1
|
Yoro E, Suzuki S, Akiyoshi N, Kofuji R, Sakakibara K. The transcription factor PpRKD evokes female developmental fate in the sexual reproductive organs of Physcomitrium patens. THE NEW PHYTOLOGIST 2025; 245:653-667. [PMID: 39574395 PMCID: PMC11655435 DOI: 10.1111/nph.20262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/11/2024] [Indexed: 12/20/2024]
Abstract
The sexual reproductive organs of bryophytes - in which gametes necessary for fertilization are produced, namely, male antheridia and female archegonia - are formed from vegetative haploid gametophytes. In dioicous bryophytes such as Marchantia polymorpha, the genes within the sex-determining regions in distinct sexual strains have been identified. However, in monoicous bryophytes such as Physcomitrium patens, how the two sex fates are specified on the same gametophyte remained unknown. Here, we identified an RWP-RK domain-containing transcription factor in P. patens, PpRKD, as a factor required for the development of female organs, based on the absence of archegonia in loss-of-function Pprkd mutants and the specific expression of PpRKD in archegonia. When ectopically induced, the expression of PpRKD resulted in the repression of antheridial development and the emergence of archegonium-like organs. Furthermore, the young primordia inside the antheridial bundle displayed typical archegonial division patterns, suggesting that PpRKD confer female fate to antheridium primordia. This study represents the first instance where the function of sex determination has been identified among RKD orthologs in land plants. This finding should provide a new framework for the molecular evolutionary context of the genes in the RKD family, considering the recent elucidation of their roles in algae.
Collapse
Affiliation(s)
- Emiko Yoro
- Department of Life ScienceRikkyo UniversityTokyo171‐8501Japan
| | - Seiya Suzuki
- Department of Life ScienceRikkyo UniversityTokyo171‐8501Japan
| | | | - Rumiko Kofuji
- College of Science and EngineeringKanazawa UniversityKanazawa920‐1192Japan
| | | |
Collapse
|
2
|
Vollmeister E, Phokas A, Meyberg R, Böhm CV, Peter M, Kohnert E, Yuan J, Grosche C, Göttig M, Ullrich KK, Perroud PF, Hiltbrunner A, Kreutz C, Coates JC, Rensing SA. A DELAY OF GERMINATION 1 (DOG1)-like protein regulates spore germination in the moss Physcomitrium patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:909-923. [PMID: 37953711 DOI: 10.1111/tpj.16537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
DELAY OF GERMINATION 1 is a key regulator of dormancy in flowering plants before seed germination. Bryophytes develop haploid spores with an analogous function to seeds. Here, we investigate whether DOG1 function during germination is conserved between bryophytes and flowering plants and analyse the underlying mechanism of DOG1 action in the moss Physcomitrium patens. Phylogenetic and in silico expression analyses were performed to identify and characterise DOG1 domain-containing genes in P. patens. Germination assays were performed to characterise a Ppdog1-like1 mutant, and replacement with AtDOG1 was carried out. Yeast two-hybrid assays were used to test the interaction of the PpDOG1-like protein with DELLA proteins from P. patens and A. thaliana. P. patens possesses nine DOG1 domain-containing genes. The DOG1-like protein PpDOG1-L1 (Pp3c3_9650) interacts with PpDELLAa and PpDELLAb and the A. thaliana DELLA protein AtRGA in yeast. Protein truncations revealed the DOG1 domain as necessary and sufficient for interaction with PpDELLA proteins. Spores of Ppdog1-l1 mutant germinate faster than wild type, but replacement with AtDOG1 reverses this effect. Our data demonstrate a role for the PpDOG1-LIKE1 protein in moss spore germination, possibly alongside PpDELLAs. This suggests a conserved DOG1 domain function in germination, albeit with differential adaptation of regulatory networks in seed and spore germination.
Collapse
Affiliation(s)
- Evelyn Vollmeister
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Alexandros Phokas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Rabea Meyberg
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Clemens V Böhm
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Marlies Peter
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Eva Kohnert
- Institute of Medical Biometry and Statistics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79104, Germany
| | - Jinhong Yuan
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Christopher Grosche
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Marco Göttig
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Kristian K Ullrich
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | | | - Andreas Hiltbrunner
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79104, Germany
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Perroud PF, Guyon-Debast A, Casacuberta JM, Paul W, Pichon JP, Comeau D, Nogué F. Improved prime editing allows for routine predictable gene editing in Physcomitrium patens. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6176-6187. [PMID: 37243510 PMCID: PMC10575697 DOI: 10.1093/jxb/erad189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
Efficient and precise gene editing is the gold standard of any reverse genetic study. The recently developed prime editing approach, a modified CRISPR/Cas9 [clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein] editing method, has reached the precision goal but its editing rate can be improved. We present an improved methodology that allows for routine prime editing in the model plant Physcomitrium patens, whilst exploring potential new prime editing improvements. Using a standardized protoplast transfection procedure, multiple prime editing guide RNA (pegRNA) structural and prime editor variants were evaluated targeting the APT reporter gene through direct plant selection. Together, enhancements of expression of the prime editor, modifications of the 3' extension of the pegRNA, and the addition of synonymous mutation in the reverse transcriptase template sequence of the pegRNA dramatically improve the editing rate without affecting the quality of the edits. Furthermore, we show that prime editing is amenable to edit a gene of interest through indirect selection, as demonstrated by the generation of a Ppdek10 mutant. Additionally, we determine that a plant retrotransposon reverse transcriptase enables prime editing. Finally, we show for the first time the possibility of performing prime editing with two independently coded peptides.
Collapse
Affiliation(s)
- Pierre-François Perroud
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Anouchka Guyon-Debast
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Josep M Casacuberta
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra, 08193 Barcelona, Spain
| | - Wyatt Paul
- Limagrain Europe, Centre de Recherche de Chappes, 63720 Chappes, France
| | | | - David Comeau
- Limagrain Europe, Centre de Recherche de Chappes, 63720 Chappes, France
| | - Fabien Nogué
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| |
Collapse
|
4
|
Emmenecker C, Mézard C, Kumar R. Repair of DNA double-strand breaks in plant meiosis: role of eukaryotic RecA recombinases and their modulators. PLANT REPRODUCTION 2023; 36:17-41. [PMID: 35641832 DOI: 10.1007/s00497-022-00443-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Homologous recombination during meiosis is crucial for the DNA double-strand breaks (DSBs) repair that promotes the balanced segregation of homologous chromosomes and enhances genetic variation. In most eukaryotes, two recombinases RAD51 and DMC1 form nucleoprotein filaments on single-stranded DNA generated at DSB sites and play a central role in the meiotic DSB repair and genome stability. These nucleoprotein filaments perform homology search and DNA strand exchange to initiate repair using homologous template-directed sequences located elsewhere in the genome. Multiple factors can regulate the assembly, stability, and disassembly of RAD51 and DMC1 nucleoprotein filaments. In this review, we summarize the current understanding of the meiotic functions of RAD51 and DMC1 and the role of their positive and negative modulators. We discuss the current models and regulators of homology searches and strand exchange conserved during plant meiosis. Manipulation of these repair factors during plant meiosis also holds a great potential to accelerate plant breeding for crop improvements and productivity.
Collapse
Affiliation(s)
- Côme Emmenecker
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
- University of Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Christine Mézard
- Institut Jean-Pierre Bourgin (IJPB), CNRS, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| |
Collapse
|
5
|
RAD51 and RAD51B Play Diverse Roles in the Repair of DNA Double Strand Breaks in Physcomitrium patens. Genes (Basel) 2023; 14:genes14020305. [PMID: 36833232 PMCID: PMC9956106 DOI: 10.3390/genes14020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
RAD51 is involved in finding and invading homologous DNA sequences for accurate homologous recombination (HR). Its paralogs have evolved to regulate and promote RAD51 functions. The efficient gene targeting and high HR rates are unique in plants only in the moss Physcomitrium patens (P. patens). In addition to two functionally equivalent RAD51 genes (RAD1-1 and RAD51-2), other RAD51 paralogues were also identified in P. patens. For elucidation of RAD51's involvement during DSB repair, two knockout lines were constructed, one mutated in both RAD51 genes (Pprad51-1-2) and the second with mutated RAD51B gene (Pprad51B). Both lines are equally hypersensitive to bleomycin, in contrast to their very different DSB repair efficiency. Whereas DSB repair in Pprad51-1-2 is even faster than in WT, in Pprad51B, it is slow, particularly during the second phase of repair kinetic. We interpret these results as PpRAD51-1 and -2 being true functional homologs of ancestral RAD51 involved in the homology search during HR. Absence of RAD51 redirects DSB repair to the fast NHEJ pathway and leads to a reduced 5S and 18S rDNA copy number. The exact role of the RAD51B paralog remains unclear, though it is important in damage recognition and orchestrating HR response.
Collapse
|
6
|
Landberg K, Lopez‐Obando M, Sanchez Vera V, Sundberg E, Thelander M. MS1/MMD1 homologues in the moss Physcomitrium patens are required for male and female gametogenesis. THE NEW PHYTOLOGIST 2022; 236:512-524. [PMID: 35775827 PMCID: PMC9796955 DOI: 10.1111/nph.18352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The Arabidopsis Plant HomeoDomain (PHD) proteins AtMS1 and AtMMD1 provide chromatin-mediated transcriptional regulation essential for tapetum-dependent pollen formation. This pollen-based male gametogenesis is a derived trait of seed plants. Male gametogenesis in the common ancestors of land plants is instead likely to have been reminiscent of that in extant bryophytes where flagellated sperms are produced by an elaborate gametophyte generation. Still, also bryophytes possess MS1/MMD1-related PHD proteins. We addressed the function of two MS1/MMD1-homologues in the bryophyte model moss Physcomitrium patens by the generation and analysis of reporter and loss-of-function lines. The two genes are together essential for both male and female fertility by providing functions in the gamete-producing inner cells of antheridia and archegonia. They are furthermore expressed in the diploid sporophyte generation suggesting a function during sporogenesis, a process proposed related by descent to pollen formation in angiosperms. We propose that the moss MS1/MMD1-related regulatory network required for completion of male and female gametogenesis, and possibly for sporogenesis, represent a heritage from ancestral land plants.
Collapse
Affiliation(s)
- Katarina Landberg
- Department of Plant BiologyThe Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural SciencesPO Box 7080SE‐75007UppsalaSweden
| | - Mauricio Lopez‐Obando
- Department of Plant BiologyThe Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural SciencesPO Box 7080SE‐75007UppsalaSweden
| | - Victoria Sanchez Vera
- Department of Plant BiologyThe Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural SciencesPO Box 7080SE‐75007UppsalaSweden
| | - Eva Sundberg
- Department of Plant BiologyThe Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural SciencesPO Box 7080SE‐75007UppsalaSweden
| | - Mattias Thelander
- Department of Plant BiologyThe Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural SciencesPO Box 7080SE‐75007UppsalaSweden
| |
Collapse
|
7
|
Genome-wide specificity of plant genome editing by both CRISPR-Cas9 and TALEN. Sci Rep 2022; 12:9330. [PMID: 35665758 PMCID: PMC9167288 DOI: 10.1038/s41598-022-13034-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/19/2022] [Indexed: 12/25/2022] Open
Abstract
CRISPR and TALENs are efficient systems for gene editing in many organisms including plants. In many cases the CRISPR–Cas or TALEN modules are expressed in the plant cell only transiently. Theoretically, transient expression of the editing modules should limit unexpected effects compared to stable transformation. However, very few studies have measured the off-target and unpredicted effects of editing strategies on the plant genome, and none of them have compared these two major editing systems. We conducted, in Physcomitrium patens, a comprehensive genome-wide investigation of off-target mutations using either a CRISPR–Cas9 or a TALEN strategy. We observed a similar number of differences for the two editing strategies compared to control non-transfected plants, with an average of 8.25 SNVs and 19.5 InDels for the CRISPR-edited plants, and an average of 17.5 SNVs and 32 InDels for the TALEN-edited plants. Interestingly, a comparable number of SNVs and InDels could be detected in the PEG-treated control plants. This shows that except for the on-target modifications, the gene editing tools used in this study did not show a significant off-target activity nor unpredicted effects on the genome, and did not lead to transgene integration. The PEG treatment, a well-established biotechnological method, in itself, was the main source of mutations found in the edited plants.
