1
|
Zhang W, Azizi-Lalabadi M, Can Karaca A, Abedi-Firoozjah R, Assadpour E, Zhang F, Jafari SM. A review of bio-based dialdehyde polysaccharides as multifunctional building blocks for biomedical and food science applications. Int J Biol Macromol 2025; 309:142964. [PMID: 40210025 DOI: 10.1016/j.ijbiomac.2025.142964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Food science and biomedical engineering are key disciplines related to human health, with the development of functional materials being an important research direction in both fields. In recent years, dialdehyde polysaccharides (DAPs), as green biopolymers, have become increasingly important in functional materials within food science and biomedical engineering. This work systematically summarizes the sources and properties of various DAPs, introduces their preparation methods and common DAP-based functional biomaterials, including hydrogels, scaffolds, films, coatings, nanoparticles, and nanofibers. Importantly, this work also reviews DAP applications in functional materials for food science and biomedical engineering, such as drug delivery, wound dressings, tissue engineering, food packaging films/edible coatings, food emulsions, antibacterial nanoparticles, and enzyme immobilization. Finally, the work briefly discusses the biosafety of DAPs. To conclude, this study provides a toolkit for developing functional materials in these fields and offers important reference value regarding the broad application of DAPs.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Maryam Azizi-Lalabadi
- Research Center of Oils and Fats, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asli Can Karaca
- Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Reza Abedi-Firoozjah
- Student Research committee, Kermanshah University of Medical sciences, Kermanshah, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
2
|
Doufene N, Benhalima T, Ferfera-Harrar H, Sadi A. Enhanced methylene blue sequestration using an eco-friendly carboxymethyl cellulose/xanthan gum-based biocomposite combined with arundo donax stem bio-waste. Int J Biol Macromol 2025; 304:141014. [PMID: 39954910 DOI: 10.1016/j.ijbiomac.2025.141014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Lately, several attempts have been made to involve agricultural waste as an abundant source for the design of ecological materials for environmental applications. In this pursuit, arundo donax biomass (ADS), carboxymethyl cellulose (CMC) and xanthan gum (Xth) were combined in presence of lauroyl sarcosinate surfactant to prepare a potential bioadsorbent for methylene blue dye removal from synthetic wastewater. CMC/Xth/ADS biocomposite was characterized using XRD, FTIR, SEM, EDX and TGA techniques. Various physico-chemical parameters including contact time, dye concentration, adsorbent dosage, pH, and temperature were explored to optimize the overall process. Adsorption equilibrium data were best fitted to Langmuir isotherm, with a maximum adsorption capacity of 48.31 mg g-1. The elimination process reached equilibrium after 4 h, obeying the pseudo-second order kinetic model. Thermodynamic parameters revealed that MB adsorption onto the biocomposite was spontaneous, endothermic with increased randomness at the adsorbent/adsorbate interface. The biocomposite showed a good selectivity for MB and cationic dyes generally, and maintained its adsorption performance in presence of various inorganic salts. The mechanism of MB binding was found to be dominated by electrostatic interactions and hydrogen bonding. After five cycles of use, adsorption remained sufficient (78 %), indicating that CMC/Xth/ADS is durable and effective for long-term MB removal.
Collapse
Affiliation(s)
- Nassim Doufene
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Zone Industrielle, BP 384 Bou-Ismail, Tipaza, Algeria; Unité de Recherche en Analyses Physico-Chimiques des Milieux Fluides et Sols-(URAPC-MFS/CRAPC), 11, Chemin Doudou Mokhtar, Ben Aknoun, Alger, Algeria.
| | - Tayeb Benhalima
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Zone Industrielle, BP 384 Bou-Ismail, Tipaza, Algeria; Unité de Recherche en Analyses Physico-Chimiques des Milieux Fluides et Sols-(URAPC-MFS/CRAPC), 11, Chemin Doudou Mokhtar, Ben Aknoun, Alger, Algeria; Materials Polymer Laboratory, Macromolecular Chemistry Department, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, B.P. 32 El-Alia, 16111 Algiers, Algeria.
| | - Hafida Ferfera-Harrar
- Unité de Recherche en Analyses Physico-Chimiques des Milieux Fluides et Sols-(URAPC-MFS/CRAPC), 11, Chemin Doudou Mokhtar, Ben Aknoun, Alger, Algeria
| | - Amina Sadi
- Unité de Recherche en Analyses Physico-Chimiques des Milieux Fluides et Sols-(URAPC-MFS/CRAPC), 11, Chemin Doudou Mokhtar, Ben Aknoun, Alger, Algeria
| |
Collapse
|
3
|
Al-Hammood O, Oladzadabbasabadi N, Mohammed AH, Al-Musawi MH, PourvatanDoust S, Ghorbani M. Electrospun-modified xanthan gum nanofibers enhanced with nisin for food packaging applications. Int J Biol Macromol 2025; 307:141961. [PMID: 40074136 DOI: 10.1016/j.ijbiomac.2025.141961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/02/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
This study investigates developing and characterizing electrospun nanofibers composed of polyvinyl alcohol (PVA) and oxidized xanthan gum (OXG), with nisin as a bioactive agent, for innovative food packaging applications. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) confirmed successful crosslinking between PVA and OXG, along with uniform nisin dispersion within the fibers. The inclusion of OXG increased moisture content (MC) and water solubility (WS) while reducing porosity and water vapor permeability (WVP), demonstrating its role as a crosslinker. Conversely, nisin reduced MC to 25.13 ± 0.93 %, WS to 43.45 ± 4.32 %, and increased porosity to 61.5 ± 4.25 % and WVP to 1.75 ± 0.08 × 103 g/h·m2·Pa. Tensile strength significantly improved with higher nisin concentrations, rising from 10.8 ± 2.35 MPa to 20.31 ± 2.94 MPa, attributed to Schiff base crosslinking. Additionally, nisin-containing nanofibers exhibited enhanced antioxidant properties, increasing radical scavenging activity by 65 %. These findings highlight the potential of PVA/OXG/nisin-based nanofibers to address gaps in food packaging by offering robust mechanical strength, superior barrier properties, and bioactive functionality, paving the way for next-generation packaging solutions that extend shelf life and reduce environmental impact.
