1
|
Konno K, Yamasaki M, Miyazaki T, Watanabe M. Glyoxal fixation: An approach to solve immunohistochemical problem in neuroscience research. SCIENCE ADVANCES 2023; 9:eadf7084. [PMID: 37450597 PMCID: PMC10348680 DOI: 10.1126/sciadv.adf7084] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
The gold-standard fixative for immunohistochemistry is 4% formaldehyde; however, it limits antibody access to target molecules that are buried within specialized neuronal components, such as ionotropic receptors at the postsynapse and voltage-gated ion channels at the axon initial segment, often requiring additional antigen-exposing techniques to detect their authentic signals. To solve this problem, we used glyoxal, a two-carbon atom di-aldehyde. We found that glyoxal fixation greatly improved antibody penetration and immunoreactivity, uncovering signals for buried molecules by conventional immunohistochemical procedures at light and electron microscopic levels. It also enhanced immunosignals of most other molecules, which are known to be detectable in formaldehyde-fixed sections. Furthermore, we unearthed several specific primary antibodies that were once judged to be unusable in formaldehyde-fixed tissues, allowing us to successfully localize so far controversial synaptic adhesion molecule Neuroligin 1. Thus, glyoxal is a highly effective fixative for immunostaining, and a side-by-side comparison of glyoxal and formaldehyde fixation is recommended for routine immunostaining in neuroscience research.
Collapse
Affiliation(s)
- Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Taisuke Miyazaki
- Department of Functioning and Disability, Faculty of Health Sciences, Hokkaido University, Sapporo 060-8638, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
2
|
Rollenhagen A, Anstötz M, Zimmermann K, Kasugai Y, Sätzler K, Molnar E, Ferraguti F, Lübke JHR. Layer-specific distribution and expression pattern of AMPA- and NMDA-type glutamate receptors in the barrel field of the adult rat somatosensory cortex: a quantitative electron microscopic analysis. Cereb Cortex 2023; 33:2342-2360. [PMID: 35732315 PMCID: PMC9977369 DOI: 10.1093/cercor/bhac212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/14/2022] Open
Abstract
AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-d-aspartate) glutamate receptors are driving forces for synaptic transmission and plasticity at neocortical synapses. However, their distribution pattern in the adult rat neocortex is largely unknown and was quantified using freeze fracture replication combined with postimmunogold-labeling. Both receptors were co-localized at layer (L)4 and L5 postsynaptic densities (PSDs). At L4 dendritic shaft and spine PSDs, the number of gold grains detecting AMPA was similar, whereas at L5 shaft PSDs AMPA-receptors outnumbered those on spine PSDs. Their number was significantly higher at L5 vs. L4 PSDs. At L4 and L5 dendritic shaft PSDs, the number of gold grains detecting GluN1 was ~2-fold higher than at spine PSDs. The number of gold grains detecting the GluN1-subunit was higher for both shaft and spine PSDs in L5 vs. L4. Both receptors showed a large variability in L4 and L5. A high correlation between the number of gold grains and PSD size for both receptors and targets was observed. Both receptors were distributed over the entire PSD but showed a layer- and target-specific distribution pattern. The layer- and target-specific distribution of AMPA and GluN1 glutamate receptors partially contribute to the observed functional differences in synaptic transmission and plasticity in the neocortex.
Collapse
Affiliation(s)
- Astrid Rollenhagen
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo Brandt Str., Jülich 52425, Germany
| | - Max Anstötz
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo Brandt Str., Jülich 52425, Germany.,Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Universitätsstr. 1, Düsseldorf 40001, Germany
| | - Kerstin Zimmermann
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo Brandt Str., Jülich 52425, Germany
| | - Yu Kasugai
- Department of Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1a, Innsbruck A-6020, Austria
| | - Kurt Sätzler
- School of Biomedical Sciences, University of Ulster, Cromore Rd., Londonderry BT52 1SA, United Kingdom
| | - Elek Molnar
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Francesco Ferraguti
- Department of Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1a, Innsbruck A-6020, Austria
| | - Joachim H R Lübke
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo Brandt Str., Jülich 52425, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH/Medical University Aachen, Pauwelstr. 30, Aachen 52074, Germany.,JARA Translational Medicine Jülich/Aachen, Germany
| |
Collapse
|
3
|
Petralia RS, Wang YX. Review of Post-embedding Immunogold Methods for the Study of Neuronal Structures. Front Neuroanat 2021; 15:763427. [PMID: 34720893 PMCID: PMC8551803 DOI: 10.3389/fnana.2021.763427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023] Open
Abstract
The post-embedding immunogold (PI) technique for immunolabeling of neuronal tissues utilizing standard thin-section transmission electron microscopy (TEM) continues to be a prime method for understanding the functional localization of key proteins in neuronal function. Its main advantages over other immunolabeling methods for thin-section TEM are (1) fairly accurate and quantifiable localization of proteins in cells; (2) double-labeling of sections using two gold particle sizes; and (3) the ability to perform multiple labeling for different proteins by using adjacent sections. Here we first review in detail a common method for PI of neuronal tissues. This method has two major parts. First, we describe the freeze-substitution embedding method: cryoprotected tissue is frozen in liquid propane via plunge-freezing, and is placed in a freeze-substitution instrument in which the tissue is embedded in Lowicryl at low temperatures. We highlight important aspects of freeze-substitution embedding. Then we outline how thin sections of embedded tissue on grids are labeled with a primary antibody and a secondary gold particle-conjugated antibody, and the particular problems encountered in TEM of PI-labeled sections. In the Discussion, we compare our method both to earlier PI methods and to more recent PI methods used by other laboratories. We also compare TEM immunolabeling using PI vs. various pre-embedding immunolabeling methods, especially relating to neuronal tissue.
Collapse
Affiliation(s)
- Ronald S. Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
4
|
Zieger HL, Choquet D. Nanoscale synapse organization and dysfunction in neurodevelopmental disorders. Neurobiol Dis 2021; 158:105453. [PMID: 34314857 DOI: 10.1016/j.nbd.2021.105453] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022] Open
Abstract
Neurodevelopmental disorders such as those linked to intellectual disabilities or autism spectrum disorder are thought to originate in part from genetic defects in synaptic proteins. Single gene mutations linked to synapse dysfunction can broadly be separated in three categories: disorders of transcriptional regulation, disorders of synaptic signaling and disorders of synaptic scaffolding and structures. The recent developments in super-resolution imaging technologies and their application to synapses have unraveled a complex nanoscale organization of synaptic components. On the one hand, part of receptors, adhesion proteins, ion channels, scaffold elements and the pre-synaptic release machinery are partitioned in subsynaptic nanodomains, and the respective organization of these nanodomains has tremendous impact on synaptic function. For example, pre-synaptic neurotransmitter release sites are partly aligned with nanometer precision to postsynaptic receptor clusters. On the other hand, a large fraction of synaptic components is extremely dynamic and constantly exchanges between synaptic domains and extrasynaptic or intracellular compartments. It is largely the combination of the exquisitely precise nanoscale synaptic organization of synaptic components and their high dynamic that allows the rapid and profound regulation of synaptic function during synaptic plasticity processes that underlie adaptability of brain function, learning and memory. It is very tempting to speculate that genetic defects that lead to neurodevelopmental disorders and target synaptic scaffolds and structures mediate their deleterious impact on brain function through perturbing synapse nanoscale dynamic organization. We discuss here how applying super-resolution imaging methods in models of neurodevelopmental disorders could help in addressing this question.
Collapse
Affiliation(s)
- Hanna L Zieger
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Daniel Choquet
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France; Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, F-33000 Bordeaux, France.
| |
Collapse
|
5
|
Decoding signaling pathways involved in prolactin-induced neuroprotection: A review. Front Neuroendocrinol 2021; 61:100913. [PMID: 33766566 DOI: 10.1016/j.yfrne.2021.100913] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 11/23/2022]
Abstract
It has been well recognized that prolactin (PRL), a pleiotropic hormone, has many functions in the brain, such as maternal behavior, neurogenesis, and neuronal plasticity, among others. Recently, it has been reported to have a significant role in neuroprotection against excitotoxicity. Glutamate excitotoxicity is a common alteration in many neurological and neurodegenerative diseases, leading to neuronal death. In this sense, several efforts have been made to decrease the progression of these pathologies. Despite various reports of PRL's neuroprotective effect against excitotoxicity, the signaling pathways that underlie this mechanism remain unclear. This review aims to describe the most recent and relevant studies on the molecular signaling pathways, particularly, PI3K/AKT, NF-κB, and JAK2/STAT5, which are currently under investigation and might be implicated in the molecular mechanisms that explain the PRL effects against excitotoxicity and neuroprotection. Remarkable neuroprotective effects of PRL might be useful in the treatment of some neurological diseases.
Collapse
|
6
|
Tremi I, Havaki S, Georgitsopoulou S, Lagopati N, Georgakilas V, Gorgoulis VG, Georgakilas AG. A Guide for Using Transmission Electron Microscopy for Studying the Radiosensitizing Effects of Gold Nanoparticles In Vitro. NANOMATERIALS 2021; 11:nano11040859. [PMID: 33801708 PMCID: PMC8065702 DOI: 10.3390/nano11040859] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
The combined effects of ionizing radiation (IR) with high-z metallic nanoparticles (NPs) such as gold has developed a growing interest over the recent years. It is currently accepted that radiosensitization is not only attributed to physical effects but also to underlying chemical and biological mechanisms’ contributions. Low- and high-linear energy transfer (LET) IRs produce DNA damage of different structural types. The combination of IR with gold nanoparticles may increase the clustering of energy deposition events in the vicinity of the NPs due to the production mainly of photoelectrons and Auger electrons. Biological lesions of such origin for example on DNA are more difficult to be repaired compared to isolated lesions and can augment IR’s detrimental effects as shown by numerous studies. Transmission electron microscopy (TEM) offers a unique opportunity to study the complexity of these effects on a very detailed cellular level, in terms of structure, including nanoparticle uptake and damage. Cellular uptake and nanoparticle distribution inside the cell are crucial in order to contribute to an optimal dose enhancement effect. TEM is mostly used to observe the cellular localization of nanoparticles. However, it can also provide valuable insights on the NPs’ radiosensitization pathways, by studying the biochemical mechanisms through immunogold-labelling of antigenic sites at ultrastructural level under high resolution and magnification. Here, our goal is to describe the possibilities, methodologies and proper use of TEM in the interest of studying NPs-based radiosensitization mechanisms.
