1
|
Kaur V, Sunkaria A. Unlocking the therapeutic promise of miRNAs in promoting amyloid-β clearance for Alzheimer's disease. Behav Brain Res 2025; 484:115505. [PMID: 40010509 DOI: 10.1016/j.bbr.2025.115505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/06/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Alzheimer's disease (AD) is a neurological disorder that affects cognition and behavior, accounting for 60-70 % of dementia cases. Its mechanisms involve amyloid aggregates, hyperphosphorylated tau tangles, and loss of neural connections. Current treatments have limited efficacy due to a lack of specific targets. Recently, microRNAs (miRNAs) have emerged as key modulators in AD, regulating gene expression through interactions with mRNA. Dysregulation of specific miRNAs contributes to disease progression by disrupting clearance pathways. Antisense oligonucleotide (ASO)-based therapies show promise for AD treatment, particularly when combined with miRNA mimics or antagonists, targeting complex regulatory networks. However, miRNAs can interact with each other, complicating cellular processes and potentially leading to side effects. Our review emphasizes the role of miRNAs in regulating amyloid-beta (Aβ) clearance and highlights their potential as therapeutic targets and early biomarkers for AD, underscoring the need for further research to enhance their efficacy and safety.
Collapse
Affiliation(s)
- Vajinder Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Aditya Sunkaria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| |
Collapse
|
2
|
Wang L, Sooram B, Kumar R, Schedin-Weiss S, Tjernberg LO, Winblad B. Tau degradation in Alzheimer's disease: Mechanisms and therapeutic opportunities. Alzheimers Dement 2025; 21:e70048. [PMID: 40109019 PMCID: PMC11923393 DOI: 10.1002/alz.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 03/22/2025]
Abstract
In Alzheimer's disease (AD), tau undergoes abnormal post-translational modifications and aggregations. Impaired intracellular degradation pathways further exacerbate the accumulation of pathological tau. A new strategy - targeted protein degradation - recently emerged as a modality in drug discovery where bifunctional molecules bring the target protein close to the degradation machinery to promote clearance. Since 2016, this strategy has been applied to tau pathologies and attracted broad interest in academia and the pharmaceutical industry. However, a systematic review of recent studies on tau degradation mechanisms is lacking. Here we review tau degradation mechanisms (the ubiquitin-proteasome system and the autophagy-lysosome pathway), their dysfunction in AD, and tau-targeted degraders, such as proteolysis-targeting chimeras and autophagy-targeting chimeras. We emphasize the need for a continuous exploration of tau degradation mechanisms and provide a future perspective for developing tau-targeted degraders, encouraging researchers to work on new treatment options for AD patients. HIGHLIGHTS: Post-translational modifications, aggregation, and mutations affect tau degradation. A vicious circle exists between impaired degradation pathways and tau pathologies. Ubiquitin plays an important role in complex degradation pathways. Tau-targeted degraders provide promising strategies for novel AD treatment.
Collapse
Affiliation(s)
- Lisha Wang
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Banesh Sooram
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Rajnish Kumar
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Sophia Schedin-Weiss
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Lars O Tjernberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
3
|
Sayed N, Ali AE, Elsherbiny DM, Azab SS. Involvement of Autophagic Machinery in Neuropathogenesis: Targeting and Relevant Methods of Detection. Methods Mol Biol 2025; 2879:183-206. [PMID: 38441722 DOI: 10.1007/7651_2024_516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
The exquisite balance between cellular prosurvival and death pathways is extremely necessary for homeostasis. Different forms of programmed cell death have been widely studied and reported such as apoptosis, necroptosis, pyroptosis, and autophagy. Autophagy is a catabolic process important for normal cellular functioning. The main aim of this machinery is to degrade the misfolded or damaged proteins, unuseful organelles, and pathogens, which invade the cells, thereby maintaining cellular homeostasis and assuring the regular renewal of cell components. This prosurvival function of autophagy highlights its importance in many human diseases, as the disturbance of this tightly organized process ultimately causes detrimental effects. Interestingly, neurons are particularly susceptible to damage upon the presence of any alteration in the basal level of the autophagic activity; this could be due to their high metabolic demand, post-mitotic nature, and the contribution of autophagy in the different fundamental functions of neurons. Herein, we have reported the role of autophagy in different CNS disorders such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and epilepsy, besides the pharmacological agents targeting autophagy. Due to the significant contribution of autophagy in the pathogenesis of many diseases, it is crucial to develop effective methods to detect this dynamic process. In this chapter, we have summarized the most frequently employed techniques in studying and detecting autophagy including electron microscopy, fluorescence microscopy, Western blotting, intracellular protein degradation, and sequestration assay.
Collapse
Affiliation(s)
- Nourhan Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Alaa Emam Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Doaa Mokhtar Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
4
|
Wang HF, Li YB, Liu ZY, Xie WM, Liu Q, Zhang RJ, Wang WY, Hao JX, Wang L, Geng DD. Circ-Bptf Ameliorates Learning and Memory Impairments via the miR-138-5p/p62 Axis in APP/PS1 Mice. Mol Neurobiol 2024; 61:8575-8589. [PMID: 38528305 DOI: 10.1007/s12035-024-04066-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Alzheimer's disease (AD) is a common age-associated progressive neurodegenerative disorder that is implicated in the aberrant regulation of numerous circular RNAs (circRNAs). Here, we reported that circ-Bptf, a conserved circRNA derived from the Bptf gene, showed an age-dependent decrease in the hippocampus of APP/PS1 mice. Overexpression of circ-Bptf significantly reversed dendritic spine loss and learning and memory impairment in APP/PS1 mice. Moreover, we found that circ-Bptf was predominantly localized to the cytoplasm and upregulated p62 expression by binding to miR-138-5p. Furthermore, the miR-138-5p mimics reversed the decreased expression of p62 induced by the silencing of circ-Bptf. Together, our findings suggested that circ-Bptf ameliorated learning and memory impairments via the miR-138-5p/p62 axis in APP/PS1 mice. It may act as a potential player in AD pathogenesis and therapy.