Collapse
Affiliation(s)
- Orooba Al-Hammood
- Department of Forensic Science, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Nazila Oladzadabbasabadi
- Food Technology Division, School of Industrial Technology, University Sains Malaysia, 11800 Penang, Malaysia
| | - Asmaa Hadi Mohammed
- Department of Physics, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Mastafa H Al-Musawi
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Sepideh PourvatanDoust
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad. University, Tehran, Iran
| | - Marjan Ghorbani
- Iran Petrochemical Institute, P.O. Box: 1496/15, Tehran, Iran.
| |
Collapse
|
4
|
Liu S, Zhang M, Liu J, Lei Y, Kaya MGA, Tang K. Long-term antioxidant and ultraviolet light shielding gelatin films for the preservation of leather artifacts. Int J Biol Macromol 2025; 291:138981. [PMID: 39706414 DOI: 10.1016/j.ijbiomac.2024.138981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
In this study, CA-Gel complexes were prepared by crosslinking gelatin with chlorogenic acid (CA) by EDC/NHS chemistry, and incorporated into gelatin to produce CA-Gel/Gel films for leather artifact preservation. The synthesized CA-Gel complex had a total phenolic content of 139.62 ± 1.8 mg/g. The moisture content of CA-Gel/Gel film is 37.84 % lower than that of Gel film. The addition of CA-Gel complexes enhanced the hydrophobic and antibacterial properties of Gel films. CA-Gel/Gel films showed excellent antioxidant properties, as evidenced by the increase in the DPPH radical scavenging rate from 0 to 98.18 %. Additionally, CA-Gel/Gel films effectively shield UV light, preventing almost the transmission of ultraviolet rays. Notably, CA-Gel/Gel films maintain their antioxidant properties and UV light shielding after one month at ambient temperature. Therefore, their long-term antioxidant and UV light shielding properties were indicated. In addition, the UV light aging tests were carried out on leathers with and without CA-Gel/Gel film coverage. The results showed that CA-Gel/Gel films effectively preserved the original color of leathers, with no changes in their random coil structure before and after UV light irradiation. This work emphasizes the potential use of CA-Gel/Gel films as an innovative protective packaging solution for long-term preservation of leather artifacts.
Collapse
Affiliation(s)
- Suchi Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mingrui Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jie Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China; Archeology Innovation Center, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yong Lei
- Department of Conservation Science, Palace Museum, Beijing 100009, PR China
| | - Mǎdǎlina Georgiana Albu Kaya
- Collagen Department, INCDTP-Leather and Footwear Research Institute, 93 Ion Minulescu, Bucharest 031215, Romania
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China; Archeology Innovation Center, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
5
|
Zhan Z, Feng Y, Zhao J, Qiao M, Jin Q. Valorization of Seafood Waste for Food Packaging Development. Foods 2024; 13:2122. [PMID: 38998628 PMCID: PMC11241680 DOI: 10.3390/foods13132122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
Packaging plays a crucial role in protecting food by providing excellent mechanical properties as well as effectively blocking water vapor, oxygen, oil, and other contaminants. The low degradation of widely used petroleum-based plastics leads to environmental pollution and poses health risks. This has drawn interest in renewable biopolymers as sustainable alternatives. The seafood industry generates significant waste that is rich in bioactive substances like chitin, chitosan, gelatins, and alginate, which can replace synthetic polymers in food packaging. Although biopolymers offer biodegradability, biocompatibility, and non-toxicity, their films often lack mechanical and barrier properties compared with synthetic polymer films. This comprehensive review discusses the chemical structure, characteristics, and extraction methods of biopolymers derived from seafood waste and their usage in the packaging area as reinforcement or base materials to guide researchers toward successful plastics replacement and commercialization. Our review highlights recent advancements in improving the thermal durability, mechanical strength, and barrier properties of seafood waste-derived packaging, explores the mechanisms behind these improvements, and briefly mentions the antimicrobial activities and mechanisms gained from these biopolymers. In addition, the remaining challenges and future directions for using seafood waste-derived biopolymers for packaging are discussed. This review aims to guide ongoing efforts to develop seafood waste-derived biopolymer films that can ultimately replace traditional plastic packaging.
Collapse
Affiliation(s)
- Zhijing Zhan
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Yiming Feng
- Virginia Seafood AREC, Virginia Polytechnic Institute and State University, Hampton, VA 23662, USA
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jikai Zhao
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78542, USA
| | - Mingyu Qiao
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
- Center for Clean Energy Engineering (C2E2), University of Connecticut, Storrs, CT 05269, USA
- Institute of Materials Science (IMS), University of Connecticut, Storrs, CT 06269, USA
| | - Qing Jin
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
6
|
Das D, Panesar PS, Saini CS. Effect of montmorillonite (MMT) on the properties of soybean meal protein isolate-based nanocomposite film loaded with debittered kinnow peel powder. Food Res Int 2024; 185:114292. [PMID: 38658072 DOI: 10.1016/j.foodres.2024.114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
The synthetic, non-renewable nature and harmful effects of plastic packaging have led to the synthesis of eco-friendly renewable bio-nanocomposite film. The present work was aimed at the formulation and characterization of bio-nanocomposite film using soybean meal protein, montmorillonite (MMT), and debittered kinnow peel powder. The composition of film includes protein isolate (5% w/v), glycerol (50% w/w), peel powder (20% w/w), and MMT (0.5-2.5% w/w). Incorporation of MMT in soybean meal protein-based film loaded with kinnow peel powder showed lesser solubility (16.76-26.32%), and swelling ability (142.77-184.21%) than the film prepared without MMT (29.41%, & 229.41%, respectively). The mechanical properties like tensile strength of nanocomposite film improved from 9.41 to 38.69% with the increasing concentration of MMT. The water vapor transmission rate of the nanocomposite film was decreased by 3.45-17.85% when the MMT concentration increased. Fourier-transform infrared spectroscopy and X-ray diffraction analysis showed no considerable change in the structural properties of the film after the addition of MMT. Differential scanning colorimeter analysis revealed the increment in melting temperature (85.33-92.67 °C) of the film with a higher concentration of MMT. Scanning electron microscopy analysis indicated an increased distributed area of MMT throughout the film at higher concentrations. The antimicrobial activity of the film was remarkably increased by 4.96-17.18% with the addition of MMT. The results obtained in the current work confirmed that MMT incorporation in soybean meal protein-based film can augment its properties and can be utilized for enhancing the storage period of food products.