Collapse
Affiliation(s)
- Ioanna Tremi
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece;
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (S.H.); (N.L.); (V.G.G.)
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (S.H.); (N.L.); (V.G.G.)
| | - Sofia Georgitsopoulou
- Department of Material Science, University of Patras, 26504 Patras, Greece; (S.G.); (V.G.)
| | - Nefeli Lagopati
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (S.H.); (N.L.); (V.G.G.)
| | - Vasilios Georgakilas
- Department of Material Science, University of Patras, 26504 Patras, Greece; (S.G.); (V.G.)
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (S.H.); (N.L.); (V.G.G.)
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester MP13 9PL, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece;
- Correspondence:
| |
Collapse
|
7
|
Kameyama N, Murai Y, Tanaka E. The inhibition of evoked excitatory postsynaptic potentials produced by ammonium chloride in rat hippocampal CA1 neurons. Heliyon 2020; 6:e05830. [PMID: 33409395 PMCID: PMC7773873 DOI: 10.1016/j.heliyon.2020.e05830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/28/2020] [Accepted: 12/21/2020] [Indexed: 11/03/2022] Open
Abstract
The depression of evoked fast excitatory postsynaptic potentials (EPSPs) following superfusion with various concentrations (3 μM-5 mM) of ammonium chloride (NH4Cl) were investigated in rat hippocampal CA1 neurons. The amplitude of the evoked fast EPSPs decreased by NH4Cl in a concentration-dependent manner. The half-maximal inhibitory concentration for the inhibition of evoked fast EPSPs was 198 ± 125 μM (n = 8). The facilitation of a pair of field EPSPs elicited by paired-pulse stimulation (40-ms interval) (paired-pulse facilitation, PPF) was recorded following superfusion with NH4Cl (200 μM and 3 mM). The PPF ratio increased to 180 ± 23% (n = 9) in the presence of 200 μM NH4Cl compared with that in the absence of NH4Cl (142 ± 24%, n = 9). In the presence of 3 mM NH4Cl, the PPF ratio increased to 172 ± 30% (n = 7) compared with that in the absence of NH4Cl (126 ± 13%, n = 7). This implies that NH4Cl suppressed the presynaptic release of glutamate. Exogenous glutamate- or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-induced depolarization elicited by using pressure application did not reduce following superfusion with 200 μM or 5 mM NH4Cl in the presence of 0.3 μM tetrodotoxin, suggesting that NH4Cl did not affect the postsynaptic glutamate response. Action potentials elicited by rectangular outward current injection from CA3 neurons projecting to CA1 neurons were persistent at 200 μM NH4Cl but disappeared at 5 mM NH4Cl. The abolishment of action potentials in the presence of 5 mM NH4Cl was released by increasing the amplitude of the injection current. These results suggest that NH4Cl depresses evoked fast EPSPs mainly via a presynaptic mechanism at low NH4Cl concentrations, and the failure of action potential propagation through the excitatory nerve may also contribute to the depression of evoked fast EPSPs at high NH4Cl concentrations.
Collapse
|
8
|
Shaymardanova GF, Salnikov VV. Localization of Annexin V and Agrin in the Intact Sciatic Nerve of Mice. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420030095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Linking Nanoscale Dynamics of AMPA Receptor Organization to Plasticity of Excitatory Synapses and Learning. J Neurosci 2019; 38:9318-9329. [PMID: 30381423 DOI: 10.1523/jneurosci.2119-18.2018] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 11/21/2022] Open
Abstract
The spatiotemporal organization of neurotransmitter receptors in the postsynaptic membrane is a fundamental determinant of synaptic transmission and thus of information processing by the brain. The ionotropic AMPA subtype of glutamate receptors (AMPARs) mediate fast excitatory synaptic transmission in the CNS. The number of AMPARs located en face presynaptic glutamate release sites sets the efficacy of synaptic transmission. Understanding how this number is set and regulated has been the topic of intense research in the last two decades. We showed that AMPARs are not stable in the synapse as initially thought. They continuously enter and exit the postsynaptic density by lateral diffusion, and they exchange between the neuronal surface and intracellular compartments by endocytosis and exocytosis at extrasynaptic sites. Regulation of these various trafficking pathways has emerged as a key mechanism for activity-dependent plasticity of synaptic transmission, a process important for learning and memory. I here present my view of these findings. In particular, the advent of super-resolution microscopy and single-molecule tracking has helped to uncover the intricacy of AMPARs' dynamic organization at the nanoscale. In addition, AMPAR surface diffusion is highly regulated by a variety of factors, including neuronal activity, stress hormones, and neurodegeneration, suggesting that AMPAR diffusion-trapping may play a central role in synapse function. Using innovative tools to understand further the link between receptor dynamics and synapse plasticity is now unveiling new molecular mechanisms of learning. Modifying AMPAR dynamics may emerge as a new target to correct synapse dysfunction in the diseased brain.
Collapse
|
10
|
Sanchez V, Bakhti-Suroosh A, Chen A, Brunzell DH, Erisir A, Lynch WJ. Exercise during abstinence normalizes ultrastructural synaptic plasticity associated with nicotine-seeking following extended access self-administration. Eur J Neurosci 2019; 50:2707-2721. [PMID: 30888721 PMCID: PMC6742551 DOI: 10.1111/ejn.14408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022]
Abstract
Nicotine-craving progressively increases, or incubates, over abstinence following extended access self-administration. While not yet examined for nicotine, the incubation of cocaine-seeking is accompanied by changes in synaptic plasticity in the nucleus accumbens. Here, we determined whether such changes also accompany enhanced nicotine-seeking following extended access self-administration and abstinence, and whether exercise, a potential intervention for nicotine addiction, may exert its efficacy by normalizing these changes. Given that in humans, tobacco/nicotine use begins during adolescence, we used an adolescent-onset model. Nicotine-seeking was assessed in male rats following extended access nicotine or saline self-administration (23-hr/day, 10 days) and 10 days of abstinence, conditions known to induce the incubation of nicotine-seeking, using a within-session extinction/cue-induced reinstatement procedure. A subset of rats had 2-hr/day access to a running wheel during abstinence. Ultrastructural alterations of synapses in the nucleus accumbens core and shell were examined using electron microscopy. Nicotine-seeking was elevated following extended access self-administration and abstinence (in sedentary group), and levels of seeking were associated with an increase in the density of asymmetric (excitatory) and symmetric (inhibitory) synapses onto dendrites in the core, as well as longer asymmetric synapses onto spines, a marker of synaptic potentiation, in both the core and shell. Exercise normalized each of these changes; however, in the shell, exercise and nicotine similarly increased the synapse length. Together, these findings indicate an association between nicotine-seeking and synaptic plasticity in the nucleus accumbens, particularly the core, and indicate that the efficacy of exercise to reduce nicotine-seeking may be mediated by reversing these adaptations.
Collapse
Affiliation(s)
- Victoria Sanchez
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| | - Anousheh Bakhti-Suroosh
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| | - Andrew Chen
- Department of Psychology, University of Virginia, Charlottesville, Virginia
| | - Darlene H Brunzell
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, Virginia
| | - Wendy J Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
11
|
The Reactive Plasticity of Hippocampal Ionotropic Glutamate Receptors in Animal Epilepsies. Int J Mol Sci 2019; 20:ijms20051030. [PMID: 30818767 PMCID: PMC6429472 DOI: 10.3390/ijms20051030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 12/21/2022] Open
Abstract
Ionotropic glutamate receptors (iGluRs) mediate the synaptic and metabolic actions of glutamate. These iGluRs are classified within the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type, kainate-type, and N-methyl-d-aspartate (NMDA)-type functional receptor families. The iGluR assemblies are regulated by transcription, alternative splicing, and cytoplasmic post-translational modifications. The iGluR subunit proteins are transported from the endoplasmic reticulum, inserted into the synaptic membranes, and anchored at their action site by different scaffolding and interacting proteins. The functional properties of iGluRs depend on their subunit composition, the amino acid sequence of the protein domains, and the scaffolding proteins in the synaptic membranes. The iGluRs are removed from the membranes by enzymatic action and endocytosis. Hippocampal iGluRs are rearranged through the upregulation and downregulation of the subunits following deafferentation and epileptic seizures. The rearrangement of iGluRs and the alteration of their subunit composition transform neurons into “pathological” cells, determining the further plasticity or pathology of the hippocampal formation. In the present review, we summarize the expression of AMPA, kainate, and NMDA receptor subunits following deafferentation, repeated mild seizures, and status epilepticus. We compare our results to literature descriptions, and draw conclusions as to the reactive plasticity of iGluRs in the hippocampus.
Collapse
|
12
|
Physiological signature of a novel potentiator of AMPA receptor signalling. Mol Cell Neurosci 2018; 92:82-92. [PMID: 30044951 PMCID: PMC6525152 DOI: 10.1016/j.mcn.2018.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/27/2018] [Accepted: 07/20/2018] [Indexed: 12/02/2022] Open
Abstract
We have synthesized a novel small molecule based on the pyrrolidinone–containing core structure of clausenamide, which is a candidate anti–dementia drug. The synthetic route yielded multi–gram quantities of an isomeric racemate mixture in a short number of steps. When tested in hippocampal slices from young adult rats the compound enhanced AMPA receptor–mediated signalling at mossy fibre synapses, and potentiated inward currents evoked by local application of l–glutamate onto CA3 pyramidal neurons. It facilitated the induction of mossy fibre LTP, but the magnitude of potentiation was smaller than that observed in untreated slices. The racemic mixture was separated and it was shown that only the (−) enantiomer was active. Toxicity analysis indicated that cell lines tolerated the compound at concentrations well above those enhancing synaptic transmission. Our results unveil a small molecule whose physiological signature resembles that of a potent nootropic drug. A small molecule was developed using a novel approach towards the synthesis of clausenamide, which is thought to have anti–dementia properties. When tested in hippocampal slices the compound enhanced AMPA receptor signalling as well as glutamate–evoked currents in CA3 pyramidal neurons. It facilitated the induction of mossy fibre LTP. Cytotoxicity experiments revealed no deleterious effect to cells at sub–millimolar concentrations.
