1
|
D'Annibale V, Ariodante L, Marconi C, Piccirillo L, Jönsson P, D'Annibale A, Monti D, Scipioni A, Schillén K, Galantini L, Fornasier M. Tuning structure and morphology of lipidic cubosomes by encapsulation of novel porphyrin-derivatives. Colloids Surf B Biointerfaces 2025; 252:114646. [PMID: 40164052 DOI: 10.1016/j.colsurfb.2025.114646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Cubosomes are non-lamellar lipid nanoparticles that have drawn a significant attention in the field of nanomedicine due to their tunable properties. However, the formation of vesicles during the preparation of cubosomes, and the presence of mixed bicontinuous cubic phases, may lead to artifacts and lack of correlation between the physico-chemical and biological characterization. In this work, we have formulated cubosomes composed by monoolein as building block and triblock copolymer Pluronic® F108 as a stabilizer, encapsulating three porphyrin derivatives: two attached to bile acid moieties and one to a tetrapeptide to be used for potential theranostic applications. First, the effect of the cargo concentration (0.25, 0.50 and 1.00 mg/mL, for all three molecules) was evaluated on the structure, showing that the bile acid derivatives did not affect the self-assembly of the lipid providing only Pn3m phases; however, a mixed phase Pn3m + Im3m and a subsequent loss in crystallinity were induced by increasing concentrations of the tetrapeptide derivative. Overall, the encapsulation of the three molecules at 25 and 37 ∘C did not affect neither the hydrodynamic size nor the polydispersity of the cubosomes, influencing mainly the ζ-potential - positive in the case of the tetrapeptide and negative for the bile acid derivatives. The samples formulated with 0.50 mg/mL exhibited higher colloidal stability over time, with no significant changes in size or ζ-potential for over a month. Interestingly, the formulations containing the bile acid derivatives displayed the typical morphology of cubosomes in solution and a reduced number of vesicles (ca. 60:40 as cubosomes-to-vesicles ratio), whereas the sample containing the porphyrin attached to the tetrapeptide led to a ratio of cubosomes-to-vesicles estimated as 26:74, similar to the results of the empty formulation. The experiments at body temperature highlighted that the structure of the different formulations was not affected in a significant manner with retention of the phases observed at room temperature. The promising physico-chemical properties, especially at body temperature, could make these samples suitable as nanoplatforms for drug delivery applications.
Collapse
Affiliation(s)
- Valeria D'Annibale
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5, Rome 00185, Italy; Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, P.le A. Moro, 5, Rome 00185, Italy
| | - Leonardo Ariodante
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5, Rome 00185, Italy
| | - Claudia Marconi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5, Rome 00185, Italy; Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, P.le A. Moro, 5, Rome 00185, Italy
| | - Luca Piccirillo
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5, Rome 00185, Italy; Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, P.le A. Moro, 5, Rome 00185, Italy
| | - Peter Jönsson
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, Lund SE-221 00, Sweden
| | - Andrea D'Annibale
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5, Rome 00185, Italy
| | - Donato Monti
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5, Rome 00185, Italy
| | - Anita Scipioni
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5, Rome 00185, Italy
| | - Karin Schillén
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, Lund SE-221 00, Sweden
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5, Rome 00185, Italy.
| | - Marco Fornasier
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, Lund SE-221 00, Sweden.
| |
Collapse
|
2
|
Ju R, Li Y, Sui D, Xu FJ. Polyaminoglycoside nanosystem expressing antimicrobial peptides for multistage chronic wound management. J Control Release 2025; 382:113657. [PMID: 40122239 DOI: 10.1016/j.jconrel.2025.113657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Chronic wounds are difficult to heal due to pathogenic microbial colonization and dysregulation of healing cascades, necessitating novel therapeutic strategies. This study developed a multifunctional nanosystem by integrating the antimicrobial peptide LL37 with cationic polyaminoglycoside (SS-HPT), constructing a self-sustaining "AMP factory" to achieve multi-stage modulation of the wound healing. Validation through cell-level experiments and in vivo dual models (mechanical injury and bacterial infection) in immunocompromised rats demonstrated the system's unique dual intracellular-extracellular pathogen-killing capability, significantly accelerating the wound healing process. Transcriptomic analysis revealed that its mechanism involves the dual effects of suppressing pro-inflammatory factor expression and activating tissue repair pathways. Histological evidence confirmed that the system promotes angiogenesis, enhances re-epithelialization rates, and guides orderly collagen fiber deposition. This nanosystem, combining efficient AMP delivery and integrated therapeutic strategies, achieves three-dimensional synergy in microbial clearance, immune microenvironment regulation, and tissue matrix remodeling, providing theoretical and technical foundations for a paradigm shift in chronic wound treatment.
Collapse
Affiliation(s)
- Rui Ju
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dandan Sui
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Wang C, Guo J, Zhang J, Hou C, Xue Y, Han X, Chen Y, Wang M, Ma Q, Lu X. Molecular-Level Strategy from Bottom-Up to Acquire High-Efficiency Antimicrobial Peptides. J Med Chem 2025. [PMID: 40408153 DOI: 10.1021/acs.jmedchem.5c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
The escalating threat of multidrug-resistant pathogens necessitates efficient antimicrobial development, in which antimicrobial peptides (AMPs) have been extensively studied due to their broad-spectrum antibiotic activity. Combining sum frequency generation and molecular dynamics simulation, we rationally designed AMPs by identifying two structural principles. Simply increasing the number of basic amino acids does not reliably improve antimicrobial efficacy; terminal (N' and C') phenylalanine residues can enhance AMP's membrane interfacial activity via the hydrophobic effect. After two rounds of sequence optimization, among the derivatives we designed, an artificial AMP named GF demonstrated superior membrane binding (especially insertion) and spatial conformation stability. In vitro and in vivo evaluations revealed GF's potential broad-spectrum efficacy against common bacteria and drug-resistant bacteria. Notably, GF exhibited enhanced antimicrobial potency over conventional antibiotics at lower concentrations. Our study established a bottom-up (mechanism-driven) design framework and provided a template for developing precision antimicrobials against resistant infections.
Collapse
Affiliation(s)
- Chu Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jingyao Guo
- Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Jiaming Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chenxi Hou
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yunmo Xue
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaofeng Han
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yan Chen
- Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Mingxin Wang
- Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Qian Ma
- Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Xiaolin Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
4
|
Osmokrovic A, Stojkovska J, Krunic T, Petrovic P, Lazic V, Zvicer J. Current State and Advances in Antimicrobial Strategies for Burn Wound Dressings: From Metal-Based Antimicrobials and Natural Bioactive Agents to Future Perspectives. Int J Mol Sci 2025; 26:4381. [PMID: 40362617 PMCID: PMC12072965 DOI: 10.3390/ijms26094381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/16/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Burn wounds represent a complex clinical challenge, primarily due to their high susceptibility to infections and the frequent formation of the biofilm, which significantly hinder the healing process. Therefore, effective infection prevention and management are critical components of burn wound care. This review provides a comprehensive overview of the current and emerging antimicrobial strategies in burn management, with a particular focus on alternative approaches to conventional antiseptics and antibiotics. This manuscript highlights the role of metals and metal-based agents, including silver, zinc oxide, and copper compounds, alongside plant-derived bioactive substances such as aloe vera, marigold, and turmeric. Additionally, the potential of antimicrobial peptides and probiotics as innovative therapeutic options is explored, emphasizing their antimicrobial, anti-inflammatory, and pro-healing properties. Finally, this review presents an analysis of recent patents in the field of burn wound care, offering insights into current trends and future directions in the development of advanced wound dressings. By addressing both established and novel strategies, this review aims to provide a valuable resource for clinicians, researchers, and innovators seeking to improve outcomes in burn wound management.
Collapse
Affiliation(s)
- Andrea Osmokrovic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Jasmina Stojkovska
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Tanja Krunic
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Predrag Petrovic
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Vesna Lazic
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Jovana Zvicer
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Soans SH, Chonche MJ, Sharan K, Srinivasan A, Archer AC. Apoptotic and anti-inflammatory effect of nisin-loaded sodium alginate-gum arabic nanoparticles against colon cancer cells. Int J Biol Macromol 2025; 305:141747. [PMID: 40049503 PMCID: PMC7617643 DOI: 10.1016/j.ijbiomac.2025.141747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
Colon cancer is one of the leading causes of mortality and morbidity worldwide. Nisin, a polycyclic antibacterial peptide and food preservative has shown potential to combat cancer. However, it is susceptible to proteolytic cleavage in the gut. The current study investigates the protective and cytotoxic effects of nisin loaded sodium alginate gum arabic nanoparticles (Nis/ALG-GA NPs) in Caco2 cells. The physicochemical properties, loading efficiency and release kinetics were studied. Cytotoxicity (MTT assay), apoptotic effect (Ethidium bromide and acridine orange staining) and internalisation (FITC tagging) were evaluated. Gene expression of apoptotic markers and IL-10 were analysed by qPCR. The Nis/ALG-GA NPs were spherical, small with a smooth outer surface and mean size of 193 ± 4 nm. The loading efficacy was 88 ± 2 % exhibiting slow sustained release of the peptide under different gut pH conditions. The IC50 value obtained was 500 μg for 48 h and 80 μg for 72 h of incubation. The Nis/ALG-GA NPs were internalised into Caco2 cells and induced apoptosis with an increased expression of bax gene and converse decrease of bcl-2 gene. Anti-inflammatory gene IL10 was upregulated upon treatment with NPs. Thus, the Nis/ALG-GA NPs may be promising oral drug delivery systems against colon cancers.