Collapse
|
8
|
Zhu L. Targeted Gene Knockouts by Protoplast Transformation in the Moss Physcomitrella patens. Front Genome Ed 2022; 3:719087. [PMID: 34977859 PMCID: PMC8718793 DOI: 10.3389/fgeed.2021.719087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/30/2021] [Indexed: 11/15/2022] Open
Abstract
Targeted gene knockout is particularly useful for analyzing gene functions in plant growth, signaling, and development. By transforming knockout cassettes consisting of homologous sequences of the target gene into protoplasts, the classical gene targeting method aims to obtain targeted gene replacement, allowing for the characterization of gene functions in vivo. The moss Physcomitrella patens is a known model organism for a high frequency of homologous recombination and thus harbors a remarkable rate of gene targeting. Other moss features, including easy to culture, dominant haploidy phase, and sequenced genome, make gene targeting prevalent in Physcomitrella patens. However, even gene targeting was powerful to generate knockouts, researchers using this method still experienced technical challenges. For example, obtaining a good number of targeted knockouts after protoplast transformation and regeneration disturbed the users. Off-target mutations such as illegitimate random integration mediated by nonhomologous end joining and targeted insertion wherein one junction on-target but the other end off-target is commonly present in the knockouts. Protoplast fusion during transformation and regeneration was also a problem. This review will discuss the advantages and technical challenges of gene targeting. Recently, CRISPR-Cas9 is a revolutionary technology and becoming a hot topic in plant gene editing. In the second part of this review, CRISPR-Cas9 technology will be focused on and compared to gene targeting regarding the practical use in Physcomitrella patens. This review presents an updated perspective of the gene targeting and CRISPR-Cas9 techniques to plant biologists who may consider studying gene functions in the model organism Physcomitrella patens.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Botany and Plant Sciences, University of California, Riverside, CA, United States
| |
Collapse
|
9
|
Charlot F, Goudounet G, Nogué F, Perroud PF. Physcomitrium patens Protoplasting and Protoplast Transfection. Methods Mol Biol 2022; 2464:3-19. [PMID: 35258821 DOI: 10.1007/978-1-0716-2164-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protoplast production with the moss Physcomitrium (Physcomitrella) patens has a long and successful history. As a tool, it has not only been the base of reverse genetic studies covering research fields as diverse as development, metabolism, or gene network regulation but also allowed its development as a bioengineering platform for protein production. We present here a standardized protocol for protoplast production from Physcomitrium (Physcomitrella) patens protonemata. Additionally, we detail procedures for their transfection, their plating for optimal regeneration, and three alternative selection approaches. To improve the consistency of protoplast regeneration, we describe a new option for protoplast embedding. The use of an alginate matrix to regenerate moss protoplast alleviates the use of warm agarized medium. Thus, it optimizes transformed protoplast survival without any morphological detrimental effect or impact on transfection efficiency.
Collapse
Affiliation(s)
- Florence Charlot
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Guillaume Goudounet
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Pierre-François Perroud
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France.
| |
Collapse
|
10
|
Rempfer C, Wiedemann G, Schween G, Kerres KL, Lucht JM, Horres R, Decker EL, Reski R. Autopolyploidization affects transcript patterns and gene targeting frequencies in Physcomitrella. PLANT CELL REPORTS 2022; 41:153-173. [PMID: 34636965 PMCID: PMC8803787 DOI: 10.1007/s00299-021-02794-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
In Physcomitrella, whole-genome duplications affected the expression of about 3.7% of the protein-encoding genes, some of them relevant for DNA repair, resulting in a massively reduced gene-targeting frequency. Qualitative changes in gene expression after an autopolyploidization event, a pure duplication of the whole genome (WGD), might be relevant for a different regulation of molecular mechanisms between angiosperms growing in a life cycle with a dominant diploid sporophytic stage and the haploid-dominant mosses. Whereas angiosperms repair DNA double-strand breaks (DSB) preferentially via non-homologous end joining (NHEJ), in the moss Physcomitrella homologous recombination (HR) is the main DNA-DSB repair pathway. HR facilitates the precise integration of foreign DNA into the genome via gene targeting (GT). Here, we studied the influence of ploidy on gene expression patterns and GT efficiency in Physcomitrella using haploid plants and autodiploid plants, generated via an artificial WGD. Single cells (protoplasts) were transfected with a GT construct and material from different time-points after transfection was analysed by microarrays and SuperSAGE sequencing. In the SuperSAGE data, we detected 3.7% of the Physcomitrella genes as differentially expressed in response to the WGD event. Among the differentially expressed genes involved in DNA-DSB repair was an upregulated gene encoding the X-ray repair cross-complementing protein 4 (XRCC4), a key player in NHEJ. Analysing the GT efficiency, we observed that autodiploid plants were significantly GT suppressed (p < 0.001) attaining only one third of the expected GT rates. Hence, an alteration of global transcript patterns, including genes related to DNA repair, in autodiploid Physcomitrella plants correlated with a drastic suppression of HR.
Collapse
Affiliation(s)
- Christine Rempfer
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Gabriele Schween
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Corteva Agriscience, Pioneer Hi-Bred Northern Europe, Münstertäler Strasse 26, 79427, Eschbach, Germany
| | - Klaus L Kerres
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Jan M Lucht
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Scienceindustries, Nordstrasse 15, 8006, Zurich, Switzerland
| | - Ralf Horres
- GenXPro GmbH, Altenhöferallee 3, 60438, Frankfurt am Main, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, Schaenzlestr. 18, 79104, Freiburg, Germany.
| |
Collapse
|
11
|
Sakamoto AN, Sakamoto T, Yokota Y, Teranishi M, Yoshiyama KO, Kimura S. SOG1, a plant-specific master regulator of DNA damage responses, originated from nonvascular land plants. PLANT DIRECT 2021; 5:e370. [PMID: 34988354 PMCID: PMC8711748 DOI: 10.1002/pld3.370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/29/2021] [Accepted: 11/24/2021] [Indexed: 05/03/2023]
Abstract
The suppressor of gamma response 1 (SOG1), a NAM, ATAF1, 2, and CUC2 (NAC)-type transcription factor found in seed plants, is a master regulator of DNA damage responses (DDRs). Upon DNA damage, SOG1 regulates the expression of downstream DDR genes. To know the origin of the DDR network in land plants, we searched for a homolog(s) of SOG1 in a moss Physcomitrium (Physcomitrella) patens and identified PpSOG1a and PpSOG1b. To assess if either or both of them function(s) in DDR, we knocked out the PpSOG1s using CRISPR/Cas9-mediated gene editing and analyzed the responses to DNA-damaging treatments. The double-knockout (KO) sog1a sog1b plants showed resistance to γ-rays, bleomycin, and ultraviolet B (UVB) treatments similarly seen in Arabidopsis sog1 plants. Next, we irradiated wild-type (WT) and KO plants with γ-rays and analyzed the whole transcriptome to examine the effect on the expression of DDR genes. The results revealed that many P. patens genes involved in the checkpoint, DNA repair, replication, and cell cycle-related genes were upregulated after γ-irradiation, which was not seen in sog1a sog1b plant. These results suggest that PpSOG1a and PpSOG1b work redundantly on DDR response in P. patens; in addition, plant-specific DDR systems had been established before the emergence of vascular plants.
Collapse
Affiliation(s)
- Ayako N. Sakamoto
- Department of Radiation‐Applied Biology ResearchNational Institutes for Quantum Science and TechnologyTakasakiGummaJapan
| | - Tomoaki Sakamoto
- Faculty of Life SciencesKyoto Sangyo UniversityKyotoJapan
- Center for Plant SciencesKyoto Sangyo UniversityKyotoJapan
| | - Yuichiro Yokota
- Department of Radiation‐Applied Biology ResearchNational Institutes for Quantum Science and TechnologyTakasakiGummaJapan
| | - Mika Teranishi
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | | | - Seisuke Kimura
- Faculty of Life SciencesKyoto Sangyo UniversityKyotoJapan
- Center for Plant SciencesKyoto Sangyo UniversityKyotoJapan
| |
Collapse
|
12
|
Holá M, Vágnerová R, Angelis KJ. Kleisin NSE4 of the SMC5/6 complex is necessary for DNA double strand break repair, but not for recovery from DNA damage in Physcomitrella (Physcomitrium patens). PLANT MOLECULAR BIOLOGY 2021; 107:355-364. [PMID: 33550456 DOI: 10.1007/s11103-020-01115-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Kleisin NSE4 and circular form of SMC5/6 is indispensable for DSB repair and necessary for gene targeting but is not enough for recovery of cells from DNA damage in Physcomitrella. Structural maintenance of chromosomes (SMC) complexes are involved in cohesion, condensation and maintenance of genome stability. Based on the sensitivity of mutants to genotoxic stress the SMC5/6 complex is thought to play a prominent role in DNA stabilization during repair by tethering DNA at the site of lesion by a heteroduplex of SMC5 and SMC6 encircled with non-SMC components NSE1, NSE3 and kleisin NSE4. In this study, we tested how formation of the SMC5/6 circular structure affects mutant sensitivity to DNA damage, kinetics of DSB repair and gene targeting. In the moss Physcomitrella (Physcomitrium patens), SMC6 and NSE4 are essential single copy genes and this is why we used blocking of transcription to reveal their mutated phenotype. Even slight reduction of transcript levels by dCas9 binding was enough to obtain stable lines with severe DSB repair defects and specific bleomycin sensitivity. We show that survival after bleomycin or MMS treatment fully depends on active SMC6, whereas attenuation of NSE4 has little or negligible effect. We conclude that circularization of SMC5/6 provided by the kleisin NSE4 is indispensable for the DSB repair, nevertheless there are other functions associated with the SMC5/6 complex, which are critical to survive DNA damage.
Collapse
Affiliation(s)
- Marcela Holá
- Institute of Experimental Botany, The Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Radka Vágnerová
- Institute of Experimental Botany, The Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Karel J Angelis
- Institute of Experimental Botany, The Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic.
| |
Collapse
|
13
|
Perroud PF, Demko V, Ako AE, Khanal R, Bokor B, Pavlovič A, Jásik J, Johansen W. The nuclear GUCT domain-containing DEAD-box RNA helicases govern gametophytic and sporophytic development in Physcomitrium patens. PLANT MOLECULAR BIOLOGY 2021; 107:307-325. [PMID: 33886069 PMCID: PMC8648619 DOI: 10.1007/s11103-021-01152-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/06/2021] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE In Physcomitrium patens, PpRH1/PpRH2 are GUCT-domain-containing DEAD-BOX RNA helicases localize to the nucleus. They are implicated in cell and tissue development in all stages of the moss life cycle. ABSTRACT The DEAD-box-containing RNA helicase family encompasses a large and functionally important group of enzymes involved in cellular processes committed to the metabolism of RNA, including its transcription, processing, transport, translation and decay. Studies indicate this protein family has implied roles in plant vegetative and reproductive developmental processes as well as response to environmental stresses such has cold and high salinity. We focus here on a small conserved sub-group of GUCT domain-containing RNA helicase in the moss Physcomitrium patens. Phylogenetic analysis shows that RNA helicases containing the GUCT domain form a distinct conserved clade across the green lineage. In this clade, the P. patens genome possesses two closely related paralogues RNA helicases predicted to be nuclear, PpRH1 and PpRH2. Using in-locus gene fluorescent tagging we show that PpRH1 is localized to the nucleus in protonema. Analysis of PpRH1 and PpRH2 deletions, individually and together, indicates their potential roles in protonema, gametophore and sporophyte cellular and tissue development in P. patens. Additionally, the ultrastructural analysis of phyllid chloroplasts in Δrh2 and Δrh1/2 shows distinct starch granule accumulation under standard growth conditions associated with changes in photosynthetic activity parameters. We could not detect effects of either temperature or stress on protonema growth or PpRH1 and PpRH2 expression. Together, these results suggest that nuclear GUCT-containing RNA helicases play a role primarily in developmental processes directly or indirectly linked to photosynthesis activity in the moss P. patens. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11103-021-01152-w.
Collapse
Affiliation(s)
- Pierre-François Perroud
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043, Marburg, Germany
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Viktor Demko
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 84215, Bratislava, Slovakia
- Plant Science and Biodiversity Center, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovakia
| | - Ako Eugene Ako
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 31, 2318, Hamar, Norway
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell, NG25 0QF, Nottinghamshire, UK
| | - Rajendra Khanal
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 31, 2318, Hamar, Norway
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 84215, Bratislava, Slovakia
- Comenius University in Bratislava Science Park, Ilkovicova 8, 84215, Bratislava, Slovakia
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Ján Jásik
- Plant Science and Biodiversity Center, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovakia
| | - Wenche Johansen
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 31, 2318, Hamar, Norway.
| |
Collapse
|
14
|
Gömann J, Herrfurth C, Zienkiewicz K, Haslam TM, Feussner I. Sphingolipid Δ4-desaturation is an important metabolic step for glycosylceramide formation in Physcomitrium patens. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5569-5583. [PMID: 34111292 PMCID: PMC8318264 DOI: 10.1093/jxb/erab238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/22/2021] [Indexed: 05/24/2023]
Abstract
Glycosylceramides are abundant membrane components in vascular plants and are associated with cell differentiation, organogenesis, and protein secretion. Long-chain base (LCB) Δ4-desaturation is an important structural feature for metabolic channeling of sphingolipids into glycosylceramide formation in plants and fungi. In Arabidopsis thaliana, LCB Δ4-unsaturated glycosylceramides are restricted to pollen and floral tissue, indicating that LCB Δ4-desaturation has a less important overall physiological role in A. thaliana. In the bryophyte Physcomitrium patens, LCB Δ4-desaturation is a feature of the most abundant glycosylceramides of the gametophyte generation. Metabolic changes in the P. patens null mutants for the sphingolipid Δ4-desaturase (PpSD4D) and the glycosylceramide synthase (PpGCS), sd4d-1 and gcs-1, were determined by ultra-performance liquid chromatography coupled with nanoelectrospray ionization and triple quadrupole tandem mass spectrometry analysis. sd4d-1 plants lacked unsaturated LCBs and the most abundant glycosylceramides. gcs-1 plants lacked all glycosylceramides and accumulated hydroxyceramides. While sd4d-1 plants mostly resembled wild-type plants, gcs-1 mutants were impaired in growth and development. These results indicate that LCB Δ4-desaturation is a prerequisite for the formation of the most abundant glycosylceramides in P. patens. However, loss of unsaturated LCBs does not affect plant viability, while blockage of glycosylceramide synthesis in gcs-1 plants causes severe plant growth and development defects.