Collapse
|
13
|
Salio C, Merighi A, Bardoni R. GABA B receptors-mediated tonic inhibition of glutamate release from Aβ fibers in rat laminae III/IV of the spinal cord dorsal horn. Mol Pain 2018; 13:1744806917710041. [PMID: 28565998 PMCID: PMC5456036 DOI: 10.1177/1744806917710041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Presynaptic GABAB receptors (GABABRs) are highly expressed in dorsal root ganglion neurons and spinal cord dorsal horn. GABABRs located in superficial dorsal horn play an important antinociceptive role, by acting at both pre- and postsynaptic sites. GABABRs expressed in deep dorsal horn could be involved in the processing of touch sensation and possibly in the generation of tactile allodynia in chronic pain. The objective of this study was to characterize the morphological and functional properties of GABABRs expressed on Aβ fibers projecting to lamina III/IV and to understand their role in modulating excitatory synaptic transmission. We performed high-resolution electron microscopic analysis, showing that GABAB2 subunit is expressed on 71.9% of terminals in rat lamina III-IV. These terminals were engaged in axodendritic synapses and, for the 46%, also expressed glutamate immunoreactivity. Monosynaptic excitatory postsynaptic currents, evoked by Aβ fiber stimulation and recorded from lamina III/IV neurons in spinal cord slices, were strongly depressed by application of baclofen (0.1-2.5 µM), acting as a presynaptic modulator. Application of the GABABR antagonist CGP 55845 caused, in a subpopulation of neurons, the potentiation of the first of two excitatory postsynaptic currents recorded with the paired-pulse protocol, showing that GABABRs are endogenously activated. A decrease in the paired-pulse ratio accompanied the effect of CGP 55845, implying the involvement of presynaptic GABABRs. CGP 55845 facilitated only the first excitatory postsynaptic current also during a train of four consecutive stimuli applied to Aβ fibers. These results suggest that GABABRs tonically inhibit glutamate release from Aβ fibers at a subset of synapses in deep dorsal horn. This modulation specifically affects only the early phase of synaptic excitation in lamina III-IV neurons.
Collapse
Affiliation(s)
- Chiara Salio
- 1 Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Adalberto Merighi
- 1 Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Rita Bardoni
- 2 Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
14
|
Jawaid S, Kidd GJ, Wang J, Swetlik C, Dutta R, Trapp BD. Alterations in CA1 hippocampal synapses in a mouse model of fragile X syndrome. Glia 2018; 66:789-800. [PMID: 29274095 PMCID: PMC5812820 DOI: 10.1002/glia.23284] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 12/16/2022]
Abstract
Fragile X Syndrome (FXS) is the major cause of inherited mental retardation and the leading genetic cause of Autism spectrum disorders. FXS is caused by mutations in the Fragile X Mental Retardation 1 (Fmr1) gene, which results in transcriptional silencing of Fragile X Mental Retardation Protein (FMRP). To elucidate cellular mechanisms involved in the pathogenesis of FXS, we compared dendritic spines in the hippocampal CA1 region of adult wild-type (WT) and Fmr1 knockout (Fmr1-KO) mice. Using diolistic labeling, confocal microscopy, and three-dimensional electron microscopy, we show a significant increase in the diameter of secondary dendrites, an increase in dendritic spine density, and a decrease in mature dendritic spines in adult Fmr1-KO mice. While WT and Fmr1-KO mice had the same mean density of spines, the variance in spine density was three times greater in Fmr1-KO mice. Reduced astrocyte participation in the tripartite synapse and less mature post-synaptic densities were also found in Fmr1-KO mice. We investigated whether the increase in synaptic spine density was associated with altered synaptic pruning during development. Our data are consistent with reduced microglia-mediated synaptic pruning in the CA1 region of Fmr1-KO hippocampi when compared with WT littermates at postnatal day 21, which is the peak period of synaptic pruning in the mouse hippocampus. Collectively, these results support abnormal synaptogenesis and synaptic remodeling in mice deficient in FMRP. Deficits in the maturation and distribution of synaptic spines on dendrites of CA1 hippocampal neurons may play a role in the intellectual disabilities associated with FXS.
Collapse
Affiliation(s)
- Safdar Jawaid
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Grahame J Kidd
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jing Wang
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Carrie Swetlik
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
15
|
Modulation of Central Synapses by Astrocyte-Released ATP and Postsynaptic P2X Receptors. Neural Plast 2017; 2017:9454275. [PMID: 28845311 PMCID: PMC5563405 DOI: 10.1155/2017/9454275] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/10/2017] [Indexed: 01/14/2023] Open
Abstract
Communication between neuronal and glial cells is important for neural plasticity. P2X receptors are ATP-gated cation channels widely expressed in the brain where they mediate action of extracellular ATP released by neurons and/or glia. Recent data show that postsynaptic P2X receptors underlie slow neuromodulatory actions rather than fast synaptic transmission at brain synapses. Here, we review these findings with a particular focus on the release of ATP by astrocytes and the diversity of postsynaptic P2X-mediated modulation of synaptic strength and plasticity in the CNS.
Collapse
|
16
|
Hsu A, Luebke JI, Medalla M. Comparative ultrastructural features of excitatory synapses in the visual and frontal cortices of the adult mouse and monkey. J Comp Neurol 2017; 525:2175-2191. [PMID: 28256708 DOI: 10.1002/cne.24196] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/18/2017] [Accepted: 02/10/2017] [Indexed: 01/20/2023]
Abstract
The excitatory glutamatergic synapse is the principal site of communication between cortical pyramidal neurons and their targets, a key locus of action of many drugs, and highly vulnerable to dysfunction and loss in neurodegenerative disease. A detailed knowledge of the structure of these synapses in distinct cortical areas and across species is a prerequisite for understanding the anatomical underpinnings of cortical specialization and, potentially, selective vulnerability in neurological disorders. We used serial electron microscopy to assess the ultrastructural features of excitatory (asymmetric) synapses in the layers 2-3 (L2-3) neuropil of visual (V1) and frontal (FC) cortices of the adult mouse and compared findings to those in the rhesus monkey (V1 and lateral prefrontal cortex [LPFC]). Analyses of multiple ultrastructural variables revealed four organizational features. First, the density of asymmetric synapses does not differ between frontal and visual cortices in either species, but is significantly higher in mouse than in monkey. Second, the structural properties of asymmetric synapses in mouse V1 and FC are nearly identical, by stark contrast to the significant differences seen between monkey V1 and LPFC. Third, while the structural features of postsynaptic entities in mouse and monkey V1 do not differ, the size of presynaptic boutons are significantly larger in monkey V1. Fourth, both presynaptic and postsynaptic entities are significantly smaller in the mouse FC than in the monkey LPFC. The diversity of synaptic ultrastructural features demonstrated here have broad implications for the nature and efficacy of glutamatergic signaling in distinct cortical areas within and across species.
Collapse
Affiliation(s)
- Alexander Hsu
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Jennifer I Luebke
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
17
|
Luebke JI. Pyramidal Neurons Are Not Generalizable Building Blocks of Cortical Networks. Front Neuroanat 2017; 11:11. [PMID: 28326020 PMCID: PMC5339252 DOI: 10.3389/fnana.2017.00011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
A key challenge in cortical neuroscience is to gain a comprehensive understanding of how pyramidal neuron heterogeneity across different areas and species underlies the functional specialization of individual neurons, networks, and areas. Comparative studies have been important in this endeavor, providing data relevant to the question of which of the many inherent properties of individual pyramidal neurons are necessary and sufficient for species-specific network and areal function. In this mini review, the importance of pyramidal neuron structural properties for signaling are outlined, followed by a summary of our recent work comparing the structural features of mouse (C57/BL6 strain) and rhesus monkey layer 3 (L3) pyramidal neurons in primary visual and frontal association cortices and their implications for neuronal and areal function. Based on these and other published data, L3 pyramidal neurons plausibly might be considered broadly “generalizable” from one area to another in the mouse neocortex due to their many similarities, but major differences in the properties of these neurons in diverse areas in the rhesus monkey neocortex rules this out in the primate. Further, fundamental differences in the dendritic topology of mouse and rhesus monkey pyramidal neurons highlight the implausibility of straightforward scaling and/or extrapolation from mouse to primate neurons and cortical networks.
Collapse
Affiliation(s)
- Jennifer I Luebke
- Department of Anatomy and Neurobiology, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
18
|
Dykman LA, Khlebtsov NG. Immunological properties of gold nanoparticles. Chem Sci 2017; 8:1719-1735. [PMID: 28451297 PMCID: PMC5396510 DOI: 10.1039/c6sc03631g] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022] Open
Abstract
In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be properly fabricated to deliver the cargo into the targeted cells through effective endocytosis. In this review, we discuss recent progress in understanding the selective penetration of gold nanoparticles into immune cells. The interaction of gold nanoparticles with immune cell receptors is discussed. As distinct from other published reviews, we present a summary of the immunological properties of gold nanoparticles. This review also summarizes what is known about the application of gold nanoparticles as an antigen carrier and adjuvant in immunization for the preparation of antibodies in vivo. For each of the above topics, the basic principles, recent advances, and current challenges are discussed. Thus, this review presents a detailed analysis of data on interaction of gold nanoparticles with immune cells. Emphasis is placed on the systematization of data over production of antibodies by using gold nanoparticles and adjuvant properties of gold nanoparticles. Specifically, we start our discussion with current data on interaction of various gold nanoparticles with immune cells. The next section describes existing technologies to improve production of antibodies in vivo by using gold nanoparticles conjugated with specific ligands. Finally, we describe what is known about adjuvant properties of bare gold or functionalized nanoparticles. In the Conclusion section, we present a short summary of reported data and some challenges and perspectives.
