1
|
Huang Y, Zhu W, Wu Y, Sun L, Li Q, Pramod SN, Wang H, Zhang Z, Lin H, Li Z. Development of an indirect competitive ELISA based on the common epitope of fish parvalbumin for its detection. Food Chem 2024; 455:139882. [PMID: 38824729 DOI: 10.1016/j.foodchem.2024.139882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
A common epitope (AGSFDHKKFFKACGLSGKST) of parvalbumin from 16 fish species was excavated using bioinformatics tools combined with the characterization of fish parvalbumin binding profile of anti-single epitope antibody in this study. A competitive enzyme-linked immunosorbent assay (ELISA) based on the common epitope was established with a limit of detection of 10.15 ng/mL and a limit of quantification of 49.29 ng/mL. The developed ELISA exhibited a narrow range (71% to 107%) of related cross-reactivity of 15 fish parvalbumin. Besides, the recovery, the coefficient of variations for the intra-assay and the inter-assay were 84.3% to 108.2%, 7.4% to 13.9% and 8.5% to 15.6%. Our findings provide a novel idea for the development of a broad detection method for fish allergens and a practical tool for the detection of parvalbumin of economic fish species in food samples.
Collapse
Affiliation(s)
- Yuhao Huang
- College of Food Science and Engineering, Ocean University of China, Sansha Road 1299, Qingdao, 266404, PR China
| | - Wenye Zhu
- College of Food Science and Engineering, Ocean University of China, Sansha Road 1299, Qingdao, 266404, PR China
| | - Yeting Wu
- College of Food Science and Engineering, Ocean University of China, Sansha Road 1299, Qingdao, 266404, PR China
| | - Lirui Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Ning Xia Road 308, Qingdao, 266071, PR China
| | - Qingli Li
- Department of Food and Drug Engineering, Shandong Vocational Animal Science and Veterinary College, Shengli East Street 88, Weifang, 261061, PR China
| | - Siddanakoppalu Narayana Pramod
- Department of Studies and Research in Biochemistry, Davangere University, Shivaganagotri, Davangere, 577007, Karnataka, India
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, Sansha Road 1299, Qingdao, 266404, PR China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, Sansha Road 1299, Qingdao, 266404, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Sansha Road 1299, Qingdao, 266404, PR China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Sansha Road 1299, Qingdao, 266404, PR China.
| |
Collapse
|
2
|
Rocha JP, Freitas M, Geraldo D, Delerue-Matos C, Nouws HPA. Seafood product safety: A hybrid graphene/gold-based electrochemical immunosensor for fish allergen analysis. Food Chem 2024; 446:138889. [PMID: 38452504 DOI: 10.1016/j.foodchem.2024.138889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Seafood product labels with accurate allergen contents can avoid and/or minimize allergic reactions. Therefore, an electrochemical immunosensor for the analysis of β-parvalbumin (β-PV, a major fish allergen) was developed. Screen-printed carbon electrodes were nanostructured with reduced graphene oxide and gold nanoparticles. The platform was characterized by scanning electron microscopy and elemental analysis. In a sandwich-type assay (∼75 min), the antigen-antibody interaction was detected by chronoamperometry using horseradish peroxidase and TMB-H2O2. A linear range of 25-3000 ng/mL, a sensitivity of 2.99 µA.mL/ng, and a limit of detection of 9.9 ng/mL (corresponding to 0.40 ng in the analysed aliquot) were obtained. The selectivity and possible interferences were assessed by analysing several other food allergens and a marine toxin. The sensor was applied to the analysis of 17 commercial foods and the effect of culinary processing (e.g., grilled, canned, smoked) on the β-PV concentration was assessed. Traces of β-PV were successfully quantified and ELISA was used to assess the results.
Collapse
Affiliation(s)
- José Pedro Rocha
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Maria Freitas
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal.
| | - Dulce Geraldo
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Henri P A Nouws
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal.
| |
Collapse
|
3
|
Christopoulou NM, Kalogianni DP, Christopoulos TK. Multifold improvement in allergen detection capability of dipstick-type immunosensors via macromolecular crowding. Talanta 2023; 265:124899. [PMID: 37421795 DOI: 10.1016/j.talanta.2023.124899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Dipstick-type lateral flow immunosensors are used widely for on-site detection of food allergens. The weakness of the immunosensors of this type, however, is their low sensitivity. Contrary to current methods, that focus on improving detection capability through the introduction of novel labels or multistep protocols, this work exploits macromolecular crowding to modify and regulate the microenvironment of the immunoassay, thus promoting the interactions that are responsible for allergen recognition and signal generation. The effect of 14 macromolecular crowding agents was explored using, as a model, commercially available and widely applied dipstick immunosensors, which are already optimized in terms of reagents and conditions for peanut allergen detection. An about 10-fold improvement in detection capability was achieved by using polyvinylpyrrolidone, Mr 29,000, as a macromolecular crowder without compromising simplicity and practicality. The proposed approach is complementary to other methods of improving the sensitivity by using novel labels. Because biomacromolecular interactions have a fundamental role in all types of biosensors, we foresee that the proposed strategy will also find applications in other biosensors and analytical devices.
Collapse
Affiliation(s)
- Natalia-Maria Christopoulou
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, Rio, Patras, 26504, Greece
| | - Despina P Kalogianni
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, Rio, Patras, 26504, Greece
| | - Theodore K Christopoulos
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, Rio, Patras, 26504, Greece.
| |
Collapse
|
4
|
Site-specific labeling of antibodies with quantum dots could promote to retain the antigen binding capacity of antibodies. Food Chem 2023; 413:135655. [PMID: 36796266 DOI: 10.1016/j.foodchem.2023.135655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
A major concern with antibody labeling is the decreased antigen affinity binding capacity of antibodies, owing mainly to the randomly oriented binding of the marker. Herein, a universal approach for site-specific photocrosslinking of quantum dots (QDs) to the Fc-terminal of antibodies was investigated utilizing antibody Fc-terminal affinity proteins. Results showed that the QDs only bound to the heavy chain of the antibody. Further comparative tests confirmed that the site-specific directed labeling approach maximizes the retention of the antigen-binding capacity of the natural antibody. Compared with the commonly employed random orientation labeling approach, the directional labeling approach allows the labeled antibody showed 6 times greater binding affinity to antigen. QDs-labeled monoclonal antibodies were applied to fluorescent immunochromatographic test strips for the detection of shrimp tropomyosin (TM). The established procedure has a detection limit of 0.054 μg/mL. Thus, the site-specific labeling approach significantly improves the antigen binding capacity of the labeled antibody.