Collapse
Affiliation(s)
- Hong-Fang Wang
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yi-Bo Li
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Zi-Yu Liu
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Wen-Meng Xie
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Qing Liu
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Run-Jiao Zhang
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Wen-Yu Wang
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Jia-Xin Hao
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Lei Wang
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Dan-Dan Geng
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
5
|
Fairley LH, Grimm A, Herff SA, Eckert A. Translocator protein (TSPO) ligands attenuate mitophagy deficits in the SH-SY5Y cellular model of Alzheimer's disease via the autophagy adaptor P62. Biochimie 2024; 224:132-138. [PMID: 38280505 DOI: 10.1016/j.biochi.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Mitochondrial dysfunction has been widely implicated in the pathogenesis of Alzheimer's disease (AD), with accumulation of damaged and dysfunctional mitochondria occurring early in the disease. Mitophagy, which governs mitochondrial turnover and quality control, is impaired in the AD brain, and strategies aimed at enhancing mitophagy have been identified as promising therapeutic targets. The translocator protein (TSPO) is an outer mitochondrial membrane protein that is upregulated in AD, and ligands targeting TSPO have been shown to exert neuroprotective effects in mouse models of AD. However, whether TSPO ligands modulate mitophagy in AD has not been explored. Here, we provide evidence that the TSPO-specific ligands Ro5-4864 and XBD173 attenuate mitophagy deficits and mitochondrial fragmentation in a cellular model of AD overexpressing the human amyloid precursor protein (APP). Ro5-4864 and XBD173 appear to enhance mitophagy via modulation of the autophagic cargo receptor P62/SQSTM1, in the absence of an effect on PARK2, PINK1, or LC3 level. Taken together, these findings indicate that TSPO ligands may be promising therapeutic agents for ameliorating mitophagy deficits in AD.
Collapse
Affiliation(s)
- Lauren H Fairley
- Research Cluster, Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland.
| | - Amandine Grimm
- Research Cluster, Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland
| | - Steffen A Herff
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia
| | - Anne Eckert
- Research Cluster, Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland
| |
Collapse
|
6
|
Lim SHY, Hansen M, Kumsta C. Molecular Mechanisms of Autophagy Decline during Aging. Cells 2024; 13:1364. [PMID: 39195254 PMCID: PMC11352966 DOI: 10.3390/cells13161364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Macroautophagy (hereafter autophagy) is a cellular recycling process that degrades cytoplasmic components, such as protein aggregates and mitochondria, and is associated with longevity and health in multiple organisms. While mounting evidence supports that autophagy declines with age, the underlying molecular mechanisms remain unclear. Since autophagy is a complex, multistep process, orchestrated by more than 40 autophagy-related proteins with tissue-specific expression patterns and context-dependent regulation, it is challenging to determine how autophagy fails with age. In this review, we describe the individual steps of the autophagy process and summarize the age-dependent molecular changes reported to occur in specific steps of the pathway that could impact autophagy. Moreover, we describe how genetic manipulations of autophagy-related genes can affect lifespan and healthspan through studies in model organisms and age-related disease models. Understanding the age-related changes in each step of the autophagy process may prove useful in developing approaches to prevent autophagy decline and help combat a number of age-related diseases with dysregulated autophagy.
Collapse
Affiliation(s)
- Shaun H. Y. Lim
- Graduate School of Biological Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
- Program of Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA;
| | - Malene Hansen
- Program of Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA;
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Caroline Kumsta
- Program of Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA;
| |
Collapse
|
7
|
Singh MK, Shin Y, Ju S, Han S, Kim SS, Kang I. Comprehensive Overview of Alzheimer's Disease: Etiological Insights and Degradation Strategies. Int J Mol Sci 2024; 25:6901. [PMID: 39000011 PMCID: PMC11241648 DOI: 10.3390/ijms25136901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and affects millions of individuals globally. AD is associated with cognitive decline and memory loss that worsens with aging. A statistical report using U.S. data on AD estimates that approximately 6.9 million individuals suffer from AD, a number projected to surge to 13.8 million by 2060. Thus, there is a critical imperative to pinpoint and address AD and its hallmark tau protein aggregation early to prevent and manage its debilitating effects. Amyloid-β and tau proteins are primarily associated with the formation of plaques and neurofibril tangles in the brain. Current research efforts focus on degrading amyloid-β and tau or inhibiting their synthesis, particularly targeting APP processing and tau hyperphosphorylation, aiming to develop effective clinical interventions. However, navigating this intricate landscape requires ongoing studies and clinical trials to develop treatments that truly make a difference. Genome-wide association studies (GWASs) across various cohorts identified 40 loci and over 300 genes associated with AD. Despite this wealth of genetic data, much remains to be understood about the functions of these genes and their role in the disease process, prompting continued investigation. By delving deeper into these genetic associations, novel targets such as kinases, proteases, cytokines, and degradation pathways, offer new directions for drug discovery and therapeutic intervention in AD. This review delves into the intricate biological pathways disrupted in AD and identifies how genetic variations within these pathways could serve as potential targets for drug discovery and treatment strategies. Through a comprehensive understanding of the molecular underpinnings of AD, researchers aim to pave the way for more effective therapies that can alleviate the burden of this devastating disease.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
8
|
Murata E, Yoshida T, Tomaru U, Yamamoto S, Fukui-Miyazaki A, Ishizu A, Kasahara M. Decreased proteasome function increases oxidative stress in the early stage of pressure ulcer development. Exp Mol Pathol 2024; 137:104891. [PMID: 38462206 DOI: 10.1016/j.yexmp.2024.104891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/08/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
The aging process in the elderly results in heightened skin fragility associated with various disorders, including pressure ulcers (PUs). Despite the high incidence of PUs in the elderly population, there is a limited body of research specifically examining the impact of aging on the development of pressure ulcers. Therefore, investigating age-related physiological abnormalities is essential to elucidate the pathogenesis of PUs. Ischemia-reperfusion (I/R) injury and the subsequent oxidative stress caused by reactive oxygen species (ROS) play essential roles in the early stage of PUs. In this study, we used a mouse model of proteasomal dysfunction with an age-related phenotype to examine the role of proteasome activity in cutaneous I/R injury in vivo. Decreased proteasome function did not affect the expression of inflammatory cytokines and adhesion molecules in the I/R area in transgenic mice; however, proteasome inhibition increased oxidative stress that was not attenuated by activation of the oxidative stress response mediated by NF-E2-related factor 2 (Nrf2). In dermal fibroblasts (FCs) subjected to hypoxia-reoxygenation (H/R), proteasome inhibition induced oxidative stress and ROS production, and Nrf2 activation did not adequately upregulate antioxidant enzyme expression, possibly leading to antioxidant/oxidant imbalance. The free radical scavenger edaravone had protective effects against I/R injury in vivo and decreased oxidative stress in FCs treated with a proteasome inhibitor and subjected to H/R in vitro. The results suggest that the age-related decline in proteasome activity promotes cutaneous I/R injury-induced oxidative stress, and free radical scavengers may exert protective effects by preventing oxidative stress in the early stage of PUs.
