1
|
Khan R, Laumet G, Leinninger GM. Hungry for relief: Potential for neurotensin to address comorbid obesity and pain. Appetite 2024; 200:107540. [PMID: 38852785 DOI: 10.1016/j.appet.2024.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Chronic pain and obesity frequently occur together. An ideal therapy would alleviate pain without weight gain, and most optimally, could promote weight loss. The neuropeptide neurotensin (Nts) has been separately implicated in reducing weight and pain but could it be a common actionable target for both pain and obesity? Here we review the current knowledge of Nts signaling via its receptors in modulating body weight and pain processing. Evaluating the mechanism by which Nts impacts ingestive behavior, body weight, and analgesia has potential to identify common physiologic mechanisms underlying weight and pain comorbidities, and whether Nts may be common actionable targets for both.
Collapse
Affiliation(s)
- Rabail Khan
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Geoffroy Laumet
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA; Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Gina M Leinninger
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA; Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
2
|
Barbaresi P, Fabri M, Lorenzi T, Sagrati A, Morroni M. Intrinsic organization of the corpus callosum. Front Physiol 2024; 15:1393000. [PMID: 39035452 PMCID: PMC11259024 DOI: 10.3389/fphys.2024.1393000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 07/23/2024] Open
Abstract
The corpus callosum-the largest commissural fiber system connecting the two cerebral hemispheres-is considered essential for bilateral sensory integration and higher cognitive functions. Most studies exploring the corpus callosum have examined either the anatomical, physiological, and neurochemical organization of callosal projections or the functional and/or behavioral aspects of the callosal connections after complete/partial callosotomy or callosal lesion. There are no works that address the intrinsic organization of the corpus callosum. We review the existing information on the activities that take place in the commissure in three sections: I) the topographical and neurochemical organization of the intracallosal fibers, II) the role of glia in the corpus callosum, and III) the role of the intracallosal neurons.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Mara Fabri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Teresa Lorenzi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Andrea Sagrati
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Manrico Morroni
- Electron Microscopy Unit, Azienda Ospedaliero-Universitaria, Ancona, Italy
| |
Collapse
|
3
|
Khani F, Pourmotabbed A, Veisi M, Hosseinmardi N, Fathollahi Y, Azizi H. Adolescent morphine exposure impairs dark avoidance memory and synaptic potentiation of ventral hippocampal CA1 during adulthood in rats. Life Sci 2023; 314:121344. [PMID: 36587788 DOI: 10.1016/j.lfs.2022.121344] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Adolescence is a neurobiological critical period for neurodevelopmental processes. Adolescent opioid exposure can affect cognitive abilities via regional-specific lasting changes in brain structure and function. The current study was therefore designed to assess the long-term effects of adolescent morphine exposure on dark avoidance memory and synaptic plasticity of the ventral hippocampal CA1. Adolescent Wistar rats received escalating doses of morphine for 10 days. Morphine injections were started with an incremental dose of 2.5 mg/kg to reach a dose of 25 mg/kg. 30 days after the last injection, inhibitory memory and in vitro field potential recording were evaluated. Also, the weight of the animals was measured during drug and post-drug exposure. We found that adolescent morphine exposure decreased weight gain during morphine and post-morphine exposure. Passive avoidance memory was impaired in the morphine group. Moreover, adolescent morphine exposure caused an increase in baseline synaptic responsiveness and failed long-term potentiation (LTP) in the ventral hippocampal CA1 during adulthood. In the morphine group, the mean values of the field excitatory postsynaptic potential (fEPSP) slopes required to elicit a half-maximal population spike (PS) amplitude were significantly greater than that of the saline group. Therefore, adolescent morphine exposure has a durable effect on memory functions, synaptic activity, and plasticity of ventral hippocampal CA1. Adults with adolescent morphine exposures may experience maladaptive behaviors and cognitive disabilities.
Collapse
Affiliation(s)
- Fatemeh Khani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Pourmotabbed
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozhgan Veisi
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Blankers SA, Galea LA. Androgens and Adult Neurogenesis in the Hippocampus. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2021; 2:203-215. [PMID: 35024692 PMCID: PMC8744005 DOI: 10.1089/andro.2021.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 11/12/2022]
Abstract
Adult neurogenesis in the hippocampus is modulated by steroid hormones, including androgens, in male rodents. In this review, we summarize research showing that chronic exposure to androgens, such as testosterone and dihydrotestosterone, enhances the survival of new neurons in the dentate gyrus of male, but not female, rodents, via the androgen receptor. However, the neurogenesis promoting the effect of androgens in the dentate gyrus may be limited to younger adulthood as it is not evident in middle-aged male rodents. Although direct exposure to androgens in adult or middle age does not significantly influence neurogenesis in female rodents, the aromatase inhibitor letrozole enhances neurogenesis in the hippocampus of middle-aged female mice. Unlike other androgens, androgenic anabolic steroids reduce neurogenesis in the hippocampus of male rodents. Collectively, the research indicates that the ability of androgens to enhance hippocampal neurogenesis in adult rodents is dependent on dose, androgen type, sex, duration, and age. We discuss these findings and how androgens may be influencing neuroprotection, via neurogenesis in the hippocampus, in the context of health and disease.
Collapse
Affiliation(s)
- Samantha A. Blankers
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
| | - Liisa A.M. Galea
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
- Department of Psychology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
Vasoactive Intestinal Polypeptide-Immunoreactive Interneurons within Circuits of the Mouse Basolateral Amygdala. J Neurosci 2018; 38:6983-7003. [PMID: 29954847 PMCID: PMC6070667 DOI: 10.1523/jneurosci.2063-17.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 04/20/2018] [Accepted: 05/15/2018] [Indexed: 11/29/2022] Open
Abstract
In cortical structures, principal cell activity is tightly regulated by different GABAergic interneurons (INs). Among these INs are vasoactive intestinal polypeptide-expressing (VIP+) INs, which innervate preferentially other INs, providing a structural basis for temporal disinhibition of principal cells. However, relatively little is known about VIP+ INs in the amygdaloid basolateral complex (BLA). In this study, we report that VIP+ INs have a variable density in the distinct subdivisions of the mouse BLA. Based on different anatomical, neurochemical, and electrophysiological criteria, VIP+ INs could be identified as IN-selective INs (IS-INs) and basket cells expressing CB1 cannabinoid receptors. Whole-cell recordings of VIP+ IS-INs revealed three different spiking patterns, none of which was associated with the expression of calretinin. Genetic targeting combined with optogenetics and in vitro recordings enabled us to identify several types of BLA INs innervated by VIP+ INs, including other IS-INs, basket and neurogliaform cells. Moreover, light stimulation of VIP+ basket cell axon terminals, characterized by CB1 sensitivity, evoked IPSPs in ∼20% of principal neurons. Finally, we show that VIP+ INs receive a dense innervation from both GABAergic inputs (although only 10% from other VIP+ INs) and distinct glutamatergic inputs, identified by their expression of different vesicular glutamate transporters. In conclusion, our study provides a wide-range analysis of single-cell properties of VIP+ INs in the mouse BLA and of their intrinsic and extrinsic connectivity. Our results reinforce the evidence that VIP+ INs are structurally and functionally heterogeneous and that this heterogeneity could mediate different roles in amygdala-dependent functions. SIGNIFICANCE STATEMENT We provide the first comprehensive analysis of the distribution of vasoactive intestinal polypeptide-expressing (VIP+) interneurons (INs) across the entire mouse amygdaloid basolateral complex (BLA), as well as of their morphological and physiological properties. VIP+ INs in the neocortex preferentially target other INs to form a disinhibitory network that facilitates principal cell firing. Our study is the first to demonstrate the presence of such a disinhibitory circuitry in the BLA. We observed structural and functional heterogeneity of these INs and characterized their input/output connectivity. We also identified several types of BLA INs that, when inhibited, may provide a temporal window for principal cell firing and facilitate associative plasticity, e.g., in fear learning.
Collapse
|
6
|
Kinnavane L, Vann SD, Nelson AJD, O’Mara SM, Aggleton JP. Collateral Projections Innervate the Mammillary Bodies and Retrosplenial Cortex: A New Category of Hippocampal Cells. eNeuro 2018; 5:ENEURO.0383-17.2018. [PMID: 29527569 PMCID: PMC5844061 DOI: 10.1523/eneuro.0383-17.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 11/21/2022] Open
Abstract
To understand the hippocampus, it is necessary to understand the subiculum. Unlike other hippocampal subfields, the subiculum projects to almost all distal hippocampal targets, highlighting its critical importance for external networks. The present studies, in male rats and mice, reveal a new category of dorsal subiculum neurons that innervate both the mammillary bodies (MBs) and the retrosplenial cortex (RSP). These bifurcating neurons comprise almost half of the hippocampal cells that project to RSP. The termination of these numerous collateral projections was visualized within the medial mammillary nucleus and the granular RSP (area 29). These collateral projections included subiculum efferents that cross to the contralateral MBs. Within the granular RSP, the collateral projections form a particularly dense plexus in deep Layer II and Layer III. This retrosplenial termination site colocalized with markers for VGluT2 and neurotensin. While efferents from the hippocampal CA fields standardly collateralize, subiculum projections often have only one target site. Consequently, the many collateral projections involving the RSP and the MBs present a relatively unusual pattern for the subiculum, which presumably relates to how both targets have complementary roles in spatial processing. Furthermore, along with the anterior thalamic nuclei, the MBs and RSP are key members of a memory circuit, which is usually described as both starting and finishing in the hippocampus. The present findings reveal how the hippocampus simultaneously engages different parts of this circuit, so forcing an important revision of this network.