Collapse
Affiliation(s)
- Jasmin Gömann
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Tegan M Haslam
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Department of Plant Biochemistry, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| |
Collapse
|
15
|
Guyon‐Debast A, Alboresi A, Terret Z, Charlot F, Berthier F, Vendrell‐Mir P, Casacuberta JM, Veillet F, Morosinotto T, Gallois J, Nogué F. A blueprint for gene function analysis through Base Editing in the model plant Physcomitrium (Physcomitrella) patens. THE NEW PHYTOLOGIST 2021; 230:1258-1272. [PMID: 33421132 PMCID: PMC8048939 DOI: 10.1111/nph.17171] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/21/2020] [Indexed: 05/14/2023]
Abstract
CRISPR-Cas9 has proven to be highly valuable for genome editing in plants, including the model plant Physcomitrium patens. However, the fact that most of the editing events produced using the native Cas9 nuclease correspond to small insertions and deletions is a limitation. CRISPR-Cas9 base editors enable targeted mutation of single nucleotides in eukaryotic genomes and therefore overcome this limitation. Here, we report two programmable base-editing systems to induce precise cytosine or adenine conversions in P. patens. Using cytosine or adenine base editors, site-specific single-base mutations can be achieved with an efficiency up to 55%, without off-target mutations. Using the APT gene as a reporter of editing, we could show that both base editors can be used in simplex or multiplex, allowing for the production of protein variants with multiple amino-acid changes. Finally, we set up a co-editing selection system, named selecting modification of APRT to report gene targeting (SMART), allowing up to 90% efficiency site-specific base editing in P. patens. These two base editors will facilitate gene functional analysis in P. patens, allowing for site-specific editing of a given base through single sgRNA base editing or for in planta evolution of a given gene through the production of randomly mutagenised variants using multiple sgRNA base editing.
Collapse
Affiliation(s)
- Anouchka Guyon‐Debast
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersailles78000France
| | | | | | - Florence Charlot
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersailles78000France
| | - Floriane Berthier
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersailles78000France
| | - Pol Vendrell‐Mir
- Centre for Research in Agricultural Genomics CSIC‐IRTA‐UAB‐UBCampus UAB, Edifici CRAG, BellaterraBarcelona08193Spain
| | - Josep M. Casacuberta
- Centre for Research in Agricultural Genomics CSIC‐IRTA‐UAB‐UBCampus UAB, Edifici CRAG, BellaterraBarcelona08193Spain
| | - Florian Veillet
- IGEPPINRAE, Institut AgroUniversité de RennesPloudaniel29260France
| | | | | | - Fabien Nogué
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersailles78000France
| |
Collapse
|
16
|
Goffová I, Fajkus J. The rDNA Loci-Intersections of Replication, Transcription, and Repair Pathways. Int J Mol Sci 2021; 22:1302. [PMID: 33525595 PMCID: PMC7865372 DOI: 10.3390/ijms22031302] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/28/2022] Open
Abstract
Genes encoding ribosomal RNA (rDNA) are essential for cell survival and are particularly sensitive to factors leading to genomic instability. Their repetitive character makes them prone to inappropriate recombinational events arising from collision of transcriptional and replication machineries, resulting in unstable rDNA copy numbers. In this review, we summarize current knowledge on the structure and organization of rDNA, its role in sensing changes in the genome, and its linkage to aging. We also review recent findings on the main factors involved in chromatin assembly and DNA repair in the maintenance of rDNA stability in the model plants Arabidopsis thaliana and the moss Physcomitrella patens, providing a view across the plant evolutionary tree.
Collapse
Affiliation(s)
- Ivana Goffová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic;
- Chromatin Molecular Complexes, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic;
- Chromatin Molecular Complexes, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
| |
Collapse
|
17
|
The Importance of ATM and ATR in Physcomitrella patens DNA Damage Repair, Development, and Gene Targeting. Genes (Basel) 2020; 11:genes11070752. [PMID: 32640722 PMCID: PMC7397299 DOI: 10.3390/genes11070752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Coordinated by ataxia-telangiectasia-mutated (ATM) and ATM and Rad3-related (ATR), two highly conserved kinases, DNA damage repair ensures genome integrity and survival in all organisms. The Arabidopsis thaliana (A. thaliana) orthologues are well characterized and exhibit typical mammalian characteristics. We mutated the Physcomitrellapatens (P. patens) PpATM and PpATR genes by deleting functionally important domains using gene targeting. Both mutants showed growth abnormalities, indicating that these genes, particularly PpATR, are important for normal vegetative development. ATR was also required for repair of both direct and replication-coupled double-strand breaks (DSBs) and dominated the transcriptional response to direct DSBs, whereas ATM was far less important, as shown by assays assessing resistance to DSB induction and SuperSAGE-based transcriptomics focused on DNA damage repair genes. These characteristics differed significantly from the A. thaliana genes but resembled those in yeast (Saccharomyces cerevisiae). PpATR was not important for gene targeting, pointing to differences in the regulation of gene targeting and direct DSB repair. Our analysis suggests that ATM and ATR functions can be substantially diverged between plants. The differences in ATM and ATR reflect the differences in DSB repair pathway choices between A. thaliana and P. patens, suggesting that they represent adaptations to different demands for the maintenance of genome stability.
Collapse
|
18
|
Meyberg R, Perroud PF, Haas FB, Schneider L, Heimerl T, Renzaglia KS, Rensing SA. Characterisation of evolutionarily conserved key players affecting eukaryotic flagellar motility and fertility using a moss model. THE NEW PHYTOLOGIST 2020; 227:440-454. [PMID: 32064607 PMCID: PMC8224819 DOI: 10.1111/nph.16486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/07/2020] [Indexed: 05/18/2023]
Abstract
Defects in flagella/cilia are often associated with infertility and disease. Motile male gametes (sperm cells) are an ancestral eukaryotic trait that has been lost in several lineages like flowering plants. Here, we made use of a phenotypic male fertility difference between two moss (Physcomitrella patens) ecotypes to explore spermatozoid function. We compare genetic and epigenetic variation as well as expression profiles between the Gransden and Reute ecotype to identify a set of candidate genes associated with moss male infertility. We generated a loss-of-function mutant of a coiled-coil domain containing 39 (ccdc39) gene that is part of the flagellar hydin network. Defects in mammal and algal homologues of this gene coincide with a loss of fertility, demonstrating the evolutionary conservation of flagellar function related to male fertility across kingdoms. The Ppccdc39 mutant resembles the Gransden phenotype in terms of male fertility. Potentially, several somatic (epi-)mutations occurred during prolonged vegetative propagation of Gransden, causing regulatory differences of for example the homeodomain transcription factor BELL1. Probably these somatic changes are causative for the observed male fertility defect. We propose that moss spermatozoids might be employed as an easily accessible system to study male infertility of humans and animals in terms of flagellar structure and movement.
Collapse
Affiliation(s)
- Rabea Meyberg
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| | - Pierre-François Perroud
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| | - Fabian B. Haas
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| | - Lucas Schneider
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| | - Thomas Heimerl
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| | - Karen S. Renzaglia
- Department of Plant Biology, Southern Illinois University, Mail Code 6509, 1125 Lincoln Drive, Carbondale, IL 62901, USA
| | - Stefan A. Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| |
Collapse
|
19
|
Perroud PF, Meyberg R, Demko V, Quatrano RS, Olsen OA, Rensing SA. DEK1 displays a strong subcellular polarity during Physcomitrella patens 3D growth. THE NEW PHYTOLOGIST 2020; 226:1029-1041. [PMID: 31913503 DOI: 10.1111/nph.16417] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/24/2019] [Indexed: 05/18/2023]
Abstract
Defective Kernel 1 (DEK1) is genetically at the nexus of the 3D morphogenesis of land plants. We aimed to localize DEK1 in the moss Physcomitrella patens to decipher its function during this process. To detect DEK1 in vivo, we inserted the tdTomato fluorophore into PpDEK1 gene locus. Confocal microscopy coupled with the use of time-gating allowed the precise DEK1 subcellular localization during 3D morphogenesis. DEK1 localization displays a strong polarized signal, as it is restricted to the plasma membrane domain between recently divided cells during the early steps of 3D growth development as well as during the subsequent vegetative growth. The signal furthermore displays a clear developmental pattern because it is only detectable in recently divided and elongating cells. Additionally, DEK1 localization appears to be independent of its calpain domain proteolytic activity. The DEK1 polar subcellular distribution in 3D tissue developing cells defines a functional cellular framework to explain its role in this developmental phase. Also, the observation of DEK1 during spermatogenesis suggests another biological function for this protein in plants. Finally the DEK1-tagged strain generated here provides a biological platform upon which further investigations into 3D developmental processes can be performed.
Collapse
Affiliation(s)
- Pierre-François Perroud
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, Marburg, 35043, Germany
| | - Rabea Meyberg
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, Marburg, 35043, Germany
| | - Viktor Demko
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, Bratislava, 84215, Slovakia
| | - Ralph S Quatrano
- Department of Biology, Washington University in St Louis, One Brookings Dr., Campus, Box 1137, St Louis, MO, 63130, USA
| | - Odd-Arne Olsen
- Norwegian University of Life Sciences, PO Box 5003, Aas, NO-1432, Norway
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, Marburg, 35043, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, Freiburg im Breisgau, 79104, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Hans-Meerwein-Straße 6, Marburg, 35043, Germany
| |
Collapse
|
20
|
Campos ML, Prado GS, Dos Santos VO, Nascimento LC, Dohms SM, da Cunha NB, Ramada MHS, Grossi-de-Sa MF, Dias SC. Mosses: Versatile plants for biotechnological applications. Biotechnol Adv 2020; 41:107533. [PMID: 32151692 DOI: 10.1016/j.biotechadv.2020.107533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 02/03/2023]
Abstract
Mosses have long been recognized as powerful experimental tools for the elucidation of complex processes in plant biology. Recent increases in the availability of sequenced genomes and mutant collections, the establishment of novel technologies for targeted mutagenesis, and the development of viable protocols for large-scale production in bioreactors are now transforming mosses into one of the most versatile tools for biotechnological applications. In the present review, we highlight the astonishing biotechnological potential of mosses and how these plants are being exploited for industrial, pharmaceutical, and environmental applications. We focus on the biological features that support their use as model organisms for basic and applied research, and how these are being leveraged to explore the biotechnological potential in an increasing number of species. Finally, we also provide an overview of the available moss cultivation protocols from an industrial perspective, offering insights into batch operations that are not yet well established or do not even exist in the literature. Our goal is to bolster the use of mosses as factories for the biosynthesis of molecules of interest and to show how these species can be harnessed for the generation of novel and commercially useful bioproducts.