Collapse
Affiliation(s)
- Sanya Hazel Soans
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, India
| | - Muzaffar Jahangir Chonche
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Asha Srinivasan
- Division of Nanoscience and Technology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Ann Catherine Archer
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, India.
| |
Collapse
|
6
|
Zhang H, Lv J, Ma Z, Ma J, Chen J. Advances in Antimicrobial Peptides: Mechanisms, Design Innovations, and Biomedical Potential. Molecules 2025; 30:1529. [PMID: 40286095 PMCID: PMC11990784 DOI: 10.3390/molecules30071529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
This comprehensive review explores the advancements in the study of antimicrobial peptides (AMPs), highlighting their potential as promising alternatives to conventional antibiotics in the context of growing antibiotic resistance. AMPs are small molecular proteins found ubiquitously in nature, exhibiting broad-spectrum antimicrobial activity, including antibacterial, antiviral, and antifungal effects, and are vital components of the innate immune system. Due to their non-specific membrane-disrupting mechanism, AMPs are emerging as effective candidates for novel anti-infective agents. The integration of AMPs with biomaterials, such as nanoparticles, liposomes, polymers, and hydrogels, enhances their stability and efficacy while offering multifunctional therapeutic benefits. These combinations promote diverse antibacterial mechanisms, including membrane disruption, intracellular metabolic interference, cell wall modulation, and immune system activation. Despite challenges, such as toxicity, stability, and resistance, innovative strategies including computer-aided design and structural modification show promise in optimizing AMPs' activity, targeting precision, and biocompatibility. The potential for AMPs in clinical applications remains highly promising, with significant opportunities for overcoming antimicrobial resistance through novel AMP-based therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Junfeng Ma
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (H.Z.); (J.L.); (Z.M.)
| | - Jing Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (H.Z.); (J.L.); (Z.M.)
| |
Collapse
|
7
|
Caselli L, Malmsten M. Combining functionalities-nanoarchitectonics for combatting bacterial infection. Adv Colloid Interface Sci 2025; 337:103385. [PMID: 39721197 DOI: 10.1016/j.cis.2024.103385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
New antimicrobial and anti-inflammatory therapeutics are needed because of antibiotic resistance development and resulting complications such as inflammation, ultimately leading to septic shock. The antimicrobial effects of various nanoparticles (NPs) are currently attracting intensive research interest. Although various NPs display potent antimicrobial effects against strains resistant to conventional antibiotics, the therapeutic use of such materials is restricted by poor selectivity between bacteria and human cells, leading to adverse side effects. As a result, increasing research efforts during the last few years have focused on targeting NPs against bacteria and other components in the infection micro-environment. Examples of approaches explored include peptide-, protein- and nucleic acid-based NP coatings for bacterial membrane recognition, as well as NP conjugation with enzyme substrates or other moieties that respond to bacterial or other enzymes present in the infection micro-environment. In general, this study aims to add to the literature on the antimicrobial effects of nanomaterials by discussing surface modification strategies for targeting bacterial membranes and membrane components, as well as how such surface modifications can improve the antimicrobial effects of nanomaterials and simultaneously decrease toxicity towards human cells and tissues. In doing so, the biological effects observed are related throughout to the physico-chemical modes of action underlying such effects.
Collapse
Affiliation(s)
| | - Martin Malmsten
- Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden; Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
8
|
Vo DK, Trinh KTL. Advances in Wearable Biosensors for Wound Healing and Infection Monitoring. BIOSENSORS 2025; 15:139. [PMID: 40136936 PMCID: PMC11940385 DOI: 10.3390/bios15030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
Wound healing is a complicated biological process that is important for restoring tissue integrity and function after injury. Infection, usually due to bacterial colonization, significantly complicates this process by hindering the course of healing and enhancing the chances of systemic complications. Recent advances in wearable biosensors have transformed wound care by making real-time monitoring of biomarkers such as pH, temperature, moisture, and infection-related metabolites like trimethylamine and uric acid. This review focuses on recent advances in biosensor technologies designed for wound management. Novel sensor architectures, such as flexible and stretchable electronics, colorimetric patches, and electrochemical platforms, enable the non-invasive detection of changes associated with wounds with high specificity and sensitivity. These are increasingly combined with AI and analytics based on smartphones that can enable timely and personalized interventions. Examples are the PETAL patch sensor that applies multiple sensing mechanisms for wide-ranging views on wound status and closed-loop systems that connect biosensors to therapeutic devices to automate infection control. Additionally, self-powered biosensors that tap into body heat or energy from the biofluids themselves avoid any external batteries and are thus more effective in field use or with limited resources. Internet of Things connectivity allows further support for remote sharing and monitoring of data, thus supporting telemedicine applications. Although wearable biosensors have developed relatively rapidly and their prospects continue to expand, regular clinical application is stalled by significant challenges such as regulatory, cost, patient compliance, and technical problems related to sensor accuracy, biofouling, and power, among others, that need to be addressed by innovative solutions. The goal of this review is to synthesize current trends, challenges, and future directions in wound healing and infection monitoring, with emphasis on the potential for wearable biosensors to improve patient outcomes and reduce healthcare burdens. These innovations are leading the way toward next-generation wound care by bridging advanced materials science, biotechnology, and digital health.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
9
|
Saini S, Pal S, Sharma R. Decoding the Role of Antimicrobial Peptides in the Fight against Mycobacterium tuberculosis. ACS Infect Dis 2025; 11:350-365. [PMID: 39873328 DOI: 10.1021/acsinfecdis.4c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Tuberculosis (TB), a leading infectious disease caused by the pathogen Mycobacterium tuberculosis, poses a significant treatment challenge due to its unique characteristics and resistance to existing drugs. The conventional treatment regimens, which are lengthy and involve multiple drugs, often result in poor patient adherence and subsequent drug resistance, particularly with multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. This highlights the urgent need for novel anti-TB therapies and new drug targets. Antimicrobial peptides (AMPs), which are natural host defense molecules present in all living organisms, offer a promising alternative to traditional small-molecule drugs. AMPs have several advantages, including their broad-spectrum activity and the potential to circumvent existing resistance mechanisms. However, their clinical application faces challenges such as stability, delivery, and potential toxicity. This review aims to provide essential information on AMPs, including their sources, classification, mode of action, induction within the host under stress, efficacy against M. tuberculosis, clinical status and hurdles to their use. It also highlights future research directions to address these challenges and advance the development of AMP-based therapies for TB.
Collapse
Affiliation(s)
- Sapna Saini
- Infectious Diseases Division, CSIR─Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sunny Pal
- Infectious Diseases Division, CSIR─Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR─Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Lu Z, Fan W, Ye Y, Huang Y, Zhou X, Zhang Y, Cui W, Ji J, Yao K, Han H. Drug in Drug: Quorum Sensing Inhibitor in Star-Shaped Antibacterial Polypeptides for Inhibiting and Eradicating Corneal Bacterial Biofilms. ACS NANO 2025; 19:2268-2285. [PMID: 39772450 DOI: 10.1021/acsnano.4c12195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Biofilm-related bacterial keratitis is a severe ocular infection that can result in drastic vision impairment and even blindness. However, the therapeutic efficiency of clinical antibiotic eyedrops is often compromised because the bacteria in the biofilms resist bactericide via the community genetic regulation, namely, bacterial quorum sensing. Herein, quercetin (QCT)-loaded star-shaped antibacterial peptide polymer (SAPP), QCT@SAPP, is developed based on a "drug" in a "drug" strategy for inhibiting and eradicating Pseudomonas aeruginosa biofilms on the cornea. The natural antibacterial peptide-mimic SAPP with the positively charged amphipathic structure not only enables QCT@SAPP to penetrate the biofilms readily but also selectively adheres to the highly negatively charged P. aeruginosa, releasing the loaded QCT into the bacteria to regulate quorum sensing by inhibiting lasI, lasR, rhlR, and rhlI. Thanks to its robust bactericidal ability from SAPP, QCT@SAPP can eliminate more than 99.99% of biofilms. Additionally, QCT@SAPP displayed outstanding performance in relieving ocular inflammation by significantly downregulating pro-inflammatory cytokines and profiting from scavenging reactive oxygen species by releasing QCT, which finally helps to restore visual function. In conclusion, QCT@SAPP, with good compatibility, exerts excellent therapeutic effects in a bacterial keratitis mice model, making it a promising candidate for controlling bacterial biofilm-induced infections, including bacterial keratitis.
Collapse
Affiliation(s)
- Zhouyu Lu
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Wenjie Fan
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Yang Ye
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xianchi Zhou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yin Zhang
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Wenyu Cui
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Jian Ji
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Ke Yao
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Haijie Han
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| |
Collapse
|
11
|
Mann K, Aveyard J, Dallos Ortega M, Chen T, Koduri MP, Fothergill JL, Schache AG, Curran JM, Poole RJ, D'Sa RA. Gelatin emulsion gels loaded with host defence peptides for the treatment of antibiotic-resistant infections. BIOMATERIALS ADVANCES 2025; 166:214071. [PMID: 39426177 DOI: 10.1016/j.bioadv.2024.214071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
The surge in multidrug-resistant bacteria against conventional antibiotics is a rapidly developing global health crisis necessitating novel infection management strategies. Host defence peptides (HDPs), also known as antimicrobial peptides (AMPs), offer a promising alternative to traditional antibiotics, but their practical translation is limited by their susceptibility to proteases and potential off-site cytotoxicity. In this paper, we investigate the feasibility of using gelatin emulsion gels (GELs), prepared using a water-in-oil (W/O) method, for the delivery of HDPs DJK-5 and IDR-1018 to improve their clinical utility. DJK-5-loaded GELs exhibited complete eradication of planktonic Methicillin-resistant Staphylococcus aureus (MRSA) at 4 - and 24-h intervals. Similarly, IDR-1018-loaded GELs demonstrated almost complete killing of MRSA and Escherichia coli (E. coli) after 4 h. Importantly, none of the GEL formulations investigated exhibited in vitro cytotoxicity. Overall, these HDP loaded GELs are a promising solution for the treatment of antibiotic-resistant infections.
Collapse
Affiliation(s)
- Kiran Mann
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Jenny Aveyard
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Mateo Dallos Ortega
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Ting Chen
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Manohar Prasad Koduri
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Joanne L Fothergill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, United Kingdom
| | - Andrew G Schache
- Institute of Systems, Molecular and Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7BE, United Kingdom
| | - Judith M Curran
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Robert J Poole
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Raechelle A D'Sa
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom.
| |
Collapse
|
12
|
Fornasier M, Krautforst K, Kulbacka J, Jönsson P, Murgia S, Bazylińska U. Cubosomes and hexosomes stabilized by sorbitan monooleate as biocompatible nanoplatforms against skin metastatic human melanoma. J Colloid Interface Sci 2025; 677:842-852. [PMID: 39173516 DOI: 10.1016/j.jcis.2024.08.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Nanoparticles have become versatile assets in the medical field, providing notable benefits across diverse medical arenas including controlled drug delivery, imaging, and immunological assays. Among these, non-lamellar lipid nanoparticles, notably cubosomes and hexosomes, showcase remarkable biocompatibility and stability, rendering them as optimal choices for theranostic applications. Particularly, incorporating edge activators like sodium taurocholate enhances the potential of these nanoparticles for dermal and transdermal drug delivery, overcoming the stratum corneum, a first line of defense in our skin. This study reports on the formulation of monoolein-based cubosomes and hexosomes incorporating taurocholate and stabilized by Span 80 and co-encapsulating Chlorin e6 and coenzyme QH for photodynamic therapy in skin metastatic melanoma. The formulations were optimized using small-angle X-ray scattering, and cryo-transmission electron microscopy confirmed the presence of cubosomes or hexosomes, depending on the ratio between taurocholate and Span 80. Furthermore, the co-loaded nanoparticles exhibited high encapsulation efficiencies for both Ce6 and the coenzyme QH. In vitro studies on human melanoma cells (Me45) demonstrated the biocompatibility and photodynamic activity of the loaded formulations. These findings show the possibility of formulating more biocompatible cubosomes and hexosomes for photodynamic therapy in skin cancer treatment.