Collapse
Affiliation(s)
- Eri Murata
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan; Department of Fundamental Nursing, Yamagata University Graduate School of Nursing, Yamagata, Yamagata, Japan
| | - Takuma Yoshida
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Utano Tomaru
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan; Department of Surgical Pathology, Hokkaido University Hospital, Sapporo 060-8648, Japan.
| | - Saaki Yamamoto
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Aya Fukui-Miyazaki
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Akihiro Ishizu
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Masanori Kasahara
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
9
|
Zhang H, Bezprozvanny I. "Dirty Dancing" of Calcium and Autophagy in Alzheimer's Disease. Life (Basel) 2023; 13:life13051187. [PMID: 37240832 DOI: 10.3390/life13051187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. There is a growing body of evidence that dysregulation in neuronal calcium (Ca2+) signaling plays a major role in the initiation of AD pathogenesis. In particular, it is well established that Ryanodine receptor (RyanR) expression levels are increased in AD neurons and Ca2+ release via RyanRs is augmented in AD neurons. Autophagy is important for removing unnecessary or dysfunctional components and long-lived protein aggregates, and autophagy impairment in AD neurons has been extensively reported. In this review we discuss recent results that suggest a causal link between intracellular Ca2+ signaling and lysosomal/autophagic dysregulation. These new results offer novel mechanistic insight into AD pathogenesis and may potentially lead to identification of novel therapeutic targets for treating AD and possibly other neurodegenerative disorders.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnical University, St. Petersburg 195251, Russia
| |
Collapse
|
10
|
Vianello C, Salluzzo M, Anni D, Boriero D, Buffelli M, Carboni L. Increased Expression of Autophagy-Related Genes in Alzheimer's Disease-Type 2 Diabetes Mellitus Comorbidity Models in Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20054540. [PMID: 36901549 PMCID: PMC10002426 DOI: 10.3390/ijerph20054540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 05/31/2023]
Abstract
The association between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) has been extensively demonstrated, but despite this, the pathophysiological mechanisms underlying it are still unknown. In previous work, we discovered a central role for the autophagy pathway in the common alterations observed between AD and T2DM. In this study, we further investigate the role of genes belonging to this pathway, measuring their mRNA expression and protein levels in 3xTg-AD transgenic mice, an animal model of AD. Moreover, primary mouse cortical neurons derived from this model and the human H4Swe cell line were used as cellular models of insulin resistance in AD brains. Hippocampal mRNA expression showed significantly different levels for Atg16L1, Atg16L2, GabarapL1, GabarapL2, and Sqstm1 genes at different ages of 3xTg-AD mice. Significantly elevated expression of Atg16L1, Atg16L2, and GabarapL1 was also observed in H4Swe cell cultures, in the presence of insulin resistance. Gene expression analysis confirmed that Atg16L1 was significantly increased in cultures from transgenic mice when insulin resistance was induced. Taken together, these results emphasise the association of the autophagy pathway in AD-T2DM co-morbidity, providing new evidence about the pathophysiology of both diseases and their mutual interaction.
Collapse
Affiliation(s)
- Clara Vianello
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Marco Salluzzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Daniela Anni
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Diana Boriero
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Mario Buffelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
11
|
Qian H, Chao X, Wang S, Li Y, Jiang X, Sun Z, Rülicke T, Zatloukal K, Ni HM, Ding WX. Loss of SQSTM1/p62 Induces Obesity and Exacerbates Alcohol-Induced Liver Injury in Aged Mice. Cell Mol Gastroenterol Hepatol 2023; 15:1027-1049. [PMID: 36754207 PMCID: PMC10036741 DOI: 10.1016/j.jcmgh.2023.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) is a worldwide health problem, of which the effective treatment is still lacking. Both detrimental and protective roles of adipose tissue have been implicated in ALD. Although alcohol increases adipose tissue lipolysis to promote alcohol-induced liver injury, alcohol also activates brown adipose tissue (BAT) thermogenesis as an adaptive response in protecting against alcohol-induced liver injury. Moreover, aging and obesity are also risk factors for ALD. In the present study, we investigated the effects of autophagy receptor protein SQSTM1/p62 on adipose tissue and obesity in alcohol-induced liver injury in both young and aged mice. METHODS Young and aged whole-body SQSTM1/p62 knockout (KO) and their age-matched wild-type (WT) mice were subjected to chronic plus binge (Gao-binge) alcohol feeding. Blood, adipose and liver tissues were collected for biochemical and histologic analysis. RESULTS Aged but not young SQSTM1/p62 KO mice had significantly increased body weight and fat mass compared with the matched WT mice. Gao-binge alcohol feeding induced white adipose atrophy and decreased levels of SQSTM1/p62 levels in adipose tissue in aged WT mice. SQSTM1/p62 KO aged mice were resistant to Gao-binge alcohol-induced white adipose atrophy. Alcohol feeding increased the expression of thermogenic genes in WT mouse BAT, which was significantly blunted in SQSTM1/p62 KO aged mice. Alcohol-fed aged SQSTM1/p62 KO mice showed significantly higher levels of serum alanine aminotransferase, hepatic triglyceride, and inflammation compared with young and aged WT mice fed with alcohol. Alcohol-fed SQSTM1/p62 KO mice also increased secretion of proinflammatory and angiogenic adipokines that may promote alcohol-induced liver injury. CONCLUSIONS Loss of SQSTM1/p62 in aged mice leads to obesity and impairs alcohol-induced BAT adaptation, resulting in exacerbated alcohol-induced liver injury in mice.
Collapse
Affiliation(s)
- Hui Qian
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Yuan Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaoxiao Jiang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas; Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
12
|
Andronie-Cioara FL, Ardelean AI, Nistor-Cseppento CD, Jurcau A, Jurcau MC, Pascalau N, Marcu F. Molecular Mechanisms of Neuroinflammation in Aging and Alzheimer's Disease Progression. Int J Mol Sci 2023; 24:ijms24031869. [PMID: 36768235 PMCID: PMC9915182 DOI: 10.3390/ijms24031869] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Aging is the most prominent risk factor for late-onset Alzheimer's disease. Aging associates with a chronic inflammatory state both in the periphery and in the central nervous system, the evidence thereof and the mechanisms leading to chronic neuroinflammation being discussed. Nonetheless, neuroinflammation is significantly enhanced by the accumulation of amyloid beta and accelerates the progression of Alzheimer's disease through various pathways discussed in the present review. Decades of clinical trials targeting the 2 abnormal proteins in Alzheimer's disease, amyloid beta and tau, led to many failures. As such, targeting neuroinflammation via different strategies could prove a valuable therapeutic strategy, although much research is still needed to identify the appropriate time window. Active research focusing on identifying early biomarkers could help translating these novel strategies from bench to bedside.