Collapse
Affiliation(s)
- Marcelo Lattarulo Campos
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Guilherme Souza Prado
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Vanessa Olinto Dos Santos
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Lara Camelo Nascimento
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasília, Brasilia, DF, Brazil
| | - Stephan Machado Dohms
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.
| | - Nicolau Brito da Cunha
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasília, Brasilia, DF, Brazil; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Marcelo Henrique Soller Ramada
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasília, Brasilia, DF, Brazil; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.
| | - Maria Fatima Grossi-de-Sa
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.
| | - Simoni Campos Dias
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasília, Brasilia, DF, Brazil; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Biologia Animal, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, Brazil.
| |
Collapse
|
21
|
Vendrell-Mir P, López-Obando M, Nogué F, Casacuberta JM. Different Families of Retrotransposons and DNA Transposons Are Actively Transcribed and May Have Transposed Recently in Physcomitrium ( Physcomitrella) patens. FRONTIERS IN PLANT SCIENCE 2020; 11:1274. [PMID: 32973835 PMCID: PMC7466625 DOI: 10.3389/fpls.2020.01274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/05/2020] [Indexed: 05/07/2023]
Abstract
Similarly to other plant genomes of similar size, more than half of the genome of P. patens is covered by Transposable Elements (TEs). However, the composition and distribution of P. patens TEs is quite peculiar, with Long Terminal Repeat (LTR)-retrotransposons, which form patches of TE-rich regions interleaved with gene-rich regions, accounting for the vast majority of the TE space. We have already shown that RLG1, the most abundant TE in P. patens, is expressed in non-stressed protonema tissue. Here we present a non-targeted analysis of the TE expression based on RNA-Seq data and confirmed by qRT-PCR analyses that shows that, at least four LTR-RTs (RLG1, RLG2, RLC4 and tRLC5) and one DNA transposon (PpTc2) are expressed in P. patens. These TEs are expressed during development or under stresses that P. patens frequently faces, such as dehydratation/rehydratation stresses, suggesting that TEs have ample possibilities to transpose during P. patens life cycle. Indeed, an analysis of the TE polymorphisms among four different P. patens accessions shows that different TE families have recently transposed in this species and have generated genetic variability that may have phenotypic consequences, as a fraction of the TE polymorphisms are within or close to genes. Among the transcribed and mobile TEs, tRLC5 is particularly interesting as it concentrates in a single position per chromosome that could coincide with the centromere, and its expression is specifically induced in young sporophyte, where meiosis takes place.
Collapse
Affiliation(s)
- Pol Vendrell-Mir
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Barcelona, Spain
| | - Mauricio López-Obando
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre of Plant Biology in Uppsala, Uppsala, Sweden
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- *Correspondence: Fabien Nogué, ; Josep M. Casacuberta,
| | - Josep M. Casacuberta
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Barcelona, Spain
- *Correspondence: Fabien Nogué, ; Josep M. Casacuberta,
| |
Collapse
|
22
|
Rathgeb U, Chen M, Buron F, Feddermann N, Schorderet M, Raisin A, Häberli GY, Marc-Martin S, Keller J, Delaux PM, Schaefer DG, Reinhardt D. VAPYRIN-like is required for development of the moss Physcomitrella patens. Development 2020; 147:dev.184762. [DOI: 10.1242/dev.184762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/19/2020] [Indexed: 12/28/2022]
Abstract
The VAPYRIN (VPY) gene in Medicago truncatula and Petunia hybrida is required for arbuscular mycorrhizal (AM) symbiosis. The moss Physcomitrella patens has a close homologue (VPY-like, VPYL), although it does not form AM. Here, we explore the phylogeny of VPY and VPYL in land plants, and we study the expression and developmental function of VPYL in P. patens. We show that PpVPYL is expressed primarily in the protonema, the early filamentous stage of moss development, and later in rhizoids arising from the leafy gametophores and in adult phyllids. Knockout mutants have specific phenotypes in branching of the protonema and in cell division of the leaves (phyllids) in gametophores. The mutants are responsive to auxin and strigolactone, which are involved in the regulation of protonemal branching, indicating that the mutants are not affected in hormonal signaling. Taken together, these results suggest that PpVPYL exerts negative regulation of protonemal branching and of cell division in phyllids. We discuss VPY and VPYL phylogeny and function in land plants in the context of AM symbiosis in angiosperms, and of development in the moss.
Collapse
Affiliation(s)
- Ursina Rathgeb
- Dept. of Biology, University of Fribourg, Fribourg, Switzerland
| | - Min Chen
- Dept. of Biology, University of Fribourg, Fribourg, Switzerland
| | - Flavien Buron
- Dept. of Biology, University of Fribourg, Fribourg, Switzerland
| | | | | | - Axelle Raisin
- Dept. of Biology, University of Fribourg, Fribourg, Switzerland
| | | | | | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Auzeville, Castanet-Tolosan, France
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Auzeville, Castanet-Tolosan, France
| | | | | |
Collapse
|
23
|
Goffová I, Vágnerová R, Peška V, Franek M, Havlová K, Holá M, Zachová D, Fojtová M, Cuming A, Kamisugi Y, Angelis KJ, Fajkus J. Roles of RAD51 and RTEL1 in telomere and rDNA stability in Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:1090-1105. [PMID: 30834585 DOI: 10.1111/tpj.14304] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 05/11/2023]
Abstract
Telomeres and ribosomal RNA genes (rDNA) are essential for cell survival and particularly sensitive to factors affecting genome stability. Here, we examine the role of RAD51 and its antagonist, RTEL1, in the moss Physcomitrella patens. In corresponding mutants, we analyse their sensitivity to DNA damage, the maintenance of telomeres and rDNA, and repair of double-stranded breaks (DSBs) induced by genotoxins with various modes of action. While the loss of RTEL1 results in rapid telomere shortening, concurrent loss of both RAD51 genes has no effect on telomere lengths. We further demonstrate here the linked arrangement of 5S and 45S rRNA genes in P. patens. The spacer between 5S and 18S rRNA genes, especially the region downstream from the transcription start site, shows conspicuous clustering of sites with a high propensity to form quadruplex (G4) structures. Copy numbers of 5S and 18S rDNA are reduced moderately in the pprtel1 mutant, and significantly in the double pprad51-1-2 mutant, with no progression during subsequent cultivation. While reductions in 45S rDNA copy numbers observed in pprtel1 and pprad51-1-2 plants apply also to 5S rDNA, changes in transcript levels are different for 45S and 5S rRNA, indicating their independent transcription by RNA polymerase I and III, respectively. The loss of SOL (Sog One-Like), a transcription factor regulating numerous genes involved in DSB repair, increases the rate of DSB repair in dividing as well as differentiated tissue, and through deactivation of G2/M cell-cycle checkpoint allows the cell-cycle progression manifested as a phenotype resistant to bleomycin.
Collapse
Affiliation(s)
- Ivana Goffová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Radka Vágnerová
- The Czech Academy of Sciences, Institute of Experimental Botany, Na Karlovce 1, CZ-16000, Prague, Czech Republic
| | - Vratislav Peška
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, 612 65, Brno, Czech Republic
| | - Michal Franek
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Kateřina Havlová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Marcela Holá
- The Czech Academy of Sciences, Institute of Experimental Botany, Na Karlovce 1, CZ-16000, Prague, Czech Republic
| | - Dagmar Zachová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Miloslava Fojtová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Andrew Cuming
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Yasuko Kamisugi
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Karel J Angelis
- The Czech Academy of Sciences, Institute of Experimental Botany, Na Karlovce 1, CZ-16000, Prague, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, 612 65, Brno, Czech Republic
| |
Collapse
|
24
|
Guyon-Debast A, Rossetti P, Charlot F, Epert A, Neuhaus JM, Schaefer DG, Nogué F. The XPF-ERCC1 Complex Is Essential for Genome Stability and Is Involved in the Mechanism of Gene Targeting in Physcomitrella patens. FRONTIERS IN PLANT SCIENCE 2019; 10:588. [PMID: 31143199 PMCID: PMC6521618 DOI: 10.3389/fpls.2019.00588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
The XPF-ERCC1 complex, a highly conserved structure-specific endonuclease, functions in multiple DNA repair pathways that are pivotal for maintaining genome stability, including nucleotide excision repair, interstrand crosslink repair, and homologous recombination. XPF-ERCC1 incises double-stranded DNA at double-strand/single-strand junctions, making it an ideal enzyme for processing DNA structures that contain partially unwound strands. Here, we have examined the role of the XPF-ERCC1 complex in the model bryophyte Physcomitrella patens which exhibits uniquely high gene targeting frequencies. We undertook targeted knockout of the Physcomitrella ERCC1 and XPF genes. Mutant analysis shows that the endonuclease complex is essential for resistance to UV-B and to the alkylating agent MMS, and contributes to the maintenance of genome integrity but is also involved in gene targeting in this model plant. Using different constructs we determine whether the function of the XPF-ERCC1 endonuclease complex in gene targeting was removal of 3' non-homologous termini, similar to SSA, or processing of looped-out heteroduplex intermediates. Interestingly, our data suggest a role of the endonuclease in both pathways and have implications for the mechanism of targeted gene replacement in plants and its specificities compared to yeast and mammalian cells.
Collapse
Affiliation(s)
- Anouchka Guyon-Debast
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Patricia Rossetti
- Laboratoire de Biologie Moléculaire et Cellulaire, Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Florence Charlot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Aline Epert
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Jean-Marc Neuhaus
- Laboratoire de Biologie Moléculaire et Cellulaire, Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Didier G. Schaefer
- Laboratoire de Biologie Moléculaire et Cellulaire, Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| |
Collapse
|
25
|
Mara K, Charlot F, Guyon-Debast A, Schaefer DG, Collonnier C, Grelon M, Nogué F. POLQ plays a key role in the repair of CRISPR/Cas9-induced double-stranded breaks in the moss Physcomitrella patens. THE NEW PHYTOLOGIST 2019; 222:1380-1391. [PMID: 30636294 DOI: 10.1111/nph.15680] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/05/2019] [Indexed: 05/19/2023]
Abstract
Double-stranded breaks can be repaired by different mechanisms such as homologous recombination (HR), classical nonhomologous end joining (C-NHEJ) and alternative end joining (Alt-EJ). Polymerase Q (POLQ) has been proposed to be the main factor involved in Alt-EJ-mediated DNA repair. Here we describe the role of POLQ in DNA repair and gene targeting in Physcomitrella patens. The disruption of the POLQ gene does not influence the genetic stability of P. patens nor its development. The polq mutant shows the same sensitivity as wild-type towards most of the genotoxic agents tested (ultraviolet (UV), methyl methanesulfonate (MMS) and cisplatin) with the notable exception of bleomycin for which it shows less sensitivity than the wild-type. Furthermore, we show that POLQ is involved in the repair of CRISPR-Cas9-induced double-stranded breaks in P. patens. We also demonstrate that POLQ is a potential competitor and/or inhibitor of the HR repair pathway. This finding has a consequence in terms of genetic engineering, as in the absence of POLQ the frequency of gene targeting is significantly increased and the number of clean two-sided HR-mediated insertions is enhanced. Therefore, the control of POLQ activity in plants could be a useful strategy to optimize the tools of genome engineering for plant breeding.
Collapse
Affiliation(s)
- Kostlend Mara
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Florence Charlot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Anouchka Guyon-Debast
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Didier G Schaefer
- Laboratory of Cell and Molecular Biology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
| | - Cécile Collonnier
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Mathilde Grelon
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| |
Collapse
|
26
|
Huwe B, Fiedler A, Moritz S, Rabbow E, de Vera JP, Joshi J. Mosses in Low Earth Orbit: Implications for the Limits of Life and the Habitability of Mars. ASTROBIOLOGY 2019; 19:221-232. [PMID: 30742499 DOI: 10.1089/ast.2018.1889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As a part of the European Space Agency mission "EXPOSE-R2" on the International Space Station (ISS), the BIOMEX (Biology and Mars Experiment) experiment investigates the habitability of Mars and the limits of life. In preparation for the mission, experimental verification tests and scientific verification tests simulating different combinations of abiotic space- and Mars-like conditions were performed to analyze the resistance of a range of model organisms. The simulated abiotic space- and Mars-stressors were extreme temperatures, vacuum, and Mars-like surface ultraviolet (UV) irradiation in different atmospheres. We present for the first time simulated space exposure data of mosses using plantlets of the bryophyte genus Grimmia, which is adapted to high altitudinal extreme abiotic conditions at the Swiss Alps. Our preflight tests showed that severe UVR200-400nm irradiation with the maximal dose of 5 and 6.8 × 105 kJ·m-2, respectively, was the only stressor with a negative impact on the vitality with a 37% (terrestrial atmosphere) or 36% reduction (space- and Mars-like atmospheres) in photosynthetic activity. With every exposure to UVR200-400nm 105 kJ·m-2, the vitality of the bryophytes dropped by 6%. No effect was found, however, by any other stressor. As the mosses were still vital after doses of ultraviolet radiation (UVR) expected during the EXPOSE-R2 mission on ISS, we show that this earliest extant lineage of land plants is highly resistant to extreme abiotic conditions.