Collapse
|
5
|
Zhao Y, Sang J, Fu Y, Guo J, Guo J. Magnetic nanoprobe-enabled lateral flow assays: recent advances. Analyst 2023. [PMID: 37365935 DOI: 10.1039/d3an00044c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In recent years, magnetic nanoparticle sensor technologies have attracted considerable interest in the point-of-care-testing (POCT) field, especially in lateral flow immunoassays (LFIAs). Although the visual signal of magnetic nanoparticles is reduced during an inspection, it can be compensated for by magnetic induction, and detection results can be quantified by magnetic sensors. Sensors that use magnetic nanoparticles (MNPs) as markers can overcome the high background noise of complex samples. In this study, MNP signal detection strategies are described from the perspectives of magnetoresistance, magnetic flux, frequency mixing technology, and magnetic permeability, and the principles and development of each technology are introduced in detail. Typical applications of magnetic nanoparticle sensor technologies are introduced. By describing the advantages and limitations of different sensing strategies, we highlight the development and improvement directions of different sensing strategies. In general, the future development of magnetic nanoparticle sensor technologies will be toward intelligent, convenient, and mobile high-performance detection equipment.
Collapse
Affiliation(s)
- Ying Zhao
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Jingwei Sang
- University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yusheng Fu
- University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Jiuchuan Guo
- University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Jinhong Guo
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
6
|
Dong T, Wang M, Liu J, Ma P, Pang S, Liu W, Liu A. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci 2023; 14:6149-6206. [PMID: 37325147 PMCID: PMC10266450 DOI: 10.1039/d2sc06665c] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The disastrous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced severe public healthcare issues and weakened the global economy significantly. Although SARS-CoV-2 infection is not as fatal as the initial outbreak, many infected victims suffer from long COVID. Therefore, rapid and large-scale testing is critical in managing patients and alleviating its transmission. Herein, we review the recent advances in techniques to detect SARS-CoV-2. The sensing principles are detailed together with their application domains and analytical performances. In addition, the advantages and limits of each method are discussed and analyzed. Besides molecular diagnostics and antigen and antibody tests, we also review neutralizing antibodies and emerging SARS-CoV-2 variants. Further, the characteristics of the mutational locations in the different variants with epidemiological features are summarized. Finally, the challenges and possible strategies are prospected to develop new assays to meet different diagnostic needs. Thus, this comprehensive and systematic review of SARS-CoV-2 detection technologies may provide insightful guidance and direction for developing tools for the diagnosis and analysis of SARS-CoV-2 to support public healthcare and effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
- School of Pharmacy, Medical College, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Wanjian Liu
- Qingdao Hightop Biotech Co., Ltd 369 Hedong Road, Hi-tech Industrial Development Zone Qingdao 266112 China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| |
Collapse
|
7
|
Parolo C, Idili A, Heikenfeld J, Plaxco KW. Conformational-switch biosensors as novel tools to support continuous, real-time molecular monitoring in lab-on-a-chip devices. LAB ON A CHIP 2023; 23:1339-1348. [PMID: 36655710 PMCID: PMC10799767 DOI: 10.1039/d2lc00716a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent years have seen continued expansion of the functionality of lab on a chip (LOC) devices. Indeed LOCs now provide scientists and developers with useful and versatile platforms across a myriad of chemical and biological applications. The field still fails, however, to integrate an often important element of bench-top analytics: real-time molecular measurements that can be used to "guide" a chemical response. Here we describe the analytical techniques that could provide LOCs with such real-time molecular monitoring capabilities. It appears to us that, among the approaches that are general (i.e., that are independent of the reactive or optical properties of their targets), sensing strategies relying on binding-induced conformational change of bioreceptors are most likely to succeed in such applications.
Collapse
Affiliation(s)
- Claudio Parolo
- Barcelona Institute for Global Health, Hospital Clínic Universitat de Barcelona, 08036, Barcelona, Spain
| | - Andrea Idili
- Department of Chemical Science and Technologies, University of Rome, Tor Vergata, 00133 Rome, Italy
| | - Jason Heikenfeld
- Novel Devices Laboratory, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA.
- Interdepartmental Program in Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
8
|
Mukherjee S, Hanak P, Jilkova D, Musilova Z, Horka P, Lerch Z, Zdenkova K, Cermakova E. Simultaneous detection and quantification of two European anglerfishes by novel genomic primer. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Li R, Zhang Y, Zhao J, Wang Y, Wang H, Zhang Z, Lin H, Li Z. Quantum-dot-based sandwich lateral flow immunoassay for the rapid detection of shrimp major allergen tropomyosin. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Alhabbab RY. Lateral Flow Immunoassays for Detecting Viral Infectious Antigens and Antibodies. MICROMACHINES 2022; 13:1901. [PMID: 36363922 PMCID: PMC9694796 DOI: 10.3390/mi13111901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 05/28/2023]
Abstract
Abundant immunological assays currently exist for detecting pathogens and identifying infected individuals, making detection of diseases at early stages integral to preventing their spread, together with the consequent emergence of global health crises. Lateral flow immunoassay (LFIA) is a test characterized by simplicity, low cost, and quick results. Furthermore, LFIA testing does not need well-trained individuals or laboratory settings. Therefore, it has been serving as an attractive tool that has been extensively used during the ongoing COVID-19 pandemic. Here, the LFIA strip's available formats, reporter systems, components, and preparation are discussed. Moreover, this review provides an overview of the current LFIAs in detecting infectious viral antigens and humoral responses to viral infections.
Collapse
Affiliation(s)
- Rowa Y. Alhabbab
- Vaccines and Immunotherapy Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
11
|
Dasanayaka BP, Wang H, Li Z, Yu M, Ahmed AMM, Zhang Z, Lin H, Wang X. Evaluating the effects of processing on antigenicity and immunochemical detectability of fish proteins by ELISA. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Dong X, Raghavan V. A comprehensive overview of emerging processing techniques and detection methods for seafood allergens. Compr Rev Food Sci Food Saf 2022; 21:3540-3557. [PMID: 35676763 DOI: 10.1111/1541-4337.12987] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022]
Abstract
Seafood is rich in nutrients and plays a significant role in human health. However, seafood allergy is a worldwide health issue by inducing adverse reactions ranging from mild to life-threatening in seafood-allergic individuals. Seafood consists of fish and shellfish, with the major allergens such as parvalbumin and tropomyosin, respectively. In the food industry, effective processing techniques are applied to seafood allergens to lower the allergenicity of seafood products. Also, sensitive and rapid allergen-detection methods are developed to identify and assess allergenic ingredients at varying times. This review paper provides an overview of recent advances in processing techniques (thermal, nonthermal, combined [hybrid] treatments) and main allergen-detection methods for seafood products. The article starts with the seafood consumption and classification, proceeding with the prevalence and symptoms of seafood allergy, followed by a description of biochemical characteristics of the major seafood allergens. As the topic is multidisciplinary in scope, it is intended to provide information for further research essential for food security and safety.