Collapse
Affiliation(s)
- Felicia Liana Andronie-Cioara
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Adriana Ioana Ardelean
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Carmen Delia Nistor-Cseppento
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (C.D.N.-C.); (N.P.)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | | | - Nicoleta Pascalau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (C.D.N.-C.); (N.P.)
| | - Florin Marcu
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
13
|
Wang X, Huang R, Huang B, Li X. S1PR2 Regulates Autophagy Through the AKT/mTOR Pathway to Promote Pathological Damage in Alzheimer's Disease. J Alzheimers Dis 2023; 96:1489-1504. [PMID: 38007654 DOI: 10.3233/jad-230533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a fatal and debilitating neurodegenerative disease. Sphingosine-1-phosphate receptor 2 (S1PR2), one of the receptors of S1P, is a key regulatory factor for various diseases. OBJECTIVE This study aimed to explore the role and possible mechanism of S1PR2 in AD. METHODS S1PR2 expression in the AD mice was detected, and after intervening S1PR2 expression with sh-S1PR2 in AD mice, the behavioral changes, pathological lesions of the hippocampus, autophagy level, and AKT/mTOR pathway activation were analyzed. Furthermore, SH-SY5Y cells were induced by Aβ25-35 to construct an AD cell model, and the effects of sh-S1PR2 on proliferation, apoptosis, autophagy, and AKT/mTOR pathway of AD cells were investigated. In addition, the effects of pathway inhibitor rapamycin on model cells were further analyzed. RESULTS The expression of S1PR2 was significantly increased in AD mice, the sh-S1PR2 significantly improved behavioral dysfunction, alleviated pathological injury of the hippocampus, increased the number of neurons, and inhibited Aβ production and p-tau expression, showing a positive effect on the AD pathology. In addition, silencing of S1PR2 expression significantly promoted the autophagy level and inhibited the activation of the AKT/mTOR pathway in AD model mice. In vitro experiments further confirmed that sh-S1PR2 promoted cell proliferation, inhibited apoptosis, relieved cytopathology, promoted autophagy, and inhibited the activation of the AKT/mTOR pathway in the cell model. The use of rapamycin further confirmed the role of AKT/mTOR pathway-mediated autophagy in the regulation of AD by S1PR2. CONCLUSION S1PR2 promoted AD pathogenesis by inhibiting autophagy through the activation of AKT/mTOR pathway.
Collapse
Affiliation(s)
- Xiaoping Wang
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, China
| | - Rui Huang
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, China
| | - Bin Huang
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, China
| | - Xiaojia Li
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, China
| |
Collapse
|
14
|
Yang H, Oh CK, Amal H, Wishnok JS, Lewis S, Schahrer E, Trudler D, Nakamura T, Tannenbaum SR, Lipton SA. Mechanistic insight into female predominance in Alzheimer's disease based on aberrant protein S-nitrosylation of C3. SCIENCE ADVANCES 2022; 8:eade0764. [PMID: 36516243 PMCID: PMC9750152 DOI: 10.1126/sciadv.ade0764] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Protein S-nitros(yl)ation (SNO) is a posttranslational modification involved in diverse processes in health and disease and can contribute to synaptic damage in Alzheimer's disease (AD). To identify SNO proteins in AD brains, we used triaryl phosphine (SNOTRAP) combined with mass spectrometry (MS). We detected 1449 SNO proteins with 2809 SNO sites, representing a wide range of S-nitrosylated proteins in 40 postmortem AD and non-AD human brains from patients of both sexes. Integrative protein ranking revealed the top 10 increased SNO proteins, including complement component 3 (C3), p62 (SQSTM1), and phospholipase D3. Increased levels of S-nitrosylated C3 were present in female over male AD brains. Mechanistically, we show that formation of SNO-C3 is dependent on falling β-estradiol levels, leading to increased synaptic phagocytosis and thus synapse loss and consequent cognitive decline. Collectively, we demonstrate robust alterations in the S-nitrosoproteome that contribute to AD pathogenesis in a sex-dependent manner.
Collapse
Affiliation(s)
- Hongmei Yang
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Northeast Asia Institute of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Chang-ki Oh
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Haitham Amal
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - John S. Wishnok
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah Lewis
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emily Schahrer
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dorit Trudler
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tomohiro Nakamura
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Steven R. Tannenbaum
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding author. (S.R.T.); (S.A.L.)
| | - Stuart A. Lipton
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla CA 92093, USA
- Corresponding author. (S.R.T.); (S.A.L.)
| |
Collapse
|
15
|
Yin P, Bai D, Deng F, Zhang C, Jia Q, Zhu L, Chen L, Li B, Guo X, Ye J, Tan Z, Wang L, Li S, Li XJ. SQSTM1-mediated clearance of cytoplasmic mutant TARDBP/TDP-43 in the monkey brain. Autophagy 2022; 18:1955-1968. [PMID: 34936539 PMCID: PMC9466617 DOI: 10.1080/15548627.2021.2013653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
The cytoplasmic accumulation and aggregates of TARDBP/TDP-43 (TAR DNA binding protein) are a pathological hallmark in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We previously reported that the primate specific cleavage of TARDBP accounts for its cytoplasmic mislocalization in the primate brains, prompting us to further investigate how the cytoplasmic TARDBP mediates neuropathology. Here we reported that cytoplasmic mutant TARDBP reduced SQSTM1 expression selectively in the monkey brain, when compared with the mouse brain, by inducing SQSTM1 mRNA instability via its binding to the unique 3'UTR sequence (GU/UG)n of the primate SQSTM1 transcript. Overexpression of SQSTM1 could diminish the cytoplasmic C-terminal TARDBP accumulation in the monkey brain by augmenting macroautophagy/autophagy activity. Our findings provide additional clues for the pathogenesis of cytoplasmic TARDBP and a potential therapy for mutant TARDBP-mediated neuropathology.
Collapse
Affiliation(s)
- Peng Yin
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Dazhang Bai
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Fuyu Deng
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Chen Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Qingqing Jia
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Longhong Zhu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Laiqiang Chen
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Bang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Xiangyu Guo
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Jianmeng Ye
- Guangdong Landao Biotechnology Co. Ltd, Guangzhou, China
| | - Zhiqiang Tan
- Department of Medical Imaging, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lu Wang
- Department of Medical Imaging, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of Cns Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Taurone S, Ralli M, Artico M, Madia VN, Scarpa S, Nottola SA, Maconi A, Betti M, Familiari P, Nebbioso M, Costi R, Micera A. Oxidative stress and visual system: a review. EXCLI JOURNAL 2022; 21:544-553. [PMID: 35651654 PMCID: PMC9150018 DOI: 10.17179/excli2022-4663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022]
Abstract
Different types of tissues respond differently to the action of oxidative stress. The visual system is very sensitive to oxidative action due to continuous exposure to light. In consideration of the growing interest of scientific studies towards various compounds endowed with antioxidant and anti-inflammatory properties, we performed a review of the literature focusing on the use of some antioxidant molecules for the treatment of conditions affecting the visual system. In this study, we focused on the ability of two antioxidant agents, the small molecule α-lipoic acid (ALA) and the enzyme superoxide dismutase (SOD), to influence the neurodegenerative physiological processes related to aging and oxidative stress affecting the ocular segment. The literature data report that ALA and SOD can protect against neurodegenerative effects both the optic nerve and retina and, if administered together, they are able to lower the levels of oxidative stress, thus preventing neurodegeneration and reducing the apoptotic process.