Collapse
Affiliation(s)
- Lisa Kinnavane
- School of Psychology, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Seralynne D. Vann
- School of Psychology, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | | | - Shane M. O’Mara
- Trinity College Institute of Neuroscience, Trinity College, Dublin, D2, Ireland
| | - John P. Aggleton
- School of Psychology, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
7
|
Lee AR, Kim JH, Cho E, Kim M, Park M. Dorsal and Ventral Hippocampus Differentiate in Functional Pathways and Differentially Associate with Neurological Disease-Related Genes during Postnatal Development. Front Mol Neurosci 2017; 10:331. [PMID: 29085281 PMCID: PMC5650623 DOI: 10.3389/fnmol.2017.00331] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 09/30/2017] [Indexed: 01/08/2023] Open
Abstract
The dorsal and ventral regions of the hippocampus are important in cognitive and emotional processing, respectively. Various approaches have revealed the differential molecular and structural characteristics, and functional roles of the hippocampus. Recent RNA sequencing (RNA-seq) technology has enriched our understanding of the hippocampus by elucidating more detailed information on gene expression patterns. However, no RNA-seq–based study on gene profiles in the developing hippocampus has been reported. Using RNA-seq–based bioinformatic analysis in conjunction with quantitative real-time polymerase chain reaction analysis and a comparison of in situ hybridization data obtained from the Allen Brain Atlas, we provide a thorough analysis of differentially expressed genes in the dorsal and ventral hippocampus at specific developmental ages representing the postnatally maturing hippocampus. Genes associated with particular functional pathways and marker genes for particular neurological diseases were found to be distinctively segregated within either the dorsal or ventral hippocampus at specific or at all developmental ages examined. We also report novel molecular markers enriched in the dorsal or ventral hippocampus. Taken together, this study provides insights into the molecular mechanisms underlying physiological functions linked to the dorsal or ventral hippocampus. The information provided in the study also contributes to a better understanding of brain functions and serves as a resource for future studies on the pathophysiology of dorsal and ventral hippocampal functions.
Collapse
Affiliation(s)
- A-Ram Lee
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jong-Hwan Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, South Korea
| | - Eunsil Cho
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea.,Department of Neuroscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Mirang Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, South Korea
| | - Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea.,Department of Neuroscience, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
8
|
Chi G, Huang Z, Li X, Zhang K, Li G. Substance P Regulation in Epilepsy. Curr Neuropharmacol 2017; 16:43-50. [PMID: 28474564 PMCID: PMC5771382 DOI: 10.2174/1570159x15666170504122410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/19/2017] [Accepted: 04/27/2017] [Indexed: 11/25/2022] Open
Abstract
Background: Epilepsy is a common neurological disease characterized by abnormal temporary discharge of neurons in the central nervous system. In recent years, studies have revealed the localization and changes in the density of neuropeptides, such as substance P (SP) in the pathogenesis of epilepsy. This review is a concise overview of SP and their physiologic and pathologic functions on regulating epilepsy, and the underline mechanisms. Methods: We research and collect relative online content for reviewing the effects of SP in Epilepsy. Results: The SP/NK-1 receptor system may induce seizures and play an important role in status epilepticus and in experimental animal models of epilepsy. Newest studies show that several mechanisms may explain the excitatory effects of the SP/NK-1 receptor signaling pathway in epilepsy. By binding to the NK-1 receptor, NK-1 receptor antagonists may block the pathophysiological effects of SP, and further studies are needed to confirm the possible anti-epileptic activity of NK-1 receptor antagonists. Conclusion: SP plays crucial roles on through binding with NK-1 receptor during epilepsy pathologic processing, and the NK-1 receptor is receiving a great attention as a therapeutic target for treating epilepsy. Thus, the use of NK-1 receptor antagonists for the treatment of epilepsy should be investigated in further studies.
Collapse
Affiliation(s)
- Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, Jilin, China
| | - Zhehao Huang
- China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin, China
| | - Xianglan Li
- China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin, China
| | - Kun Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| |
Collapse
|
9
|
Petersen AV, Jensen CS, Crépel V, Falkerslev M, Perrier JF. Serotonin Regulates the Firing of Principal Cells of the Subiculum by Inhibiting a T-type Ca 2+ Current. Front Cell Neurosci 2017; 11:60. [PMID: 28326015 PMCID: PMC5339341 DOI: 10.3389/fncel.2017.00060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/20/2017] [Indexed: 11/13/2022] Open
Abstract
The subiculum is the main output of the hippocampal formation. A high proportion of its principal neurons fire action potentials in bursts triggered by the activation of low threshold calcium currents. This firing pattern promotes synaptic release and regulates spike-timing-dependent plasticity. The subiculum receives a high density of fibers originating from the raphe nuclei, suggesting that serotonin (5-HT) modulates subicular neurons. Here we investigated if and how 5-HT modulates the firing pattern of bursting neurons. By combining electrophysiological analysis with pharmacology, optogenetics and calcium imaging, we demonstrate that 5-HT2C receptors reduce bursting activity by inhibiting a low-threshold calcium current mediated by T-type Ca2+ channels in principal cells of the subiculum. In addition, we show that the activation of this novel pathway decreases bursting activity and the occurrence of epileptiform discharges induced in in vitro models for temporal lobe epilepsy (TLE).
Collapse
Affiliation(s)
- Anders V Petersen
- Department of Neuroscience and Pharmacology, University of Copenhagen Copenhagen, Denmark
| | - Camilla S Jensen
- Department of Biomedical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Valérie Crépel
- Institut de Neurobiologie de la Méditerranée (INMED), Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Aix-Marseille Université Marseille, France
| | - Mathias Falkerslev
- Department of Neuroscience and Pharmacology, University of Copenhagen Copenhagen, Denmark
| | - Jean-François Perrier
- Department of Neuroscience and Pharmacology, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
10
|
Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015; 9:9. [PMID: 25741247 PMCID: PMC4332303 DOI: 10.3389/fnsys.2015.00009] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/15/2015] [Indexed: 12/26/2022] Open
Abstract
Survival depends on an organism’s ability to sense nutrient status and accordingly regulate intake and energy expenditure behaviors. Uncoupling of energy sensing and behavior, however, underlies energy balance disorders such as anorexia or obesity. The hypothalamus regulates energy balance, and in particular the lateral hypothalamic area (LHA) is poised to coordinate peripheral cues of energy status and behaviors that impact weight, such as drinking, locomotor behavior, arousal/sleep and autonomic output. There are several populations of LHA neurons that are defined by their neuropeptide content and contribute to energy balance. LHA neurons that express the neuropeptides melanin-concentrating hormone (MCH) or orexins/hypocretins (OX) are best characterized and these neurons play important roles in regulating ingestion, arousal, locomotor behavior and autonomic function via distinct neuronal circuits. Recently, another population of LHA neurons containing the neuropeptide Neurotensin (Nts) has been implicated in coordinating anorectic stimuli and behavior to regulate hydration and energy balance. Understanding the specific roles of MCH, OX and Nts neurons in harmonizing energy sensing and behavior thus has the potential to inform pharmacological strategies to modify behaviors and treat energy balance disorders.
Collapse
Affiliation(s)
- Juliette A Brown
- Department of Pharmacology and Toxicology, Michigan State University East Lansing, MI, USA ; Center for Integrative Toxicology East Lansing, MI, USA
| | | | - Gina M Leinninger
- Center for Integrative Toxicology East Lansing, MI, USA ; Department of Physiology, Michigan State University East Lansing, MI, USA
| |
Collapse
|
11
|
Borbély E, Scheich B, Helyes Z. Neuropeptides in learning and memory. Neuropeptides 2013; 47:439-50. [PMID: 24210137 DOI: 10.1016/j.npep.2013.10.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/14/2013] [Accepted: 10/14/2013] [Indexed: 12/14/2022]
Abstract
Dementia conditions and memory deficits of different origins (vascular, metabolic and primary neurodegenerative such as Alzheimer's and Parkinson's diseases) are getting more common and greater clinical problems recently in the aging population. Since the presently available cognitive enhancers have very limited therapeutical applications, there is an emerging need to elucidate the complex pathophysiological mechanisms, identify key mediators and novel targets for future drug development. Neuropeptides are widely distributed in brain regions responsible for learning and memory processes with special emphasis on the hippocampus, amygdala and the basal forebrain. They form networks with each other, and also have complex interactions with the cholinergic, glutamatergic, dopaminergic and GABA-ergic pathways. This review summarizes the extensive experimental data in the well-established rat and mouse models, as well as the few clinical results regarding the expression and the roles of the tachykinin system, somatostatin and the closely related cortistatin, vasoactive intestinal polypeptide (VIP) and pituitary adenylate-cyclase activating polypeptide (PACAP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), opioid peptides and galanin. Furthermore, the main receptorial targets, mechanisms and interactions are described in order to highlight the possible therapeutical potentials. Agents not only symptomatically improving the functional impairments, but also inhibiting the progression of the neurodegenerative processes would be breakthroughs in this area. The most promising mechanisms determined at the level of exploratory investigations in animal models of cognitive disfunctions are somatostatin sst4, NPY Y2, PACAP-VIP VPAC1, tachykinin NK3 and galanin GALR2 receptor agonisms, as well as delta opioid receptor antagonism. Potent and selective non-peptide ligands with good CNS penetration are needed for further characterization of these molecular pathways to complete the preclinical studies and decide if any of the above described targets could be appropriate for clinical investigations.
Collapse
Affiliation(s)
- Eva Borbély
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | | | | |
Collapse
|
12
|
Li J, Chen C, Lei X, Wang Y, Chen C, He Q, Moyzis RK, Xue G, Zhu B, Cao Z, Dong Q. The NTSR1 gene modulates the association between hippocampal structure and working memory performance. Neuroimage 2012; 75:79-86. [PMID: 23110888 DOI: 10.1016/j.neuroimage.2012.09.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 09/28/2012] [Indexed: 12/29/2022] Open
Abstract
The genetic and neural basis of working memory (WM) has been extensively studied. Many dopamine (DA) related genes, including the NTSR1 gene (a DA modulator gene), have been reported to be associated with WM performance. The NTSR1 protein is predominantly expressed in the cerebral cortex and the hippocampus, the latter of which is closely involved in WM processing based on both lesion and fMRI studies. Thus far, however, no study has examined the joint effects of NTSR1 gene polymorphism and hippocampal morphology on WM performance. Participants of the current study were 330 healthy Chinese college students. WM performance was measured with a 2-back WM paradigm. Structural MRI data were acquired and then analyzed using an automated procedure with atlas-based FreeSurfer segmentation software (v 4.5.0) package. Linear regression analyses were conducted with a NTSR1 C/T polymorphism which was previously reported to be associated with WM (rs4334545), hippocampal volume, and their interaction as predictors of WM performance, with gender and intracranial volume (ICV) as covariates. Results showed a significant interaction between NTSR1 genotype and hippocampal volume (p<.05 for both the left and right hippocampi). Further analysis showed that the correlation between hippocampal volume and WM scores was significant for carriers of the NTSR1 T-allele (p<.05 for both hippocampi), but not for CC homozygotes. These results indicate that the association between hippocampal structure and WM performance was modulated by variation in the NTSR1 gene, and suggest that further studies of brain-behavior associations should take genetic background information into account.