Collapse
Affiliation(s)
- Dipak Das
- Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab 148106, India
| | - Parmjit S Panesar
- Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab 148106, India.
| | - Charanjiv S Saini
- Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab 148106, India
| |
Collapse
|
7
|
Jaberifard F, Almajidi YQ, Arsalani N, Ghorbani M. A self-healing crosslinked-xanthan gum/soy protein based film containing halloysite nanotube and propolis with antibacterial and antioxidant activity for wound healing. Int J Pharm 2024; 656:124073. [PMID: 38569977 DOI: 10.1016/j.ijpharm.2024.124073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Traumatic multidrug-resistant bacterial infections are the most threat to wound healing. Lower extremity wounds under diabetic conditions display a significant delay during the healing process. To overcome these challenges, the utilization of protein-based nanocomposite dressings is crucial in implementing a successful regenerative medicine approach. These dressings hold significant potential as polymer scaffolds, allowing them to mimic the properties of the extracellular matrix (ECM). So, the objective of this study was to develop a nanocomposite film using dialdehyde-xanthan gum/soy protein isolate incorporated with propolis (PP) and halloysite nanotubes (HNTs) (DXG-SPI/PP/HNTs). In this protein-polysaccharide hybrid system, the self-healing capability was demonstrated through Schiff bonds, providing a favorable environment for cell encapsulation in the field of tissue engineering. To improve the properties of the DXG-SPI film, the incorporation of polyphenols found in PP, particularly flavonoids, is proposed. The synthesized films were subjected to investigations regarding degradation, degree of swelling, and mechanical characteristics. Additionally, halloysite nanotubes (HNTs) were introduced into the DXG-SPI/PP nanocomposite films as a reinforcing filler with varying concentrations of 3 %, 5 %, and 7 % by weight. The scanning electron microscope (SEM) analysis confirmed the proper embedding and dispersion of HNTs onto the DXG-SPI/PP nanocomposite films, leading to functional interfacial interactions. The structure and crystallinity of the synthesized nanocomposite films were characterized using Fourier Transform Infrared Spectrometry (FTIR) and X-ray diffraction (XRD), respectively. Moreover, the developed DXG-SPI/PP/HNTs nanocomposite films significantly improved cell growth of NIH-3T3 fibroblast cells in the presence of PP and HNTs, indicating their cytocompatibility. The antibacterial activity of the nanocomposite was evaluated against Escherichia coli (E. Coli) and Staphylococcus aureus (S. Aureus), which are commonly associated with wound infections. Overall, our findings suggest that the synthesis of DXG-SPI/PP/HNTs nanocomposite scaffolds holds great promise as a clinically relevant biomaterial and exhibits strong potential for numerous challenging biomedical applications.
Collapse
Affiliation(s)
- Farnaz Jaberifard
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yasir Q Almajidi
- Baghdad College of Medical Sciences-Department of Pharmacy, Baghdad, Iraq
| | - Nasser Arsalani
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Marjan Ghorbani
- Iran Polymer and Petrochemical Institute, PO Box:14965/115, Tehran, Iran; Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Long T, Xu T, Li R, Xu Z, Li D, Mu C, Yuan L, Mu Y. Emulsion template fabricated gelatin-based scaffold functionalized by dialdehyde starch complex with antibacterial antioxidant properties for accelerated wound healing. Int J Biol Macromol 2024; 254:127918. [PMID: 37977450 DOI: 10.1016/j.ijbiomac.2023.127918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Gelatin and starch are considered as promising sustainable materials for their abundant production and good biodegradability. Efforts have been made to explore their medical application. Herein, scaffolds based on gelatin and starch with a preferred microstructure and antibacterial antioxidant property were fabricated by the emulsion template method. The dialdehyde starch was firstly combined with silver nanoparticles and curcumin to carry out the efficient hybrid antibacterial agent. Then, the gelatin microsphere of appropriate size was prepared by emulsification and gathered by the above agent to obtain gelatin-based scaffolds. The prepared scaffolds showed porous microstructures with high porosity of over 74 % and the preferred pore sizes of ∼65 μm, which is conducive to skin regeneration. Moreover, the scaffolds possessed a good swelling ability of over 640 %, good degradability of over 18 days, excellent blood compatibility, and cell compatibility. The promising antibacterial and antioxidant properties came from the hybrid antibacterial agent were affirmed. As expected, the gelatin-based scaffolds fabricated by the emulsion template method with a preferred microstructure can facilitate more adhered fibroblasts. In summary, gelatin-based scaffolds functionalized by starch-based complex expanded the application of abundant sustainable materials in the biomedical field, especially as antibacterial antioxidant wound dressings.
Collapse
Affiliation(s)
- Tao Long
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Ting Xu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Rui Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Zhilang Xu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Lun Yuan
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China; Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, PR China.
| | - Yandong Mu
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, PR China.
| |
Collapse
|
9
|
Nawaz MH, Aizaz A, Ropari AQ, Shafique H, Imran OB, Minhas BZ, Manzur J, Alqahtani MS, Abbas M, Ur Rehman MA. A study on the effect of bioactive glass and hydroxyapatite-loaded Xanthan dialdehyde-based composite coatings for potential orthopedic applications. Sci Rep 2023; 13:17842. [PMID: 37857655 PMCID: PMC10587085 DOI: 10.1038/s41598-023-44870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
The most important challenge faced in designing orthopedic devices is to control the leaching of ions from the substrate material, and to prevent biofilm formation. Accordingly, the surgical grade stainless steel (316L SS) was electrophoretically deposited with functional composition of biopolymers and bioceramics. The composite coating consisted of: Bioglass (BG), hydroxyapatite (HA), and lawsone, that were loaded into a polymeric matrix of Xanthan Dialdehyde/Chondroitin Sulfate (XDA/CS). The parameters and final composition for electrophoretic deposition were optimized through trial-and-error approach. The composite coating exhibited significant adhesion strength of "4B" (ASTM D3359) with the substrate, suitable wettability of contact angle 48°, and an optimum average surface roughness of 0.32 µm. Thus, promoting proliferation and attachment of bone-forming cells, transcription factors, and proteins. Fourier transformed infrared spectroscopic analysis revealed a strong polymeric network formation between XDA and CS. scanning electron microscopy and energy dispersive X-ray spectroscopy analysis displayed a homogenous surface with invariable dispersion of HA and BG particles. The adhesion, hydrant behavior, and topography of said coatings was optimal to design orthopedic implant devices. The said coatings exhibited a clear inhibition zone of 21.65 mm and 21.04 mm with no bacterial growth against Staphylococcus aureus (S. Aureus) and Escherichia coli (E. Coli) respectively, confirming the antibacterial potential. Furthermore, the crystals related to calcium (Ca) and HA were seen after 28 days of submersion in simulated body fluid. The corrosion current density, of the above-mentioned coating was minimal as compared to the bare 316L SS substrate. The results infer that XDA/CS/BG/HA/lawsone based composite coating can be a candidate to design coatings for orthopedic implant devices.
Collapse
Affiliation(s)
- Muhammad Haseeb Nawaz
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Aqsa Aizaz
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Abdul Qadir Ropari
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Huzaifa Shafique
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Osama Bin Imran
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Badar Zaman Minhas
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Jawad Manzur
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Mohammed S Alqahtani
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan.