Collapse
Affiliation(s)
| | - Massimo Ralli
- Department of Sensory Organs, "Sapienza" University of Rome, Rome, Italy
| | - Marco Artico
- Department of Sensory Organs, "Sapienza" University of Rome, Rome, Italy
| | - Valentina Noemi Madia
- Department of Drug Chemistry and Technology, "Sapienza" University of Rome, Rome, Italy
| | - Susanna Scarpa
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, "Sapienza" University of Rome, Rome, Italy
| | - Antonio Maconi
- Research Training Innovation Infrastructure, Research and Innovation Department, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Marta Betti
- Research Training Innovation Infrastructure, Research and Innovation Department, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Pietro Familiari
- Department of Human Neurosciences, "Sapienza" University of Rome, Rome, Italy
| | - Marcella Nebbioso
- Department of Sensory Organs, "Sapienza" University of Rome, Rome, Italy
| | - Roberta Costi
- Department of Drug Chemistry and Technology, "Sapienza" University of Rome, Rome, Italy
| | | |
Collapse
|
17
|
Mol MO, van der Lee SJ, Hulsman M, Pijnenburg YAL, Scheltens P, Seelaar H, van Swieten JC, Kaat LD, Holstege H, van Rooij JGJ. Mapping the genetic landscape of early-onset Alzheimer's disease in a cohort of 36 families. Alzheimers Res Ther 2022; 14:77. [PMID: 35650585 PMCID: PMC9158156 DOI: 10.1186/s13195-022-01018-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Many families with clinical early-onset Alzheimer's disease (EOAD) remain genetically unexplained. A combination of genetic factors is not standardly investigated. In addition to monogenic causes, we evaluated the possible polygenic architecture in a large series of families, to assess if genetic testing of familial EOAD could be expanded. METHODS Thirty-six pedigrees (77 patients) were ascertained from a larger cohort of patients, with relationships determined by genetic data (exome sequencing data and/or SNP arrays). All families included at least one AD patient with symptom onset <70 years. We evaluated segregating rare variants in known dementia-related genes, and other genes or variants if shared by multiple families. APOE was genotyped and duplications in APP were assessed by targeted test or using SNP array data. We computed polygenic risk scores (PRS) compared with a reference population-based dataset, by imputing SNP arrays or exome sequencing data. RESULTS In eight families, we identified a pathogenic variant, including the genes APP, PSEN1, SORL1, and an unexpected GRN frameshift variant. APOE-ε4 homozygosity was present in eighteen families, showing full segregation with disease in seven families. Eight families harbored a variant of uncertain significance (VUS), of which six included APOE-ε4 homozygous carriers. PRS was not higher in the families combined compared with the population mean (beta 0.05, P = 0.21), with a maximum increase of 0.61 (OR = 1.84) in the GRN family. Subgroup analyses indicated lower PRS in six APP/PSEN1 families compared with the rest (beta -0.22 vs. 0.10; P = 0.009) and lower APOE burden in all eight families with monogenic cause (beta 0.29 vs. 1.15, P = 0.010). Nine families remained without a genetic cause or risk factor identified. CONCLUSION Besides monogenic causes, we suspect a polygenic disease architecture in multiple families based on APOE and rare VUS. The risk conveyed by PRS is modest across the studied families. Families without any identified risk factor render suitable candidates for further in-depth genetic evaluation.
Collapse
Affiliation(s)
- Merel O Mol
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Phillip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Harro Seelaar
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John C van Swieten
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Laura Donker Kaat
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Henne Holstege
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Jeroen G J van Rooij
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Dong W, Cui MC, Hu WZ, Zeng Q, Wang YL, Zhang W, Huang Y. Genetic and Molecular Evaluation of SQSTM1/p62 on the Neuropathologies of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:829232. [PMID: 35296031 PMCID: PMC8919032 DOI: 10.3389/fnagi.2022.829232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022] Open
Abstract
Sequestosome 1 (SQSTM1)/p62 is a multifunctional scaffolding protein and plays a major role in the cellular processes of autophagy, upregulation of which has been shown in several neurodegenerative disorders, including Alzheimer’s disease (AD). To investigate its genetic effects and relationship with AD pathologies, we analyzed the genetic associations of SQSTM1 rs4935 with the risk of AD and the levels of AD biomarkers using the AD Neuroimaging Initiative (ADNI) Database. We further analyzed the distribution pattern of p62 immunoreactivity in relation to AD pathologies in the postmortem human brain tissues from AD and non-AD controls. We found that SQSTM1 rs4935 was not associated with the risk of AD, but its T allele was significantly associated with decreased β-amyloid (1–42) (Aβ42) levels in the cerebral spinal fluid (CSF) of patients with AD (β = −9.336, p = 0.022). In addition, p62 immunoreactivity in AD is increased, but it shows an inverse relationship to Aβ deposition. A small proportion of senile plaques show p62 positive neurites. Our results suggest that SQSTM1/p62 may play an important role in the progression of AD via associations with Aβ42 levels in CSF and Aβ deposition in the brain of patients with AD.
Collapse
Affiliation(s)
- Wei Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meng-Chao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Wen-Zheng Hu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi Zeng
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Yi-Long Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Huang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Pharmacology, Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Yue Huang,
| |
Collapse
|
19
|
Kumar AV, Mills J, Lapierre LR. Selective Autophagy Receptor p62/SQSTM1, a Pivotal Player in Stress and Aging. Front Cell Dev Biol 2022; 10:793328. [PMID: 35237597 PMCID: PMC8883344 DOI: 10.3389/fcell.2022.793328] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/19/2022] [Indexed: 12/29/2022] Open
Abstract
Efficient proteostasis is crucial for somatic maintenance, and its decline during aging leads to cellular dysfunction and disease. Selective autophagy is a form of autophagy mediated by receptors that target specific cargoes for degradation and is an essential process to maintain proteostasis. The protein Sequestosome 1 (p62/SQSTM1) is a classical selective autophagy receptor, but it also has roles in the ubiquitin-proteasome system, cellular metabolism, signaling, and apoptosis. p62 is best known for its role in clearing protein aggregates via aggrephagy, but it has recently emerged as a receptor for other forms of selective autophagy such as mitophagy and lipophagy. Notably, p62 has context-dependent impacts on organismal aging and turnover of p62 usually reflects active proteostasis. In this review, we highlight recent advances in understanding the role of p62 in coordinating the ubiquitin-proteasome system and autophagy. We also discuss positive and negative effects of p62 on proteostatic status and their implications on aging and neurodegeneration. Finally, we relate the link between defective p62 and diseases of aging and examine the utility of targeting this multifaceted protein to achieve proteostatic benefits.
