 90 days, and 365 days, using Kaplan-Meier survival analysis and Cox regression. Results: Twenty-nine patients were included (mean age 70.4 years). At the 3-month follow-up, patients with ischemic heart disease showed higher survival rates (p = 0.02). Identifying an infection as the etiology of the exacerbation was associated with worse one-year survival rates compared to idiopathic cases (p = 0.03). Elevated levels of leukocytes (p < 0.01), neutrophils (p < 0.01), and fibrinogen (p = 0.03) were predictors of mortality. Additionally, patients who received a cumulative dose of corticosteroids between 501 and 1000 mg during the exacerbation showed higher one-year survival (p < 0.01). Conclusions: Routine clinical markers can help predict outcomes in AE-f-ILD. Further multicenter studies should validate these findings and assess the role of therapies in its management.
Collapse
Affiliation(s)
- Antía Ferreiro-Posse
- Department of Respiratory Medicine, University Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Galo Granados
- Department of Respiratory Medicine, University Hospital Vall d’Hebron, 08035 Barcelona, Spain; (G.G.); (S.S.); (M.F.P.); (D.E.); (C.R.); (I.O.); (X.M.)
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Spanish Biomedical Research Networking Centre (CIBERES), Carlos III Health Research Institute, 28029 Madrid, Spain
| | - Sara Salvador
- Department of Respiratory Medicine, University Hospital Vall d’Hebron, 08035 Barcelona, Spain; (G.G.); (S.S.); (M.F.P.); (D.E.); (C.R.); (I.O.); (X.M.)
| | - Maria Florencia Pilia
- Department of Respiratory Medicine, University Hospital Vall d’Hebron, 08035 Barcelona, Spain; (G.G.); (S.S.); (M.F.P.); (D.E.); (C.R.); (I.O.); (X.M.)
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - David Espejo
- Department of Respiratory Medicine, University Hospital Vall d’Hebron, 08035 Barcelona, Spain; (G.G.); (S.S.); (M.F.P.); (D.E.); (C.R.); (I.O.); (X.M.)
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Spanish Biomedical Research Networking Centre (CIBERES), Carlos III Health Research Institute, 28029 Madrid, Spain
| | - Christian Romero
- Department of Respiratory Medicine, University Hospital Vall d’Hebron, 08035 Barcelona, Spain; (G.G.); (S.S.); (M.F.P.); (D.E.); (C.R.); (I.O.); (X.M.)
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Spanish Biomedical Research Networking Centre (CIBERES), Carlos III Health Research Institute, 28029 Madrid, Spain
| | - Iñigo Ojanguren
- Department of Respiratory Medicine, University Hospital Vall d’Hebron, 08035 Barcelona, Spain; (G.G.); (S.S.); (M.F.P.); (D.E.); (C.R.); (I.O.); (X.M.)
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Spanish Biomedical Research Networking Centre (CIBERES), Carlos III Health Research Institute, 28029 Madrid, Spain
| | - Xavier Muñoz
- Department of Respiratory Medicine, University Hospital Vall d’Hebron, 08035 Barcelona, Spain; (G.G.); (S.S.); (M.F.P.); (D.E.); (C.R.); (I.O.); (X.M.)
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Spanish Biomedical Research Networking Centre (CIBERES), Carlos III Health Research Institute, 28029 Madrid, Spain
| | - Ana Villar
- Department of Respiratory Medicine, University Hospital Vall d’Hebron, 08035 Barcelona, Spain; (G.G.); (S.S.); (M.F.P.); (D.E.); (C.R.); (I.O.); (X.M.)
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Spanish Biomedical Research Networking Centre (CIBERES), Carlos III Health Research Institute, 28029 Madrid, Spain
| |
Collapse
|
2
|
Peng J, Wang Q, Sun R, Zhang K, Chen Y, Gong Z. Phospholipids of inhaled liposomes determine the in vivo fate and therapeutic effects of salvianolic acid B on idiopathic pulmonary fibrosis. J Control Release 2024; 371:1-15. [PMID: 38761856 DOI: 10.1016/j.jconrel.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/18/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Since phospholipids have an important effect on the size, surface potential and hardness of liposomes that decide their in vivo fate after inhalation, this research has systematically evaluated the effect of phospholipids on pulmonary drug delivery by liposomes. In this study, liposomes composed of neutral saturated/unsaturated phospholipids, anionic and cationic phospholipids were constructed to investigate how surface potential and the degree of saturation of fatty acid chains determined their mucus and epithelium permeability both in vitro and in vivo. Our results clearly indicated that liposomes composed of saturated neutral and anionic phospholipids possessed high stability and permeability, compared to that of liposomes composed of unsaturated phospholipids and cationic phospholipids. Furthermore, both in vivo imaging of fluorescence-labeled liposomes and biodistribution of salvianolic acid B (SAB) that encapsulated in liposomes were performed to estimate the effect of phospholipids on the lung exposure and retention of inhaled liposomes. Finally, inhaled SAB-loaded liposomes exhibited enhanced therapeutic effects in a bleomycin-induced idiopathic pulmonary fibrosis mice model via inhibition of inflammation and regulation on coagulation-fibrinolytic system. Such findings will be beneficial to the development of inhalable lipid-based nanodrug delivery systems for the treatment of respiratory diseases where inhalation is the preferred route of administration.
Collapse
Affiliation(s)
- Jianqing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Qin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Runbin Sun
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ke Zhang
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China.
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China; Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China.
| |
Collapse
|
3
|
Taieb D, Pastré J, Juvin K, Bouvry D, Jeny F, Sanchez O, Uzunhan Y, Valeyre D, Nunes H, Israël-Biet D. Prognostic impact of venous thromboembolism on the course of sarcoidosis: A multicenter retrospective case-control study. Respir Med Res 2023; 84:101050. [PMID: 37897877 DOI: 10.1016/j.resmer.2023.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 10/30/2023]
Abstract
Sarcoidosis is an independent risk factor for venous thromboembolism (VTE). However, the characteristics and clinical evolution of sarcoidosis patients presenting a VTE (sarcoidosis/VTE group) in the course of their disease are not known. Consequently, if VTE occurrence is associated with a more severe disease is still pending. We conducted a retrospective case-control study of sarcoidosis/VTE patients compared to matched sarcoidosis controls without VTE in two French tertiary centers, analysed and compared the clinical, biological, functional, imaging and evolutive profiles of the two groups. Sixty-one patients were included with at least one episode of VTE during course of sarcoidosis. At sarcoidosis onset (before/at the time of VTE occurrence) the number of affected organs, radiological stages and pulmonary functional tests were not significantly different between the two groups. In contrast, we found that sarcoidosis/VTE patients required more frequently a systemic immunosuppressive therapy (corticosteroids and/or immunosuppressors, 79% versus 58%; p = 0.008). The functional course was also poorer in sarcoidosis/VTE patients with a more frequent decrease in functional vital capacity (33% versus 18% in sarcoidosis/VTE patients and controls, respectively, p = 0.008). Finally, sarcoidosis/VTE patients presented more frequently with pulmonary hypertension (10% versus 1% in patients and controls, respectively, p = 0.006), and their survival was significantly worse (log-rank p <0.001). The occurrence of VTE during sarcoidosis is associated with a more severe disease and a poorer prognosis. The occurrence of VTE during sarcoidosis might signal a more inflammatory and/or evolutive disease in sarcoidosis/VTE patients and should be taken in consideration when designing therapeutic strategies for them.
Collapse
Affiliation(s)
- Dov Taieb
- Service de Pneumologie et Soins Intensifs, Assistance Publique-Hôpitaux de Paris Centre, Hôpital Européen Georges Pompidou, 75015 Paris, France; UFR de Médecine, Université Paris Cité, Paris, France.
| | - Jean Pastré
- Service de Pneumologie et Soins Intensifs, Assistance Publique-Hôpitaux de Paris Centre, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Karine Juvin
- Service de Pneumologie et Soins Intensifs, Assistance Publique-Hôpitaux de Paris Centre, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Diane Bouvry
- Service de Pneumologie, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, 93009 Bobigny, France
| | - Florence Jeny
- Service de Pneumologie, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, 93009 Bobigny, France; INSERM UMR 1272, Université Sorbonne Paris Nord, Bobigny, France
| | - Olivier Sanchez
- Service de Pneumologie et Soins Intensifs, Assistance Publique-Hôpitaux de Paris Centre, Hôpital Européen Georges Pompidou, 75015 Paris, France; UFR de Médecine, Université Paris Cité, Paris, France
| | - Yurdagül Uzunhan
- Service de Pneumologie, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, 93009 Bobigny, France; INSERM UMR 1272, Université Sorbonne Paris Nord, Bobigny, France
| | | | - Hilario Nunes
- Service de Pneumologie, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, 93009 Bobigny, France; INSERM UMR 1272, Université Sorbonne Paris Nord, Bobigny, France
| | | |
Collapse
|
4
|
Fließer E, Lins T, Berg JL, Kolb M, Kwapiszewska G. The endothelium in lung fibrosis: a core signaling hub in disease pathogenesis? Am J Physiol Cell Physiol 2023; 325:C2-C16. [PMID: 37184232 DOI: 10.1152/ajpcell.00097.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Pulmonary fibrosis (PF) is a progressive chronic lung disease characterized by excessive deposition of extracellular matrix (ECM) and structural destruction, associated with a severe 5-year mortality rate. The onset of the disease is thought to be triggered by chronic damage to the alveolar epithelium. Since the pulmonary endothelium is an important component of the alveolar-capillary niche, it is also affected by the initial injury. In addition to ensuring proper gas exchange, the endothelium has critical functional properties, including regulation of vascular tone, inflammatory responses, coagulation, and maintenance of vascular homeostasis and integrity. Recent single-cell analyses have shown that shifts in endothelial cell (EC) subtypes occur in PF. Furthermore, the increased vascular remodeling associated with PF leads to deteriorated outcomes for patients, underscoring the importance of the vascular bed in PF. To date, the causes and consequences of endothelial and vascular involvement in lung fibrosis are poorly understood. Therefore, it is of great importance to investigate the involvement of EC and the vascular system in the pathogenesis of the disease. In this review, we will outline the current knowledge on the role of the pulmonary vasculature in PF, in terms of abnormal cellular interactions, hyperinflammation, vascular barrier disorders, and an altered basement membrane composition. Finally, we will summarize recent advances in extensive therapeutic research and discuss the significant value of novel therapies targeting the endothelium.
Collapse
Affiliation(s)
- Elisabeth Fließer
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Thomas Lins
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Johannes Lorenz Berg
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center (DZL), Cardiopulmonary Institute (CPI), Giessen, Germany
| |
Collapse
|
5
|
Drakopanagiotakis F, Markart P, Steiropoulos P. Acute Exacerbations of Interstitial Lung Diseases: Focus on Biomarkers. Int J Mol Sci 2023; 24:10196. [PMID: 37373339 DOI: 10.3390/ijms241210196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Interstitial lung diseases (ILDs) are a large group of pulmonary disorders characterized histologically by the cardinal involvement of the pulmonary interstitium. The prototype of ILDs is idiopathic pulmonary fibrosis (IPF), an incurable disease characterized by progressive distortion and loss of normal lung architecture through unchecked collagen deposition. Acute exacerbations are dramatic events during the clinical course of ILDs, associated with high morbidity and mortality. Infections, microaspiration, and advanced lung disease might be involved in the pathogenesis of acute exacerbations. Despite clinical scores, the prediction of the onset and outcome of acute exacerbations is still inaccurate. Biomarkers are necessary to characterize acute exacerbations better. We review the evidence for alveolar epithelial cell, fibropoliferation, and immunity molecules as potential biomarkers for acute exacerbations of interstitial lung disease.