- Centre of Excellence in Biomaterials and Tissue Engineering, Government College University Lahore, Lahore, 54000, Pakistan.
| |
Collapse
|
10
|
Das S, Dalei G. In situ forming dialdehyde xanthan gum-gelatin Schiff-base hydrogels as potent controlled release fertilizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162660. [PMID: 36894095 DOI: 10.1016/j.scitotenv.2023.162660] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/06/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Controlled release fertilizer (CRF) hydrogels have blossomed into promising materials in agriculture owing to the sustained release of the fertilizer and also as soil conditioner. Apart from the traditional CRF hydrogels; Schiff-base hydrogels have garnered significant thrust that release nitrogen slowly in addition to reducing the environmental pollution. Herein, we have fabricated Schiff-base CRF hydrogels composed of dialdehyde xanthan gum (DAXG) and gelatin. The formation of the hydrogels was accomplished via the simplistic in situ crosslinking reaction between the aldehyde groups of DAXG and the amino groups of gelatin. The hydrogels acquired a compact network upon increasing the DAXG content in the matrix. The phytotoxic assay on different plants indicated the hydrogels to be nontoxic. The hydrogels demonstrated good water-retention behaviour in soil, along with reusability even after 5 cycles. A controlled release profile for urea was evident from the hydrogels wherein macromolecular relaxation played a crucial role in the release mechanism. Growth assays on Abelmoschus esculentus (Okra) plant presented an intuitive evaluation on the growth and water-holding capacity of the CRF hydrogel. The present work demonstrated a facile preparation of CRF hydrogels to enhance the utilization of urea and retain soil humidity as fertilizer carriers.
Collapse
Affiliation(s)
- Subhraseema Das
- Department of Chemistry, Ravenshaw University, Cuttack 753003, Odisha, India.
| | - Ganeswar Dalei
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar 751029, Odisha, India
| |
Collapse
|
11
|
Gürler N. Development of chitosan/gelatin/starch composite edible films incorporated with pineapple peel extract and aloe vera gel: Mechanical, physical, antibacterial, antioxidant, and sensorial analysis. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nedim Gürler
- Department of Food Process, Tunceli Vocational School Munzur University Tunceli Turkey
| |
Collapse
|
12
|
Dai H, Peng L, Wang H, Feng X, Ma L, Chen H, Yu Y, Zhu H, Zhang Y. Improved properties of gelatin films involving transglutaminase cross-linking and ethanol dehydration: The self-assembly role of chitosan and montmorillonite. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Gupta V, Biswas D, Roy S. A Comprehensive Review of Biodegradable Polymer-Based Films and Coatings and Their Food Packaging Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175899. [PMID: 36079280 PMCID: PMC9457097 DOI: 10.3390/ma15175899] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 05/15/2023]
Abstract
Food sectors are facing issues as a result of food scarcity, which is exacerbated by rising populations and demand for food. Food is ordinarily wrapped and packaged using petroleum-based plastics such as polyethylene, polyvinyl chloride, and others. However, the excessive use of these polymers has environmental and health risks. As a result, much research is currently focused on the use of bio-based materials for food packaging. Biodegradable polymers that are compatible with food products are used to make edible packaging materials. These can be ingested with food and provide consumers with additional health benefits. Recent research has shifted its focus to multilayer coatings and films-based food packaging, which can provide a material with additional distinct features. The aim of this review article is to investigate the properties and applications of several bio-based polymers in food packaging. The several types of edible film and coating production technologies are also covered separately. Furthermore, the use of edible films and coatings in the food industry has been examined, and their advantages over traditional materials are also discussed.
Collapse
|
14
|
Shokri M, Mojtabavi S, Jafari-Nodoushan H, Vojdanitalab K, Golshani S, Jahandar H, Faramarzi MA. Laccase-loaded magnetic dialdehyde inulin nanoparticles as an efficient heterogeneous natural polymer-based biocatalyst for removal and detoxification of ofloxacin. Biodegradation 2022; 33:489-508. [PMID: 35809150 DOI: 10.1007/s10532-022-09994-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
An efficient heterogeneous natural polymer-based biocatalyst was fabricated through the immobilization of laccase onto dialdehyde inulin (DAI)-coated silica-caped magnetic nanoparticles (laccase@DAI@SiO2@Fe3O4⋅MNPs). The carrier was developed using SiO2@Fe3O4⋅MNPs and functionalized with DAI. The construction of immobilized laccase was confirmed by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Immobilization yield and efficiency were calculated as 61.0 ± 0.3% and 93.0 ± 0.6%, respectively. The immobilized laccase maintained 50% and 85% of its relative activity after 25 repeated cycles and 20 days of storage at 4 °C, respectively. The prepared biocatalyst effectively eliminated ofloxacin, a fluoroquinolone-type antibiotic, with a 63% removal capacity. Besides, antimicrobial activity study on some soil microorganisms involved in the biodegradation of xenobiotics revealed that the laccase-treated ofloxacin resulted in less toxic metabolites. The obtained data indicated that the fabricated biocatalyst is promising for the removal of ofloxacin or other analogs of fluoroquinolones in the environment.
Collapse
Affiliation(s)
- Mahtab Shokri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran.,Pharmaceutical Sciences Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran
| | - Hossein Jafari-Nodoushan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran
| | - Khashayar Vojdanitalab
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran.,Pharmaceutical Sciences Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Golshani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran
| | - Hoda Jahandar
- Pharmaceutical Sciences Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran.
| |
Collapse
|
15
|
The effects of tannic and caffeic acid as cross-linking agents on the physicochemical, barrier, and mechanical characteristics of cold-water fish gelatin films. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01495-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Liu Z, Zhang S, Gao C, Meng X, Wang S, Kong F. Temperature/pH-Responsive Carboxymethyl Cellulose/Poly (N-isopropyl acrylamide) Interpenetrating Polymer Network Aerogels for Drug Delivery Systems. Polymers (Basel) 2022; 14:polym14081578. [PMID: 35458328 PMCID: PMC9029649 DOI: 10.3390/polym14081578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Temperature/pH-responsive carboxymethyl cellulose/poly (N-isopropyl acrylamide) interpenetrating polymer network (IPN) aerogels (CMC/Ca2+/PNIPAM aerogels) were developed as a novel drug delivery system. The aerogel has a highly open network structure with a porosity of more than 90%, which provides convenient conditions for drug release. The morphology and structure of the CMC/Ca2+/PNIPAM aerogels were characterized via scanning electron microscopy (SEM), Micro-CT, X-ray photoelectron spectroscopy (XPS), pore size analysis, and cytotoxicity analysis. The analysis results demonstrate that the aerogel is non-toxic and has more active sites, temperatures, and pH response performances. The anticancer drug 5-fluorouracil (5-FU) was successfully loaded into aerogels through physical entrapment and hydrogen bonding. The drug loading and sustained-release model of aerogels are used to fit the drug loading and sustained-release curve, revealing the drug loading and sustained-release mechanism, and providing a theoretical basis for the efficient drug loading and sustained release.