Collapse
Affiliation(s)
| | | | - Louis R. Lapierre
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| |
Collapse
|
20
|
Hubbard EE, Heil LR, Merrihew GE, Chhatwal JP, Farlow MR, McLean CA, Ghetti B, Newell KL, Frosch MP, Bateman RJ, Larson EB, Keene CD, Perrin RJ, Montine TJ, MacCoss MJ, Julian RR. Does Data-Independent Acquisition Data Contain Hidden Gems? A Case Study Related to Alzheimer's Disease. J Proteome Res 2022; 21:118-131. [PMID: 34818016 PMCID: PMC8741752 DOI: 10.1021/acs.jproteome.1c00558] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the potential benefits of using data-independent acquisition (DIA) proteomics protocols is that information not originally targeted by the study may be present and discovered by subsequent analysis. Herein, we reanalyzed DIA data originally recorded for global proteomic analysis to look for isomerized peptides, which occur as a result of spontaneous chemical modifications to long-lived proteins. Examination of a large set of human brain samples revealed a striking relationship between Alzheimer's disease (AD) status and isomerization of aspartic acid in a peptide from tau. Relative to controls, a surprising increase in isomer abundance was found in both autosomal dominant and sporadic AD samples. To explore potential mechanisms that might account for these observations, quantitative analysis of proteins related to isomerization repair and autophagy was performed. Differences consistent with reduced autophagic flux in AD-related samples relative to controls were found for numerous proteins, including most notably p62, a recognized indicator of autophagic inhibition. These results suggest, but do not conclusively demonstrate, that lower autophagic flux may be strongly associated with loss of function in AD brains. This study illustrates that DIA data may contain unforeseen results of interest and may be particularly useful for pilot studies investigating new research directions. In this case, a promising target for future investigations into the therapy and prevention of AD has been identified.
Collapse
Affiliation(s)
- Evan E. Hubbard
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Lilian R. Heil
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, United States
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, United States
| | - Jasmeer P. Chhatwal
- Harvard Medical School, Massachusetts General Hospital, Department of Neurology, 15 Parkman St, Suite 835, Boston MA 02114
| | - Martin R. Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | | | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Kathy L. Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Matthew P. Frosch
- C.S. Kubik Laboratory for Neuropathology, and Massachusetts Alzheimer Disease Research Center, Massachusetts General Hospital, Boston, MA 02114
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8111, St. Louis, 63110, Missouri, USA
| | - Eric B. Larson
- Kaiser Permanente Washington Health Research Institute and Department of Medicine, University of Washington, Seattle WA
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, 98195, United States
| | - Richard J. Perrin
- Department of Pathology and Immunology, Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Thomas J. Montine
- Department of Pathology, Stanford University, Stanford, CA, 94305, United States
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, United States
| | - Ryan R. Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States,corresponding author:
| |
Collapse
|
21
|
Nieto-Torres JL, Hansen M. Macroautophagy and aging: The impact of cellular recycling on health and longevity. Mol Aspects Med 2021; 82:101020. [PMID: 34507801 PMCID: PMC8671213 DOI: 10.1016/j.mam.2021.101020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023]
Abstract
Aging is associated with many deleterious changes at the cellular level, including the accumulation of potentially toxic components that can have devastating effects on health. A key protective mechanism to this end is the cellular recycling process called autophagy. During autophagy, damaged or surplus cellular components are delivered to acidic vesicles called lysosomes, that secure degradation and recycling of the components. Numerous links between autophagy and aging exist. Autophagy declines with age, and increasing evidence suggests that this reduction plays important roles in both physiological aging and the development of age-associated disorders. Studies in pharmacologically and genetically manipulated model organisms indicate that defects in autophagy promote age-related diseases, and conversely, that enhancement of autophagy has beneficial effects on both healthspan and lifespan. Here, we review our current understanding of the role of autophagy in different physiological processes and their molecular links with aging and age-related diseases. We also highlight some recent advances in the field that could accelerate the development of autophagy-based therapeutic interventions.
Collapse
Affiliation(s)
- Jose L Nieto-Torres
- Sanford Burnham Prebys Medical Discovery Institute. Program of Development, Aging, and Regeneration, La Jolla, CA, USA
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery Institute. Program of Development, Aging, and Regeneration, La Jolla, CA, USA.
| |
Collapse
|
22
|
Macroautophagy and Mitophagy in Neurodegenerative Disorders: Focus on Therapeutic Interventions. Biomedicines 2021; 9:biomedicines9111625. [PMID: 34829854 PMCID: PMC8615936 DOI: 10.3390/biomedicines9111625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Macroautophagy, a quality control mechanism, is an evolutionarily conserved pathway of lysosomal degradation of protein aggregates, pathogens, and damaged organelles. As part of its vital homeostatic role, macroautophagy deregulation is associated with various human disorders, including neurodegenerative diseases. There are several lines of evidence that associate protein misfolding and mitochondrial dysfunction in the etiology of Alzheimer’s, Parkinson’s, and Huntington’s diseases. Macroautophagy has been implicated in the degradation of different protein aggregates such as Aβ, tau, alpha-synuclein (α-syn), and mutant huntingtin (mHtt) and in the clearance of dysfunctional mitochondria. Taking these into consideration, targeting autophagy might represent an effective therapeutic strategy to eliminate protein aggregates and to improve mitochondrial function in these disorders. The present review describes our current understanding on the role of macroautophagy in neurodegenerative disorders and focuses on possible strategies for its therapeutic modulation.
Collapse
|
23
|
Xu C, Wu J, Wu Y, Ren Z, Yao Y, Chen G, Fang EF, Noh JH, Liu YU, Wei L, Chen X, Sima J. TNF-α-dependent neuronal necroptosis regulated in Alzheimer's disease by coordination of RIPK1-p62 complex with autophagic UVRAG. Theranostics 2021; 11:9452-9469. [PMID: 34646380 PMCID: PMC8490500 DOI: 10.7150/thno.62376] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/05/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Neuronal death is a major hallmark of Alzheimer's disease (AD). Necroptosis, as a programmed necrotic process, is activated in AD. However, what signals and factors initiate necroptosis in AD is largely unknown. Methods: We examined the expression levels of critical molecules in necroptotic signaling pathway by immunohistochemistry (IHC) staining and immunoblotting using brain tissues from AD patients and AD mouse models of APP/PS1 and 5×FAD. We performed brain stereotaxic injection with recombinant TNF-α, anti-TNFR1 neutralizing antibody or AAV-mediated gene expression and knockdown in APP/PS1 mice. For in vitro studies, we used TNF-α combined with zVAD-fmk and Smac mimetic to establish neuronal necroptosis models and utilized pharmacological or molecular biological approaches to study the signaling pathways. Results: We find that activated neuronal necroptosis is dependent on upstream TNF-α/TNFR1 signaling in both neuronal cell cultures and AD mouse models. Upon TNF-α stimulation, accumulated p62 recruits RIPK1 and induces its self-oligomerization, and activates downstream RIPK1/RIPK3/MLKL cascade, leading to neuronal necroptosis. Ectopic accumulation of p62 is caused by impaired autophagy flux, which is mediated by UVRAG downregulation during the TNF-α-promoted necroptosis. Notably, UVRAG overexpression inhibits neuronal necroptosis in cell and mouse models of AD. Conclusions: We identify a finely controlled regulation of neuronal necroptosis in AD by coordinated TNF-α signaling, RIPK1/3 activity and autophagy machinery. Strategies that could fine-tune necroptosis and autophagy may bring in promising therapeutics for AD.
