1
|
Ueta I, Masuda S, Kataoka R. Determination of volatile organic compounds released by Trichoderma species and plant endophytic fungi using a needle-type extraction device and gas chromatography-mass spectrometry. ANAL SCI 2025:10.1007/s44211-025-00783-z. [PMID: 40304881 DOI: 10.1007/s44211-025-00783-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025]
Abstract
This study proposes a method for the extraction of volatile organic compounds (VOCs) generated by Trichoderma species and plant endophytic fungi. In this method, generated VOCs are extracted using a needle-type extraction device and analyzed using gas chromatography-mass spectrometry. To extract VOCs generated by a single cultured fungi species, each fungi species was cultivated in a sealed 100 mL polypropylene bottle. Before cultivation, two silicone septa were attached to the bottle and cap. After the preparation of the culture media in the bottle, the bottle was autoclaved and the fungi were inoculated. The bottle was then sealed with a cap, and the air in the bottle was replaced with clean air. The surfaces of the extraction needle and a gas supply needle were sterilized with ethanol and inserted into the bottle via the two silicone septa. A gas sampling bag filled with pure air was connected to the gas supply needle, and clean air was continuously supplied to the bottle as the purge gas during the gas sampling. As the extraction needle, a double-bed-type adsorbent, Carbopack-X and a carbon molecular sieve, was used 3-Methyl butanol and 2-methyl butanol were detected for 41 species, and 2-pentylfran and 6-pentyl-2-pyrone were detected for 2 species among the 46 considered Trichoderma species. Monoterpenes and sesquiterpenes were detected for a single plant endophytic fungus species. The limit of detection of standard 3-methyl butanol and 2-methyl butanol in the proposed method was 0.5 ng mL-1. The performance of the proposed method was compared with that of the commercial MonoTrap method.
Collapse
Affiliation(s)
- Ikuo Ueta
- Department of Applied Chemistry, University of Yamanashi, 4-3-11 Takeda, Kofu, 400-8511, Japan.
| | - Suguru Masuda
- Department of Applied Chemistry, University of Yamanashi, 4-3-11 Takeda, Kofu, 400-8511, Japan
| | - Ryota Kataoka
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, 400-0085, Japan
| |
Collapse
|
2
|
Meher AK, Abbas A. PTR-MS analysis of fungal VOCs for early detection of oak wilt. Anal Bioanal Chem 2025:10.1007/s00216-025-05880-6. [PMID: 40272508 DOI: 10.1007/s00216-025-05880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
Traditional methods for diagnosing bacterial or fungal infections, such as cell culture, are comprehensive but time-consuming and subjective. Microbial volatile organic compound (VOC) analysis offers a faster alternative, though challenges such as low concentrations and chemical heterogeneity persist. Gas chromatography-mass spectrometry (GC-MS), while highly sensitive, requires lengthy sample preparation. This study presents a novel approach using proton transfer-reaction mass spectrometry (PTR-MS) for direct headspace analysis of fungal cultures, eliminating the need for preconcentration steps. By culturing microbes in wide-mouth glass jars with septum caps, VOC profiles were obtained in under 30 s for samples which were incubated for just 1 day, thus significantly reducing the diagnosis time. Using Bretziella fagacearum, a model organism known for its distinctive fruity odor linked to oak wilt disease, this method demonstrated enhanced accuracy and speed in detecting characteristic VOCs. The high sensitivity and rapid turnaround of this technique offer a promising alternative to traditional cell culture and GC-MS methods, providing faster, more reliable diagnostics and reducing both the complexity and time required for pathogen identification.
Collapse
Affiliation(s)
- Anil Kumar Meher
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, 55108, USA
| | - Abdennour Abbas
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
3
|
Kumar D, Roy S, Babu A, Pandey AK. Harnessing Fungal Bioagents Rich in Volatile Metabolites for Sustainable Crop Protection: A Critical Review. J Basic Microbiol 2025; 65:e70003. [PMID: 40007229 DOI: 10.1002/jobm.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/29/2024] [Accepted: 01/11/2025] [Indexed: 02/27/2025]
Abstract
Pests and diseases have a significant impact on crop health and yields, posing a serious threat to global agriculture. Effective management strategies, such as integrated pest management (IPM), including crop rotation, use of synthetic pesticides, biological control, and resistant/tolerant crop varieties, are essential to mitigate these risks and ensure sustainable agricultural practices. Fungal bioagents play an important role in managing phytopathogens and insect pests by acting as biological agents. They promote healthy plant growth by enhancing the uptake of nutrients and combating systemic resistance in plants. Furthermore, fungal bioagents are environmentally friendly, reducing application of fungicides and insecticides and minimizing their negative impact on the crops and environment. Their use in IPM promotes sustainable agriculture and ensures high-quality crops while maintaining soil health and microbial biodiversity. These fungal bioagents are rich sources of volatile organic compounds (VOCs), which play an important role in biological communication during interaction with insect pests and phytopathogens. In pest management, VOC production by beneficial fungi is accountable for their efficacy against pests and pathogens. Thus, this review discusses the important fungal bioagents producing VOCs, extraction methods of VOC, and the use of VOC-producing fungi in pest and disease management, knowledge gaps, and future research areas.
Collapse
Affiliation(s)
- Dheeraj Kumar
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata, India
| | - Somnath Roy
- Entomology Department, Tea Research Association, Tocklai Tea Research Institute, Jorhat, India
| | - Azariah Babu
- Entomology Department, Tea Research Association, Tocklai Tea Research Institute, Jorhat, India
| | - Abhay K Pandey
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata, India
| |
Collapse
|
4
|
Kanga CN, Okisaka Y, Hanamata S, Ueda D, Sato T, Mitsui T, Itoh K. Development of an Application Method for Volatile Compounds Derived from Mushroom Fungi Beds as Plant Growth-Promoting Biostimulants. Methods Protoc 2025; 8:29. [PMID: 40126247 PMCID: PMC11932248 DOI: 10.3390/mps8020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/25/2025] Open
Abstract
Volatile compounds (VCs) from fungi can promote plant growth, but their application methods are limited. Edible mushroom fungi beds (FBs) provide a readily available alternative source of fungal VCs, although their biostimulatory functions remain unvalidated. In this study, a novel, non-contact exposure method for applying VCs emitted from FBs to rice seedlings was developed. This marks the first evaluation of mushroom FBs as a direct source of bioactive VCs for plant growth promotion. Volatiles from two different edible mushroom FBs promoted shoot growth and increased biomass for rice seedlings. VCs from shiitake FBs significantly increased biomass by 67.4% while VCs from enokitake FBs by 39.5% compared to the control. The biomass-increasing effects were influenced by the quantity of shiitake FBs applied, with significant increases at 15 g, 30 g and 60 g applications. The VCs effects remained significant even when the FBs were covered with two types of gas-permeable polymer film. Chemical analysis of VCs from FBs identified several organic compounds and subsequent bioassays using synthetic VCs determined key bioactive VCs contributing to biomass increase at specific concentrations. This study presents a utilization method of waste mushroom FBs as sustainable, scalable, and cost-effective agricultural biostimulants.
Collapse
Affiliation(s)
- Clever N. Kanga
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Yui Okisaka
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Shigeru Hanamata
- Faculty of Science, Kanagawa University, Yokohama 221-8686, Japan;
| | - Daijiro Ueda
- Institute of Science and Technology, Niigata University, Niigata 950-2181, Japan; (D.U.); (T.S.); (T.M.)
| | - Tsutomu Sato
- Institute of Science and Technology, Niigata University, Niigata 950-2181, Japan; (D.U.); (T.S.); (T.M.)
| | - Toshiaki Mitsui
- Institute of Science and Technology, Niigata University, Niigata 950-2181, Japan; (D.U.); (T.S.); (T.M.)
| | - Kimiko Itoh
- Institute of Science and Technology, Niigata University, Niigata 950-2181, Japan; (D.U.); (T.S.); (T.M.)
| |
Collapse
|
5
|
Spinelli V, Ceci A, Giovannini R, Sciubba F, Persiani AM. The good fight: Minimedusa polyspora and Chaetomium globosum effectively antagonize phytopathogenic fungi in in vitro conditions. Mycologia 2025; 117:331-345. [PMID: 39899401 DOI: 10.1080/00275514.2024.2445759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/18/2024] [Indexed: 02/05/2025]
Abstract
In this study, Minimedusa polyspora and Chaetomium globosum and their metabolites were assessed in vitro for their ability to inhibit growth of Alternaria alternata, Berkeleyomyces basicola, and Botrytis cinerea, gaining insights into their biocontrol mechanisms. A dual culture, an assay for volatile antimicrobial compounds effectiveness (performed in two different conditions), and a culture filtrate antifungal assay were designed to discriminate the involved mechanisms. Moreover, the culture filtrates of these strains were assessed for fungistatic and fungicidal activities (determining also the minimum inhibitory concentration and the minimum fungicidal concentration) and for the occurrence of siderophores. The results show that both M. polyspora and C. globosum inhibited, to different extents, growth of all the pathogens in the plate assays. Both culture filtrates showed fungistatic and fungicidal activities, pointing to the release of diffusible compounds as an involved biocontrol mechanism. Based on the results of this study, M. polyspora and C. globosum are promising bioprotection agents of these phytopathogens and species of interest for further studies aimed at validating their potential in in vivo conditions.
Collapse
Affiliation(s)
- Veronica Spinelli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Andrea Ceci
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Roberto Giovannini
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Anna Maria Persiani
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Azzollini A, Sgorbini B, Lecoultre N, Bicchi C, Wolfender JL, Rubiolo P, Gindro K. A mass spectrometry-based strategy for investigating volatile molecular interactions in microbial consortia: unveiling a Fusarium-specific induction of an antifungal compound. Front Microbiol 2025; 15:1417919. [PMID: 40070966 PMCID: PMC11895703 DOI: 10.3389/fmicb.2024.1417919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/26/2024] [Indexed: 03/14/2025] Open
Abstract
Co-cultivation of microorganisms has emerged as a promising methodology for deciphering the intricate molecular interactions between species. This approach facilitates the replication of natural niches of ecological or clinical relevance where microbes consistently interact. In this context, increasing attention has been addressed toward elucidating the molecular crosstalk within fungal co-cultures. However, a major challenge in this area of research is determining the fungal origin of metabolites induced in co-cultivation systems. Molecules elicited in co-cultures may not be detectable in the individual cultures, making it challenging to establish which microorganism is responsible for their induction. For agar-diffused metabolites, imaging mass spectrometry can help overcome this obstacle by localizing the induced molecules during fungal confrontations. For volatile metabolites, however, this remains an open problem. To address this issue, in this study, a three-head-to-head co-culture strategy was developed, specifically focusing on the exploration of volatile interactions between fungi via headspace solid-phase microextraction combined with gas chromatography mass spectrometry. This methodology was applied to study the volatile molecular interactions of three fungal species: Fusarium culmorum, Aspergillus amstelodami, and Cladosporium cladosporioides. The adopted strategy revealed a Fusarium-specific induction of three volatile molecules: γ-terpinene and two unidentified sesquiterpene compounds. Interestingly, γ-terpinene showed antifungal activity in a bioassay against the other two fungal species: Aspergillus amstelodami and Cladosporium cladosporioides. The proposed methodology could help to investigate volatile molecular interactions and highlight metabolite induction specific to a particular fungus involved in in vitro fungal confrontations. This is relevant for a better understanding of the complex biosynthetic responses of fungi in consortia and for identifying volatile molecules with antifungal activity.
Collapse
Affiliation(s)
- Antonio Azzollini
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
- Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Barbara Sgorbini
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | | | - Carlo Bicchi
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Patrizia Rubiolo
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | | |
Collapse
|
7
|
Vidkjær NH, Schmidt S, Davie‐Martin CL, Silué KS, Koné NA, Rinnan R, Poulsen M. Volatile Organic Compounds of Diverse Origins and Their Changes Associated With Cultivar Decay in a Fungus-Farming Termite. Environ Microbiol 2025; 27:e70049. [PMID: 39910670 PMCID: PMC11799395 DOI: 10.1111/1462-2920.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 12/02/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025]
Abstract
Fungus-farming termites cultivate a Termitomyces fungus monoculture in enclosed gardens (combs) free of other fungi, except during colony declines, where Pseudoxylaria spp. stowaway fungi appear and take over combs. Here, we determined Volatile Organic Compounds (VOCs) of healthy Macrotermes bellicosus nests in nature and VOC changes associated with comb decay during Pseudoxylaria takeover. We identified 443 VOCs and unique volatilomes across samples and nest volatilomes that were mainly composed of fungus comb VOCs with termite contributions. Few comb VOCs were linked to chemical changes during decay, but longipinocarvone and longiverbenone were only emitted during comb decay. These terpenes may be involved in Termitomyces defence against antagonistic fungi or in fungus-termite signalling of comb state. Both comb and Pseudoxylaria biomass volatilomes contained many VOCs with antimicrobial activity that may serve in maintaining healthy Termitomyces monocultures or aid in the antagonistic takeover by Pseudoxylaria during colony decline. We further observed a series of oxylipins with known functions in the regulation of fungus germination, growth, and secondary metabolite production. Our volatilome map of the fungus-farming termite symbiosis provides new insights into the chemistry regulating complex interactions and serves as a valuable guide for future work on the roles of VOCs in symbioses.