Collapse
Affiliation(s)
- Fotios Drakopanagiotakis
- Department of Respiratory Medicine, Medical School, Democritus University, 68100 Alexandroupolis, Greece
| | - Philipp Markart
- Department of Respiratory Medicine, Klinikum Fulda and University Medicine Campus Fulda, Pacelliallee 4, 36043 Fulda, Germany
| | - Paschalis Steiropoulos
- Department of Respiratory Medicine, Medical School, Democritus University, 68100 Alexandroupolis, Greece
| |
Collapse
|
6
|
Sun H, Liu M, Yang X, Xi L, Xu W, Deng M, Ren Y, Xie W, Dai H, Wang C. Incidence and risk factors of venous thrombotic events in patients with interstitial lung disease during hospitalization. Thromb J 2023; 21:17. [PMID: 36765371 PMCID: PMC9912624 DOI: 10.1186/s12959-023-00458-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Studies on the incidence of venous thromboembolism (VTE) events in patients with interstitial lung disease (ILD) are limited and the results are inconsistent. The aim of this research was to investigate the incidence and risk factors of VTE in ILD during hospitalization. MATERIALS AND METHODS In this retrospective, cross-sectional, observational study, a total of 5009 patients diagnosed with ILD from January 2016 to March 2022 in our hospital were retrospectively included. In ILD patients, VTE including pulmonary thromboembolism (PTE) and deep vein thrombosis (DVT) were screened from the electronic medical record system. Diagnosis of PTE and DVT were performed by CT pulmonary angiography (CTPA), CTV or ultrasound. And then the incidence and risk factors of VTE in different types of ILD were assessed. RESULTS Among 5009 patients with ILD, VTE was detected in 129 (2.6%) patients, including 15(0.3%) patients with both PTE and DVT, 34 (0.7%) patients with PTE and 80 (1.6%) patients with DVT. 85.1% of patients with APE were in the intermediate-low risk group. The incidence of VTE in Anti-Neutrophil Cytoplasmic Antibodies -associated vasculitis related ILD (ANCA-AV-ILD), hypersensitivity pneumonitis and idiopathic pulmonary fibrosis (IPF) respectively was 7.9% and 3.6% and 3.5%. In patients with connective tissue disease-associated ILD (CTD-ILD), the incidence of VTE, DVT, PTE, combined PTE and DVT respectively was 3.0%, 2.3%, 0.4% and 0.3%. Among the various risk factors, different ILD categories, age ≥ 80 years (OR 4.178, 95% CI 2.097-8.321, P < 0.001), respiratory failure (OR 2.382, 95% CI 1.533-3.702, P < 0.001) and varicose veins (OR 3.718, 95% CI 1.066-12.964, P = 0.039) were independent risk factors of VTE. The incidence of VTE in patients with ILD increased with the length of time in hospital from 2.2% (< 7 days) to 6.4% (> 21 days). CONCLUSION The incidence of VTE during hospitalization in ILD patients was 2.6%, with a 1.6% incidence of DVT, higher than the 0.7% incidence of PTE. Advanced age, ILD categories, respiratory failure and varicose veins as independent risk factors for the development of VTE should be closely monitored.
Collapse
Affiliation(s)
- Haishuang Sun
- grid.430605.40000 0004 1758 4110Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130021 China ,National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 100029 Beijing, China ,grid.506261.60000 0001 0706 7839Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Xiaoyan Yang
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 100029 Beijing, China
| | - Linfeng Xi
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 100029 Beijing, China
| | - Wenqing Xu
- grid.415954.80000 0004 1771 3349Department of Radiology, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Mei Deng
- grid.506261.60000 0001 0706 7839Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China ,grid.415954.80000 0004 1771 3349Department of Radiology, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Yanhong Ren
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 100029 Beijing, China
| | - Wanmu Xie
- grid.415954.80000 0004 1771 3349Department of Radiology, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Huaping Dai
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 100029, Beijing, China. .,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Chen Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China. .,National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 100029, Beijing, China. .,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
7
|
Lee JH, Lee HH, Park HJ, Kim S, Kim YJ, Lee JS, Kim HC. Venous thromboembolism in patients with idiopathic pulmonary fibrosis, based on nationwide claim data. Ther Adv Respir Dis 2023; 17:17534666231155772. [PMID: 36846942 PMCID: PMC9972056 DOI: 10.1177/17534666231155772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 01/23/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a known risk factor for venous thromboembolism (VTE). However, it is currently unknown which factors are associated with an increase of VTE in patients with IPF. OBJECTIVES We estimated the incidence of VTE in patients with IPF and identified clinical characteristics related to VTE in patients with IPF. DESIGN AND METHODS De-identified nationwide health claim data from 2011 to 2019 was collected from the Korean Health Insurance Review and Assessment database. Patients with IPF were selected if they had made at least one claim per year under the J84.1 [International Classification of Diseases and Related Health Problems, 10th Revision (ICD-10)] and V236 codes of rare intractable diseases. We defined the presence of VTE as at least one claim of pulmonary embolism and deep vein thrombosis ICD-10 codes. RESULTS The incidence rate per 1000 person-years of VTE was 7.08 (6.44-7.77). Peak incidence rates were noted in the 50-59 years old male and 70-79 years old female groups. Ischemic heart disease, ischemic stroke, and malignancy were associated with VTE in patients with IPF, with an adjusted hazard ratio (aHR) of 1.25 (1.01-1.55), 1.36 (1.04-1.79), and 1.53 (1.17-2.01). The risk for VTE was increased in patients diagnosed with malignancy after IPF diagnosis (aHR = 3.18, 2.47-4.11), especially lung cancer [hazard ratio (HR) = 3.78, 2.90-4.96]. Accompanied VTE was related to more utilization of medical resources. CONCLUSION Ischemic heart disease, ischemic stroke, and malignancy, especially lung cancer, were related to higher HR for VTE in IPF.
Collapse
Affiliation(s)
- Jang Ho Lee
- Department of Pulmonology and Critical Care
Medicine, Asan Medical Center, University of Ulsan College of Medicine,
Seoul, Republic of Korea
| | - Hoon Hee Lee
- Department of Internal Medicine, Yeosu Jeil
Hospital, Yeosu, Republic of Korea
| | - Hyung Jun Park
- Department of Pulmonology and Critical Care
Medicine, Asan Medical Center, University of Ulsan College of Medicine,
Seoul, Republic of Korea
| | - Seonok Kim
- Department of Clinical Epidemiology and
Biostatistics, Asan Medical Centre, University of Ulsan College of Medicine,
Seoul, Republic of Korea
| | - Ye-Jee Kim
- Department of Clinical Epidemiology and
Biostatistics, Asan Medical Centre, University of Ulsan College of Medicine,
Seoul, Republic of Korea
| | - Jae Seung Lee
- Department of Pulmonology and Critical Care
Medicine, Asan Medical Center, University of Ulsan College of Medicine,
Seoul, Republic of Korea
| | - Ho Cheol Kim
- Department of Pulmonology and Critical Care
Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88
Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| |
Collapse
|
8
|
Li FJ, Surolia R, Singh P, Dsouza KG, Stephens CT, Wang Z, Liu RM, Bae S, Kim YI, Athar M, Dransfield MT, Antony VB. Fibrinogen mediates cadmium-induced macrophage activation and serves as a predictor of cadmium exposure in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2022; 322:L593-L606. [PMID: 35200041 PMCID: PMC8993524 DOI: 10.1152/ajplung.00475.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/27/2022] [Accepted: 02/20/2022] [Indexed: 11/22/2022] Open
Abstract
The etiologies of chronic obstructive pulmonary disease (COPD) remain unclear. Cadmium (Cd) causes both pulmonary fibrosis and emphysema; however, the predictors for Cd exposure and the mechanisms by which Cd causes COPD remain unknown. We demonstrated that Cd burden was increased in lung tissue from subjects with COPD and this was associated with cigarette smoking. Fibrinogen levels increased markedly in lung tissue of patients with smoked COPD compared with never-smokers and control subjects. Fibrinogen concentration also correlated positively with lung Cd load, but inversely with the predicted % of FEV1 and FEV1/FVC. Cd enhanced the secretion of fibrinogen in a cdc2-dependent manner, whereas fibrinogen further mediated Cd-induced peptidylarginine deiminase 2 (PAD2)-dependent macrophage activation. Using lung fibroblasts from CdCl2-treated Toll-like receptor 4 (TLR4) wild-type and mutant mice, we demonstrated that fibrinogen enhanced Cd-induced TLR4-dependent collagen synthesis and cytokine/chemokine production. We further showed that fibrinogen complexed with connective tissue growth factor (CTGF), which in turn promoted the synthesis of plasminogen activator inhibitor-2 (PAI-2) and fibrinogen and inhibited fibrinolysis in Cd-treated mice. The amounts of fibrinogen were increased in the bronchoalveolar lavage fluid (BALF) of Cd-exposed mice. Positive correlations were observed between fibrinogen with hydroxyproline. Our data suggest that fibrinogen is involved in Cd-induced macrophage activation and increases in fibrinogen in patients with COPD may be used as a marker of Cd exposure and predict disease progression.
Collapse
Affiliation(s)
- Fu Jun Li
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ranu Surolia
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Pooja Singh
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin G Dsouza
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Crystal T Stephens
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zheng Wang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rui-Ming Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sejong Bae
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Young-Il Kim
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mark T Dransfield
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Veena B Antony
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
9
|
Robinson S, Parigoris E, Chang J, Hecker L, Takayama S. Contracting scars from fibrin drops. Integr Biol (Camb) 2022; 14:1-12. [PMID: 35184163 PMCID: PMC8934703 DOI: 10.1093/intbio/zyac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/13/2022]
Abstract
This paper describes a microscale fibroplasia and contraction model that is based on fibrin-embedded lung fibroblasts and provides a convenient visual readout of fibrosis. Cell-laden fibrin microgel drops are formed by aqueous two-phase microprinting. The cells deposit extracellular matrix (ECM) molecules such as collagen while fibrin is gradually degraded. Ultimately, the cells contract the collagen-rich matrix to form a compact cell-ECM spheroid. The size of the spheroid provides the visual readout of the extent of fibroplasia. Stimulation of this wound-healing model with the profibrotic cytokine TGF-β1 leads to an excessive scar formation response that manifests as increased collagen production and larger cell-ECM spheroids. Addition of drugs also shifted the scarring profile: the FDA-approved fibrosis drugs (nintedanib and pirfenidone) and a PAI-1 inhibitor (TM5275) significantly reduced cell-ECM spheroid size. Not only is the assay useful for evaluation of antifibrotic drug effects, it is relatively sensitive; one of the few in vitro fibroplasia assays that can detect pirfenidone effects at submillimolar concentrations. Although this paper focuses on lung fibrosis, the approach opens opportunities for studying a broad range of fibrotic diseases and for evaluating antifibrotic therapeutics.