Collapse
Affiliation(s)
- Marco Fornasier
- Department of Chemistry, Lund University, SE-22100 Lund, Sweden.
| | - Karolina Krautforst
- Department of Chemical and Geological Sciences, University of Cagliari, s.s. 554 bivio Sestu, I-09042 Monserrato, CA, Italy; Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University, University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, FI, Italy
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland; Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| | - Peter Jönsson
- Department of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Sergio Murgia
- CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, FI, Italy; Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy
| | - Urszula Bazylińska
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University, University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
13
|
Rios TB, Rezende SB, Maximiano MR, Cardoso MH, Malmsten M, de la Fuente-Nunez C, Franco OL. Computational Approaches for Antimicrobial Peptide Delivery. Bioconjug Chem 2024; 35:1873-1882. [PMID: 39541149 DOI: 10.1021/acs.bioconjchem.4c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Peptides constitute alternative molecules for the treatment of infections caused by bacteria, viruses, fungi, and protozoa. However, their therapeutic effectiveness is often limited by enzymatic degradation, chemical and physical instability, and toxicity toward healthy human cells. To improve their pharmacokinetic (PK) and pharmacodynamic (PD) profiles, novel routes of administration are being explored. Among these, nanoparticles have shown promise as potential carriers for peptides, although the design of delivery vehicles remains a slow and painstaking process, heavily reliant on trial and error. Recently, computational approaches have been introduced to accelerate the development of effective drug delivery systems for peptides. Here we present an overview of some of these computational strategies and discuss their potential to optimize drug development and delivery.
Collapse
Affiliation(s)
- Thuanny Borba Rios
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 70990-160, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 71966-700, Brazil
| | - Samilla Beatriz Rezende
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 70990-160, Brazil
| | - Mariana Rocha Maximiano
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 70990-160, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 71966-700, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 70990-160, Brazil
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Octávio Luiz Franco
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 70990-160, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 71966-700, Brazil
| |
Collapse
|
14
|
Islam T, Tamanna NT, Sagor MS, Zaki RM, Rabbee MF, Lackner M. Antimicrobial Peptides: A Promising Solution to the Rising Threat of Antibiotic Resistance. Pharmaceutics 2024; 16:1542. [PMID: 39771521 PMCID: PMC11728462 DOI: 10.3390/pharmaceutics16121542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
The demand for developing novel antimicrobial drugs has increased due to the rapid appearance and global spread of antibiotic resistance. Antimicrobial peptides (AMPs) offer distinct advantages over traditional antibiotics, such as broad-range efficacy, a delayed evolution of resistance, and the capacity to enhance human immunity. AMPs are being developed as potential medicines, and current computational and experimental tools aim to facilitate their preclinical and clinical development. Structural and functional constraints as well as a more stringent regulatory framework have impeded clinical translation of AMPs as possible therapeutic agents. Although around four thousand AMPs have been identified so far, there are some limitations of using these AMPs in clinical trials due to their safety in the host and sometimes limitations in the biosynthesis or chemical synthesis of some AMPs. Overcoming these obstacles may help to open a new era of AMPs to combat superbugs without using synthetic antibiotics. This review describes the classification, mechanisms of action and immune modulation, advantages, difficulties, and opportunities of using AMPs against multidrug-resistant pathogens and highlights the need and priorities for creating targeted development strategies that take into account the most cutting-edge tools currently available. It also describes the barriers to using these AMPs in clinical trials.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh;
| | - Noshin Tabassum Tamanna
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh;
| | - Md Shahjalal Sagor
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh;
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Muhammad Fazle Rabbee
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Maximilian Lackner
- Department of Industrial Engineering, University of Applied Sciences Technikum Wien, Hoechstaedtplatz 6, 1200 Vienna, Austria
| |
Collapse
|
15
|
Fan S, Qin P, Lu J, Wang S, Zhang J, Wang Y, Cheng A, Cao Y, Ding W, Zhang W. Bioprospecting of culturable marine biofilm bacteria for novel antimicrobial peptides. IMETA 2024; 3:e244. [PMID: 39742298 PMCID: PMC11683478 DOI: 10.1002/imt2.244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 01/03/2025]
Abstract
Antimicrobial peptides (AMPs) have become a viable source of novel antibiotics that are effective against human pathogenic bacteria. In this study, we construct a bank of culturable marine biofilm bacteria constituting 713 strains and their nearly complete genomes and predict AMPs using ribosome profiling and deep learning. Compared with previous approaches, ribosome profiling has improved the identification and validation of small open reading frames (sORFs) for AMP prediction. Among the 80,430 expressed sORFs, 341 are identified as candidate AMPs with high probability. Most potential AMPs have less than 40% similarity in their amino acid sequence compared to those listed in public databases. Furthermore, these AMPs are associated with bacterial groups that are not previously known to produce AMPs. Therefore, our deep learning model has acquired characteristics of unfamiliar AMPs. Chemical synthesis of 60 potential AMP sequences yields 54 compounds with antimicrobial activity, including potent inhibitory effects on various drug-resistant human pathogens. This study extends the range of AMP compounds by investigating marine biofilm microbiomes using a novel approach, accelerating AMP discovery.
Collapse
Affiliation(s)
- Shen Fan
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Peng Qin
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Jie Lu
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Shuaitao Wang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Jie Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Yan Wang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Aifang Cheng
- Department of Biomedical Sciences, Faculty of Health SciencesUniversity of MacauTaipaMacao SARChina
| | - Yan Cao
- College of Pulmonary & Critical Care MedicineChinese PLA General HospitalBeijingChina
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics & Breeding and College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Weipeng Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| |
Collapse
|
16
|
Valentin JDP, Kadakia P, Varidel LJ, Stuart MCA, Salentinig S. Colloidal Structure Dictates Antimicrobial Efficacy in LL-37 Self-Assemblies With Glycerol Monooleate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405131. [PMID: 39407429 PMCID: PMC11657029 DOI: 10.1002/smll.202405131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/03/2024] [Indexed: 12/20/2024]
Abstract
The antimicrobial peptide LL-37 is a promising alternative to conventional antibiotics to combat bacteria in suspension and biofilms. Its self-assembly with polar lipids is suggested to improve its potential for therapeutic applications with higher stability against degradation and bioavailability. This study investigates the self-assembly of LL-37 with glyceryl monooleate (GMO), establishing the link between colloidal structure and antimicrobial activity. Small-angle X-ray scattering, dynamic light scattering and cryogenic transmission electron microscopy show structural transformation from dispersions of inverse bicontinuous structure (cubosomes) to multilamellar vesicles and direct rod-like mixed-micelles upon increasing the content of LL-37 in GMO. In vitro assays against planktonic and biofilm cells demonstrate that 128 µg mL-1 of GMO cubosomes have no impact on Pseudomonas aeruginosa. Still, the cubosomes reduce the Staphylococcus aureus planktonic population by ≈ 1-log after 24 h. Cylindrical micelles formed at LL-37/GMO 9/1 and 8/2 with 128 µg mL-1 LL-37 decrease the Pseudomonas aeruginosa population by 6-log. This activity is gradually abolished when LL-37 is encapsulated in vesicles or cubosomes. They also demonstrate low antibiofilm efficacy and promote the biomass of Staphylococcus aureus biofilms. These results highlight the importance of colloidal structure for therapeutic outcomes, providing insights for advanced lipid nanocarrier designs.
Collapse
Affiliation(s)
- Jules D. P. Valentin
- Department of Chemistry and National Center of Competence in Research Bio‐inspired MaterialsUniversity of FribourgChemin du Musée 9Fribourg1700Switzerland
| | - Parth Kadakia
- Department of Chemistry and National Center of Competence in Research Bio‐inspired MaterialsUniversity of FribourgChemin du Musée 9Fribourg1700Switzerland
| | - Lucie J. Varidel
- Department of Chemistry and National Center of Competence in Research Bio‐inspired MaterialsUniversity of FribourgChemin du Musée 9Fribourg1700Switzerland
| | - Marc C. A. Stuart
- Centre for System ChemistryStratingh Institute for Chemistry and Groningen Biomolecular Science and Biotechnology InstituteUniversity of GroningenNijenborgh 7Groningen9747AGThe Netherlands
| | - Stefan Salentinig
- Department of Chemistry and National Center of Competence in Research Bio‐inspired MaterialsUniversity of FribourgChemin du Musée 9Fribourg1700Switzerland
| |
Collapse
|
17
|
Hetta HF, Sirag N, Alsharif SM, Alharbi AA, Alkindy TT, Alkhamali A, Albalawi AS, Ramadan YN, Rashed ZI, Alanazi FE. Antimicrobial Peptides: The Game-Changer in the Epic Battle Against Multidrug-Resistant Bacteria. Pharmaceuticals (Basel) 2024; 17:1555. [PMID: 39598464 PMCID: PMC11597525 DOI: 10.3390/ph17111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The rapid progress of antibiotic resistance among bacteria has prompted serious medical concerns regarding how to manage multidrug-resistant (MDR) bacterial infections. One emerging strategy to combat antibiotic resistance is the use of antimicrobial peptides (AMPs), which are amino acid chains that act as broad-spectrum antimicrobial molecules and are essential parts of the innate immune system in mammals, fungi, and plants. AMPs have unique antibacterial mechanisms that offer benefits over conventional antibiotics in combating drug-resistant bacterial infections. Currently, scientists have conducted multiple studies on AMPs for combating drug-resistant bacterial infections and found that AMPs are a promising alternative to conventional antibiotics. On the other hand, bacteria can develop several tactics to resist and bypass the effect of AMPs. Therefore, it is like a battle between the bacterial community and the AMPs, but who will win? This review provides thorough insights into the development of antibiotic resistance as well as detailed information about AMPs in terms of their history and classification. Furthermore, it addresses the unique antibacterial mechanisms of action of AMPs, how bacteria resist these mechanisms, and how to ensure AMPs win this battle. Finally, it provides updated information about FDA-approved AMPs and those that were still in clinical trials. This review provides vital information for researchers for the development and therapeutic application of novel AMPs for drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.F.H.); (A.A.A.); (T.T.A.)
| | - Nizar Sirag
- Division of Pharmacognosy, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Shumukh M. Alsharif
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.F.H.); (A.A.A.); (T.T.A.)
| | - Ahmad A. Alharbi
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.F.H.); (A.A.A.); (T.T.A.)
| | - Tala T. Alkindy
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.F.H.); (A.A.A.); (T.T.A.)
| | - Alanoud Alkhamali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.); (A.S.A.)
| | - Abdullah S. Albalawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.); (A.S.A.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Y.N.R.); (Z.I.R.)
| | - Zainab I. Rashed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Y.N.R.); (Z.I.R.)