Collapse
Affiliation(s)
- Nanna Hjort Vidkjær
- Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Suzanne Schmidt
- Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Cleo Lisa Davie‐Martin
- Section for Terrestrial Ecology, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | | | - N'golo Abdoulaye Koné
- Department of Natural Sciences (UFR‐SN)Nangui Abrogoua UniversityAbidjanCôte d'Ivoire
- Station de Recherche en Ecologie du Parc National de la ComoéAbidjanCote d'Ivoire
| | - Riikka Rinnan
- Section for Terrestrial Ecology, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Volatile Interactions, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
8
|
Ning M, Guo Q, Guo P, Cui Y, Wang K, Du G, Wang Z, Yuan Y, Yue T. Biocontrol activity of Kluyveromyces marxianus YG-4 against Penicillium expansum LPH9 on apples. Int J Food Microbiol 2025; 427:110943. [PMID: 39454321 DOI: 10.1016/j.ijfoodmicro.2024.110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/02/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Penicillium expansum (P. expansum), a widespread fungal pathogen, causes serious economic loss and public health concerns. The aim of this research is to investigate the antifungal effect of Kluyveromyces marxianus YG-4 (K. marxianus YG-4) against P. expansum and possible mechanism. The results showed that competition for nutrients and space, as well as the release of volatile organic compounds (VOCs), are the antifungal mechanisms. Citronellol may be the antifungal component of K. marxianus YG-4 VOCs based on GC-MS analysis. Further experiments had shown that citronellol inhibited the growth of P. expansum LPH9 by damaging the cell structure, disrupting the redox system, reducing antioxidant enzyme activity, and causing oxidative damage. K. marxianus YG-4, K. marxianus YG-4 VOCs and citronellol can effectively inhibit the spore germination of P. expansum on apples. The above results indicated that K. marxianus YG-4 had strong biocontrol activity and can be used as an excellent candidate strain for fruit preservation.
Collapse
Affiliation(s)
- Mengge Ning
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qi Guo
- College of Food Science and Technology, Henan Agr Univ, Zhengzhou 450002, China
| | - Peng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yuanyuan Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Gengan Du
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
9
|
Liarzi O, Golani M, Magnus A, Levi-Ruso G, Ewenson A, Benyamini Y, Ezra D. trans-2-Octenal controls Fusarium oxysporum f. sp. lycopersici, the causal agent of tomato wilt in vitro, in soil and in the field. PEST MANAGEMENT SCIENCE 2025. [PMID: 39815676 DOI: 10.1002/ps.8648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/25/2024] [Accepted: 12/25/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND Fungal plant diseases cause major crop losses. Phytopathogenic fungi's ability to evolve resistance to fungicides, alongside ongoing prohibition of such agents by the European Commission because of their pronounced adverse effects on human health and the environment, make their control a challenge. Moreover, the development of less perilous fungicides is a complex task. Here we describe the process and challenges involved in the development of a novel fungicide, from in-vitro studies to field experiments. RESULTS In-vitro experiments with trans-2-octenal, a bioactive compound secreted by the endophytic fungus Daldinia cf. concentrica, revealed its ability to fully inhibit and kill phytopathogenic microorganisms. A formulated version of trans-2-octenal was then used against the soil-borne pathogen Fusarium oxysporum f. sp. lycopersici (Forl), the causal agent of tomato vascular wilt disease, in pot experiments with different soil types. We found the highest fungicidal activity in sandy and loam soils, whereas heavy soil impaired activity. Lastly, we investigated the activity of the formulated trans-2-octenal against Forl in semi-field experiments. We achieved complete elimination of Forl, provided the soil is rotavated after trans-2-octenal application. CONCLUSION trans-2-Octenal has the potential to control Forl in vitro, in pots and in the field. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Orna Liarzi
- Department of Plant Pathology and Weed Research, ARO-the Volcani Institute, Rishon LeZion, Israel
| | | | | | | | | | | | - David Ezra
- Department of Plant Pathology and Weed Research, ARO-the Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
10
|
Boeckman NJ, Borba MC, Bernal VV, Khodadadi F, Jurick WM, Aćimović SG. Apple Bitter Rot: Biology, Ecology, Omics, Virulence Factors, and Management of Causal Colletotrichum Species. MOLECULAR PLANT PATHOLOGY 2025; 26:e70050. [PMID: 39800926 PMCID: PMC11725531 DOI: 10.1111/mpp.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/01/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025]
Abstract
Apple bitter rot is caused by various Colletotrichum spp. that threaten apple production globally resulting in millions of dollars in damage annually. The fungus causes a decline in fruit quality and yield, eventually rotting the fruit and rendering it inedible. The pathogen is difficult to keep out of orchards because of its broad host range and transmissibility by rain splash and insects. Once the disease manifests, pathogen identification is difficult due to evolving taxonomy and similar morphology between species. Current management strategies are threatened by an increase in fungicide resistance and regulations on many multisite fungicides, leading to a pressing need for new management options for control. This review aims to summarise the most current knowledge regarding the biology, virulence factors, ecology, omics and emerging management strategies for Colletotrichum species that cause apple bitter rot. TAXONOMY Colletotrichum species-Domain Eukaryota, Kingdom Fungi, Phylum Ascomycota, Class Sordariomycetes, Order Glomerellales, Family Glomerellaceae, Genus Colletotrichum. BIOLOGY Hemibiotrophic pathogen with a wide host range that establishes a biotrophic interaction where it penetrates host plants using appressoria followed by a switch to necrotrophy causing rot symptoms. TOXINS Cercosporin, colletotrichins, colletotric acid, ferricrocin. HOST RANGE The host range varies by species but largely occurs on dicotyledonous plants and is less prevalent on monocots as well as gymnosperms, ferns, mosses and animals (e.g., insects). DISEASE SYMPTOMS Symptoms often manifest as flat to sunken necrotic areas on fruit. Lesions on leaves and fruit can have concentric rings with abundant pathogen sporulation. DISEASE CONTROL Colletotrichum spp. are primarily managed by single-site quinone outside inhibitor (Qol), methyl benzimidazole carbamate (MBC), demethylation inhibitor (DMI) fungicides, and multisite dithiocarbamate and phthalimide fungicides. Susceptibility may vary with species, strain specificity, or geographic region. Other management options include clean stock production, cultural practices, resistance breeding, and biological control through the introduction of protective or competing microorganisms.
Collapse
Affiliation(s)
- Nathanial J. Boeckman
- Plant Pathology Laboratory, School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research and Extension CenterVirginia Polytechnic Institute and State UniversityWinchesterVirginiaUSA
| | - Matheus Correa Borba
- Plant Pathology Laboratory, School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research and Extension CenterVirginia Polytechnic Institute and State UniversityWinchesterVirginiaUSA
| | | | - Fatemeh Khodadadi
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Wayne M. Jurick
- Food Quality Laboratory, United States Department of Agriculture, Agricultural Research ServiceBeltsvilleMarylandUSA
| | - Srđan G. Aćimović
- Plant Pathology Laboratory, School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research and Extension CenterVirginia Polytechnic Institute and State UniversityWinchesterVirginiaUSA
| |
Collapse
|
11
|
Achimón F, Pizzolitto RP. Volatilome of the maize phytopathogenic fungus Fusarium verticillioides: potential applications in diagnosis and biocontrol. PEST MANAGEMENT SCIENCE 2025; 81:357-371. [PMID: 39354900 DOI: 10.1002/ps.8439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Fusarium verticillioides is a maize fungal phytopathogen and a producer of volatile organic compounds (VOCs) and fumonisin B1 (FB1). Our aim was to study the volatilome, conidial production, ergosterol and FB1 biosynthesis in maize cultures over a 30-day incubation period (5, 10, 15, 20, 25, 30 days post inoculation [DPI]). The effect of pure VOCs on the same parameters was then evaluated to study their potential role as biocontrol agents. RESULTS In total, 91 VOCs were detected, with volatile profiles being more similar between 5 and 10 DPI compared with 15, 20, 25 and 30 DPI. Ergosterol content increased steadily with incubation time, and three growth stages were identified: a lag phase (0 to 15 DPI), an exponential phase (15 to 20 DPI) and a stationary phase (20 to 30 DPI). The maximum concentration of FB1 was detected at 25 (0.030 μg FB1/μg ergosterol) and 30 DPI (0.037 μg FB1/μg ergosterol), whereas conidial production showed a maximum value at 15 DPI (4.3 ± 0.2 × 105 conidia/μg ergosterol). Regarding pure VOCs, minimal inhibitory concentration values ranged from 0.3 mm for 4-hexen-3-one to 7.4 mm for 2-undecanone. Pure VOCs reduced radial growth, conidial production and ergosterol and FB1 biosynthesis. CONCLUSIONS The marked resemblance between VOC profiles at 5 and 10 DPI suggests that they could act as early indicators of fungal contamination, particularly 4-ethylguaiacol, 4-ethyl-2-methoxyanisole, heptanol and heptyl acetate. On the other hand, their role as inhibitors of fungal growth and FB1 biosynthesis prove their great potential as safer alternatives to control phytopathogenic fungi. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fernanda Achimón
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Córdoba, Argentina
- Instituto de Ciencia y Tecnología de Los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Romina P Pizzolitto
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Córdoba, Argentina
- Instituto de Ciencia y Tecnología de Los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
12
|
Muthukrishanan G, Munisamy J, Gopalasubramaniam SK, Subramanian KS, Dharmaraj R, Nath DJ, Dutta P, Devarajan AK. Impact of foliar application of phyllosphere yeast strains combined with soil fertilizer application on rice growth and yield. ENVIRONMENTAL MICROBIOME 2024; 19:102. [PMID: 39695904 DOI: 10.1186/s40793-024-00635-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND The application of beneficial microbes in agriculture is gaining increasing attention as a means to reduce reliance on chemical fertilizers. This approach can potentially mitigate negative impacts on soil, animal, and human health, as well as decrease climate-changing factors. Among these microbes, yeast has been the least explored, particularly within the phyllosphere compartment. This study addresses this knowledge gap by investigating the potential of phyllosphere yeast to improve rice yield while reducing fertilizer dosage. RESULTS From fifty-two rice yeast phyllosphere isolates, we identified three yeast strains-Rhodotorula paludigena Y1, Pseudozyma sp. Y71, and Cryptococcus sp. Y72-that could thrive at 36 °C and possessed significant multifarious plant growth-promoting traits, enhancing rice root and shoot length upon seed inoculation. These three strains demonstrated favorable compatibility, leading to the creation of a yeast consortium. We assessed the combined effect of foliar application of this yeast consortium and individual strains with two distinct recommended doses of chemical fertilizers (RDCFs) (75 and 100%), as well as RDCFs alone (75 and 100%), in rice maintained in pot-culture and field experiments. The pot-culture experiment investigated the leaf microbial community, plant biochemicals, root and shoot length during the stem elongation, flowering, and dough phases, and yield-related parameters at harvest. The field experiment determined the actual yield. Integrated results from both experiments revealed that the yeast consortium with 75% RDCFs was more effective than the yeast consortium with 100% RDCFs, single strain applications with RDCFs (75 and 100%), and RDCFs alone (75 and 100%). Additionally, this treatment improved leaf metabolite levels compared to control rice plants. CONCLUSIONS Overall, a 25% reduction in soil chemical fertilizers combined with yeast consortium foliar application improved rice growth, biochemicals, and yield. This study also advances the field of phyllosphere yeast research in agriculture.
Collapse
Affiliation(s)
- Gomathy Muthukrishanan
- Department of Soil Science and Agricultural Chemistry, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam, Tuticorin, 628252, India.
| | - Jeyashri Munisamy
- Department of Soil Science and Agricultural Chemistry, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam, Tuticorin, 628252, India
| | | | | | | | | | - Pranab Dutta
- Central Agricultural University, Umiam, Meghalaya, 793122, India
| | | |
Collapse
|
13
|
Laupheimer S, Ghirardo A, Kurzweil L, Weber B, Stark TD, Dawid C, Schnitzler J, Hückelhoven R. Blumeria hordei affects volatile emission of susceptible and resistant barley plants and modifies the defense response of recipient plants. PHYSIOLOGIA PLANTARUM 2024; 176:e14646. [PMID: 39648862 PMCID: PMC11626344 DOI: 10.1111/ppl.14646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
The barley powdery mildew disease caused by the biotrophic fungus Blumeria hordei (Bh) poses enormous risks to crop production due to yield and quality losses. Plants and fungi can produce and release volatile organic compounds (VOCs) that serve as signals in plant communication and defense response to protect themselves. The present study aims to identify VOCs released by barley (Hordeum vulgare) during Bh-infection and to decipher VOC-induced disease resistance in receiver plants. VOC profiles of susceptible MLO wild type (MLO WT) and a resistant near-isogenic backcross line (mlo5) were characterized over time (one day or three days after Bh inoculation) using TD-GC/MS. Comparative analysis revealed genotype-dependent VOC profiles and significant differences in emission rates for β-caryophyllene, linalool, (Z)-3-hexenol, and methyl salicylate. Furthermore, susceptible barley plants were exposed to the complex VOC bouquet of MLO WT or mlo5 sender plants in plant-to-plant communication. We found that VOC-induced resistance in receiver plants depended on the sender genotype in a Bh susceptibility assay. Additionally, untargeted metabolomics and gene expression studies provide evidence toward an SA-dependent pathway mediating VOC-induced resistance against powdery mildew. The exogenous application of methyl salicylate resulted in the enhanced expression of the BARLEY CHEMICALLY INDUCED-4 marker gene and induced resistance in receiver plants. The findings suggest genotype-dependent alterations in barley VOC profiles during biotrophic plant-fungus interactions and show a VOC-mediated resistance that shares components with salicylic acid-related pathways. The VOC signals identified here could serve as non-invasive markers for disease progression in barley-powdery mildew interactions and as signals for resistance induction in recipient plants.