Collapse
Affiliation(s)
- Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms , Russian Academy of Sciences , 13 Prospekt Entuziastov , Saratov 410049 , Russia . ;
| | - Nikolai G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms , Russian Academy of Sciences , 13 Prospekt Entuziastov , Saratov 410049 , Russia . ;
- Saratov National Research State University , 83 Ulitsa Astrakhanskaya , Saratov 410012 , Russia
| |
Collapse
|
19
|
Abstract
For more than 20 years, we have known that Ca(2+)/calmodulin-dependent protein kinase (CaMKII) activation is both necessary and sufficient for the induction of long-term potentiation (LTP). During this time, tremendous effort has been spent in attempting to understand how CaMKII activation gives rise to this phenomenon. Despite such efforts, there is much to be learned about the molecular mechanisms involved in LTP induction downstream of CaMKII activation. In this review, we highlight recent developments that have shaped our current thinking about the molecular mechanisms underlying LTP and discuss important questions that remain in the field.
Collapse
Affiliation(s)
| | - Roger A Nicoll
- Department of Cellular and Molecular Pharmacology and.,Department of Physiology, University of California, San Francisco, California 94143; ,
| |
Collapse
|
20
|
Kasper JM, McCue DL, Milton AJ, Szwed A, Sampson CM, Huang M, Carlton S, Meltzer HY, Cunningham KA, Hommel JD. Gamma-Aminobutyric Acidergic Projections From the Dorsal Raphe to the Nucleus Accumbens Are Regulated by Neuromedin U. Biol Psychiatry 2016; 80:878-887. [PMID: 27105831 PMCID: PMC5016225 DOI: 10.1016/j.biopsych.2016.02.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/17/2016] [Accepted: 02/26/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND Neuromedin U (NMU) is a neuropeptide enriched in the nucleus accumbens shell (NAcSh), a brain region associated with reward. While NMU and its receptor, NMU receptor 2 (NMUR2), have been studied for the ability to regulate food reward, NMU has not been studied in the context of drugs of abuse (e.g., cocaine). Furthermore, the neuroanatomical pathways that express NMUR2 and its ultrastructural localization are unknown. METHODS Immunohistochemistry was used to determine the synaptic localization of NMUR2 in the NAcSh and characterize which neurons express this receptor (n = 17). The functional outcome of NMU on NMUR2 was examined using microdialysis (n = 16). The behavioral effects of NMU microinjection directly to the NAcSh were investigated using cocaine-evoked locomotion (n = 93). The specific effects of NMUR2 knockdown on cocaine-evoked locomotion were evaluated using viral-mediated RNA interference (n = 40). RESULTS NMUR2 is localized to presynaptic gamma-aminobutyric acidergic nerve terminals in the NAcSh originating from the dorsal raphe nucleus. Furthermore, NMU microinjection to the NAcSh decreased local gamma-aminobutyric acid concentrations. Next, we evaluated the effects of NMU microinjection on behavioral sensitization to cocaine. When repeatedly administered throughout the sensitization regimen, NMU attenuated cocaine-evoked hyperactivity. Additionally, small hairpin RNA-mediated knockdown of presynaptic NMUR2 in the NAcSh using a retrograde viral vector potentiated cocaine sensitization. CONCLUSIONS Together, these data reveal that NMUR2 modulates a novel gamma-aminobutyric acidergic pathway from the dorsal raphe nucleus to the NAcSh to influence behavioral responses to cocaine.
Collapse
Affiliation(s)
- James M. Kasper
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - David L. McCue
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Adrianna J. Milton
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Angelia Szwed
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Catherine M. Sampson
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Mei Huang
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, Illinois, 60611, USA
| | - Susan Carlton
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Herbert Y. Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, Illinois, 60611, USA
| | - Kathryn A. Cunningham
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Jonathan D. Hommel
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, USA,Correspondence: , Jonathan D. Hommel, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0615
| |
Collapse
|
21
|
Compans B, Choquet D, Hosy E. Review on the role of AMPA receptor nano-organization and dynamic in the properties of synaptic transmission. NEUROPHOTONICS 2016; 3:041811. [PMID: 27981061 PMCID: PMC5109202 DOI: 10.1117/1.nph.3.4.041811] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Receptor trafficking and its regulation have appeared in the last two decades to be a major controller of basal synaptic transmission and its activity-dependent plasticity. More recently, considerable advances in super-resolution microscopy have begun deciphering the subdiffraction organization of synaptic elements and their functional roles. In particular, the dynamic nanoscale organization of neurotransmitter receptors in the postsynaptic membrane has recently been suggested to play a major role in various aspects of synapstic function. We here review the recent advances in our understanding of alpha-amino-3-hydroxy-5-méthyl-4-isoxazolepropionic acid subtype glutamate receptors subsynaptic organization and their role in short- and long-term synaptic plasticity.
Collapse
Affiliation(s)
- Benjamin Compans
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
| | - Daniel Choquet
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
- University of Bordeaux, Bordeaux Imaging Center, UMS 3420 CNRS, US4 INSERM, France
| | - Eric Hosy
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
| |
Collapse
|
22
|
TARP γ-2 and γ-8 Differentially Control AMPAR Density Across Schaffer Collateral/Commissural Synapses in the Hippocampal CA1 Area. J Neurosci 2016; 36:4296-312. [PMID: 27076426 DOI: 10.1523/jneurosci.4178-15.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/19/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The number of AMPA-type glutamate receptors (AMPARs) at synapses is the major determinant of synaptic strength and varies from synapse to synapse. To clarify the underlying molecular mechanisms, the density of AMPARs, PSD-95, and transmembrane AMPAR regulatory proteins (TARPs) were compared at Schaffer collateral/commissural (SCC) synapses in the adult mouse hippocampal CA1 by quantitative immunogold electron microscopy using serial sections. We examined four types of SCC synapses: perforated and nonperforated synapses on pyramidal cells and axodendritic synapses on parvalbumin-positive (PV synapse) and pravalbumin-negative interneurons (non-PV synapse). SCC synapses were categorized into those expressing high-density (perforated and PV synapses) or low-density (nonperforated and non-PV synapses) AMPARs. Although the density of PSD-95 labeling was fairly constant, the density and composition of TARP isoforms was highly variable depending on the synapse type. Of the three TARPs expressed in hippocampal neurons, the disparity in TARP γ-2 labeling was closely related to that of AMPAR labeling. Importantly, AMPAR density was significantly reduced at perforated and PV synapses in TARP γ-2-knock-out (KO) mice, resulting in a virtual loss of AMPAR disparity among SCC synapses. In comparison, TARP γ-8 was the only TARP expressed at nonperforated synapses, where AMPAR labeling further decreased to a background level in TARP γ-8-KO mice. These results show that synaptic inclusion of TARP γ-2 potently increases AMPAR expression and transforms low-density synapses into high-density ones, whereas TARP γ-8 is essential for low-density or basal expression of AMPARs at nonperforated synapses. Therefore, these TARPs are critically involved in AMPAR density control at SCC synapses. SIGNIFICANCE STATEMENT Although converging evidence implicates the importance of transmembrane AMPA-type glutamate receptor (AMPAR) regulatory proteins (TARPs) in AMPAR stabilization during basal transmission and synaptic plasticity, how they control large disparities in AMPAR numbers or densities across central synapses remains largely unknown. We compared the density of AMPARs with that of TARPs among four types of Schaffer collateral/commissural (SCC) hippocampal synapses in wild-type and TARP-knock-out mice. We show that the density of AMPARs correlates with that of TARP γ-2 across SCC synapses and its high expression is linked to high-density AMPAR expression at perforated type of pyramidal cell synapses and synapses on parvalbumin-positive interneurons. In comparison, TARP γ-8 is the only TARP expressed at nonperforated type of pyramidal cell synapses, playing an essential role in low-density or basal AMPAR expression.
Collapse
|
23
|
Clausen RP, Mohr AØ, Riise E, Jensen AA, Gill A, Madden DR, Kastrup JS, Skottrup PD. A parallel panning scheme used for selection of a GluA4-specific Fab targeting the ligand-binding domain. Int J Biol Macromol 2016; 92:779-787. [PMID: 27402461 DOI: 10.1016/j.ijbiomac.2016.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/21/2016] [Accepted: 07/07/2016] [Indexed: 12/29/2022]
Abstract
A method for development of murine Fab fragments towards extracellular domains of a surface receptor is presented. The GluA4 ionotropic glutamate receptor is used as a model system. Recombinant GluA4 ectodomain comprising both the N-terminal domain (NTD) and the ligand-binding domain (LBD) in one molecule was used for immunization. A Fab-phage library was constructed and a parallel panning approach enabled selection of murine Fab fragments towards either intact ectodomain or the isolated LBD of the GluA4 receptor. One LBD-Fab (FabL9) showed exclusive selectivity for the GluA4 LBD, over a panel of LBDs from GluA2, GluK1, GluK2 and GluD2. Soluble FabL9 was produced in amounts suitable for characterization. Competitive ELISA and rat-brain immunoprecipitation experiments confirmed that the FabL9 epitope is conserved in the LBD and in the intact native receptor. By an alignment of GluA2 and GluA4, the likely binding epitope for FabL9 was predicted. This study demonstrates a simple approach for development of antibody fragments towards specific sub-domains of a large ligand-gated ion channel, and this method could be utilized for all multi-domain surface receptors where antibody domain-selectivity may be desirable. Furthermore, we present for the first time a GluA4 subtype-specific murine Fab fragment targeting the LBD of the receptor.