Collapse
Affiliation(s)
- Björn Huwe
- 1 Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Annelie Fiedler
- 1 Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Sophie Moritz
- 1 Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Elke Rabbow
- 2 Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jean Pierre de Vera
- 3 Astrobiological Laboratories, Management and Infrastructure, Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Jasmin Joshi
- 1 Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
- 4 Institute for Landscape and Open Space, Hochschule für Technik HSR Rapperswil, Rapperswil, Switzerland
| |
Collapse
|
27
|
Whitewoods CD, Cammarata J, Nemec Venza Z, Sang S, Crook AD, Aoyama T, Wang XY, Waller M, Kamisugi Y, Cuming AC, Szövényi P, Nimchuk ZL, Roeder AHK, Scanlon MJ, Harrison CJ. CLAVATA Was a Genetic Novelty for the Morphological Innovation of 3D Growth in Land Plants. Curr Biol 2018; 28:2365-2376.e5. [PMID: 30033333 PMCID: PMC6089843 DOI: 10.1016/j.cub.2018.05.068] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/10/2018] [Accepted: 05/23/2018] [Indexed: 11/24/2022]
Abstract
How genes shape diverse plant and animal body forms is a key question in biology. Unlike animal cells, plant cells are confined by rigid cell walls, and cell division plane orientation and growth rather than cell movement determine overall body form. The emergence of plants on land coincided with a new capacity to rotate stem cell divisions through multiple planes, and this enabled three-dimensional (3D) forms to arise from ancestral forms constrained to 2D growth. The genes involved in this evolutionary innovation are largely unknown. The evolution of 3D growth is recapitulated during the development of modern mosses when leafy shoots arise from a filamentous (2D) precursor tissue. Here, we show that a conserved, CLAVATA peptide and receptor-like kinase pathway originated with land plants and orients stem cell division planes during the transition from 2D to 3D growth in a moss, Physcomitrella. We find that this newly identified role for CLAVATA in regulating cell division plane orientation is shared between Physcomitrella and Arabidopsis. We report that roles for CLAVATA in regulating cell proliferation and cell fate are also shared and that CLAVATA-like peptides act via conserved receptor components in Physcomitrella. Our results suggest that CLAVATA was a genetic novelty enabling the morphological innovation of 3D growth in land plants.
Collapse
Affiliation(s)
- Chris D Whitewoods
- Plant Sciences Department, Cambridge University, Downing Street, Cambridge CB2 3EA, UK
| | - Joseph Cammarata
- Plant Sciences Department, Cambridge University, Downing Street, Cambridge CB2 3EA, UK; Plant Biology Section, School of Integrative Plant Science, Cornell University, Tower Road, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Zoe Nemec Venza
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Stephanie Sang
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Ashley D Crook
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tsuyoshi Aoyama
- Plant Sciences Department, Cambridge University, Downing Street, Cambridge CB2 3EA, UK; School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Xiao Y Wang
- Plant Sciences Department, Cambridge University, Downing Street, Cambridge CB2 3EA, UK
| | - Manuel Waller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Yasuko Kamisugi
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew C Cuming
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrienne H K Roeder
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Tower Road, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Scanlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Tower Road, Ithaca, NY 14853, USA
| | - C Jill Harrison
- Plant Sciences Department, Cambridge University, Downing Street, Cambridge CB2 3EA, UK; School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
28
|
The Moss Physcomitrella patens Is Hyperresistant to DNA Double-Strand Breaks Induced by γ-Irradiation. Genes (Basel) 2018; 9:genes9020076. [PMID: 29414843 PMCID: PMC5852572 DOI: 10.3390/genes9020076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to investigate whether the moss Physcomitrella patens cells are more resistant to ionizing radiation than animal cells. Protoplasts derived from P. patens protonemata were irradiated with γ-rays of 50–1000 gray (Gy). Clonogenicity of the protoplasts decreased in a γ-ray dose-dependent manner. The dose that decreased clonogenicity by half (LD50) was 277 Gy, which indicated that the moss protoplasts were 200-times more radioresistant than human cells. To investigate the mechanism of radioresistance in P. patens, we irradiated protoplasts on ice and initial double-strand break (DSB) yields were measured using the pulsed-field gel electrophoresis assay. Induced DSBs linearly increased dependent on the γ-ray dose and the DSB yield per Gb DNA per Gy was 2.2. The DSB yield in P. patens was half to one-third of those reported in mammals and yeasts, indicating that DSBs are difficult to induce in P. patens. The DSB yield per cell per LD50 dose in P. patens was 311, which is three- to six-times higher than those in mammals and yeasts, implying that P. patens is hyperresistant to DSBs. Physcomitrella patens is indicated to possess unique mechanisms to inhibit DSB induction and provide resistance to high numbers of DSBs.
Collapse
|
29
|
Ulfstedt M, Hu GZ, Johansson M, Ronne H. Testing of Auxotrophic Selection Markers for Use in the Moss Physcomitrella Provides New Insights into the Mechanisms of Targeted Recombination. FRONTIERS IN PLANT SCIENCE 2017; 8:1850. [PMID: 29163580 PMCID: PMC5675891 DOI: 10.3389/fpls.2017.01850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/11/2017] [Indexed: 05/30/2023]
Abstract
The moss Physcomitrella patens is unique among plants in that homologous recombination can be used to knock out genes, just like in yeast. Furthermore, transformed plasmids can be rescued from Physcomitrella back into Escherichia coli, similar to yeast. In the present study, we have tested if a third important tool from yeast molecular genetics, auxotrophic selection markers, can be used in Physcomitrella. Two auxotrophic moss strains were made by knocking out the PpHIS3 gene encoding imidazoleglycerol-phosphate dehydratase, and the PpTRP1 gene encoding phosphoribosylanthranilate isomerase, disrupting the biosynthesis of histidine and tryptophan, respectively. The resulting PpHIS3Δ and PpTRP1Δ knockout strains were unable to grow on medium lacking histidine or tryptophan. The PpHIS3Δ strain was used to test selection of transformants by complementation of an auxotrophic marker. We found that the PpHIS3Δ strain could be complemented by transformation with a plasmid expressing the PpHIS3 gene from the CaMV 35S promoter, allowing the strain to grow on medium lacking histidine. Both linearized plasmids and circular supercoiled plasmids could complement the auxotrophic marker, and plasmids from both types of transformants could be rescued back into E. coli. Plasmids rescued from circular transformants were identical to the original plasmid, whereas plasmids rescued from linearized transformants had deletions generated by recombination between micro-homologies in the plasmids. Our results show that cloning by complementation of an auxotrophic marker works in Physcomitrella, which opens the door for using auxotrophic selection markers in moss molecular genetics. This will facilitate the adaptation of shuttle plasmid dependent methods from yeast molecular genetics for use in Physcomitrella.
Collapse
Affiliation(s)
- Mikael Ulfstedt
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Guo-Zhen Hu
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Monika Johansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hans Ronne
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
30
|
Ako AE, Perroud PF, Innocent J, Demko V, Olsen OA, Johansen W. An intragenic mutagenesis strategy in Physcomitrella patens to preserve intron splicing. Sci Rep 2017; 7:5111. [PMID: 28698618 PMCID: PMC5505980 DOI: 10.1038/s41598-017-05309-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/26/2017] [Indexed: 12/27/2022] Open
Abstract
Gene targeting is a powerful reverse genetics technique for site-specific genome modification. Intrinsic homologous recombination in the moss Physcomitrella patens permits highly effective gene targeting, a characteristic that makes this organism a valuable model for functional genetics. Functional characterization of domains located within a multi-domain protein depends on the ability to generate mutants harboring genetic modifications at internal gene positions while maintaining the reading-frames of the flanking exons. In this study, we designed and evaluated different gene targeting constructs for targeted gene manipulation of sequences corresponding to internal domains of the DEFECTIVE KERNEL1 protein in Physcomitrella patens. Our results show that gene targeting-associated mutagenesis of introns can have adverse effects on splicing, corrupting the normal reading frame of the transcript. We show that successful genetic modification of internal sequences of multi-exon genes depends on gene-targeting strategies which insert the selection marker cassette into the 5' end of the intron and preserve the nucleotide sequence of the targeted intron.
Collapse
Affiliation(s)
- Ako Eugene Ako
- Inland Norway University of Applied Sciences, Holsetgata 31, N-2318, Hamar, Norway
| | - Pierre-François Perroud
- Philipps University Marburg, Plant Cell Biology II, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Joseph Innocent
- Inland Norway University of Applied Sciences, Holsetgata 31, N-2318, Hamar, Norway
| | - Viktor Demko
- Norwegian University of Life Sciences, P.O. Box 5003, N-1432, As, Norway
| | - Odd-Arne Olsen
- Norwegian University of Life Sciences, P.O. Box 5003, N-1432, As, Norway.
| | - Wenche Johansen
- Inland Norway University of Applied Sciences, Holsetgata 31, N-2318, Hamar, Norway.
| |
Collapse
|
31
|
Collonnier C, Guyon-Debast A, Maclot F, Mara K, Charlot F, Nogué F. Towards mastering CRISPR-induced gene knock-in in plants: Survey of key features and focus on the model Physcomitrella patens. Methods 2017; 121-122:103-117. [PMID: 28478103 DOI: 10.1016/j.ymeth.2017.04.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022] Open
Abstract
Beyond its predominant role in human and animal therapy, the CRISPR-Cas9 system has also become an essential tool for plant research and plant breeding. Agronomic applications rely on the mastery of gene inactivation and gene modification. However, if the knock-out of genes by non-homologous end-joining (NHEJ)-mediated repair of the targeted double-strand breaks (DSBs) induced by the CRISPR-Cas9 system is rather well mastered, the knock-in of genes by homology-driven repair or end-joining remains difficult to perform efficiently in higher plants. In this review, we describe the different approaches that can be tested to improve the efficiency of CRISPR-induced gene modification in plants, which include the use of optimal transformation and regeneration protocols, the design of appropriate guide RNAs and donor templates and the choice of nucleases and means of delivery. We also present what can be done to orient DNA repair pathways in the target cells, and we show how the moss Physcomitrella patens can be used as a model plant to better understand what DNA repair mechanisms are involved, and how this knowledge could eventually be used to define more performant strategies of CRISPR-induced gene knock-in.
Collapse
Affiliation(s)
- Cécile Collonnier
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France.
| | - Anouchka Guyon-Debast
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France
| | - François Maclot
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France
| | - Kostlend Mara
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France
| | - Florence Charlot
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France
| | - Fabien Nogué
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France.
| |
Collapse
|
32
|
Collonnier C, Epert A, Mara K, Maclot F, Guyon‐Debast A, Charlot F, White C, Schaefer DG, Nogué F. CRISPR-Cas9-mediated efficient directed mutagenesis and RAD51-dependent and RAD51-independent gene targeting in the moss Physcomitrella patens. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:122-131. [PMID: 27368642 PMCID: PMC5253467 DOI: 10.1111/pbi.12596] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 05/17/2023]
Abstract
The ability to address the CRISPR-Cas9 nuclease complex to any target DNA using customizable single-guide RNAs has now permitted genome engineering in many species. Here, we report its first successful use in a nonvascular plant, the moss Physcomitrella patens. Single-guide RNAs (sgRNAs) were designed to target an endogenous reporter gene, PpAPT, whose inactivation confers resistance to 2-fluoroadenine. Transformation of moss protoplasts with these sgRNAs and the Cas9 coding sequence from Streptococcus pyogenes triggered mutagenesis at the PpAPT target in about 2% of the regenerated plants. Mainly, deletions were observed, most of them resulting from alternative end-joining (alt-EJ)-driven repair. We further demonstrate that, in the presence of a donor DNA sharing sequence homology with the PpAPT gene, most transgene integration events occur by homology-driven repair (HDR) at the target locus but also that Cas9-induced double-strand breaks are repaired with almost equal frequencies by mutagenic illegitimate recombination. Finally, we establish that a significant fraction of HDR-mediated gene targeting events (30%) is still possible in the absence of PpRAD51 protein, indicating that CRISPR-induced HDR is only partially mediated by the classical homologous recombination pathway.
Collapse
Affiliation(s)
- Cécile Collonnier
- INRA Centre de Versailles‐GrignonIJPB (UMR1318)Versailles CedexFrance
| | - Aline Epert
- INRA Centre de Versailles‐GrignonIJPB (UMR1318)Versailles CedexFrance
| | - Kostlend Mara
- INRA Centre de Versailles‐GrignonIJPB (UMR1318)Versailles CedexFrance
| | - François Maclot
- INRA Centre de Versailles‐GrignonIJPB (UMR1318)Versailles CedexFrance
| | | | - Florence Charlot
- INRA Centre de Versailles‐GrignonIJPB (UMR1318)Versailles CedexFrance
| | - Charles White
- Génétique, Reproduction et DéveloppementUMR CNRS 6293Clermont UniversitéINSERM U1103Université Blaise PascalClermont FerrandFrance
| | - Didier G. Schaefer
- Laboratoire de Biologie Moléculaire et CellulaireInstitut de BiologieUniversité de NeuchâtelNeuchâtelSwitzerland
| | - Fabien Nogué
- INRA Centre de Versailles‐GrignonIJPB (UMR1318)Versailles CedexFrance
| |
Collapse
|
33
|
Simple and Efficient Targeting of Multiple Genes Through CRISPR-Cas9 in Physcomitrella patens. G3-GENES GENOMES GENETICS 2016; 6:3647-3653. [PMID: 27613750 PMCID: PMC5100863 DOI: 10.1534/g3.116.033266] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Powerful genome editing technologies are needed for efficient gene function analysis. The CRISPR-Cas9 system has been adapted as an efficient gene-knock-out technology in a variety of species. However, in a number of situations, knocking out or modifying a single gene is not sufficient; this is particularly true for genes belonging to a common family, or for genes showing redundant functions. Like many plants, the model organism Physcomitrella patens has experienced multiple events of polyploidization during evolution that has resulted in a number of families of duplicated genes. Here, we report a robust CRISPR-Cas9 system, based on the codelivery of a CAS9 expressing cassette, multiple sgRNA vectors, and a cassette for transient transformation selection, for gene knock-out in multiple gene families. We demonstrate that CRISPR-Cas9-mediated targeting of five different genes allows the selection of a quintuple mutant, and all possible subcombinations of mutants, in one experiment, with no mutations detected in potential off-target sequences. Furthermore, we confirmed the observation that the presence of repeats in the vicinity of the cutting region favors deletion due to the alternative end joining pathway, for which induced frameshift mutations can be potentially predicted. Because the number of multiple gene families in Physcomitrella is substantial, this tool opens new perspectives to study the role of expanded gene families in the colonization of land by plants.