Collapse
Affiliation(s)
- Jin Li
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine, CA 92697, USA.
| | - Xuemei Lei
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China; Department of Psychology and Social Behavior, University of California, Irvine, CA 92697, USA
| | - Yunxin Wang
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China
| | - Chunhui Chen
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China
| | - Qinghua He
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Robert K Moyzis
- Department of Biological Chemistry and Institute of Genomics and Bioinformatics, University of California, Irvine, CA 92697, USA
| | - Gui Xue
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China; Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Bi Zhu
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China
| | - Zhongyu Cao
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China
| | - Qi Dong
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
13
|
Lithium chloride regulation of the substance P encoding preprotachykinin a, Tac1 gene in rat hippocampal primary cells. J Mol Neurosci 2010; 45:94-100. [PMID: 20690045 DOI: 10.1007/s12031-010-9431-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 07/19/2010] [Indexed: 12/26/2022]
Abstract
In rat hippocampal cultures, the preprotachykinin A (PPTA/Tac1) gene, which encodes the neuropeptide substance P, is regulated by the action of lithium. We used reporter gene and expression constructs to demonstrate that this mechanism of action of lithium is mediated via a previously characterised cis-regulatory Ebox element in the proximal promoter, which binds members of the basic Helix-Loop-Helix family of transcription factors. Consistent with this, in hippocampal cells, both the expression of the endogenous gene and the function of this promoter element are differentially regulated by the basic Helix-Loop-Helix factors, upstream stimulatory factor 1 and 2 (USF1/2). In addition, the genes for USF1 and USF2 are differentially regulated by lithium in these cells. Our data implicate USF1 as a major regulator of the action of lithium on the proximal PPTA promoter.
Collapse
|
14
|
Kwak SE, Kim JE, Choi HC, Song HK, Kim YI, Jo SM, Kang TC. The expression of somatostatin receptors in the hippocampus of pilocarpine-induced rat epilepsy model. Neuropeptides 2008; 42:569-83. [PMID: 18951627 DOI: 10.1016/j.npep.2008.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 11/30/2022]
Abstract
During the course of this study, we sought examine whether the expression of somatostatin receptors (SSTRs) is altered in the hippocampus following pilocarpine-induced status epilepticus (SE) in order to understand the role/function of SSTRs in the hippocampus after epileptogenic insults. SSTR1 and SSTR4 immunoreactivities were increased in the hippocampus at 1 week after SE. At 4 weeks after SE, SRIF1-family (SSTR 2A, SSTR2B, and SSTR5) immunoreactivity was increased only in neuropil. Both SSTR2A and 2B immunoreactivities were increased in CA2-3 pyramidal cells. However, SSTR3 and SSTR4 immunoreactivities were reduced in the CA1 pyramidal cells of epileptic rat due to neuronal loss. In addition, SSTR5 immunoreactivity was reduced in CA2 pyramidal cells and various interneurons. Both SSTR2B and SSTR4 immunoreactivities were increased within microglia following SE. Our findings suggest that increases in neuron-glial SSTR expressions may be closely related to the enhanced inhibition of the dentate gyrus and regulation of reactive microgliosis in the hippocampus of a pilocarpine model of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Sung-Eun Kwak
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Wouterlood F, Boekel A, Aliane V, Beliën J, Uylings H, Witter M. Contacts between medial and lateral perforant pathway fibers and parvalbumin expressing neurons in the subiculum of the rat. Neuroscience 2008; 156:653-61. [DOI: 10.1016/j.neuroscience.2008.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 08/01/2008] [Accepted: 08/11/2008] [Indexed: 11/30/2022]
|
16
|
Mátyás F, Freund TF, Gulyás AI. Immunocytochemically defined interneuron populations in the hippocampus of mouse strains used in transgenic technology. Hippocampus 2004; 14:460-81. [PMID: 15224983 DOI: 10.1002/hipo.10191] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transgenic mice are overtaking the role of model animals in neuroscience. They are used in developmental, anatomical, and physiological as well as experimental neurology. However, most results on the organization of the nervous system derive from the rat. The rat hippocampus and its neuronal elements have been thoroughly investigated, revealing remarkable functional and morphological diversity and specificity among hippocampal interneurons. Our aim was to examine the properties of distinct hippocampal interneuron populations, i.e., those immunoreactive for calcium-binding proteins (parvalbumin, calbindin, and calretinin), neuropeptides (cholecystokinin, neuropeptide Y, somatostatin, vasoactive intestinal polypeptide), and certain receptors (metabotropic glutamate receptor 1alpha, cannabinoid receptor type 1) in four strains of mice widely used in transgenic technology, and to compare their properties to those in the rat. Our data indicate that the distribution as well as the dendritic and axonal arborization of mouse interneurons immunoreactive for the different markers was identical in the examined mouse strains, and in most respects are similar to the features found in the rat. The postsynaptic targets of neurons terminating in the perisomatic (parvalbumin), proximal (calbindin), and distal (somatostatin) dendritic region, as well as on other interneurons (calretinin), also matched those found in the rat. However, a few significant differences could also be observed between the two species in addition to the already described immunoreactivity of mossy cells for calretinin: the absence of spiny calretinin-immunoreactive interneurons in the CA3 region, sparse contacts between calretinin-immunoreactive interneurons, and the axon staining for somatostatin and neuropil labeling for cholecystokinin. We can conclude that the morphofunctional classification of interneurons established in the rat is largely valid for mouse strains used in transgenic procedures.
Collapse
Affiliation(s)
- Ferenc Mátyás
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | |
Collapse
|
17
|
Delle Donne KT, Chan J, Boudin H, Pélaprat D, Rostène W, Pickel VM. Electron microscopic dual labeling of high-affinity neurotensin and dopamine D2 receptors in the rat nucleus accumbens shell. Synapse 2004; 52:176-87. [PMID: 15065218 DOI: 10.1002/syn.20018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dopamine D2 receptor (D2R) in the nucleus accumbens (NAc) shell is implicated in schizophrenia and in psychostimulant-induced drug-seeking behavior, both of which are affected by activation of the functionally opposed high-affinity neurotensin receptor (NTS1). To determine the functionally relevant sites, we examined the dual electron microscopic immunocytochemical localization of D2R and NTS1 in the NAc shell of rat brain. Immunolabeling for each receptor was seen in association with cytoplasmic organelles, or more rarely, on the plasma membrane of both axonal and somatodendritic profiles. Some of the axonal and many of the dendritic processes colocalized the two receptors. The dually labeled axon terminals often formed symmetric synapses or appositional contacts with unlabeled dendritic profiles. The morphology of these terminals suggests that they contain either inhibitory amino acids or dopamine. Other axonal profiles expressing exclusively NTS1 or D2R were without synaptic specializations or formed asymmetric, excitatory-type synapses mainly on unlabeled dendritic spines. In addition, however, several D2R-immunoreactive terminals were observed presynaptic to dendrites containing NTS1. The somatodendritic profiles immunolabeled for NTS1 and/or D2R had morphological features typical of inhibitory spiny projection neurons in the NAc. These results suggest that activation of NTS1 and D2R can dually modulate transmitter release from the same or separate phenotypically distinct axon terminals in the NAc shell. These presynaptic receptors as well as the postsynaptic NTS1 distribution in neurons that also contain or receive input from terminals containing D2R may mediate the opposing actions of neurotensin and dopamine in the NAc.
Collapse
Affiliation(s)
- Karen T Delle Donne
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
18
|
Immunocytochemically defined interneuron populations in the hippocampus of mouse strains used in transgenic technology. Hippocampus 2004. [DOI: 10.1002/hipo.100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Kang TC, An SJ, Park SK, Hwang IK, Seo MO, Kim HS, Kang JH, Kwon OS, Won MH. The somatostatin receptors in the normal and epileptic hippocampus of the gerbil: subtype-specific localization and its alteration. Brain Res 2003; 986:91-102. [PMID: 12965233 DOI: 10.1016/s0006-8993(03)03192-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the distribution of somatostatin receptors (SSTs) in the hippocampi of SR (seizure-resistant) and SS (seizure-sensitive) gerbils in order to characterize the alterations in SST expressions induced by seizure activity. SST2A immunodensity in the hippocampus of SS gerbils was lower than that of SR gerbils, though its localization in the hippocampus was similar in both SR and SS gerbils. SST3 immunodensity in the hippocampus of SS gerbils was lower than in SR gerbils. In SR gerbils, strong SST4 immunoreactivity was detected in the dentate gyrus and in the CA3 region, in contrast little immunoreactivity was detected in these regions in SS gerbils. In SR and SS gerbils, the strong SST5 immunoreactivity in the hippocampus was also detected in the stratum oriens of the CA2-3 regions and the septal area of CA1 region. However, SST5 immunodensity in the stratum radiatum in SS gerbils was lower than in SR gerbils. These results are the first comprehensive description of the distribution of SSTs in the normal and epileptic hippocampus of gerbils, and suggest that these alterations in the hippocampus of the SS gerbil may be related with a regulatory mechanism for seizure activity in these seizure prone animals.
Collapse
Affiliation(s)
- Tae-Cheon Kang
- Department of Anatomy, College of Medicine, Hallym University, Chunchon, Kangwon-Do 200-702, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jinno S, Kosaka T. Patterns of expression of neuropeptides in GABAergic nonprincipal neurons in the mouse hippocampus: Quantitative analysis with optical disector. J Comp Neurol 2003; 461:333-49. [PMID: 12746872 DOI: 10.1002/cne.10700] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neuropeptides are widely distributed in the central nervous system and are considered to play important roles in the regulation of neuronal activity. This study shows the patterns of expression of four neuropeptides [neuropeptide Y (NPY), somatostatin (SOM), cholecystokinin (CCK), and vasoactive intestinal polypeptide (VIP)] in gamma-aminobutyric acid (GABA)-ergic neurons of the mouse hippocampus, with particular reference to the areal and dorsoventral difference. First, we estimated the numerical densities (NDs) of GABAergic neurons containing these neuropeptides using the optical disector. The NDs of NPY- and SOM-positive GABAergic neurons were generally higher than those of CCK- and VIP-positive GABAergic neurons. In the whole area of the hippocampus, the ND of NPY-positive GABAergic neurons showed no significant dorsoventral difference (1.90 x 10(3)/mm(3) in the dorsal level, 2.09 x 10(3)/mm(3) in the ventral level), whereas the ND of SOM-positive GABAergic neurons was higher in the ventral level (1.44 x 10(3)/mm(3)) than in the dorsal level (0.80 x 10(3)/mm(3)). The ND of CCK-positive GABAergic neurons was also higher in the ventral level (0.57 x 10(3)/mm(3)) than in the dorsal level (0.33 x 10(3)/mm(3)). Similarly, the ND of VIP-positive GABAergic neurons was higher in the ventral level (0.61 x 10(3)/mm(3)) than in the dorsal level (0.43 x 10(3)/mm(3)). Next, we calculated the proportions of GABAergic neurons containing these neuropeptides among the total GABAergic neurons. In the whole area of the hippocampus, NPY-, SOM-, CCK-, and VIP-positive neurons accounted for about 31%, 17%, 7%, and 8% of GABAergic neurons, respectively. The present data establish a baseline for examining potential roles of GABAergic neurons in the hippocampal network activity in mice.