Collapse
Affiliation(s)
- Xin Dong
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
13
|
Ji L, Zhang L, Yang H, Liang S, Pan J, Zou Y, Li S, Li Q, Zhao S. Versatile Au@Ru nanocomposites for the rapid detection of Salmonella typhimurium and photothermal sterilization. J Colloid Interface Sci 2022; 621:489-498. [PMID: 35483180 DOI: 10.1016/j.jcis.2022.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
Abstract
In view of the current public health hazards of food-borne pathogens, it is urgent to develop a rapid detection method with high sensitivity, good specificity and operational convenience, as well as to determine an effective sterilization strategy. Herein, versatile gold-ruthenium nanocomposites modified with antibody (Au@Ru-pAb Ncs) have been constructed for the sensitive detection of Salmonella typhimurium (S. typhimurium) via the lateral flow immunochromatographic assay (LFIA). Au@Ru-pAb Ncs based LFIA exhibited a wide detection range from 2.9 × 106 CFU/mL to 2.9 × 1011 CFU/mL with the limit of detection of 9.8 × 104 CFU/mL for S. typhimurium, and displayed excellent specificity. In addition, Au@Ru-pAb Ncs irradiated with 808 nm (500 mW/cm2) near-infrared light (NIR) had a significant antibacterial effect within only 5 min, attributed to its high photothermal conversion efficiency of 54.14%. Therefore, both sensitive detection of S. typhimurium and effective NIR-triggered photothermal sterilization were achieved by using versatile Au@Ru-pAb Ncs, showing great prospects in the field of pathogen detection and treatment.
Collapse
Affiliation(s)
- Li Ji
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Leiheng Zhang
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Huiyi Yang
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Shan Liang
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Junkang Pan
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Yikui Zou
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Shijia Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Qinglan Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
14
|
Jiang X, Zhao Y, Tang C, Appelbaum M, Rao Q. Aquatic food animals in the United States: Status quo and challenges. Compr Rev Food Sci Food Saf 2022; 21:1336-1382. [PMID: 35150203 DOI: 10.1111/1541-4337.12923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/29/2022]
Abstract
This review summarizes (1) the U.S. status quo for aquatic food animal production and marketing; (2) major food safety and quality issues/concerns for aquatic food animals in the United States, including fish misbranding, finfish/shellfish allergies, pathogens, toxins and harmful residues, microplastics, and genetically engineered salmon; and (3) various U.S. regulations, guidances, and detection methods for the surveillance of fishery products. Overall, fish misbranding is the biggest challenge in the United States due to the relatively low inspection rate. In addition, due to the regulatory differences among countries, illegal animal drugs and/or pesticide residues might also be identified in imported aquatic food animals. Future regulatory and research directions could focus on further strengthening international cooperation, enhancing aquatic food animal inspection, and developing reliable, sensitive, and highly efficient detection methods.
Collapse
Affiliation(s)
- Xingyi Jiang
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Yaqi Zhao
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Chunya Tang
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Megan Appelbaum
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Qinchun Rao
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
15
|
Ha Y, Kim I. Recent Developments in Innovative Magnetic Nanoparticles-Based Immunoassays: From Improvement of Conventional Immunoassays to Diagnosis of COVID-19. BIOCHIP JOURNAL 2022; 16:351-365. [PMID: 35822174 PMCID: PMC9263806 DOI: 10.1007/s13206-022-00064-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/01/2022] [Accepted: 05/30/2022] [Indexed: 12/29/2022]
Abstract
During the ongoing COVID-19 pandemic, the development of point-of-care (POC) detection with high sensitivity and rapid detection time is urgently needed to prevent transmission of infectious diseases. Magnetic nanoparticles (MNPs) have been considered attractive materials for enhancing sensitivity and reducing the detection time of conventional immunoassays due to their unique properties including magnetic behavior, high surface area, excellent stability, and easy biocompatibility. In addition, detecting target analytes through color development is necessary for user-friendly POC detection. In this review, recent advances in different types of MNPs-based immunoassays such as improvement of the conventional enzyme-linked immunosorbent assay (ELISA), immunoassays based on the peroxidase-like activity of MNPs and based on the dually labeled MNPs, filtration method, and lateral-flow immunoassay are described and we analyze the advantages and strategies of each method. Furthermore, immunoassays incorporating MNPs for COVID-19 diagnosis through color development are also introduced, demonstrating that MNPs can become common tools for on-site diagnosis.
Collapse
Affiliation(s)
- Yeonjeong Ha
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Ijung Kim
- Department of Civil and Environmental Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul, 04066 Republic of Korea
| |
Collapse
|
16
|
Yang SH, Zhang HY, Huang CC, Tsai YY, Liao SM. Red Zn 2SiO 4:Eu 3+ and Mg 2TiO 4:Mn 4+ nanophosphors for on-site rapid optical detections: Synthesis and characterization. APPLIED PHYSICS. A, MATERIALS SCIENCE & PROCESSING 2021; 127:588. [PMID: 34276141 PMCID: PMC8271324 DOI: 10.1007/s00339-021-04733-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED This study reports the synthesis and characterization of the red nanophosphors Zn2SiO4:Eu3+ (ZSO:Eu3+) and Mg2TiO4:Mn4+ (MTO:Mn4+). The use of phosphors as a fluorescence label for lateral flow immunochromatographic assay (LFIA) has also been described. The optimal photoluminescence (PL) for ZSO:Eu3+ was obtained when it was synthesized with 7 mol% of Eu3+ and annealed at 1100 °C for 1 h. Long fluorescence lifetime (1.01 ms), high activation energy E a (0.28 eV), and low PL degeneration (10% at 110 °C) are the characteristics of ZSO:Eu3+. MTO:Mn4+ also exhibited high PL intensity along with a high E a of 0.32 eV. The emission wavelengths of phosphors are biocompatible with the optical bio-window of tissues. When human immunoglobulin G (human IgG) at a constant concentration of 100 μg/mL was used for detection, the PL ratios of the test line to the control line were 2.15 and 2.28 for the ZSO:Eu3+- and MTO:Mn4+-labeled LFIA, respectively. Thus, the ZSO:Eu3+ and MTO:Mn4+ nanophosphors are capable of human IgG recognition and are the promising candidates as fluorescent labels for on-site rapid optical biodetection. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00339-021-04733-0.
Collapse
Affiliation(s)
- Su-Hua Yang
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807 Taiwan, ROC
| | - Hao-Yu Zhang
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807 Taiwan, ROC
| | - Chih-Chia Huang
- Department of Photonics, National Cheng Kung University, Tainan, 701 Taiwan, ROC
| | - Yi-Yan Tsai
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807 Taiwan, ROC
| | - Shun-Ming Liao
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807 Taiwan, ROC
| |
Collapse
|
17
|
Fan PS, Sun MJ, Qin D, Yuan CS, Chen XG, Liu Y. Nanosystems as curative platforms for allergic disorder management. J Mater Chem B 2021; 9:1729-1744. [PMID: 33475131 DOI: 10.1039/d0tb02590a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Allergy, IgE-mediated inflammatory disorders including allergic rhinitis, asthma, and conjunctivitis, affects billions of people worldwide. Conventional means of allergy management include allergen avoidance, pharmacotherapy, and emerging therapies. Among them, chemotherapeutant intake via oral, intravenous, and intranasal routes is always the most common mean. Although current pharmacotherapy exhibit splendid anti-allergic effects, short in situ retention, low bioavailability, and systemic side effects are inevitable. Nowadays, nanoplatforms have provided alternative therapeutic options to obviate the existing weakness via enhancing the solubility of hydrophobic therapeutic agents, achieving in situ drug accumulation, exhibiting controlled and long-time drug release at lesion areas, and providing multi-functional therapeutic strategies. Herein, we highlight the clinical therapeutic strategies and deal with characteristics of the nanoplatform design in allergy interventions via intratracheal, gastrointestinal, intravenous, and ocular paths. The promising therapeutic utilization in a variety of allergic disorders is discussed, and recent perspectives on the feasible advances of nanoplatforms in allergy management are also exploited.
