1
|
Ghafari M, Keihan Falsafi S, Höger H, Bennett KL, Lubec G. Identification of new phosphorylation sites of AMPA receptors in the rat hippocampus--A resource for neuroscience research. Proteomics Clin Appl 2015; 9:808-16. [PMID: 25656447 DOI: 10.1002/prca.201400057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/16/2014] [Accepted: 02/03/2015] [Indexed: 12/14/2022]
Abstract
PURPOSE AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs) are glutamate-gated ion channels that mediate the majority of fast excitatory synaptic transmissions in the mammalian brain. A series of phosphorylation sites have been predicted or identified and knowledge on phosphorylations is mandatory for understanding receptor biology and functions. EXPERIMENTAL DESIGN Immunoprecipitation from extracted hippocampal rat proteins was carried out using an antibody against the AMPAR GluA1 subunit, followed by identification of GluA1 and binding partners by MS. Bands from SDS-PAGE were picked, peptides were generated by trypsin and chymotrypsin digestion and identified by MS/MS (LTQ Orbitrap Velos). RESULTS Using Mascot as a search engine, phosphorylation sites S506, S645, S720, S849, S863, S895, T858, Y228, Y419, and T734 were found on GluA1; S357, S513, S656, S727, T243, T420, T741, Y 143, Y301,Y426 on GluA2; S301, S516, S657, S732, T222, and T746 were observed on GluA3; and S514, S653 was phosphorylated on GluA4. CONCLUSIONS AND CLINICAL RELEVANCE A series of additional protein modifications were observed and in particular, tyrosine and tryptophan nitrations on GluA1 were detected that may raise questions on additional regulation mechanisms for AMPARs in addition to phosphorylations. The findings are relevant for interpretation of previous work and design of future studies using AMPAR serving as a resource for neuroscience research and indeed, phosphorylations and PTMs per se would have to be respected when neuropathological and neurological disorders are being studied.
Collapse
Affiliation(s)
- Maryam Ghafari
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | - Harald Höger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Himberg, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Limitations of PET and lesion studies in defining the role of the human cerebellum in motor learning. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
|
4
|
|
5
|
Eyeblink conditioning, motor control, and the analysis of limbic-cerebellar interactions. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081929] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
|
7
|
Grasping cerebellar function depends on our understanding the principles of sensorimotor integration: The frame of reference hypothesis. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Dysmetria of thought: Correlations and conundrums in the relationship between the cerebellum, learning, and cognitive processing. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081851] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
|
10
|
|
11
|
Q: Is the cerebellum an adaptive combiner of motor and mental/motor activities? A: Yes, maybe, certainly not, who can say? Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00082017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
|
13
|
What behavioral benefit does stiffness control have? An elaboration of Smith's proposal. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
|
15
|
Tsutsuki H, Kohda T, Hara M, Kozaki S, Ihara H. Nitric oxide inhibits depolarization-evoked glutamate release from rat cerebellar granule cells. Nitric Oxide 2007; 16:217-27. [PMID: 17126044 DOI: 10.1016/j.niox.2006.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 10/01/2006] [Accepted: 10/06/2006] [Indexed: 10/24/2022]
Abstract
Nitric oxide (NO) modulates the release of various neurotransmitters, some of these are considered to be involved in neuronal plasticity that includes long-term depression in the cerebellum. To date, there have been no reports on the modulation of the exocytotic release of neurotransmitters in the cerebellar granule cells (CGCs) by NO. The aim of this study was to investigate the effects of NO on the exocytotic release of glutamate from rat CGCs. Treatment with NO-related reagents revealed that NO inhibited high-K(+)-evoked glutamate release. Clostridium botulinum type B neurotoxin (BoNT/B) attenuated the enhancement of glutamate release caused by NO synthase (NOS) inhibition; this indicates that NO acts on the high-K(+)-evoked exocytotic pathway. cGMP-related reagents did not affect the high-K(+)-evoked glutamate release. NO-related reagents did not affect Ca(2+) ionophore-induced glutamate release, suggesting that NO inhibits Ca(2+) entry through voltage-dependent Ca(2+) channels (VDCC). Monitoring of intracellular Ca(2+) revealed that NO inhibited high-K(+)-evoked Ca(2+) entry. L-type VDCC blockers inhibited glutamate release and NO did not have an additive effect on the inhibition produced by the L-type VDCC blocker. The inhibition of the high-K(+)-evoked glutamate release by NO was abolished by a reducing reagent; this suggested that NO regulates the high-K(+)-evoked glutamate release from CGCs by redox modulation.
Collapse
Affiliation(s)
- Hiroyasu Tsutsuki
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka, Japan
| | | | | | | | | |
Collapse
|
16
|
Changeux JP, Edelstein SJ. Allosteric receptors after 30 years. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2006. [DOI: 10.1007/bf02904502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Palmer CL, Cotton L, Henley JM. The molecular pharmacology and cell biology of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Pharmacol Rev 2005; 57:253-77. [PMID: 15914469 PMCID: PMC3314513 DOI: 10.1124/pr.57.2.7] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) are of fundamental importance in the brain. They are responsible for the majority of fast excitatory synaptic transmission, and their overactivation is potently excitotoxic. Recent findings have implicated AMPARs in synapse formation and stabilization, and regulation of functional AMPARs is the principal mechanism underlying synaptic plasticity. Changes in AMPAR activity have been described in the pathology of numerous diseases, such as Alzheimer's disease, stroke, and epilepsy. Unsurprisingly, the developmental and activity-dependent changes in the functional synaptic expression of these receptors are under tight cellular regulation. The molecular and cellular mechanisms that control the postsynaptic insertion, arrangement, and lifetime of surface-expressed AMPARs are the subject of intense and widespread investigation. For example, there has been an explosion of information about proteins that interact with AMPAR subunits, and these interactors are beginning to provide real insight into the molecular and cellular mechanisms underlying the cell biology of AMPARs. As a result, there has been considerable progress in this field, and the aim of this review is to provide an account of the current state of knowledge.
Collapse
Affiliation(s)
- Claire L Palmer
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, Bristol University, Bristol, UK
| | | | | |
Collapse
|
18
|
Abstract
Nitric oxide (NO) is widely used in neural circuits giving rise to learning and memory. NO is an unusual neurotransmitter in its modes of release and action. Is its association with learning and memory related to its unusual properties? Reviewing the literature might allow the formulation of a general principle on how NO and memory are related. However, other than confirming that there is indeed a strong association between NO and memory, no simple rules emerge on the role of NO in learning and memory. The effects of NO are not associated with a particular stage or form of memory and are highly dependent on species, strain, and behavior or training paradigm. Nonetheless, a review does provide hints on why NO is associated with learning and memory. Unlike transmitters acting via receptors expressed only in neurons designed to respond to the transmitter, NO is a promiscuous signal that can affect a wide variety of neurons, via many molecular mechanisms. In circuits giving rise to learning and memory, it may be useful to signal some events via a promiscuous messenger having widespread effects. However, each circuit will use the promiscuous signal in a different way, to achieve different ends.