Collapse
Affiliation(s)
- Rasmus P Clausen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Andreas Ø Mohr
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Erik Riise
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Avinash Gill
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Dean R Madden
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jette S Kastrup
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Peter D Skottrup
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Department of Clinical Biochemistry, Copenhagen University Hospital, Hvidovre, DK-2650, Denmark.
| |
Collapse
|
24
|
Watson DJ, Ostroff L, Cao G, Parker PH, Smith H, Harris KM. LTP enhances synaptogenesis in the developing hippocampus. Hippocampus 2016; 26:560-76. [PMID: 26418237 PMCID: PMC4811749 DOI: 10.1002/hipo.22536] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2015] [Indexed: 12/27/2022]
Abstract
In adult hippocampus, long-term potentiation (LTP) produces synapse enlargement while preventing the formation of new small dendritic spines. Here, we tested how LTP affects structural synaptic plasticity in hippocampal area CA1 of Long-Evans rats at postnatal day 15 (P15). P15 is an age of robust synaptogenesis when less than 35% of dendritic spines have formed. We hypothesized that LTP might therefore have a different effect on synapse structure than in adults. Theta-burst stimulation (TBS) was used to induce LTP at one site and control stimulation was delivered at an independent site, both within s. radiatum of the same hippocampal slice. Slices were rapidly fixed at 5, 30, and 120 min after TBS, and processed for analysis by three-dimensional reconstruction from serial section electron microscopy (3DEM). All findings were compared to hippocampus that was perfusion-fixed (PF) in vivo at P15. Excitatory and inhibitory synapses on dendritic spines and shafts were distinguished from synaptic precursors, including filopodia and surface specializations. The potentiated response plateaued between 5 and 30 min and remained potentiated prior to fixation. TBS resulted in more small spines relative to PF by 30 min. This TBS-related spine increase lasted 120 min, hence, there were substantially more small spines with LTP than in the control or PF conditions. In contrast, control test pulses resulted in spine loss relative to PF by 120 min, but not earlier. The findings provide accurate new measurements of spine and synapse densities and sizes. The added or lost spines had small synapses, took time to form or disappear, and did not result in elevated potentiation or depression at 120 min. Thus, at P15 the spines formed following TBS, or lost with control stimulation, appear to be functionally silent. With TBS, existing synapses were awakened and then new spines formed as potential substrates for subsequent plasticity.
Collapse
Affiliation(s)
- Deborah J. Watson
- Department of Neuroscience, Center for Learning and MemoryInstitute for Neuroscience, University of Texas at AustinAustinTexas78731
| | | | - Guan Cao
- Department of Neuroscience, Center for Learning and MemoryInstitute for Neuroscience, University of Texas at AustinAustinTexas78731
| | - Patrick H. Parker
- Department of Neuroscience, Center for Learning and MemoryInstitute for Neuroscience, University of Texas at AustinAustinTexas78731
| | - Heather Smith
- Department of Neuroscience, Center for Learning and MemoryInstitute for Neuroscience, University of Texas at AustinAustinTexas78731
| | - Kristen M. Harris
- Department of Neuroscience, Center for Learning and MemoryInstitute for Neuroscience, University of Texas at AustinAustinTexas78731
| |
Collapse
|
25
|
Lowenthal MS, Markey SP, Dosemeci A. Quantitative mass spectrometry measurements reveal stoichiometry of principal postsynaptic density proteins. J Proteome Res 2015; 14:2528-38. [PMID: 25874902 DOI: 10.1021/acs.jproteome.5b00109] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Quantitative studies are presented of postsynaptic density (PSD) fractions from rat cerebral cortex with the ultimate goal of defining the average copy numbers of proteins in the PSD complex. Highly specific and selective isotope dilution mass spectrometry assays were developed using isotopically labeled polypeptide concatemer internal standards. Interpretation of PSD protein stoichiometry was achieved as a molar ratio with respect to PSD-95 (SAP-90, DLG4), and subsequently, copy numbers were estimated using a consensus literature value for PSD-95. Average copy numbers for several proteins at the PSD were estimated for the first time, including those for AIDA-1, BRAGs, and densin. Major findings include evidence for the high copy number of AIDA-1 in the PSD (144 ± 30)-equivalent to that of the total GKAP family of proteins (150 ± 27)-suggesting that AIDA-1 is an element of the PSD scaffold. The average copy numbers for NMDA receptor sub-units were estimated to be 66 ± 18, 27 ± 9, and 45 ± 15, respectively, for GluN1, GluN2A, and GluN2B, yielding a total of 34 ± 10 NMDA channels. Estimated average copy numbers for AMPA channels and their auxiliary sub-units TARPs were 68 ± 36 and 144 ± 38, respectively, with a stoichiometry of ∼1:2, supporting the assertion that most AMPA receptors anchor to the PSD via TARP sub-units. This robust, quantitative analysis of PSD proteins improves upon and extends the list of major PSD components with assigned average copy numbers in the ongoing effort to unravel the complex molecular architecture of the PSD.
Collapse
Affiliation(s)
- Mark S Lowenthal
- †Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sanford P Markey
- †Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.,‡Laboratory of Neurotoxicology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ayse Dosemeci
- §Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
26
|
Hu Z, Zhao J, Hu T, Luo Y, Zhu J, Li Z. miR-501-3p mediates the activity-dependent regulation of the expression of AMPA receptor subunit GluA1. ACTA ACUST UNITED AC 2015; 208:949-59. [PMID: 25800054 PMCID: PMC4384731 DOI: 10.1083/jcb.201404092] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The number of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in synapses determines synaptic strength. AMPAR expression can be regulated locally in dendrites by synaptic activity. The mechanisms of activity-dependent local regulation of AMPAR expression, however, remain unclear. Here, we tested whether microRNAs (miRNAs) are involved in N-methyl-D-aspartate (NMDA) receptor (NMDAR)-dependent AMPAR expression. We used the 3' untranslated region of Gria1, which encodes the AMPA receptor subunit GluA1, to pull down miRNAs binding to it and analyzed these miRNAs using next-generation deep sequencing. Among the identified miRNAs, miR-501-3p is also a computationally predicted Gria1-targeting miRNA. We confirmed that miR-501-3p targets Gria1 and regulates its expression under physiological conditions. The expression of miR-501-3p and GluA1, moreover, is inversely correlated during postnatal brain development. miR-501-3p expression is up-regulated locally in dendrites through the NMDAR subunit GluN2A, and this regulation is required for NMDA-induced suppression of GluA1 expression and long-lasting remodeling of dendritic spines. These findings elucidate a miRNA-mediated mechanism for activity-dependent, local regulation of AMPAR expression in dendrites.
Collapse
Affiliation(s)
- Zhonghua Hu
- Unit on Synapse Development and Plasticity, National Institute of Mental Health, and Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jun Zhao
- Unit on Synapse Development and Plasticity, National Institute of Mental Health, and Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tianyi Hu
- Unit on Synapse Development and Plasticity, National Institute of Mental Health, and Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yan Luo
- Unit on Synapse Development and Plasticity, National Institute of Mental Health, and Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jun Zhu
- Unit on Synapse Development and Plasticity, National Institute of Mental Health, and Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Zheng Li
- Unit on Synapse Development and Plasticity, National Institute of Mental Health, and Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
27
|
Diversity of glutamatergic synaptic strength in lateral prefrontal versus primary visual cortices in the rhesus monkey. J Neurosci 2015; 35:112-27. [PMID: 25568107 DOI: 10.1523/jneurosci.3426-14.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Understanding commonalities and differences in glutamatergic synaptic signaling is essential for understanding cortical functional diversity, especially in the highly complex primate brain. Previously, we have shown that spontaneous EPSCs differed markedly in layer 3 pyramidal neurons of two specialized cortical areas in the rhesus monkey, the high-order lateral prefrontal cortex (LPFC) and the primary visual cortex (V1). Here, we used patch-clamp recordings and confocal and electron microscopy to determine whether these distinct synaptic responses are due to differences in firing rates of presynaptic neurons and/or in the features of presynaptic or postsynaptic entities. As with spontaneous EPSCs, TTX-insensitive (action potential-independent) miniature EPSCs exhibited significantly higher frequency, greater amplitude, and slower kinetics in LPFC compared with V1 neurons. Consistent with these physiological differences, LPFC neurons possessed higher densities of spines, and the mean width of large spines was greater compared with those on V1 neurons. Axospinous synapses in layers 2-3 of LPFC had larger postsynaptic density surface areas and a higher proportion of large perforated synapses compared with V1. Axonal boutons in LPFC were also larger in volume and contained ∼ 1.6× more vesicles than did those in V1. Further, LPFC had a higher density of AMPA GluR2 receptor labeling than V1. The properties of spines and synaptic currents of individual layer 3 pyramidal neurons measured here were significantly correlated, consistent with the idea that significantly more frequent and larger synaptic currents are likely due to more numerous, larger, and more powerful synapses in LPFC compared with V1.
Collapse
|
28
|
Bittencourt S, Covolan L, Hamani C, Longo BM, Faria FP, Freymuller E, Ottersen OP, Mello LE. Replacement of Asymmetric Synaptic Profiles in the Molecular Layer of Dentate Gyrus Following Cycloheximide in the Pilocarpine Model in Rats. Front Psychiatry 2015; 6:157. [PMID: 26635635 PMCID: PMC4647073 DOI: 10.3389/fpsyt.2015.00157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/23/2015] [Indexed: 11/13/2022] Open
Abstract
Mossy fiber sprouting is among the best-studied forms of post-lesional synaptic plasticity and is regarded by many as contributory to seizures in both humans and animal models of epilepsy. It is not known whether mossy fiber sprouting increases the number of synapses in the molecular layer or merely replaces lost contacts. Using the pilocarpine (Pilo) model of status epilepticus to induce mossy fiber sprouting, and cycloheximide (CHX) to block this sprouting, we evaluated at the ultrastructural level the number and type of asymmetric synaptic contacts in the molecular layer of the dentate gyrus. As expected, whereas Pilo-treated rats had dense silver grain deposits in the inner molecular layer (IML) (reflecting mossy fiber sprouting), pilocarpine + cycloheximide (CHX + Pilo)-treated animals did not differ from controls. Both groups of treated rats (Pilo group and CHX + Pilo group) had reduced density of asymmetric synaptic profiles (putative excitatory synaptic contacts), which was greater for CHX-treated animals. For both treated groups, the loss of excitatory synaptic contacts was even greater in the outer molecular layer than in the best-studied IML (in which mossy fiber sprouting occurs). These results indicate that mossy fiber sprouting tends to replace lost synaptic contacts rather than increase the absolute number of contacts. We speculate that the overall result is more consistent with restored rather than with increased excitability.