Collapse
|
34
|
Vives C, Charlot F, Mhiri C, Contreras B, Daniel J, Epert A, Voytas DF, Grandbastien MA, Nogué F, Casacuberta JM. Highly efficient gene tagging in the bryophyte Physcomitrella patens using the tobacco (Nicotiana tabacum) Tnt1 retrotransposon. THE NEW PHYTOLOGIST 2016; 212:759-769. [PMID: 27548747 DOI: 10.1111/nph.14152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/13/2016] [Indexed: 05/23/2023]
Abstract
Because of its highly efficient homologous recombination, the moss Physcomitrella patens is a model organism particularly suited for reverse genetics, but this inherent characteristic limits forward genetic approaches. Here, we show that the tobacco (Nicotiana tabacum) retrotransposon Tnt1 efficiently transposes in P. patens, being the first retrotransposon from a vascular plant reported to transpose in a bryophyte. Tnt1 has a remarkable preference for insertion into genic regions, which makes it particularly suited for gene mutation. In order to stabilize Tnt1 insertions and make it easier to select for insertional mutants, we have developed a two-component system where a mini-Tnt1 with a retrotransposition selectable marker can only transpose when Tnt1 proteins are co-expressed from a separate expression unit. We present a new tool with which to produce insertional mutants in P. patens in a rapid and straightforward manner that complements the existing molecular and genetic toolkit for this model species.
Collapse
Affiliation(s)
- Cristina Vives
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Florence Charlot
- INRA AgroParisTech, IJPB, UMR 1318, INRA centre de Versailles, route de Saint Cyr, 78026, Versailles Cedex, France
| | - Corinne Mhiri
- INRA AgroParisTech, IJPB, UMR 1318, INRA centre de Versailles, route de Saint Cyr, 78026, Versailles Cedex, France
| | - Beatriz Contreras
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Julien Daniel
- INRA AgroParisTech, IJPB, UMR 1318, INRA centre de Versailles, route de Saint Cyr, 78026, Versailles Cedex, France
| | - Aline Epert
- INRA AgroParisTech, IJPB, UMR 1318, INRA centre de Versailles, route de Saint Cyr, 78026, Versailles Cedex, France
| | - Daniel F Voytas
- Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marie-Angèle Grandbastien
- INRA AgroParisTech, IJPB, UMR 1318, INRA centre de Versailles, route de Saint Cyr, 78026, Versailles Cedex, France
| | - Fabien Nogué
- INRA AgroParisTech, IJPB, UMR 1318, INRA centre de Versailles, route de Saint Cyr, 78026, Versailles Cedex, France.
| | - Josep M Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193, Barcelona, Spain.
| |
Collapse
|
35
|
The Transcriptional Response to DNA-Double-Strand Breaks in Physcomitrella patens. PLoS One 2016; 11:e0161204. [PMID: 27537368 PMCID: PMC4990234 DOI: 10.1371/journal.pone.0161204] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022] Open
Abstract
The model bryophyte Physcomitrella patens is unique among plants in supporting the generation of mutant alleles by facile homologous recombination-mediated gene targeting (GT). Reasoning that targeted transgene integration occurs through the capture of transforming DNA by the homology-dependent pathway for DNA double-strand break (DNA-DSB) repair, we analysed the genome-wide transcriptomic response to bleomycin-induced DNA damage and generated mutants in candidate DNA repair genes. Massively parallel (Illumina) cDNA sequencing identified potential participants in gene targeting. Transcripts encoding DNA repair proteins active in multiple repair pathways were significantly up-regulated. These included Rad51, CtIP, DNA ligase 1, Replication protein A and ATR in homology-dependent repair, Xrcc4, DNA ligase 4, Ku70 and Ku80 in non-homologous end-joining and Rad1, Tebichi/polymerase theta, PARP in microhomology-mediated end-joining. Differentially regulated cell-cycle components included up-regulated Rad9 and Hus1 DNA-damage-related checkpoint proteins and down-regulated D-type cyclins and B-type CDKs, commensurate with the imposition of a checkpoint at G2 of the cell cycle characteristic of homology-dependent DNA-DSB repair. Candidate genes, including ATP-dependent chromatin remodelling helicases associated with repair and recombination, were knocked out and analysed for growth defects, hypersensitivity to DNA damage and reduced GT efficiency. Targeted knockout of PpCtIP, a cell-cycle activated mediator of homology-dependent DSB resection, resulted in bleomycin-hypersensitivity and greatly reduced GT efficiency.
Collapse
|
36
|
Demko V, Ako E, Perroud PF, Quatrano R, Olsen OA. The phenotype of the CRINKLY4 deletion mutant of Physcomitrella patens suggests a broad role in developmental regulation in early land plants. PLANTA 2016; 244:275-84. [PMID: 27100110 DOI: 10.1007/s00425-016-2526-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/08/2016] [Indexed: 05/05/2023]
Abstract
Deletion of the ancestral gene of the land plant multigene family of receptor like kinase CR4 in Physcomitrella patens demonstrates involvement in developmental control of gametophytic and sporophytic organs. The CRINKLY4 (CR4) family of receptor kinases in angiosperms consists of three clades, one including CR4, the CR4-related CCR1 and CCR2, a second including CCR3 and CCR4 family members, and a third and more distant clade. In addition to crinkly leaves in maize, which gave rise to the mutant gene name, CR4 is implicated in ovule, embryo, flower and root development in Arabidopsis thaliana. In root tips of the same species the module including a CLAVATA3/ESR-related protein, an Arabidopsis CR4, a CLAVATA1 and a WUSCHEL-related homeobox 5 (CLE40-ACR4-CLV1-WOX5) is implicated in meristem cell regulation. In embryos and shoots, CR4 acts together with A. thaliana MERISTEM LAYER 1 and PROTODERMAL FACTOR 2 to promote A. thaliana epidermis differentiation. Phylogenetic analysis has demonstrated that early land plants, e.g. mosses carry a single ancestral CR4 gene, together with genes encoding the other members of the CLE40-ACR4-CLV1-WOX5 signaling module. Here we show that CR4 serves as a broad regulator of morphogenesis both in gametophyte phyllids, archegonia and in sporophyte epidermis of the moss Physcomitrella patens. The phenotype of the CR4 deletion mutant in moss provides insight into the role of the ancestral CR4 gene as a regulator of development in early land plants.
Collapse
Affiliation(s)
- Viktor Demko
- Norwegian University of Life Sciences, P.O.Box 5003, 1432, Ås, Norway
- Department of Plant Physiology, Faculty of Natural Sciences, Mlynska Dolina, 84215, Bratislava, Slovakia
| | - Eugene Ako
- Department of Natural Science and Technology, Hedmark University of Applied Sciences, 2318, Hamar, Norway
| | - Pierre-François Perroud
- Department of Biology, Washington University in St Louis, Campus Box 1137, St. Louis, MO, 63130, USA
- Plant Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Ralph Quatrano
- Department of Biology, Washington University in St Louis, Campus Box 1137, St. Louis, MO, 63130, USA
| | - Odd-Arne Olsen
- Norwegian University of Life Sciences, P.O.Box 5003, 1432, Ås, Norway.
- Department of Natural Science and Technology, Hedmark University of Applied Sciences, 2318, Hamar, Norway.
| |
Collapse
|
37
|
Wendeler E, Zobell O, Chrost B, Reiss B. Recombination products suggest the frequent occurrence of aberrant gene replacement in the moss Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:548-558. [PMID: 25557140 DOI: 10.1111/tpj.12749] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/20/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
In gene replacement, a variant of gene targeting, transformed DNA integrates into the genome by homologous recombination (HR) to replace resident sequences. Gene replacement in the moss Physcomitrella patens is extremely efficient, but often large amounts of additional DNA are integrated at the target locus. A detailed analysis of recombination junctions of PpCOL2 gene knockout mutants shows that the integrated DNA can be highly rearranged. Our data suggest that the replaced sequences were excised by HR and became integrated back into the genome by non-homologous end-joining (NHEJ). RAD51-mediated strand-invasion and subsequent strand-exchange is central to the two-end invasion pathway, the major gene replacement pathway in yeast. In this pathway, integration is initiated by the free ends of a single replacement vector-derived donor molecule which then integrates as an entity. Gene replacement in P. patens is entirely RAD51-dependent suggesting the existence of a pathway mechanistically similar to two-end invasion. However, invasion of the two ends does not seem to be stringently coordinated in P. patens. Actually, often only one fragment end became integrated by HR, or one-sided integration of two independent donor fragments occurred simultaneously leading to a double-strand break that is subsequently sealed by NHEJ and thus causes the observed rearrangements.
Collapse
Affiliation(s)
- Edelgard Wendeler
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | | | | | | |
Collapse
|
38
|
Demko V, Perroud PF, Johansen W, Delwiche CF, Cooper ED, Remme P, Ako AE, Kugler KG, Mayer KFX, Quatrano R, Olsen OA. Genetic analysis of DEFECTIVE KERNEL1 loop function in three-dimensional body patterning in Physcomitrella patens. PLANT PHYSIOLOGY 2014; 166:903-19. [PMID: 25185121 PMCID: PMC4213117 DOI: 10.1104/pp.114.243758] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/31/2014] [Indexed: 05/02/2023]
Abstract
DEFECTIVE KERNEL1 (DEK1) of higher plants plays an essential role in position-dependent signaling and consists of a large transmembrane domain (MEM) linked to a protease catalytic domain and a regulatory domain. Here, we show that the postulated sensory Loop of the MEM domain plays an important role in the developmental regulation of DEK1 activity in the moss Physcomitrella patens. Compared with P. patens lacking DEK1 (∆dek1), the dek1∆loop mutant correctly positions the division plane in the bud apical cell. In contrast with an early developmental arrest of ∆dek1 buds, dek1∆loop develops aberrant gametophores lacking expanded phyllids resulting from misregulation of mitotic activity. In contrast with the highly conserved sequence of the protease catalytic domain, the Loop is highly variable in land plants. Functionally, the sequence from Marchantia polymorpha fully complements the dek1∆loop phenotype, whereas sequences from maize (Zea mays) and Arabidopsis (Arabidopsis thaliana) give phenotypes with retarded growth and affected phyllid development. Bioinformatic analysis identifies MEM as a member of the Major Facilitator Superfamily, membrane transporters reacting to stimuli from the external environment. Transcriptome analysis comparing wild-type and ∆dek1 tissues identifies an effect on two groups of transcripts connected to dek1 mutant phenotypes: transcripts related to cell wall remodeling and regulation of the AINTEGUMENTA, PLETHORA, and BABY BOOM2 (APB2) and APB3 transcription factors known to regulate bud initiation. Finally, sequence data support the hypothesis that the advanced charophyte algae that evolved into ancestral land plants lost cytosolic calpains, retaining DEK1 as the sole calpain in the evolving land plant lineage.