Collapse
Affiliation(s)
- Silvana Laupheimer
- Chair of Phytopathology, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS)Helmholtz Center MunichNeuherbergGermany
| | - Lisa Kurzweil
- Professorship for Functional Phytometabolomics, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Baris Weber
- Research Unit Environmental Simulation (EUS)Helmholtz Center MunichNeuherbergGermany
| | - Timo D. Stark
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Corinna Dawid
- Professorship for Functional Phytometabolomics, TUM School of Life SciencesTechnical University of MunichFreisingGermany
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Jörg‐Peter Schnitzler
- Research Unit Environmental Simulation (EUS)Helmholtz Center MunichNeuherbergGermany
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| |
Collapse
|
14
|
Araújo FDDS, Molano EPL, Cabrera OG, Fidelis CHDV, Pereira GAG, Eberlin MN. Volatile Organic Compounds from Ceratocystis cacaofunesta, a Causal Agent of Ceratocystis Wilt of Cacao. J Chem Ecol 2024; 50:807-814. [PMID: 39190193 DOI: 10.1007/s10886-024-01542-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Fungi of the genus Ceratocystis are aggressive tree pathogens that cause serious diseases in several crops around the world. Ceratocystis wilt disease caused by C. cacaofunesta has been shown to be responsible for severe reductions in cacao production. In this study, headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was used in combination with chemometric analysis for monitoring volatile organic compounds (VOCs) released from C. cacaofunesta. Low-molecular-weight esters, alcohols, ketones, and sulphur compounds were identified in the liquid broth. Monitoring the volatile profile over five days of fungal growth revealed that the concentrations of alcohol and esters were inversely proportional. Acetate esters were responsible for the intense fruity aroma of the C. cacaofunesta culture produced within the first hours after fungal inoculation, which decreased over time, and are likely associated with the attraction of insect vectors to maintain the life cycle of the pathogen. PCA revealed that 3-methylbutyl acetate was the metabolite with the highest factor loading for the separation of the VOC samples after 4 h of fungal growth, whereas ethanol and 3-methylbutan-1-ol had the highest factor loadings after 96 and 120 h. 3-Methylbutan-1-ol is a phytotoxic compound that is likely associated with host cell death since C. cacaofunesta is a necrotrophic fungus. Fungal VOCs play important roles in natural habitats, regulating developmental processes and intra- and interkingdom interactions. This is the first report on the volatiles released by C. cacaofunesta.
Collapse
Affiliation(s)
- Francisca Diana da Silva Araújo
- ThoMSon Mass Spectrometry Laboratory, Chemistry Institute, University of Campinas, POB 6154, Campinas, SP, 13084-970, Brazil.
- Federal University of Piauí, Campus Professora Cinobelina Elvas, Bom Jesus, PI, 64900-000, Brazil.
| | - Eddy Patricia Lopez Molano
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Biology Institute, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Odalys García Cabrera
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Biology Institute, University of Campinas, Campinas, SP, 13083-970, Brazil
| | | | - Gonçalo Amarante Guimarães Pereira
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Biology Institute, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Marcos Nogueira Eberlin
- ThoMSon Mass Spectrometry Laboratory, Chemistry Institute, University of Campinas, POB 6154, Campinas, SP, 13084-970, Brazil
| |
Collapse
|
15
|
Mancheary John PU, Kandula SK, Cheekatla SS, Metta VSMK, Peddi K. Qualitative and Untargeted Volatilome Fingerprinting of Aspergillus sp. and Bulbithecium sp. by HS-SPME-GCMS and Functional Interactions. J Basic Microbiol 2024; 64:e2400210. [PMID: 39014937 DOI: 10.1002/jobm.202400210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024]
Abstract
Research on fungal volatile organic compounds (VOCs) has increased worldwide in the last 10 years, but marine fungal volatilomes remain underexplored. Similarly, the hormone-signaling pathways, agronomic significance, and biocontrol potential of VOCs in plant-associated fungi make the area of research extremely promising. In the current investigation, VOCs of the isolates-Aspergillus sp. GSBT S13 and GSBT S14 from marine sediments, and Bulbithecium sp. GSBT E3 from Eucalyptus foliage were extracted using Head Space solid phase microextraction, followed by gas chromatography-mass spectrometry, identification, statistical analyses, and prediction of functions by KEGG COMPOUND and STITCH 5.0 databases. The significance of this research is fingerprinting VOCs of the isolates from distinct origins, identification of compounds using three libraries (NIST02, NIST14, and W9N11), and using bioinformatic tools to perform functional analysis. The most important findings include the identification of previously unreported compounds in fungi-1-methoxy naphthalene, diethyl phthalate, pentadecane, pristane, and nonanal; the prediction of the involvement of small molecules in the degradation of aromatic compound pathways and activation, inhibition, binding, and catalysis of metabolites with predicted protein partners. This study has ample opportunity to validate the findings and understand the mechanism or mode of action, the interspecies interactions, and the role of the metabolites in geochemical cycles.
Collapse
Affiliation(s)
- Prathyash Ushus Mancheary John
- Department of Biotechnology, GITAM School of Science, GITAM (Deemed-to-be-University), Visakhapatnam, Andhra Pradesh, India
| | - Siva Kumar Kandula
- Department of Biotechnology, GITAM School of Science, GITAM (Deemed-to-be-University), Visakhapatnam, Andhra Pradesh, India
| | - Satyanarayana Swamy Cheekatla
- Department of Biotechnology, GITAM School of Science, GITAM (Deemed-to-be-University), Visakhapatnam, Andhra Pradesh, India
| | | | - Koteswari Peddi
- Department of Biotechnology, GITAM School of Science, GITAM (Deemed-to-be-University), Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
16
|
Makhlouf L, El Fakhouri K, Kemal SA, Maafa I, Meftah Kadmiri I, El Bouhssini M. Potential of volatile organic compounds in the management of insect pests and diseases of food legumes: a comprehensive review. FRONTIERS IN PLANT SCIENCE 2024; 15:1430863. [PMID: 39430890 PMCID: PMC11486643 DOI: 10.3389/fpls.2024.1430863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/04/2024] [Indexed: 10/22/2024]
Abstract
Cool season legumes (Faba bean, chickpea, lentil, pea, and grass pea) are important protein harvests for food and nutrition security in many countries. They play key roles in sustainable cereal production through their ecological benefits. However, diseases and pests attack continue to have a substantial impact on crop yield and quality. Although growers used different control options to manage these biotic stresses such as pesticide application, cultural practices, and resistant varieties, there is a pressing need for the development of new, more cost-effective and environmentally friendly solution to help farmers in facing the existing environmental issues. Recently, there is a growing interest among researchers in exploiting Volatile Organic Compounds (VOCs) for the elaboration of disease and pest control strategies in food legumes and other crops. These compounds have important functions in ecological relationships occurring between plants and their surrounding environment, as well as plants and others species, such as pests and pathogens. Due to their unique properties, VOCs can be employed in improving management alternatives for food legume diseases and pests. In this assessment, we investigated the role of VOCs in plant-pest and plant-pathogen interactions and their present applications in pest and diseases control strategies. We emphasized the ecological importance of employing plant VOCs in legume farming and crop breeding. Additionally, we highlighted the potential of microbial VOCs in facilitating microbe-microbe, microbe-plant and microbe-plant-pest interactions, along with their role in food legume protection.
Collapse
Affiliation(s)
- Leila Makhlouf
- Laboratory of Entomology and Phytopathology, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Karim El Fakhouri
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Seid Ahmed Kemal
- Laboratory of Entomology and Phytopathology, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Ilyas Maafa
- Laboratory of Entomology and Phytopathology, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Issam Meftah Kadmiri
- Plant and Microbial Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Rescarch (MAScIR), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mustapha El Bouhssini
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
17
|
Saxena S, Dufossé L, Deshmukh SK, Chhipa H, Gupta MK. Endophytic Fungi: A Treasure Trove of Antifungal Metabolites. Microorganisms 2024; 12:1903. [PMID: 39338577 PMCID: PMC11433805 DOI: 10.3390/microorganisms12091903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Emerging and reemerging fungal infections are very common in nosocomial and non-nosocomial settings in people having poor immunogenic profiles either due to hematopoietic stem cell transplants or are using immunomodulators to treat chronic inflammatory disease or autoimmune disorders, undergoing cancer therapy or suffering from an immune weakening disease like HIV. The refractory behavior of opportunistic fungi has necessitated the discovery of unconventional antifungals. The emergence of black fungus infection during COVID-19 also triggered the antifungal discovery program. Natural products are one of the alternative sources of antifungals. Endophytic fungi reside and co-evolve within their host plants and, therefore, offer a unique bioresource of novel chemical scaffolds with an array of bioactivities. Hence, immense possibilities exist that these unique chemical scaffolds expressed by the endophytic fungi may play a crucial role in overcoming the burgeoning antimicrobial resistance. These chemical scaffolds so expressed by these endophytic fungi comprise an array of chemical classes beginning from cyclic peptides, sesquiterpenoids, phenols, anthraquinones, coumarins, etc. In this study, endophytic fungi reported in the last six years (2018-2023) have been explored to document the antifungal entities they produce. Approximately 244 antifungal metabolites have been documented in this period by different groups of fungi existing as endophytes. Various aspects of these antifungal metabolites, such as antifungal potential and their chemical structures, have been presented. Yet another unique aspect of this review is the exploration of volatile antifungal compounds produced by these endophytic fungi. Further strategies like epigenetic modifications by chemical as well as biological methods and OSMAC to induce the silent gene clusters have also been presented to generate unprecedented bioactive compounds from these endophytic fungi.
Collapse
Affiliation(s)
- Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India;
- Agpharm Bioinnovations LLP, Incubatee: Science and Technology Entrepreneurs Park (STEP), Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Laurent Dufossé
- Chimie et Biotechnologie des Produits Naturels (ChemBioPro Lab) & ESIROI Agroalimentaire, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis, France
| | - Sunil K. Deshmukh
- Agpharm Bioinnovations LLP, Incubatee: Science and Technology Entrepreneurs Park (STEP), Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
- R&D Division, Greenvention Biotech Pvt. Ltd., Uruli Kanchan 412202, Maharashtra, India
| | - Hemraj Chhipa
- College of Horticulture and Forestry, Agriculture University Kota, Jhalawar 322360, Rajasthan, India;
| | - Manish Kumar Gupta
- SGT College of Pharmacy, SGT University, Gurugram 122505, Haryana, India;
| |
Collapse
|
18
|
Gallo A, Catellani A, Ghilardelli F, Lapris M, Mastroeni C. Review: Strategies and technologies in preventing regulated and emerging mycotoxin co-contamination in forage for safeguarding ruminant health. Animal 2024; 18 Suppl 2:101280. [PMID: 39129068 DOI: 10.1016/j.animal.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
Ruminants are often considered less susceptible to mycotoxins than monogastrics, owing to rumen microflora converting mycotoxins to less toxic compounds or several compounds present in the rumen-reticulum compartment, being able to bind the mycotoxin "mother" molecule that make them unavailable for absorption process in the gastro-intestinal tract of host animals. However, if ruminants consume feed contaminated by mycotoxins for long periods, their growth, development, and fertility can be compromised. Among regulated mycotoxins, the most studied and known for their effects are aflatoxins (AFs) AFB1, AFB2, AFG1 and AFG2, as well as the AFM1 for its high importance in dairy sector, deoxynivalenol (DON) and its metabolites 3/15 acetyl-DON and 3-glucoside DON, T-2 and HT-2 toxins, zearalenone, fumonisins, in particular that belong to the B class, and ochratoxin A. Furthermore, because of the emergence of multiple emerging mycotoxins that are detectable in feed utilised in ruminant diets, such as ensiled forage, there is now a growing focus on investigating these compounds by the scientific community to deepen their toxicity for animal health. Despite the enhancement of research, it is remarkable that there is a paucity of in vivo trials, as well as limited studies on nutrient digestibility and the impact of these molecules on rumen and intestinal functions or milk yield and quality. In this review, recent findings regarding the occurrence of regulated and emerging mycotoxins in forage and their possible adverse effects on dairy cattle are described, with special emphasis on animal performance and on rumen functionality.
Collapse
Affiliation(s)
- A Gallo
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy.
| | - A Catellani
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy
| | - F Ghilardelli
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy
| | - M Lapris
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy
| | - C Mastroeni
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy
| |
Collapse
|
19
|
Takeuchi T, Suzuki T, Kimura T, Kiuchi M. Self-inhibition of growth and allelopathy through volatile organic compounds in Fusarium solani and Aspergillus fumigatus. PLoS One 2024; 19:e0308383. [PMID: 39190744 DOI: 10.1371/journal.pone.0308383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Microbial volatile organic compounds (VOCs) emitted from fungi are known as their secondary metabolites from environmental sources. However, their physiological roles remain to be unclear. Even though the roles are still unknown, VOCs are deliberately released to convey information to both homologous and non-homologous organisms. We investigated the effects of single VOCs (hexanal, benzaldehyde, heptanal, 2-ethyl-1-hexanol, 3-octanone, 2-undecanone, 3-octanol, 2-Phenylethanol, 2-phenyl-2-propanol, phenylbenzaldehyde, 2-pentadecanone, β-trans-bergamotene, β-bisabolene, 2-methyl-5 -(1-methylethyl)pyrazine) on the fungal growth. In parallel, application of the co-culturing system in a growth chamber allowed free gas and VOCs exchange between emitter colonies of Fusarium solani and Aspergillus fumigatus, or between colonies of different growth stages of the same species. Distinct self-inhibition occurred by the emitters of fungal growing colonies against receiver ones on the stage of conidial germination or against the younger colonies at an earlier stage in both fungi. Similarly, the phenomenon of allelopathy appeared to work between growing colonies of F. solani and the germinating conidia or young colonies of A. fumigatus or vice versa. Solid phase microextraction-gas chromatography/mass spectrometry revealed VOCs compounds of each fungi. In F. solani, hexanal and benzaldehyde appeared to be significant inhibitors for colony growth. Benzaldehyde inhibited filamentous growth but not conidial germination. In A. fumigatus, heptanal seemed to be an equivalent effector. The inhibitory effect of benzaldehyde was more distinct on the A. fumigatus conidial germination than its filamentous growth.