Collapse
Affiliation(s)
- Zhongming Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Z.L.); (C.G.); (X.M.); (S.W.)
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Sufeng Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
- Correspondence: (S.Z.); (F.K.); Tel.: +86-53189631988 (F.K.)
| | - Chao Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Z.L.); (C.G.); (X.M.); (S.W.)
| | - Xia Meng
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Z.L.); (C.G.); (X.M.); (S.W.)
| | - Shoujuan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Z.L.); (C.G.); (X.M.); (S.W.)
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Z.L.); (C.G.); (X.M.); (S.W.)
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
- Correspondence: (S.Z.); (F.K.); Tel.: +86-53189631988 (F.K.)
| |
Collapse
|
17
|
Antibacterial dialdehyde sodium alginate/ε-polylysine microspheres for fruit preservation. Food Chem 2022; 387:132885. [PMID: 35395481 DOI: 10.1016/j.foodchem.2022.132885] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 01/22/2023]
Abstract
Food security is an important global public health issue, which will not only endanger consumers' life and health, but also cause serious food waste. Herein, antibacterial dialdehyde sodium alginate/ε-polylysine microspheres (DSA-PL MPs) were developed to effectively prolong the shelf life of fruit. DSA was prepared by periodate oxidation of sodium alginate. Then the PL was conjugated onto DSA backbone via the Schiff's base reaction to synthesize DSA-PL conjugates, followed by the emulsification and Ca2+ ions crosslinking to obtain DSA-PL MPs. The results indicate that DSA-PL MPs show smooth spherical particle, relatively narrow size distribution and good dispersity. In vitro degradation rate of DSA-PL MPs is higher in acetate buffer (pH = 5.0) than that in PBS buffer (pH = 7.4), showing acid-sensitive degradation property. Significantly, DSA-PL MPs possess strong broad-spectrum antibacterial activity, which can effectively extend the shelf life of fruit. Overall, DSA-PL MPs possess promising application as antibacterial agents for fruit preservation.
Collapse
|
18
|
Chen W, Gao Z, He M, Dou Y, Yin G, Ding J. Vapor-phase glutaraldehyde crosslinked waste protein-based nanofiber nonwovens as an environmentally friendly wound dressing. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Vilvert JC, de Freitas ST, Ferreira MAR, Leite RHDL, dos Santos FKG, Costa CDSR, Aroucha EMM. Chitosan and graphene oxide-based biodegradable bags: An eco-friendly and effective packaging alternative to maintain postharvest quality of ‘Palmer’ mango. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Nanofiller reinforced biodegradable PHA/PLA composites: physico-chemical, thermal and dielectric properties. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02816-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Riaz T, Iqbal MW, Jiang B, Chen J. A review of the enzymatic, physical, and chemical modification techniques of xanthan gum. Int J Biol Macromol 2021; 186:472-489. [PMID: 34217744 DOI: 10.1016/j.ijbiomac.2021.06.196] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/15/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
Xanthan gum (XG), a bacterial polysaccharide has numerous valuable characteristics in the food, biomedical, pharmaceuticals, and agriculture sector. However, XG has also its particular limitations such as its vulnerability to microbial contamination, inadequate mechanical and thermal stability, unusable viscosity, and poor water solubility. Therefore, XG's structure and conformation need to be modified enzymatically, chemically, or physically to improve its optimistic features and decrease the formation of crystals, increase antioxidant ability, and radical scavenging activity. We have found out different means to modify XG and elaborate the importance and significance of the modified structure of XG. In this review, different enzymes are reviewed for XG degradation, which modifies their structure from different points (main chain or side chain). This article also reviews various physical methods (ultrasound, shear, pressure, sonication, annealing, and heat treatments) based on prevailing publications to alter XG conformation and produce low molecular weight (LMW) and less viscous end-product. Moreover, some chemical means are also discussed that result in modified XG through crosslinking, grafting, acetylation, pyruvation, as well as by applying different chemical agents. Overall, the current progress on XG degradation is very auspicious to develop a new molecule with considerable uses, in various industries with future assessments.
Collapse
Affiliation(s)
- Tahreem Riaz
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | | | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
22
|
Gürler N, Paşa S, Temel H. Silane doped biodegradable starch-PLA bilayer films for food packaging applications: Mechanical, thermal, barrier and biodegradability properties. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.05.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Peng T, Zhu J, Huang T, Jiang C, Zhao F, Ge S, Xie L. Facile preparation for gelatin/hydroxyethyl
cellulose‐SiO
2
composite aerogel with good mechanical strength, heat insulation, and water resistance. J Appl Polym Sci 2021. [DOI: 10.1002/app.50539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tangping Peng
- College of Chemistry and Chemical Engineering Central South University Hunan China
| | - Jundong Zhu
- College of Chemistry and Chemical Engineering Central South University Hunan China
| | - Tao Huang
- College of Chemistry and Chemical Engineering Central South University Hunan China
| | - Chongwen Jiang
- College of Chemistry and Chemical Engineering Central South University Hunan China
- Hunan Provincial Key Laboratory of Efficient and Clean utilization of manganese Resources Central South University Hunan China
| | - Fuxing Zhao
- College of Chemistry and Chemical Engineering Central South University Hunan China
| | - Shengzhuo Ge
- College of Chemistry and Chemical Engineering Central South University Hunan China
| | - Le Xie
- College of Chemistry and Chemical Engineering Central South University Hunan China
- Hunan Provincial Key Laboratory of Efficient and Clean utilization of manganese Resources Central South University Hunan China
| |
Collapse
|
24
|
Ngwabebhoh FA, Zandraa O, Patwa R, Saha N, Capáková Z, Saha P. Self-crosslinked chitosan/dialdehyde xanthan gum blended hypromellose hydrogel for the controlled delivery of ampicillin, minocycline and rifampicin. Int J Biol Macromol 2020; 167:1468-1478. [PMID: 33212108 DOI: 10.1016/j.ijbiomac.2020.11.100] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
The design of improved biopolymeric based hydrogel materials with high load-capacity to serve as biocompatible drug carriers is a challenging task with vital implications in health sciences. In this work, chitosan crosslinked dialdehyde xanthan gum interpenetrated hydroxypropyl methylcellulose gels were developed for the controlled delivery of different antibiotic drugs including ampicillin, minocycline and rifampicin. The prepared hydrogel scaffolds were characterized by rheology method, FTIR, SEM, TGA and compression analysis. In addition, gelation kinetics, swelling, in vitro degradation and drug release rate were studied under simulated gastrointestinal fluid conditions of pH 2.0 and 7.4 at 37 °C. Results demonstrated the gel composition and structure affected drug release kinetics. The release study showed more than 50% cumulative release within 24 h for all investigated antibiotic drugs. In vitro cell cytocompatibility using mouse embryonic fibroblast cell lines depicted ≥80% cell viability, indicating the gels are non-toxic. Finally, the antibacterial activity of loaded gels was evaluated against Gram-negative and positive bacteria (Escherichia coli, Staphylococcus aureus and Klebsiella pneumonia), which correlated well with swelling and drug release results. Overall, the present study demonstrated that the produced hydrogel scaffolds serves as promising material for controlled antibiotic delivery towards microbial growth inhibition.