Collapse
Affiliation(s)
- Peng-Sheng Fan
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P. R. China.
| | - Meng-Jie Sun
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P. R. China.
| | - Di Qin
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P. R. China.
| | - Cong-Shan Yuan
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P. R. China.
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P. R. China.
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P. R. China.
| |
Collapse
|
18
|
Zhang X, Li Y, Tao Y, Wang Y, Xu C, Lu Y. A novel method based on infrared spectroscopic inception-resnet networks for the detection of the major fish allergen parvalbumin. Food Chem 2021; 337:127986. [PMID: 32920269 DOI: 10.1016/j.foodchem.2020.127986] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
We have developed a novel approach that involves inception-resnet network (IRN) modeling based on infrared spectroscopy (IR) for rapid and specific detection of the fish allergen parvalbumin. SDS-PAGE and ELISA were used to validate the new method. Through training and learning with parvalbumin IR spectra from 16 fish species, IRN, support vector machine (SVM), and random forest (RF) models were successfully established and compared. The IRN model extracted highly representative features from the IR spectra, leading to high accuracy in recognizing parvalbumin (up to 97.3%) in a variety of seafood matrices. The proposed infrared spectroscopic IRN (IR-IRN) method was rapid (~20 min, cf. ELISA ~4 h) and required minimal expert knowledge for application. Thus, it could be extended for large-scale field screening and identification of parvalbumin or other potential allergens in complex food matrices.
Collapse
Affiliation(s)
- Xiaopeng Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yaru Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Yan Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300112, China
| | - Changhua Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China.
| | - Ying Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China.
| |
Collapse
|
19
|
Zhang M, Li M, Zhao Y, Xu N, Peng L, Wang Y, Wei X. Novel monoclonal antibody-sandwich immunochromatographic assay based on Fe 3O 4/Au nanoparticles for rapid detection of fish allergen parvalbumin. Food Res Int 2021; 142:110102. [PMID: 33773653 DOI: 10.1016/j.foodres.2020.110102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
In this study, a rapid sandwich immunochromatographic assay (ICA) was developed to detect parvalbumin (PV). Firstly, two optimum primary monoclonal antibody (mAb) against PV had been screened out: mAb1 was used as the capture antibody, and mAb2 conjugated to Fe3O4/Au nanoparticles (Fe3O4/AuNPs) that served as a detection reagent. Using this pair of mAbs, a sandwich ICA strip based on Fe3O4/AuNPs was developed. The results showed that the color intensity of test line positively correlated with the PV concentration in the standard or spiked sample. The limit of detection for qualitative (LOD) and quantitative detection (LOQ) were 2 ng/mL and 0.691 ng/mL, respectively. Besides, the detection time of this ICA strip was within 15 min. The recovery rates ranged from 104.0% to 117.4%, within an acceptable level (80-120%). Moreover, the developed assay also showed high cross reaction in different fish species. These results demonstrated that the established test strip has the potential to be used as a rapid screening tool for large scale determination of PV in foodstuffs.
Collapse
Affiliation(s)
- Mengke Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Mengyin Li
- College of Life Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Yan Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Naifeng Xu
- College of Life Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuanfeng Wang
- College of Life Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; College of Life Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
| |
Collapse
|
20
|
Kumar V, Sinha AK, Uka A, Antonacci A, Scognamiglio V, Mazzaracchio V, Cinti S, Arduini F. Multi-potential biomarkers for seafood quality assessment: Global wide implication for human health monitoring. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Sena-Torralba A, Pallás-Tamarit Y, Morais S, Maquieira Á. Recent advances and challenges in food-borne allergen detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116050] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nat Protoc 2020; 15:3788-3816. [PMID: 33097926 DOI: 10.1038/s41596-020-0357-x] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
Lateral-flow assays (LFAs) are quick, simple and cheap assays to analyze various samples at the point of care or in the field, making them one of the most widespread biosensors currently available. They have been successfully employed for the detection of a myriad of different targets (ranging from atoms up to whole cells) in all type of samples (including water, blood, foodstuff and environmental samples). Their operation relies on the capillary flow of the sample throughout a series of sequential pads, each with different functionalities aiming to generate a signal to indicate the absence/presence (and, in some cases, the concentration) of the analyte of interest. To have a user-friendly operation, their development requires the optimization of multiple, interconnected parameters that may overwhelm new developers. In this tutorial, we provide the readers with: (i) the basic knowledge to understand the principles governing an LFA and to take informed decisions during lateral flow strip design and fabrication, (ii) a roadmap for optimal LFA development independent of the specific application, (iii) a step-by-step example procedure for the assembly and operation of an LF strip for the detection of human IgG and (iv) an extensive troubleshooting section addressing the most frequent issues in designing, assembling and using LFAs. By changing only the receptors, the provided example procedure can easily be adapted for cost-efficient detection of a broad variety of targets.