Collapse
Affiliation(s)
- Takae Takeuchi
- Division of Materials and Manufacturing Science, Osaka University, Suita, Japan
- Department of Chemistry, Nara Women's University, Nara, Japan
| | - Takahito Suzuki
- Department of Chemistry, Nara Women's University, Nara, Japan
| | - Tomoko Kimura
- Department of Chemistry, Nara Women's University, Nara, Japan
| | - Masato Kiuchi
- Division of Materials and Manufacturing Science, Osaka University, Suita, Japan
- Cerast Laboratory Co. Ltd, Setagaya, Japan
| |
Collapse
|
20
|
Di Francesco A, Moret E, Cignola R, Garagozzo L, Torelli E, Di Foggia M. Yeasts volatile organic compounds (VOCs) as potential growth enhancers and molds biocontrol agents of mushrooms mycelia. Fungal Biol 2024; 128:1859-1867. [PMID: 38876538 DOI: 10.1016/j.funbio.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
Volatile organic compounds (VOCs) produced by yeasts can positively affect crops, acting as antifungals or biostimulants. In this study, Aureobasidium pullulans and Metschnikowia pulcherrima were evaluated as potential antagonists of Trichoderma spp., common fungal pathogen in mushroom cultivation. To assess the biocontrol ability and biostimulant properties of the selected yeast species, in vitro co-culture and VOCs exposure assays were conducted. In both assays, VOCs produced by Aureobasidium spp. showed the stronger antifungal activity with a growth inhibition up to 30 %. This result was further confirmed by the higher volatilome alcohol content revealed by solid phase microextraction-gas chromatography mass spectrometry (SPME/GC-MS). Overall, Aureobasidium strains can be potentially used as biocontrol agent in Pleorotus ostreatus and Cyclocybe cylindracea mycelial growth, without affecting their development as demonstrated by VOCs exposure assay and Fourier-transform infrared spectroscopy (FT-IR). Conversely, M. pulcherrima was characterized by a lower or absent antifungal properties and by a volatilome composition rich in isobutyl acetate, an ester often recognized as plant growth promoter. As confirmed by FT-IR, Lentinula mycelia exposed to M. pulcherrima VOCs showed a higher content of proteins and lipids, suggesting an improvement of some biochemical properties. Our study emphasizes that VOCs produced by specific yeast strains are potentially powerful alternative to synthetic fungicide in the vegetative growth of mushroom-forming fungi and also able to modify their biochemical composition.
Collapse
Affiliation(s)
- Alessandra Di Francesco
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Italy.
| | - Erica Moret
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Italy
| | - Rudy Cignola
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Italy
| | - Luca Garagozzo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Emanuela Torelli
- Interdisciplinary Computing and Complex Biosystems Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Michele Di Foggia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| |
Collapse
|
21
|
Li K, Lin H, Guo X, Wang S, Wang H, Wang T, Peng Z, Wang Y, Guo L. Allochthonous Trichoderma Isolates Boost Atractylodes lancea Herb Quality at the Cost of Rhizome Growth. J Fungi (Basel) 2024; 10:351. [PMID: 38786706 PMCID: PMC11122596 DOI: 10.3390/jof10050351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 05/25/2024] Open
Abstract
Atractylodes lancea is a perennial herb whose rhizome (AR) is a valuable traditional Chinese medicine with immense market demand. The cultivation of Atractylodes lancea faces outbreaks of root rot and deterioration in herb quality due to complex causes. Here, we investigated the effects of Trichoderma spp., well-known biocontrol agents and plant-growth-promoters, on ARs. We isolated Trichoderma strains from healthy ARs collected in different habitats and selected three T. harzianum strains (Th2, Th3 and Th4) with the strongest antagonizing effects on root rot pathogens (Fusarium spp.). We inoculated geo-authentic A. lancea plantlets with Th2, Th3 and Th4 and measured the biomass and quality of 70-day-old ARs. Th2 and Th3 promoted root rot resistance of A. lancea. Th2, Th3 and Th4 all boosted AR quality: the concentration of the four major medicinal compounds in ARs (atractylon, atractylodin, hinesol and β-eudesmol) each increased 1.6- to 18.2-fold. Meanwhile, however, the yield of ARs decreased by 0.58- to 0.27-fold. Overall, Th3 dramatically increased the quality of ARs at a relatively low cost, namely lower yield, showing great potential for practical application. Our results showed selectivity between A. lancea and allochthonous Trichoderma isolates, indicating the importance of selecting specific microbial patches for herb cultivation.
Collapse
Affiliation(s)
- Kuo Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.L.); (H.L.)
| | - Huaibin Lin
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.L.); (H.L.)
| | - Xiuzhi Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (X.G.); (S.W.); (H.W.); (T.W.); (Z.P.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Sheng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (X.G.); (S.W.); (H.W.); (T.W.); (Z.P.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Hongyang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (X.G.); (S.W.); (H.W.); (T.W.); (Z.P.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Tielin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (X.G.); (S.W.); (H.W.); (T.W.); (Z.P.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Zheng Peng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (X.G.); (S.W.); (H.W.); (T.W.); (Z.P.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Yuefeng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (X.G.); (S.W.); (H.W.); (T.W.); (Z.P.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Lanping Guo
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.L.); (H.L.)
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (X.G.); (S.W.); (H.W.); (T.W.); (Z.P.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| |
Collapse
|
22
|
Sherwood P, Nordström I, Woodward S, Bohman B, Cleary M. Detecting Pathogenic Phytophthora Species Using Volatile Organic Compounds. Molecules 2024; 29:1749. [PMID: 38675569 PMCID: PMC11052055 DOI: 10.3390/molecules29081749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
There are several highly damaging Phytophthora species pathogenic to forest trees, many of which have been spread beyond their native range by the international trade of live plants and infested materials. Such introductions can be reduced through the development of better tools capable of the early, rapid, and high-throughput detection of contaminated plants. This study utilized a volatilomics approach (solid-phase microextraction coupled to gas chromatography-mass spectrometry) to differentiate between several Phytophthora species in culture and discriminate between healthy and Phytophthora-inoculated European beech and pedunculate oak trees. We tentatively identified 14 compounds that could differentiate eight Phytophthora species from each other in vitro. All of the Phytophthora species examined, except Phytophthora cambivora, uniquely produced at least one compound not observed in the other species; however, most detected compounds were shared between multiple species. Phytophthora polonica had the most unique compounds and was the least similar of all the species examined. The inoculated seedlings had qualitatively different volatile profiles and could be distinguished from the healthy controls by the presence of isokaurene, anisole, and a mix of three unknown compounds. This study supports the notion that volatiles are suitable for screening plant material, detecting tree pathogens, and differentiating between healthy and diseased material.
Collapse
Affiliation(s)
- Patrick Sherwood
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden; (I.N.); (M.C.)
| | - Ida Nordström
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden; (I.N.); (M.C.)
| | - Steve Woodward
- Department of Plant and Soil Science, School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU, UK;
| | - Björn Bohman
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden;
| | - Michelle Cleary
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden; (I.N.); (M.C.)
| |
Collapse
|
23
|
Abstract
Dengue, caused by the dengue virus, is the most widespread arboviral infectious disease of public health significance globally. This review explores the communicative function of olfactory cues that mediate host-seeking, egg-laying, plant-feeding, and mating behaviors in Aedes aegypti and Aedes albopictus, two mosquito vectors that drive dengue virus transmission. Aedes aegypti has adapted to live in close association with humans, preferentially feeding on them and laying eggs in human-fabricated water containers and natural habitats. In contrast, Ae. albopictus is considered opportunistic in its feeding habits and tends to inhabit more vegetative areas. Additionally, the ability of both mosquito species to locate suitable host plants for sugars and find mates for reproduction contributes to their survival. Advances in chemical ecology, functional genomics, and behavioral analyses have improved our understanding of the underlying neural mechanisms and reveal novel and specific olfactory semiochemicals that these species use to locate and discriminate among resources in their environment. Physiological status; learning; and host- and habitat-associated factors, including microbial infection and abundance, shape olfactory responses of these vectors. Some of these semiochemicals can be integrated into the toolbox for dengue surveillance and control.
Collapse
Affiliation(s)
- Baldwyn Torto
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya; ,
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya; ,
| |
Collapse
|
24
|
Guo Y, Wang Z, He Y, Gao H, Shi H. Profiling of Volatile Compounds in 'Muscat Hamburg' Contaminated with Aspergillus carbonarius before OTA Biosynthesis Based on HS-SPME-GC-MS and DLLME-GC-MS. Molecules 2024; 29:567. [PMID: 38338312 PMCID: PMC10856765 DOI: 10.3390/molecules29030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Aspergillus carbonarius is known to produce the carcinogenic ochratoxin A (OTA) in grapes. The metabolism process before OTA biosynthesis influences the content and composition of the volatile compounds in grapes. In this study, a self-established method based on QuEChERS coupled with high-performance liquid chromatography-fluorescence detection (HPLC-FLD) was used to determine the OTA levels during a seven-day contamination period. The results showed that OTA was detected on the second day after contamination with A. carbonarius. Thus, the first day was considered as the critical sampling timepoint for analyzing the volatiles in grapes before OTA biosynthesis. Additionally, the volatile compounds in grapes were analyzed using headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and dispersive liquid-liquid microextraction gas chromatography-mass spectrometry (DLLME-GC-MS). The corresponding data were evaluated via multivariate data analysis using projection methods, including PCA and OPLS-DA. The results indicated significant differences in the nine volatile compounds in grapes contaminated with A. carbonarius before OTA biosynthesis. The results of the Pearson correlation analysis showed positive correlations between ethyl acetate, styrene, 1-hexanol and OTA; (E)-2-hexenal and nerolic acid were negatively correlated with OTA. Overall, these findings provide a theoretical basis for the early prediction of OTA formation in grape and grape products using GC-MS technology.
Collapse
Affiliation(s)
- Yayun Guo
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Y.G.); (Z.W.); (Y.H.)
| | - Zhe Wang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Y.G.); (Z.W.); (Y.H.)
| | - Yi He
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Y.G.); (Z.W.); (Y.H.)
| | - Huanhuan Gao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Hongmei Shi
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Y.G.); (Z.W.); (Y.H.)
| |
Collapse
|
25
|
Zhang X, Long J, Liu J, Hua Y, Zhang C, Li X. Fermentation Characteristics, Antinutritional Factor Level and Flavor Compounds of Soybean Whey Yogurt. Foods 2024; 13:330. [PMID: 38275697 PMCID: PMC10814812 DOI: 10.3390/foods13020330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Soybean whey contains high levels of off-flavors and anti-nutritional factors and is generally considered unsuitable for direct application in the food industry. In this work, to reduce beany off-flavors and anti-nutritional factors, and to improve its fermentation characteristics, soybean whey was treated with electrodialysis desalination, vacuum concentration and lactic acid bacteria (LAB) fermentation. The results showed that electrodialysis desalination increased the fermentation rate and the number of viable lactic acid bacteria of soybean whey yogurt. More than 90% of the antinutritional factor level (urease and trypsin inhibitory activity) was removed due to high-temperature denaturation inactivation and LAB degradation. Concentrated desalted soybean whey yogurt (CDSWY) possessed larger values for firmness and consistency, and a denser network microstructure compared with undesalted yogurt. Over 90% of off-flavors including hexanal, 1-octen-3-ol and 1-octen-3-one were removed after electrodialysis desalination and concentration treatment. Meanwhile, the newly generated β-damascenone through carotenoid degradation and 2,3-butanedione improved the pleasant flavor and sensory quality of CDSWY, while the salty taste of CSWY lowered its sensory quality. This study provided a theoretical basis for better utilization of soybean whey to develop a plant-based yogurt like dairy yogurt.
Collapse
Affiliation(s)
- Xinyu Zhang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (X.Z.); (J.L.); (J.L.); (Y.H.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jie Long
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (X.Z.); (J.L.); (J.L.); (Y.H.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jun Liu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (X.Z.); (J.L.); (J.L.); (Y.H.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yufei Hua
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (X.Z.); (J.L.); (J.L.); (Y.H.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Caimeng Zhang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (X.Z.); (J.L.); (J.L.); (Y.H.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xingfei Li
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (X.Z.); (J.L.); (J.L.); (Y.H.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
26
|
Bolívar-Anillo HJ, Izquierdo-Bueno I, González-Rey E, González-Rodríguez VE, Cantoral JM, Collado IG, Garrido C. In Vitro Analysis of the Antagonistic Biological and Chemical Interactions between the Endophyte Sordaria tomento-alba and the Phytopathogen Botrytis cinerea. Int J Mol Sci 2024; 25:1022. [PMID: 38256097 PMCID: PMC10816056 DOI: 10.3390/ijms25021022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Plant pathogenic infections causing substantial global food losses are a persistent challenge. This study investigates a potential biocontrol strategy against the necrotrophic fungus Botrytis cinerea using the endophytic fungus Sordaria tomento-alba isolated from Gliricidia sepium in Colombia. Today, synthetic fungicides dominate B. cinerea control, raising environmental and health concerns. S. tomento-alba exhibits notable in vitro effects, inhibiting B. cinerea growth by approximately 60% during co-culture and 50% in double disc co-culture. Additionally, it suppresses botryanes production and produces the compound heptacyclosordariolone, which has proven effective in inhibiting B. cinerea mycelial growth and spore germination in vitro. This biocontrol agent could be a potential eco-friendly alternative to replace synthetic fungicides. Our study provides insights into the chemical and biological mechanisms underpinning the antagonistic activity of S. tomento-alba, emphasizing the need for further research to understand its biosynthesis pathways and optimize its biocontrol potential. It also contributes molecular evidence of fungal interactions with implications for advanced forums in molecular studies in biology and chemistry, particularly in addressing plant pathogenic infections and promoting sustainable agriculture.