| | - Fawaz E. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
18
|
Zare-Zardini H, Saberian E, Jenča A, Ghanipour-Meybodi R, Jenča A, Petrášová A, Jenčová J. From defense to offense: antimicrobial peptides as promising therapeutics for cancer. Front Oncol 2024; 14:1463088. [PMID: 39445062 PMCID: PMC11496142 DOI: 10.3389/fonc.2024.1463088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Antimicrobial peptides (AMPs), naturally occurring components of innate immunity, are emerging as a promising new class of anticancer agents. This review explores the potential of AMPs as a novel class of anticancer agents. AMPs, naturally occurring peptides with broad-spectrum antimicrobial activity, exhibit several characteristics that make them attractive candidates for cancer therapy, including selectivity for cancer cells, broad-spectrum activity, and immunomodulatory effects. Analysis of a dataset of AMPs with anticancer activity reveals that their effectiveness is influenced by various structural properties, including net charge, length, Boman index, and hydrophobicity. These properties contribute to their ability to target and disrupt cancer cell membranes, interfere with intracellular processes, and modulate the immune response. The review highlights the promising potential of AMPs as a new frontier in cancer treatment, offering hope for more effective and less toxic therapies. AMPs demonstrate promising potential in cancer therapy through multiple mechanisms, including direct cytotoxicity, immune response modulation, and targeting of the tumor microenvironment, as evidenced by extensive preclinical studies in animal models showing tumor regression, metastasis inhibition, and improved survival rates. AMPs show significant potential as cancer therapeutics through their direct cytotoxicity, immune response modulation, and tumor microenvironment targeting, with promising results from preclinical studies and early-phase clinical trials. Future research should focus on optimizing AMP properties, developing novel delivery strategies, and exploring synergistic combination therapies to fully realize their potential as effective cancer treatments, while addressing challenges related to stability, delivery, and potential toxicity.
Collapse
Affiliation(s)
- Hadi Zare-Zardini
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Elham Saberian
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavel Jozef Šafárik University (UPJS LF), Kosice, Slovakia
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavel Jozef Šafárik University (UPJS LF), Kosice, Slovakia
| | | | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavel Jozef Šafárik University (UPJS LF), Kosice, Slovakia
| | - Adriána Petrášová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavel Jozef Šafárik University (UPJS LF), Kosice, Slovakia
| | - Janka Jenčová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavel Jozef Šafárik University (UPJS LF), Kosice, Slovakia
| |
Collapse
|
19
|
Caselli L, Rodrigues GR, Franco OL, Malmsten M. Pulmonary delivery systems for antimicrobial peptides. Crit Rev Biotechnol 2024; 44:963-980. [PMID: 37731338 DOI: 10.1080/07388551.2023.2254932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 09/22/2023]
Abstract
Bacterial infections of the respiratory tract cause millions of deaths annually. Several diseases exist wherein (1) bacterial infection is the main cause of disease (e.g., tuberculosis and bacterial pneumonia), (2) bacterial infection is a consequence of disease and worsens the disease prognosis (e.g., cystic fibrosis), and (3) bacteria-triggered inflammation propagates the disease (e.g., chronic obstructive pulmonary disease). Current approaches to combat infections generally include long and aggressive antibiotic treatments, which challenge patient compliance, thereby making relapses common and contributing to the development of antibiotic resistance. Consequently, the proportion of infections that cannot be treated with conventional antibiotics is rapidly increasing, and novel therapies are urgently needed. In this context, antimicrobial peptides (AMPs) have received considerable attention as they may exhibit potent antimicrobial effects against antibiotic-resistant bacterial strains but with modest toxicity. In addition, some AMPs suppress inflammation and provide other host defense functions (motivating the alternative term host defense peptides (HDPs)). However, the delivery of AMPs is complicated because they are large, positively charged, and amphiphilic. As a result of this, AMP delivery systems have recently attracted attention. For airway infections, the currently investigated delivery approaches range from aerosols and dry powders to various self-assembly and nanoparticle carrier systems, as well as their combinations. In this paper, we discuss recent developments in the field, ranging from mechanistic mode-of-action studies to the application of these systems for combating bacterial infections in the airways.
Collapse
Affiliation(s)
| | - Gisele R Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octavio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Martin Malmsten
- Physical Chemistry 1, University of Lund, Lund, Sweden
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Min KH, Kim KH, Ki MR, Pack SP. Antimicrobial Peptides and Their Biomedical Applications: A Review. Antibiotics (Basel) 2024; 13:794. [PMID: 39334969 PMCID: PMC11429172 DOI: 10.3390/antibiotics13090794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence of drug resistance genes and the detrimental health effects caused by the overuse of antibiotics are increasingly prominent problems. There is an urgent need for effective strategies to antibiotics or antimicrobial resistance in the fields of biomedicine and therapeutics. The pathogen-killing ability of antimicrobial peptides (AMPs) is linked to their structure and physicochemical properties, including their conformation, electrical charges, hydrophilicity, and hydrophobicity. AMPs are a form of innate immune protection found in all life forms. A key aspect of the application of AMPs involves their potential to combat emerging antibiotic resistance; certain AMPs are effective against resistant microbial strains and can be modified through peptide engineering. This review summarizes the various strategies used to tackle antibiotic resistance, with a particular focus on the role of AMPs as effective antibiotic agents that enhance the host's immunological functions. Most of the recent studies on the properties and impregnation methods of AMPs, along with their biomedical applications, are discussed. This review provides researchers with insights into the latest advancements in AMP research, highlighting compelling evidence for the effectiveness of AMPs as antimicrobial agents.
Collapse
Affiliation(s)
- Ki Ha Min
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Koung Hee Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Mi-Ran Ki
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| |
Collapse
|
21
|
Firdous SO, Sagor MMH, Arafat MT. Advances in Transdermal Delivery of Antimicrobial Peptides for Wound Management: Biomaterial-Based Approaches and Future Perspectives. ACS APPLIED BIO MATERIALS 2024; 7:4923-4943. [PMID: 37976446 DOI: 10.1021/acsabm.3c00731] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Antimicrobial peptides (AMPs), distinguished by their cationic and amphiphilic nature, represent a critical frontier in the battle against antimicrobial resistance due to their potent antimicrobial activity and a broad spectrum of action. However, the clinical translation of AMPs faces hurdles, including their susceptibility to degradation, limited bioavailability, and the need for targeted delivery. Transdermal delivery has immense potential for optimizing AMP administration for wound management. Leveraging the skin's accessibility and barrier properties, transdermal delivery offers a noninvasive approach that can circumvent systemic side effects and ensure sustained release. Biomaterial-based delivery systems, encompassing nanofibers, hydrogels, nanoparticles, and liposomes, have emerged as key players in enhancing the efficacy of transdermal AMP delivery. These biomaterial carriers not only shield AMPs from enzymatic degradation but also provide controlled release mechanisms, thereby elevating stability and bioavailability. The synergistic interaction between the transdermal approach and biomaterial-facilitated formulations presents a promising strategy to overcome the multifaceted challenges associated with AMP delivery. Integrating advanced technologies and personalized medicine, this convergence allows the reimagining of wound care. This review amalgamates insights to propose a pathway where AMPs, transdermal delivery, and biomaterial innovation harmonize for effective wound management.
Collapse
Affiliation(s)
- Syeda Omara Firdous
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - Md Mehadi Hassan Sagor
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| |
Collapse
|
22
|
Manobala T. Peptide-based strategies for overcoming biofilm-associated infections: a comprehensive review. Crit Rev Microbiol 2024:1-18. [PMID: 39140129 DOI: 10.1080/1040841x.2024.2390597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Biofilms represent resilient microbial communities responsible for inducing chronic infections in human subjects. Given the escalating challenges associated with antibiotic therapy failures in clinical infections linked to biofilm formation, a peptide-based approach emerges as a promising alternative to effectively combat these notoriously resistant biofilms. Contrary to conventional antimicrobial peptides, which predominantly target cellular membranes, antibiofilm peptides necessitate a multifaceted approach, addressing various "biofilm-specific factors." These factors encompass Extracellular Polymeric Substance (EPS) degradation, membrane targeting, cell signaling, and regulatory mechanisms. Recent research endeavors have been directed toward assessing the potential of peptides as potent antibiofilm agents. However, to translate these peptides into viable clinical applications, several critical considerations must be meticulously evaluated during the peptide design process. This review serves to furnish an all-encompassing summary of the pivotal factors and parameters that necessitate contemplation for the successful development of an efficacious antibiofilm peptide.
Collapse
Affiliation(s)
- T Manobala
- School of Arts and Sciences, Sai University, Chennai, India
| |
Collapse
|
23
|
Zhao F, Wang J, Zhang Y, Hu J, Li C, Liu S, Li R, Du R. In vivo Fate of Targeted Drug Delivery Carriers. Int J Nanomedicine 2024; 19:6895-6929. [PMID: 39005963 PMCID: PMC11246094 DOI: 10.2147/ijn.s465959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
This review aimed to systematically investigate the intracellular and subcellular fate of various types of targeting carriers. Upon entering the body via intravenous injection or other routes, a targeting carrier that can deliver therapeutic agents initiates their journey. If administered intravenously, the carrier initially faces challenges presented by the blood circulation before reaching specific tissues and interacting with cells within the tissue. At the subcellular level, the car2rier undergoes processes, such as drug release, degradation, and metabolism, through specific pathways. While studies on the fate of 13 types of carriers have been relatively conclusive, these studies are incomplete and lack a comprehensive analysis. Furthermore, there are still carriers whose fate remains unclear, underscoring the need for continuous research. This study highlights the importance of comprehending the in vivo and intracellular fate of targeting carriers and provides valuable insights into the operational mechanisms of different carriers within the body. By doing so, researchers can effectively select appropriate carriers and enhance the successful clinical translation of new formulations.
Collapse
Affiliation(s)
- Fan Zhao
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jitong Wang
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yu Zhang
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jinru Hu
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Chenyang Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Shuainan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ruixiang Li
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Ruofei Du
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
24
|
Jing D, Lin L, Eckford AW. Performance Analysis and ISI Mitigation With Imperfect Transmitter in Molecular Communication. IEEE Trans Nanobioscience 2024; 23:428-438. [PMID: 38466591 DOI: 10.1109/tnb.2024.3375933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
In molecular communication (MC), molecules are released from the transmitter to convey information. This paper considers a realistic molecule shift keying (MoSK) scenario with two species of molecule in two reservoirs, where the molecules are harvested from the environment and placed into different reservoirs, which are purified by exchanging molecules between the reservoirs. This process consumes energy, and for a reasonable energy cost, the reservoirs cannot be pure; thus, our MoSK transmitter is imperfect, releasing mixtures of both molecules for every symbol, resulting in inter-symbol interference (ISI). To mitigate ISI, the properties of the receiver are analyzed and a detection method based on the ratio of different molecules is proposed. Theoretical and simulation results are provided, showing that with the increase of energy cost, the system achieves better performance. The good performance of the proposed detection scheme is also demonstrated.