Collapse
Affiliation(s)
| | - Eric Parigoris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA,The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jonathan Chang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA,The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Louise Hecker
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA,The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
10
|
Knipe RS, Spinney JJ, Abe EA, Probst CK, Franklin A, Logue A, Giacona F, Drummond M, Griffith J, Brazee PL, Hariri LP, Montesi SB, Black KE, Hla T, Kuo A, Cartier A, Engelbrecht E, Christoffersen C, Shea BS, Tager AM, Medoff BD. Endothelial-Specific Loss of Sphingosine-1-Phosphate Receptor 1 Increases Vascular Permeability and Exacerbates Bleomycin-induced Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2022; 66:38-52. [PMID: 34343038 PMCID: PMC8803357 DOI: 10.1165/rcmb.2020-0408oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease which leads to significant morbidity and mortality from respiratory failure. The two drugs currently approved for clinical use slow the rate of decline in lung function but have not been shown to halt disease progression or reverse established fibrosis. Thus, new therapeutic targets are needed. Endothelial injury and the resultant vascular permeability are critical components in the response to tissue injury and are present in patients with IPF. However, it remains unclear how vascular permeability affects lung repair and fibrosis following injury. Lipid mediators such as sphingosine-1-phosphate (S1P) are known to regulate multiple homeostatic processes in the lung including vascular permeability. We demonstrate that endothelial cell-(EC) specific deletion of the S1P receptor 1 (S1PR1) in mice (EC-S1pr1-/-) results in increased lung vascular permeability at baseline. Following a low-dose intratracheal bleomycin challenge, EC-S1pr1-/- mice had increased and persistent vascular permeability compared with wild-type mice, which was strongly correlated with the amount and localization of resulting pulmonary fibrosis. EC-S1pr1-/- mice also had increased immune cell infiltration and activation of the coagulation cascade within the lung. However, increased circulating S1P ligand in ApoM-overexpressing mice was insufficient to protect against bleomycin-induced pulmonary fibrosis. Overall, these data demonstrate that endothelial cell S1PR1 controls vascular permeability in the lung, is associated with changes in immune cell infiltration and extravascular coagulation, and modulates the fibrotic response to lung injury.
Collapse
Affiliation(s)
- Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Jillian J. Spinney
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Elizabeth A. Abe
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Clemens K. Probst
- Boston University School of Medicine, Boston University, Boston, Massachusetts
| | | | - Amanda Logue
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Francesca Giacona
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Matt Drummond
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Jason Griffith
- Division of Pulmonary and Critical Care Medicine
- Center for Immunology and Inflammatory Diseases
| | - Patricia L. Brazee
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Lida P. Hariri
- Andrew M. Tager Fibrosis Research Center
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sydney B. Montesi
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
| | - Katherine E. Black
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Timothy Hla
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew Kuo
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andreane Cartier
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Eric Engelbrecht
- University of Louisville School of Medicine, Louisville, Kentucky
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; and
| | - Barry S. Shea
- Division of Pulmonary, Critical Care, and Sleep Medicine, Rhode Island Hospital and Alpert Medical School, Providence, Rhode Island
| | - Andrew M. Tager
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| | - Benjamin D. Medoff
- Division of Pulmonary and Critical Care Medicine
- Andrew M. Tager Fibrosis Research Center
- Center for Immunology and Inflammatory Diseases
| |
Collapse
|
11
|
Wang J, Hu K, Cai X, Yang B, He Q, Wang J, Weng Q. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm Sin B 2022; 12:18-32. [PMID: 35127370 PMCID: PMC8799876 DOI: 10.1016/j.apsb.2021.07.023] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/13/2021] [Accepted: 07/09/2021] [Indexed: 01/03/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic interstitial pneumonia with unknown causes. The incidence rate increases year by year and the prognosis is poor without cure. Recently, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) signaling pathway can be considered as a master regulator for IPF. The contribution of the PI3K/AKT in fibrotic processes is increasingly prominent, with PI3K/AKT inhibitors currently under clinical evaluation in IPF. Therefore, PI3K/AKT represents a critical signaling node during fibrogenesis with potential implications for the development of novel anti-fibrotic strategies. This review epitomizes the progress that is being made in understanding the complex interpretation of the cause of IPF, and demonstrates that PI3K/AKT can directly participate to the greatest extent in the formation of IPF or cooperate with other pathways to promote the development of fibrosis. We further summarize promising PI3K/AKT inhibitors with IPF treatment benefits, including inhibitors in clinical trials and pre-clinical studies and natural products, and discuss how these inhibitors mitigate fibrotic progression to explore possible potential agents, which will help to develop effective treatment strategies for IPF in the near future.
Collapse
Affiliation(s)
- Jincheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kaili Hu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuanyan Cai
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Sobiecka M, Szturmowicz M, Lewandowska K, Kowalik A, Łyżwa E, Zimna K, Barańska I, Jakubowska L, Kuś J, Langfort R, Tomkowski W. Chronic hypersensitivity pneumonitis is associated with an increased risk of venous thromboembolism: a retrospective cohort study. BMC Pulm Med 2021; 21:416. [PMID: 34920701 PMCID: PMC8684138 DOI: 10.1186/s12890-021-01794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Idiopathic pulmonary fibrosis (IPF) and chronic hypersensitivity pneumonitis share commonalities in pathogenesis shifting haemostasis balance towards the procoagulant and antifibrinolytic activity. Several studies have suggested an increased risk of venous thromboembolism in IPF. The association between venous thromboembolism and chronic hypersensitivity pneumonitis has not been studied yet.
Methods
A retrospective cohort study of IPF and chronic hypersensitivity pneumonitis patients diagnosed in single tertiary referral center between 2005 and 2018 was conducted. The incidence of symptomatic venous thromboembolism was evaluated. Risk factors for venous thromboembolism and survival among those with and without venous thromboembolism were assessed.
Results
A total of 411 (259 IPF and 152 chronic hypersensitivity) patients were included (mean age 66.7 ± 8.4 vs 51.0 ± 13.3 years, respectively). There were 12 (4.6%) incident cases of venous thromboembolism in IPF and 5 (3.3%) in chronic hypersensitivity pneumonitis cohort. The relative risk (RR) of venous thromboembolism in chronic hypersensitivity pneumonitis was not significantly different to that found in patients with IPF (7.1 vs 11.8/1000 person-years, RR 1.661 95% CI 0.545–6.019, respectively).
The treatment with systemic steroids (OR 5.38; 95% CI 1.65–18.8, p = 0.006) and GAP stage 3 (OR 7.85; 95% CI 1.49–34.9; p = 0.037) were significant risk factors for venous thromboembolism in IPF. Arterial hypertension and pulmonary hypertension significantly increased risk of venous thromboembolism in chronic hypersensitivity pneumonitis. There were no significant differences in survival between patients with and without venous thromboembolism.
Conclusions
The patients with chronic hypersensitivity pneumonitis have a marked increase in the risk of venous thromboembolism, similar to the patients with IPF. Venous thromboembolism does not affect the survival of patients with IPF and chronic hypersensitivity pneumonitis.
Collapse
|
13
|
Kalafatis D, Löfdahl A, Näsman P, Dellgren G, Wheelock ÅM, Elowsson Rendin L, Sköld M, Westergren-Thorsson G. Distal Lung Microenvironment Triggers Release of Mediators Recognized as Potential Systemic Biomarkers for Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2021; 22:ijms222413421. [PMID: 34948231 PMCID: PMC8704101 DOI: 10.3390/ijms222413421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 12/27/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with an unmet need of biomarkers that can aid in the diagnostic and prognostic assessment of the disease and response to treatment. In this two-part explorative proteomic study, we demonstrate how proteins associated with tissue remodeling, inflammation and chemotaxis such as MMP7, CXCL13 and CCL19 are released in response to aberrant extracellular matrix (ECM) in IPF lung. We used a novel ex vivo model where decellularized lung tissue from IPF patients and healthy donors were repopulated with healthy fibroblasts to monitor locally released mediators. Results were validated in longitudinally collected serum samples from 38 IPF patients and from 77 healthy controls. We demonstrate how proteins elevated in the ex vivo model (e.g., MMP7), and other serum proteins found elevated in IPF patients such as HGF, VEGFA, MCP-3, IL-6 and TNFRSF12A, are associated with disease severity and progression and their response to antifibrotic treatment. Our study supports the model’s applicability in studying mechanisms involved in IPF and provides additional evidence for both established and potentially new biomarkers in IPF.
Collapse
Affiliation(s)
- Dimitrios Kalafatis
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden; (Å.M.W.); (M.S.)
- Correspondence: ; Tel.: +46-72-3416617
| | - Anna Löfdahl
- Department of Experimental Medical Science, Lung Biology, Lund University, SE-221 84 Lund, Sweden; (A.L.); (L.E.R.); (G.W.-T.)
| | - Per Näsman
- Center for Safety Research, KTH, Royal Institute of Technology, SE-100 44 Stockholm, Sweden;
| | - Göran Dellgren
- Department of Cardiothoracic Surgery and Transplant Institute, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden;
| | - Åsa M. Wheelock
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden; (Å.M.W.); (M.S.)
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Linda Elowsson Rendin
- Department of Experimental Medical Science, Lung Biology, Lund University, SE-221 84 Lund, Sweden; (A.L.); (L.E.R.); (G.W.-T.)
| | - Magnus Sköld
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden; (Å.M.W.); (M.S.)
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Gunilla Westergren-Thorsson
- Department of Experimental Medical Science, Lung Biology, Lund University, SE-221 84 Lund, Sweden; (A.L.); (L.E.R.); (G.W.-T.)
| |
Collapse
|
14
|
Risk of recurrent venous thromboembolism and bleeding in patients with interstitial lung disease: a cohort study. J Thromb Thrombolysis 2021; 53:67-73. [PMID: 34232453 DOI: 10.1007/s11239-021-02518-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 10/20/2022]
Abstract
Interstitial lung disease (ILD) encompasses various parenchymal lung disorders, which has the potential to increase the risk of venous thromboembolism (VTE). To evaluate, in patients with ILD and VTE, the risk of recurrent VTE during follow-up after stopping anticoagulation. This was a cohort of patients with a first VTE recruited between 1997 and 2015. The primary outcome was adjudicated fatal or nonfatal recurrent VTE after stopping anticoagulation. Main secondary outcomes were major or clinically relevant non-major bleeding under anticoagulation. Among 4314 patients with VTE, 50 had ILD diagnosed before VTE. Of these, anticoagulation was stopped in 30 patients after a median duration of 180 days and continued indefinitely in 20 patients. During a median follow-up of 27.8 months after anticoagulation discontinuation, recurrent VTE occurred in 15 on 30 patients (annual incidence of 19.2 events per 100-person-years [95%CI 12.0-29.3], case-fatality rate of 6.7% [95%CI 1.21-29.8]). The risk of recurrence was threefold higher when VTE was unprovoked and case-fatality rate of recurrence was increased by 3 when VTE index was PE. During the anticoagulant period, (median duration of 8.6 months), 6 patients had a major or clinically relevant bleeding (annual incidence of 7.3 events per 100-person-years [95%CI 3.4-15.1], case-fatality rate of 16.7% [95%CI 3.0-56.4]). In patients with ILD, the risk of recurrent VTE after stopping anticoagulation and the risk of bleeding under anticoagulation were very high. Our results suggest that anticoagulation should not be prolonged beyond 3-6 months of anticoagulation in most of cases.
Collapse
|
15
|
The Serpin Superfamily and Their Role in the Regulation and Dysfunction of Serine Protease Activity in COPD and Other Chronic Lung Diseases. Int J Mol Sci 2021; 22:ijms22126351. [PMID: 34198546 PMCID: PMC8231800 DOI: 10.3390/ijms22126351] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating heterogeneous disease characterised by unregulated proteolytic destruction of lung tissue mediated via a protease-antiprotease imbalance. In COPD, the relationship between the neutrophil serine protease, neutrophil elastase, and its endogenous inhibitor, alpha-1-antitrypsin (AAT) is the best characterised. AAT belongs to a superfamily of serine protease inhibitors known as serpins. Advances in screening technologies have, however, resulted in many members of the serpin superfamily being identified as having differential expression across a multitude of chronic lung diseases compared to healthy individuals. Serpins exhibit a unique suicide-substrate mechanism of inhibition during which they undergo a dramatic conformational change to a more stable form. A limitation is that this also renders them susceptible to disease-causing mutations. Identification of the extent of their physiological/pathological role in the airways would allow further expansion of knowledge regarding the complexity of protease regulation in the lung and may provide wider opportunity for their use as therapeutics to aid the management of COPD and other chronic airways diseases.