Collapse
|
23
|
Ruethers T, Taki AC, Khangurha J, Roberts J, Buddhadasa S, Clarke D, Hedges CE, Campbell DE, Kamath SD, Lopata AL, Koeberl M. Commercial fish ELISA kits have a limited capacity to detect different fish species and their products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4353-4363. [PMID: 32356561 DOI: 10.1002/jsfa.10451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/04/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Fish is a major food and allergen source, requiring safety declarations on packages. Enzyme-linked immunosorbent assays (ELISAs) are often used to ensure that the product meets the required standards with regard to the presence of allergens. Over 1000 different fish species are traded and consumed worldwide, and they are increasingly provided by aquaculture. Up to 3% of the general population is at risk of sometimes fatal allergic reactions to fish, requiring strict avoidance of this commodity. The aim of this study is to evaluate the capacity of three commercially available ELISA tests to detect a wide variety of bony and cartilaginous fish and their products, which is essential to ensure reliable and safe food labeling. RESULTS The detection rates for 57 bony fish ranged from 26% to 61%. Common European and North American species, including carp, cod, and salmon species, demonstrated a higher detection rate than those from the Asia-Pacific region, including pangasius and several mackerel and tuna species. Among the 17 canned bony fish products, only 65% to 86% were detected, with tuna showing the lowest rate. None of the cartilaginous fish (n = 9), other vertebrates (n = 8), or shellfish (n = 5) were detected. CONCLUSIONS We demonstrated that three commercial fish ELISA kits had a limited capacity to detect fish and their products. The complexity of fish as a protein source that is increasingly utilized means that there is an urgent need for improved detection methods. This is crucial for the food industry to provide safe seafood products and comply with international legislation. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Thimo Ruethers
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, Faculty of Science and Engineering, James Cook University, Douglas, Australia
| | - Aya C Taki
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, Faculty of Science and Engineering, James Cook University, Douglas, Australia
| | | | - James Roberts
- National Measurement Institute, Port Melbourne, Australia
| | | | - Dean Clarke
- National Measurement Institute, Port Melbourne, Australia
| | | | - Dianne E Campbell
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, Australia
- Children's Hospital at Westmead, Allergy and Immunology, Westmead, Australia
- Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia
| | - Sandip D Kamath
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, Faculty of Science and Engineering, James Cook University, Douglas, Australia
| | - Andreas L Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, Faculty of Science and Engineering, James Cook University, Douglas, Australia
| | | |
Collapse
|
24
|
Moyano A, Serrano-Pertierra E, Salvador M, Martínez-García JC, Piñeiro Y, Yañez-Vilar S, Gónzalez-Gómez M, Rivas J, Rivas M, Blanco-López MC. Carbon-Coated Superparamagnetic Nanoflowers for Biosensors Based on Lateral Flow Immunoassays. BIOSENSORS 2020; 10:E80. [PMID: 32707868 PMCID: PMC7460469 DOI: 10.3390/bios10080080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/09/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Abstract
Superparamagnetic iron oxide nanoflowers coated by a black carbon layer (Fe3O4@C) were studied as labels in lateral flow immunoassays. They were synthesized by a one-pot solvothermal route, and they were characterized (size, morphology, chemical composition, and magnetic properties). They consist of several superparamagnetic cores embedded in a carbon coating holding carboxylic groups adequate for bioconjugation. Their multi-core structure is especially efficient for magnetic separation while keeping suitable magnetic properties and appropriate size for immunoassay reporters. Their functionality was tested with a model system based on the biotin-neutravidin interaction. For this, the nanoparticles were conjugated to neutravidin using the carbodiimide chemistry, and the lateral flow immunoassay was carried out with a biotin test line. Quantification was achieved with both an inductive magnetic sensor and a reflectance reader. In order to further investigate the quantifying capacity of the Fe3O4@C nanoflowers, the magnetic lateral flow immunoassay was tested as a detection system for extracellular vesicles (EVs), a novel source of biomarkers with interest for liquid biopsy. A clear correlation between the extracellular vesicle concentration and the signal proved the potential of the nanoflowers as quantifying labels. The limit of detection in a rapid test for EVs was lower than the values reported before for other magnetic nanoparticle labels in the working range 0-3 × 107 EVs/μL. The method showed a reproducibility (RSD) of 3% (n = 3). The lateral flow immunoassay (LFIA) rapid test developed in this work yielded to satisfactory results for EVs quantification by using a precipitation kit and also directly in plasma samples. Besides, these Fe3O4@C nanoparticles are easy to concentrate by means of a magnet, and this feature makes them promising candidates to further reduce the limit of detection.
Collapse
Affiliation(s)
- Amanda Moyano
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| | - Esther Serrano-Pertierra
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| | - María Salvador
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - José Carlos Martínez-García
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - Yolanda Piñeiro
- Department of Applied Physics, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain; (Y.P.); (S.Y.-V.); (M.G.-G.); (J.R.)
| | - Susana Yañez-Vilar
- Department of Applied Physics, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain; (Y.P.); (S.Y.-V.); (M.G.-G.); (J.R.)
| | - Manuel Gónzalez-Gómez
- Department of Applied Physics, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain; (Y.P.); (S.Y.-V.); (M.G.-G.); (J.R.)
| | - José Rivas
- Department of Applied Physics, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain; (Y.P.); (S.Y.-V.); (M.G.-G.); (J.R.)
| | - Montserrat Rivas
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - M. Carmen Blanco-López
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| |
Collapse
|
25
|
Wang Y, Li Z, Lin H, Siddanakoppalu PN, Zhou J, Chen G, Yu Z. Quantum-dot-based lateral flow immunoassay for the rapid detection of crustacean major allergen tropomyosin. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106714] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Magnetic immunochromatographic test for histamine detection in wine. Anal Bioanal Chem 2019; 411:6615-6624. [PMID: 31359119 DOI: 10.1007/s00216-019-02031-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/24/2019] [Accepted: 07/10/2019] [Indexed: 01/06/2023]
Abstract
Histamine, a biogenic amine, is abundant in fermented foods and beverages, notably wine. A high intake of this monoamine may produce adverse reactions in humans, which may be severe in individuals with a reduced capacity to catabolise extrinsic histamine. Thus, control of histamine concentration during wine production and before distribution is advisable. Simple, rapid, point-of-use bioanalytical platforms are needed because traditional methods for the detection and quantification of histamine are expensive and time-consuming. This work applies the lateral flow immunoassay technique to histamine detection. Superparamagnetic particle labels, and an inductive sensor designed to read the test line in the immunoassay, enable magnetic quantification of the molecule. The system is calibrated with histamine standards in the interval of interest for wine production. A commercial optical strip reader is used for comparison measurements. The lateral flow system has a limit of detection of 1.2 and 1.5 mg/L for the inductive and optical readers, respectively. The capability of the inductive system for histamine quantification is demonstrated for wine samples at different processing points (at the end of alcoholic fermentation, at the end of malolactic fermentation, in freshly bottled wine, and in reserve wine). The results are validated by ultra-high-performance liquid chromatography. Graphical abstract.
Collapse
|
27
|
Nucleic acid lateral flow assays using a conjugate of a DNA binding protein and carbon nanoparticles. Mikrochim Acta 2019; 186:426. [DOI: 10.1007/s00604-019-3544-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/22/2019] [Indexed: 01/10/2023]
|
28
|
Huang Z, Hu S, Xiong Y, Wei H, Xu H, Duan H, Lai W. Application and development of superparamagnetic nanoparticles in sample pretreatment and immunochromatographic assay. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Yang J, Wang K, Xu H, Yan W, Jin Q, Cui D. Detection platforms for point-of-care testing based on colorimetric, luminescent and magnetic assays: A review. Talanta 2019; 202:96-110. [PMID: 31171232 DOI: 10.1016/j.talanta.2019.04.054] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/03/2019] [Accepted: 04/20/2019] [Indexed: 12/14/2022]
Abstract
Along with the considerable potential and increasing demand of the point-of-care testing (POCT), corresponding detection platforms have attracted great interest in both academic and practical fields. The first few generations of conventional detection devices tend to be costly, complicated to operate and hard to move on account of early limitations in the level of technological development and relatively high requirement of performance. Owing to the requirements for rapidity, simplicity, accuracy and cost controlling in the POCT, reader systems are urgently needed to be developed, upgraded and modified constantly, realizing on-site testing and healthcare management without a specific place or cumbersome operation. Accordingly, numerous rapid detection platforms with diverse size and performance have emerged such as bench-top apparatuses, handheld devices and intelligent detection devices. This review discusses various devices developed mainly for the detection of lateral flow test strips (LFTSs) or microfluidic strips in the POCT and summarizes these devices by size and portability. Furthermore, on the basis of various detection methods and diverse probes usually containing specific nanoparticles composites, three most common aspects of detection rationale in the POCT are selected to elaborate each kind of detection platforms in this paper: colorimetric assay, luminescent detection and magnetic signal detection. Herein, we focus on their structures, detection mechanisms and assay results, accompany with discussions and comments on the performances, costs and potential application, as well as advantages and limitations of each technique. In addition, perspectives on the future advances of detection platforms and some conclusions are proposed.