Collapse
|
19
|
Abstract
Ionotropic glutamate receptors are the major excitatory neurotransmitters in mammalian brain but are found throughout the animal kingdom as well as in plants and bacteria. A great deal of progress in understanding the structure of these essential neurotransmitter receptors has been made since the first examples were cloned and sequenced in 1989. The atomic structure of the ligand-binding domain of several ionotropic glutamate receptors has been determined, and a great deal of progress has been made in relating the structural properties of the binding site to the function of the intact receptor. In addition, the identification of glutamate receptors from a wide variety of organisms ranging from several types of bacteria to Arabidopsis to a range of animal species has made glutamate receptors a molecular laboratory for studying the evolution of proteins. The fact that glutamate receptors are a particularly ancient intercellular signaling molecule suggests a potential role in the transition from single celled to multicellular organisms. This review focuses on the structure and dynamics of ionotropic glutamate receptors and their relation to the function and evolution of these proteins.
Collapse
Affiliation(s)
- Robert E Oswald
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
20
|
Individual cerebellar Purkinje cells express different cGMP phosphodiesterases (PDEs): in vivo phosphorylation of cGMP-specific PDE (PDE5) as an indicator of cGMP-dependent protein kinase (PKG) activation. J Neurosci 2003. [PMID: 12878685 DOI: 10.1523/jneurosci.23-16-06452.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The nitric oxide (NO)-cGMP pathway has been implicated as playing a crucial role in the induction of cerebellar long-term depression (LTD). The amplitude and duration of the cGMP signal is controlled by cyclic nucleotide phosphodiesterases (PDEs). Here we identify PDE5 and PDE1B as the two major cGMP-hydrolyzing PDEs specifically and differentially expressed in the Purkinje neurons of mouse cerebellum. PDE5 was found in all Purkinje neurons, whereas PDE1B was detected only in a subset of these cells, suggesting that individual Purkinje cells may differentially regulate cGMP, depending on the PDE isozymes expressed. Although expression of guanylate cyclase and/or cGMP-dependent protein kinase (PKG) in Purkinje cells have been reported, neither cGMP accumulation nor PKG activation in these cells in vivo has been demonstrated. To determine if changes in PKG activation and PDE5 regulation occur in vivo we have examined the phosphorylation of PDE5 in mouse cerebellar Purkinje cells by immunocytochemistry and Western blot analyses using a phosphospecific PDE5 antibody. Injection of sodium nitroprusside or selective PKG activators into the lateral ventricle of mouse brain induced PDE5 phosphorylation in vivo, but was completely missing in Purkinje cell-specific PKG I knock-out mice. In cerebellar slices, treatment with sildenafil or IBMX led to different levels of phospho-PDE5 accumulation and activation of PDE5. These results suggest that phosphorylation of PDE5 in Purkinje neurons after cGMP-PKG activation performs a critical role in the termination of the cGMP signal during LTD progression; moreover, PDE5 phosphorylation may be used as an in vivo indicator for PKG activation.
Collapse
|
21
|
Shutoh F, Katoh A, Ohki M, Itohara S, Tonegawa S, Nagao S. Role of protein kinase C family in the cerebellum-dependent adaptive learning of horizontal optokinetic response eye movements in mice. Eur J Neurosci 2003; 18:134-42. [PMID: 12859346 DOI: 10.1046/j.1460-9568.2003.02717.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Among the subtypes of the Ca2+-dependent protein kinase C (PKC), which play a crucial role in long-term depression (LTD), both alpha and gamma are expressed in the cerebellar floccular Purkinje cells. To reveal the functional differences of PKC subtypes, we examined the adaptability of ocular reflexes of PKCgamma mutant mice, which show mild ataxia and normal LTD. In mutant mice, gains of the horizontal optokinetic eye response (HOKR) were reduced. Adaptation of the HOKR was not affected but its retinal slip dependency was altered in mutant mice. Sustained 1-h sinusoidal screen oscillation, which induced a relatively large amount of retinal slips in both mutant and wild-type mice, increased the HOKR gain in wild-type mice but not in mutant mice. In contrast, exposure to 1 h of sustained slower screen oscillations, which induced relatively small retinal slips in mutant and wild-type mice, increased the HOKR gain in both mutant and wild-type mice. Adaptation of the HOKR of the mutant mice to slow screen oscillation and those of wild-type mice to fast and slow screen oscillations were all abolished by local applications of a PKC inhibitor (chelerythrine) within the flocculi. Electrophysiological and anatomical studies showed no appreciable changes in the sources and magnitudes of climbing fibre inputs, which mediate retinal slip signals to the flocculus in the mutant mice. These results suggest that PKCgamma has a modulatory role in determining retinal slip dependency, and other PKC subtypes, e.g. PKCalpha, may play a crucial role in the adaptation of the HOKR.
Collapse
Affiliation(s)
- Fumihiro Shutoh
- Department of Physiology, Jichi Medical School, Yakushiji 3311, Minamikawachi, Tochigi 329-0498, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Sil'kis IG. A possible mechanism for the dopamine-evoked synergistic disinhibition of thalamic neurons via the "direct" and "indirect" pathways in the basal ganglia. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2002; 32:205-12. [PMID: 12135331 DOI: 10.1023/a:1015093619476] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mechanism of synaptic plasticity which we have previously proposed for striatal spiny neurons, along with published data on the predominance of dopamine-sensitive D1/D2 receptors on strionigral/striopallidal neurons, was used as the basis to propose the hypothesis that the induction of long-term potentiation/depression of the efficiency of the cortical inputs to these cells may result from the excitatory/inhibitory actions of dopamine on the activity of the neurons originating the "direct" and "indirect" pathways through the basal ganglia. Thus, the action of dopamine increases disinhibition of thalamic neurons via the "direct" pathway and decreases their inhibition via the "indirect" pathway. Both effects lead to increases in the activity of thalamic cells and in the activity of the efferent neocortical neurons which they excite. The actions of dopamine on striosomal neurons, which mainly have D1 receptors, may also be to induce long-term potentiation of cortical inputs. This effect should lead to increased inhibition of dopaminergic cells and decreases in their dopamine release, which may promote the maintenance of a stable dopamine concentration in the cortex-basal ganglia-thalamus-cortex neural network.