Collapse
|
25
|
Caselli L, Nylander T, Malmsten M. Neutron reflectometry as a powerful tool to elucidate membrane interactions of drug delivery systems. Adv Colloid Interface Sci 2024; 325:103120. [PMID: 38428362 DOI: 10.1016/j.cis.2024.103120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
The last couple of decades have seen an explosion of novel colloidal drug delivery systems, which have been demonstrated to increase drug efficacy, reduce side-effects, and provide various other advantages for both small-molecule and biomacromolecular drugs. The interactions of delivery systems with biomembranes are increasingly recognized to play a key role for efficient eradication of pathogens and cancer cells, as well as for intracellular delivery of protein and nucleic acid drugs. In parallel, there has been a broadening of methodologies for investigating such systems. For example, advanced microscopy, mass-spectroscopic "omic"-techniques, as well as small-angle X-ray and neutron scattering techniques, which only a few years ago were largely restricted to rather specialized areas within basic research, are currently seeing increased interest from researchers within wide application fields. In the present discussion, focus is placed on the use of neutron reflectometry to investigate membrane interactions of colloidal drug delivery systems. Although the technique is still less extensively employed for investigations of drug delivery systems than, e.g., X-ray scattering, such studies may provide key mechanistic information regarding membrane binding, re-modelling, translocation, and permeation, of key importance for efficacy and toxicity of antimicrobial, cancer, and other therapeutics. In the following, examples of this are discussed and gaps/opportunities in the research field identified.
Collapse
Affiliation(s)
| | - Tommy Nylander
- Physical Chemistry 1, Lund University, S-221 00 Lund, Sweden
| | - Martin Malmsten
- Physical Chemistry 1, Lund University, S-221 00 Lund, Sweden; Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
26
|
Dwivedi M, Parmar MD, Mukherjee D, Yadava A, Yadav H, Saini NP. Biochemistry, Mechanistic Intricacies, and Therapeutic Potential of Antimicrobial Peptides: An Alternative to Traditional Antibiotics. Curr Med Chem 2024; 31:6110-6139. [PMID: 37818561 DOI: 10.2174/0109298673268458230926105224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023]
Abstract
The emergence of drug-resistant strains of pathogens becomes a major obstacle to treating human diseases. Antibiotics and antivirals are in the application for a long time but now these drugs are not much effective anymore against disease-causing drugresistant microbes and gradually it is becoming a serious complication worldwide. The development of new antibiotics cannot be a stable solution to treat drug-resistant strains due to their evolving nature and escaping antibiotics. At this stage, antimicrobial peptides (AMPs) may provide us with novel therapeutic leads against drug-resistant pathogens. Structurally, antimicrobial peptides are mostly α-helical peptide molecules with amphiphilic properties that carry the positive charge (cationic) and belong to host defense peptides. These positively charged AMPs can interact with negatively charged bacterial cell membranes and may cause the alteration in electrochemical potential on bacterial cell membranes and consequently lead to the death of microbial cells. In the present study, we will elaborate on the implication of AMPs in the treatment of various diseases along with their specific structural and functional properties. This review will provide information which assists in the development of new synthetic peptide analogues to natural AMPs. These analogues will eliminate the limitations of natural AMPs like toxicity and severe hemolytic activities.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Meet Dineshbhai Parmar
- Department of Biological Sciences and Biotechnology, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | | | - Anuradha Yadava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Hitendra Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Nandini Pankaj Saini
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| |
Collapse
|
27
|
Zhang Z, Chen Y, Gao J, Yang M, Zhang D, Wang L, Zhang T, Cao Q, Mwangi J, He C, Li Y, Liu X, Jiang X, Kamau PM, Lai R. Orientational Nanoconjugation with Gold Endows Marked Antimicrobial Potential and Drugability of Ultrashort Dipeptides. NANO LETTERS 2023; 23:11874-11883. [PMID: 38097378 PMCID: PMC10755742 DOI: 10.1021/acs.nanolett.3c03909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
Antibiotic resistance is a global threat. Antimicrobial peptides (AMPs) are highly desirable to treat multidrug-resistant pathogen infection. However, few AMPs are clinically available, due to high cost, instability, and poor selectivity. Here, ultrashort AMPs (2-3 residues with an N-terminal cysteine) are designed and assembled as gold nanoparticles. Au-S conjugation and ultrashort size restrict nonspecific reactions and peptide orientation, thus concentrating positively charged residues on the surface. The nanostructured assemblies enormously enhance antimicrobial abilities by 1000-6000-fold and stability. One representative (Au-Cys-Arg-NH2, Au_CR) shows selective antibacterial activity against Staphylococcus aureus with 10 nM minimal inhibitory concentration. Au_CR has comparable or better in vivo antimicrobial potency than vancomycin and methicillin, with low propensity to induce resistance, little side effects, and high stability (17.5 h plasma half-life). Au_CR acts by inducing collapse of membrane potential and rupture of the bacterial membrane. The report provides insights for developing AMP-metal nanohybrids, particularly tethering nonspecific reactions and AMP orientation on the metal surface.
Collapse
Affiliation(s)
- Zhiye Zhang
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yaoyao Chen
- Department
of Zoology, College of Life Sciences, Nanjing
Agricultural University, Nanjing 210095, Jiangsu, China
| | - Jinai Gao
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- School
of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
| | - Min Yang
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming
College of Life Science, University of Chinese
Academy of Sciences, Kunming 650204, Yunnan, China
| | - Dengdeng Zhang
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Department
of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Le Wang
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Tianyu Zhang
- Zhejiang
Cancer Hospital, Hangzhou Institute of Medicine
(HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Qiqi Cao
- Department
of Zoology, College of Life Sciences, Nanjing
Agricultural University, Nanjing 210095, Jiangsu, China
| | - James Mwangi
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming
College of Life Science, University of Chinese
Academy of Sciences, Kunming 650204, Yunnan, China
| | - Chenglu He
- Department
of Clinical Laboratory, First Affiliated
Hospital of Kunming Medical College, Kunming 650032, Yunnan, China
| | - Ya Li
- Department
of Clinical Laboratory, First Affiliated
Hospital of Kunming Medical College, Kunming 650032, Yunnan, China
| | - Xiangsheng Liu
- Zhejiang
Cancer Hospital, Hangzhou Institute of Medicine
(HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Xingyu Jiang
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Peter Muiruri Kamau
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming
College of Life Science, University of Chinese
Academy of Sciences, Kunming 650204, Yunnan, China
| | - Ren Lai
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- School
of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
28
|
Gallardo-Becerra L, Cervantes-Echeverría M, Cornejo-Granados F, Vazquez-Morado LE, Ochoa-Leyva A. Perspectives in Searching Antimicrobial Peptides (AMPs) Produced by the Microbiota. MICROBIAL ECOLOGY 2023; 87:8. [PMID: 38036921 PMCID: PMC10689560 DOI: 10.1007/s00248-023-02313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Changes in the structure and function of the microbiota are associated with various human diseases. These microbial changes can be mediated by antimicrobial peptides (AMPs), small peptides produced by the host and their microbiota, which play a crucial role in host-bacteria co-evolution. Thus, by studying AMPs produced by the microbiota (microbial AMPs), we can better understand the interactions between host and bacteria in microbiome homeostasis. Additionally, microbial AMPs are a new source of compounds against pathogenic and multi-resistant bacteria. Further, the growing accessibility to metagenomic and metatranscriptomic datasets presents an opportunity to discover new microbial AMPs. This review examines the structural properties of microbiota-derived AMPs, their molecular action mechanisms, genomic organization, and strategies for their identification in any microbiome data as well as experimental testing. Overall, we provided a comprehensive overview of this important topic from the microbial perspective.
Collapse
Affiliation(s)
- Luigui Gallardo-Becerra
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Melany Cervantes-Echeverría
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Fernanda Cornejo-Granados
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Luis E Vazquez-Morado
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
29
|
Ki MR, Kim SH, Park TI, Pack SP. Self-Entrapment of Antimicrobial Peptides in Silica Particles for Stable and Effective Antimicrobial Peptide Delivery System. Int J Mol Sci 2023; 24:16423. [PMID: 38003614 PMCID: PMC10671715 DOI: 10.3390/ijms242216423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Antimicrobial peptides (AMPs) have emerged as a promising solution to tackle bacterial infections and combat antibiotic resistance. However, their vulnerability to protease degradation and toxicity towards mammalian cells has hindered their clinical application. To overcome these challenges, our study aims to develop a method to enhance the stability and safety of AMPs applicable to effective drug-device combination products. The KR12 antimicrobial peptide was chosen, and in order to further enhance its delivery and efficacy the human immunodeficiency virus TAT protein-derived cell-penetrating peptide (CPP) was fused to form CPP-KR12. A new product, CPP-KR12@Si, was developed by forming silica particles with self-entrapped CPP-KR12 peptide using biomimetic silica precipitability because of its cationic nature. Peptide delivery from CPP-KR12@Si to bacteria and cells was observed at a slightly delivered rate, with improved stability against trypsin treatment and a reduction in cytotoxicity compared to CPP-KR12. Finally, the antimicrobial potential of the CPP-KR12@Si/bone graft substitute (BGS) combination product was demonstrated. CPP-KR12 is coated in the form of submicron-sized particles on the surface of the BGS. Self-entrapped AMP in silica nanoparticles is a safe and effective AMP delivery method that will be useful for developing a drug-device combination product for tissue regeneration.
Collapse
Affiliation(s)
- Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Sung Ho Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Tae In Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| |
Collapse
|
30
|
Guo Y, Mao Z, Ran F, Sun J, Zhang J, Chai G, Wang J. Nanotechnology-Based Drug Delivery Systems to Control Bacterial-Biofilm-Associated Lung Infections. Pharmaceutics 2023; 15:2582. [PMID: 38004561 PMCID: PMC10674810 DOI: 10.3390/pharmaceutics15112582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Airway mucus dysfunction and impaired immunological defenses are hallmarks of several lung diseases, including asthma, cystic fibrosis, and chronic obstructive pulmonary diseases, and are mostly causative factors in bacterial-biofilm-associated respiratory tract infections. Bacteria residing within the biofilm architecture pose a complex challenge in clinical settings due to their increased tolerance to currently available antibiotics and host immune responses, resulting in chronic infections with high recalcitrance and high rates of morbidity and mortality. To address these unmet clinical needs, potential anti-biofilm therapeutic strategies are being developed to effectively control bacterial biofilm. This review focuses on recent advances in the development and application of nanoparticulate drug delivery systems for the treatment of biofilm-associated respiratory tract infections, especially addressing the respiratory barriers of concern for biofilm accessibility and the various types of nanoparticles used to combat biofilms. Understanding the obstacles facing pulmonary drug delivery to bacterial biofilms and nanoparticle-based approaches to combatting biofilm may encourage researchers to explore promising treatment modalities for bacterial-biofilm-associated chronic lung infections.