Collapse
Affiliation(s)
- Viktor Demko
- Norwegian University of Life Sciences, N-1432 As, Norway (V.D., O.-A.O.);Department of Biology, Washington University, St. Louis, Missouri 63130 (P.-F.P., R.Q.);Department of Natural Science and Technology, Hedmark University College, N-2318 Hamar, Norway (W.J., P.R., A.E.A., O.-A.O.);Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (C.F.D., E.D.C.); andMIPS/IBIS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany (K.G.K., K.F.X.M.)
| | - Pierre-François Perroud
- Norwegian University of Life Sciences, N-1432 As, Norway (V.D., O.-A.O.);Department of Biology, Washington University, St. Louis, Missouri 63130 (P.-F.P., R.Q.);Department of Natural Science and Technology, Hedmark University College, N-2318 Hamar, Norway (W.J., P.R., A.E.A., O.-A.O.);Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (C.F.D., E.D.C.); andMIPS/IBIS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany (K.G.K., K.F.X.M.)
| | - Wenche Johansen
- Norwegian University of Life Sciences, N-1432 As, Norway (V.D., O.-A.O.);Department of Biology, Washington University, St. Louis, Missouri 63130 (P.-F.P., R.Q.);Department of Natural Science and Technology, Hedmark University College, N-2318 Hamar, Norway (W.J., P.R., A.E.A., O.-A.O.);Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (C.F.D., E.D.C.); andMIPS/IBIS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany (K.G.K., K.F.X.M.)
| | - Charles F Delwiche
- Norwegian University of Life Sciences, N-1432 As, Norway (V.D., O.-A.O.);Department of Biology, Washington University, St. Louis, Missouri 63130 (P.-F.P., R.Q.);Department of Natural Science and Technology, Hedmark University College, N-2318 Hamar, Norway (W.J., P.R., A.E.A., O.-A.O.);Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (C.F.D., E.D.C.); andMIPS/IBIS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany (K.G.K., K.F.X.M.)
| | - Endymion D Cooper
- Norwegian University of Life Sciences, N-1432 As, Norway (V.D., O.-A.O.);Department of Biology, Washington University, St. Louis, Missouri 63130 (P.-F.P., R.Q.);Department of Natural Science and Technology, Hedmark University College, N-2318 Hamar, Norway (W.J., P.R., A.E.A., O.-A.O.);Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (C.F.D., E.D.C.); andMIPS/IBIS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany (K.G.K., K.F.X.M.)
| | - Pål Remme
- Norwegian University of Life Sciences, N-1432 As, Norway (V.D., O.-A.O.);Department of Biology, Washington University, St. Louis, Missouri 63130 (P.-F.P., R.Q.);Department of Natural Science and Technology, Hedmark University College, N-2318 Hamar, Norway (W.J., P.R., A.E.A., O.-A.O.);Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (C.F.D., E.D.C.); andMIPS/IBIS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany (K.G.K., K.F.X.M.)
| | - Ako Eugene Ako
- Norwegian University of Life Sciences, N-1432 As, Norway (V.D., O.-A.O.);Department of Biology, Washington University, St. Louis, Missouri 63130 (P.-F.P., R.Q.);Department of Natural Science and Technology, Hedmark University College, N-2318 Hamar, Norway (W.J., P.R., A.E.A., O.-A.O.);Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (C.F.D., E.D.C.); andMIPS/IBIS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany (K.G.K., K.F.X.M.)
| | - Karl G Kugler
- Norwegian University of Life Sciences, N-1432 As, Norway (V.D., O.-A.O.);Department of Biology, Washington University, St. Louis, Missouri 63130 (P.-F.P., R.Q.);Department of Natural Science and Technology, Hedmark University College, N-2318 Hamar, Norway (W.J., P.R., A.E.A., O.-A.O.);Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (C.F.D., E.D.C.); andMIPS/IBIS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany (K.G.K., K.F.X.M.)
| | - Klaus F X Mayer
- Norwegian University of Life Sciences, N-1432 As, Norway (V.D., O.-A.O.);Department of Biology, Washington University, St. Louis, Missouri 63130 (P.-F.P., R.Q.);Department of Natural Science and Technology, Hedmark University College, N-2318 Hamar, Norway (W.J., P.R., A.E.A., O.-A.O.);Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (C.F.D., E.D.C.); andMIPS/IBIS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany (K.G.K., K.F.X.M.)
| | - Ralph Quatrano
- Norwegian University of Life Sciences, N-1432 As, Norway (V.D., O.-A.O.);Department of Biology, Washington University, St. Louis, Missouri 63130 (P.-F.P., R.Q.);Department of Natural Science and Technology, Hedmark University College, N-2318 Hamar, Norway (W.J., P.R., A.E.A., O.-A.O.);Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (C.F.D., E.D.C.); andMIPS/IBIS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany (K.G.K., K.F.X.M.)
| | - Odd-Arne Olsen
- Norwegian University of Life Sciences, N-1432 As, Norway (V.D., O.-A.O.);Department of Biology, Washington University, St. Louis, Missouri 63130 (P.-F.P., R.Q.);Department of Natural Science and Technology, Hedmark University College, N-2318 Hamar, Norway (W.J., P.R., A.E.A., O.-A.O.);Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (C.F.D., E.D.C.); andMIPS/IBIS, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany (K.G.K., K.F.X.M.)
| |
Collapse
|
39
|
Charlot F, Chelysheva L, Kamisugi Y, Vrielynck N, Guyon A, Epert A, Le Guin S, Schaefer DG, Cuming AC, Grelon M, Nogué F. RAD51B plays an essential role during somatic and meiotic recombination in Physcomitrella. Nucleic Acids Res 2014; 42:11965-78. [PMID: 25260587 PMCID: PMC4231755 DOI: 10.1093/nar/gku890] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic RecA homologue Rad51 is a key factor in homologous recombination and recombinational repair. Rad51-like proteins have been identified in yeast (Rad55, Rad57 and Dmc1), plants and vertebrates (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3 and DMC1). RAD51 and DMC1 are the strand-exchange proteins forming a nucleofilament for strand invasion, however, the function of the paralogues in the process of homologous recombination is less clear. In yeast the two Rad51 paralogues, Rad55 and Rad57, have been shown to be involved in somatic and meiotic HR and they are essential to the formation of the Rad51/DNA nucleofilament counterbalancing the anti-recombinase activity of the SRS2 helicase. Here, we examined the role of RAD51B in the model bryophyte Physcomitrella patens. Mutant analysis shows that RAD51B is essential for the maintenance of genome integrity, for resistance to DNA damaging agents and for gene targeting. Furthermore, we set up methods to investigate meiosis in Physcomitrella and we demonstrate that the RAD51B protein is essential for meiotic homologous recombination. Finally, we show that all these functions are independent of the SRS2 anti-recombinase protein, which is in striking contrast to what is found in budding yeast where the RAD51 paralogues are fully dependent on the SRS2 anti-recombinase function.
Collapse
Affiliation(s)
- Florence Charlot
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| | - Liudmila Chelysheva
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| | - Yasuko Kamisugi
- Centre for Plant Sciences, Faculty of Biological Sciences, Leeds University, Leeds LS2 9JT, UK
| | - Nathalie Vrielynck
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| | - Anouchka Guyon
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| | - Aline Epert
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| | - Sylvia Le Guin
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| | - Didier G Schaefer
- Laboratoire de Biologie Moleculaire et Cellulaire, Institut de Biologie, Universite de Neuchatel, rue Emile-Argand 11, CH-2007 Neuchatel, Switzerland
| | - Andrew C Cuming
- Centre for Plant Sciences, Faculty of Biological Sciences, Leeds University, Leeds LS2 9JT, UK
| | - Mathilde Grelon
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| | - Fabien Nogué
- INRA, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin UMR1318, Saclay Plant Sciences, Versailles, France
| |
Collapse
|
40
|
Štafa A, Miklenić M, Zunar B, Lisnić B, Symington LS, Svetec IK. Sgs1 and Exo1 suppress targeted chromosome duplication during ends-in and ends-out gene targeting. DNA Repair (Amst) 2014; 22:12-23. [PMID: 25089886 DOI: 10.1016/j.dnarep.2014.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/05/2014] [Accepted: 07/09/2014] [Indexed: 10/24/2022]
Abstract
Gene targeting is extremely efficient in the yeast Saccharomyces cerevisiae. It is performed by transformation with a linear, non-replicative DNA fragment carrying a selectable marker and containing ends homologous to the particular locus in a genome. However, even in S. cerevisiae, transformation can result in unwanted (aberrant) integration events, the frequency and spectra of which are quite different for ends-out and ends-in transformation assays. It has been observed that gene replacement (ends-out gene targeting) can result in illegitimate integration, integration of the transforming DNA fragment next to the target sequence and duplication of a targeted chromosome. By contrast, plasmid integration (ends-in gene targeting) is often associated with multiple targeted integration events but illegitimate integration is extremely rare and a targeted chromosome duplication has not been reported. Here we systematically investigated the influence of design of the ends-out assay on the success of targeted genetic modification. We have determined transformation efficiency, fidelity of gene targeting and spectra of all aberrant events in several ends-out gene targeting assays designed to insert, delete or replace a particular sequence in the targeted region of the yeast genome. Furthermore, we have demonstrated for the first time that targeted chromosome duplications occur even during ends-in gene targeting. Most importantly, the whole chromosome duplication is POL32 dependent pointing to break-induced replication (BIR) as the underlying mechanism. Moreover, the occurrence of duplication of the targeted chromosome was strikingly increased in the exo1Δ sgs1Δ double mutant but not in the respective single mutants demonstrating that the Exo1 and Sgs1 proteins independently suppress whole chromosome duplication during gene targeting.
Collapse
Affiliation(s)
- Anamarija Štafa
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.
| | - Marina Miklenić
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia
| | - Bojan Zunar
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia
| | - Berislav Lisnić
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia
| | - Lorraine S Symington
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Ivan-Krešimir Svetec
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia.
| |
Collapse
|
41
|
Perroud PF, Demko V, Johansen W, Wilson RC, Olsen OA, Quatrano RS. Defective Kernel 1 (DEK1) is required for three-dimensional growth in Physcomitrella patens. THE NEW PHYTOLOGIST 2014; 203:794-804. [PMID: 24844771 PMCID: PMC4285852 DOI: 10.1111/nph.12844] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/04/2014] [Indexed: 05/18/2023]
Abstract
Orientation of cell division is critical for plant morphogenesis. This is evident in the formation and function of meristems and for morphogenetic transitions. Mosses undergo such transitions: from two-dimensional tip-growing filaments (protonema) to the generation of three-dimensional leaf-like structures (gametophores). The Defective Kernel 1 (DEK1) protein plays a key role in the perception of and/or response to positional cues that specify the formation and function of the epidermal layer in developing seeds of flowering plants. The moss Physcomitrella patens contains the highly conserved DEK1 gene. Using efficient gene targeting, we generated a precise PpDEK1 deletion (∆dek1), which resulted in normal filamentous growth of protonema. Two distinct mutant phenotypes were observed: an excess of buds on the protonema, and abnormal cell divisions in the emerging buds resulting in developmental arrest and the absence of three-dimensional growth. Overexpression of a complete PpDEK1 cDNA, or the calpain domain of PpDEK1 alone, successfully complements both phenotypes. These results in P. patens demonstrate the morphogenetic importance of the DEK1 protein in the control of oriented cell divisions. As it is not for protonema, it will allow dissection of the structure/function relationships of the different domains of DEK1 using gene targeting in null mutant background.
Collapse
Affiliation(s)
- Pierre-François Perroud
- Department of Biology, Washington University in St Louis, Campus Box 1137, St Louis, MO, 63130-4899, USA
| | | | | | | | | | | |
Collapse
|
42
|
Lindner AC, Lang D, Seifert M, Podlešáková K, Novák O, Strnad M, Reski R, von Schwartzenberg K. Isopentenyltransferase-1 (IPT1) knockout in Physcomitrella together with phylogenetic analyses of IPTs provide insights into evolution of plant cytokinin biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2533-43. [PMID: 24692654 PMCID: PMC4036517 DOI: 10.1093/jxb/eru142] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The moss Physcomitrella patens is part of an early divergent clade of land plants utilizing the plant hormone cytokinin for growth control. The rate-limiting step of cytokinin biosynthesis is mediated by isopentenyltransferases (IPTs), found in land plants either as adenylate-IPTs or as tRNA-IPTs. Although a dominant part of cytokinins in flowering plants are synthesized by adenylate-IPTs, the Physcomitrella genome only encodes homologues of tRNA-IPTs. This study therefore looked into the question of whether cytokinins in moss derive from tRNA exclusively. Targeted gene knockout of ipt1 (d|ipt1) along with localization studies revealed that the chloroplast-bound IPT1 was almost exclusively responsible for the A37 prenylation of tRNA in Physcomitrella. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)-based cytokinin profiling demonstrated that the total amount of all free cytokinins in tissue was almost unaffected. However, the knockout plants showed increased levels of the N (6) -isopentenyladenine (iP)- and trans-zeatin (tZ)-type cytokinins, considered to provide active forms, while cis-zeatin (cZ)-type cytokinins were reduced. The data provide evidence for an additional and unexpected tRNA-independent cytokinin biosynthetic pathway in moss. Comprehensive phylogenetic analysis indicates a diversification of tRNA-IPT-like genes in bryophytes probably related to additional functions.