Collapse
Affiliation(s)
- Fahanwi Asabuwa Ngwabebhoh
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic.
| | - Oyunchimeg Zandraa
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Rahul Patwa
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Nabanita Saha
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic.
| | - Zdenka Capáková
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Petr Saha
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| |
Collapse
|
25
|
Ding W, Wu Y. Sustainable dialdehyde polysaccharides as versatile building blocks for fabricating functional materials: An overview. Carbohydr Polym 2020; 248:116801. [PMID: 32919537 DOI: 10.1016/j.carbpol.2020.116801] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/16/2022]
Abstract
Dialdehyde polysaccharide (DAP), containing multiple aldehyde groups, can react with materials having amino groups via Schiff base crosslinking. Besides, it can also react with materials having carbonyl/hydroxyl groups via aldol reactions. Based on these intriguing properties, DAPs can be employed as versatile building blocks to fabricate functional materials used in biomedical field, wastewater treatment, leather manufacture, and electrochemistry field. This review aims to provide an overview of the recent advances in fabricating biomaterials, adsorbents, leather tanning agents, and electrochemical materials based on DAPs. The basic fabricating strategy and principle of these materials and their performances are overall summarized, along with a discussion of associated scalability challenges, technological strategies to overcome them, and the prospect for commercial translations of this versatile material. Blending the versatility of DAP with material science and technological advances can provide a powerful tool to develop more DAP-based functional materials in a scalable way.
Collapse
Affiliation(s)
- Wei Ding
- Technology Research and Development Center, China Leather and Footwear Research Institute Co. Ltd., Beijing, 100015, People's Republic of China
| | - Yanbei Wu
- School of Food and Health, Beijing Technology & Business University, Beijing, 100048, People's Republic of China.
| |
Collapse
|
26
|
Paiva CA, Vilvert JC, Menezes FLG, Leite RHDL, Santos FKG, Medeiros JF, Aroucha EMM. Extended shelf life of melons using chitosan and graphene oxide‐based biodegradable bags. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Cristiane Alves Paiva
- Department of Environmental and Technological Sciences Federal University of the Semi‐Arid Region Mossoro Brazil
| | - João Claudio Vilvert
- Department of Environmental and Technological Sciences Federal University of the Semi‐Arid Region Mossoro Brazil
| | | | | | | | - José Francismar Medeiros
- Department of Agricultural and Forestry Sciences Federal University of the Semi‐Arid Region Mossoro Brazil
| | - Edna Maria Mendes Aroucha
- Department of Environmental and Technological Sciences Federal University of the Semi‐Arid Region Mossoro Brazil
| |
Collapse
|
27
|
Development of Disulfide Bond Crosslinked Gelatin/ε-Polylysine Active Edible Film with Antibacterial and Antioxidant Activities. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02420-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Lin J, Pan D, Sun Y, Ou C, Wang Y, Cao J. The modification of gelatin films: Based on various cross-linking mechanism of glutaraldehyde at acidic and alkaline conditions. Food Sci Nutr 2019; 7:4140-4146. [PMID: 31890193 PMCID: PMC6924296 DOI: 10.1002/fsn3.1282] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/11/2019] [Accepted: 09/14/2019] [Indexed: 11/07/2022] Open
Abstract
In order to investigate the effect of glutaraldehyde (GTA) on the structure, mechanical properties and thermal stability of gelatin films, gelatin films modified by GTA at various pH (4.5, 6.5, and 11), were prepared. According to FTIR analysis, the reaction mechanism between GTA and gelatin was different at various pH. With the addition of GTA, the intermolecular forces (hydrogen bonds and ionic bonds) and triple helix structure of gelatin film were significantly disrupted. At pH 4.5, gelatin films modified by GTA showed the highest mechanical properties and thermal stability among all films, which tensile strength and residues in TGA up to 16.13 MPa and 15.05%, respectively. Therefore, an optimum pH was around 4.5 in gelatin films cross-linked by GTA.
Collapse
Affiliation(s)
- Junjie Lin
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang ProvinceNingbo UniversityNingboChina
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang ProvinceNingbo UniversityNingboChina
| | - Yangying Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang ProvinceNingbo UniversityNingboChina
| | - Changrong Ou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang ProvinceNingbo UniversityNingboChina
| | - Ying Wang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang ProvinceNingbo UniversityNingboChina
| | - Jinxuan Cao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang ProvinceNingbo UniversityNingboChina
| |
Collapse
|
29
|
Rafiee F, Rezaie Karder F. Bio-crosslinking of chitosan with oxidized starch, its functionalization with amino acid and magnetization: As a green magnetic support for silver immobilization and its catalytic activity investigation. Int J Biol Macromol 2019; 146:1124-1132. [PMID: 31726171 DOI: 10.1016/j.ijbiomac.2019.09.238] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022]
Abstract
In this study, we have reported the synthesis and characterization of new magnetic bionanocatalyst based on chitosan and investigated their catalytic activity in the A3-coupling reaction. In order to increase the stability of chitosan, starch oxide biopolymer was used as a green covalent linking agent between chitosan chains. After the cross-linking of chitosan with starch oxide, aldehyde functional groups were reacted with amine groups of cysteine to form the corresponding Schiff bases in the hybrid biopolymer. Then, the imine bonds were reduced to prevent possible their hydrolysis. The magnetic support was resulted with addition of iron oxide nanoparticles. In the presence of thiol and carboxylate coordinated groups of amino acid, silver ions were immobilized on this biosupport.