Collapse
Affiliation(s)
- Yutong Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zeyuan Mao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fang Ran
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jingfeng Zhang
- The Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315000, China
| | - Guihong Chai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| |
Collapse
|
31
|
Zhu D, Yuan Z, Wu D, Wu C, El-Seedi HR, Du M. The dual-function of bioactive peptides derived from oyster (Crassostrea gigas) proteins hydrolysates. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
32
|
Chen J, Zhou H, Fan Y, Gao G, Ying Y, Li J. 3D printing for bone repair: Coupling infection therapy and defect regeneration. CHEMICAL ENGINEERING JOURNAL 2023; 471:144537. [DOI: 10.1016/j.cej.2023.144537] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
|
33
|
Jiao X, Dong X, Shan H, Qin Z. Assessing the Efficacy of PLGA-Loaded Antimicrobial Peptide OH-CATH30 Microspheres for the Treatment of Bacterial Keratitis: A Promising Approach. Biomolecules 2023; 13:1244. [PMID: 37627308 PMCID: PMC10452858 DOI: 10.3390/biom13081244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Bacterial keratitis in animals presents challenges due to ocular structural barriers, hindering effective drug delivery. In this study, we used biocompatible and biodegradable poly(lactic-co-glycolic acid) (PLGA) to encapsulate the naturally occurring antimicrobial peptide OH-CATH30, an alternative to conventional antibiotics, for the treatment of bacterial keratitis in animals. Microspheres (MS) were prepared using a modified water-in-oil-in-water (W/O/W) double-emulsion method with optimized osmotic pressure. We conducted comprehensive evaluations, including in vitro characterization, encapsulation efficiency determination, in vitro release kinetics, and in vivo/vitro assessments of irritation and bacterial inhibition. The optimized method yielded microspheres with impressive encapsulation efficiency of 75.2 ± 3.62% and a loading capacity of 18.25 ± 5.73%, exhibiting a well-defined particle size distribution (200-1000 nm) and a ζ-potential of -17.3 ± 1.91 mV. The microspheres demonstrated initial burst release followed by sustained and controlled release in vitro. Both in vitro and in vivo tolerance tests confirmed the biocompatibility of the drug-loaded microspheres, as they did not elicit significant irritation in ocular tissues. Remarkable antibacterial effects were observed in both in vitro and in vivo experiments. Our developed PLGA microspheres show promise as an alternative therapeutic option for topical administration in managing keratitis, offering exceptional drug delivery capabilities, improved bioavailability, and potent antibacterial efficacy.
Collapse
Affiliation(s)
| | | | | | - Zhihua Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (X.J.); (X.D.); (H.S.)
| |
Collapse
|
34
|
van Gent ME, Kłodzińska SN, Severin M, Ali M, van Doodewaerd BR, Bos E, Koning RI, Drijfhout JW, Nielsen HM, Nibbering PH. Encapsulation into hyaluronic acid-based nanogels improves the selectivity index of the snake cathelicidin Ab-Cath. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 52:102694. [PMID: 37394107 DOI: 10.1016/j.nano.2023.102694] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/20/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023]
Affiliation(s)
- Miriam E van Gent
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| | - Sylvia N Kłodzińska
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Maureen Severin
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Muhanad Ali
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Bjorn R van Doodewaerd
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Erik Bos
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Roman I Koning
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Jan Wouter Drijfhout
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Hanne M Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Peter H Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| |
Collapse
|
35
|
Raileanu M, Borlan R, Campu A, Janosi L, Turcu I, Focsan M, Bacalum M. No country for old antibiotics! Antimicrobial peptides (AMPs) as next-generation treatment for skin and soft tissue infection. Int J Pharm 2023:123169. [PMID: 37356506 DOI: 10.1016/j.ijpharm.2023.123169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
In recent years, the unprecedented rise of bacterial antibiotic resistance together with the lack of adequate therapies have made the treatment of skin infections and chronic wounds challenging, urging the scientific community to focus on the development of new and more efficient treatment strategies. In this context, there is a growing interest in the use of natural molecules with antimicrobial features, capable of supporting wound healing i.e., antimicrobial peptides (AMPs), for the treatment of skin and soft tissue infections. In this review, we give a short overview of the bacterial skin infections as well as some of the classic treatments used for topical application. We then summarize the AMPs classes, stressing the importance of the appropriate selection of the peptides based on their characteristics and physicochemical properties in order to maximize the antibacterial efficacy of the therapeutic systems against multi-drug resistant pathogens. Additionally, the present paper provides a comprehensive and rigorous assessment of the latest clinical trials investigating the efficacy of AMPs in the treatment of skin and soft tissue infections, highlighting the relevant outcomes. Seeking to obtain novel and improved compounds with synergistic activity, while also decreasing some of the known side effects of AMPs, we present two employed strategies using AMPs: (i) AMPs-conjugated nanosystems for systemic and topical drug delivery systems and (ii) antibiotics-peptide conjugates as a strategy to overcome antibiotics resistance. Finally, an important property of some of the AMPs used in wound treatment is highlighted: their ability to help in wound healing by generally promoting cell proliferation and migration, and in some cases re-epithelialization and angiogenesis among others. Thus, as the pursuit of improvement is an ongoing effort, this work presents the advances made in the treatment of skin and soft tissue infections along with their advantages and limitations, while the still remaining challenges are addressed by providing future prospects and strategies to overcome them.
Collapse
Affiliation(s)
- Mina Raileanu
- Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului 30, Măgurele 077125, Romania
| | - Raluca Borlan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian No. 42, 400271 Cluj-Napoca, Romania
| | - Andreea Campu
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian No. 42, 400271 Cluj-Napoca, Romania
| | - Lorant Janosi
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293 Cluj-Napoca, Romania
| | - Ioan Turcu
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293 Cluj-Napoca, Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian No. 42, 400271 Cluj-Napoca, Romania.
| | - Mihaela Bacalum
- Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului 30, Măgurele 077125, Romania.
| |
Collapse
|
36
|
Oehler MA, Hayes DG, D’Souza DH, Senanayake M, Gurumoorthy V, Pingali SV, O’Neill HM, Bras W, Urban VS. Assessment of antimicrobial activity of melittin encapsulated in bicontinuous microemulsions prepared using renewable oils. J SURFACTANTS DETERG 2023; 26:387-399. [PMID: 37470058 PMCID: PMC10353728 DOI: 10.1002/jsde.12654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022]
Abstract
The objective of this study is to demonstrate that melittin, a well-studied antimicrobial peptide (AMP), can be solubilized in an active form in bicontinuous microemulsions (BMEs) that employ biocompatible oils. The systems investigated consisted of Winsor-III and -IV BME phases composed of Water/Aerosol-OT (AOT)/Polysorbate 85/isopropyl myristate and a Winsor-IV BME employing Polysorbate 80 and limonene. We found that melittin resided in an α-helix-rich configuration and was in an apolar environment for the AOT/Polysorbate 85 Winsor-III system, suggesting that melittin interacted with the surfactant monolayer and was in an active conformation. An apolar environment was also detected for melittin in the two Winsor-IV systems, but to a lesser extent than the Winsor-III system. Small-angle X-ray scattering analysis indicated that melittin at a concentration of 1.0 g/Laq in the aqueous subphase of the Winsor-IV systems led to the greatest impact on the BME structure (e.g., decrease of quasi-periodic repeat distance and correlation length and induction of interfacial fluidity). The antimicrobial activity of the Polysorbate 80 Winsor-IV system was evaluated against several bacteria prominent in chronic wounds and surgical site infections (SSIs). Melittin-free BMEs inhibited the growth of all tested bacteria due to its oil, limonene, while the inclusion of 1.0 g/Laq of melittin in the BMEs enhanced the activity against several bacteria. A further increase of melittin concentration in the BMEs had no further enhancement. These results demonstrate the potential utility of BMEs as a delivery platform for AMPs and other hydrophilic and lipophilic drugs to inhibit antibiotic-resistant microorganisms in chronic wounds and SSIs.
Collapse
Affiliation(s)
- Madison A. Oehler
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Douglas G. Hayes
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Doris H. D’Souza
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Manjula Senanayake
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Sai Venkatesh Pingali
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Hugh M. O’Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Wim Bras
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Volker S. Urban
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
37
|
Meng Y, Huang J, Ding J, Yan B, Li Y, Gao X, Zhou W. Poly-thymine DNA templated MnO 2 biomineralization as a high-affinity anchoring enabling tumor targeting delivery. J Colloid Interface Sci 2023; 637:441-452. [PMID: 36716668 DOI: 10.1016/j.jcis.2023.01.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Manganese oxide nanomaterials (MONs) are emerging as a type of highly promising nanomaterials for diseases diagnosis, and surface modification is the basis for colloidal stability and targeting delivery of the nanomaterials. Here, we report the in-situ functionalization of MnO2 with DNA through a biomineralization process. Using adsorption-oxidation method, DNA templated Mn2+ precursor to biomineralize into nano-cubic seed, followed by the growth of MnO2 to form cube/nanosheet hybrid nanostructure. Among four types of DNA homopolymers, poly-thymine (poly-T) was found to stably attach on MnO2 surface to resist various biological displacements (phosphate, serum, and complementary DNA). Capitalized on this finding, a di-block DNA was rationally designed, in which the poly-T block stably anchored on MnO2 surface, while the AS1411 aptamer block was not only an active ligand for tumor targeting delivery, but also a carrier for photosensitizer (Ce6) loading. Upon targeting delivery into tumor cells, the MnO2 acted as catalase-mimic nanozyme for oxygenation to sensitize photodynamic therapy, and the released Mn2+ triggered chemodynamic therapy via Fenton-like reaction, achieving synergistic anti-tumor effect with full biocompatibility. This work provides a simple yet robust strategy to functionalize metal oxides nanomaterials for biological applications via DNA-templated biomineralization.
Collapse
Affiliation(s)
- Yingcai Meng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jiaxin Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Bohua Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha 410004, Hunan, China.
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China.