Collapse
Affiliation(s)
- Jinchuan Yang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai, 200240, PR China.
| | - Kan Wang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai, 200240, PR China.
| | - Hao Xu
- School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Wenqiang Yan
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai, 200240, PR China.
| | - Qinghui Jin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China.
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai, 200240, PR China.
| |
Collapse
|
30
|
Senyuva HZ, Jones IB, Sykes M, Baumgartner S. A critical review of the specifications and performance of antibody and DNA-based methods for detection and quantification of allergens in foods. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:507-547. [PMID: 30856064 DOI: 10.1080/19440049.2019.1579927] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Despite the availability of a large number of antibody and DNA based methods for detection and quantification of allergens in food there remain significant difficulties in selecting the optimum technique to employ. Published methods from research groups mostly contain sufficient detail concerning target antigen, calibration procedures and method performance to allow replication by others. However, routine allergen testing by the food industry relies upon commercialised test kits and frequently the suppliers provide disappointingly little specification detail on the grounds that this is proprietary information. In this review we have made a critical assessment of the published literature describing the performance of both commercial and non-commercial test kits for food allergens over the period 2008-2018. Mass spectrometric methods, which have the potential to become reference methods for allergens, are not covered in this review. Available information on the specifications of commercial ELISA and LFD test kits are tabulated for milk, egg and peanut allergens, where possible linking to publications concerning collaborative studies and proficiency testing. For a number of commercial PCR test kits, specifications provided by manufacturers for detection of a small selection of allergen are tabulated. In conclusion we support the views of others of the critical need for allergen reference materials as the way forward to improve the comparability of different testing strategies in foods.
Collapse
Affiliation(s)
| | - Ivona Baricevic Jones
- b Institute of Inflammation and Repair , Manchester Institute of Biotechnology , Manchester , UK
| | - Mark Sykes
- c Fera Science Ltd , National Agri-Food Innovation Campus Sand Hutton , York , UK
| | - Sabine Baumgartner
- d Dept. IFA-Tulln, Center for Analytical Chemistry , BOKU Vienna , Tulln , Austria
| |
Collapse
|
31
|
Yan W, Wang K, Xu H, Huo X, Jin Q, Cui D. Machine Learning Approach to Enhance the Performance of MNP-Labeled Lateral Flow Immunoassay. NANO-MICRO LETTERS 2019; 11:7. [PMID: 34137967 PMCID: PMC7770769 DOI: 10.1007/s40820-019-0239-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/29/2018] [Indexed: 05/04/2023]
Abstract
The use of magnetic nanoparticle (MNP)-labeled immunochromatography test strips (ICTSs) is very important for point-of-care testing (POCT). However, common diagnostic methods cannot accurately analyze the weak magnetic signal from ICTSs, limiting the applications of POCT. In this study, an ultrasensitive multiplex biosensor was designed to overcome the limitations of capturing and normalization of the weak magnetic signal from MNPs on ICTSs. A machine learning model for sandwich assays was constructed and used to classify weakly positive and negative samples, which significantly enhanced the specificity and sensitivity. The potential clinical application was evaluated by detecting 50 human chorionic gonadotropin (HCG) samples and 59 myocardial infarction serum samples. The quantitative range for HCG was 1-1000 mIU mL-1 and the ideal detection limit was 0.014 mIU mL-1, which was well below the clinical threshold. Quantitative detection results of multiplex cardiac markers showed good linear correlations with standard values. The proposed multiplex assay can be readily adapted for identifying other biomolecules and also be used in other applications such as environmental monitoring, food analysis, and national security.
Collapse
Affiliation(s)
- Wenqiang Yan
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Kan Wang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Hao Xu
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xuyang Huo
- Department of Biomedical Engineering, JiLin Medical University, JiLin, 132013, People's Republic of China.
| | - Qinghui Jin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
32
|
Anfossi L, Di Nardo F, Russo A, Cavalera S, Giovannoli C, Spano G, Baumgartner S, Lauter K, Baggiani C. Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens. Anal Bioanal Chem 2018; 411:1905-1913. [DOI: 10.1007/s00216-018-1451-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022]
|
33
|
Zhao S, Wang S, Zhang S, Liu J, Dong Y. State of the art: Lateral flow assay (LFA) biosensor for on-site rapid detection. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Yin HY, Fang TJ, Li YT, Fung YF, Tsai WC, Dai HY, Wen HW. Rapidly detecting major peanut allergen-Ara h2 in edible oils using a new immunomagnetic nanoparticle-based lateral flow assay. Food Chem 2018; 271:505-515. [PMID: 30236709 DOI: 10.1016/j.foodchem.2018.07.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 06/12/2018] [Accepted: 07/11/2018] [Indexed: 12/20/2022]
Abstract
Ara h2 is a major peanut allergen that induces rashes, vomiting, diarrhea, and anaphylactic shock. Since peanut is a major source in producing edible oils globally, Ara h2 residues can be present in various edible oils. In this work, an immunomagnetic nanoparticle-based lateral flow assay for identifying Ara h2 in edible oils is developed. This assay exhibits high sensitivity with a visual detection limit of 0.1 mg/kg Ara h2 in oil, and favorable specificity in differentiating peanut from seeds and nuts. The calculated CV values of intra- and inter-assay were 6.73-10.21% and 4.75-8.57%, respectively, indicating high reproducibility. In an analysis of 26 oil products, Ara h2 was detected in two peanut oils as 0.122 ± 0.026 mg/kg and 0.247 ± 0.027 mg/kg. The entire method takes 5 h, including a 3.5-h sample preparation. Hence, this method has the potential to be an effective way to screen edible oils for Ara h2.
Collapse
Affiliation(s)
- Hsin-Yi Yin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Tony J Fang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC; Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC.
| | - Yi-Ting Li
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Yang-Fan Fung
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Wen-Che Tsai
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Hong-Yu Dai
- Crop Science Division and Guansi Experiment Station, Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Taichung, Taiwan, ROC.
| | - Hsiao-Wei Wen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC.
| |
Collapse
|
35
|
Neethirajan S, Weng X, Tah A, Cordero J, Ragavan K. Nano-biosensor platforms for detecting food allergens – New trends. SENSING AND BIO-SENSING RESEARCH 2018. [DOI: 10.1016/j.sbsr.2018.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
36
|
Lin LK, Uzunoglu A, Stanciu LA. Aminolated and Thiolated PEG-Covered Gold Nanoparticles with High Stability and Antiaggregation for Lateral Flow Detection of Bisphenol A. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702828. [PMID: 29280330 DOI: 10.1002/smll.201702828] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/13/2017] [Indexed: 05/20/2023]
Abstract
The few lateral flow assays (LFAs) established for detecting the endocrine disrupting chemical bisphenol A (BPA) have employed citrate-stabilized gold nanoparticles (GNPs), which have inevitable limitations and instability issues. To address these limitations, a more stable and more sensitive biosensor is developed by designing strategies for modifying the surfaces of GNPs with polyethylene glycol and then testing their effectiveness and sensitivity toward BPA in an LFA. Without the application of any enhancement strategy, this modified BPA LFA can achieve a naked-eye limit of detection (LOD) of 0.8 ng mL-1 , which is 12.5 times better than the LOD of regular BPA LFAs, and a quantitative LOD of 0.472 ng mL-1 . This modified LFA has the potential to be applied to the detection of various antigens.