Collapse
Affiliation(s)
- Hernando José Bolívar-Anillo
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cadiz, Spain; (H.J.B.-A.); (I.I.-B.); (E.G.-R.)
- Programa de Microbiología, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Inmaculada Izquierdo-Bueno
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cadiz, Spain; (H.J.B.-A.); (I.I.-B.); (E.G.-R.)
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Microbiología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cadiz, Spain; (V.E.G.-R.); (J.M.C.)
| | - Estrella González-Rey
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cadiz, Spain; (H.J.B.-A.); (I.I.-B.); (E.G.-R.)
| | - Victoria E. González-Rodríguez
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Microbiología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cadiz, Spain; (V.E.G.-R.); (J.M.C.)
| | - Jesús M. Cantoral
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Microbiología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cadiz, Spain; (V.E.G.-R.); (J.M.C.)
| | - Isidro G. Collado
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cadiz, Spain; (H.J.B.-A.); (I.I.-B.); (E.G.-R.)
| | - Carlos Garrido
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Microbiología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cadiz, Spain; (V.E.G.-R.); (J.M.C.)
| |
Collapse
|
27
|
Zhang W, Chen X, Eleftherianos I, Mohamed A, Bastin A, Keyhani NO. Cross-talk between immunity and behavior: insights from entomopathogenic fungi and their insect hosts. FEMS Microbiol Rev 2024; 48:fuae003. [PMID: 38341280 PMCID: PMC10883697 DOI: 10.1093/femsre/fuae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024] Open
Abstract
Insects are one of the most successful animals in nature, and entomopathogenic fungi play a significant role in the natural epizootic control of insect populations in many ecosystems. The interaction between insects and entomopathogenic fungi has continuously coevolved over hundreds of millions of years. Many components of the insect innate immune responses against fungal infection are conserved across phyla. Additionally, behavioral responses, which include avoidance, grooming, and/or modulation of body temperature, have been recognized as important mechanisms for opposing fungal pathogens. In an effort to investigate possible cross-talk and mediating mechanisms between these fundamental biological processes, recent studies have integrated and/or explored immune and behavioral responses. Current information indicates that during discrete stages of fungal infection, several insect behavioral and immune responses are altered simultaneously, suggesting important connections between the two systems. This review synthesizes recent advances in our understanding of the physiological and molecular aspects influencing cross-talk between behavioral and innate immune antifungal reactions, including chemical perception and olfactory pathways.
Collapse
Affiliation(s)
- Wei Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District 550025, China
| | - Xuanyu Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District 550025, China
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, United States
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt
- Research fellow, King Saud University Museum of Arthropods, Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Saudi Arabia
| | - Ashley Bastin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, United States
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, United States
| |
Collapse
|
28
|
Bastos ML, Benevides CA, Zanchettin C, Menezes FD, Inácio CP, de Lima Neto RG, Filho JGAT, Neves RP, Almeida LM. Breaking barriers in Candida spp. detection with Electronic Noses and artificial intelligence. Sci Rep 2024; 14:956. [PMID: 38200060 PMCID: PMC10781724 DOI: 10.1038/s41598-023-50332-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The timely and accurate diagnosis of candidemia, a severe bloodstream infection caused by Candida spp., remains challenging in clinical practice. Blood culture, the current gold standard technique, suffers from lengthy turnaround times and limited sensitivity. To address these limitations, we propose a novel approach utilizing an Electronic Nose (E-nose) combined with Time Series-based classification techniques to analyze and identify Candida spp. rapidly, using culture species of C. albicans, C.kodamaea ohmeri, C. glabrara, C. haemulonii, C. parapsilosis and C. krusei as control samples. This innovative method not only enhances diagnostic accuracy and reduces decision time for healthcare professionals in selecting appropriate treatments but also offers the potential for expanded usage and cost reduction due to the E-nose's low production costs. Our proof-of-concept experimental results, carried out with culture samples, demonstrate promising outcomes, with the Inception Time classifier achieving an impressive average accuracy of 97.46% during the test phase. This paper presents a groundbreaking advancement in the field, empowering medical practitioners with an efficient and reliable tool for early and precise identification of candidemia, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Michael L Bastos
- Centro de Informática, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Clayton A Benevides
- Comissão Nacional de Energia Nuclear, Centro Regional de Ciências Nucleares do Nordeste, Recife, PE, Brazil
| | - Cleber Zanchettin
- Centro de Informática, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Frederico D Menezes
- Departamento de Mecânica, Instituto Federal de Pernambuco, Recife, PE, Brazil
| | - Cícero P Inácio
- Centro de Ciências Médicas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - José Gilson A T Filho
- Centro de Ciências Sociais e Aplicadas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Rejane P Neves
- Centro de Ciências Médicas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Leandro M Almeida
- Centro de Informática, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
29
|
de Oliveira KB, Goes AC, Silva AD, Vieira PC, Rodrigues A. Fungal Cultivars of Higher Attine Ants Promote Escovopsis Chemotropism. Curr Microbiol 2023; 81:37. [PMID: 38063979 DOI: 10.1007/s00284-023-03552-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
In varied environments, microorganisms search for partners or nutritional resources using chemical signals. Microbes are drawn (chemotaxis) or grow directionally (chemotropism) towards the chemical source, enabling them to establish and maintain symbiosis. The hypocrealean fungi Escovopsis enhance their growth towards the basidiomycete fungus Leucoagaricus gongylophorus, which is cultivated by leaf-cutting attine ants for food. Although directional growth is well documented in this symbiosis, it is unclear whether non-volatile or volatile organic compounds participate in the interaction between cultivar and Escovopsis, and which specific chemical compounds might attract and induce chemotropism. In this study, we examined the growth responses of Escovopsis isolates to non-volatile and volatile organic compounds produced by fungal cultivars of higher attine ants. We also isolated and identified molecules released by the ant-cultivar and assessed the chemotropism of Escovopsis towards them. Our results indicate that the growth of Escovopsis is stimulated in the presence of both non-volatile and volatile compounds from fungal cultivars. We also identified three isomeric diketopiperazines molecules from crude extracts of the ant cultivar, suggesting that these might play a role in Escovopsis chemotropism. Our findings provide insights into the complex chemical interactions that govern the association between Escovopsis and fungal cultivars.
Collapse
Affiliation(s)
- Karina B de Oliveira
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Aryel C Goes
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, SP, Brazil
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Airton D Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Paulo C Vieira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Andre Rodrigues
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
30
|
Kaur T, Khanna K, Sharma S, Manhas RK. Mechanistic insights into the role of actinobacteria as potential biocontrol candidates against fungal phytopathogens. J Basic Microbiol 2023; 63:1196-1218. [PMID: 37208796 DOI: 10.1002/jobm.202300027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/26/2023] [Accepted: 04/29/2023] [Indexed: 05/21/2023]
Abstract
Worldwide mounting demand for better food production to nurture exasperating population emphasizes on reduced crop losses. The incidence of pathogens into the agricultural fields has tend to dwindle plethora of cereal, vegetable, and other fodder crops. This, in turn, has seriously impacted the economic losses on global scale. Apart from this, it is quite challenging to feed the posterity in the coming decades. To counteract this problem, various agrochemicals have been commercialized in the market that no doubt shows positive results but along with adversely affecting the ecosystem. Therefore, the excessive ill-fated use of agrochemicals to combat the plant pests and diseases highlights that alternatives to chemical pesticides are need of the hour. In recent days, management of plant diseases using plant-beneficial microbes is gaining interest as safer and potent alternatives to replace chemically based pesticides. Among these beneficial microbes, actinobacteria especially streptomycetes play considerable role in combating plant diseases along with promoting the plant growth and development along with their productivity and yield. The mechanisms exhibited by actinobacteria include antibiosis (antimicrobial compounds and hydrolytic enzymes), mycoparasitism, nutrient competition, and induction of resistance in plants. Thus, in cognizance with potential of actinobacteria as potent biocontrol agents, this review summarizes role of actinobacteria and the multifarious mechanisms exhibited by actinobacteria for commercial applications.
Collapse
Affiliation(s)
- Talwinder Kaur
- Department of Microbiology, DAV University, Jalandhar, Punjab, India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kanika Khanna
- Department of Microbiology, DAV University, Jalandhar, Punjab, India
| | - Sonika Sharma
- Faculty of Agricultural Sciences, Jalandhar, Punjab, India
| | - Rajesh K Manhas
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
31
|
Ahmed T, Noman M, Qi Y, Shahid M, Hussain S, Masood HA, Xu L, Ali HM, Negm S, El-Kott AF, Yao Y, Qi X, Li B. Fertilization of Microbial Composts: A Technology for Improving Stress Resilience in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3550. [PMID: 37896014 PMCID: PMC10609736 DOI: 10.3390/plants12203550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Microbial compost plays a crucial role in improving soil health, soil fertility, and plant biomass. These biofertilizers, based on microorganisms, offer numerous benefits such as enhanced nutrient acquisition (N, P, and K), production of hydrogen cyanide (HCN), and control of pathogens through induced systematic resistance. Additionally, they promote the production of phytohormones, siderophore, vitamins, protective enzymes, and antibiotics, further contributing to soil sustainability and optimal agricultural productivity. The escalating generation of organic waste from farm operations poses significant threats to the environment and soil fertility. Simultaneously, the excessive utilization of chemical fertilizers to achieve high crop yields results in detrimental impacts on soil structure and fertility. To address these challenges, a sustainable agriculture system that ensures enhanced soil fertility and minimal ecological impact is imperative. Microbial composts, developed by incorporating characterized plant-growth-promoting bacteria or fungal strains into compost derived from agricultural waste, offer a promising solution. These biofertilizers, with selected microbial strains capable of thriving in compost, offer an eco-friendly, cost-effective, and sustainable alternative for agricultural practices. In this review article, we explore the potential of microbial composts as a viable strategy for improving plant growth and environmental safety. By harnessing the benefits of microorganisms in compost, we can pave the way for sustainable agriculture and foster a healthier relationship between soil, plants, and the environment.
Collapse
Affiliation(s)
- Temoor Ahmed
- Xianghu Laboratory, Hangzhou 311231, China; (T.A.)
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Muhammad Noman
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yetong Qi
- Xianghu Laboratory, Hangzhou 311231, China; (T.A.)
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Sabir Hussain
- Department of Environmental Sciences, Government College University, Faisalabad 38040, Pakistan;
| | - Hafiza Ayesha Masood
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
- MEU Research Unit, Middle East University, Amman 11831, Jordan
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha 62529, Saudi Arabia;
| | - Attalla F. El-Kott
- Department of Biology, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Yanlai Yao
- Xianghu Laboratory, Hangzhou 311231, China; (T.A.)
| | - Xingjiang Qi
- Xianghu Laboratory, Hangzhou 311231, China; (T.A.)
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
32
|
Ansari M, Devi BM, Sarkar A, Chattopadhyay A, Satnami L, Balu P, Choudhary M, Shahid MA, Jailani AAK. Microbial Exudates as Biostimulants: Role in Plant Growth Promotion and Stress Mitigation. J Xenobiot 2023; 13:572-603. [PMID: 37873814 PMCID: PMC10594471 DOI: 10.3390/jox13040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023] Open
Abstract
Microbes hold immense potential, based on the fact that they are widely acknowledged for their role in mitigating the detrimental impacts of chemical fertilizers and pesticides, which were extensively employed during the Green Revolution era. The consequence of this extensive use has been the degradation of agricultural land, soil health and fertility deterioration, and a decline in crop quality. Despite the existence of environmentally friendly and sustainable alternatives, microbial bioinoculants encounter numerous challenges in real-world agricultural settings. These challenges include harsh environmental conditions like unfavorable soil pH, temperature extremes, and nutrient imbalances, as well as stiff competition with native microbial species and host plant specificity. Moreover, obstacles spanning from large-scale production to commercialization persist. Therefore, substantial efforts are underway to identify superior solutions that can foster a sustainable and eco-conscious agricultural system. In this context, attention has shifted towards the utilization of cell-free microbial exudates as opposed to traditional microbial inoculants. Microbial exudates refer to the diverse array of cellular metabolites secreted by microbial cells. These metabolites enclose a wide range of chemical compounds, including sugars, organic acids, amino acids, peptides, siderophores, volatiles, and more. The composition and function of these compounds in exudates can vary considerably, depending on the specific microbial strains and prevailing environmental conditions. Remarkably, they possess the capability to modulate and influence various plant physiological processes, thereby inducing tolerance to both biotic and abiotic stresses. Furthermore, these exudates facilitate plant growth and aid in the remediation of environmental pollutants such as chemicals and heavy metals in agroecosystems. Much like live microbes, when applied, these exudates actively participate in the phyllosphere and rhizosphere, engaging in continuous interactions with plants and plant-associated microbes. Consequently, they play a pivotal role in reshaping the microbiome. The biostimulant properties exhibited by these exudates position them as promising biological components for fostering cleaner and more sustainable agricultural systems.