Collapse
Affiliation(s)
- Ann-Cathrin Lindner
- University of Hamburg, Biocenter Klein Flottbek, Ohnhorststraße 18, D-22609 Hamburg, Germany
| | - Daniel Lang
- University of Freiburg, Faculty of Biology, Plant Biotechnology, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Maike Seifert
- University of Hamburg, Biocenter Klein Flottbek, Ohnhorststraße 18, D-22609 Hamburg, Germany
| | - Kateřina Podlešáková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic Palacký University, Department of Biochemistry, Šlechtitelů 11, 78371 Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Ralf Reski
- University of Freiburg, Faculty of Biology, Plant Biotechnology, Schaenzlestr. 1, D-79104 Freiburg, Germany FRIAS-Freiburg Institute for Advanced Studies, Freiburg, Germany BIOSS-Centre for Biological Signalling Studies, Freiburg, Germany
| | | |
Collapse
|
43
|
Thole JM, Perroud PF, Quatrano RS, Running MP. Prenylation is required for polar cell elongation, cell adhesion, and differentiation in Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:441-451. [PMID: 24634995 DOI: 10.1111/tpj.12484] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/16/2014] [Accepted: 02/12/2014] [Indexed: 06/03/2023]
Abstract
Protein prenylation is required for a variety of growth and developmental processes in flowering plants. Here we report the consequences of loss of function of all known prenylation subunits in the moss Physcomitrella patens. As in Arabidopsis, protein farnesyltransferase and protein geranylgeranyltransferase type I are not required for viability. However, protein geranylgeranyltransferase type I activity is required for cell adhesion, polar cell elongation, and cell differentiation. Loss of protein geranylgeranyltransferase activity results in colonies of round, single-celled organisms that resemble unicellular algae. The loss of protein farnesylation is not as severe but also results in polar cell elongation and differentiation defects. The complete loss of Rab geranylgeranyltransferase activity appears to be lethal in P. patens. Labeling with antibodies to cell wall components support the lack of polarity establishment and the undifferentiated state of geranylgeranyltransferase type I mutant plants. Our results show that prenylated proteins play key roles in P. patens development and differentiation processes.
Collapse
Affiliation(s)
- Julie M Thole
- Donald Danforth Plant Science Center, 975 N Warson Road, Saint Louis, MO, 63132, USA
| | | | | | | |
Collapse
|
44
|
Da Ines O, White CI. Gene Site-Specific Insertion in Plants. SITE-DIRECTED INSERTION OF TRANSGENES 2013. [DOI: 10.1007/978-94-007-4531-5_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
45
|
Delporte F, Jacquemin JM, Masson P, Watillon B. Insights into the regenerative property of plant cells and their receptivity to transgenesis: wheat as a research case study. PLANT SIGNALING & BEHAVIOR 2012; 7:1608-20. [PMID: 23072995 PMCID: PMC3578902 DOI: 10.4161/psb.22424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
From a holistic perspective, the discovery of cellular plasticity, a very interesting property of totipotency, underlies many topical issues in biology with important medical applications, while transgenesis is a core research tool in biology. Partially known, some basic mechanisms involved in the regenerative property of cells and in their receptivity to transgenesis are common to plant and animal cells and highlight the principle of the unity of life. Transgenesis provides an important investigative instrument in plant physiology and is regarded as a valuable tool for crop improvement. The economic, social, cultural and scientific importance of cereals has led to a rich stream of research into their genetics, biology and evolution. Sustained efforts to achieve the results obtained in the fields of genetic engineering and applied biotechnology reflect this deep interest. Difficulties encountered in creating genetically modified cereals, especially wheat, highlighted the central notions of tissue culture regeneration and transformation competencies. From the perspective of combining or encountering these competencies in the same cell lineage, this reputedly recalcitrant species provides a stimulating biological system in which to explore the physiological and genetic complexity of both competencies. The former involves two phases, dedifferentiation and redifferentiation. Cells undergo development switches regulated by extrinsic and intrinsic factors. The re-entry into the cell division cycle progressively culminates in the development of organized structures. This is achieved by global chromatin reorganization associated with the reprogramming of the gene expression pattern. The latter is linked with surveillance mechanisms and DNA repair, aimed at maintaining genome integrity before cells move into mitosis, and with those mechanisms aimed at genome expression control and regulation. In order to clarify the biological basis of these two physiological properties and their interconnectedness, we look at both competencies at the core of defense/adaptive mechanisms and survival, between undifferentiated cell proliferation and organization, constituting a transition phase between two different dynamic regimes, a typical feature of critical dynamic systems. Opting for a candidate-gene strategy, several gene families could be proposed as relevant targets for investigating this hypothesis at the molecular level.
Collapse
Affiliation(s)
- Fabienne Delporte
- Walloon Agricultural Research Centre (CRAw), Department of Life Sciences, Bioengineering Unit, Gembloux, Belgium.
| | | | | | | |
Collapse
|
46
|
Vivancos J, Spinner L, Mazubert C, Charlot F, Paquet N, Thareau V, Dron M, Nogué F, Charon C. The function of the RNA-binding protein TEL1 in moss reveals ancient regulatory mechanisms of shoot development. PLANT MOLECULAR BIOLOGY 2012; 78:323-336. [PMID: 22170036 DOI: 10.1007/s11103-011-9867-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 11/28/2011] [Indexed: 05/31/2023]
Abstract
The shoot represents the basic body plan in land plants. It consists of a repeated structure composed of stems and leaves. Whereas vascular plants generate a shoot in their diploid phase, non-vascular plants such as mosses form a shoot (called the gametophore) in their haploid generation. The evolution of regulatory mechanisms or genetic networks used in the development of these two kinds of shoots is unclear. TERMINAL EAR1-like genes have been involved in diploid shoot development in vascular plants. Here, we show that disruption of PpTEL1 from the moss Physcomitrella patens, causes reduced protonema growth and gametophore initiation, as well as defects in gametophore development. Leafy shoots formed on ΔTEL1 mutants exhibit shorter stems with more leaves per shoot, suggesting an accelerated leaf initiation (shortened plastochron), a phenotype shared with the Poaceae vascular plants TE1 and PLA2/LHD2 mutants. Moreover, the positive correlation between plastochron length and leaf size observed in ΔTEL1 mutants suggests a conserved compensatory mechanism correlating leaf growth and leaf initiation rate that would minimize overall changes in plant biomass. The RNA-binding protein encoded by PpTEL1 contains two N-terminus RNA-recognition motifs, and a third C-terminus non-canonical RRM, specific to TEL proteins. Removal of the PpTEL1 C-terminus (including this third RRM) or only 16-18 amino acids within it seriously impairs PpTEL1 function, suggesting a critical role for this third RRM. These results show a conserved function of the RNA-binding PpTEL1 protein in the regulation of shoot development, from early ancestors to vascular plants, that depends on the third TEL-specific RRM.
Collapse
Affiliation(s)
- Julien Vivancos
- Institut de Biologie des Plantes-CNRS (UMR8618), Université Paris-Sud 11, Saclay Plant Sciences, 91405 Orsay Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lavy M, Prigge MJ, Tigyi K, Estelle M. The cyclophilin DIAGEOTROPICA has a conserved role in auxin signaling. Development 2012; 139:1115-24. [PMID: 22318226 DOI: 10.1242/dev.074831] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Auxin has a fundamental role throughout the life cycle of land plants. Previous studies showed that the tomato cyclophilin DIAGEOTROPICA (DGT) promotes auxin response, but its specific role in auxin signaling remains unknown. We sequenced candidate genes in auxin-insensitive mutants of Physcomitrella patens and identified mutations in highly conserved regions of the moss ortholog of tomato DGT. As P. patens and tomato diverged from a common ancestor more than 500 million years ago, this result suggests a conserved and central role for DGT in auxin signaling in land plants. In this study we characterize the P. patens dgt (Ppdgt) mutants and show that their response to auxin is altered, affecting the chloronema-to-caulonema transition and the development of rhizoids. To gain an understanding of PpDGT function we tested its interactions with the TIR1/AFB-dependent auxin signaling pathway. We did not observe a clear effect of the Ppdgt mutation on the degradation of Aux/IAA proteins. However, the induction of several auxin-regulated genes was reduced. Genetic analysis revealed that dgt can suppress the phenotype conferred by overexpression of an AFB auxin receptor. Our results indicate that the DGT protein affects auxin-induced transcription and has a conserved function in auxin regulation in land plants.
Collapse
Affiliation(s)
- Meirav Lavy
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
48
|
Dittrich ACN, Devarenne TP. Characterization of a PDK1 homologue from the moss Physcomitrella patens. PLANT PHYSIOLOGY 2012; 158:1018-33. [PMID: 22158524 PMCID: PMC3271739 DOI: 10.1104/pp.111.184572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The serine/threonine protein kinase 3-phosphoinositide-dependent protein kinase 1 (PDK1) is a highly conserved eukaryotic kinase that is a central regulator of many AGC kinase subfamily members. Through its regulation of AGC kinases, PDK1 controls many basic cellular processes, from translation to cell survival. While many of these PDK1-regulated processes are conserved across kingdoms, it is not well understood how PDK1 may have evolved within kingdoms. In order to better understand PDK1 evolution within plants, we have isolated and characterized the PDK1 gene from the moss Physcomitrella patens (PpPDK1), a nonvascular representative of early land plants. PpPDK1 is similar to other plant PDK1s in that it can functionally complement a yeast PDK1 knockout line. However, unlike PDK1 from other plants, the P. patens PDK1 protein does not bind phospholipids due to a lack of the lipid-binding pleckstrin homology domain, which is used for lipid-mediated regulation of PDK1 activity. Sequence analysis of several PDK1 proteins suggests that lipid regulation of PDK1 may not commonly occur in algae and nonvascular land plants. PpPDK1 can phosphorylate AGC kinase substrates from tomato (Solanum lycopersicum) and P. patens at the predicted PDK1 phosphorylation site, indicating that the PpPDK1 substrate phosphorylation site is conserved with higher plants. We have also identified residues within the PpPDK1 kinase domain that affect kinase activity and show that a mutant with highly reduced kinase activity can still confer cell viability in both yeast and P. patens. These studies lay the foundation for further analysis of the evolution of PDK1 within plants.
Collapse
|
49
|
Kamisugi Y, Schaefer DG, Kozak J, Charlot F, Vrielynck N, Holá M, Angelis KJ, Cuming AC, Nogué F. MRE11 and RAD50, but not NBS1, are essential for gene targeting in the moss Physcomitrella patens. Nucleic Acids Res 2011; 40:3496-510. [PMID: 22210882 PMCID: PMC3333855 DOI: 10.1093/nar/gkr1272] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The moss Physcomitrella patens is unique among plant models for the high frequency with which targeted transgene insertion occurs via homologous recombination. Transgene integration is believed to utilize existing machinery for the detection and repair of DNA double-strand breaks (DSBs). We undertook targeted knockout of the Physcomitrella genes encoding components of the principal sensor of DNA DSBs, the MRN complex. Loss of function of PpMRE11 or PpRAD50 strongly and specifically inhibited gene targeting, whilst rates of untargeted transgene integration were relatively unaffected. In contrast, disruption of the PpNBS1 gene retained the wild-type capacity to integrate transforming DNA efficiently at homologous loci. Analysis of the kinetics of DNA-DSB repair in wild-type and mutant plants by single-nucleus agarose gel electrophoresis revealed that bleomycin-induced fragmentation of genomic DNA was repaired at approximately equal rates in each genotype, although both the Ppmre11 and Pprad50 mutants exhibited severely restricted growth and development and enhanced sensitivity to UV-B and bleomycin-induced DNA damage, compared with wild-type and Ppnbs1 plants. This implies that while extensive DNA repair can occur in the absence of a functional MRN complex; this is unsupervised in nature and results in the accumulation of deleterious mutations incompatible with normal growth and development.
Collapse
Affiliation(s)
- Yasuko Kamisugi
- Centre for Plant Sciences, Faculty of Biological Sciences, Leeds University, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Waterworth WM, Drury GE, Bray CM, West CE. Repairing breaks in the plant genome: the importance of keeping it together. THE NEW PHYTOLOGIST 2011; 192:805-822. [PMID: 21988671 DOI: 10.1111/j.1469-8137.2011.03926.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
DNA damage threatens the integrity of the genome and has potentially lethal consequences for the organism. Plant DNA is under continuous assault from endogenous and environmental factors and effective detection and repair of DNA damage are essential to ensure the stability of the genome. One of the most cytotoxic forms of DNA damage are DNA double-strand breaks (DSBs) which fragment chromosomes. Failure to repair DSBs results in loss of large amounts of genetic information which, following cell division, severely compromises daughter cells that receive fragmented chromosomes. This review will survey recent advances in our understanding of plant responses to chromosomal breaks, including the sources of DNA damage, the detection and signalling of DSBs, mechanisms of DSB repair, the role of chromatin structure in repair, DNA damage signalling and the link between plant recombination pathways and transgene integration. These mechanisms are of critical importance for maintenance of plant genome stability and integrity under stress conditions and provide potential targets for the improvement of crop plants both for stress resistance and for increased precision in the generation of genetically improved varieties.
Collapse
Affiliation(s)
| | - Georgina E Drury
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Clifford M Bray
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|