Collapse
Affiliation(s)
- I G Sil'kis
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow
| |
Collapse
|
23
|
Hirono M, Sugiyama T, Kishimoto Y, Sakai I, Miyazawa T, Kishio M, Inoue H, Nakao K, Ikeda M, Kawahara S, Kirino Y, Katsuki M, Horie H, Ishikawa Y, Yoshioka T. Phospholipase Cbeta4 and protein kinase Calpha and/or protein kinase CbetaI are involved in the induction of long term depression in cerebellar Purkinje cells. J Biol Chem 2001; 276:45236-42. [PMID: 11551922 DOI: 10.1074/jbc.m105413200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the type-1 metabotropic glutamate receptor (mGluR1) signaling pathway in the cerebellum involves activation of phospholipase C (PLC) and protein kinase C (PKC) for the induction of cerebellar long term depression (LTD). The PLC and PKC isoforms that are involved in LTD remain unclear, however. One previous study found no change in LTD in PKCgamma-deficient mice, thus, in the present study, we examined cerebellar LTD in PLCbeta4-deficient mice. Immunohistochemical and Western blot analyses of cerebellum from wild-type mice revealed that PLCbeta1 was expressed weakly and uniformly, PLCbeta2 was not detected, PLCbeta3 was expressed predominantly in caudal cerebellum (lobes 7-10), and PLCbeta4 was expressed uniformly throughout. In PLCbeta4-deficient mice, expression of total PLCbeta, the mGluR1-mediated Ca(2+) response, and LTD induction were greatly reduced in rostral cerebellum (lobes 1-6). Furthermore, we used immunohistochemistry to localize PKCalpha, -betaI, -betaII, and -gamma in mouse cerebellar Purkinje cells during LTD induction. Both PKCalpha and PKCbetaI were found to be translocated to the plasmamembrane under these conditions. Taken together, these results suggest that mGluR1-mediated activation of PLCbeta4 in rostral cerebellar Purkinje cells induced LTD via PKCalpha and/or PKCbetaI.
Collapse
Affiliation(s)
- M Hirono
- Department of Molecular Neurobiology, Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Neale SA, Garthwaite J, Batchelor AM. mGlu1 receptors mediate a post-tetanic depression at parallel fibre-Purkinje cell synapses in rat cerebellum. Eur J Neurosci 2001; 14:1313-9. [PMID: 11703460 DOI: 10.1046/j.0953-816x.2001.01769.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are located pre- and postsynaptically at central synapses. Activation of the receptors by exogenous agonists usually results in a reversible depression of fast glutamatergic neurotransmission. Evidence that synaptically released glutamate has such an action, however, is scarce. Sharp microelectrode recordings were used to investigate the modulatory role of mGlu receptors at a well-studied glutamatergic synapse, the one between parallel fibres and Purkinje cells in rat cerebellar slices. Brief, tetanic stimulation of the parallel fibres caused a depression of subsequent fast EPSPs. This post-tetanic depression (PTD) reached its maximum 4.5 s after the tetanus. Measured at this point, PTD was frequency-dependent; 10 stimuli at 20 Hz produced no significant depression, whereas, at 100 Hz the same number of stimuli was maximally effective (approximately 50% depression). The nonselective mGlu antagonist, (S)-alpha-methyl-4-carboxyphenylglycine 1 mm or the GABAB antagonist, CGP35348 (1 mm), both decreased the magnitude of the PTD. In the presence of CGP35348 the mGlu1 antagonist, 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester (300 microm), inhibited PTD further. A group II/III mGlu antagonist had no effect. These observations indicate that synaptically activated mGlu1 receptors not only generate a slow EPSP and induce Ca2+ mobilization in Purkinje cells, as reported previously, but also produce a transient depression of fast synaptic transmission. This short-term plasticity may be important for shaping the output of cerebellar circuits and/or it could provide a substrate for long-term depression when additional mechanisms are superimposed.
Collapse
Affiliation(s)
- S A Neale
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
25
|
Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 2001; 81:1143-95. [PMID: 11427694 DOI: 10.1152/physrev.2001.81.3.1143] [Citation(s) in RCA: 597] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cerebellar Purkinje cells exhibit a unique type of synaptic plasticity, namely, long-term depression (LTD). When two inputs to a Purkinje cell, one from a climbing fiber and the other from a set of granule cell axons, are repeatedly associated, the input efficacy of the granule cell axons in exciting the Purkinje cell is persistently depressed. Section I of this review briefly describes the history of research around LTD, and section II specifies physiological characteristics of LTD. Sections III and IV then review the massive data accumulated during the past two decades, which have revealed complex networks of signal transduction underlying LTD. Section III deals with a variety of first messengers, receptors, ion channels, transporters, G proteins, and phospholipases. Section IV covers second messengers, protein kinases, phosphatases and other elements, eventually leading to inactivation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolone-propionate-selective glutamate receptors that mediate granule cell-to-Purkinje cell transmission. Section V defines roles of LTD in the light of the microcomplex concept of the cerebellum as functionally eliminating those synaptic connections associated with errors during repeated exercises, while preserving other connections leading to the successful execution of movements. Section VI examines the validity of this microcomplex concept based on the data collected from recent numerous studies of various forms of motor learning in ocular reflexes, eye-blink conditioning, posture, locomotion, and hand/arm movements. Section VII emphasizes the importance of integrating studies on LTD and learning and raises future possibilities of extending cerebellar research to reveal memory mechanisms of implicit learning in general.
Collapse
Affiliation(s)
- M Ito
- Brain Science Institute, RIKEN, Wako, Saitama, Japan.
| |
Collapse
|
26
|
Silkis I. The cortico-basal ganglia-thalamocortical circuit with synaptic plasticity. I. Modification rules for excitatory and inhibitory synapses in the striatum. Biosystems 2000; 57:187-96. [PMID: 11084240 DOI: 10.1016/s0303-2647(00)00134-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is pointed out that Ca(2+)-dependent modification rules for NMDA-dependent (NMDA-independent) synaptic plasticity in the striatum are similar to those in the neocortex and hippocampus (cerebellum). A unitary postsynaptic mechanism of synaptic modification is proposed. It is based on the assumption that, in diverse central nervous system structures, long-term potentiation/depression (LTP/LTD) of excitatory transmission (depression/potentiation of inhibitory transmission, LTDi/LTPi) is the result of an increasing/decreasing the number of phosphorylated AMPA and NMDA (GABA(A)) receptors. According to the suggested mechanism, Ca(2+)/calmodulin-dependent protein kinase II and protein kinase C, whose activity is positively correlated with Ca(2+) enlargement, together with cAMP-dependent protein kinase A (cGMP-dependent protein kinase G, whose activity is negatively correlated with Ca(2+) rise) mainly phosphorylate ionotropic striatal receptors, if NMDA channels are opened (closed). Therefore, the positive/negative post-tetanic Ca(2+) shift in relation to a previous Ca(2+) rise must cause NMDA-dependent LTP+LTDi/LTD+LTPi or NMDA-independent LTD+LTPi/LTP+LTDi. Dopamine D(1)/D(2) or adenosine A(2A)/A(1) receptor activation must facilitate LTP+LTDi/LTD+LTPi due to an augmenting/lowering PKA activity. Activation of muscarinic M(1)/M(4) receptors must enhance LTP+LTDi/LTD+LTPi as a consequence of an increase/decrease in the activity of protein kinase C/A. The proposed mechanism is in agreement with known experimental data.