Collapse
Affiliation(s)
- Chong Xu
- Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jialin Wu
- Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yiqun Wu
- Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhichu Ren
- Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuyuan Yao
- Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Guobing Chen
- Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Ji Heon Noh
- Department of Biochemistry, Chungnam National University, Daehak-ro 99, Yuseong-gu, Daejeon
| | - Yong U. Liu
- Laboratory for Neuroscience in Health and Disease, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Libin Wei
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jian Sima
- Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
24
|
A neuropathological cell model derived from Niemann-Pick disease type C patient-specific iPSCs shows disruption of the p62/SQSTM1-KEAP1-NRF2 Axis and impaired formation of neuronal networks. Mol Genet Metab Rep 2021; 28:100784. [PMID: 34377675 PMCID: PMC8327345 DOI: 10.1016/j.ymgmr.2021.100784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Niemann−Pick disease type C (NPC) is a rare neurodegenerative disorder caused by a recessive mutation in the NPC1 or NPC2 gene, in which patients exhibit lysosomal accumulation of unesterified cholesterol and glycolipids. Most of the research on NPC has been done in patient-derived skin fibroblasts or mouse models. Therefore, we developed NPC patient neurons derived from induced pluripotent stem cells (iPSCs) to investigate the neuropathological cause of the disease. Although an accumulation of cholesterol and glycolipids, which is characteristic of NPC, was observed in both undifferentiated iPSCs and derived neural stem cells (NSCs), we could not observed the abnormalities in differentiation potential and autophagic activity in such immature cells. However, definite neuropathological features were detected in mature neuronal cells generated from NPC patient-derived iPSCs. Abnormal accumulation of cholesterol and other lipids identified by lipid droplets and number of enlarged lysosomes was more prominent in mature neuronal cells rather than in iPSCs and/or NSCs. Thin-sectioning electron microscopic analysis also demonstrated numerous typical membranous cytoplasmic bodies in mature neuronal cells. Furthermore, TUJ1-positive neurite density was significantly reduced in NPC patient-derived neuronal cells. In addition, disruption of the p62/SQSTM1−KEAP1−NRF2 axis occurred in neurons differentiated from NPC patient-derived iPSCs. These data indicate the impairment of neuronal network formation associated with neurodegeneration in mature neuronal cells derived from patients with NPC. Niemann−Pick disease type C patient-derived neurons showed pathological features Lipid droplets and lysosomes accumulated at high levels in patient's cells Patient-derived neurons showed defective neuronal network formation Disruption of the p62/SQSTM1−KEAP1−NRF2 axis occurred in patient-derived neurons
Collapse
|
25
|
Leszek J, Mikhaylenko EV, Belousov DM, Koutsouraki E, Szczechowiak K, Kobusiak-Prokopowicz M, Mysiak A, Diniz BS, Somasundaram SG, Kirkland CE, Aliev G. The Links between Cardiovascular Diseases and Alzheimer's Disease. Curr Neuropharmacol 2021; 19:152-169. [PMID: 32727331 PMCID: PMC8033981 DOI: 10.2174/1570159x18666200729093724] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/02/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
The root cause of non-inherited Alzheimer's disease (AD) remains unknown despite hundreds of research studies performed to attempt to solve this problem. Since proper prophylaxis remains the best strategy, many scientists have studied the risk factors that may affect AD development. There is robust evidence supporting the hypothesis that cardiovascular diseases (CVD) may contribute to AD progression, as the diseases often coexist. Therefore, a lack of well-defined diagnostic criteria makes studying the relationship between AD and CVD complicated. Additionally, inflammation accompanies the pathogenesis of AD and CVD, and is not only a consequence but also implicated as a significant contributor to the course of the diseases. Of note, АроЕε4 is found to be one of the major risk factors affecting both the cardiovascular and nervous systems. According to genome wide association and epidemiological studies, numerous common risk factors have been associated with the development of AD-related pathology. Furthermore, the risk of developing AD and CVDs appears to be increased by a wide range of conditions and lifestyle factors: hypertension, dyslipidemia, hypercholesterolemia, hyperhomocysteinemia, gut/oral microbiota, physical activity, and diet. This review summarizes the literature and provides possible mechanistic links between CVDs and AD.
Collapse
Affiliation(s)
- Jerzy Leszek
- Address correspondence to these authors at the Department of Psychiatry, Wrocław Medical University, Ul. Pasteura 10, 50-367, Wroclaw, Poland;, E-mail: and GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, USA; Tel: +1-210-442-8625 or +1-440-263-7461; E-mails: ,
| | | | | | | | | | | | | | | | | | | | - Gjumrakch Aliev
- Address correspondence to these authors at the Department of Psychiatry, Wrocław Medical University, Ul. Pasteura 10, 50-367, Wroclaw, Poland;, E-mail: and GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, USA; Tel: +1-210-442-8625 or +1-440-263-7461; E-mails: ,
| |
Collapse
|
26
|
Belousov DM, Mikhaylenko EV, Somasundaram SG, Kirkland CE, Aliev G. The Dawn of Mitophagy: What Do We Know by Now? Curr Neuropharmacol 2021; 19:170-192. [PMID: 32442087 PMCID: PMC8033973 DOI: 10.2174/1570159x18666200522202319] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/10/2020] [Accepted: 05/17/2020] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are essential organelles for healthy eukaryotic cells. They produce energyrich phosphate bond molecules (ATP) through oxidative phosphorylation using ionic gradients. The presence of mitophagy pathways in healthy cells enhances cell protection during mitochondrial damage. The PTEN-induced putative kinase 1 (PINK1)/Parkin-dependent pathway is the most studied for mitophage. In addition, there are other mechanisms leading to mitophagy (FKBP8, NIX, BNIP3, FUNDC1, BCL2L13). Each of these provides tethering of a mitochondrion to an autophagy apparatus via the interaction between receptor proteins (Optineurin, p62, NDP52, NBR1) or the proteins of the outer mitochondrial membrane with ATG9-like proteins (LC3A, LC3B, GABARAP, GABARAPL1, GATE16). Another pathogenesis of mitochondrial damage is mitochondrial depolarization. Reactive oxygen species (ROS) antioxidant responsive elements (AREs) along with antioxidant genes, including pro-autophagic genes, are all involved in mitochondrial depolarization. On the other hand, mammalian Target of Rapamycin Complex 1 (mTORC1) and AMP-dependent kinase (AMPK) are the major regulatory factors modulating mitophagy at the post-translational level. Protein-protein interactions are involved in controlling other mitophagy processes. The objective of the present review is to analyze research findings regarding the main pathways of mitophagy induction, recruitment of the autophagy machinery, and their regulations at the levels of transcription, post-translational modification and protein-protein interaction that appeared to be the main target during the development and maturation of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Cecil E. Kirkland
- Address correspondence to this author at the Department of Biological Sciences, Salem University, Salem, WV, 26426, USA & GALLY International Research Institute, San Antonio, TX 78229, USA;, E-mails: ,
| | - Gjumrakch Aliev
- Address correspondence to this author at the Department of Biological Sciences, Salem University, Salem, WV, 26426, USA & GALLY International Research Institute, San Antonio, TX 78229, USA;, E-mails: ,
| |
Collapse
|
27
|
Qu Z, Sun J, Zhang W, Yu J, Zhuang C. Transcription factor NRF2 as a promising therapeutic target for Alzheimer's disease. Free Radic Biol Med 2020; 159:87-102. [PMID: 32730855 DOI: 10.1016/j.freeradbiomed.2020.06.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress is considered as one of the pathogenesis of Alzheimer's disease (AD) and plays an important role in the occurrence and development of AD. Nuclear factor erythroid 2 related factor 2 (NRF2) is a key regulatory of oxidative stress defence. There is growing evidence indicating the relationship between NRF2 and AD. NRF2 activation mitigates multiple pathogenic processes involved in AD by upregulating antioxidative defense, inhibiting neuroinflammation, improving mitochondrial function, maintaining proteostasis, and inhibiting ferroptosis. In addition, several NRF2 activators are currently being evaluated as AD therapeutic agents in clinical trials. Thus, targeting NRF2 has been the focus of a new strategy for prevention and treatment of AD. In this review, the role of NRF2 in AD and the NRF2 activators advanced into clinical and preclinical studies will be summarized.