Collapse
Affiliation(s)
- F Rafiee
- Department of Chemistry, Faculty of Physic-Chemistry, Alzahra University, Tehran P.O. Box: 1993893973, Iran.
| | - F Rezaie Karder
- Department of Chemistry, Faculty of Physic-Chemistry, Alzahra University, Tehran P.O. Box: 1993893973, Iran
| |
Collapse
|
30
|
Du W, Zhang Z, Li Z. Influence of the weight ratio of polydimethylsiloxane modified gelatin to silicone rubber on the potential performance of asymmetric bilayer membranes as wound dressings. POLYM INT 2019. [DOI: 10.1002/pi.5881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Weining Du
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu China
| | - Zetian Zhang
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu China
| | - Zhengjun Li
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu China
| |
Collapse
|
31
|
Rukmanikrishnan B, Rajasekharan SK, Lee J, Lee J. Biocompatible agar/xanthan gum composite films: Thermal, mechanical, UV, and water barrier properties. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | | | - Jintae Lee
- Department of Chemical EngineeringYeungnam University Gyeongsan South Korea
| | - Jaewoong Lee
- Department of Fiber System EngineeringYeungnam University Gyeongsan South Korea
| |
Collapse
|
32
|
Peralta J, Bitencourt-Cervi CM, Maciel VB, Yoshida CM, Carvalho RA. Aqueous hibiscus extract as a potential natural pH indicator incorporated in natural polymeric films. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2018.11.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Effect of TiO2 on highly elastic, stretchable UV protective nanocomposite films formed by using a combination of k-Carrageenan, xanthan gum and gellan gum. Int J Biol Macromol 2019; 123:1020-1027. [DOI: 10.1016/j.ijbiomac.2018.11.151] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022]
|
34
|
Yuan L, Li X, Ge L, Jia X, Lei J, Mu C, Li D. Emulsion Template Method for the Fabrication of Gelatin-Based Scaffold with a Controllable Pore Structure. ACS APPLIED MATERIALS & INTERFACES 2019; 11:269-277. [PMID: 30525427 DOI: 10.1021/acsami.8b17555] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The porous microstructure of scaffolds is an essential consideration for tissue engineering, which plays an important role for cell adhesion, migration, and proliferation. It is crucial to choose optimum pore sizes of scaffolds for the treatment of various damaged tissues. Therefore, the proper porosity is the significant factor that should be considered when designing tissue scaffolds. Herein, we develop an improved emulsion template method to fabricate gelatin-based scaffolds with controllable pore structure. Gelatin droplets were first prepared by emulsification and then solidified by genipin to prepare gelatin microspheres. The microspheres were used as a template for the fabrication of porous scaffolds, which were gathered and tightened together by dialdehyde amylose. The results showed that emulsification can produce gelatin microspheres with narrow size distribution. The size of gelatin microspheres was easily controlled by adjusting the concentration of gelatin and the speed of mechanical agitation. The gelatin-based scaffolds presented macroporous and interconnected structure. It is interesting that the pore size of scaffolds was directly related to the size of gelatin microspheres, displaying the same trend of change in size. It indicated that the gelatin microspheres can be used as the proper template to fabricate gelatin-based scaffold with a desired pore structure. In addition, the gelatin-based scaffolds possessed good blood compatibility and cytocompatibility. Overall, the gelatin-based scaffolds exhibited great potential in tissue engineering.
Collapse
Affiliation(s)
- Lun Yuan
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering , Sichuan University , Chengdu 610065 , P. R. China
| | - Xinying Li
- College of Chemistry and Environment Protection Engineering , Southwest Minzu University , Chengdu 610041 , P. R. China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering , Sichuan University , Chengdu 610065 , P. R. China
| | - Xiaoqi Jia
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering , Sichuan University , Chengdu 610065 , P. R. China
| | - Jinfeng Lei
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering , Sichuan University , Chengdu 610065 , P. R. China
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering , Sichuan University , Chengdu 610065 , P. R. China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering , Sichuan University , Chengdu 610065 , P. R. China
| |
Collapse
|
35
|
Huang D, Zhang Z, Ma Z, Quan Q. Effect of Natural Nanostructured Rods and Platelets on Mechanical and Water Resistance Properties of Alginate-Based Nanocomposites. Front Chem 2019; 6:635. [PMID: 30619839 PMCID: PMC6305989 DOI: 10.3389/fchem.2018.00635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/07/2018] [Indexed: 11/19/2022] Open
Abstract
A series of biopolymer-based nanocomposite films were prepared by incorporating natural one-dimensional (1D) palygorskite (PAL) nanorods, and two-dimensional (2D) montmorillonite (MMT) nanoplatelets into sodium alginate (SA) film by a simple solution casting method. The effect of different dimensions of nanoclays on the mechanical, water resistance, and light transmission properties of the SA/PAL or MMT nanocomposite films were studied. The field-emission scanning electron microscopy (FE-SEM) result showed that PAL can disperse better than MMT in the SA matrix in the case of the same addition amount. The incorporation of both PAL and MMT into the SA film can enhance the tensile strength (TS) and water resistance capability of the film. At a high content of nanoclays, the SA/PAL nanocomposite film shows relatively higher TS, and better water resistance than the SA/MMT nanocomposite film. The SA/MMT nanocomposite films have better light transmission than SA/PAL nanocomposite film at the same loading amount of nanoclays. These results demonstrated that 1D PAL nanorods are more suitable candidate of inorganic filler to improve the mechanical and water resistance properties of biopolymers/nanoclays nanocomposites.
Collapse
Affiliation(s)
- Dajian Huang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Zhuo Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Zonghong Ma
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Qiling Quan
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, China
| |
Collapse
|
36
|
Salarbashi D, Tafaghodi M, Bazzaz BSF, Mohammad Aboutorabzade Birjand S, Bazeli J. Characterization of a green nanocomposite prepared from soluble soy bean polysaccharide/Cloisite 30B and evaluation of its toxicity. Int J Biol Macromol 2018; 120:109-118. [PMID: 30071228 DOI: 10.1016/j.ijbiomac.2018.07.183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/22/2018] [Accepted: 07/29/2018] [Indexed: 11/20/2022]
Abstract
The present paper aims to elucidate the structural, thermal and mechanical properties of soybean polysaccharide (SSPS)/Cloisite 30B. Tensile strength of the nanocomposite films improved with incorporation of nanoparticles, whereas elongation at break decreased. Surface roughness of the samples increased with the addition of nanoclay. Neat SSPS film and SSPS-1% Cloisite 30B had a relatively smooth surface with no irregularities, while for the samples containing 3 and 7% Cloisite 30B, the surface was rough. DSC analysis demonstrated that following an increase in nanoparticles content, the melting temperature of the nanocomposite elevated, whereas, glass transition temperature decreased. The results of antibacterial activity indicated that Cloisite 30B could inhibit the growth of Salmonella typhi PTCC 1609, Staphylococcus epidermis PTCC 1114 (ATCC 12228) and Listeria monocytogenes PTCC 1165. SSPS-Cloisite 30B nanocomposite could not inhibit the growth of Aspergillus niger. The results demonstrated that the migration of nanoparticles might happen into deionized water as a food simulant, but they could not migrate into bread as a food model. Furthermore, it was found that Cloisite 30B nanoparticles had cytotoxicity effect, and thus, it is recommended that Cloisite 30B/SSPS nanocomposites be used only for the packaging of solids foods such as bread.