Collapse
Affiliation(s)
- I Silkis
- Neurophysiology of Learning Laboratory, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Butlerova 5a str., 117865 Moscow, Russia.
| |
Collapse
|
27
|
Wang SS, Khiroug L, Augustine GJ. Quantification of spread of cerebellar long-term depression with chemical two-photon uncaging of glutamate. Proc Natl Acad Sci U S A 2000; 97:8635-40. [PMID: 10890882 PMCID: PMC27000 DOI: 10.1073/pnas.130414597] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/1999] [Indexed: 11/18/2022] Open
Abstract
Localized, chemical two-photon photolysis of caged glutamate was used to map the changes in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors caused by long-term synaptic depression (LTD) in cerebellar Purkinje cells. LTD produced by pairing parallel fiber activity with depolarization was accompanied by a decline in the response of Purkinje cells to uncaged glutamate that accounted for both the time course and magnitude of LTD. This depression of glutamate responses was observed not only at the site of parallel fiber stimulation but also at more distant sites. The amount of LTD decreased with distance and was half-maximal 50 microm away from the site of parallel fiber activity. Estimation of the number of parallel fibers active during LTD induction indicates that LTD modified glutamate receptors not only at active synapses but also at 600 times as many inactive synapses on a single Purkinje cell. Therefore, both active and inactive parallel fiber synapses can undergo changes at a postsynaptic locus as a result of associative pre- and postsynaptic activity.
Collapse
Affiliation(s)
- S S Wang
- Department of Neurobiology, Duke University Medical Center, Box 3209, Durham, NC 27710, USA
| | | | | |
Collapse
|
28
|
Hirai H, Yoshioka K, Yamada K. A simple method using 31P-NMR spectroscopy for the study of protein phosphorylation. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2000; 5:182-9. [PMID: 10775839 DOI: 10.1016/s1385-299x(00)00011-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Nonradioactive 31P-NMR spectroscopy has previously been used for the study of protein phosphorylations. However, the procedures does not seem to be easy for non-experts of this field, hence, this approach has not been widely used. We introduce here a simple protocol with 31P-NMR spectroscopy to study in vitro phosphorylation in receptor proteins. The effectiveness of this method was verified using synthetic peptides and recombinant proteins of the C-terminus of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor, whose phosphorylations are considered to have important roles in synaptic plasticity. We show that a decrease in the pH of the sample solution after the phosphorylation reaction is critical for the separation of the phosphorylation signals. In the analysis of the C-terminal portion of the GluR2 AMPA receptor, the phosphorylation sites of which had not hitherto been well clarified, we found the presence of at least three protein kinase C (PKC) phosphorylation sites. Furthermore, this method allows prediction of the origins of each of the phosphorylation peaks. Thus, the techniques we described here is useful for examination of protein phosphorylation and permits us to safely conduct repetitive experiments.
Collapse
Affiliation(s)
- H Hirai
- Laboratory for Memory and Learning, RIKEN Brain Science Institute, Wako, Japan.
| | | | | |
Collapse
|
29
|
Yoshioka A, Yamaya Y, Saiki S, Kanemoto M, Hirose G, Pleasure D. Cyclic GMP/cyclic GMP-dependent protein kinase system prevents excitotoxicity in an immortalized oligodendroglial cell line. J Neurochem 2000; 74:633-40. [PMID: 10646514 DOI: 10.1046/j.1471-4159.2000.740633.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, we have demonstrated that excitotoxicity of oligodendrocyte-like cells (OLC), differentiated from immortalized rat O-2A progenitor cells (CG-4 cells), is prevented by cyclic AMP-elevating agents. We now report that some agents that elevate cyclic GMP prevent OLC excitotoxicity. Kainate-induced injury was prevented by cyclic GMP analogues (8-bromo-cyclic GMP and dibutyryl cyclic GMP), a guanylate cyclase activator [atrial natriuretic peptide (ANP)], and phosphodiesterase inhibitors [3-isobutyl-1-methylxanthine (IBMX), ibudilast, propentofylline, and rolipram]. When both forskolin and 8-bromo-cyclic GMP were added, kainate-induced injury was additively prevented. There was a strong positive correlation between suppression of kainate-induced Ca2+ influx and prevention of injury by these chemicals. The measurement of intracellular cyclic AMP and cyclic GMP by radioimmunoassay demonstrated the following: an increase of cyclic GMP with treatment with 8-bromo-cyclic GMP, dibutyryl cyclic GMP, and ANP; an increase of cyclic AMP with treatment with ibudilast and rolipram; and an increase of both cyclic AMP and cyclic GMP with treatment with IBMX and propentofylline. Kainate-induced Ca2+ influx was decreased by 8-(4-chlorophenylthiol)-guanosine-3',5'-monophosphate, an activator of cyclic GMP-dependent protein kinase (PKG), or okadaic acid, an inhibitor of protein phosphatases 1 and 2A. RT-PCR and westem blotting of OLC demonstrated transcription of PKG II gene and translation of PKG Ibeta mRNA, but no translation of PKG Ialpha mRNA. Therefore, we concluded that the cyclic GMP/PKG system prevents OLC excitotoxicity.