Collapse
|
16
|
Hirani N, MacKinnon AC, Nicol L, Ford P, Schambye H, Pedersen A, Nilsson UJ, Leffler H, Sethi T, Tantawi S, Gravelle L, Slack RJ, Mills R, Karmakar U, Humphries D, Zetterberg F, Keeling L, Paul L, Molyneaux PL, Li F, Funston W, Forrest IA, Simpson AJ, Gibbons MA, Maher TM. Target inhibition of galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis. Eur Respir J 2021; 57:13993003.02559-2020. [PMID: 33214209 PMCID: PMC8156151 DOI: 10.1183/13993003.02559-2020] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
Galectin (Gal)-3 is a profibrotic β-galactoside-binding lectin that plays a key role in the pathogenesis of idiopathic pulmonary fibrosis (IPF) and IPF exacerbations. TD139 is a novel and potent small-molecule inhibitor of Gal-3. A randomised, double-blind, multicentre, placebo-controlled, phase 1/2a study was conducted to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of inhaled TD139 in 36 healthy subjects and 24 patients with IPF. Six dose cohorts of six healthy subjects were evaluated (4:2 TD139:placebo ratio) with single doses of TD139 (0.15–50 mg) and three dose cohorts of eight patients with IPF (5:3 TD139:placebo ratio) with once-daily doses of TD139 (0.3–10 mg) for 14 days. Inhaled TD139 was well tolerated with no significant treatment-related side-effects. TD139 was rapidly absorbed, with mean time taken to reach maximum plasma concentration (Cmax) values ranging from 0.6 to 3 h and a plasma half-life (T1/2) of 8 h. The concentration of TD139 in the lung was >567-fold higher than in the blood, with systemic exposure predicting exposure in the target compartment. Gal-3 expression on alveolar macrophages was reduced in the 3 and 10 mg dose groups compared with placebo, with a concentration-dependent inhibition demonstrated. Inhibition of Gal-3 expression in the lung was associated with reductions in plasma biomarkers centrally relevant to IPF pathobiology (platelet-derived growth factor-BB, plasminogen activator inhibitor-1, Gal-3, CCL18 and YKL-40). TD139 is safe and well tolerated in healthy subjects and IPF patients. It was shown to suppress Gal-3 expression on bronchoalveolar lavage macrophages and, in a concerted fashion, decrease plasma biomarkers associated with IPF progression. TD139 is a potent inhibitor of galectin-3, a key driver of fibrosis in the lung. In this phase 1/2a clinical study, inhaled TD139 was safe, well tolerated, and demonstrated target engagement and decreased plasma biomarkers associated with IPF progression.https://bit.ly/2JREKx6
Collapse
Affiliation(s)
- Nikhil Hirani
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Alison C MacKinnon
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Galecto, Copenhagen, Denmark
| | - Lisa Nicol
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | - Hakon Leffler
- Dept of Laboratory Medicine, Lund University, Lund, Sweden
| | | | | | | | | | - Ross Mills
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Utsa Karmakar
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Duncan Humphries
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | | | - Lyn Paul
- National Institute for Health Research Respiratory Clinical Research Facility, Royal Brompton and Harefield NHS Foundation Trust, and Fibrosis Research Group, National Heart and Lung Institute, Imperial College London, London, UK
| | - Philip L Molyneaux
- National Institute for Health Research Respiratory Clinical Research Facility, Royal Brompton and Harefield NHS Foundation Trust, and Fibrosis Research Group, National Heart and Lung Institute, Imperial College London, London, UK
| | - Feng Li
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Wendy Funston
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ian A Forrest
- Respiratory Medicine Unit, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - A John Simpson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Respiratory Medicine Unit, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michael A Gibbons
- Respiratory Dept, Institute of Biomedical and Clinical Science, Royal Devon and Exeter NHS Foundation Trust, Medical School, University of Exeter, Exeter, UK
| | - Toby M Maher
- National Institute for Health Research Respiratory Clinical Research Facility, Royal Brompton and Harefield NHS Foundation Trust, and Fibrosis Research Group, National Heart and Lung Institute, Imperial College London, London, UK.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Strikoudis A, Cieślak A, Loffredo L, Chen YW, Patel N, Saqi A, Lederer DJ, Snoeck HW. Modeling of Fibrotic Lung Disease Using 3D Organoids Derived from Human Pluripotent Stem Cells. Cell Rep 2020; 27:3709-3723.e5. [PMID: 31216486 DOI: 10.1016/j.celrep.2019.05.077] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/27/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023] Open
Abstract
The pathogenesis of idiopathic pulmonary fibrosis (IPF), an intractable interstitial lung disease, is unclear. Recessive mutations in some genes implicated in Hermansky-Pudlak syndrome (HPS) cause HPS-associated interstitial pneumonia (HPSIP), a clinical entity that is similar to IPF. We previously reported that HPS1-/- embryonic stem cell-derived 3D lung organoids showed fibrotic changes. Here, we show that the introduction of all HPS mutations associated with HPSIP promotes fibrotic changes in lung organoids, while the deletion of HPS8, which is not associated with HPSIP, does not. Genome-wide expression analysis revealed the upregulation of interleukin-11 (IL-11) in epithelial cells from HPS mutant fibrotic organoids. IL-11 was detected predominantly in type 2 alveolar epithelial cells in end-stage IPF, but was expressed more broadly in HPSIP. Finally, IL-11 induced fibrosis in WT organoids, while its deletion prevented fibrosis in HPS4-/- organoids, suggesting IL-11 as a therapeutic target. hPSC-derived 3D lung organoids are, therefore, a valuable resource to model fibrotic lung disease.
Collapse
Affiliation(s)
- Alexandros Strikoudis
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA; Division of Pulmonary Medicine, Allergy, and Critical Care, Columbia University Medical Center, New York, NY 10032, USA
| | - Anna Cieślak
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA; Division of Pulmonary Medicine, Allergy, and Critical Care, Columbia University Medical Center, New York, NY 10032, USA
| | - Lucas Loffredo
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Ya-Wen Chen
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA; Division of Pulmonary Medicine, Allergy, and Critical Care, Columbia University Medical Center, New York, NY 10032, USA
| | - Nina Patel
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Anjali Saqi
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - David J Lederer
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Hans-Willem Snoeck
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA; Division of Pulmonary Medicine, Allergy, and Critical Care, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
18
|
Wang B, Li T. Efficacy of recombinant human soluble thrombomodulin for acute exacerbation of idiopathic pulmonary fibrosis: A systematic review and meta-analysis. Exp Ther Med 2020; 20:351-358. [PMID: 32537001 PMCID: PMC7282169 DOI: 10.3892/etm.2020.8709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing lung disease of unknown etiology. Recombinant human soluble thrombomodulin (rhTM) is used for the management of acute exacerbation (AE) of IPF. The present review aimed to summarize the evidence and perform a meta-analysis of the efficacy and safety of rhTM in the management of AE-IPF. An electronic search of titles and abstracts published until 31st August 2019 was performed in the PubMed, Biomed Central, Scopus and Embase databases. Studies comparing rhTM-treated and control subjects with AE-IPF and assessing mortality and adverse events were included. Six studies met the inclusion criteria. A total of 145 patients received rhTM, while 146 patients served as controls. The meta-analysis indicated that rhTM resulted in a reduction in 28-day [odds ratio (OR), 0.25; 95% CI, 0.08-0.77; P=0.02; I2=0%] and 90-day mortality (OR, 0.29; 95% CI, 0.17-0.49; P<0.00001; I2=0%) compared with the controls. Adverse events were pooled and no difference was determined between rhTM and control groups (OR, 1.07; 95% CI, 0.45-2.51; P=0.88; I2=0%). It was indicated that administration of rhTM may reduce the short-term mortality in patients with AE-IPF; however, the quality of evidence was not high. The drug appears to be safe without any enhanced risk of adverse events, although high-quality randomized controlled trials with a large sample size are required to further support its use in the treatment of IPF.
Collapse
Affiliation(s)
- Baojun Wang
- Department of Critical Care Medicine, Xinchang County Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang 312500, P.R. China
| | - Ting Li
- Department of Science and Education, Huzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Traditional Chinese Medicine, Huzhou, Zhejiang 313000, P.R. China
| |
Collapse
|
19
|
Nanri Y, Nunomura S, Terasaki Y, Yoshihara T, Hirano Y, Yokosaki Y, Yamaguchi Y, Feghali-Bostwick C, Ajito K, Murakami S, Conway SJ, Izuhara K. Cross-Talk between Transforming Growth Factor-β and Periostin Can Be Targeted for Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2020; 62:204-216. [PMID: 31505128 PMCID: PMC6993541 DOI: 10.1165/rcmb.2019-0245oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized as progressive and irreversible fibrosis in the interstitium of lung tissues. There is still an unmet need to develop a novel therapeutic drug for IPF. We have previously demonstrated that periostin, a matricellular protein, plays an important role in the pathogenesis of pulmonary fibrosis. However, the underlying mechanism of how periostin causes pulmonary fibrosis remains unclear. In this study, we sought to learn whether the cross-talk between TGF-β (transforming growth factor-β), a central mediator in pulmonary fibrosis, and periostin in lung fibroblasts leads to generation of pulmonary fibrosis and whether inhibitors for integrin αVβ3, a periostin receptor, can block pulmonary fibrosis in model mice and the TGF-β signals in fibroblasts from patients with IPF. We found that cross-talk exists between TGF-β and periostin signals via αVβ3/β5 converging into Smad3. This cross-talk is necessary for the expression of TGF-β downstream effector molecules important for pulmonary fibrosis. Moreover, we identified several potent integrin low-molecular-weight inhibitors capable of blocking cross-talk with TGF-β signaling. One of the compounds, CP4715, attenuated bleomycin-induced pulmonary fibrosis in vivo in mice and the TGF-β signals in vitro in fibroblasts from patients with IPF. These results suggest that the cross-talk between TGF-β and periostin can be targeted for pulmonary fibrosis and that CP4715 can be a potential therapeutic agent to block this cross-talk.
Collapse
Affiliation(s)
- Yasuhiro Nanri
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Tomohito Yoshihara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Yusuke Hirano
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Yasuyuki Yokosaki
- Cell-Matrix Frontier Lab, Health Administration Office, Hiroshima University, Hiroshima, Japan
| | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Carol Feghali-Bostwick
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Keiichi Ajito
- Pharmaceutical Research Center, Meiji Seika Pharma Co. Ltd., Tokyo, Japan; and
| | - Shoichi Murakami
- Pharmaceutical Research Center, Meiji Seika Pharma Co. Ltd., Tokyo, Japan; and
| | - Simon J. Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| |
Collapse
|
20
|
Current advances in idiopathic pulmonary fibrosis: the pathogenesis, therapeutic strategies and candidate molecules. Future Med Chem 2019; 11:2595-2620. [PMID: 31633402 DOI: 10.4155/fmc-2019-0111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a type of chronic, progressive lung disease with unknown cause, which is characterized by increasing dyspnea and destruction of lung function with a high mortality rate. Evolving evidence demonstrated that the pathogenesis of IPF involved multiple signaling pathways such as inflammation, oxidative stress and fibrosis. However, drug discovery to prevent or revert IPF has been insufficient to cope with the development. Drug discovery targeting multiple links should be considered. In this review, we will brief the pathogenesis of IPF and discuss several small chemical entities toward the pathogenesis for IPF studied in animal models and clinical trials. The field of novel anti-IPF agents and the future directions for the prevention and treatment of IPF are detailed thoroughly discussed.