Collapse
Affiliation(s)
- Li-Kai Lin
- School of Materials Engineering, Neil Armstrong Hall of Engineering Purdue University, 701 West Stadium Avenue, West Lafayette, IN, 47907-2045, USA
| | - Aytekin Uzunoglu
- School of Materials Engineering, Neil Armstrong Hall of Engineering Purdue University, 701 West Stadium Avenue, West Lafayette, IN, 47907-2045, USA
| | - Lia A Stanciu
- School of Materials Engineering, Neil Armstrong Hall of Engineering Purdue University, 701 West Stadium Avenue, West Lafayette, IN, 47907-2045, USA
| |
Collapse
|
37
|
Ruethers T, Raith M, Sharp MF, Koeberl M, Stephen J, Nugraha R, Le TTK, Quirce S, Nguyen HXM, Kamath SD, Mehr SS, Campbell DE, Bridges CR, Taki AC, Swoboda I, Lopata AL. Characterization of Ras k 1 a novel major allergen in Indian mackerel and identification of parvalbumin as the major fish allergen in 33 Asia-Pacific fish species. Clin Exp Allergy 2018; 48:452-463. [DOI: 10.1111/cea.13069] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/07/2017] [Accepted: 11/15/2017] [Indexed: 01/17/2023]
Affiliation(s)
- T. Ruethers
- Molecular Allergy Research Laboratory; Division of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Food and Allergy Research; Murdoch Childrens Research Institute; Melbourne Australia
- Centre for Biodiscovery and Molecular Development of Therapeutics; Australian Institute of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture; Faculty of Science and Engineering; James Cook University; Townsville Australia
| | - M. Raith
- Molecular Biotechnology Section; FH Campus Wien - University of Applied Sciences; Vienna Austria
| | - M. F. Sharp
- Molecular Allergy Research Laboratory; Division of Tropical Health and Medicine; James Cook University; Townsville Australia
| | - M. Koeberl
- Technical Development and Innovation Group; National Measurement Institute; Melbourne Australia
| | - J. N. Stephen
- Molecular Allergy Research Laboratory; Division of Tropical Health and Medicine; James Cook University; Townsville Australia
| | - R. Nugraha
- Molecular Allergy Research Laboratory; Division of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Biodiscovery and Molecular Development of Therapeutics; Australian Institute of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture; Faculty of Science and Engineering; James Cook University; Townsville Australia
| | - T. T. K. Le
- Molecular Allergy Research Laboratory; Division of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Biodiscovery and Molecular Development of Therapeutics; Australian Institute of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture; Faculty of Science and Engineering; James Cook University; Townsville Australia
| | - S. Quirce
- Department of Allergy; Hospital La Paz Institute for Health Research (IdiPAZ) and CIBER de Enfermedades Respiratorias (CIBERES); Madrid Spain
| | - H. X. M. Nguyen
- Department of Food Biochemistry; Faculty of Food Science and Technology; Nong Lam University; Ho Chi Minh City Vietnam
| | - S. D. Kamath
- Molecular Allergy Research Laboratory; Division of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Food and Allergy Research; Murdoch Childrens Research Institute; Melbourne Australia
- Centre for Biodiscovery and Molecular Development of Therapeutics; Australian Institute of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture; Faculty of Science and Engineering; James Cook University; Townsville Australia
| | - S. S. Mehr
- Centre for Food and Allergy Research; Murdoch Childrens Research Institute; Melbourne Australia
- Department of Allergy and Immunology; Children's Hospital at Westmead; Sydney Australia
- Department of Allergy and Immunology; Royal Children's Hospital; Melbourne Australia
| | - D. E. Campbell
- Centre for Food and Allergy Research; Murdoch Childrens Research Institute; Melbourne Australia
- Department of Allergy and Immunology; Children's Hospital at Westmead; Sydney Australia
- Discipline of Paediatrics and Child Health; University of Sydney; Sydney Australia
| | - C. R. Bridges
- Ecophysiology Group; Institute for Metabolic Physiology; Heinrich Heine University; Duesseldorf Germany
| | - A. C. Taki
- Molecular Allergy Research Laboratory; Division of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Biodiscovery and Molecular Development of Therapeutics; Australian Institute of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture; Faculty of Science and Engineering; James Cook University; Townsville Australia
| | - I. Swoboda
- Molecular Biotechnology Section; FH Campus Wien - University of Applied Sciences; Vienna Austria
| | - A. L. Lopata
- Molecular Allergy Research Laboratory; Division of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Food and Allergy Research; Murdoch Childrens Research Institute; Melbourne Australia
- Centre for Biodiscovery and Molecular Development of Therapeutics; Australian Institute of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture; Faculty of Science and Engineering; James Cook University; Townsville Australia
| |
Collapse
|
38
|
de Puig H, Bosch I, Gehrke L, Hamad-Schifferli K. Challenges of the Nano-Bio Interface in Lateral Flow and Dipstick Immunoassays. Trends Biotechnol 2017; 35:1169-1180. [PMID: 28965747 PMCID: PMC5696013 DOI: 10.1016/j.tibtech.2017.09.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022]
Abstract
Lateral flow assays (LFAs) are highly attractive for point-of-care (POC) diagnostics for infectious disease, food safety, and many other medical uses. The unique optical, electronic, and chemical properties that arise from the nanostructured and material characteristics of nanoparticles provide an opportunity to increase LFA sensitivity and impart novel capabilities. However, interfacing to nanomaterials in complex biological environments is challenging and can result in undesirable side effects such as non-specific adsorption, protein denaturation, and steric hindrance. These issues are even more acute in LFAs where there are many different types of inorganic-biological interfaces, often of a complex nature. Therefore, the unique properties of nanomaterials for LFAs must be exploited in a way that addresses these interface challenges.