Collapse
Affiliation(s)
- A Yoshioka
- Department of Neurology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Silkis I. Interrelated modification of excitatory and inhibitory synapses in three-layer olivary-cerebellar neural network. Biosystems 2000; 54:141-9. [PMID: 10774557 DOI: 10.1016/s0303-2647(99)00075-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The model of three-layer olivary-cerebellar neural network with modifiable excitatory and inhibitory connections between diverse elements is suggested. The same Hebbian modification rules are proposed for Purkinje cells, granule (input) cells, and deep cerebellar nuclei (output) cells. The inverse calcium-dependent modification rules for these cells and hippocampal/neocortical neurones or Golgi cells are conceivably the result of the involvement of cGMP and cAMP in postsynaptic processes. The sign of simultaneous modification of excitatory and inhibitory inputs to a cell is opposite and determined by the variations in pre- and/or postsynaptic cell activity. Modification of excitatory transmission between parallel fibers and Purkinje cells, mossy fibers and granule cells, and mossy fibers and deep cerebellar nuclei cells essentially depends on inhibition effected by stellate/basket cells, Golgi cells and Purkinje cells, respectively. The character of interrelated modifications of diverse synapses in all three layers of the network is influenced by olivary cell activity. In the absence (presence) of a signal from inferior olive, the long-term potentiation (depression) in the efficacy of a synapse between input mossy fiber and output cell can be induced. The results of the suggested model are in accordance with known experimental data.
Collapse
Affiliation(s)
- I Silkis
- Laboratory of Neurophysiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow.
| |
Collapse
|
31
|
Lu SM, Yeh HH. Ethanol modulates AMPA-induced current responses of primary somatosensory cortical neurons. Neurochem Int 1999; 35:175-83. [PMID: 10406001 DOI: 10.1016/s0197-0186(99)00059-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study examined the effect of ethanol on responses of primary somatosensory cortical neurons to AMPA. Thin (200-250 microns) brain slices were sectioned to include the primary somatosensory cortex of rats 6-15 days after birth. Visually-identified neurons were selected for whole-cell patch clamp recording and an eight-barrel drug pipet assembly was used to deliver test agents. Ethanol (5-100 mM) either positively or negatively modulated AMPA (100 microM)-induced current to varying degrees in approximately 70% of primary somatosensory cortical neurons. As revealed in layer V large pyramidal neurons, the outcome of an ethanol-induced modulation appeared to be age-dependent, the trend being one of potentiation in slices derived from younger rats (postnatal days 6-9) but one of attenuation in those derived from older animals (postnatal days 13-15). These findings indicate that ethanol at physiologically relevant concentrations modulates non-NMDA receptor-mediated responses of neurons in the rat primary somatosensory cortex.
Collapse
Affiliation(s)
- S M Lu
- Department of Pharmacology, University of Connecticut Health Center, Farmington 06030, USA.
| | | |
Collapse
|
32
|
Abstract
Recent studies have suggested that protein phosphorylation of glutamate receptors may play an important role in synaptic transmission. Specifically, the phosphorylation of AMPA receptors has been implicated in cellular models of synaptic plasticity. The phosphorylation of the glutamate receptor 1 (GluR1) subunit of AMPA receptors by protein kinase A (PKA), protein kinase C (PKC), and Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been characterized extensively. Phosphorylation of this subunit occurs exclusively on the intracellular C-terminal domain. However, the GluR1 subunit C terminus shows low homology to the other AMPA receptor subunits. In this paper we characterized the phosphorylation of AMPA receptor subunit GluR4, using site-specific mutagenesis and biochemical techniques. We found that GluR4 is phosphorylated on serine 842 within the C-terminal domain in vitro and in vivo. Serine 842 is phosphorylated by PKA, PKC, and CaMKII in vitro and is phosphorylated in transfected cells by PKA. Two-dimensional phosphopeptide analysis indicates that serine 842 is the major phosphorylation site on GluR4. In addition, we identified threonine 830 as a potential PKC phosphorylation site. These results suggest that GluR4, which is the most rapidly desensitizing AMPA receptor subunit, may be modulated by phosphorylation.
Collapse
|
33
|
Swope SL, Moss SJ, Raymond LA, Huganir RL. Regulation of ligand-gated ion channels by protein phosphorylation. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1999; 33:49-78. [PMID: 10218114 DOI: 10.1016/s1040-7952(99)80005-6] [Citation(s) in RCA: 254] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The studies discussed in this review demonstrate that phosphorylation is an important mechanism for the regulation of ligand-gated ion channels. Structurally, ligand-gated ion channels are heteromeric proteins comprised of homologous subunits. For both the AChR and the GABA(A) receptor, each subunit has a large extracellular N-terminal domain, four transmembrane domains, a large intracellular loop between transmembrane domains M3 and M4, and an extracellular C-terminal domain (Fig. 1B). All the phosphorylation sites on these receptors have been mapped to the major intracellular loop between M3 and M4 (Table 1). In contrast, glutamate receptors appear to have a very large extracellular N-terminal domain, one membrane hairpin loop, three transmembrane domains, a large extracellular loop between transmembrane domains M3 and M4, and an intracellular C-terminal domain (Fig. 1C). Most phosphorylation sites on glutamate receptors have been shown to be on the intracellular C-terminal domain, although some have been suggested to be on the putative extracellular loop between M3 and M4 (Table 1). A variety of extracellular factors and intracellular signal transduction cascades are involved in regulating phosphorylation of these ligand-gated ion channels (Fig. 2). Once again, the AChR at the neuromuscular junction is the most fully understood system. Phosphorylation of the AChR by PKA is stimulated synaptically by the neuropeptide CGRP and in an autocrine fashion by adenosine released from the muscle in response to acetylcholine. In addition, acetylcholine, via calcium influx through the AChR, appears to activate calcium-dependent kinases including PKC to stimulate serine phosphorylation of the receptor. Presently, agrin is the only extracellular factor known to stimulate phosphorylation of the AChR on tyrosine residues. For glutamate receptors, non-NMDA receptor phosphorylation by PKA is stimulated by dopamine, while NMDA receptor phosphorylation by PKA and PKC can be induced via the activation of beta-adrenergic receptors, and metabotropic glutamate or opioid receptors, respectively. In addition, Ca2+ influx through the NMDA receptor has been shown to activate PKC. CaMKII, and calcineurin, resulting in phosphorylation of AMPA receptors (by CaMKII) and inactivation of NMDA receptors (at least in part through calcineurin). In contrast to the AChR and glutamate receptors, no information is presently available regarding the identities of the extracellular factors and intracellular signal transduction cascades that regulate phosphorylation of the GABA(A) receptor. Surely, future studies will be aimed at further clarifying the molecular mechanisms by which the central receptors are regulated. The presently understood functional effects of ligand-gated ion channel phosphorylation are diverse. At the neuromuscular junction, a regulation of the AChR desensitization rate by both serine and tyrosine phosphorylation has been demonstrated. In addition, tyrosine phosphorylation of the AChR or other synaptic components appears to play a role in AChR clustering during synaptogenesis. For the GABA(A) receptor, the data are complex. Both activation and inhibition of GABA(A) receptor currents as a result of PKA and PKC phosphorylation have been reported, while phosphorylation by PTK enhances function. The predominant effect of glutamate receptor phosphorylation by a variety of kinases is a potentiation of the peak current response. However, PKC also modulates clustering of NMDA receptors. This complexity in the regulation of ligand-gated ion channels by phosphorylation provides diverse mechanisms for mediating synaptic plasticity. In fact, accumulating evidence supports the involvement of protein phosphorylation and dephosphorylation of AMPA receptors in LTP and LTD respectively. There has been a dramatic increase in our understanding of the nature by which phosphorylation regulates ligand-gated ion channels. However, many questions remain unanswered. (AB