Collapse
Affiliation(s)
- Shozo Jinno
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan.
| | | |
Collapse
|
21
|
Liu H, Sankar R, Shin DH, Mazarati AM, Wasterlain CG. Patterns of status epilepticus-induced substance P expression during development. Neuroscience 2001; 101:297-304. [PMID: 11074153 DOI: 10.1016/s0306-4522(00)00383-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Substance P, which modulates synaptic excitability, can be induced by a variety of stimuli. We studied the expression of hippocampal substance P in rats in using lithium-pilocarpine model of status epilepticus during development. Status epilepticus resulted in an age-specific manner of substance P expression that was anatomically distinctive in hippocampal subfields. Maximal induction of substance P immunoreactivity was seen in the CA1 region of the two-week-old rats, and progressively decreased in the three-, four-week-old rats and adults. Meanwhile, the number of substance P-immunoreactive neurons in the CA3 region and dentate granule cell layer was minimal in the two-week-old animals, but approximated the adult level in the three- and four-week-old rats. No substance P-immunoreactive axon terminals were seen in the strata pyramidale and lucidum in the CA3 region of the two-week-old rats, but they were found to progressively increase in the three-, four-week-old rats and adults. To confirm substance P expression after status epilepticus, we studied the expression of preprotachykinin-A mRNA in the hippocampus of the three-week-old rats by in situ hybridization. Two hours following injection of lithium-pilocarpine, preprotachykinin-A mRNA dramatically increased in the granule cells, as well as in the CA3 and CA1 pyramidal cell layers of the hippocampus. To evaluate the relationship between behavioral seizures and substance P induction, we used the NMDA receptor antagonist MK-801. Injection of MK-801 completely blocked lithium-pilocarpine-induced behavioral seizures and SP induction in the two-week-old rats. These results indicate that seizure activity selectively evokes age-dependent and region-selective expression of substance P.
Collapse
Affiliation(s)
- H Liu
- Epilepsy Research Laboratory, Veteran Administration Medical Center, Sepulveda, CA 91343, USA.
| | | | | | | | | |
Collapse
|
22
|
Selmer IS, Schindler M, Humphrey PP, Emson PC. Immunohistochemical localization of the somatostatin sst(4) receptor in rat brain. Neuroscience 2000; 98:523-33. [PMID: 10869846 DOI: 10.1016/s0306-4522(00)00147-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biological actions of the neuromodulator somatostatin are mediated through a family of G-protein-coupled receptors, of which five members, sst(1-5), have been identified. Although the messenger RNA distribution of the sst(4) receptor has been reported, no information about the distribution of the receptor protein in the central nervous system is available. We have therefore raised a polyclonal peptide antibody against a rat carboxy-terminal sst(4) peptide. The selectivity of the affinity-purified antibody was demonstrated by western blotting of membrane proteins isolated from Chinese hamster ovary-K1 cells expressing the recombinant sst(4) receptor and from the rat hippocampus. This resulted in both cases in the identification of a single band of approximately 42,000 mol. wt. Furthermore, the sst(4) receptor antibody selectively labelled Chinese hamster ovary-K1 cells expressing the recombinant sst(4) receptor in immunocytochemistry. No cross-reactivity was observed with other recombinant somatostatin receptors. Immunohistochemistry on adult rat brain sections showed the sst(4) receptor to have a widespread distribution. This included labelling of cell bodies as well as processes in the cerebral cortex, hippocampus and several nuclei in the brainstem. All signals were absent following antibody preabsorption with the synthetic sst(4) peptide. This study provides the first detailed analysis of the distribution of sst(4) receptor protein in the rat brain.
Collapse
Affiliation(s)
- I S Selmer
- Department of Neurobiology, The Babraham Institute, Babraham Hall, CB2 4AT, Cambridge, UK
| | | | | | | |
Collapse
|
23
|
Marsicano G, Lutz B. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci 1999; 11:4213-25. [PMID: 10594647 DOI: 10.1046/j.1460-9568.1999.00847.x] [Citation(s) in RCA: 704] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cannabinoids can modulate motor behaviour, learning and memory, cognition and pain perception. These effects correlate with the expression of the cannabinoid receptor 1 (CB1) and with the presence of endogenous cannabinoids in the brain. In trying to obtain further insights into the mechanisms underlying the modulatory effects of cannabinoids, CB1-positive neurons were determined in the murine forebrain at a single cell resolution. We performed a double in situ hybridization study to detect mRNA of CB1 in combination with mRNA of glutamic acid decarboxylase 65k, neuropeptide cholecystokinin (CCK), parvalbumin, calretinin and calbindin D28k, respectively. Our results revealed that CB1-expressing cells can be divided into distinct neuronal subpopulations. There is a clear distinction between neurons containing CB1 mRNA either at high levels or low levels. The majority of high CB1-expressing cells are GABAergic (gamma-aminobutyric acid) neurons belonging mainly to the cholecystokinin-positive and parvalbumin-negative type of interneurons (basket cells) and, to a lower extent, to the calbindin D28k-positive mid-proximal dendritic inhibitory interneurons. Only a fraction of low CB1-expressing cells is GABAergic. In the hippocampus, amygdala and entorhinal cortex area, CB1 mRNA is present at low but significant levels in many non-GABAergic cells that can be considered as projecting principal neurons. Thus, a complex mechanism appears to underlie the modulatory effects of cannabinoids. They might act on principal glutamatergic circuits as well as modulate local GABAergic inhibitory circuits. CB1 is very highly coexpressed with CCK. It is known that cannabinoids and CCK often have opposite effects on behaviour and physiology. Therefore, we suggest that a putative cross-talk between cannabinoids and CCK might exist and will be relevant to better understanding of physiology and pharmacology of the cannabinoid system.
Collapse
Affiliation(s)
- G Marsicano
- Max-Planck-Institute of Psychiatry, Munich, Germany
| | | |
Collapse
|
24
|
Nag S, Yee BK, Tang F. Reduction in somatostatin and substance P levels and choline acetyltransferase activity in the cortex and hippocampus of the rat after chronic intracerebroventricular infusion of beta-amyloid (1-40). Brain Res Bull 1999; 50:251-62. [PMID: 10582523 DOI: 10.1016/s0361-9230(99)00196-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present study investigated the neurochemical and behavioural sequelae following chronic intracerebroventricular infusion of beta-amyloid (1-40) in rats. beta-amyloid was either infused intermittently via implanted cannulae on the day of operation and subsequently on postsurgical days 4, 7, 10, and 13 (Experiment 1), or continuously using osmotic pumps for 14 days (Experiment 2). The same amount of beta-amyloid was delivered under both infusion regimes. In both experiments, beta-amyloid infusion led to severe deficits in the acquisition of a spatial reference memory task conducted on postoperative days 10 to 14. The animals were sacrificed on the postoperative day 15 for neurochemical analyses. These included radioenzymatic and radioimmunoassays, designed to determine choline acetyltransferase activity and the contents of neuropeptides (somatostatin, substance P, and neuropeptide Y), respectively. Experiment 2 also included solution-hybridisation-RNAase protection assay for preprosomatostatin mRNA quantification. There was a significant reduction in choline acetyltransferase activity and in the levels of substance P as well as somatostatin and preprosomatostatin mRNA in the cortical mantle of beta-amyloid-treated rats, compared to controls in both experiments. Appreciable reductions in choline acetyltransferase activity and somatostatin level were also apparent in the hippocampus. In contrast, beta-amyloid infusion did not significantly affect the brain level of neuropeptide Y. The present study demonstrated that chronic infusion of beta-amyloid can lead to a reduction in the levels of selected neuropeptides resembling the pattern seen in Alzheimer's disease patients.
Collapse
Affiliation(s)
- S Nag
- Department of Physiology, Faculty of Medicine, The University of Hong Kong, China
| | | | | |
Collapse
|
25
|
Ehlers CL, Somes C, Li TK, Lumeng L, Kinkead B, Owens MJ, Nemeroff CB. Neurontensin studies in alcohol naive, preferring and non-preferring rats. Neuroscience 1999; 93:227-36. [PMID: 10430486 DOI: 10.1016/s0306-4522(99)00113-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neurotensin is a tridecapeptide, present in the central nervous system and the gastrointestinal tract in man and animals. Previous studies in mice selectively bred for differences in hypnotic sensitivity to ethanol have provided data to suggest that neurotensinergic systems may mediate differences in ethanol's actions in these animals. The present study sought to determine if brain neurotensin levels differed between two lines of rats which have been selectively bred for alcohol preferring or non-preferring behaviors. In addition, electroencephalographic and event-related potential responses to intracerebroventricular saline and neurotensin (10 or 30 microg) were evaluated between the rat lines. Similar to human subjects at high genetic risk for alcoholism, preferring rats were found to have more electroencephalographic fast frequency activity and lowered amplitude of the P3 component of the event-related potential in cortical sites under the saline condition. Overall, electrophysiological response to neurotensin, in the two rats lines, was substantially similar to what has been reported previously in outbred Wistar rats, and consisted of dose-related decreases in overall electroencephalographic spectral power concomitant with increases in amplitude and decreases in the latency of the N1 component of the event-related potential. However, differences in neurotensin responses between the preferring and non-preferring rat lines were also found. The differences in electroencephalographic high-frequency activity and in P3 amplitude seen between the rat lines under control conditions were eliminated by administration of neurotensin. In addition, preferring rats appeared to be more sensitive to neurotensin-induced increases in N1 amplitude. Brain neurotensin concentrations were also found to differ between the lines. Significantly lower concentrations of neurotensin were found in the frontal cortex of preferring rats when compared to non-preferring rats or outbred Wistars. Taken together, these studies suggest that differences in the regulation of neurotensin neurons may contribute to the expression of behavioral preference for ethanol consumption in selective rat lines. Additionally, drugs targeting the neurotensinergic system may plausibly be of utility in the treatment of alcoholism.