Collapse
|
21
|
Hematopoietic protease nexin-1 protects against lung injury by preventing thrombin signaling in mice. Blood Adv 2019; 2:2389-2399. [PMID: 30254103 DOI: 10.1182/bloodadvances.2018018283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/24/2018] [Indexed: 01/24/2023] Open
Abstract
Coagulation and fibrinolytic system deregulation has been implicated in the development of idiopathic pulmonary fibrosis, a devastating form of interstitial lung disease. We used intratracheal instillation of bleomycin to induce pulmonary fibrosis in mice and analyzed the role of serine protease inhibitor E2 (serpinE2)/protease nexin-1 (PN-1), a tissue serpin that exhibits anticoagulant and antifibrinolytic properties. PN-1 deficiency was associated, after bleomycin challenge, with a significant increase in mortality, as well as a marked increase in active thrombin in bronchoalveolar lavage fluids, an overexpression of extracellular matrix proteins, and an accumulation of inflammatory cells in the lungs. Bone marrow transplantation experiments showed that protective PN-1 was derived from hematopoietic cell compartment. A pharmacological strategy using the direct thrombin inhibitor argatroban reversed the deleterious effects of PN-1 deficiency. Concomitant deficiency of the thrombin receptor protease-activated receptor 4 (PAR4) abolished the deleterious effects of PN-1 deficiency in hematopoietic cells. These data demonstrate that prevention of thrombin signaling by PN-1 constitutes an important endogenous mechanism of protection against lung fibrosis and associated mortality. Our findings suggest that appropriate doses of thrombin inhibitors or PAR4 antagonists may provide benefit against progressive lung fibrosis with evidence of deregulated thrombin activity.
Collapse
|
22
|
The utility of the Japanese Association for Acute Medicine DIC scoring system for predicting survival in acute exacerbation of fibrosing idiopathic interstitial pneumonia. PLoS One 2019; 14:e0212810. [PMID: 31425562 PMCID: PMC6699698 DOI: 10.1371/journal.pone.0212810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/04/2019] [Indexed: 12/18/2022] Open
Abstract
Background Although evidence of a disseminated intravascular coagulation (DIC)-like reaction has been identified in the lung parenchyma of patients with acute exacerbation of idiopathic pulmonary fibrosis (IPF), an association between DIC and IPF outcome has not been elucidated. Therefore, we retrospectively investigated the association between the Japanese Association for Acute Medicine (JAAM)-DIC score and mortality in patients with acute exacerbation of fibrosing idiopathic interstitial pneumonia (AE-fIIP). Methods Between January 2008 and December 2016, consecutive patients with chronic fIIP who were admitted for the first time for AE-fIIP were recruited into the study. Associations between clinical data and JAAM-DIC score at the time of admission and mortality were examined. Results During the study period, a total of 91 patients with fIIP (73.0±8.4 y.o.) were hospitalized for AE-fIIP for the first time. The 30-day and hospital mortality were 8.7% and 17.5%, respectively. A multivariate analysis showed that the JAAM-DIC score on admission was an independent predictor of 30-day mortality (odds ratio [OR] 2.57, 95% confidential interval [CI] 1.50–4.40, P = 0.0006). The APACHE II score (OR 1.29, 95% CI 1.01–1.63, P = 0.03) and the JAAM-DIC score (OR 3.47, 95% CI 1.73–6.94, P = 0.0004) were independent predictors of hospital mortality. Conclusions The JAAM-DIC scoring system can predict survival in patients with AE-fIIP. The role of DIC in the pathogenesis of AE-fIIP merits further investigation.
Collapse
|
23
|
Therapeutic Role of Recombinant Human Soluble Thrombomodulin for Acute Exacerbation of Idiopathic Pulmonary Fibrosis. ACTA ACUST UNITED AC 2019; 55:medicina55050172. [PMID: 31137593 PMCID: PMC6571552 DOI: 10.3390/medicina55050172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/11/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022]
Abstract
Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is an acute respiratory worsening of unidentifiable cause that sometimes develops during the clinical course of IPF. Although the incidence of AE-IPF is not high, prognosis is poor. The pathogenesis of AE-IPF is not well understood; however, evidence suggests that coagulation abnormalities and inflammation are involved. Thrombomodulin is a transmembranous glycoprotein found on the cell surface of vascular endothelial cells. Thrombomodulin combines with thrombin, regulates coagulation/fibrinolysis balance, and has a pivotal role in suppressing excess inflammation through its inhibition of high-mobility group box 1 protein and the complement system. Thus, thrombomodulin might be effective in the treatment of AE-IPF, and we and other groups found that recombinant human soluble thrombomodulin improved survival in patients with AE-IPF. This review summarizes the existing evidence and considers the therapeutic role of thrombomodulin in AE-IPF.
Collapse
|
24
|
Sandbo N. Mechanisms of Fibrosis in IPF. Respir Med 2019. [DOI: 10.1007/978-3-319-99975-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Shimizu H, Sakamoto S, Isshiki T, Furuya K, Kurosaki A, Homma S. Association of serum high-mobility group box protein 1 level with outcomes of acute exacerbation of idiopathic pulmonary fibrosis and fibrosing nonspecific interstitial pneumonia. PLoS One 2018; 13:e0196558. [PMID: 29795561 PMCID: PMC5967827 DOI: 10.1371/journal.pone.0196558] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/16/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND OBJECTIVE High-mobility group box 1 (HMGB1) protein is important in acute lung injury. However, the role of HMGB-1 in acute exacerbation of fibrosing interstitial pneumonia (AE-FIP) has not been adequately studied. METHODS We prospectively measured serum HMGB1 level from disease onset to day 7 in 36 patients with AE-FIP6 patients had missing data because of early death (within 7 days). We then examined the association of HMGB1 level and outcome, and the associations of rhTM with HMGB1 level and outcome in 19 patients who were treated with rhTM (rhTM group) and 11 patients who were not (control group). RESULTS Data from 36 AE-FIP patients (mean age, 73.5±6.7years) were analyzed. Serum HMGB1 level was significantly higher in patients with AE-FIP than in those with stable idiopathic pulmonary fibrosis (16.4±13.5 vs 5.7±2.6 ng/ml, respectively; p = 0.003). HMGB1 was significantly lower on day 7 than at AE-FIP onset in survivors (6.5±4.8 vs 14.7±12.9 ng/ml, respectively; p = 0.02) but not in nonsurvivors (14.6±10.5 vs 9.2±4.8 ng/ml, respectively; p = 0.08). Although HMGB1 level at day 7 was significantly lower after rhTM treatment than at AE-FIP onset (8.4±6.1 vs 15.2±12.5 ng/ml, respectively; p = 0.02), it did not significantly decrease in patients receiving treatments other than rhTM (11.3±11.3 vs 8.3±5.3 ng/ml, respectively; p = 0.37). Three-month survival was 60.0% in the rhTM group and 36.4% in the control group (p = 0.449). In multivariate analysis, a decrease in HMGB1 was a significant independent predictor of 3-month survival (Odds ratio, 12.4; p = 0.007). CONCLUSION rhTM lowers serum HMGB1 level and may improve survival after AE-FIP. HMGB1 may be a promising therapeutic target for AE-FIP.
Collapse
Affiliation(s)
- Hiroshige Shimizu
- Department of Respiratory Medicine, Toho University Omori Medical Center, Ota-ku, Tokyo, Japan
| | - Susumu Sakamoto
- Department of Respiratory Medicine, Toho University Omori Medical Center, Ota-ku, Tokyo, Japan
| | - Takuma Isshiki
- Department of Respiratory Medicine, Toho University Omori Medical Center, Ota-ku, Tokyo, Japan
| | - Kenta Furuya
- Department of Respiratory Medicine, Toho University Omori Medical Center, Ota-ku, Tokyo, Japan
| | - Atsuko Kurosaki
- Department of Diagnostic Radiology, Fukujuji Hospital, Kiyose, Tokyo, Japan
| | - Sakae Homma
- Department of Respiratory Medicine, Toho University Omori Medical Center, Ota-ku, Tokyo, Japan
| |
Collapse
|
26
|
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a devastating chronic, progressive and irreversible disease that remains refractory to current therapies. Matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the development of pulmonary fibrosis since decades. Coagulation signalling deregulation, which influences several key inflammatory and fibro-proliferative responses, is also essential in IPF pathogenesis, and a growing body of evidence indicates that Protease-Activated Receptors (PARs) inhibition in IPF may be promising for future evaluation. Therefore, proteases and anti-proteases aroused great biomedical interest over the past years, owing to the identification of their potential roles in lung fibrosis. During these last decades, numerous other proteases and anti-proteases have been studied in lung fibrosis, such as matriptase, Human airway trypsin-like protease (HAT), Hepatocyte growth factor activator (HGFA)/HGFA activator inhibitor (HAI) system, Plasminogen activator inhibitor (PAI)-1, Protease nexine (PN)-1, cathepsins, calpains, and cystatin C. Herein, we provide a general overview of the proteases and anti-proteases unbalance during lung fibrogenesis and explore potential therapeutics for IPF.
Collapse
|
27
|
Ohshimo S, Costabel U, Shime N. An emerging frontier in the treatment of acute exacerbation of idiopathic pulmonary fibrosis. Respir Investig 2018; 56:97-99. [PMID: 29548662 DOI: 10.1016/j.resinv.2017.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Ulrich Costabel
- Interstitial and Rare Lung Disease Unit, Ruhrlandklinik, University Hospital, University Duisburg-Essen, Essen, Germany.
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|
28
|
De Brouwer B, Piscaer I, Von Der Thusen JH, Grutters JC, Schutgens RE, Wouters EF, Janssen R. Should vitamin K be supplemented instead of antagonised in patients with idiopathic pulmonary fibrosis? Expert Rev Respir Med 2018; 12:169-175. [PMID: 29303380 DOI: 10.1080/17476348.2018.1424544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION There is an ongoing need for additional interventions in idiopathic pulmonary fibrosis (IPF) as antifibrotic drugs currently available only inhibit and do not stall disease progression. Vitamin K is a co-factor for the activation of coagulation factors. However, it is also required to activate proteins with functions outside of the coagulation cascade, such as matrix Gla protein (MGP), a defender against soft tissue calcification. Vitamin K antagonists are anticoagulants that are, for unknown reasons, associated with increased mortality in IPF. Areas covered: We advance the hypothesis that modulation of vitamin K-dependent MGP activation in IPF patients by either vitamin K antagonism or administration may result in acceleration and deceleration of fibrosis progression, respectively. Furthermore, shortfall in vitamin K could be suspected in IPF based on the high prevalence of certain co-morbidities, such as vascular calcification and lung cancer. Expert commentary: We hypothesize that vitamin K status is reduced in IPF patients. This, in combination with studies suggesting that vitamin K may play a role in lung fibrosis pathogenesis, would provide a rationale for conducting a clinical trial assessing the potential mitigating effects of vitamin K administration on progression of lung fibrosis, prevention of co-morbidities and mortality in IPF.