Collapse
Affiliation(s)
- S L Swope
- Department of Neurology, Georgetown Institute for Cognitive and Computational Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
34
|
Plasticity of first-order sensory synapses: interactions between homosynaptic long-term potentiation and heterosynaptically evoked dopaminergic potentiation. J Neurosci 1999. [PMID: 10024349 DOI: 10.1523/jneurosci.19-05-01620.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Persistent potentiations of the chemical and electrotonic components of the eighth nerve (NVIII) EPSP recorded in vivo in the goldfish reticulospinal neuron, the Mauthner cell, can be evoked by afferent tetanization or local dendritic application of an endogenous transmitter, dopamine (3-hydroxytyramine). These modifications are attributable to the activation of distinct intracellular kinase cascades. Although dopamine-evoked potentiation (DEP) is mediated by the cAMP-dependent protein kinase (PKA), tetanization most likely activates a Ca2+-dependent protein kinase via an increased intracellular Ca2+ concentration. We present evidence that the eighth nerve tetanus that induces LTP does not act by triggering dopamine release, because it is evoked in the presence of a broad spectrum of dopamine antagonists. To test for interactions between these pathways, we applied the potentiating paradigms sequentially. When dopamine was applied first, tetanization produced additional potentiation of the mixed synaptic response, but when the sequence was reversed, DEP was occluded, indicating that the synapses potentiated by the two procedures belong to the same or overlapping populations. Experiments were conducted to determine interactions between the underlying regulatory mechanisms and the level of their convergence. Inhibiting PKA does not impede tetanus-induced LTP, and chelating postsynaptic Ca2+ with BAPTA does not block DEP, indicating that the initial steps of the induction processes are independent. Pharmacological and voltage-clamp analyses indicate that the two pathways converge on functional AMPA/kainate receptors for the chemically mediated EPSP and gap junctions for the electrotonic component or at intermediaries common to both pathways. A cellular model incorporating these interactions is proposed on the basis of differential modulation of synaptic responses via receptor-protein phosphorylation.
Collapse
|
35
|
Agonist-induced changes in substituted cysteine accessibility reveal dynamic extracellular structure of M3-M4 loop of glutamate receptor GluR6. J Neurosci 1999. [PMID: 9880585 DOI: 10.1523/jneurosci.19-02-00644.1999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent evidence suggests that the transmembrane topology of ionotropic glutamate receptors differs from other members of the ligand-gated ion channel superfamily. However, the structure of the segment linking membrane domains M3 and M4 (the M3-M4 loop) remains controversial. Although various data indicate that this loop is extracellular, other results suggest that serine residues in this segment are sites of phosphorylation and channel modulation by intracellular protein kinases. To reconcile these data, we hypothesized that the M3-M4 loop structure is dynamic and, more specifically, that the portion containing putative phosphorylation sites may be translocated across the membrane to the cytoplasmic side during agonist binding. To test this hypothesis, we mutated Ser 684, a putative cAMP-dependent protein kinase site in the kainate-type glutamate receptor GluR6, to Cys. Results of biochemical and electrophysiological experiments are consistent with Cys 684 being accessible, in the unliganded state, from the extracellular side to modification by a Cys-specific biotinylating reagent followed by streptavidin (SA). Interestingly, our data suggest that this residue becomes inaccessible to the extracellular biotinylating reagent during agonist binding. However, we find it unlikely that Cys 684 undergoes membrane translocation, because the addition of SA to Cys-biotinylated GluR6(S684C) has no effect on peak glutamate-evoked current and only a small effect on macroscopic desensitization. We conclude that residue 684 in GluR6 is extracellular in the receptor-channel's closed, unliganded state and does not cross the membrane after agonist binding. However, an agonist-induced conformational change in the receptor substantially alters accessibility of position 684 to the extracellular environment.
Collapse
|
36
|
Borges K, Dingledine R. AMPA receptors: molecular and functional diversity. PROGRESS IN BRAIN RESEARCH 1999; 116:153-70. [PMID: 9932376 DOI: 10.1016/s0079-6123(08)60436-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- K Borges
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
37
|
Wenthold RJ, Roche KW. The organization and regulation of non-NMDA receptors in neurons. PROGRESS IN BRAIN RESEARCH 1999; 116:133-52. [PMID: 9932375 DOI: 10.1016/s0079-6123(08)60435-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R J Wenthold
- Laboratory of Neurochemistry, NIH, Bethesda, MD, USA.
| | | |
Collapse
|
38
|
Abstract
Nitric Oxide (NO) is released from parallel fibers (PFs) after PF stimulation. NO-cGMP signaling is essential for long-term depression (LTD) in cerebellar PF-Purkinje cell synapses, which also exhibit presynaptic long-term potentiation (LTP) after tetanic PF stimulation. This LTP is dependent on cAMP but not NO-cGMP signaling. In this study, we analyzed long-term changes of NO release from PFs in rat cerebellar slices using electrochemical NO probes. Repetitive PF stimulation at 10 Hz for 2 sec elicited a transient increase in NO concentration (2.2 +/- 0.1 nM; mean +/- SEM; n = 116). This NO release exhibited long-term potentiation (LTPNO) by 36 +/- 3% (n = 15) after tetanic PF stimulation. Induction of LTPNO was not affected by Glu receptor antagonists. NO release from PFs was also potentiated by L-Arg (ARG) (100 microM), forskolin (50 microM), and 8-bromo-cAMP (Br-cAMP) (1 mM) but not by 1,9-dideoxyforskolin (50 microM), a biologically inactive analog of forskolin. The potentiation induced by forskolin was significantly suppressed by H89 (10 microM), a blocker of cAMP-dependent protein kinase. The potentiation induced by forskolin, but not that induced by Arg, interfered with LTPNO. H89 (10 microM) and KT5720 (1 microM), another blocker of cAMP-dependent protein kinase, but not KT5823 (300 nM), a blocker of cGMP-dependent protein kinase, significantly suppressed LTPNO. These data indicate that neural NO release is under activity-dependent control, just as synaptic transmitter release is. LTPNO might play a role in cross talk between presynaptic and postsynaptic plasticity by facilitating NO-cGMP-dependent postsynaptic LTD after induction of cAMP-dependent presynaptic LTP and LTPNO.