Collapse
Affiliation(s)
- Mariya Ansari
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (M.A.); (A.S.); (L.S.)
| | - B. Megala Devi
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Ankita Sarkar
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (M.A.); (A.S.); (L.S.)
| | - Anirudha Chattopadhyay
- Pulses Research Station, S.D. Agricultural University, Sardarkrushinagar 385506, Gujarat, India;
| | - Lovkush Satnami
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (M.A.); (A.S.); (L.S.)
| | - Pooraniammal Balu
- Department of Biotechnology, Sastra Deemed University, Thanjavur 613401, Tamil Nadu, India;
| | - Manoj Choudhary
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA;
| | - Muhammad Adnan Shahid
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL 32351, USA;
| | - A. Abdul Kader Jailani
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA;
- Plant Pathology Department, North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA
| |
Collapse
|
33
|
El Jaddaoui I, Rangel DEN, Bennett JW. Fungal volatiles have physiological properties. Fungal Biol 2023; 127:1231-1240. [PMID: 37495313 DOI: 10.1016/j.funbio.2023.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
All fungi emit mixtures of volatile organic compounds (VOCs) during growth. The qualitative and quantitative composition of these volatile mixtures vary with the species of fungus, the age of the fungus, and the environmental parameters attending growth. In nature, fungal VOCs are found as combinations of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, and are responsible for the characteristic odors associated with molds, mushrooms and yeasts. One of the single most common fungal volatiles is 1-octen-3-ol also known as "mushroom alcohol" or "matsutake alcohol." Many volatiles, including 1-octen-3-ol, serve as communication agents and display biological activity as germination inhibitors, plant growth retardants or promoters, and as semiochemicals ("infochemicals") in interactions with arthropods. Volatiles are understudied and underappreciated elements of the chemical lives of fungi. This review gives a brief introduction to fungal volatiles in hopes of raising awareness of the physiological importance of these gas phase fungal metabolites to encourage mycologists and other biologists to stop "throwing away the head space."
Collapse
Affiliation(s)
- Islam El Jaddaoui
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Drauzio E N Rangel
- Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Paraná, Brazil
| | - Joan Wennstrom Bennett
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
34
|
Holkar SK, Ghotgalkar PS, Lodha TD, Bhanbhane VC, Shewale SA, Markad H, Shabeer ATP, Saha S. Biocontrol potential of endophytic fungi originated from grapevine leaves for management of anthracnose disease caused by Colletotrichum gloeosporioides. 3 Biotech 2023; 13:258. [PMID: 37405269 PMCID: PMC10314888 DOI: 10.1007/s13205-023-03675-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023] Open
Abstract
In the present study, 51 fungal endophytes (FEs) were isolated, purified and identified from the healthy leaf segments of ten grapevine varieties based on the spore and colony morphologies and ITS sequence information. The FEs belonged to the Ascomycota division comprising eight genera viz., Alternaria, Aspergillus, Bipolaris, Curvularia, Daldinia, Exserohilum, Fusarium and Nigrospora. The in vitro direct confrontation assay against Colletotrichum gloeosporioides revealed that six isolates viz., VR8 (70%), SB2 (83.15%), CS2 (88.42%), MN3 (88.42%), MS5 (78.94%) and MS15 (78.94%) inhibited the mycelial growth of test pathogen. The remaining 45 fungal isolates showed 20-59.9% growth inhibition of C. gloeosporioides. Indirect confrontation assay manifested that the isolates MN1 and MN4a showed 79.09% and 78.18% growth inhibition of C. gloeosporioides followed by MM4 (73.63%) and S5 (71.81%) isolates. Isolate S5 and MM4 were found to produce azulene and 1,3-Cyclopentanedione, 4,4-dimethyl as antimicrobial volatile organic compounds, respectively. The 38 FEs showed PCR amplification using internal transcribed spacer universal primers. The BLAST search revealed highest similarity with the existing sequences in the database. The phylogenetic analysis revealed the occurrence of seven distinct clusters each corresponding to single genus. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03675-z.
Collapse
Affiliation(s)
- Somnath K. Holkar
- Indian Council of Agricultural Research-National Research Centre for Grapes, Pune, Maharashtra 412307 India
| | - Prabhavati S. Ghotgalkar
- Indian Council of Agricultural Research-National Research Centre for Grapes, Pune, Maharashtra 412307 India
| | - Tushar D. Lodha
- National Centre of Cell Science, Pune, Maharashtra 411 007 India
| | - Vrushali C. Bhanbhane
- Indian Council of Agricultural Research-National Research Centre for Grapes, Pune, Maharashtra 412307 India
| | - Shraddha A. Shewale
- Indian Council of Agricultural Research-National Research Centre for Grapes, Pune, Maharashtra 412307 India
- Present Address: Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra 413 705 India
| | - Harshvardhan Markad
- Indian Council of Agricultural Research-National Research Centre for Grapes, Pune, Maharashtra 412307 India
| | - A. T. P. Shabeer
- Indian Council of Agricultural Research-National Research Centre for Grapes, Pune, Maharashtra 412307 India
| | - Sujoy Saha
- Indian Council of Agricultural Research-National Research Centre for Grapes, Pune, Maharashtra 412307 India
| |
Collapse
|
35
|
Mestre-Tomás J, Esgueva-Vilà D, Fuster-Alonso A, Lopez-Moya F, Lopez-Llorca LV. Chitosan Modulates Volatile Organic Compound Emission from the Biocontrol Fungus Pochonia chlamydosporia. Molecules 2023; 28:molecules28104053. [PMID: 37241794 DOI: 10.3390/molecules28104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Fungal volatile organic compounds (VOCs) are responsible for fungal odor and play a key role in biological processes and ecological interactions. VOCs represent a promising area of research to find natural metabolites for human exploitation. Pochonia chlamydosporia is a chitosan-resistant nematophagous fungus used in agriculture to control plant pathogens and widely studied in combination with chitosan. The effect of chitosan on the production of VOCs from P. chlamydosporia was analyzed using gas chromatography-mass spectrometry (GC-MS). Several growth stages in rice culture medium and different times of exposure to chitosan in modified Czapek-Dox broth cultures were analyzed. GC-MS analysis resulted in the tentative identification of 25 VOCs in the rice experiment and 19 VOCs in the Czapek-Dox broth cultures. The presence of chitosan in at least one of the experimental conditions resulted in the de novo production of 3-methylbutanoic acid and methyl 2,4-dimethylhexanoate, and oct-1-en-3-ol and tetradec-1-ene in the rice and Czapek-Dox experiments, respectively. Other VOCs changed their abundance because of the effect of chitosan and fungal age. Our findings suggest that chitosan can be used as a modulator of the production of VOCs in P. chlamydosporia and that there is also an effect of fungal age and exposure time.
Collapse
Affiliation(s)
- Jorge Mestre-Tomás
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, 03690 Alicante, Spain
- Institute for Integrative Systems Biology (CSIC-UV), Spanish National Research Council, 46980 Paterna, Spain
| | - David Esgueva-Vilà
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, 03690 Alicante, Spain
| | - Alba Fuster-Alonso
- Institut de Ciències del Mar (ICM-CSIC), Renewable Marine Resources Department, 08003 Barcelona, Spain
| | - Federico Lopez-Moya
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, 03690 Alicante, Spain
| | - Luis V Lopez-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, 03690 Alicante, Spain
| |
Collapse
|
36
|
Integrative analysis of genomic and metabolomic data reveals key metabolic pathways involved in lipid and carotenoid biosynthesis in oleaginous red yeast Rhodosporidiobolus odoratus XQR. Microbiol Res 2023; 270:127339. [PMID: 36827895 DOI: 10.1016/j.micres.2023.127339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/04/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
Rhodosporidiobolus odoratus, one of the oleaginous red yeasts, is gaining biotechnological importance for their ability to produce microbial lipids and carotenoids. However, to date, the genomic resource underling lipid and carotenoid biosynthesis in R. odoratus has not been reported. Here, we reported the first genome assembly of R. odoratus using a combination of PacBio and Illumina techniques. The final genome assembly is 23.74 Mb in size, containing 52 scaffolds with a N50 length of 1200,460 bp and a GC content of 56.90%. Benchmarking Universal Single-Copy Orthologs (BUSCO) assessment showed that our assembly contains 94.23% of Basidiomycota universal single-copy orthologs. The genome was predicted to contain 4986 protein-coding genes, 4967 of which were functionally annotated. Metabolomic profiling identified 574 lipids, 3 carotenoids, and 208 volatile organic compounds synthesized by R. odoratus. Integrative analysis of genomics and metabolomics provides insights into the biosynthesis of lipid, carotenoid, and other bioactive compounds in R. odoratus. Collectively, the results presented herein greatly enhance our understanding of R. odoratus in lipids and carotenoids biosynthesis, and thus further accelerate its fundamental molecular investigations and biotechnological applications.
Collapse
|
37
|
Nawrocka J, Szymczak K, Skwarek-Fadecka M, Małolepsza U. Toward the Analysis of Volatile Organic Compounds from Tomato Plants ( Solanum lycopersicum L.) Treated with Trichoderma virens or/and Botrytis cinerea. Cells 2023; 12:cells12091271. [PMID: 37174671 PMCID: PMC10177525 DOI: 10.3390/cells12091271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/15/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Gray mold caused by Botrytis cinerea causes significant losses in tomato crops. B. cinerea infection may be halted by volatile organic compounds (VOCs), which may exhibit fungistatic activity or enhance the defense responses of plants against the pathogen. The enhanced VOC generation was observed in tomato (Solanum lycopersicum L.), with the soil-applied biocontrol agent Trichoderma virens (106 spores/1 g soil), which decreased the gray mold disease index in plant leaves at 72 hpi with B. cinerea suspension (1 × 106 spores/mL). The tomato leaves were found to emit 100 VOCs, annotated and putatively annotated, assigned to six classes by the headspace GCxGC TOF-MS method. In Trichoderma-treated plants with a decreased grey mold disease index, the increased emission or appearance of 2-hexenal, (2E,4E)-2,4-hexadienal, 2-hexyn-1-ol, 3,6,6-trimethyl-2-cyclohexen-1-one, 1-octen-3-ol, 1,5-octadien-3-ol, 2-octenal, octanal, 2-penten-1-ol, (Z)-6-nonenal, prenol, and acetophenone, and 2-hydroxyacetophenone, β-phellandrene, β-myrcene, 2-carene, δ-elemene, and isocaryophyllene, and β-ionone, 2-methyltetrahydrofuran, and 2-ethyl-, and 2-pentylfuran, ethyl, butyl, and hexyl acetate were most noticeable. This is the first report of the VOCs that were released by tomato plants treated with Trichoderma, which may be used in practice against B. cinerea, although this requires further analysis, including the complete identification of VOCs and determination of their potential as agents that are capable of the direct and indirect control of pathogens.
Collapse
Affiliation(s)
- Justyna Nawrocka
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Kamil Szymczak
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Monika Skwarek-Fadecka
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Urszula Małolepsza
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
38
|
Fenta L, Mekonnen H, Kabtimer N. The Exploitation of Microbial Antagonists against Postharvest Plant Pathogens. Microorganisms 2023; 11:microorganisms11041044. [PMID: 37110467 PMCID: PMC10143894 DOI: 10.3390/microorganisms11041044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Postharvest disease management is vital to increase the quality and productivity of crops. As part of crop disease protection, people used different agrochemicals and agricultural practices to manage postharvest diseases. However, the widespread use of agrochemicals in pest and disease control has detrimental effects on consumer health, the environment, and fruit quality. To date, different approaches are being used to manage postharvest diseases. The use of microorganisms to control postharvest disease is becoming an eco-friendly and environmentally sounds approach. There are many known and reported biocontrol agents, including bacteria, fungi, and actinomycetes. Nevertheless, despite the abundance of publications on biocontrol agents, the use of biocontrol in sustainable agriculture requires substantial research, effective adoption, and comprehension of the interactions between plants, pathogens, and the environment. To accomplish this, this review made an effort to locate and summarize earlier publications on the function of microbial biocontrol agents against postharvest crop diseases. Additionally, this review aims to investigate biocontrol mechanisms, their modes of operation, potential future applications for bioagents, as well as difficulties encountered during the commercialization process.
Collapse
Affiliation(s)
- Lamenew Fenta
- Department of Biology, Debre Markos University, Debre Markos P.O. Box 269, Ethiopia
| | - Habtamu Mekonnen
- Department of Biology, Bahir Dar University, Bahir Dar P.O. Box 79, Ethiopia
| | - Negash Kabtimer
- Department of Biology, Bahir Dar University, Bahir Dar P.O. Box 79, Ethiopia
| |
Collapse
|
39
|
Chóez-Guaranda I, Espinoza-Lozano F, Reyes-Araujo D, Romero C, Manzano P, Galarza L, Sosa D. Chemical Characterization of Trichoderma spp. Extracts with Antifungal Activity against Cocoa Pathogens. Molecules 2023; 28:molecules28073208. [PMID: 37049971 PMCID: PMC10095870 DOI: 10.3390/molecules28073208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Ecuador is one of the major cocoa producers worldwide, but its productivity has lately been affected by diseases. Endophytic biocontrol agents have been used to minimize pathogenic effects; however, compounds produced by endophytes are minimally understood. This work presents the chemical characterization of the Trichoderma species extracts that proved inhibition against cocoa pathogens. Solid-liquid extraction was performed as a partitioning method using medium with the fungal mycelia of Trichoderma reesei (C2A), Trichoderma sp. (C3A), Trichoderma harzianum (C4A), and Trichoderma spirale (C10) in ethyl acetate individually. The extract of T. spirale (C10) exhibited the growth inhibition (32.97-47.02%) of Moniliophthora perniciosa at 10 µg/mL, while a slight stimulation of Moniliophthora roreri was shown by the extracts of T. reesei (C2A) and T. harzianum (C4A) at higher concentrations. The inhibitory activity could be related to alkaloids, lactones, quinones, flavonoids, triterpenes, and sterols, as indicated by chemical screening and antifungal compounds, such as widdrol, β-caryophyllene, tyrosol, butyl isobutyrate, sorbic acid, palmitic acid, palmitelaidic acid, linoleic acid, and oleic acid, which were identified by gas chromatography-mass spectrometry (GC-MS). The results showed that the extracts, particularly T. spirale (C10), have the potential as biocontrol agents against witches' broom disease; however, further studies are needed to confirm their effectiveness.