Collapse
Affiliation(s)
- Davoud Salarbashi
- Social Development & Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran; School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutics Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Control Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Javad Bazeli
- Department of Emergency Medicine, School of Nursing and Midwifery, Gonabad University of Medical Science, Gonabad, Iran
| |
Collapse
|
37
|
|
38
|
Balasubramanian R, Kim SS, Lee J. Novel synergistic transparent k-Carrageenan/Xanthan gum/Gellan gum hydrogel film: Mechanical, thermal and water barrier properties. Int J Biol Macromol 2018; 118:561-568. [DOI: 10.1016/j.ijbiomac.2018.06.110] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 01/06/2023]
|
39
|
Ge L, Zhu M, Li X, Xu Y, Ma X, Shi R, Li D, Mu C. Development of active rosmarinic acid-gelatin biodegradable films with antioxidant and long-term antibacterial activities. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.04.052] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
Oliveira V, Santos F, Leite R, Aroucha E, Silva K. Use of biopolymeric coating hydrophobized with beeswax in post-harvest conservation of guavas. Food Chem 2018; 259:55-64. [DOI: 10.1016/j.foodchem.2018.03.101] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 01/12/2023]
|
41
|
The effects of bioactive edible film containing Terminalia arjuna on the stability of some quality attributes of chevon sausages. Meat Sci 2018; 140:38-43. [DOI: 10.1016/j.meatsci.2018.02.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 02/03/2018] [Accepted: 02/16/2018] [Indexed: 11/17/2022]
|
42
|
Zi Y, Zhu M, Li X, Xu Y, Wei H, Li D, Mu C. Effects of carboxyl and aldehyde groups on the antibacterial activity of oxidized amylose. Carbohydr Polym 2018; 192:118-125. [PMID: 29691003 DOI: 10.1016/j.carbpol.2018.03.060] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/08/2018] [Accepted: 03/18/2018] [Indexed: 10/17/2022]
Abstract
Dialdehyde-amyloses, dicarboxyl-amyloses and dialdehyde-carboxyl-amyloses with different oxidation levels were prepared and used to study the effects of aldehyde and carboxyl groups on the antibacterial activity of oxidized amyloses. The results showed that dicarboxyl-amyloses presented antibacterial activity through acidic pH effect produced by carboxyl groups, which was easily reduced or eliminated by adjusting pH. Dialdehyde-amyloses possessed a broad-spectrum antibacterial activity owing to the reactivity of aldehyde groups rather than acidic pH effect. Aldehyde would irreversibly damage bacterial cell wall and cytoplasmic membrane, resulting in decay and death of bacterial cells. It is interesting that the antibacterial properties of dialdehyde-carboxyl-amyloses were improved to some extent compared to dialdehyde-amyloses. The improvement of antibacterial effect of dialdehyde-carboxyl-amyloses may be due to the increasing dispersibility endowed by carboxyl groups, which could effectively enhance the interaction between dialdehyde-carboxyl-amyloses and bacteria. As a result, carboxyl group could act as a promising synergistic group against bacteria with aldehyde group.
Collapse
Affiliation(s)
- Yaxin Zi
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Mingjin Zhu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xinying Li
- College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu 610041, China
| | - Yongbin Xu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Hao Wei
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Defu Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Changdao Mu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
43
|
Akhmedov OR, Shomurotov SA, Rakhmanova GG, Turaev AS. Synthesis and Study of Biological Activity of Sulfamic Polysaccharide Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162017070020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Lin J, Wang Y, Pan D, Sun Y, Ou C, Cao J. Physico-mechanical properties of gelatin films modified with Lysine, Arginine and Histidine. Int J Biol Macromol 2018; 108:947-952. [DOI: 10.1016/j.ijbiomac.2017.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 11/15/2022]
|
45
|
Marcet I, Sáez S, Rendueles M, Díaz M. Edible films from residual delipidated egg yolk proteins. Journal of Food Science and Technology 2017; 54:3969-3978. [PMID: 29085139 DOI: 10.1007/s13197-017-2861-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/21/2017] [Accepted: 09/07/2017] [Indexed: 11/29/2022]
Abstract
Commercial extraction with organic solvents of valuable lipids from egg yolk produces a highly denatured protein waste that should be valorized. In this work, the delipidated protein waste remaining after ethanol extraction was used to prepare edible films. This material was also treated with transglutaminase, obtaining films that have also been characterized. When compared with gelatin and caseinate edible films, the films made with egg yolk delipidated protein showed poorer mechanical properties, but improved light barrier properties, low water solubility and a high degree of transparency. It is particularly interesting that the presence of phosvitin in the egg yolk gives the films important ferrous chelating properties. When the egg yolk delipidated protein was treated with transglutaminase, the strength of the film was improved in comparison with films made with untreated protein. Finally, addition of thymol and natamycin in the preparation of these films is shown to be an interesting alternative, providing them with antibacterial and antifungal capacities.
Collapse
Affiliation(s)
- Ismael Marcet
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Sara Sáez
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Manuel Rendueles
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
46
|
Fuertes S, Laca A, Oulego P, Paredes B, Rendueles M, Díaz M. Development and characterization of egg yolk and egg yolk fractions edible films. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Development of Antimicrobial and Controlled Biodegradable Gelatin-Based Edible Films Containing Nisin and Amino-Functionalized Montmorillonite. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1941-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Sahraee S, Milani JM, Ghanbarzadeh B, Hamishehkar H. Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles. Int J Biol Macromol 2017; 97:373-381. [DOI: 10.1016/j.ijbiomac.2016.12.066] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/01/2016] [Accepted: 12/17/2016] [Indexed: 10/20/2022]
|
49
|
Sahraee S, Milani JM, Ghanbarzadeh B, Hamishehkar H. Effect of corn oil on physical, thermal, and antifungal properties of gelatin-based nanocomposite films containing nano chitin. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.10.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Performance of high amylose starch-composited gelatin films influenced by gelatinization and concentration. Int J Biol Macromol 2017; 94:258-265. [DOI: 10.1016/j.ijbiomac.2016.10.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 09/29/2016] [Accepted: 10/05/2016] [Indexed: 12/24/2022]
|