Collapse
|
39
|
Affiliation(s)
- J P Changeux
- Neurobiologie Moléculaire Institut Pasteur, Paris, France.
| | | |
Collapse
|
40
|
Silkis IG. The unitary modification rules for neural networks with excitatory and inhibitory synaptic plasticity. Biosystems 1998; 48:205-13. [PMID: 9886649 DOI: 10.1016/s0303-2647(98)00067-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The unitary Hebbian modification rules for homo-, hetero- and associative LTP and LTD of excitatory and inhibitory synaptic transmission in the neocortex and hippocampus is proposed. To provide the realization of Hebbian rule it is postulated that only synapses activated by the transmitter are modifiable. The necessary condition for the induction of heterosynaptic LTD is the convergence of homo- and heterosynaptic afferents on both the target cell and 'common' inhibitory interneuron; and modification of common inhibitory pathway efficacy. It is revealed by computational model of postsynaptic processes that in a stationary state post-tetanic synaptic efficacy does not depend on the initial efficacy but is completely defined by the amount of transmitter released during tetanization. Excitatory (inhibitory) synaptic efficacy monotonically increases (decreases) with the intracellular Ca2+ rise that is proportional to stimulation frequency enlargement. Hebbian rule, the coincidence of pre- and postsynaptic cell activity, is only necessary conditions for synaptic plasticity. Modification, such as simultaneous LTP of excitation and LTD of inhibition (LTD of excitation and LTP of inhibition) could be obtained only due to variations in pre- and/or postsynaptic activity and subsequent positive (negative) shift in the ratio between protein kinases and phosphatases in reference to prior ratio.
Collapse
Affiliation(s)
- I G Silkis
- Neurophysiology of Learning Laboratory, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow.
| |
Collapse
|
41
|
Chabot C, Gagné J, Giguère C, Bernard J, Baudry M, Massicotte G. Bidirectional modulation of AMPA receptor properties by exogenous phospholipase A2 in the hippocampus. Hippocampus 1998; 8:299-309. [PMID: 9662143 DOI: 10.1002/(sici)1098-1063(1998)8:3<299::aid-hipo11>3.0.co;2-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The synaptic modifications underlying long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission in various brain structures may result from changes in the properties of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) subtype of glutamate receptors. In the present study, we report that treatment of rat synaptoneurosomes with increasing concentrations of phospholipase A2 (PLA2) produces a biphasic effect on AMPA receptor binding, with low concentrations causing a decrease and high concentrations an increase in agonist binding. Analysis of the saturation kinetics of 3H-AMPA binding revealed that the biphasic effect of PLA2 was due to modifications in receptor affinity and not to changes in the maximum number of binding sites for AMPA receptors. The 12-lipoxygenase inhibitors preferentially reduced PLA2-induced decrease in AMPA binding and treatment of hippocampal synaptoneurosomes with arachidonic acid (AA) or 12-HPETE, the first metabolite generated from the hydrolysis of AA by 12-lipoxygenases, decreased 3H-AMPA binding. Moreover, electrophysiological experiments indicated that the 12-lipoxygenase inhibitor baicalein totally blocked LTD formation in area CA1 of hippocampal slices. The decrease in 3H-AMPA binding elicited by low concentrations of PLA2, as well as the level of LTD, were partially reduced by AA-861, a 5-lipoxygenase inhibitor, while the cyclooxygenase inhibitor indomethacin did not prevent LTD formation or the effects of PLA2 on 3H-AMPA binding. Our results provide evidence for a possible involvement of lipoxygenase metabolites in the regulation of AMPA receptor during synaptic depression. In addition, they strongly support the idea that the same biochemical pathway, i.e., NMDA receptor activation and endogenous PLA2 stimulation, may represent a common mechanism resulting in AMPA receptor alterations for both LTP and LTD formation.
Collapse
Affiliation(s)
- C Chabot
- Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Kasahara J, Sugiyama H. Modulation of glutamate sensitivities by inhibitors of a protein kinase and a protein phosphatase in cultured rat Purkinje cells. Neurosci Lett 1998; 247:139-42. [PMID: 9655612 DOI: 10.1016/s0304-3940(98)00299-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We examined the effects of inhibitors of calcium-calmodulin-dependent protein kinase II (CaM kinase II) and protein phosphatases on the glutamate (Glu) responses in cultured rat cerebellar Purkinje cells. CaM kinase II inhibitors significantly potentiated Glu responses, and activation of metabotropic Glu receptors facilitated this potentiation. In contrast, a phosphatase inhibitor calyculin A significantly reduced Glu responses. It was suggested that the Glu responsiveness of Purkinje cells may be regulated by the dynamic balance of phosphorylation and dephosphorylation of receptors or other relevant factors under basal conditions.
Collapse
Affiliation(s)
- J Kasahara
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
43
|
Ge Q, Feldman JL. AMPA receptor activation and phosphatase inhibition affect neonatal rat respiratory rhythm generation. J Physiol 1998; 509 ( Pt 1):255-66. [PMID: 9547398 PMCID: PMC2230945 DOI: 10.1111/j.1469-7793.1998.255bo.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. We investigated the role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors and their regulation in affecting respiratory-related neurones in a neonatal rat medullary slice that spontaneously generates respiratory-related rhythm and motor output in the hypoglossal (XII) nerve. 2. Bath application of the AMPA receptor antagonist 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2, 3-benzodiazepine (GYKI) completely blocked XII nerve activity, as well as respiratory-related synaptic drives in neurones within the preBötzinger Complex (preBotC), site of rhythm generation in the slice. 3. Local application of GYKI to the preBötC blocked respiratory rhythm. Local application of AMPA to the preBötC increased rhythm frequency and depolarized respiratory-related neurones. 4. In the presence of tetrodotoxin (TTX), GYKI completely blocked the inward current induced by local application of AMPA, but not that induced by kainate. 5. Local application of okadaic acid, a membrane-permeable inhibitor of phosphatase 1 and 2A, to the preBotC increased the frequency of respiratory motor discharge. 6. Intracellular application of microcystin, a membrane-impermeable inhibitor of phosphatase 1 and 2A, enhanced endogenous inspiratory drive and exogenous AMPA-induced current (in the presence of TTX) in preBotC inspiratory neurones. Both the enhanced inspiratory drive and the increased AMPA-induced current were completely blocked by GYKI. 7. We suggest that AMPA receptor activation and AMPA receptor modulation by phosphorylation are crucial for the rhythm generation within the preBötC.