Collapse
Affiliation(s)
- Simone Bittencourt
- Department of Physiology, Universidade Federal de São Paulo , São Paulo , Brazil
| | - Luciene Covolan
- Department of Physiology, Universidade Federal de São Paulo , São Paulo , Brazil
| | - Clement Hamani
- Division of Neurosurgery, Toronto Western Hospital , Toronto, ON , Canada
| | - Beatriz M Longo
- Department of Physiology, Universidade Federal de São Paulo , São Paulo , Brazil
| | - Flávio P Faria
- Electron Microscopy Center, Universidade Federal de São Paulo , São Paulo , Brazil
| | - Edna Freymuller
- Electron Microscopy Center, Universidade Federal de São Paulo , São Paulo , Brazil
| | - Ole P Ottersen
- Department of Anatomy, Centre for Molecular Biology and Neuroscience, University of Oslo , Oslo , Norway
| | - Luiz E Mello
- Department of Physiology, Universidade Federal de São Paulo , São Paulo , Brazil
| |
Collapse
|
29
|
Nikitczuk JS, Patil SB, Matikainen-Ankney BA, Scarpa J, Shapiro ML, Benson DL, Huntley GW. N-cadherin regulates molecular organization of excitatory and inhibitory synaptic circuits in adult hippocampus in vivo. Hippocampus 2014; 24:943-962. [PMID: 24753442 DOI: 10.1002/hipo.22282] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 12/31/2022]
Abstract
N-Cadherin and β-catenin form a transsynaptic adhesion complex required for spine and synapse development. In adulthood, N-cadherin mediates persistent synaptic plasticity, but whether the role of N-cadherin at mature synapses is similar to that at developing synapses is unclear. To address this, we conditionally ablated N-cadherin from excitatory forebrain synapses in mice starting in late postnatal life and examined hippocampal structure and function in adulthood. In the absence of N-cadherin, β-catenin levels were reduced, but numbers of excitatory synapses were unchanged, and there was no impact on number or shape of dendrites or spines. However, the composition of synaptic molecules was altered. Levels of GluA1 and its scaffolding protein PSD95 were diminished and the density of immunolabeled puncta was decreased, without effects on other glutamate receptors and their scaffolding proteins. Additionally, loss of N-cadherin at excitatory synapses triggered increases in the density of markers for inhibitory synapses and decreased severity of hippocampal seizures. Finally, adult mutant mice were profoundly impaired in hippocampal-dependent memory for spatial episodes. These results demonstrate a novel function for the N-cadherin/β-catenin complex in regulating ionotropic receptor composition of excitatory synapses, an appropriate balance of excitatory and inhibitory synaptic proteins and the maintenance of neural circuitry necessary to generate flexible yet persistent cognitive and synaptic function.
Collapse
Affiliation(s)
- Jessica S Nikitczuk
- Fishberg Department of Neuroscience, Friedman Brain Institute and The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029
| | - Shekhar B Patil
- Fishberg Department of Neuroscience, Friedman Brain Institute and The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029
| | - Bridget A Matikainen-Ankney
- Fishberg Department of Neuroscience, Friedman Brain Institute and The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029
| | - Joseph Scarpa
- Fishberg Department of Neuroscience, Friedman Brain Institute and The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029
| | - Matthew L Shapiro
- Fishberg Department of Neuroscience, Friedman Brain Institute and The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029
| | - Deanna L Benson
- Fishberg Department of Neuroscience, Friedman Brain Institute and The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029
| | - George W Huntley
- Fishberg Department of Neuroscience, Friedman Brain Institute and The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029
| |
Collapse
|
30
|
Redistribution of ionotropic glutamate receptors detected by laser microdissection of the rat dentate gyrus 48 h following LTP induction in vivo. PLoS One 2014; 9:e92972. [PMID: 24667777 PMCID: PMC3965487 DOI: 10.1371/journal.pone.0092972] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 02/27/2014] [Indexed: 11/25/2022] Open
Abstract
The persistence and input specificity of long-term potentiation (LTP) make it attractive as a mechanism of information storage. In its initial phase, both in vivo and in vitro studies have shown that LTP is associated with increased membrane localization of AMPA receptor subunits, but the molecular basis of LTP maintenance over the long-term is still unclear. We have previously shown that expression of AMPA and NMDA receptor subunits is elevated in whole homogenates prepared from dentate gyrus 48 h after LTP induction in vivo. In the present study, we utilized laser microdissection (LMD) techniques to determine whether AMPA and NMDA receptor upregulation occurs specifically in the stimulated regions of the dentate gyrus dendritic arbor. Receptor proteins GluN1, GluA1 and GluA2, as well as postsynaptic density protein of 95 kDa and tubulin were detected by Western blot analysis in microdissected samples. Gradients of expression were observed for GluN1 and GluA2, decreasing from the inner to the outer zones of the molecular layer, and were independent of LTP. When induced at medial perforant path synapses, LTP was associated with an apparent specific redistribution of GluA1 and GluN1 to the middle molecular layer that contains these synapses. These data indicate that glutamate receptor proteins are delivered specifically to dendritic regions possessing LTP-expressing synapses, and that these changes are preserved for at least 48 h.
Collapse
|
31
|
Trotman M, Barad Z, Guévremont D, Williams J, Leitch B. Changes in the GRIP 1&2 scaffolding proteins in the cerebellum of the ataxic stargazer mouse. Brain Res 2013; 1546:53-62. [PMID: 24380676 DOI: 10.1016/j.brainres.2013.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
Abstract
Glutamate receptor-interacting proteins (GRIP1&2) and protein-interacting with C kinase-1 (PICK1) are synaptic scaffold proteins associated with the stabilization and recycling of synaptic GluA2-, 3- and 4c-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). PICK1-mediated phosphorylation of GluA serine880 uncouples GRIP1&2 leading to AMPAR endocytosis, important in mediating forms of synaptic plasticity underlying learning and memory. Ataxic and epileptic stargazer mice possess a mutation in the CACNG2 gene encoding the transmembrane AMPAR-regulatory protein (TARP)-γ2 (stargazin). TARPs are AMPAR-auxiliary subunits required for efficient AMPAR trafficking to synapses. Stargazin is abundantly expressed in the cerebellum and its loss results in severe deficits in AMPAR trafficking to cerebellar synapses, particularly at granule cell (GC) synapses, leading to the ataxic phenotype of stargazers. However, how the stargazin mutation impacts on the expression of other AMPAR-interacting scaffold proteins is unknown. This study shows a significant increase in GRIP1&2, but not PICK1, levels in whole tissue and synapse-enriched extracts from stargazer cerebella. Post-embedding immunogold-cytochemistry electron microscopy showed GRIP1&2 levels were unchanged at mossy fiber-GC synapses in stargazers, which are silent due to virtual total absence of synaptic and extrasynaptic GluA2/3-AMPARs. These results indicate that loss of synaptic AMPARs at this excitatory synapse does not affect GRIP1&2 expression within the postsynaptic region of mossy fiber-GC synapses. Interestingly, increased GRIP and reduced GluA2-AMPARexpression also occur in cerebella of autistic patients. Further research establishing the role of elevated cerebellar GRIP1&2 in stargazers may help identify common cellular mechanisms in the comorbid disorders ataxia, epilepsy and autism leading to more effective treatment strategies.
Collapse
Affiliation(s)
- M Trotman
- Department of Anatomy, Brain Health Research Centre, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Z Barad
- Department of Anatomy, Brain Health Research Centre, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - D Guévremont
- Department of Anatomy, Brain Health Research Centre, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - J Williams
- Department of Anatomy, Brain Health Research Centre, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - B Leitch
- Department of Anatomy, Brain Health Research Centre, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
32
|
Yoshiya M, Komatsuzaki Y, Hojo Y, Ikeda M, Mukai H, Hatanaka Y, Murakami G, Kawata M, Kimoto T, Kawato S. Corticosterone rapidly increases thorns of CA3 neurons via synaptic/extranuclear glucocorticoid receptor in rat hippocampus. Front Neural Circuits 2013; 7:191. [PMID: 24348341 PMCID: PMC3841935 DOI: 10.3389/fncir.2013.00191] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/11/2013] [Indexed: 11/13/2022] Open
Abstract
Modulation of synapses under acute stress is attracting much attention. Exposure to acute stress induces corticosterone (CORT) secretion from the adrenal cortex, resulting in rapid increase of CORT levels in plasma and the hippocampus. We tried to test whether rapid CORT effects involve activation of essential kinases as non-genomic processes. We demonstrated rapid effects (~1 h) of CORT on the density of thorns, by imaging Lucifer Yellow-injected neurons in adult male rat hippocampal slices. Thorns of thorny excrescences of CA3 hippocampal neurons are post-synaptic regions whose presynaptic partners are mossy fiber terminals. The application of CORT at 100, 500, and 1000 nM induced a rapid increase in the density of thorns in the stratum lucidum of CA3 pyramidal neurons. Co-administration of RU486, an antagonist of glucocorticoid receptor (GR), abolished the effect of CORT. Blocking a single kinase, including MAPK, PKA, or PKC, suppressed CORT-induced enhancement of thorn-genesis. On the other hand, GSK-3β was not involved in the signaling of thorn-genesis. Blocking AMPA receptors suppressed the CORT effect. Expression of CA3 synaptic/extranuclear GR was demonstrated by immunogold electron microscopic analysis. From these results, stress levels of CORT (100-1000 nM) might drive the rapid thorn-genesis via synaptic/extranuclear GR and multiple kinase pathways, although a role of nuclear GRs cannot be completely excluded.