Collapse
Affiliation(s)
- C L Ehlers
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Pascual M, Acsády L, Rocamora N, Freund TF, Soriano E. Expression of neurotrophins in hippocampal interneurons immunoreactive for the neuropeptides somatostatin, neuropeptide-Y, vasoactive intestinal polypeptide and cholecystokinin. Neuroscience 1999; 89:1089-101. [PMID: 10362297 DOI: 10.1016/s0306-4522(98)00391-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Using a double detection method, which combines in situ hybridization for the detection of neurotrophin messenger RNA with immunocytochemistry against the neuropeptides somatostatin, neuropeptide Y, vasoactive intestinal polypeptide and cholecystokinin, we have analysed the expression of the neurotrophins, nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3, in distinct populations of neuropeptide-immunoreactive hippocampal interneurons. Nerve growth factor messenger RNA expression was found in subsets of the four subpopulations of neuropeptide-immunoreactive interneurons. The highest degree of co-localization was observed in the neuropeptide-Y-positive cells (up to 70%) and in somatostatin-immunoreactive cells (48%). Only small subsets of cholecystokinin- and vasoactive intestinal polypeptide-positive neurons (21% and 10%, respectively) displayed nerve growth factor hybridization signals. In contrast, expression of neurotrophin-3 messenger RNA was exclusively observed in 26% of neuropeptide-Y-immunoreactive cells. Brain-derived neurotrophic factor hybridization signals were never detected in the neuropeptide-positive hippocampal interneurons. Morphological analysis of neuropeptide-immunoreactive interneurons that express or lack nerve growth factor messenger RNA revealed that most perisomatic inhibitory neurons, such as large vasoactive intestinal polypeptide/ cholecystokinin-immunoreactive cells, showed positive nerve growth factor hybridization signals. In addition, some somatostatin/neuropeptide-Y-immunoreactive interneurons, which are responsible for dendritic inhibition of principal hippocampal neurons, expressed nerve growth factor messenger RNA. In contrast, interneurons specialized to innervate other GABAergic cells, such as small vasoactive intestinal polypeptide-positive cells, lacked nerve growth factor expression. All these data indicate that expression of neurotrophins is differentially regulated in functionally distinct classes of hippocampal interneurons immunoreactive for neuropeptides. We also analysed whether neuropeptide-immunoreactive interneurons expressing neurotrophins were targets of the GABAergic septohippocampal pathway. We used a triple detection method, combining anterograde tracing of this connection, with in situ hybridization for the detection of neurotrophin mRNA, and immunocytochemistry against neuropeptides. Our data showed that the four populations of hippocampal interneurons studied (somatostatin, neuropeptide-Y, vasoactive intestinal polypeptide and cholescystokinin) received GABAergic afferents from the septum. However, no preference for neuropeptide-immunoreactive cells expressing neurotrophins was observed, compared to neuropeptide-positive neurons lacking neurotrophin expression.
Collapse
Affiliation(s)
- M Pascual
- Department of Animal and Plant Cell Biology, Faculty of Biology, University of Barcelona, Spain
| | | | | | | | | |
Collapse
|
27
|
Liu H, Mazarati AM, Katsumori H, Sankar R, Wasterlain CG. Substance P is expressed in hippocampal principal neurons during status epilepticus and plays a critical role in the maintenance of status epilepticus. Proc Natl Acad Sci U S A 1999; 96:5286-91. [PMID: 10220458 PMCID: PMC21856 DOI: 10.1073/pnas.96.9.5286] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Substance P (SP), a member of the tachykinin family, is widely distributed in the central nervous system and is involved in a variety of physiological processes including cardiovascular function, inflammatory responses, and nociception. We show here that intrahippocampal administration of SP triggers self-sustaining status epilepticus (SSSE) in response to stimulation of the perforant path for periods too brief to have any effect in control rats, and this SSSE generates a pattern of acute hippocampal damage resembling that known to occur in human epilepsy. The SP receptor (SPR) antagonists, spantide II and RP-67,580, block both the initiation of SSSE and SSSE-induced hippocampal damage and terminate established anticonvulsant-resistant SSSE. SSSE results in a rapid and dramatic increase in the expression of preprotachykinin A (a precursor of SP) mRNA and SP in principal neurons in CA3, CA1, and the dentate gyrus as well as in hippocampal mossy fibers. SP also increases glutamate release from hippocampal slices. Enhanced expression of SP during SSSE may modulate hippocampal excitability and contribute to the maintenance of SSSE. Thus, SPR antagonists may constitute a novel category of drugs in antiepileptic therapy.
Collapse
Affiliation(s)
- H Liu
- Epilepsy Research Laboratory, Veteran Administration Medical Center, Sepulveda, CA 91343, USA.
| | | | | | | | | |
Collapse
|
28
|
Helboe L, Hay-Schmidt A, Stidsen CE, M�ller M. Immunohistochemical localization of the somatostatin receptor subtype 2 (sst2) in the central nervous system of the golden hamster (Mesocricetus auratus). J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990308)405:2<247::aid-cne8>3.0.co;2-v] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
|
30
|
Affiliation(s)
- T F Freund
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | |
Collapse
|
31
|
Matsuoka N, Satoh M. FK960, a novel potential anti-dementia drug, augments long-term potentiation in mossy fiber-CA3 pathway of guinea-pig hippocampal slices. Brain Res 1998; 794:248-54. [PMID: 9622644 DOI: 10.1016/s0006-8993(98)00232-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our previous studies have demonstrated that FK960 (FR59960; N-(4-acetyl-1-piperazinyl)-p-fluorobenzamide monohydrate), a novel antidementia piperazine derivative, exerts beneficial effects on memory deficits in various animal models of amnesia in rats [M. Yamazaki, N. Matsuoka, N. Maeda, Y. Ohkubo, I. Yamaguchi, FK960 N-(4-acetyl-1-piperazinyl)-p-fluorobenzamide monohydrate ameliorates the memory deficits in rats through a novel mechanism of action, J. Pharmacol. Exp. Ther., 279 (1996) 1157-1173.] and in rhesus monkeys [N. Matsuoka, T.G. Aigner, FK960 [N-(4-acetyl-1-piperazinyl)-p-fluorobenzamide monohydrate], a novel potential antidementia drug, improves visual recognition memory in rhesus monkeys: comparison with physostigmine, J. Pharmacol. Exp. Ther., 280 (1997) 1201-1209]. To clarify the synaptic mechanisms of its antiamnesic action, FK960 was investigated for its effects on the development of long-term potentiation (LTP) in guinea-pig hippocampal slices. The magnitude of LTP of population spike recorded in CA3 pyramidal neurons was significantly augmented by perfusing FK960 (10-9-10-6 M) for 25 min before and during tetanic stimulation of the mossy fibers, whereas the basal amplitude of population spikes before tetanus was hardly affected by the drug. The dose-response curve was bell-shaped with a maximal augmentation at 10-7 M. Scopolamine (10-6 M) per se had little effect on the magnitude of LTP in the mossy fiber-CA3 pathway, but significantly attenuated its enhancement by FK960 (10-7 M). In hippocampal slices from animals treated with cysteamine (200 mg/kg, s.c.), which was shown to deplete the hippocampal somatostatin, FK960 (10-7 M) hardly affected the LTP. These results suggest that FK960 enhances the magnitude of LTP in the mossy fiber-CA3 pathway through an activation of the cholinergic-somatostatinergic link in the hippocampal formation. Furthermore, it can be postulated that the drug regulates the cognitive function by modulating directly synaptic plasticity in the hippocampal neuronal network.
Collapse
Affiliation(s)
- N Matsuoka
- Exploratory Research Laboratories, Fujisawa Pharmaceutical, Tsukuba, Ibaraki, Japan.
| | | |
Collapse
|
32
|
Ambrogi Lorenzini CG, Baldi E, Bucherelli C, Sacchetti B, Tassoni G. Role of ventral hippocampus in acquisition, consolidation and retrieval of rat's passive avoidance response memory trace. Brain Res 1997; 768:242-8. [PMID: 9369321 DOI: 10.1016/s0006-8993(97)00651-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
By means of local administration of tetrodotoxin (TTX) a fully reversible functional inactivation of rat's ventral hippocampus (VH) was obtained in order to characterize the role of this structure in the memorization of a conditioned passive avoidance response (PAR). In Experiment 1, on permanently cannulated animals, TTX (10 ng in 1.0 microl saline) or saline (1.0 microl) was injected uni- or bilaterally in the VH, respectively, 1 h before PAR acquisition, immediately after PAR acquisition, and 1 h before PAR retrieval, always performed 48 h after the acquisition trial. It was shown that both pre-acquisition and pre-retrieval VH uni- or bilateral blockades were followed by significant PAR retention impairment, while in post-acquisition only the bilateral blockade determined PAR retention impairment. In Experiment 2, on three different groups of rats, TTX (10 ng in 1 microl saline) was bilaterally administered, under general ketamine anesthesia (100 mg/kg b.w.), into the VH at different post-acquisition delays (0.25, 1.5, 6 h). Retrieval testing, 48 h after treatment, showed that post-acquisition bilateral VH blockade caused PAR impairment only when performed 0.25 h after acquisition. The results clearly indicate a role of VH during acquisition, consolidation and retrieval of PAR engram. The experimental evidence is discussed in comparison to previous results concerning TTX dorsal hippocampus blockade effects on rat's PAR and in relation to hippocampal connectivity with the medial septal area and the amygdala.