Collapse
Affiliation(s)
- Q Ge
- Department of Physiological Science, University of California, Los Angeles, CA 90095-1763, USA
| | | |
Collapse
|
44
|
Levenes C, Daniel H, Crépel F. Long-term depression of synaptic transmission in the cerebellum: cellular and molecular mechanisms revisited. Prog Neurobiol 1998; 55:79-91. [PMID: 9602501 DOI: 10.1016/s0301-0082(97)00096-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long-term depression (LTD) of synaptic transmission at parallel fiber (PF)-Purkinje cell (PC) synapses in the cerebellum has been the first established example of enduring decrease of synaptic efficacy in the central nervous system. This review focuses on the underlying cellular and molecular mechanisms. Thus, at the level of the postsynaptic membranes of PCs, induction of LTD requires concommitent activation of voltage-gated calcium channels (VGCCs) and of ionotropic and metabotopic glutamate receptors, of the alpha-amino-3 hydroxy-5-methyl-isoxalone-4-propionate (AMPA) and mGluR1 alpha types respectively. Subsequent intracellular cascades involve production of nitric oxide from arginine and of cGMP, activation of phospholipase A2 and of several protein kinases including protein kinase C and tyrosine kinases. Activation of protein kinase G and of phosphatases are also likely to be involved in LTD induction. In contrast, there are still uncertainties concerning a major role of release of calcium from internal stores in LTD induction. Finally protein synthesis is required for a late phase of LTD to occur. All available experimental evidence points towards a postsynaptic site for LTD expression. In particular, electrophysiological data demonstrate a genuine modification of the functional properties of AMPA receptors of PCs during LTD, and immunocytochemical evidence suggests that this might result from a phosphorylation of these receptors.
Collapse
Affiliation(s)
- C Levenes
- Laboratoire de Neurobiologie et Neuropharmacologie du Développement, Université Pierre et Marie Curie, Paris, France
| | | | | |
Collapse
|
45
|
Abstract
Over the last decade, a large body of information regarding the amino acid sequences and tertiary structures of many proteins has accumulated. Subtle similarities in sequence patterns identified between glutamate receptors and bacterial periplasmic substrate-binding proteins have suggested that structural kinship exists between these protein families. Many of the bacterial periplasmic binding proteins but none of the glutamate receptors have been crystallized so far. The following article reviews how the resemblance between these two protein families led to computer-assisted structural models of crucial elements involved in ligand binding by various glutamate receptors. A plausible dynamic model of the molecular mechanism of activation and desensitization of glutamate-receptor channels is also discussed.
Collapse
Affiliation(s)
- Y Paas
- Neurobiologie Moléculaire, UA CNRS D1284, Département des Biotechnologies, Institut Pasteur, Paris, France
| |
Collapse
|
46
|
Bi X, Standley S, Baudry M. Posttranslational regulation of ionotropic glutamate receptors and synaptic plasticity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1998; 42:227-84. [PMID: 9476175 DOI: 10.1016/s0074-7742(08)60612-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- X Bi
- University of Southern California, Los Angeles 90089-2520, USA
| | | | | |
Collapse
|
47
|
Levenes C, Daniel H, Crépel F. [Brief history of long-term synaptic depression of the cerebellum]. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1998; 321:109-19. [PMID: 9759328 DOI: 10.1016/s0764-4469(97)89809-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- C Levenes
- Laboratoire de neurobiologie et neuropharmacologie du développement (Bât. B, 6e étage, IDN-Case n(o) 8), université Pierre-et-Marie-Curie, Paris, France
| | | | | |
Collapse
|
48
|
Barria A, Derkach V, Soderling T. Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor. J Biol Chem 1997; 272:32727-30. [PMID: 9407043 DOI: 10.1074/jbc.272.52.32727] [Citation(s) in RCA: 318] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ca2+/CaM-dependent protein kinase II (CaM-KII) can phosphorylate and potentiate responses of alpha-amino3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptors in a number of systems, and recent studies implicate this mechanism in long term potentiation, a cellular model of learning and memory. In this study we have identified this CaM-KII regulatory site using deletion and site-specific mutants of glutamate receptor 1 (GluR1). Only mutations affecting Ser831 altered the 32P peptide maps of GluR1 from HEK-293 cells co-expressing an activated CaM-KII. Likewise, when CaM-KII was infused into cells expressing GluR1, the Ser831 to Ala mutant failed to show potentiation of the GluR1 current. The Ser831 site is specific to GluR1, and CaM-KII did not phosphorylate or potentiate current in cells expressing GluR2, emphasizing the importance of the GluR1 subunit in this regulatory mechanism. Because Ser831 has previously been identified as a protein kinase C phosphorylation site (Roche, K. W., O'Brien, R. J., Mammen, A. L., Bernhardt, J., and Huganir, R. L. (1996) Neuron 16, 1179-1188), this raises the possibility of synergistic interactions between CaM-KII and protein kinase C in regulating synaptic plasticity.
Collapse
Affiliation(s)
- A Barria
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
49
|
Affiliation(s)
- M Ito
- Laboratory for Synaptic Function, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| |
Collapse
|
50
|
Nishizaki T, Matsuoka T, Nomura T, Sumikawa K. A serum factor potentiates ACh and AMPA receptor currents via differential signal transduction pathways. Biochem Biophys Res Commun 1997; 238:565-8. [PMID: 9299552 DOI: 10.1006/bbrc.1997.7264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A serum factor is recognized to interact with a protein kinase C (PKC) pathway. Indeed, treatment with fetal bovine serum enhanced ACh-evoked currents by PKC activation in the neuronal nicotinic ACh receptors (alpha7) and Torpedo ACh receptors expressed in Xenopus oocytes. In addition, potentiation of ACh-evoked currents induced by fetal bovine serum was observed also in the mutant Torpedo ACh receptors lacking potent PKC phosphorylation sites at Ser333 on the alpha subunit and Ser377 on the delta subunit; the potentiation was inhibited by the PKC inhibitor, PKC inhibitor peptide (PKCI), indicating that ACh receptor currents were enhanced by PKC activation but not by PKC phosphorylation of the receptors. On the other hand, fetal bovine serum enhanced kainate-evoked currents in oocytes expressing the alpha-amino3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, GluR1,3. The enhancement was not affected by the PKC inhibitors, PKCI or GF109203X, and instead, was inhibited by the Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitor, KN-62. These results suggest that serum is not only involved in PKC activation but in CaMKII activation, and that thereby ACh receptor currents and AMPA receptor currents are each potentiated.
Collapse
Affiliation(s)
- T Nishizaki
- Department of Physiology, Kobe University School of Medicine, 7-5-1 Kusunoki-cho, Kobe, Chuo-ku, 650, Japan
| | | | | | | |
Collapse
|