Collapse
Affiliation(s)
- Bart De Brouwer
- a Department of Pulmonary Medicine , Canisius-Wilhelmina Hospital , Nijmegen , The Netherlands
| | - Ianthe Piscaer
- b Department of Respiratory Medicine , Maastricht University Medical Centre , Maastricht , The Netherlands
| | - Jan H Von Der Thusen
- c Department of Pathology , Erasmus Medical Centre , Rotterdam , The Netherlands
| | - Jan C Grutters
- d Department of Pulmonology , ILD Centre of Excellence , Nieuwegein , The Netherlands
| | - Roger Eg Schutgens
- e Van Creveldkliniek , University Medical Centre Utrecht , Utrecht , The Netherlands
| | - Emiel Fm Wouters
- b Department of Respiratory Medicine , Maastricht University Medical Centre , Maastricht , The Netherlands
| | - Rob Janssen
- a Department of Pulmonary Medicine , Canisius-Wilhelmina Hospital , Nijmegen , The Netherlands
| |
Collapse
|
29
|
Schuliga M, Grainge C, Westall G, Knight D. The fibrogenic actions of the coagulant and plasminogen activation systems in pulmonary fibrosis. Int J Biochem Cell Biol 2018; 97:108-117. [PMID: 29474926 DOI: 10.1016/j.biocel.2018.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/27/2022]
Abstract
Fibrosis causes irreversible damage to lung structure and function in restrictive lung diseases such as idiopathic pulmonary fibrosis (IPF). Extravascular coagulation involving fibrin formation in the intra-alveolar compartment is postulated to have a pivotal role in the development of pulmonary fibrosis, serving as a provisional matrix for migrating fibroblasts. Furthermore, proteases of the coagulation and plasminogen activation (plasminergic) systems that form and breakdown fibrin respectively directly contribute to pulmonary fibrosis. The coagulants, thrombin and factor Xa (FXa) evoke fibrogenic effects via cleavage of the N-terminus of protease-activated receptors (PARs). Whilst the formation and activity of plasmin, the principle plasminergic mediator is suppressed in the airspaces of patients with IPF, localized increases are likely to occur in the lung interstitium. Plasmin-evoked proteolytic activation of factor XII (FXII), matrix metalloproteases (MMPs) and latent, matrix-bound growth factors such as epidermal growth factor (EGF) indirectly implicate plasmin in pulmonary fibrosis. Another plasminergic protease, urokinase plasminogen activator (uPA) is associated with regions of fibrosis in the remodelled lung of IPF patients and elicits fibrogenic activity via binding its receptor (uPAR). Plasminogen activator inhibitor-1 (PAI-1) formed in the injured alveolar epithelium also contributes to pulmonary fibrosis in a manner that involves vitronectin binding. This review describes the mechanisms by which components of the two systems primarily involved in fibrin homeostasis contribute to interstitial fibrosis, with a particular focus on IPF. Selectively targeting the receptor-mediated mechanisms of coagulant and plasminergic proteases may limit pulmonary fibrosis, without the bleeding complications associated with conventional anti-coagulant and thrombolytic therapies.
Collapse
Affiliation(s)
- Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.
| | - Christopher Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Glen Westall
- Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Prahran, Victoria, Australia
| | - Darryl Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Canada
| |
Collapse
|
30
|
Kieliszek M, Lipinski B. Pathophysiological significance of protein hydrophobic interactions: An emerging hypothesis. Med Hypotheses 2018; 110:15-22. [PMID: 29317059 DOI: 10.1016/j.mehy.2017.10.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/09/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022]
Abstract
Fibrinogen is a unique protein that is converted into an insoluble fibrin in a single enzymatic event, which is a characteristic feature of fibrinogen due to its susceptibility to fibrinolytic degradation and dissolution. Although thrombosis is a result of activated blood coagulation, no explanation is being offered for the persistent presence of fibrin deposits in the affected organs. A classic example is stroke, in which the thrombolytic therapy is effective only during the first 3-4 h after the onset of thrombosis. This phenomenon can now be explained in terms of the modification of fibrinogen structure induced by hydroxyl radicals generated during the period of ischemia caused, in turn, by the blocking of the blood flow within the obstructed vessels. Fibrinogen modification involves intra-to intermolecular disulfide rearrangement induced by the reductive power of hydroxyl radicals that result in the exposition of buried hydrophobic epitopes. Such epitopes react readily with each other forming linkages stronger than the peptide covalent bonds, thus rendering them resistant to the proteolytic degradation. Also, limited reduction of human serum albumin (HSA) generates hydrophobic polymers that form huge insoluble complexes with fibrinogen. Consequently, such insoluble copolymers can be deposited within the circulation of various organs leading to their dysfunction. In conclusion, the study of protein hydrophobic interactions induced by a variety of nutritional and/or environmental factors can provide a rational explanation for a number of pathologic conditions including cardiovascular, neurologic, and other degenerative diseases including cancer.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Science, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C St., 02-776 Warsaw, Poland.
| | - Boguslaw Lipinski
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Science, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C St., 02-776 Warsaw, Poland.
| |
Collapse
|
31
|
Sakamoto S, Shimizu H, Isshiki T, Sugino K, Kurosaki A, Homma S. Recombinant human soluble thrombomodulin for acute exacerbation of idiopathic pulmonary fibrosis: A historically controlled study. Respir Investig 2017; 56:136-143. [PMID: 29548651 DOI: 10.1016/j.resinv.2017.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/21/2017] [Accepted: 10/20/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is an often-fatal condition associated with endothelial damage and abnormalities of the coagulation system. Recombinant human soluble thrombomodulin (rhTM) has anti-inflammatory effects and regulates the coagulation pathway. This study evaluated the effectiveness of rhTM for the treatment of AE-IPF. METHODS This historically controlled study included 80 patients with AE-IPF admitted to our center during the period from 2006 through 2016. The clinical features and outcomes of 45 patients treated with rhTM (rhTM group) were compared with those of 35 patients who did not receive rhTM (control group). Patients in both groups were treated with corticosteroid pulse therapy for 3 days, followed by a tapered maintenance dose. Patients in the rhTM group also received rhTM (0.06mg/kg/day) for 6 days as initial treatment. RESULTS There were no significant differences in the baseline characteristics between the groups. The survival rate at 3 months was significantly higher in the rhTM group than in the control group (66.6% vs 37.1%; p = 0.003). Overall survival was also significantly better in the rhTM group than in the control group (p = 0.003). On univariate and multivariate analysis, the partial pressure of arterial oxygen / fractional of inspired concentration of oxygen (PaO2/FiO2) ratio and rhTM treatment were predictive factors for 3-month survival. Regarding adverse events, mild bleeding was observed in 1 patient in the rhTM group. CONCLUSION The addition of rhTM to conventional treatment improved overall survival in patients with AE-IPF.
Collapse
Affiliation(s)
- Susumu Sakamoto
- Division of Respiratory Medicine, Toho University Omori Medical Center, Japan.
| | - Hiroshige Shimizu
- Division of Respiratory Medicine, Toho University Omori Medical Center, Japan
| | - Takuma Isshiki
- Division of Respiratory Medicine, Toho University Omori Medical Center, Japan
| | - Keishi Sugino
- Division of Respiratory Medicine, Toho University Omori Medical Center, Japan
| | - Atsuko Kurosaki
- Department of Diagnostic Radiology, Fukujuji Hospital, Japan
| | - Sakae Homma
- Division of Respiratory Medicine, Toho University Omori Medical Center, Japan
| |
Collapse
|
32
|
Mora AL, Rojas M, Pardo A, Selman M. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat Rev Drug Discov 2017; 16:810. [PMID: 29081515 DOI: 10.1038/nrd.2017.225] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Raghu G. Idiopathic pulmonary fibrosis: lessons from clinical trials over the past 25 years. Eur Respir J 2017; 50:50/4/1701209. [PMID: 29074545 DOI: 10.1183/13993003.01209-2017] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/23/2017] [Indexed: 01/24/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disease. A major breakthrough in treatment came when, after decades of clinical trials which failed to identify an efficacious treatment regimen, two therapies were successful in Phase-III trials. The advent of these therapies, nintedanib and pirfenidone, meant that for the first time IPF patients had two treatment options that could reduce disease progression. This review summarises the key lessons to be obtained from the clinical trials that led to the current international clinical practice guidelines for the treatment of IPF and provides insights for the design of future clinical trials that are needed if we are to improve outcomes that are clinically meaningful to IPF patients.
Collapse
Affiliation(s)
- Ganesh Raghu
- Center for Interstitial Lung Diseases, University of Washington, Seattle, WA, USA
| |
Collapse
|
34
|
Mora AL, Rojas M, Pardo A, Selman M. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat Rev Drug Discov 2017; 16:755-772. [DOI: 10.1038/nrd.2017.170] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Shea BS, Probst CK, Brazee PL, Rotile NJ, Blasi F, Weinreb PH, Black KE, Sosnovik DE, Van Cott EM, Violette SM, Caravan P, Tager AM. Uncoupling of the profibrotic and hemostatic effects of thrombin in lung fibrosis. JCI Insight 2017; 2:86608. [PMID: 28469072 PMCID: PMC5414562 DOI: 10.1172/jci.insight.86608] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/21/2017] [Indexed: 02/06/2023] Open
Abstract
Fibrotic lung disease, most notably idiopathic pulmonary fibrosis (IPF), is thought to result from aberrant wound-healing responses to repetitive lung injury. Increased vascular permeability is a cardinal response to tissue injury, but whether it is mechanistically linked to lung fibrosis is unknown. We previously described a model in which exaggeration of vascular leak after lung injury shifts the outcome of wound-healing responses from normal repair to pathological fibrosis. Here we report that the fibrosis produced in this model is highly dependent on thrombin activity and its downstream signaling pathways. Direct thrombin inhibition with dabigatran significantly inhibited protease-activated receptor-1 (PAR1) activation, integrin αvβ6 induction, TGF-β activation, and the development of pulmonary fibrosis in this vascular leak-dependent model. We used a potentially novel imaging method - ultashort echo time (UTE) lung magnetic resonance imaging (MRI) with the gadolinium-based, fibrin-specific probe EP-2104R - to directly visualize fibrin accumulation in injured mouse lungs, and to correlate the antifibrotic effects of dabigatran with attenuation of fibrin deposition. We found that inhibition of the profibrotic effects of thrombin can be uncoupled from inhibition of hemostasis, as therapeutic anticoagulation with warfarin failed to downregulate the PAR1/αvβ6/TGF-β axis or significantly protect against fibrosis. These findings have direct and important clinical implications, given recent findings that warfarin treatment is not beneficial in IPF, and the clinical availability of direct thrombin inhibitors that our data suggest could benefit these patients.