Collapse
|
33
|
Nomura T, Fukuda T, Aika Y, Heizmann CW, Emson PC, Kobayashi T, Kosaka T. Distribution of nonprincipal neurons in the rat hippocampus, with special reference to their dorsoventral difference. Brain Res 1997; 751:64-80. [PMID: 9098569 DOI: 10.1016/s0006-8993(96)01395-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the present study we examined the distribution of chemically identified subpopulations of nonprincipal neurons in the rat hippocampus, focusing on the dorsoventral differences in their distributions. The subpopulations analyzed were those immunoreactive for parvalbumin, calretinin, nitric oxide synthase, somatostatin, calbindin D28K, vasoactive intestinal polypeptide and cholecystokinin. Using a confocal laser scanning light microscope, we could confirm that the penetration of each immunostaining, except that of calbindin D28K, was complete throughout 50 microns thick sections under our immunostaining conditions. We counted numbers of immunoreactive somata according to the 'dissector' principle, measured areas of hippocampal subdivisions and the thickness of sections, and estimated the approximate numerical densities of these subpopulations, especially for those neurons immunoreactive for nitric oxide synthase, calretinin, somatostatin and parvalbumin. Generally speaking, neurons immunoreactive for parvalbumin showed no significant dorsoventral differences in the numerical densities in any of the subdivisions of the hippocampus, whereas the numerical densities of somata immunoreactive for calretinin, nitric oxide synthase and somatostatin were significantly larger in ventral levels than at dorsal levels of the hippocampus. The numerical density of somatostatin neurons was significantly larger in ventral levels than in dorsal levels of the denate gyrus, and, although not prominent, of the CA1 region. That of nitric oxide synthase positive neurons was significantly larger in ventral levels than in dorsal levels of the CA3 region as well as of the DG but not of the CA1 region. The numerical density of calretinin positive neurons was larger in ventral levels than in dorsal levels of all hippocampal subdivisions. The present study also revealed that dorsal and ventral levels of the hippocampus differ from each other in the composition of their nonprincipal neurons.
Collapse
Affiliation(s)
- T Nomura
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Acs�dy L, Katona I, Guly�s A, Shigemoto R, Freund T. Immunostaining for substance P receptor labels GABAergic cells with distinct termination patterns in the hippocampus. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970217)378:3<320::aid-cne2>3.0.co;2-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Haas HS, Schauenstein K. Neuroimmunomodulation via limbic structures--the neuroanatomy of psychoimmunology. Prog Neurobiol 1997; 51:195-222. [PMID: 9247964 DOI: 10.1016/s0301-0082(96)00055-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
During the last 20 years, mutual communications between the immune, the endocrine and the nervous systems have been defined on the basis of physiological, cellular, and molecular data. Nevertheless, a major problem in the new discipline "Psychoneuroimmunology" is that controversial data and differences in the interpretation of the results make it difficult to obtain a comprehensive overview of the implications of immunoneuroendocrine interactions in the maintenance of physiological homeostasis, as well as in the initiation and the course of pathological conditions within these systems. In this article, we will first discuss the afferent pathways by which immune cells may affect CNS functions and, conversely, how neural tissues can influence the peripheral immune response. We will then review recent data, which emphasize the (patho)physiological roles of hippocampal-amygdala structures and the nucleus accumbens in neuroimmunomodulation. Neuronal activity within the hippocampal formation, the amygdaloid body, and the ventral parts of the basal ganglia has been examined most thoroughly in studies on neuroendocrine, autonomic and cognitive functions, or at the level of emotional and psychomotor behaviors. The interplay of these limbic structures with components of the immune system and vice versa, however, is still less defined. We will attempt to review and discuss this area of research taking into account recent evidences for neuroendocrine immunoregulation via limbic neuronal systems, as well as the influence of cytokines on synaptic transmission, neuronal growth and survival in these brain regions. Finally, the role of limbic structures in stress responses and conditioning of immune reactivity will be commented. Based on these data, we propose new directions of future research.
Collapse
Affiliation(s)
- H S Haas
- Department of General and Experimental Pathology, University of Graz Medical School, Austria
| | | |
Collapse
|
36
|
Gasbarri A, Sulli A, Packard MG. The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog Neuropsychopharmacol Biol Psychiatry 1997; 21:1-22. [PMID: 9075256 DOI: 10.1016/s0278-5846(96)00157-1] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. The dopaminergic mesencephalic neurons projecting to the hippocampal formation are distributed in three cell groups: A8 region in the retrorubral field, A9 region in the substantia nigra and A10 region in the ventral tegmental area. 2. Anterograde and retrograde tract-tracing techniques combined with immunohistochemical procedures indicate a topographical organization of mesencephalic dopaminergic projections towards the hippocampal formation. 3. Electrophysiological evidence suggest that dopaminergic mesencephalic neurons could have a regulatory role in suppressing hippocampal excitability. 4. The functional significance of the mesohippocampal dopaminergic system is largely unknown, although it was suggested that this projection could have a role in methamphetamine-produced hypermotility and in modulation of memory processes.
Collapse
Affiliation(s)
- A Gasbarri
- Department of Sciences and Biomedical Technologies, University of L'Aquila, Italy.
| | | | | |
Collapse
|
37
|
Nacher J, Ramirez C, Molowny A, Lopez-Garcia C. Ontogeny of somatostatin immunoreactive neurons in the medial cerebral cortex and other cortical areas of the lizard Podarcis hispanica. J Comp Neurol 1996; 374:118-35. [PMID: 8891951 DOI: 10.1002/(sici)1096-9861(19961007)374:1<118::aid-cne9>3.0.co;2-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The ontogeny of somatostatin immunoreactive interneurons in the cerebral cortex of the lizard Podarcis hispanica has been studied in histological series of embryos, perinatal specimens, and adults. Somatostatin immunoreactive interneurons appear in the early stages of lizard cerebral cortex ontogeny, their number increases during embryonary development, reaches a peak in early postnatal life, and decreases in adult lizards. The first somatostatin immunoreactive somata in the lizard forebrain appeared on E36, and they were located in non cortical areas. Then, on E39 and later, somatostatin immunoreactive neurons were seen in the lizard cortex in a rostral-to-caudal spatial gradient, which parallels that of the normal histogenesis of the lizard cerebral cortex. On E39, labelled somata were seen in the medial and dorsal cortex inner plexiform layers; immunoreactive puncta and dendritic processes were detectable in the inner plexiform layer of the medial cortex. On E40, labelled neurons were observed in the inner plexiform layer of the lateral cortex; labelled processes were found in the inner plexiform layers (dorsomedial, dorsal, and lateral cortices) and the outer plexiform layers (medial and dorsomedial cortices). At hatching (P0), some somatostatin immunoreactive neurons populated the external plexiform layer of the dorsomedial cortex. On P28, groups of labelled neurons appeared in the cell layer of dorsal and lateral cortices, reaching the adult-mature pattern of somatostatin immunoreactivity in the lizard cerebral cortex, i.e., labelled somata and dendritic processes populating the inner plexiform layers in addition to an axonic labelled plexus in the outermost part of the outer plexiform layers. Immunoreactive somata and processes occupied all the cortical areas, but they were especially abundant in the dorsomedial cortex. Proliferating Cell Nuclear Antigen (PCNA) immunostaining in the same histological series revealed that the number of PCNA immunoreactive nuclei in the subjacent proliferative neuroepithelium followed an inverse-complementary evolution to somatostatin, suggesting some temporal relationship between somatostatin immunoreactive cells and neurogenesis in the lizard cerebral cortex.
Collapse
Affiliation(s)
- J Nacher
- Facultad de Ciencias Biologicas, Universidad de Valencia, Spain
| | | | | | | |
Collapse
|
38
|
Acsády L, Arabadzisz D, Freund TF. Correlated morphological and neurochemical features identify different subsets of vasoactive intestinal polypeptide-immunoreactive interneurons in rat hippocampus. Neuroscience 1996; 73:299-315. [PMID: 8783251 DOI: 10.1016/0306-4522(95)00610-9] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Vasoactive intestinal polypeptide-immunoreactive interneurons have been classified according to their axonal and dendritic patterns and neurochemical features in the hippocampus of the rat. A correlation of these characteristics unravelled three distinct types of vasoactive intestinal polypeptide-containing cells. Interneurons forming a dense axonal plexus at the border of stratum oriens and alveus always contain the calcium binding protein, calretinin, but lack the neuropeptide cholecystokinin. The axon of another type of vasoactive intestinal polypeptide-positive interneuron surrounds pyramidal cell bodies in a basket-like manner, and co-localizes cholecystokinin but not calretinin. Vasoactive intestinal polypeptide-containing cells projecting to stratum radiatum form two subsets distinguished by dendritic morphology. Those with dendrites restricted to stratum lacunosum-molecular lack both calretinin and cholecystokinin, whereas the other subtype with dendrites spanning all layers contains calretinin in 40% of the cases and occasionally also cholecystokin. GABA was shown to be present, and the calcium binding proteins calbindin D-28k and parvalbumin absent from all three types of vasoactive intestinal polypeptide-positive interneurons. The specific dendritic and axonal arbours imply different input and output properties for the three interneuron types. The correlation of these features with the content of neurochemical markers strongly suggests that they are specialized for distinct inhibitory functions in the hippocampal network.
Collapse
Affiliation(s)
- L Acsády
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | |
Collapse
|
39
|
Acsády L, Görcs TJ, Freund TF. Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus. Neuroscience 1996; 73:317-34. [PMID: 8783252 DOI: 10.1016/0306-4522(95)00609-5] [Citation(s) in RCA: 256] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The postsynaptic targets of three vasoactive intestinal polypeptide-containing GABAergic interneuron types were examined in the rat hippocampus. Two of them showed remarkable target selectivity for other GABAergic neurons, while the third contacted the somata and proximal dendrites of pyramidal cells. Vasoactive intestinal polypeptide-positive interneurons innervating the stratum oriens/alveus border in the CA1 region were shown to establish multiple contacts with horizontal GABAergic interneurons immunoreactive for type 1 metabotropic glutamate receptor. Similarly, identified axons of vasoactive intestinal polypeptide-positive interneurons projecting to stratum radiatum were found to establish symmetrical synapses largely on GABAergic dendrites. The majority of these postsynaptic GABAergic neurons were shown to contain calbindin or vasoactive intestinal polypeptide. In contrast to the first two vasoactive intestinal polypeptide-containing cell populations, vasoactive intestinal polypeptide-positive interneurons arborizing in stratum pyramidale formed baskets around pyramidal cells. These results revealed a new element in cortical microcircuits, interneurons which are specialized to innervate other GABAergic interneurons. The role of this new component may be the synchronization of dendritic inhibition, or an input-specific disinhibition of pyramidal cells in various dendritic domains. In contrast, vasoactive intestinal polypeptide-containing basket cells are likely to be involved in perisomatic inhibition of pyramidal neurons, and represents a new basket cell type different from that containing parvalbumin.