Collapse
Affiliation(s)
- Miyuki Yoshiya
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan ; Bioinformatics Project of Japan Science and Technology Agency, The University of Tokyo Tokyo, Japan
| | - Yoshimasa Komatsuzaki
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan ; Department of Physics, College of Science and Technology, Nihon University Chiyoda, Tokyo, Japan
| | - Yasushi Hojo
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan ; Bioinformatics Project of Japan Science and Technology Agency, The University of Tokyo Tokyo, Japan
| | - Muneki Ikeda
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan
| | - Hideo Mukai
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan ; Bioinformatics Project of Japan Science and Technology Agency, The University of Tokyo Tokyo, Japan
| | - Yusuke Hatanaka
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan ; Bioinformatics Project of Japan Science and Technology Agency, The University of Tokyo Tokyo, Japan
| | - Gen Murakami
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan ; Bioinformatics Project of Japan Science and Technology Agency, The University of Tokyo Tokyo, Japan
| | - Mitsuhiro Kawata
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine Kamigyo, Kyoto, Japan
| | - Tetsuya Kimoto
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan
| | - Suguru Kawato
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan ; Bioinformatics Project of Japan Science and Technology Agency, The University of Tokyo Tokyo, Japan
| |
Collapse
|
33
|
Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J Neurosci 2013; 33:13204-24. [PMID: 23926273 DOI: 10.1523/jneurosci.2381-12.2013] [Citation(s) in RCA: 442] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The spatiotemporal organization of neurotransmitter receptors in postsynaptic membranes is a fundamental determinant of synaptic transmission and information processing by the brain. Using four independent super-resolution light imaging methods and EM of genetically tagged and endogenous receptors, we show that, in rat hippocampal neurons, AMPARs are often highly concentrated inside synapses into a few clusters of ∼70 nm that contain ∼20 receptors. AMPARs are stabilized reversibly in these nanodomains and diffuse freely outside them. Nanodomains are dynamic in their shape and position within synapses and can form or disappear within minutes, although they are mostly stable for up to 1 h. AMPAR nanodomains are often, but not systematically, colocalized with clusters of the scaffold protein PSD95, which are generally of larger size than AMPAR nanoclusters. PSD95 expression level regulates AMPAR nanodomain size and compactness in parallel to miniature EPSC amplitude. Monte Carlo simulations further indicate the impact of AMPAR concentration in clusters on the efficacy of synaptic transmission. The observation that AMPARs are highly concentrated in nanodomains, instead of diffusively distributed in the PSD as generally thought, has important consequences on our understanding of excitatory neurotransmission. Furthermore, our results indicate that glutamatergic synaptic transmission is controlled by the nanometer-scale regulation of the size of these highly concentrated nanodomains.
Collapse
|
34
|
Spatiotemporal dynamics of high-K+-induced epileptiform discharges in hippocampal slice and the effects of valproate. Neurosci Bull 2013; 29:28-36. [PMID: 23361520 DOI: 10.1007/s12264-013-1304-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022] Open
Abstract
The epileptic seizure is a dynamic process involving a rapid transition from normal activity to a state of hypersynchronous neuronal discharges. Here we investigated the network properties of epileptiform discharges in hippocampal slices in the presence of high K(+) concentration (8.5 mmol/L) in the bath, and the effects of the anti-epileptic drug valproate (VPA) on epileptiform discharges, using a microelectrode array. We demonstrated that epileptiform discharges were predominantly initiated from the stratum pyramidale layer of CA3a-b and propagated bi-directionally to CA1 and CA3c. Disconnection of CA3 from CA1 abolished the discharges in CA1 without disrupting the initiation of discharges in CA3. Further pharmacological experiments showed that VPA at a clinically relevant concentration (100 μmol/L) suppressed the propagation speed but not the rate or duration of high-K(+)-induced discharges. Our findings suggest that pacemakers exist in the CA3a-b region for the generation of epileptiform discharges in the hippocampus. VPA reduces the conduction of such discharges in the network by reducing the propagation speed.
Collapse
|
35
|
Mortillo S, Elste A, Ge Y, Patil SB, Hsiao K, Huntley GW, Davis RL, Benson DL. Compensatory redistribution of neuroligins and N-cadherin following deletion of synaptic β1-integrin. J Comp Neurol 2012; 520:2041-52. [PMID: 22488504 DOI: 10.1002/cne.23027] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
β1-containing integrins are required for persistent synaptic potentiation in hippocampus and regulate hippocampal-dependent learning. Based largely on indirect evidence, there is a prevailing assumption that β1-integrins are localized at synapses, where they contribute to synapse adhesion and signaling, but this has not been examined directly. Here we investigate the fine localization of β1-integrin in adult mouse hippocampus using high-resolution immunogold labeling, with a particular emphasis on synaptic labeling patterns. We find that β1-integrins localize to synapses in CA1 and are concentrated postsynaptically. At the postsynaptic membrane, β1-integrins are found more commonly clustered near active zone centers rather than at the peripheral edges. In mice harboring a conditional deletion of β1-integrins, labeling for N-cadherin and neuroligins increases. Western blots show increased levels of N-cadherin in total lysates and neuroligins increase selectively in synaptosomes. These data suggest there is a dynamic, compensatory adjustment of synaptic adhesion. Such adjustment is specific only for certain cell adhesion molecules (CAMs), because labeling for SynCAM is unchanged. Together, our findings demonstrate unequivocally that β1-integrin is an integral synaptic adhesion protein, and suggest that adhesive function at the synapse reflects a cooperative and dynamic network of multiple CAM families.
Collapse
Affiliation(s)
- Steven Mortillo
- Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Pielot R, Smalla KH, Müller A, Landgraf P, Lehmann AC, Eisenschmidt E, Haus UU, Weismantel R, Gundelfinger ED, Dieterich DC. SynProt: A Database for Proteins of Detergent-Resistant Synaptic Protein Preparations. Front Synaptic Neurosci 2012; 4:1. [PMID: 22737123 PMCID: PMC3382120 DOI: 10.3389/fnsyn.2012.00001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 05/29/2012] [Indexed: 11/13/2022] Open
Abstract
Chemical synapses are highly specialized cell–cell contacts for communication between neurons in the CNS characterized by complex and dynamic protein networks at both synaptic membranes. The cytomatrix at the active zone (CAZ) organizes the apparatus for the regulated release of transmitters from the presynapse. At the postsynaptic side, the postsynaptic density constitutes the machinery for detection, integration, and transduction of the transmitter signal. Both pre- and postsynaptic protein networks represent the molecular substrates for synaptic plasticity. Their function can be altered both by regulating their composition and by post-translational modification of their components. For a comprehensive understanding of synaptic networks the entire ensemble of synaptic proteins has to be considered. To support this, we established a comprehensive database for synaptic junction proteins (SynProt database) primarily based on proteomics data obtained from biochemical preparations of detergent-resistant synaptic junctions. The database currently contains 2,788 non-redundant entries of rat, mouse, and some human proteins, which mainly have been manually extracted from 12 proteomic studies and annotated for synaptic subcellular localization. Each dataset is completed with manually added information including protein classifiers as well as automatically retrieved and updated information from public databases (UniProt and PubMed). We intend that the database will be used to support modeling of synaptic protein networks and rational experimental design.
Collapse
Affiliation(s)
- Rainer Pielot
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fukazawa Y, Shigemoto R. Intra-synapse-type and inter-synapse-type relationships between synaptic size and AMPAR expression. Curr Opin Neurobiol 2012; 22:446-52. [DOI: 10.1016/j.conb.2012.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/19/2012] [Indexed: 11/16/2022]
|
38
|
Examining form and function of dendritic spines. Neural Plast 2012; 2012:704103. [PMID: 22577585 PMCID: PMC3345238 DOI: 10.1155/2012/704103] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/10/2012] [Indexed: 12/20/2022] Open
Abstract
The majority of fast excitatory synaptic transmission in the central nervous system takes place at protrusions along dendrites called spines. Dendritic spines are highly heterogeneous, both morphologically and functionally. Not surprisingly, there has been much speculation and debate on the relationship between spine structure and function. The advent of multi-photon laser-scanning microscopy has greatly improved our ability to investigate the dynamic interplay between spine form and function. Regulated structural changes occur at spines undergoing plasticity, offering a mechanism to account for the well-described correlation between spine size and synapse strength. In turn, spine structure can influence the degree of biochemical and perhaps electrical compartmentalization at individual synapses. Here, we review the relationship between dendritic spine morphology, features of spine compartmentalization and synaptic plasticity. We highlight emerging molecular mechanisms that link structural and functional changes in spines during plasticity, and also consider circumstances that underscore some divergence from a tight structure-function coupling. Because of the intricate influence of spine structure on biochemical and electrical signalling, activity-dependent changes in spine morphology alone may thus contribute to the metaplastic potential of synapses. This possibility asserts a role for structural dynamics in neuronal information storage and aligns well with current computational models.
Collapse
|
39
|
Piccolini V, Cerri S, Romanelli E, Bernocchi G. Interactions of neurotransmitter systems during postnatal development of the rat hippocampal formation: Effects of cisplatin. Exp Neurol 2012; 234:239-52. [DOI: 10.1016/j.expneurol.2011.12.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 12/21/2011] [Accepted: 12/25/2011] [Indexed: 01/14/2023]
|
40
|
Shevtsova O, Leitch B. Selective loss of AMPA receptor subunits at inhibitory neuron synapses in the cerebellum of the ataxic stargazer mouse. Brain Res 2012; 1427:54-64. [DOI: 10.1016/j.brainres.2011.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/07/2011] [Accepted: 10/12/2011] [Indexed: 10/16/2022]
|
41
|
Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 2011; 41:2256-82. [PMID: 22130549 DOI: 10.1039/c1cs15166e] [Citation(s) in RCA: 1180] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gold nanoparticles (GNPs) with controlled geometrical, optical, and surface chemical properties are the subject of intensive studies and applications in biology and medicine. To date, the ever increasing diversity of published examples has included genomics and biosensorics, immunoassays and clinical chemistry, photothermolysis of cancer cells and tumors, targeted delivery of drugs and antigens, and optical bioimaging of cells and tissues with state-of-the-art nanophotonic detection systems. This critical review is focused on the application of GNP conjugates to biomedical diagnostics and analytics, photothermal and photodynamic therapies, and delivery of target molecules. Distinct from other published reviews, we present a summary of the immunological properties of GNPs. For each of the above topics, the basic principles, recent advances, and current challenges are discussed (508 references).
Collapse
Affiliation(s)
- Lev Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, 13 Pr. Entuziastov, Saratov 410049, Russian Federation
| | | |
Collapse
|
42
|
Galvez R, Nicholson DA, Disterhoft JF. Physiological and anatomical studies of associative learning: Convergence with learning studies of W.T. Greenough. Dev Psychobiol 2011; 53:489-504. [PMID: 21678397 PMCID: PMC3632307 DOI: 10.1002/dev.20554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The quest to understand how the brain is able to store information for later retrieval has been pursued by many scientists through the years. Although many have made very significant contributions to the field and our current understanding of the process, few have played as pivotal a role in advancing our understanding as William T. Greenough. The current report will utilize associative learning, a training paradigm that has greatly assisted in our understanding of memory consolidation, to demonstrate how findings emerging from the Greenough laboratory helped to not only shape our current understanding of learning induced anatomical plasticity, but to also launch future analyses into the molecular players involved in this process, especially the Fragile X Mental Retardation Protein.