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
38
|
Nandi S, Nair KS, Bajaj H. Bacterial Outer-Membrane-Mimicking Giant Unilamellar Vesicle Model for Detecting Antimicrobial Permeability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5891-5900. [PMID: 37036429 DOI: 10.1021/acs.langmuir.3c00378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The construction of bacterial outer membrane models with native lipids like lipopolysaccharide (LPS) is a barrier to understanding antimicrobial permeability at the membrane interface. Here, we engineer bacterial outer membrane (OM)-mimicking giant unilamellar vesicles (GUVs) by constituting LPS under different pH conditions and assembled GUVs with controlled dimensions. We quantify the LPS reconstituted in GUV membranes and reveal their arrangement in the leaflets of the vesicles. Importantly, we demonstrate the applications of OM vesicles by exploring antimicrobial permeability activity across membranes. Model peptides, melittin and magainin-2, are examined where both peptides exhibit lower membrane activity in OM vesicles than vesicles devoid of LPS. Our findings reveal the mode of action of antimicrobial peptides in bacterial-membrane-mimicking models. Notably, the critical peptide concentration required to elicit activity on model membranes correlates with the cell inhibitory concentrations that revalidate our models closely mimic bacterial membranes. In conclusion, we provide an OM-mimicking model capable of quantifying antimicrobial permeability across membranes.
Collapse
Affiliation(s)
- Samir Nandi
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
| | - Karthika S Nair
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| |
Collapse
|
39
|
Walkowiak JJ, van Duijnhoven C, Boeschen P, Wolter NA, Michalska-Walkowiak J, Dulle M, Pich A. Multicompartment polymeric colloids from functional precursor Microgel: Synthesis in continuous process. J Colloid Interface Sci 2023; 634:243-254. [PMID: 36535162 DOI: 10.1016/j.jcis.2022.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Raspberry-like poly(oligoethylene methacrylate-b-N-vinylcaprolactam)/polystyrene (POEGMA-b-PVCL/PS) patchy particles (PPs) and complex colloidal particle clusters (CCPCs) were fabricated in two-, and one-step (cascade) flow process. Surfactant-free, photo-initiated reversible addition-fragmentation transfer (RAFT) precipitation polymerization (Photo-RPP) was used to develop internally cross-linked POEGMA-b-PVCL microgels with narrow size distribution. Resulting microgel particles were then used to stabilize styrene seed droplets in water, producing raspberry-like PPs. In the cascade process, different hydrophobicity between microgel and PS induced the self-assembly of the first formed raspberry particles that then polymerized continuously in a Pickering emulsion to form the CCPCs. The internal structure as well as the surface morphology of PPs and CCPCs were studied as a function of polymerization conditions such as flow rate/retention time (Rt), temperature and the amount of used cross-linker. By performing Photo-RPP in tubular flow reactor we were able to gained advantages over heat dissipation and homogeneous light distribution in relation to thermally-, and photo-initiated bulk polymerizations. Tubular reactor also enabled detailed studies over morphological evolution of formed particles as a function of flow rate/Rt.
Collapse
Affiliation(s)
- Jacek J Walkowiak
- DWI - Leibniz-Institute for Interactive Materials e.V, Forckenbeckstraße 50, 52074 Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany; Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| | - Casper van Duijnhoven
- Zuyd University of Applied Sciences, Nieuw Eyckholt 300, 6419 DJ Heerlen, The Netherlands.
| | - Pia Boeschen
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| | - Nadja A Wolter
- DWI - Leibniz-Institute for Interactive Materials e.V, Forckenbeckstraße 50, 52074 Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.
| | - Joanna Michalska-Walkowiak
- Jülich Centre for Neutron Science (JCNS-1), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straβe, 52428 Jülich, Germany; CNRS, UMR 8232 - IPCM - Institut Parisien de Chimie Moléculaire - Polymer Chemistry Team, Sorbonne Université, 4 Pl. Jussieu, 75005 Paris, France.
| | - Martin Dulle
- Jülich Centre for Neutron Science (JCNS-1), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straβe, 52428 Jülich, Germany.
| | - Andrij Pich
- DWI - Leibniz-Institute for Interactive Materials e.V, Forckenbeckstraße 50, 52074 Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany; Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| |
Collapse
|
40
|
Luo X, Chen H, Song Y, Qin Z, Xu L, He N, Tan Y, Dessie W. Advancements, challenges and future perspectives on peptide-based drugs: Focus on antimicrobial peptides. Eur J Pharm Sci 2023; 181:106363. [PMID: 36529161 DOI: 10.1016/j.ejps.2022.106363] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Among other health related issues, the rising concerns on drug resistance led to look for alternative pharmaceutical drugs that are effective both against infectious and noninfectious diseases. Antimicrobial peptides (AMPs) emerged as potential therapeutic molecule with wide range of applications. With their limitations, AMPs have gained reputable attentions in research as well as in the pharmaceutical industry. This review highlighted the historical background, research trends, technological advancements, challenges, and future perspectives in the development and applications of peptide drugs. Some vital questions related with the need for pharmaceutical production, factors for the slow and steady journey, the importance of oral bioavailability, and the drug resistance possibilities of AMPs were raised and addressed accordingly. Therefore, the current study is believed to provide a profound understanding in the past and current scenarios and future directions on the therapeutic impacts of peptide drugs.
Collapse
Affiliation(s)
- Xiaofang Luo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Huifang Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Yannan Song
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Zuodong Qin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China
| | - Lijian Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yimin Tan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| | - Wubliker Dessie
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, China.
| |
Collapse
|
41
|
van Gent ME, van Baaren T, Kłodzińska SN, Ali M, Dolezal N, van Doodewaerd BR, Bos E, de Waal AM, Koning RI, Drijfhout JW, Nielsen HM, Nibbering PH. Encapsulation of SAAP-148 in Octenyl Succinic Anhydride-Modified Hyaluronic Acid Nanogels for Treatment of Skin Wound Infections. Pharmaceutics 2023; 15:pharmaceutics15020429. [PMID: 36839751 PMCID: PMC9967827 DOI: 10.3390/pharmaceutics15020429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Chronic wound infections colonized by bacteria are becoming more difficult to treat with current antibiotics due to the development of antimicrobial resistance (AMR) as well as biofilm and persister cell formation. Synthetic antibacterial and antibiofilm peptide (SAAP)-148 is an excellent alternative for treatment of such infections but suffers from limitations related to its cationic peptidic nature and thus instability and possible cytotoxicity, resulting in a narrow therapeutic window. Here, we evaluated SAAP-148 encapsulation in nanogels composed of octenyl succinic anhydride (OSA)-modified hyaluronic acid (HA) to circumvent these limitations. SAAP-148 was efficiently (>98%) encapsulated with high drug loading (23%), resulting in monodispersed anionic OSA-HA nanogels with sizes ranging 204-253 nm. Nanogel lyophilization in presence of polyvinyl alcohol maintained their sizes and morphology. SAAP-148 was sustainedly released from lyophilized nanogels (37-41% in 72 h) upon reconstitution. Lyophilized SAAP-148-loaded nanogels showed similar antimicrobial activity as SAAP-148 against planktonic and biofilm-residing AMR Staphylococcus aureus and Acinetobacter baumannii. Importantly, formulated SAAP-148 showed reduced cytotoxicity against human erythrocytes, primary human skin fibroblasts and human keratinocytes. Additionally, lyophilized SAAP-148-loaded nanogels eradicated AMR S. aureus and A. baumannii colonizing a 3D human epidermal model, without inducing any cytotoxicity in contrast to SAAP-148. These findings indicate that OSA-HA nanogels increase SAAP-148's therapeutic potential for treatment of skin wound infections.
Collapse
Affiliation(s)
- Miriam E. van Gent
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Correspondence:
| | - Tom van Baaren
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Sylvia N. Kłodzińska
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Muhanad Ali
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Natasja Dolezal
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Bjorn R. van Doodewaerd
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Erik Bos
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Amy M. de Waal
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Roman I. Koning
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Jan Wouter Drijfhout
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Hanne Mørck Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
42
|
Gándara Z, Rubio N, Castillo RR. Delivery of Therapeutic Biopolymers Employing Silica-Based Nanosystems. Pharmaceutics 2023; 15:pharmaceutics15020351. [PMID: 36839672 PMCID: PMC9963032 DOI: 10.3390/pharmaceutics15020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
The use of nanoparticles is crucial for the development of a new generation of nanodevices for clinical applications. Silica-based nanoparticles can be tailored with a wide range of functional biopolymers with unique physicochemical properties thus providing several advantages: (1) limitation of interparticle interaction, (2) preservation of cargo and particle integrity, (3) reduction of immune response, (4) additional therapeutic effects and (5) cell targeting. Therefore, the engineering of advanced functional coatings is of utmost importance to enhance the biocompatibility of existing biomaterials. Herein we will focus on the most recent advances reported on the delivery and therapeutic use of silica-based nanoparticles containing biopolymers (proteins, nucleotides, and polysaccharides) with proven biological effects.
Collapse
Affiliation(s)
- Zoila Gándara
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Correspondence: (Z.G.); (N.R.); (R.R.C.)
| | - Noelia Rubio
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Correspondence: (Z.G.); (N.R.); (R.R.C.)
| | - Rafael R. Castillo
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Correspondence: (Z.G.); (N.R.); (R.R.C.)
| |
Collapse
|
43
|
Zhang Y, Håkansson J, Fan Y, Andrén OCJ, San Jacinto García J, Qin L, Umerska A, Hutchinson DJ, Lüchow M, Mahlapuu M, Malkoch M. Dendritic Nanogels Directed Dual-Encapsulation Topical Delivery System of Antimicrobial Peptides Targeting Skin Infections. Macromol Biosci 2023; 23:e2200433. [PMID: 36639138 DOI: 10.1002/mabi.202200433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/15/2022] [Indexed: 01/15/2023]
Abstract
Antimicrobial peptides (AMPs) are promising antibacterial agents in the fight against multidrug resistant pathogens. However, their application to skin infections is limited by the absence of a realizable topical delivery strategy. Herein, a hybrid hierarchical delivery system for topical delivery of AMPs is accomplished through the incorporation of AMPs into dendritic nanogels (DNGs) and their subsequent embedding into poloxamer gel. The high level of control over the crosslink density and the number of chosen functionalities makes DNGs ideal capsules with tunable loading capacity for DPK-060, a human kininogen-derived AMP. Once embedded into the poloxamer gel, DPK-060 encapsulated in DNGs displays a slower release rate compared to those entrapped directly in the gels. In vitro EpiDerm Skin Irritation Tests show good biocompatibility, while MIC and time-kill curves reveal the potency of the peptide toward Staphylococcus aureus. Anti-infection tests on ex vivo pig skin and in vivo mouse infection models demonstrate that formulations with 0.5% and 1% AMPs significantly inhibit the growth of S. aureus. Similar outcomes are observed for an in vivo mouse surgical site infection model. Importantly, when normalizing the bacteria inhibition to released/free DPK-060 at the wound site, all formulations display superior efficacy compared to DPK-060 in solution.