Collapse
Affiliation(s)
- Helena de Puig
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Irene Bosch
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
| | - Lee Gehrke
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA; Department of Microbiology and Immunology, Harvard Medical School, Boston, MA, USA
| | - Kimberly Hamad-Schifferli
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Engineering, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
39
|
Wang C, Guan D, Chen C, He S, Liu X, Wang C, Wu H. Rapid detection of unconjugated estriol in the serum via superparamagnetic lateral flow immunochromatographic assay. Anal Bioanal Chem 2017; 410:123-130. [DOI: 10.1007/s00216-017-0699-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/09/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022]
|
40
|
Petrakova AV, Urusov AE, Zherdev AV, Liu L, Xu C, Dzantiev BB. Application of magnetite nanoparticles for the development of highly sensitive immunochromatographic test systems for mycotoxin detection. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817040111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Fernandes TJR, Costa J, Carrapatoso I, Oliveira MBPP, Mafra I. Advances on the molecular characterization, clinical relevance, and detection methods of Gadiform parvalbumin allergens. Crit Rev Food Sci Nutr 2017; 57:3281-3296. [DOI: 10.1080/10408398.2015.1113157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Isabel Carrapatoso
- Serviço de Imunoalergologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | | | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
42
|
YU Y, GAO QL, SONG Y, ZHANG JY, LI ZB, LI W, JIN Y, LI M, ZHAO QC, QI YX. High-throughput Screening of Potential Allergens from Complex Proteins of Large Yellow Croaker (Larimichthys crocea) by Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61016-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Connolly R, O' Kennedy R. Magnetic lateral flow immunoassay test strip development - Considerations for proof of concept evaluation. Methods 2017; 116:132-140. [PMID: 28213280 DOI: 10.1016/j.ymeth.2017.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/13/2017] [Indexed: 11/15/2022] Open
Abstract
Lateral flow immunoassays (LFIA) have grown to become the predominant test device format for the diagnostics and point-of-care industries. The demand for robust and reproducible LFIAs has been facilitated through scale-up production methods using specialized and automated instruments. However, the feasibility of a LFIA device can still be evaluated in a small-scale laboratory setting through controlled manual preparation methods. The advent of super-paramagnetic (SPMP) labels for use in lateral flow has heralded the possibility of highly sensitive and stable LFIAs. The methods used for the preparation of a magnetic LFIA prototype device using a reserved suite of laboratory equipment are described.
Collapse
Affiliation(s)
- R Connolly
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - R O' Kennedy
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
44
|
Sharma GM, Khuda SE, Parker CH, Eischeid AC, Pereira M. Detection of Allergen Markers in Food: Analytical Methods. Food Saf (Tokyo) 2016. [DOI: 10.1002/9781119160588.ch4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
45
|
Wang Y, Qin Z, Boulware DR, Pritt BS, Sloan LM, González IJ, Bell D, Rees-Channer RR, Chiodini P, Chan WCW, Bischof JC. Thermal Contrast Amplification Reader Yielding 8-Fold Analytical Improvement for Disease Detection with Lateral Flow Assays. Anal Chem 2016; 88:11774-11782. [PMID: 27750420 DOI: 10.1021/acs.analchem.6b03406] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is an increasing need for highly sensitive and quantitative diagnostics at the point-of-care. The lateral flow immunoassay (LFA) is one of the most widely used point-of-care diagnostic tests; however, LFAs generally suffer from low sensitivity and lack of quantification. To overcome these limitations, thermal contrast amplification (TCA) is a new method that is based on the laser excitation of gold nanoparticles (GNPs), the most commonly used visual signature, to evoke a thermal signature. To facilitate the clinical translation of the TCA technology, we present the development of a TCA reader, a platform technology that significantly improves the limit of detection and provides quantification of disease antigens in LFAs. This TCA reader provides enhanced sensitivity over visual detection by the human eye or by a colorimetric reader (e.g., BD Veritor System Reader). More specifically, the TCA reader demonstrated up to an 8-fold enhanced analytical sensitivity and quantification among LFAs for influenza, malaria, and Clostridium difficile. Systematic characterization of the laser, infrared camera, and other components of the reader and their integration into a working reader instrument are described. The development of the TCA reader enables simple, highly sensitive quantification of LFAs at the point-of-care.
Collapse
Affiliation(s)
- Yiru Wang
- Department of Mechanical Engineering, University of Minnesota - Twin Cities , Minneapolis, Minnesota 55455, United States
| | - Zhenpeng Qin
- Department of Mechanical Engineering, University of Minnesota - Twin Cities , Minneapolis, Minnesota 55455, United States
| | - David R Boulware
- Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota - Twin Cities , Minneapolis, Minnesota 55455, United States
| | - Bobbi S Pritt
- Division of Clinical Microbiology, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Lynne M Sloan
- Division of Clinical Microbiology, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Iveth J González
- Foundation of New Innovative Diagnostics , Geneva, 1202, Switzerland
| | - David Bell
- Independent Consultant, 5 Voie de Gex, Geneva, 1202, Switzerland
| | | | | | - Warren C W Chan
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota - Twin Cities , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
46
|
|
47
|
Highly sensitive and selective lateral flow immunoassay based on magnetic nanoparticles for quantitative detection of carcinoembryonic antigen. Talanta 2016; 161:205-210. [PMID: 27769397 DOI: 10.1016/j.talanta.2016.08.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 01/05/2023]
Abstract
Carcinoembryonic antigen (CEA) is an important biomarker in cancer diagnosis. Here, we present an efficient, selective lateral-flow immunoassay (LFIA) based on magnetic nanoparticles (MNPs) for in situ sensitive and accurate point-of-care detection of CEA. Signal amplification mechanism involved linking of detection MNPs with signal MNPs through biotin-modified single-stranded DNA (ssDNA) and streptavidin. To verify the effectiveness of this modified LFIA system, the sensitivity and specificity were evaluated. Sensitivity evaluation showed a broad detection range of 0.25-1000ng/ml for CEA protein by the modified LFIA, and the limit of detection (LOD) of the modified LFIA was 0.25ng/ml, thus producing significant increase in detection threshold compared with the traditional LFIA. The modified LFIA could selectively recognize CEA in presence of several interfering proteins. In addition, this newly developed assay was applied for quantitative detection of CEA in human serum specimens collected from 10 randomly selected patients. The modified LFIA system detected minimum 0.27ng/ml of CEA concentration in serum samples. The results were consistent with the clinical data obtained using commercial electrochemiluminescence immunoassay (ECLIA) (p<0.01). In conclusion, the MNPs based LFIA system not only demonstrated enhanced signal to noise ratio, it also detected CEA with higher sensitivity and selectivity, and thus has great potential to be commercially applied as a sensitive tumor marker filtration system.
Collapse
|
48
|
Abstract
Food allergy is receiving increased attention in recent years. Because there is currently no known cure for food allergy, avoiding the offending food is the best defense for sensitive individuals. Type I food allergy is mediated by food proteins, and thus, theoretically, any food protein is a potential allergen. Variability of an individual's immune system further complicates attempts to understand allergen-antibody interaction. In this article, we briefly review food allergy occurrence, prevalence, mechanisms, and detection. Efforts aimed at reducing/eliminating allergens through food processing are discussed. Future research needs are addressed.
Collapse
Affiliation(s)
- Shridhar K Sathe
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida 30306-1493;
| | - Changqi Liu
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida 30306-1493;
| | - Valerie D Zaffran
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida 30306-1493;
| |
Collapse
|
49
|
Development of a lateral flow immunochromatographic assay for rapid detection of Mycoplasma pneumoniae-specific IgM in human serum specimens. J Microbiol Methods 2016; 124:35-40. [DOI: 10.1016/j.mimet.2016.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 11/20/2022]
|
50
|
Huang X, Aguilar ZP, Xu H, Lai W, Xiong Y. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review. Biosens Bioelectron 2016; 75:166-80. [DOI: 10.1016/j.bios.2015.08.032] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 01/30/2023]
|