Collapse
Affiliation(s)
- L Acsády
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | |
Collapse
|
40
|
Nakata A, Saito H, Nishiyama N. Facilitatory role of somatostatin via muscarinic cholinergic system in the generation of long-term potentiation in the rat dentate gyrus in vivo. Brain Res 1996; 723:135-40. [PMID: 8813390 DOI: 10.1016/0006-8993(96)00233-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We investigated whether somatostain modulates the generation of long-term potentiation (LTP) in rat perforant path-dentate gyrus synapse in vivo. When somatostatin was injected intracerebroventricularly (i.c.v.) 20 min prior to the tetanus, the intensity of LTP increased dose dependently. Synaptic potential evoked by a low-frequency test stimulation, however, was not altered by somatostatin. We next tested whether the LTP-augmenting effect of somatostain is mediated by cholinergic activation, because somatostatin was demonstrated to promote acetylcholine release in rat hippocampal slice. Pirenzepine (50 nmol/rat), a muscarinic M1 receptor antagonist, did not affect the tetanus-induced LTP by itself. But when it was co-applicated with the somatostatin (50 ng/rat) 20 min before tetanus, it completely abolished the LTP-augmenting effect of somatostatin. Then we examined the effect of octreotide, a potent agonist specifically binding to somatostatin receptor subtypes 2 and 4, on the generation of LTP. Octreotide (500 ng/rat) also facilitated the intensity of LTP. These results suggest that somatostatin facilitates the generation of perforant path-dentate gyrus granule cell LTP by activating the muscarinic cholinergic receptor and the effect of somatostatin is induced, at least partly, by somatostatin receptor subtypes 2 and 4 in vivo.
Collapse
Affiliation(s)
- A Nakata
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | |
Collapse
|
41
|
Puebla L, Rodríguez-Martín E, Arilla E. Hippocampal somatostatin receptors and modulation of adenylyl cyclase activity in histamine-treated rats. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 35:77-83. [PMID: 8717342 DOI: 10.1016/0169-328x(95)00186-v] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the present study, the effects of an intracerebroventricular (i.c.v.) dose of histamine (0.1, 1.0 or 10.0 micrograms) on the hippocampal somatostatin (SS) receptor/effector system in Wistar rats were investigated. In view of the rapid onset of histamine action, the effects of histamine on the somatostatinergic system were studied 2 h after its administration. Hippocampal SS-like immunoreactivity (SSLI) levels were not modified by any of the histamine doses studied. SS-mediated inhibition of basal and forskolin (FK)-stimulated adenylyl cyclase (AC) activity was markedly increased in hippocampal membranes from rats treated with 10 micrograms of histamine (23% +/- 1% vs. 17% +/- 1% and 37% +/- 2% vs. 23% +/- 1%, respectively). In contrast, neither the basal nor the FK-stimulated enzyme activities were affected by histamine administration. The functional activity of the hippocampal guanine-nucleotide binding inhibitory protein (Gi protein), as assessed by the capacity of the stable GTP analogue 5'-guanylylimidodiphosphate (Gpp[NH]p) to inhibit FK-stimulated AC activity, was not modified by histamine administration. These data suggest that the increased response of the enzyme to SS was not related to an increased functional activity of Gi proteins. In fact, the increased AC response to SS in hippocampal membranes from histamine (10 micrograms)-treated rats was associated with quantitative changes in the SS receptors. Equilibrium binding data obtained with [125I]Tyr11-SS indicate an increase in the number with specific SS receptors (541 +/- 24 vs. 365 +/- 16 fmol/mg protein, P < 0.001) together with a decrease in their apparent affinity (0.57 +/- 0.04 vs. 0.41 +/- 0.03 nM, P < 0.05) in rat hippocampal membranes from histamine (10 micrograms)-treated rats as compared to control animals. With the aim of determining if these changes were related to histamine binding to its specific receptor sites, the histaminergic H1 and H2 receptor antagonists mepyramine and cimetidine, respectively, were administered 1 h before histamine injection. The pretreatment with mepyramine or cimetidine induced an increase in the number and affinity constant of the SS receptors whereas the simultaneous pretreatment with both histamine antagonists prevented the histamine-induced changes in SS binding to its receptors. Since the hippocampal SS receptor/effector system is modulated by histamine, it is tempting to speculate that in the hippocampus, SS could be involved as a mediator of the histamine effects on behaviors such as learning and memory.
Collapse
Affiliation(s)
- L Puebla
- Departamento de Bioquímica y Biología Molecular, Universidad de Alcalá, Madrid, Spain
| | | | | |
Collapse
|
42
|
Sprick U, Hasenöhrl RU, Krauth J, Klapdor K, Huston JP. Effects of chronic substance P treatment and intracranial fetal grafts on learning after hippocampal kainic acid lesions. Peptides 1996; 17:275-85. [PMID: 8801534 DOI: 10.1016/0196-9781(95)02105-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of this experiment was to investigate whether the neurokinin substance P (SP) can enhance adaptive graft effects on learning and memory functions in animals with lesions of the hippocampus. Adult male Wistar rats received a bilateral kainic acid (KA) lesion of the dorsal hippocampus. One week postlesion, bilateral grafts of fetal hippocampal tissue suspension were applied into the damaged region in half of the animals, whereas the other half received sham transplants (physiological saline). Animals of the control group received a bilateral sham lesion of the hippocampus and sham transplants. One week after transplantation surgery, the rats were tested in the place version of the Morris water maze over a period of 9 weeks. Then they were tested for SP-induced conditioned place preference and on a step-through inhibitory avoidance task. All animals received IP injections of either SP (5 or 50 micrograms/kg) or the SP vehicle (0.5 ml/kg). The treatment with SP or the vehicle was begun 1 week after transplantation and was performed 5 days a week over a period of 10 weeks. During behavioral tests in the water maze and avoidance task, application of the substances was performed 5 h after testing. For the conditioned place preference test, the conditioning trials were performed immediately after drug administration; the test trials were given 24 h later. Chronic administration of 50 micrograms/kg SP, but not 5 micrograms/ kg SP, was found to improve water maze performance in lesioned animals with and without grafts. Unexpectedly, the lesion group with the graft without additional SP treatment was not superior to the lesion group devoid of the graft in this task. The rats without lesions of the hippocampus still showed a conditioned place preference to 50 micrograms/kg SP after 9 weeks of repeated SP applications. In the inhibitory avoidance task, the grafts facilitated retention performance independent of whether SP treatment was given. The morphological analysis of the transplants revealed higher graft volumes and a higher diameter of large pyramidal neurons (> 10 microns) in rats chronically treated with 50 micrograms/kg SP.
Collapse
Affiliation(s)
- U Sprick
- Department of Psychiatry, Heinrich-Heine-University of Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
43
|
Matsuoka N, Yamazaki M, Yamaguchi I. Changes in brain somatostatin in memory-deficient rats: comparison with cholinergic markers. Neuroscience 1995; 66:617-26. [PMID: 7644025 DOI: 10.1016/0306-4522(94)00628-i] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To clarify the functional role of the brain somatostatinergic system in cognitive processes, changes in the performance in passive avoidance and water maze tasks and in brain somatostatin contents were comparatively investigated in young Fischer rats subjected to brain cholinergic and somatostatinergic depletion, and in aged Fischer rats. Lesioning of the nucleus basalis magnocellularis and administration of cysteamine (200 mg/kg, s.c.), a depletor of somatostatin, resulted in significant deficits in passive avoidance, but complete transection of the fimbria-fornix hardly affected the performance in the task. When cognitive performance was assessed in the Morris water maze, lesions of the nucleus basalis magnocellularis and the fimbria-fornix, and administration of cysteamine, significantly impaired the acquisition of navigatory spatial memories of rats. On the other hand, aged rats (24-27 months) showed severe impairments of memory acquisition in both tasks. Neurochemistry measurements showed that lesions of the nucleus basalis magnocellularis produced a selective reduction both in the cortical cholinergic marker choline acetyltransferase and in striatal somatostatin level, whereas lesioning of the fimbria-fornix caused a marked loss of choline acetyltransferase in the hippocampus and posterior cortex, and a significant reduction in hippocampal somatostatin. On the other hand, treatment with cysteamine significantly reduced the contents of somatostatin in all the brain regions examined, but minimally affected choline acetyltransferase activity. However, significant reduction in the striatal choline acetyltransferase activity and elevation in somatostatin content in the frontal cortex were found in aged rats compared with young rats. Taken together, these results strongly suggest that changes in the brain somatostatinergic transmission are involved in the cognitive deficits in the experimental animal models of dementia presently employed. Furthermore, the present comparative study further implies that there are differences in the relative involvement of the cholinergic and somatostatinergic systems in the performance of rats on two different tests of mnemonic function.
Collapse
Affiliation(s)
- N Matsuoka
- Basic Research Group, Tsukuba Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., Ibaraki, Japan
| | | | | |
Collapse
|
44
|
Robledo P, Kaneko WM, Ehlers CL. Effects of neurotensin on EEG and event-related potentials in the rat. Psychopharmacology (Berl) 1995; 118:410-8. [PMID: 7568627 DOI: 10.1007/bf02245941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neurotensin has neuromodulatory actions on multiple brain functions including motor, sensory and limbic processes. However, little is known about how neurotensin affects general arousal and/or attention states. The present study evaluated the effects of neurotensin on spontaneous brain activity as well as auditory evoked responses using electrophysiological measures. Electroencephalographic and event-related potential recordings were obtained in awake animals following intracerebroventricular administration of neurotensin (1.0, 10.0 and 30.0 micrograms). Twenty rats were implanted with recording electrodes in the frontal cortex, dorsal hippocampus, amygdala and nucleus accumbens. Neurotensin was found to produce a dose-related effect on behavior and electrophysiological measures. Lower doses (10 micrograms) produced no obvious behavioral changes, but significantly reduced EEG power in the lower frequency ranges (2-6 Hz) in the frontal cortex, the anterior amygdaloid complex and the nucleus accumbens. At higher doses (30 micrograms), rats appeared behaviorally inactivated, and EEG power was reduced in all structures in both the lower frequency ranges (2-6 Hz) and the higher frequency ranges (8-32 Hz). Auditory processing, as assessed by event-related potentials, was affected most significantly in amygdala and dorsal hippocampus. In the amygdala, the amplitude of the P3 component of the auditory event-related potential was increased significantly by doses of 10.0 and 30.0 micrograms. In the dorsal hippocampus, the amplitude and the area of the N1 component was increased dose dependently and significance was reached at the 30 micrograms dose. These electrophysiological findings indicate that neurotensin does not reduce the arousal level of the animals and in fact may enhance neurosensory processing in limbic areas through increased arousal and/or enhanced stimulus evaluation.