Collapse
Affiliation(s)
- Ivan Chóez-Guaranda
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil P.O. Box 091050, Ecuador
| | - Fernando Espinoza-Lozano
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil P.O. Box 091050, Ecuador
| | - Dennys Reyes-Araujo
- Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí P.O. Box 171-5-231B, Ecuador
| | - Christian Romero
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil P.O. Box 091050, Ecuador
- Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil P.O. Box 091050, Ecuador
| | - Patricia Manzano
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil P.O. Box 091050, Ecuador
- Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil P.O. Box 091050, Ecuador
| | - Luis Galarza
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil P.O. Box 091050, Ecuador
- Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil P.O. Box 091050, Ecuador
| | - Daynet Sosa
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil P.O. Box 091050, Ecuador
- Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil P.O. Box 091050, Ecuador
| |
Collapse
|
40
|
Akhoundi M, Chebbah D, Elissa N, Brun S, Jan J, Lacaze I, Izri A. Volatile Organic Compounds: A Promising Tool for Bed Bug Detection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5214. [PMID: 36982123 PMCID: PMC10048870 DOI: 10.3390/ijerph20065214] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The recent decades' resurgence of bed bugs as a public health concern in industrialized countries has driven an increased interest on new sustainable insecticide-free methods to monitor and control these ectoparasites. Current methods of detection rely mainly on visual inspection or canine scent detection, which are methods that are time-consuming, require experience, are non-specific or require costly mission repetitions. Volatile organic compounds (VOCs) are considered an environmentally friendly alternative and a promising approach for bed bug detection. An overview of the released literature on VOCs, their chemical characteristics and their role in bed bugs' intra- and inter-species communications allowed us to highlight the identification of 49 VOCs in Cimex lectularius (23 molecules) and C. hemipterus (26), which are emitted by both sexes during diverse compartments including aggregation (46), mating (11), defense (4), etc., and all life stages including exuviae or dead bed bugs as a principal indicator of infestation. The latter has a great importance for application of these semiochemicals in successful detection and control management of bed bugs and to prevent their further dispersion. This approach has the advantage of more reliability compared to conventional detection methods with no need for repeated inspections, household furniture moving or resident rehousing for bed bugs' VOC detection, which are commonly performed by active or passive sampling with absorbing tubes and analyzed by gas chromatography-based analytical platforms.
Collapse
Affiliation(s)
- Mohammad Akhoundi
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, Sorbonne Paris Nord University, 93000 Bobigny, France
| | - Dahlia Chebbah
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, Sorbonne Paris Nord University, 93000 Bobigny, France
- Service Parisien de Santé Environnementale (SPSE), Sous-Direction de la Santé Environnementale et de la Prévention (SDSEP), Direction de la Santé Publique (DSP)—Mairie de Paris, 75019 Paris, France
| | - Nohal Elissa
- Service Parisien de Santé Environnementale (SPSE), Sous-Direction de la Santé Environnementale et de la Prévention (SDSEP), Direction de la Santé Publique (DSP)—Mairie de Paris, 75019 Paris, France
| | - Sophie Brun
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, Sorbonne Paris Nord University, 93000 Bobigny, France
| | - Julie Jan
- Agence Régionale de Santé (ARS) Île-de-France, 35, Rue de la Gare, CEDEX 19, 75935 Paris, France
| | - Isabelle Lacaze
- Centre Scientifique et Technique du Bâtiment (CSTB), Direction Santé Confort, Division Qualité Sanitaire des Ouvrages, 84, Avenue Jean Jaurès, CEDEX F-77447, 77420 Marne-la-Vallée, France
| | - Arezki Izri
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, Sorbonne Paris Nord University, 93000 Bobigny, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), 13000 Marseille, France
| |
Collapse
|
41
|
Rahman M, Borah SM, Borah PK, Bora P, Sarmah BK, Lal MK, Tiwari RK, Kumar R. Deciphering the antimicrobial activity of multifaceted rhizospheric biocontrol agents of solanaceous crops viz., Trichoderma harzianum MC2, and Trichoderma harzianum NBG. FRONTIERS IN PLANT SCIENCE 2023; 14:1141506. [PMID: 36938007 PMCID: PMC10020943 DOI: 10.3389/fpls.2023.1141506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The Solanaceae family is generally known to be the third most economically important plant taxon, but also harbors a host of plant pathogens. Diseases like wilt and fruit rot of solanaceous crops cause huge yield losses in the field as well as in storage. In the present study, eight isolates of Trichoderma spp. were obtained from rhizospheric micro-flora of three solanaceous crops: tomato, brinjal, and chili plants, and were subsequently screened for pre-eminent biocontrol activity against three fungal (Fusarium oxysporum f. sp. lycopersicum, Colletotrichum gloeosporioides, and Rhizoctonia solani) and one bacterial (Ralstonia solanacearum) pathogen. Morphological, ITS, and tef1α marker-based molecular identification revealed eight isolates were different strains of Trichoderma. Seven isolates were distinguished as T. harzianum while one was identified as T. asperellum. In vitro antagonistic and biochemical assays indicated significant biocontrol activity governed by all eight isolates. Two fungal isolates, T. harzianum MC2 and T. harzianum NBG were further evaluated to decipher their best biological control activity. Preliminary insights into the secondary metabolic profile of both isolates were retrieved by liquid chromatography-mass spectrometry (LC-MS). Further, a field experiment was conducted with the isolates T. harzianum MC2 and T. harzianum NBG which successfully resulted in suppression of bacterial wilt disease in tomato. Which possibly confer biocontrol properties to the identified isolates. The efficacy of these two strains in suppressing bacterial wilt and promoting plant growth in the tomato crop was also tested in the field. The disease incidence was significantly reduced by 47.50% and yield incremented by 54.49% in plants treated in combination with both the bioagents. The results of scanning electron microscopy were also in consensus with the in planta results. The results altogether prove that T. harzianum MC2 and T. harzianum NBG are promising microbes for their prospective use in agricultural biopesticide formulations.
Collapse
Affiliation(s)
- Mehjebin Rahman
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Sapna Mayuri Borah
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Pradip Kr. Borah
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Popy Bora
- Department of Plant Pathology, Regional Agricultural Research Station, Jorhat, Assam, India
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Milan Kumar Lal
- Department of Plant Protection; Department of Crop Physiology, Biochemistry & Postharvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| | - Rahul Kumar Tiwari
- Department of Plant Protection; Department of Crop Physiology, Biochemistry & Postharvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| | - Ravinder Kumar
- Department of Plant Protection; Department of Crop Physiology, Biochemistry & Postharvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| |
Collapse
|
42
|
Gomes AAM, Paes SA, Ferreira APS, Pinho DB, de Lourdes Cardeal Z, Menezes HC, Cardoso PG, Pereira OL. Endophytic species of Induratia from coffee and carqueja plants from Brazil and its potential for the biological control of toxicogenic fungi on coffee beans by means of antimicrobial volatiles. Braz J Microbiol 2023; 54:349-360. [PMID: 36598751 PMCID: PMC9944607 DOI: 10.1007/s42770-022-00887-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Several endophytic fungi have been reported to have produced bioactive metabolites. Some of them, including the Induratia species, have the capacity to emit volatile compounds with antimicrobial properties with broad spectrum against human and plant pathogens. The present study aimed to prospect the Induratia species producing volatile organic compounds (VOCs), in carqueja plants used in alternative medicine and coffee plants in Brazil. A total of 11 fungal isolates producing volatile metabolites were obtained by a parallel growth technique, using I. alba 620 as a reference strain. Phylogenetic relationships revealed the presence of at least three distinct species, I. coffeana, I. yucatanensis, and Induratia sp. SPME/GC/MS analyses of the VOCs in the headspace above the mycelium from Induratia species cultured for 10 days on PDA revealed the volatile profile emitted by I. coffeana CCF 572, I. coffeana COAD 2055, I. yucatanensis COAD 2062, and Induratia sp. COAD 2059. Volatile organic compounds produced by I. coffeana isolates presented antimicrobial activity against Aspergillus ochraceus, A. sclerotiorum, A. elegans, A. foetidus, A. flavus, A. tamari, A. tubingensis, A. sydowii, A. niger, A. caespitosus, A. versicolor, and A. expansum, sometimes by decreasing the growth rate or, mainly, by fully inhibiting colony growth. Fifty-eight percent of the target species died after 6 days of exposure to VOCs emitted by I. coffeana CCF 572. In addition, VOCs emitted by the same fungus inhibited the growth in A. ochraceus inoculated into coffee beans, which indicates that plants which have I. coffeana as an endophyte may be protected from attacks by this plant pathogen.
Collapse
Affiliation(s)
| | - Simone Albino Paes
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | | | - Danilo Batista Pinho
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | | | - Helvécio Costa Menezes
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | |
Collapse
|
43
|
Volatile Organic Compounds from Pythium oligandrum Play a Role in Its Parasitism on Plant-Pathogenic Pythium myriotylum. Appl Environ Microbiol 2023; 89:e0203622. [PMID: 36744963 PMCID: PMC9973004 DOI: 10.1128/aem.02036-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The oomycete Pythium oligandrum is a soil-inhabiting parasite and predator of both fungi and oomycetes, and uses hydrolytic enzymes extensively to penetrate and hydrolyze its host or prey. Other mechanisms have been studied less, and we investigated the contribution of P. oligandrum-produced volatile organic compounds (VOCs) to parasitism. The growth-inhibiting activity of P. oligandrum VOCs was tested on Pythium myriotylum-a host or prey of P. oligandrum-coupled with electron microscopy, and biochemical and transcriptomic analyses. The P. oligandrum-produced VOCs reduced P. myriotylum growth by 80% and zoospore levels by 60%. Gas chromatography-mass spectrometry (GC-MS) identified 23 VOCs, and methyl heptenone, d-limonene, 2-undecanone, and 1-octanal were potent inhibitors of P. myriotylum growth and led to increased production of reactive oxygen species at a concentration that did not inhibit P. oligandrum growth. Exposure to the P. oligandrum VOCs led to shrinkage of P. myriotylum hyphae and lysis of the cellular membranes and organelles. Transcriptomics of P. myriotylum exposed to the P. oligandrum VOCs at increasing levels of growth inhibition initially showed a strong upregulation of putative detoxification-related genes that was not maintained later. The inhibition of P. myriotylum growth continued immediately after the exposure to the VOCs was discontinued and led to the reduced infection of its plant hosts. The VOCs produced by P. oligandrum could be another factor alongside hydrolytic enzymes contributing to its ecological role as a microbial parasite in particular ecological niches such as in soil, and may also contribute to the biocontrol of diseases using P. oligandrum commercial preparations. IMPORTANCE Microbe-microbe interactions in nature are multifaceted, with multiple mechanisms of action, and are crucial to how plants interact with microbes. Volatile organic compounds (VOCs) have diverse functions, including contributing to parasitism in ecological interactions and potential applications in biocontrol. The microbial parasite P. oligandrum is well known for using hydrolytic enzymes as part of its parasitism. We found that P. oligandrum VOCs reduced the growth of, and caused major damage to, the hyphae of P. myriotylum (a host or prey of P. oligandrum). Transcriptomic analyses of P. myriotylum exposed to the VOCs revealed the upregulation of genes potentially involved in an attempt to detoxify the VOCs. The inhibitory effects of the VOCs had a knock-on effect by reducing the virulence of P. myriotylum toward its plant hosts. The P. oligandrum VOCs could contribute to its ecological role as a microbial parasite. The VOCs analyzed here may also contribute to the biocontrol of diseases using P. oligandrum commercial preparations.