Collapse
Affiliation(s)
- Barry S. Shea
- Division of Pulmonary, Critical Care and Sleep Medicine, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island, USA
- Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases
| | - Clemens K. Probst
- Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases
| | - Patricia L. Brazee
- Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases
| | | | - Francesco Blasi
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology
| | | | - Katharine E. Black
- Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases
| | - David E. Sosnovik
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology
| | - Elizabeth M. Van Cott
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Peter Caravan
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology
| | - Andrew M. Tager
- Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases
| |
Collapse
|
36
|
Schuliga M, Jaffar J, Harris T, Knight DA, Westall G, Stewart AG. The fibrogenic actions of lung fibroblast-derived urokinase: a potential drug target in IPF. Sci Rep 2017; 7:41770. [PMID: 28139758 PMCID: PMC5282574 DOI: 10.1038/srep41770] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/28/2016] [Indexed: 11/16/2022] Open
Abstract
The role of urokinase plasminogen activator (uPA) in idiopathic pulmonary fibrosis (IPF) remains unclear. uPA-generated plasmin has potent fibrogenic actions involving protease activated receptor-1 (PAR-1) and interleukin-6 (IL-6). Here we characterize uPA distribution or levels in lung tissue and sera from IPF patients to establish the mechanism of its fibrogenic actions on lung fibroblasts (LFs). uPA immunoreactivity was detected in regions of fibrosis including fibroblasts of lung tissue from IPF patients (n = 7). Serum uPA levels and activity were also higher in IPF patients (n = 18) than controls (n = 18) (P < 0.05), being negatively correlated with lung function as measured by forced vital capacity (FVC) %predicted (P < 0.05). The culture supernatants of LFs from IPF patients, as compared to controls, showed an increase in plasmin activity after plasminogen incubation (5–15 μg/mL), corresponding with increased levels of uPA and IL-6 (n = 5–6, P < 0.05). Plasminogen-induced increases in plasmin activity and IL-6 levels were attenuated by reducing uPA and/or PAR-1 expression by RNAi. Plasmin(ogen)-induced mitogenesis was also attenuated by targeting uPA, PAR-1 or IL-6. Our data shows uPA is formed in active regions of fibrosis in IPF lung and contributes to LF plasmin generation, IL-6 production and proliferation. Urokinase is a potential target for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Michael Schuliga
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Jade Jaffar
- Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Prahran, Victoria, Australia
| | - Trudi Harris
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Canada
| | - Glen Westall
- Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Prahran, Victoria, Australia
| | - Alastair G Stewart
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
37
|
Efficacy of recombinant human soluble thrombomodulin for the treatment of acute exacerbation of idiopathic pulmonary fibrosis: a single arm, non-randomized prospective clinical trial. Multidiscip Respir Med 2016; 11:38. [PMID: 27826444 PMCID: PMC5098285 DOI: 10.1186/s40248-016-0074-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coagulation abnormalities are involved in the pathogenesis of acute exacerbations of idiopathic pulmonary fibrosis (AE-IPF). The administration of recombinant human soluble thrombomodulin (rhTM), which has both anti-inflammatory and anticoagulant activities, improves outcomes and respiratory function in patients with acute respiratory distress syndrome. Therefore, we conducted a prospective clinical study to examine the effects of rhTM on respiratory function, coagulation markers, and outcomes for patients with AE-IPF. METHODS After registration of the protocol, the patients with AE-IPF who satisfied the study inclusion criteria were treated daily with 380 U/kg of rhTM for 7 days and steroid pulse therapy. The concomitant administration of immunosuppressants and polymyxin B-immobilized fiber column treatment was prohibited. The sample size was 10 subjects. The primary study outcome was the improvement of PaO2/FiO2 ratio a week after treatment initiation. Secondary outcomes were change in D-dimer level over time and 28-day survival rate in patients without intubation. Study data were compared with historical untreated comparison group, including 13 patients with AE-IPF who were treated without rhTM before the registration. RESULTS The mean PaO2/FiO2 ratio for the rhTM treatment group (n = 10) on day 8 significantly improved compared with that on day one (two-way analysis of variance, p = 0.01). The mean D-dimer level tended to decrease in the rhTM group on day 8, but the change was not significant. The 28-day survival rate was 50 % higher in the rhTM group than in the historical untreated comparison group, but the difference was not significant. A post hoc analysis showed that overall survival time was significantly longer in the treated group compared with that of the historical untreated comparison group (p = 0.04, log-rank test). CONCLUSION rhTM plus steroid pulse therapy improves respiratory functions in patients with AE-IPF and is expected to improve overall patient survival without using other combination therapies. TRIAL REGISTRATION The study was registered with University Hospital Medical Information Network Clinical Trial Registry (UMIN-CTR) in October 2012 (UMIN000009082).
Collapse
|
38
|
Wang H, Yang T, Li D, Wu Y, Zhang X, Pang C, Zhang J, Ying B, Wang T, Wen F. Elevated circulating PAI-1 levels are related to lung function decline, systemic inflammation, and small airway obstruction in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2016; 11:2369-2376. [PMID: 27713627 PMCID: PMC5044991 DOI: 10.2147/copd.s107409] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Plasminogen activator inhibitor-1 (PAI-1) and soluble urokinase-type plasminogen activator receptor (suPAR) participate in inflammation and tissue remolding in various diseases, but their roles in chronic obstructive pulmonary disease (COPD) are not yet clear. This study aimed to investigate if PAI-1 and suPAR were involved in systemic inflammation and small airway obstruction (SAO) in COPD. Methods Demographic and clinical characteristics, spirometry examination, and blood samples were obtained from 84 COPD patients and 51 healthy volunteers. Serum concentrations of PAI-1, suPAR, tissue inhibitor of metalloproteinase-1 (TIMP-1), Matrix metalloproteinase-9 (MMP-9), and C-reactive protein (CRP) were detected with Magnetic Luminex Screening Assay. Differences between groups were statistically analyzed using one-way analysis of variance or chi-square test. Pearson’s partial correlation test (adjusted for age, sex, body mass index, cigarette status, and passive smoke exposure) and multivariable linear analysis were used to explore the relationships between circulating PAI-1 and indicators of COPD. Results First, we found that serum PAI-1 levels but not suPAR levels were significantly increased in COPD patients compared with healthy volunteers (125.56±51.74 ng/mL versus 102.98±36.62 ng/mL, P=0.007). Then, the correlation analysis showed that circulating PAI-1 was inversely correlated with pulmonary function parameters including the ratio of forced expiratory volume in 1 second to forced vital capacity (FEV1/FVC), FEV1/Pre (justified r=−0.308, P<0.001; justified r=−0.295, P=0.001, respectively) and SAO indicators such as FEV3/FVC, MMEF25–75/Pre (justified r=−0.289, P=0.001; justified r=−0.273, P=0.002, respectively), but positively related to the inflammatory marker CRP (justified r=0.351, P<0.001), the small airway remolding biomarker TIMP-1, and MMP-9 (justified r=0.498, P<0.001; justified r=0.267, P=0.002, respectively). Besides, multivariable linear analysis showed that FEV1/FVC, CRP, and TIMP-1 were independent parameters associated with PAI-1. Conclusion Our findings first illustrate that elevated serum PAI-1 levels are related to the lung function decline, systemic inflammation, and SAO in COPD, suggesting that PAI-1 may play critical roles in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Hao Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ting Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Diandian Li
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yanqiu Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xue Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Caishuang Pang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
39
|
Kreuter M, Wijsenbeek MS, Vasakova M, Spagnolo P, Kolb M, Costabel U, Weycker D, Kirchgaessler KU, Maher TM. Unfavourable effects of medically indicated oral anticoagulants on survival in idiopathic pulmonary fibrosis. Eur Respir J 2016; 47:1776-84. [PMID: 27103382 DOI: 10.1183/13993003.02087-2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/25/2016] [Indexed: 11/05/2022]
Abstract
Procoagulant and antifibrinolytic activity has been associated with idiopathic pulmonary fibrosis (IPF); however, investigation of anticoagulant therapy in IPF has suggested deleterious effects. This post hoc analysis evaluated the effect of medically indicated anticoagulation on mortality and other clinical outcomes in IPF.Patients randomised to placebo (n=624) from three controlled trials in IPF were analysed by oral anticoagulant use. End-points included all-cause and IPF-related mortality, disease progression, hospitalisation, and adverse events, over 1 year.At baseline, 32 (5.1%) patients randomised to placebo were prescribed anticoagulants for non-IPF indications, 29 (90.6%) of whom received warfarin. Unadjusted analyses demonstrated significantly higher all-cause and IPF-related mortality at 1 year in baseline anticoagulant users versus nonusers (15.6% versus 6.3%, p=0.039 and 15.6% versus 3.9%, p=0.002, respectively). In multivariate analyses, baseline use of anticoagulants was an independent predictor of IPF-related mortality (hazard ratio 4.7, p=0.034), but not other end-points. Rates of bleeding and cardiac events did not differ significantly between groups. In an exploratory analysis, anticoagulant use at any time during the study was an independent predictor of all end-points.This post hoc analysis suggests that anticoagulants used for non-IPF indications may have unfavourable effects in IPF patients. Future studies are needed to explore this relationship further.
Collapse
Affiliation(s)
- Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Pneumology and Respiratory Critical Care Medicine, Thoraxklinik, University of Heidelberg, and Translational Lung Research Center Heidelberg (TLRCH), Heidelberg, Germany; Member of the German Center for Lung Research (DZL), Germany
| | - Marlies S Wijsenbeek
- Dept of Pulmonary Medicine, Erasmus Medical Center, University Hospital Rotterdam, Rotterdam, The Netherlands
| | - Martina Vasakova
- Dept of Respiratory Medicine, Thomayer Hospital, Prague, Czech Republic
| | - Paolo Spagnolo
- Medical University Clinic, Canton Hospital Baselland and University of Basel, Liestal, Switzerland
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Dept of Medicine, Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Ulrich Costabel
- Interstitial and Rare Lung Disease Unit, Ruhrlandklinik, University Hospital, University of Duisburg-Essen, Essen, Germany
| | | | | | - Toby M Maher
- National Institute for Health Research Biomedical Research Unit, Royal Brompton Hospital and Fibrosis Research Group, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
40
|
Alagha K, Bourdin A, Chanez P. Reply: Increased Mortality during Bleomycin-induced Pulmonary Fibrosis due to Low Endogenous Activated Protein C Levels. Am J Respir Crit Care Med 2015; 192:1259-60. [DOI: 10.1164/rccm.201507-1307le] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Khuder Alagha
- CHU MontpellierMontpellier, France
- INSERM U1046Montpellier, France
| | - Arnaud Bourdin
- CHU MontpellierMontpellier, France
- INSERM U1046Montpellier, France
| | - Pascal Chanez
- APHMMarseille, Franceand
- INSERM UMR1067Marseille, France
| |
Collapse
|
41
|
Ban C, Wang T, Zhang S, Xin P, Liang L, Wang C, Dai H. Fibrinolytic system related to pulmonary arterial pressure and lung function of patients with idiopathic pulmonary fibrosis. CLINICAL RESPIRATORY JOURNAL 2015; 11:640-647. [PMID: 26425916 DOI: 10.1111/crj.12397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/01/2015] [Accepted: 09/30/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVES AND AIMS To investigate urokinase-(uPA) and tissue-type (tPA) plasminogen activator and plasminogen activator inhibitor type-1 (PAI-1) levels in patients with idiopathic pulmonary fibrosis (IPF) and to determine the relationship between fibrinolytic system and pulmonary arterial pressure and pulmonary function. METHODS Seventy-nine patients with IPF were included. Bronchoalveolar lavage fluid (BALF) and blood samples were collected. The concentrations of tPA, uPA and PAI-1 were measured using enzyme-linked immunosorbent assay. Doppler echocardiography was used to detect tricuspid regurgitation pressure gradient (TRPG) to estimate pulmonary arterial pressure. RESULTS BALF tPA elevated (P < 0.005), circulatory PAI-1 decreased (P = 0.05) and the ratio of uPA and PAI-1 decreased (P = 0.01) in BALF in IPF patients with pulmonary hypertension (PH) compared to those without PH. Positive linear correlations were found: BALF tPA and TRPG (r = 0.558, P = 0.013); the predicted percentage of diffusion capacity of lung for carbon monoxide adjustments for alveolar volume and BALF uPA (r = 0.319, P = 0.035). Negative linear correlations were as follows: BALF PAI-1 and the predicted percentage of VCmax (r = -0.325, P = 0.020), or total lung capacity (r = -0.312, P = 0.033); circulatory PAI-1 and TRPG (r = -0.697, P = 0.003). CONCLUSIONS The change of alveolar fibrolytic system in IPF, especially the uPA reduction and the PAI-1elevation, contributes to the deterioration of lung function. During the lung injury initiating fibrosis, tPA and PAI-1 might be leaked out of the pulmonary capillaries into alveoli, resulting in their elevation in alveoli and reduction in circulation, and finally contributing to the development of PH in IPF.