Collapse
Affiliation(s)
- P Robledo
- Scripps Research Institute, Department of Neuropharmacology, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
45
|
Atoji Y, Watanabe H, Yamamoto Y, Suzuki Y. Distribution of neurotensin-containing neurons in the central nervous system of the dog. J Comp Neurol 1995; 353:67-88. [PMID: 7714250 DOI: 10.1002/cne.903530108] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The distribution of neurotensin-containing cell bodies and fibers was examined in the central nervous system of the dog using light microscopic immunohistochemistry. A very large population of neurotensin-containing cell bodies was observed in the septal nuclei, nucleus accumbens septi, preoptic areas, bed nucleus of the stria terminalis, olfactory tubercle, entorhinal cortex, ventral subiculum, anterodorsal thalamic nucleus, anteroventral thalamic nucleus, nucleus reuniens, lateral habenular nucleus, parabrachial nucleus, and nucleus of the solitary tract. Extremely dense networks of neurotensin-containing fibers were found in the globus pallidus, hypothalamus, infundibular stalk, ventral tegmental area, periaqueductal gray, interpeduncular nucleus, and spinal nucleus of the trigeminal nerve and substantia gelatinosa. However, the cerebral neocortex and cerebellum were negative for neurotensin in the present study. When the present findings are compared with those in other animals, it is clear that the major species-specific differences in distribution involve three immunonegative regions and four immunopositive regions in the dog: The former are the cerebral neocortex, mammillary body, and hippocampus; the latter are the cell bodies in the pyramidal layer of the olfactory tubercle, the superficial and middle layers of the entorhinal cortex and ventral subiculum, and the nerve fibers in the interpeduncular nucleus. The present study indicates a rather extensive network of neurotensin neurons in the central nervous system of the dog.
Collapse
Affiliation(s)
- Y Atoji
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Gifu University, Japan
| | | | | | | |
Collapse
|
46
|
Esclapez M, Houser CR. Somatostatin neurons are a subpopulation of GABA neurons in the rat dentate gyrus: evidence from colocalization of pre-prosomatostatin and glutamate decarboxylase messenger RNAs. Neuroscience 1995; 64:339-55. [PMID: 7700525 DOI: 10.1016/0306-4522(94)00406-u] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The distribution and extent of glutamate decarboxylase 65 (GAD65) mRNA-labeled neurons that coexpress pre-prosomatostatin mRNA were studied in the rat dentate gyrus of the dorsal and ventral hippocampal formation. The distribution of each group of neurons was determined initially by nonradioactive in situ hybridization experiments with digoxigenin-labeled riboprobes for GAD65 mRNA and pre-prosomatostatin mRNA. Double labeling experiments were then conducted with digoxigenin-labeled riboprobes for GAD65 mRNA and 35S-labeled riboprobes for pre-prosomatostatin mRNA. In the dorsal and ventral dentate gyrus, GAD65 mRNA-containing neurons were highly concentrated in the hilus and in the innermost part of the granule cell layer whereas only a few labeled neurons were scattered in the molecular layer. Pre-prosomatostatin mRNA-containing neurons were primarily located in the hilus and were virtually absent from the molecular and granule cell layers. The simultaneous detection of GAD65 and pre-prosomatostatin mRNAs in the same sections showed that the vast majority of pre-prosomatostatin mRNA-containing neurons in the hilus of the dentate gyrus were also labeled for GAD65 mRNA. In contrast many GAD65 mRNA-labeled neurons did not contain pre-prosomatostatin mRNA. These included all neurons in the molecular layer, neurons within the inner granule cell layer and neurons interspersed amongst double labeled neurons in the hilus. Quantitative analyses indicated that a very high percentage of hilar pre-prosomatostatin mRNA-containing neurons coexpressed GAD65 mRNA in the dorsal (96%) and ventral (92%) dentate gyrus. In contrast only a part of the total population of hilar GAD65 mRNA-containing neurons were also labeled for pre-prosomatostatin mRNA in the dorsal (43%) and ventral (53%) dentate gyrus. In the CA3c region, the percentages of neurons containing both mRNAs were similar to those observed in the hilus. The findings demonstrate that the vast majority of hilar somatostatin neurons, which have previously been shown to be extremely vulnerable to ischemia and seizure-induced damage, are GABA neurons. However, the total population of GAD65 mRNA-containing neurons in the hilus is substantially larger than the somatostatin-containing subgroup, and these findings reinforce the suggestion that GABA neurons are a major component of the diverse group of neurons in the hilus of the dentate gyrus.
Collapse
Affiliation(s)
- M Esclapez
- Brain Research Institute, University of California at Los Angeles, USA
| | | |
Collapse
|
47
|
Gasbarri A, Verney C, Innocenzi R, Campana E, Pacitti C. Mesolimbic dopaminergic neurons innervating the hippocampal formation in the rat: a combined retrograde tracing and immunohistochemical study. Brain Res 1994; 668:71-9. [PMID: 7704620 DOI: 10.1016/0006-8993(94)90512-6] [Citation(s) in RCA: 222] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A major mesolimbic projection towards the hippocampal formation (HF) has been extensively described, but no clear evidence of its dopaminergic content has been demonstrated. In order to evaluate the percentage of dopaminergic (DA) cells of ventral tegmental area (VTA-A10) and adjacent substantia nigra (SN-A9) projecting to the HF, the retrograde neuronal tracer technique was combined with the tyrosine hydroxylase (TH) immunocytochemistry. Fluoro-gold (FG) was injected in several areas (subiculum, CA1, CA3, dentate gyrus) of either septal and temporal HF. Sections containing retrogradely FG labeled neurons were either mounted directly as controls or incubated with TH antiserum and revealed with rhodamine. The quantitative evaluation of retrogradely labeled and TH-IR stained cells showed that both VTA and SN projections towards the HF are partially (15-18%) dopaminergic. Ten percent of the DA neurons of the VTA projected to contralateral HF, whereas none did in the SN. In conclusion, the temporal HF (mainly subiculum and adjacent CA1) appears to receive the main DA afferents from both VTA cells and medial half of SN, pars compacta, whereas the septal HF (particularly CA1) receives its DA input from neurons located in the ventral half and in the upper and lower borders of the VTA.
Collapse
Affiliation(s)
- A Gasbarri
- Department of Science and Biomedical Technology, School of Medicine, University of L'Aquila, Italy
| | | | | | | | | |
Collapse
|
48
|
Johnson LR, Aylward RL, Hussain Z, Totterdell S. Input from the amygdala to the rat nucleus accumbens: its relationship with tyrosine hydroxylase immunoreactivity and identified neurons. Neuroscience 1994; 61:851-65. [PMID: 7530817 DOI: 10.1016/0306-4522(94)90408-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Both tyrosine hydroxylase-positive fibres from the mesolimbic dopamine system and amygdala projection fibres from the basolateral nucleus are known to terminate heavily in the nucleus accumbens. Caudal amygdala fibres travelling dorsally via the stria terminalis project densely to the nucleus accumbens shell, especially in the dopamine rich septal hook. The amygdala has been associated with the recognition of emotionally relevant stimuli while the mesolimbic dopamine system is implicated with reward mechanisms. There is behavioural and electrophysiological evidence that the amygdala input to the nucleus accumbens is modulated by the mesolimbic dopamine input, but it is not known how these pathways interact anatomically within the nucleus accumbens. Using a variety of neuroanatomical techniques including anterograde and retrograde tracing, immunocytochemistry and intracellular filling, we have demonstrated convergence of these inputs on to medium-sized spiny neurons. The terminals of the basolateral amygdala projection make asymmetrical synapses predominantly on the heads of spines which also receive on their necks or adjacent dendrites, symmetrical synaptic input from the mesolimbic dopamine system. Some of these neurons have also been identified as projection neurons, possibly to the ventral pallidum. We have shown a synaptic level how dopamine is positioned to modulate excitatory limbic input in the nucleus accumbens.
Collapse
Affiliation(s)
- L R Johnson
- University Department of Pharmacology, Oxford, U.K
| | | | | | | |
Collapse
|
49
|
Buckmaster PS, Kunkel DD, Robbins RJ, Schwartzkroin PA. Somatostatin-immunoreactivity in the hippocampus of mouse, rat, guinea pig, and rabbit. Hippocampus 1994; 4:167-80. [PMID: 7951691 DOI: 10.1002/hipo.450040207] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The hippocampi of species commonly used for in vitro physiologic studies were examined to determine if there were species-specific and regional differences in somatostatin immunoreactivity. The distributions of somatostatin-immunoreactive somata and fiber plexuses were determined, and the concentration of somatostatin along the septotemporal axis of the hippocampus was measured using a radioimmunoassay. There are many similarities in the patterns of somatostatin immunoreactivity in the hippocampi of mice, rats, guinea pigs, and rabbits. All species had a relatively even distribution of somatostatin-positive perikarya across three fields of the hippocampus (dentate gyrus, CA3, and CA1-2), a similar distribution of somatostatin-immunoreactive perikarya across the strata of the CA1-2 field and the dentate gyrus; and more somatostatin-positive cells in temporal than in septal hippocampus. However, there are species-specific differences in the distribution of somatostatin-immunoreactive perikarya across the strata of CA3. In addition, unlike the other species examined, mice appeared not to have a somatostatin-immunoreactive fiber plexus in the molecular layer of the dentate gyrus. The functional significance of these differences remains to be determined.
Collapse
Affiliation(s)
- P S Buckmaster
- Department of Physiology and Biophysics, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
50
|
Abstract
The potential neurotrophic effect of substance P-like immunoreactivity present in culture media was assessed in rat embryonic day 18 hippocampal cultures. The neurokinin-1 (substance P) receptor antagonist CP-96345 induced neurotoxicity that was dose dependent and attenuated by addition of substance P or the neurokinin-1 agonist [Sar9,Met(O2)11]-SP. These studies suggest that under some conditions neurokinin-1 receptor stimulation promotes neuronal survival.
Collapse
Affiliation(s)
- C J Whitty
- Department of Psychiatry, Wayne State University School of Medicine, Detroit, MI 48201
| | | | | |
Collapse
|