Collapse
|
44
|
Xing S, Gao Y, Li X, Ren H, Gao Y, Yang H, Liu Y, He S, Huang Q. Antifungal Activity of Volatile Components from Ceratocystis fimbriata and Its Potential Biocontrol Mechanism on Alternaria alternata in Postharvest Cherry Tomato Fruit. Microbiol Spectr 2023; 11:e0271322. [PMID: 36625661 PMCID: PMC9927153 DOI: 10.1128/spectrum.02713-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Infection by fungal pathogens is the main factor leading to postharvest rot and quality deterioration of fruit and vegetables. Rotting caused by Alternaria alternata is a concerning disease for numerous crops in both production and postharvest stages, especially tomato black spots. In this study, the double Petri dish assay showed that the VOCs of Ceratocystis fimbriata WJSK-1 and Mby inhibited the mycelial growth of fungal pathogen A. alternata, with a percentage inhibition of 52.2% and 42.9%. Then, HS-SPME-GC-MS technology was used to analyze the volatiles produced by two strains of C. fimbriata (WJSK-1, Mby), a total of 42 volatile single components were obtained, the main volatiles compounds identified include nine esters, 10 ketones, five alcohols, four aldehydes, three aromatic hydrocarbons, three heterocycles, four alkenes, three alkanes, and one acid. After that, the antifungal activity of a single volatile component was evaluated both in vitro and in vivo, four single components with antifungal effects were screened out, namely, benzaldehyde, nonanal, 2-Phenylethanol and isoamyl acetate, with IC50 values show the smallest values for benzaldehyde and nonanal at 0.11 μL mL-1, 0.04 μL mL-1. A. alternata exposed to VOCs had abnormal morphology for hyphae, delayed sporulation, and inhibited spore germination. In vivo experiment shows that the four volatile components can effectively suppress disease incidence on fungal-inoculated fruit; the two aldehydes (benzaldehyde and nonanal) have more prominent effect on delaying fruit onset of disease. The results showed that VOCs produced by C. fimbriata have potential as a fumigant for controlling black rot in cherry tomatoes. IMPORTANCE In this research, the volatile organic compounds (VOCs) produced based on C. fimbriata exhibited strong antifungal activity against the fungal pathogen A. alternata. Our aim is to explore their bacteriostatic components. HS-SPME-GC-MS technology was used to analyze the volatiles produced by the C. fimbriata strain (WJSK-1, Mby). Postharvest cherry tomato fruit black rot caused by A. alternata was treated both in vitro and in vivo, with pure individual components produced by C. fimbriata. The benzaldehyde, nonanal, 2-Phenylethanol, and isoamyl acetate from C. fimbriata can effectively inhibit growth of A. alternata, and delay disease. It has the potential to be developed as a new type of fumigant, a potential replacement for fungicides in the future.
Collapse
Affiliation(s)
- Shijun Xing
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Yating Gao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Xue Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Huan Ren
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Yang Gao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Hui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Yanmei Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Shuqi He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Qiong Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| |
Collapse
|
45
|
Cheli F, Ottoboni M, Fumagalli F, Mazzoleni S, Ferrari L, Pinotti L. E-Nose Technology for Mycotoxin Detection in Feed: Ready for a Real Context in Field Application or Still an Emerging Technology? Toxins (Basel) 2023; 15:146. [PMID: 36828460 PMCID: PMC9958648 DOI: 10.3390/toxins15020146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Mycotoxin risk in the feed supply chain poses a concern to animal and human health, economy, and international trade of agri-food commodities. Mycotoxin contamination in feed and food is unavoidable and unpredictable. Therefore, monitoring and control are the critical points. Effective and rapid methods for mycotoxin detection, at the levels set by the regulations, are needed for an efficient mycotoxin management. This review provides an overview of the use of the electronic nose (e-nose) as an effective tool for rapid mycotoxin detection and management of the mycotoxin risk at feed business level. E-nose has a high discrimination accuracy between non-contaminated and single-mycotoxin-contaminated grain. However, the predictive accuracy of e-nose is still limited and unsuitable for in-field application, where mycotoxin co-contamination occurs. Further research needs to be focused on the sensor materials, data analysis, pattern recognition systems, and a better understanding of the needs of the feed industry for a safety and quality management of the feed supply chain. A universal e-nose for mycotoxin detection is not realistic; a unique e-nose must be designed for each specific application. Robust and suitable e-nose method and advancements in signal processing algorithms must be validated for specific needs.
Collapse
Affiliation(s)
- Federica Cheli
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20100 Milan, Italy
| | - Matteo Ottoboni
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Francesca Fumagalli
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Sharon Mazzoleni
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Luca Ferrari
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Luciano Pinotti
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20100 Milan, Italy
| |
Collapse
|
46
|
Ribeiro LS, de Souza ML, Lira JMS, Schwan RF, Batista LR, Silva CF. Volatile compounds for biotechnological applications produced during competitive interactions between yeasts and fungi. J Basic Microbiol 2023. [PMID: 36734187 DOI: 10.1002/jobm.202200409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 02/04/2023]
Abstract
Fungi, yeasts and bacteria produce volatile compounds during their metabolism. In this study, the volatile compounds produced by yeast strains (Saccharomyces cerevisiae and Rhodotorula mucilaginosa) and fungal strains (Aspergillus carbonarius and Aspergillus ochraceus) during competitive interactions were investigated by solid-phase microextraction coupled with gas chromatography-mass spectrometry. Fifty-six volatile compounds were identified representing alcohols, aldehydes, esters, ketones, aromatic compounds, acids, furans, phenols, and nitrogen compounds, being the largest amount in the class of esters and alcohols. Eight compounds were identified only in interactive culture conditions such as 2-amino-1-propanol, isopropylamine, dimethylamine, pentyl propanoate, ethyl-2-aminopropanoate, acetone, oxalic acid, and β-elemene and five of these were produced in cocultures including A. carbonarius. These will be developed for future biotechnological applications such as in the pharmaceutical and biological industry to produce drugs. Antimicrobial and antifungal activities; Solvent and herbicide; flavoring ingredient; solvent, plastic synthesis, nail polish remover and thinner, pesticide and herbicide; important in the complexation of minerals in the soil; and plant-environment interactions, defending predators, pathogens, and competitors.
Collapse
Affiliation(s)
- Luciana Silva Ribeiro
- Agricultural Microbiology, Department of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Mariana Lino de Souza
- Agricultural Microbiology, Department of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Jean Marcel Sousa Lira
- Department of Computer Science, Federal University of Alfenas (UNIFAL), Alfenas, Minas Gerais, Brazil
| | - Rosane Freitas Schwan
- Agricultural Microbiology, Department of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Luís Roberto Batista
- Department of Food Science, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Cristina Ferreira Silva
- Agricultural Microbiology, Department of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| |
Collapse
|
47
|
Yin J, Bai R, Yuan L, Huang JG. Application of Ceriporia lacerata HG2011 as biocontrol agent against multiple phytopathogenic fungi and oomycetes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 190:105316. [PMID: 36740332 DOI: 10.1016/j.pestbp.2022.105316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
Overuse of fungicides to control crop diseases results in ecological damage, environmental pollution, and human health risks. Biocontrol is an increasingly popular alternative in plant disease management due to sustainability and environmental friendliness. Herein, antagonistic tests and greenhouse experiments were conducted to investigate the antagonism of a self-isolated white-rot fungus Ceriporia lacerata HG2011 against phytopathogens in vitro, the underlying mechanism exerted by this fungus, and disease control efficiency in the greenhouse. The results demonstrated that both soluble and volatile substances produced by this fungus suppressed the growth of all test phytopathogen fungi and oomycetes in vitro, with the inhibitory rates of 10.4-60.6% for soluble metabolites and 30.3-52.9% for volatiles. C. lacerata HG2011 could grow in and gradually spread on living phytopathogenic colonies, concurrently deformed and lysed pathogenic hyphae in dual culture, which were associated with the release of hydrolase (cellulose, chitinase, β-glucanase, and protease) from this biocontrol fungus for the use of the pathogens as nutrient sources. The chitinolytic and cellulolytic production by C. lacerata HG2011 presents the specific response to the cell wall of pathogenic fungi and oomycetes, and β-glucanase was triggered by carbon competition. Consequently, C. lacerata HG2011 successfully controlled eggplant stem blight and cucumber vine blight (control efficacy 67.9-70.9%) in the greenhouse experiments. C. lacerata HG2011 showed multiple antagonistic mechanisms against the phytopathogenic fungi and oomycetes concurrently. Our results provided information about a new potential use of this fungus as a biocontrol agent to control plant diseases in modern agriculture beyond medical purposes, wastewater treatment, and biofuel production.
Collapse
Affiliation(s)
- Jie Yin
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Ruxia Bai
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Ling Yuan
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jian-Guo Huang
- College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
48
|
Perfume Guns: Potential of Yeast Volatile Organic Compounds in the Biological Control of Mycotoxin-Producing Fungi. Toxins (Basel) 2023; 15:toxins15010045. [PMID: 36668865 PMCID: PMC9866025 DOI: 10.3390/toxins15010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Pathogenic fungi in the genera Alternaria, Aspergillus, Botrytis, Fusarium, Geotrichum, Gloeosporium, Monilinia, Mucor, Penicillium, and Rhizopus are the most common cause of pre- and postharvest diseases of fruit, vegetable, root and grain commodities. Some species are also able to produce mycotoxins, secondary metabolites having toxic effects on human and non-human animals upon ingestion of contaminated food and feed. Synthetic fungicides still represent the most common tool to control these pathogens. However, long-term application of fungicides has led to unacceptable pollution and may favour the selection of fungicide-resistant mutants. Microbial biocontrol agents may reduce the incidence of toxigenic fungi through a wide array of mechanisms, including competition for the ecological niche, antibiosis, mycoparasitism, and the induction of resistance in the host plant tissues. In recent years, the emission of volatile organic compounds (VOCs) has been proposed as a key mechanism of biocontrol. Their bioactivity and the absence of residues make the use of microbial VOCs a sustainable and effective alternative to synthetic fungicides in the management of postharvest pathogens, particularly in airtight environments. In this review, we will focus on the possibility of applying yeast VOCs in the biocontrol of mycotoxigenic fungi affecting stored food and feed.
Collapse
|
49
|
Hobbs C. The Health and Clinical Benefits of Medicinal Fungi. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 184:285-356. [PMID: 37468715 DOI: 10.1007/10_2023_230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The human uses of mushrooms and cultured mycelium products for nutrition and medicine are detailed and supported by available human studies, which in many cases are clinical trials published in peer-reviewed journals. The major medically active immunomodulating compounds in the cell walls-chitin, beta-glucans, and glycoproteins, as well as lower weight molecules-nitrogen-containing compounds, phenolics, and terpenes-are discussed in relation to their current clinical uses. The nutritional content and foods derived from mushrooms, particularly related to their medical benefits, are discussed. High-quality major nutrients such as the high amounts of complete protein and prebiotic fibers found in edible and medicinal fungi and their products are presented. Mushrooms contain the highest amount of valuable medicinal fiber, while dried fruiting bodies of some fungi have up to 80% prebiotic fiber. These fibers are particularly complex and are not broken down in the upper gut, so they can diversify the microbiome and increase the most beneficial species, leading to better immune regulation and increasing normalizing levels of crucial neurotransmitters like serotonin and dopamine. Since the growth of medicinal mushroom products is expanding rapidly worldwide, attention is placed on reviewing important aspects of mushroom and mycelium cultivation and quality issues relating to adulteration, substitution, and purity and for maximizing medicinal potency. Common questions surrounding medicinal mushroom products in the marketplace, particularly the healing potential of fungal mycelium compared with fruiting bodies, extraction methods, and the use of fillers in products, are all explored, and many points are supported by the literature.
Collapse
Affiliation(s)
- Christopher Hobbs
- Institute for Natural Products Research, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
50
|
Santos JEDÁ, de Brito MV, Pimenta ATÁ, da Silva GS, Zocolo GJ, Muniz CR, de Medeiros SC, Grangeiro TB, Lima MAS, da Silva CDFB. Antagonism of volatile organic compounds of the Bacillus sp. against Fusarium kalimantanense. World J Microbiol Biotechnol 2022; 39:60. [PMID: 36574179 DOI: 10.1007/s11274-022-03509-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Fusarium kalimantanense is a genetic lineage of Fusarium oxysporum f. sp. cubense (Foc) and belongs to the Fusarium oxysporum species complex (FOSC). This pathogen is a causative agent of Panama disease, an infection that has caused damage to the banana crop worldwide. Bacillus sp. (LPPC170) showed preliminary antagonist activity against F. kalimantanense (LPPC130) in vitro tests from the cultivation of axenic culture and co-culture with inhibition of mycelial growth of phytopathogen of 41.23%. According to these findings, volatile organic compounds (VOCs) emitted from Bacillus sp. were obtained by solid-phase microextraction and identified by gas chromatography coupled with a mass spectrometer (GC-MS). The multivariate data analysis tool (PLS-DA and Heatmap) identified short-chain organic acids as the main antagonistic VOCs responsible for inhibiting the mycelial growth of LPPC130. Acetic acid, propanoic acid, butanoic acid, valeric acid, and isovaleric acid exhibited a strong inhibitory effect on the mycelial growth of LPPC130, with inhibition of 20.68%, 33.30%, 26.87%, 43.71%, and 53.10%, respectively. Scanning electron microscopy revealed that VOCs caused damage to the vegetative and reproductive structures of the fungus. These results suggest Bacillus LPPC170 as an excellent biocontrol tool against the phytopathogen causative agents of Panama disease.
Collapse
Affiliation(s)
- João Evangelista de Ávila Santos
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, Bl. 940, Fortaleza, CE, 60440-593, Brazil
| | - Maria Vieira de Brito
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, Bl. 940, Fortaleza, CE, 60440-593, Brazil
| | - Antonia Torres Ávila Pimenta
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, Bl. 940, Fortaleza, CE, 60440-593, Brazil
| | | | - Guilherme Julião Zocolo
- Embrapa Agroindústria Tropical, Rua Sara Mesquita 2270, Pici, Fortaleza, CE, 60511-110, Brazil
| | - Celli Rodrigues Muniz
- Embrapa Agroindústria Tropical, Rua Sara Mesquita 2270, Pici, Fortaleza, CE, 60511-110, Brazil
| | - Suelen Carneiro de Medeiros
- Departamento de Biologia, Science Center, Universidade Federal do Ceará, Campus do Pici, Bl 906, Fortaleza, Ceará, 60440-900, Brazil
| | - Thalles Barbosa Grangeiro
- Departamento de Biologia, Science Center, Universidade Federal do Ceará, Campus do Pici, Bl 906, Fortaleza, Ceará, 60440-900, Brazil
| | - Mary Anne Sousa Lima
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, Bl. 940, Fortaleza, CE, 60440-593, Brazil
| | | |
Collapse
|