Collapse
Affiliation(s)
- Roberto Galvez
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
| | | | | |
Collapse
|
43
|
Bailey JL, O’Connor V, Hannah M, Hewlett L, Biggs TE, Sundstrom LE, Findlay MW, Chad JE. In vitro CNS tissue analogues formed by self-organisation of reaggregated post-natal brain tissue. J Neurochem 2011; 117:1020-32. [DOI: 10.1111/j.1471-4159.2011.07276.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
He K, Lee A, Song L, Kanold PO, Lee HK. AMPA receptor subunit GluR1 (GluA1) serine-845 site is involved in synaptic depression but not in spine shrinkage associated with chemical long-term depression. J Neurophysiol 2011; 105:1897-907. [PMID: 21307330 DOI: 10.1152/jn.00913.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The structure of dendritic spines is highly plastic and can be modified by neuronal activity. In addition, there is evidence that spine head size correlates with the synaptic α-amino-3-hydroxy-5-methylisoxazole propionic acid (AMPA) receptor (AMPAR) content, which suggests that they may be coregulated. Although there is evidence that there are overlapping mechanisms for structural and functional plasticity, the extent of the overlap needs further investigation. Specifically, it is unknown whether AMPAR levels determine spine size or whether both are regulated via parallel pathways. We studied the correlation between spine structural plasticity and long-term synaptic plasticity following chemical-induced long-term depression (chemLTD). In particular, we examined whether the regulation of AMPARs, which is implicated in LTD, is critical for spine morphological plasticity. We used mutant mice specifically lacking the serine-845 site on the type 1 glutamate receptor (GluR1, or GluA1) subunit of AMPARs (mutants). These mice specifically lack N-methyl-D-aspartate (NMDA) receptor (NMDAR)-dependent LTD and NMDAR activation-induced AMPAR endocytosis. We found that chemLTD causes a rapid and persistent shrinkage in spine head volume of hippocampal CA1 pyramidal neurons in wild types similar to that reported in other studies using low-frequency stimulation (LFS)-induced LTD. Surprisingly, we found that although S845A mutant mice display impaired chemLTD, the shrinkage of spine head volume occurred to a similar magnitude to that observed in wild types. Our results suggest that there is dissociation in the molecular mechanisms underlying functional LTD and spine shrinkage and that GluR1-S845 regulation is not necessary for spine morphological plasticity.
Collapse
Affiliation(s)
- Kaiwen He
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
45
|
Dykman LA, Staroverov SA, Bogatyrev VA, Shchyogolev SY. Adjuvant properties of gold nanoparticles. ACTA ACUST UNITED AC 2010. [DOI: 10.1134/s1995078010110029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Mukai H, Kimoto T, Hojo Y, Kawato S, Murakami G, Higo S, Hatanaka Y, Ogiue-Ikeda M. Modulation of synaptic plasticity by brain estrogen in the hippocampus. Biochim Biophys Acta Gen Subj 2010; 1800:1030-44. [DOI: 10.1016/j.bbagen.2009.11.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/15/2009] [Accepted: 11/02/2009] [Indexed: 12/31/2022]
|
47
|
Peddie CJ, Davies HA, Colyer FM, Stewart MG, Rodríguez JJ. A subpopulation of serotonin 1B receptors colocalize with the AMPA receptor subunit GluR2 in the hippocampal dentate gyrus. Neurosci Lett 2010; 485:251-5. [PMID: 20849926 DOI: 10.1016/j.neulet.2010.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/08/2010] [Indexed: 11/18/2022]
Abstract
The serotonin(1B) receptor (5-HT(1B)R) plays a role in cognitive processes that also involve glutamatergic neurotransmission via amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptors. Accumulating experimental evidence also highlights the involvement of 5-HT(1B)Rs in several neurological disorders. Consequently, the 5-HT(1B)R is increasingly implicated as a potential therapeutic target for intervention in cognitive dysfunction. Within the hippocampus, a brain region critical to cognitive processing, populations of pre- and post-synaptic 5-HT(1B)Rs have been identified. Thus, 5-HT(1B)Rs could have a role in the modulation of hippocampal pre- and post-synaptic conductance. Previously, we demonstrated colocalization of 5-HT(1B)Rs with the N-methyl-D-aspartate (NMDA) receptor subunit NR1 in a subpopulation of granule cell dendrites (Peddie et al. [53]). In this study, we have examined the cellular and subcellular distribution of 5-HT(1B)Rs with the AMPA receptor subunit GluR2. Of 5-HT(1B)R positive profiles, 28% displayed colocalization with GluR2. Of these, 87% were dendrites, corresponding to 41% and 10% of all 5-HT(1B)R labeled or GluR2 labeled dendrites, respectively. Dendritic labeling was both cytoplasmic and membranous but was not usually associated with synaptic sites. Colocalization within dendritic spines and axons was comparatively rare. These findings indicate that within the dentate gyrus molecular layer, dendritic 5-HT(1B)Rs are expressed predominantly on GluR2 negative granule cell processes. However, a subpopulation of 5-HT(1B)Rs is expressed on GluR2 positive dendrites. Here, it is suggested that activation of the 5-HT(1B)R may play a role in the modulation of AMPA receptor mediated conductance, further supporting the notion that the 5-HT(1B)R represents an interesting therapeutic target for modulation of cognitive function.
Collapse
Affiliation(s)
- C J Peddie
- Department of Life Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | | | | | | | | |
Collapse
|
48
|
Stubblefield EA, Benke TA. Distinct AMPA-type glutamatergic synapses in developing rat CA1 hippocampus. J Neurophysiol 2010; 104:1899-912. [PMID: 20685930 DOI: 10.1152/jn.00099.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We assessed synaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) properties during synaptogenesis to describe the development of individual glutamatergic synapses on rat hippocampal CA1 principal neurons. Pharmacologically isolated AMPAR-mediated glutamatergic synaptic currents [evoked by stimulation of the Schaffer Collateral pathway, excitatory postsynaptic currents (EPSCs)], had significantly greater inward-rectification at ages P5-7 compared with P8-18. These inward rectifying EPSCs demonstrated paired-pulse dependent unblocking at positive holding potentials, consistent with voltage-dependent internal polyamine block. Measurements of paired-pulse facilitation did not support altered presynaptic properties associated with inward rectification. Using asynchronous EPSCs (aEPSCs) to analyze populations of individual synapses, we found that quantal amplitudes (Q) increased across early postnatal development (P5-P18) and were directly modulated by increases in the number of activated receptors. Quantal AMPAR decay kinetics (aEPSC τ(decay)s) exhibited the highest coefficient of variation (CV) from P5 to 7 and became markedly less variable at P8-18. At P5-7, faster quantal kinetics coexisted with much slower kinetics; only slower quantal kinetics were found at P8-18. This supports diverse quantal synaptic properties limited to P5-7. Multivariate cluster analysis of Q, CV(τ decay), and median τ(decay) supported a segregation of neurons into two distinct age groups of P5-7 and P8-18, similar to the age-related segregation suggested by inward rectification. Taken together, these findings support synaptic, calcium permeable AMPARs at a subset of synapses onto CA1 pyramidal neurons exclusively at P5-7. These distinct synapses coexist with those sharing the properties of more mature synapses. These synapses disappear after P7 as activated receptor numbers increase with age.
Collapse
|
49
|
Holmstrand EC, Asafu-Adjei J, Sampson AR, Blakely RD, Sesack SR. Ultrastructural localization of high-affinity choline transporter in the rat anteroventral thalamus and ventral tegmental area: differences in axon morphology and transporter distribution. J Comp Neurol 2010; 518:1908-24. [PMID: 20394050 DOI: 10.1002/cne.22310] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The high-affinity choline transporter (CHT) is a protein integral to the function of cholinergic neurons in the central nervous system (CNS). We examined the ultrastructural distribution of CHT in axonal arborizations of the mesopontine tegmental cholinergic neurons, a cell group in which CHT expression has yet to be characterized at the electron microscopic level. By using silver-enhanced immunogold detection, we compared the morphological characteristics of CHT-immunoreactive axon varicosities specifically within the anteroventral thalamus (AVN) and the ventral tegmental area (VTA). We found that CHT-immunoreactive axon varicosities in the AVN displayed a smaller cross-sectional area and a lower frequency of synapse formation and dense-cored vesicle content than CHT-labeled profiles in the VTA. We further examined the subcellular distribution of CHT and observed that immunoreactivity for this protein was predominantly localized to synaptic vesicles and minimally to the plasma membrane of axons in both regions. This pattern is consistent with the subcellular distribution of CHT displayed in other cholinergic systems. Axons in the AVN showed significantly higher levels of CHT immunoreactivity than those in the VTA and correspondingly displayed a higher level of membrane CHT labeling. These novel findings have important implications for elucidating regional differences in cholinergic signaling within the thalamic and brainstem targets of the mesopontine cholinergic system.
Collapse
Affiliation(s)
- Ericka C Holmstrand
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | |
Collapse
|
50
|
Benchmarking B-cell epitope prediction for the design of peptide-based vaccines: problems and prospects. J Biomed Biotechnol 2010; 2010:910524. [PMID: 20368996 PMCID: PMC2847767 DOI: 10.1155/2010/910524] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/12/2009] [Accepted: 02/18/2010] [Indexed: 11/18/2022] Open
Abstract
To better support the design of peptide-based vaccines, refinement of methods to predict B-cell epitopes necessitates meaningful benchmarking against empirical data on the cross-reactivity of polyclonal antipeptide antibodies with proteins, such that the positive data reflect functionally relevant cross-reactivity (which is consistent with antibody-mediated change in protein function) and the negative data reflect genuine absence of cross-reactivity (rather than apparent absence of cross-reactivity due to artifactual masking of B-cell epitopes in immunoassays). These data are heterogeneous in view of multiple factors that complicate B-cell epitope prediction, notably physicochemical factors that define key structural differences between immunizing peptides and their cognate proteins (e.g., unmatched electrical charges along the peptide-protein sequence alignments). If the data are partitioned with respect to these factors, iterative parallel benchmarking against the resulting subsets of data provides a basis for systematically identifying and addressing the limitations of methods for B-cell epitope prediction as applied to vaccine design.
Collapse
|