Collapse
Affiliation(s)
- Chengjun Ban
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.,Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Institute of Respiratory Medicine, Beijing, 100020, China
| | - Tongde Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.,Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Institute of Respiratory Medicine, Beijing, 100020, China
| | - Shu Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.,Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Institute of Respiratory Medicine, Beijing, 100020, China
| | - Ping Xin
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.,Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Institute of Respiratory Medicine, Beijing, 100020, China
| | - Lirong Liang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.,Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Institute of Respiratory Medicine, Beijing, 100020, China
| | - Chen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Institute of Respiratory Medicine, Beijing, 100020, China
| | - Huaping Dai
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.,Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Institute of Respiratory Medicine, Beijing, 100020, China
| |
Collapse
|
42
|
Liu RM, Desai LP. Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis. Redox Biol 2015; 6:565-577. [PMID: 26496488 PMCID: PMC4625010 DOI: 10.1016/j.redox.2015.09.009] [Citation(s) in RCA: 476] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/17/2015] [Accepted: 09/20/2015] [Indexed: 12/21/2022] Open
Abstract
Transforming growth factor beta (TGF-β) is the most potent pro-fibrogenic cytokine and its expression is increased in almost all of fibrotic diseases. Although signaling through Smad pathway is believed to play a central role in TGF-β's fibrogenesis, emerging evidence indicates that reactive oxygen species (ROS) modulate TGF-β's signaling through different pathways including Smad pathway. TGF-β1 increases ROS production and suppresses antioxidant enzymes, leading to a redox imbalance. ROS, in turn, induce/activate TGF-β1 and mediate many of TGF-β's fibrogenic effects, forming a vicious cycle (see graphic flow chart on the right). Here, we review the current knowledge on the feed-forward mechanisms between TGF-β1 and ROS in the development of fibrosis. Therapeutics targeting TGF-β-induced and ROS-dependent cellular signaling represents a novel approach in the treatment of fibrotic disorders. TGF-β1 is the most potent ubiquitous profibrogenic cytokine. TGF- β 1 induces redox imbalance by ↑ ROS production and ↓ anti-oxidant defense system Redox imbalance, in turn, activates latent TGF-β1 and induces TGF-β1 expression. Redox imbalance also mediates many of TGF-β1’s profibrogenic effects
Collapse
Affiliation(s)
- Rui-Ming Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmi ngham, Birmingham, AL, USA.
| | - Leena P Desai
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmi ngham, Birmingham, AL, USA
| |
Collapse
|
43
|
Abstract
Major risk factors for idiopathic pulmonary fibrosis (IPF) include older age and a history of smoking, which predispose to several pulmonary and extra-pulmonary diseases. IPF can be associated with additional comorbidities through other mechanisms as either a cause or a consequence of these diseases. We review the literature regarding the management of common pulmonary and extra-pulmonary comorbidities, including chronic obstructive pulmonary disease, lung cancer, pulmonary hypertension, venous thromboembolism, sleep-disordered breathing, gastroesophageal reflux disease, coronary artery disease, depression and anxiety, and deconditioning. Recent studies have provided some guidance on the management of these diseases in IPF; however, most treatment recommendations are extrapolated from studies of non-IPF patients. Additional studies are required to more accurately determine the clinical features of these comorbidities in patients with IPF and to evaluate conventional treatments and management strategies that are beneficial in non-IPF populations.
Collapse
Affiliation(s)
- Blair G Fulton
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada ; Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
44
|
Crooks MG, Hart SP. Coagulation and anticoagulation in idiopathic pulmonary fibrosis. Eur Respir Rev 2015; 24:392-9. [DOI: 10.1183/16000617.00008414] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an incurable, progressive interstitial lung disease with a prognosis that is worse than that of many cancers. Epidemiological studies have demonstrated a link between IPF and thrombotic vascular events. Coagulation and fibrinolytic systems play central roles in wound healing and repair, processes hypothesised to be abnormal within the IPF lung. Animal models of pulmonary fibrosis have demonstrated an imbalance between thrombosis and fibrinolysis within the alveolar compartment, a finding that is also observed in IPF patients. A systemic prothrombotic state also occurs in IPF and is associated with increased mortality, but trials of anticoagulation in IPF have provided conflicting results. Differences in methodology, intervention and study populations may contribute to the inconsistent trial outcomes. The new oral anticoagulants have properties that may prove advantageous in targeting both thrombotic risk and progression of lung fibrosis.
Collapse
|
45
|
Noguchi S, Eitoku M, Moriya S, Kondo S, Kiyosawa H, Watanabe T, Suganuma N. Regulation of Gene Expression by Sodium Valproate in Epithelial-to-Mesenchymal Transition. Lung 2015; 193:691-700. [PMID: 26286207 DOI: 10.1007/s00408-015-9776-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE Epithelial-to-mesenchymal transition (EMT) is an important mechanism in cancer metastasis and pulmonary fibrosis. Previous studies demonstrated effect of histone H3 and H4 acetylation in cancer and pulmonary fibrosis, so we hypothesized that histone modification might play a crucial role in gene regulation during EMT. In this study, we investigated the mechanism behind EMT by analyzing comprehensive gene expression and the effect of sodium valproate (VPA), a class I histone deacetylase inhibitory drug, on histone modification. METHODS EMT was induced in human alveolar epithelial cells (A549) using 5 ng/mL of transforming growth factor (TGF)-β1. Various concentrations of VPA were then administered, and Western blotting was used to analyze histone acetylation or methylation. Comprehensive gene expression analysis was carried out by RNA sequencing, and chromatin immunoprecipitation was performed with an anti-acetyl histone H3 lysine 27 antibody. RESULTS TGF-β1 stimulation led to a decrease in histone acetylation, especially that of histone H3K27, and H3K27ac localization was decreased at particular gene loci. This decrease was recovered by VPA treatment, which also up-regulated the mRNA expression of genes down-regulated by TGF-β1, and correlated with the localization of H3K27ac. However, genes up-regulated by TGF-β1 stimulation were not suppressed by VPA, with the exception of COL1A1. CONCLUSIONS Histone acetylation was down-regulated by TGF-β1 stimulation in A549 cells. VPA partially inhibited EMT and the decrease of histone acetylation, which plays an important role in the progression of EMT.
Collapse
Affiliation(s)
- Shuhei Noguchi
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Oko-cho Kohasu, Nankoku, Kochi, 783-8505, Japan
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Oko-cho Kohasu, Nankoku, Kochi, 783-8505, Japan
| | - Shigeharu Moriya
- Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Shinji Kondo
- Research Integration Center, Research Organization of Information and Systems, National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8518, Japan
| | - Hidenori Kiyosawa
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Oko-cho Kohasu, Nankoku, Kochi, 783-8505, Japan
| | - Takashi Watanabe
- Organization for Regional Alliances, Kochi University of Technology, Tosayamada, Kami, Kochi, 782-8502, Japan.,Graduate School of Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, 5-1 Oe, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Narufumi Suganuma
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Oko-cho Kohasu, Nankoku, Kochi, 783-8505, Japan.
| |
Collapse
|
46
|
ERK5 regulates basic fibroblast growth factor-induced type 1 plasminogen activator inhibitor expression and cell proliferation in lung fibroblasts. Life Sci 2015; 135:1-8. [DOI: 10.1016/j.lfs.2015.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 10/23/2022]
|
47
|
Buckley S, Shi W, Xu W, Frey MR, Moats R, Pardo A, Selman M, Warburton D. Increased alveolar soluble annexin V promotes lung inflammation and fibrosis. Eur Respir J 2015; 46:1417-29. [PMID: 26160872 DOI: 10.1183/09031936.00002115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/25/2015] [Indexed: 01/04/2023]
Abstract
The causes underlying the self-perpetuating nature of idiopathic pulmonary fibrosis (IPF), a progressive and usually lethal disease, remain unknown. We hypothesised that alveolar soluble annexin V contributes to lung fibrosis, based on the observation that human IPF bronchoalveolar lavage fluid (BALF) containing high annexin V levels promoted fibroblast involvement in alveolar epithelial wound healing that was reduced when annexin V was depleted from the BALF. Conditioned medium from annexin V-treated alveolar epithelial type 2 cells (AEC2), but not annexin V per se, induced proliferation of human fibroblasts and contained pro-fibrotic, IPF-associated proteins, as well as pro-inflammatory cytokines that were found to correlate tightly (r>0.95) with annexin V levels in human BALF. ErbB2 receptor tyrosine kinase in AECs was activated by annexin V, and blockade reduced the fibrotic potential of annexin V-treated AEC-conditioned medium. In vivo, aerosol delivery of annexin V to mouse lung induced inflammation, fibrosis and increased hydroxyproline, with activation of Wnt, transforming growth factor-β, mitogen-activated protein kinase and nuclear factor-κB signalling pathways, as seen in IPF. Chronically increased alveolar annexin V levels, as reflected in increased IPF BALF levels, may contribute to the progression of IPF by inducing the release of pro-fibrotic mediators.
Collapse
Affiliation(s)
- Susan Buckley
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Wei Xu
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Mark R Frey
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Rex Moats
- Imaging Core Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México DF, México
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", México DF, México
| | - David Warburton
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
48
|
Alagha K, Secq V, Pahus L, Sofalvi T, Palot A, Bourdin A, Chanez P. We should prohibit warfarin in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2015; 191:958-60. [PMID: 25876206 DOI: 10.1164/rccm.201412-2281le] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
49
|
Cho SH, Lee SH, Kato A, Takabayashi T, Kulka M, Shin SC, Schleimer RP. Cross-talk between human mast cells and bronchial epithelial cells in plasminogen activator inhibitor-1 production via transforming growth factor-β1. Am J Respir Cell Mol Biol 2015; 52:88-95. [PMID: 24987792 DOI: 10.1165/rcmb.2013-0399oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Previous reports suggest that plasminogen activator inhibitor-1 (PAI-1) promotes airway remodeling and that human and mouse mast cells (MCs) are an important source of PAI-1. In the present study we investigated MC-epithelial cell (EC) interactions in the production of PAI-1. We stimulated the human MC line LAD2 with IgE-receptor cross-linking and collected the supernatants. We incubated the human bronchial EC line BEAS-2B with the LAD2 supernatants and measured the level of PAI-1. When the supernatants from IgE-stimulated LAD2 were added to BEAS-2B, there was a significant enhancement of PAI-1 production by BEAS-2B. When we treated the MC supernatants with a transforming growth factor (TGF)-β1 neutralizing antibody, the MC-derived induction of PAI-1 from BEAS-2B was completely abrogated. Although TGF-β1 mRNA was constitutively expressed in resting LAD2, it was not highly induced by IgE-mediated stimulation. Nonetheless, active TGF-β1 protein was significantly increased in LAD2 after IgE-mediated stimulation. Active TGF-β1 produced by primary cultured human MCs was significantly reduced in the presence of a chymase inhibitor, suggesting a role of MC chymase as an activator of latent TGF-β1. This study indicates that stimulation of human MCs by IgE receptor cross-linking triggers activation of TGF-β1, at least in part via chymase, which in turn induces the production of PAI-1 by bronchial ECs. Our data suggest that human MCs may play an important role in airway remodeling in asthma as a direct source of PAI-1 and by activating bronchial ECs to produce further PAI-1 via a TGF-β1-mediated activation pathway.
Collapse
Affiliation(s)
- Seong H Cho
- 1 Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | | | | | |
Collapse
|
50
|
Isshiki T, Sakamoto S, Kinoshita A, Sugino K, Kurosaki A, Homma S. Recombinant Human Soluble Thrombomodulin Treatment for Acute Exacerbation of Idiopathic Pulmonary Fibrosis: A Retrospective Study. Respiration 2015; 89:201-7. [DOI: 10.1159/000369828] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 10/15/2014] [Indexed: 01/08/2023] Open
|