Collapse
Affiliation(s)
- Yuning Zhang
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, 130061, P. R. China
| | - Joakim Håkansson
- Biological Function Unit, RISE Research Institutes of Sweden, Methodology, Textile and Medical Devices, Borås, SE-501 15, Sweden.,Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, P.O. Box 440, Gothenburg, SE-40530, Sweden
| | - Yanmiao Fan
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Oliver C J Andrén
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Jorge San Jacinto García
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Liguo Qin
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden.,Institute of Design Science and Basic Components, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Anita Umerska
- Biological Function Unit, RISE Research Institutes of Sweden, Methodology, Textile and Medical Devices, Borås, SE-501 15, Sweden
| | - Daniel J Hutchinson
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Mads Lüchow
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | | | - Michael Malkoch
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| |
Collapse
|
44
|
Wang T, Cornel EJ, Li C, Du J. Drug delivery approaches for enhanced antibiofilm therapy. J Control Release 2023; 353:350-365. [PMID: 36473605 DOI: 10.1016/j.jconrel.2022.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/06/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Biofilms have attracted increasing attention in recent years. Many bacterial infections are associated with biofilm formation. A bacterial biofilm is an aggregated membrane-like substance that is composed of a large number of bacteria and their secreted extracellular polymeric substances. The traditional antibiofilm approaches, such as chemotherapy based on antibiotics, are often ineffective in eradicating biofilms owing to the limited diffusion ability of antibiotics within biofilms and inactivation of antibiotics by biofilms. Moreover, a larger dosage of antibiotics could be effective, but leads to an increased tolerance. Smart drug delivery systems that deliver antibiotics into the biofilm interior is a promising strategy to meet this challenge. In this review, we focus on the methods to improve drug delivery efficiency for enhanced chemotherapy of biofilms. Furthermore, we have summarized chemical approaches for enhanced drug delivery, such as chemical shields, charge reversal, and dual corona enhanced delivery strategies; these methods focus on physicochemical biofilm properties and specific biofilm features. Afterwards, physical approaches are discussed, such as magnetism-mediated drug delivery, electricity-mediated drug delivery, ultrasound-mediated drug delivery, and shock wave-mediated drug delivery. Finally, a perspective on the development of next-generation antibiofilm drug delivery systems is given.
Collapse
Affiliation(s)
- Tao Wang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Erik Jan Cornel
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Chang Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China; Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
45
|
Lin Y, Li Q, Wang L, Guo Q, Liu S, Zhu S, Sun Y, Fan Y, Sun Y, Li H, Tian X, Luo D, Shi S. Advances in regenerative medicine applications of tetrahedral framework nucleic acid-based nanomaterials: an expert consensus recommendation. Int J Oral Sci 2022; 14:51. [PMID: 36316311 PMCID: PMC9622686 DOI: 10.1038/s41368-022-00199-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 01/18/2023] Open
Abstract
With the emergence of DNA nanotechnology in the 1980s, self-assembled DNA nanostructures have attracted considerable attention worldwide due to their inherent biocompatibility, unsurpassed programmability, and versatile functions. Especially promising nanostructures are tetrahedral framework nucleic acids (tFNAs), first proposed by Turberfield with the use of a one-step annealing approach. Benefiting from their various merits, such as simple synthesis, high reproducibility, structural stability, cellular internalization, tissue permeability, and editable functionality, tFNAs have been widely applied in the biomedical field as three-dimensional DNA nanomaterials. Surprisingly, tFNAs exhibit positive effects on cellular biological behaviors and tissue regeneration, which may be used to treat inflammatory and degenerative diseases. According to their intended application and carrying capacity, tFNAs could carry functional nucleic acids or therapeutic molecules through extended sequences, sticky-end hybridization, intercalation, and encapsulation based on the Watson and Crick principle. Additionally, dynamic tFNAs also have potential applications in controlled and targeted therapies. This review summarized the latest progress in pure/modified/dynamic tFNAs and demonstrated their regenerative medicine applications. These applications include promoting the regeneration of the bone, cartilage, nerve, skin, vasculature, or muscle and treating diseases such as bone defects, neurological disorders, joint-related inflammatory diseases, periodontitis, and immune diseases.
Collapse
Affiliation(s)
- Yunfeng Lin
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qian Li
- grid.16821.3c0000 0004 0368 8293School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lihua Wang
- grid.458506.a0000 0004 0497 0637The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Zhangjiang Laboratory, Shanghai, China
| | - Quanyi Guo
- grid.488137.10000 0001 2267 2324Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Shuyun Liu
- grid.488137.10000 0001 2267 2324Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Shihui Zhu
- grid.73113.370000 0004 0369 1660Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yu Sun
- grid.73113.370000 0004 0369 1660Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yujiang Fan
- grid.13291.380000 0001 0807 1581National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yong Sun
- grid.13291.380000 0001 0807 1581College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Haihang Li
- Jiangsu Trautec Medical Technology Company Limited, Changzhou, China
| | - Xudong Tian
- Jiangsu Trautec Medical Technology Company Limited, Changzhou, China
| | - Delun Luo
- Chengdu Jingrunze Gene Technology Company Limited, Chengdu, China
| | - Sirong Shi
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Rodik RV, Cherenok SO, Postupalenko VY, Oncul S, Brusianska V, Borysko P, Kalchenko VI, Mely Y, Klymchenko AS. Anionic amphiphilic calixarenes for peptide assembly and delivery. J Colloid Interface Sci 2022; 624:270-278. [PMID: 35660896 DOI: 10.1016/j.jcis.2022.05.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
Shape-persistent macrocycles enable superior control on molecular self-assembly, allowing the preparation of well-defined nanostructures with new functions. Here, we report on anionic amphiphilic calixarenes of conic shape and their self-assembly behavior in aqueous media for application in intracellular delivery of peptides. Newly synthesized calixarenes bearing four phosphonate groups and two or four long alkyl chains were found to form micelles of ∼ 10 nm diameter, in contrast to an analogue with short alkyl chains. These amphiphilic calixarenes are able to complex model (oligo-lysine) and biologically relevant (HIV-1 nucleocapsid peptide) cationic peptides into small nanoparticles (20-40 nm). By contrast, a control anionic calixarene with short alkyl chains fails to form small nanoparticles with peptides, highlighting the importance of micellar assembly of amphiphilic calixarenes for peptide complexation. Cellular studies reveal that anionic amphiphilic calixarenes exhibit low cytotoxicity and enable internalization of fluorescently labelled peptides into live cells. These findings suggest anionic amphiphilic macrocycles as promising building blocks for the preparation of peptide delivery vehicles.
Collapse
Affiliation(s)
- Roman V Rodik
- Institute of Organic Chemistry, National Academy of Science of Ukraine, 02660 Kyiv, Ukraine.
| | - Sergiy O Cherenok
- Institute of Organic Chemistry, National Academy of Science of Ukraine, 02660 Kyiv, Ukraine
| | - Viktoriia Y Postupalenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| | - Sule Oncul
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France; İstanbul Medeniyet Üniversitesi, Istanbul, Turkey
| | | | - Petro Borysko
- Enamine Ltd, Chervonotkatska 78, 02094 Kyiv, Ukraine
| | - Vitaly I Kalchenko
- Institute of Organic Chemistry, National Academy of Science of Ukraine, 02660 Kyiv, Ukraine
| | - Yves Mely
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France.
| |
Collapse
|
47
|
Cao H, Gao Y, Jia H, Zhang L, Liu J, Mu G, Gui H, Wang Y, Yang C, Liu J. Macrophage-Membrane-Camouflaged Nonviral Gene Vectors for the Treatment of Multidrug-Resistant Bacterial Sepsis. NANO LETTERS 2022; 22:7882-7891. [PMID: 36169350 DOI: 10.1021/acs.nanolett.2c02560] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sepsis is a life-threatening disease caused by systemic bacterial infections, with high morbidity and mortality worldwide. As the standard treatment for sepsis, antibiotic therapy faces the challenge of impaired macrophages and drug-resistant bacteria. In this study, we developed a membrane-camouflaged metal-organic framework (MOF) system for plasmid DNA (pDNA) delivery to combat sepsis. The antimicrobial gene LL37 was efficiently encapsulated in the pH-sensitive MOF, and the nanoparticles were decorated with macrophage membranes in a compatible manner. Macrophage membrane coating allows targeted delivery of LL37 to macrophages and creates macrophage factories for the continuous generation of antimicrobial peptides. Compared to naked nanoparticles, primary bone marrow mesenchymal macrophage membrane-modified nanoparticles greatly improved the survival rate of immunodeficient septic mice through the synergistic effect of efficient gene therapy and inflammatory cytokine sequestration. This study demonstrates an effective membrane biomimetic strategy for efficiently delivering pDNA, offering an excellent option for overcoming sepsis.
Collapse
Affiliation(s)
- Hongmei Cao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. of China
| | - Yang Gao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. of China
| | - Haixue Jia
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. of China
| | - Liping Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. of China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. of China
| | - Ganen Mu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. of China
| | - Han Gui
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. of China
| | - Yuebing Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. of China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. of China
| |
Collapse
|
48
|
Carucci C, Sechi G, Piludu M, Monduzzi M, Salis A. A drug delivery system based on poly-L-lysine grafted mesoporous silica nanoparticles for quercetin release. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Polysaccharides-based delivery system for efficient encapsulation and controlled release of food-derived active peptides. Carbohydr Polym 2022; 291:119580. [DOI: 10.1016/j.carbpol.2022.119580] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/18/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022]
|
50
|
Antimicrobial Peptides in Early-Life Host Defense, Perinatal Infections, and Necrotizing Enterocolitis—An Update. J Clin Med 2022; 11:jcm11175074. [PMID: 36079001 PMCID: PMC9457252 DOI: 10.3390/jcm11175074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Host defense against early-life infections such as chorioamnionitis, neonatal sepsis, or necrotizing enterocolitis (NEC) relies primarily on innate immunity, in which antimicrobial peptides (AMPs) play a major role. AMPs that are important for the fetus and neonate include α and β defensins, cathelicidin LL-37, antiproteases (elafin, SLPI), and hepcidin. They can be produced by the fetus or neonate, the placenta, chorioamniotic membranes, recruited neutrophils, and milk-protein ingestion or proteolysis. They possess antimicrobial, immunomodulating, inflammation-regulating, and tissue-repairing properties. AMPs are expressed as early as the 13th week and increase progressively through gestation. Limited studies are available on AMP expression and levels in the fetus and neonate. Nevertheless, existing evidence supports the role of AMPs in pathogenesis of chorioamnionitis, neonatal sepsis, and NEC, and their association with disease severity. This suggests a potential role of AMPs in diagnosis, prevention, prognosis, and treatment of sepsis and NEC. Herein, we present an overview of the antimicrobial and immunomodulating properties of human AMPs, their sources in the intrauterine environment, fetus, and neonate, and their changes during pre- and post-natal infections and NEC. We also discuss emerging data regarding the potential utility of AMPs in early-life infections, as diagnostic or predictive biomarkers and as therapeutic alternatives or adjuncts to antibiotic therapy considering the increase of antibiotic resistance in neonatal intensive care units.
Collapse
|