Collapse
Affiliation(s)
- Zhuo Qu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Jiachen Sun
- School of Biotechnology and Food Science, Tianjin University of Commerce, 409 Guangrong Road, Tianjin, 300134, China
| | - Wannian Zhang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Jianqiang Yu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Chunlin Zhuang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
28
|
SQSTM1/ p62 oligomerization contributes to Aβ-induced inhibition of Nrf2 signaling. Neurobiol Aging 2020; 98:10-20. [PMID: 33227565 DOI: 10.1016/j.neurobiolaging.2020.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/13/2020] [Accepted: 05/10/2020] [Indexed: 12/15/2022]
Abstract
SQSTM1/p62, also known as sequestosome 1 (SQSTM1) or p62, is an intracellular protein induced by stress and functions as an adaptor molecule in diverse cellular processes. Oxidative damage induced by overproduction of amyloid-β (Aβ) and the impairment of endogenous antioxidant Nrf2 signaling have been documented in the brains of Alzheimer's disease (AD) patients. The causes of the inactivation of Nrf2 signaling under Aβ-induced oxidative stress are unclear, and p62 might be involved in this process. In this study, APP/PS1 transgenic mice, Aβ intrahippocampal injection rat model, and SH-SY5Y cells were used to reveal that the alterations in the oligomeric state of p62 participated in the regulation of Nrf2 signaling under Aβ insult. The present in vivo and in vitro studies revealed that short-term treatment of Aβ activated Nrf2 signaling, while long-term Aβ treatment inhibited it through either canonical or noncanonical Nrf2 activation pathway. p62 oligomerization was largely attenuated under long-term Aβ treatment. The reduction of p62 oligomerization weakened p62 sequestration to Keap1, leading to Nrf2 signaling inhibition. Our findings provide a better understanding of p62-mediated modulation on Nrf2 activity and highlight a potential therapeutic target of p62 in AD.
Collapse
|
29
|
Broderick TL, Rasool S, Li R, Zhang Y, Anderson M, Al-Nakkash L, Plochocki JH, Geetha T, Babu JR. Neuroprotective Effects of Chronic Resveratrol Treatment and Exercise Training in the 3xTg-AD Mouse Model of Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21197337. [PMID: 33020412 PMCID: PMC7582460 DOI: 10.3390/ijms21197337] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
To date, there is no cure or effective treatment for Alzheimer’s disease (AD), a chronic neurodegenerative condition that affects memory, language, and behavior. AD is characterized by neuroinflammation, accumulation of brain amyloid-beta (Aβ) oligomers and neurofibrillary tangles, increased neuronal apoptosis, and loss of synaptic function. Promoting regular exercise and a diet containing polyphenols are effective non-pharmacological approaches that prevent the progression of neurodegenerative diseases. In this study, we measured various conformational toxic species of Aβ and markers of inflammation, apoptosis, endolysosomal degradation, and neuroprotection after 5 months of exercise training (ET), resveratrol (Resv) treatment, or combination treatment in the 3xTg-AD mouse model of AD. Our main results indicate that Resv decreased neuroinflammation and accumulation of Aβ oligomers, increased levels of neurotrophins, synaptic markers, silent information regulator, and decreased markers of apoptosis, autophagy, endolysosomal degradation and ubiquitination in the brains of 3xTg-AD mice. ET improved some markers related to neuroprotection, but when combined with Resv treatment, the benefits achieved were as effective as Resv treatment alone. Our results show that the neuroprotective effects of Resv, ET or Resv and ET are associated with reduced toxicity of Aβ oligomers, suppression of neuronal autophagy, decreased apoptosis, and upregulation of key growth-related proteins.
Collapse
Affiliation(s)
- Tom L. Broderick
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
- Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
- Correspondence: (T.L.B.); (J.R.B.)
| | - Suhail Rasool
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (S.R.); (R.L.); (Y.Z.); (T.G.)
| | - Rongzi Li
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (S.R.); (R.L.); (Y.Z.); (T.G.)
| | - Yuxian Zhang
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (S.R.); (R.L.); (Y.Z.); (T.G.)
| | - Miranda Anderson
- Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
| | - Layla Al-Nakkash
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
| | - Jeffrey H. Plochocki
- Department of Medical Education, University of Central Florida, College of Medicine, 6850 Lake Nona Blvd, Orlando, FL 32827, USA;
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (S.R.); (R.L.); (Y.Z.); (T.G.)
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (S.R.); (R.L.); (Y.Z.); (T.G.)
- Correspondence: (T.L.B.); (J.R.B.)
| |
Collapse
|
30
|
Ning S, Wang L. The Multifunctional Protein p62 and Its Mechanistic Roles in Cancers. Curr Cancer Drug Targets 2020; 19:468-478. [PMID: 30332964 PMCID: PMC8052633 DOI: 10.2174/1568009618666181016164920] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/17/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022]
Abstract
The multifunctional signaling hub p62 is well recognized as a ubiquitin sensor and a selective autophagy receptor. As a ubiquitin sensor, p62 promotes NFκB activation by facilitating TRAF6 ubiquitination and aggregation. As a selective autophagy receptor, p62 sorts ubiquitinated substrates including p62 itself for lysosome-mediated degradation. p62 plays crucial roles in myriad cellular processes including DNA damage response, aging/senescence, infection and immunity, chronic inflammation, and cancerogenesis, dependent on or independent of autophagy. Targeting p62-mediated autophagy may represent a promising strategy for clinical interventions of different cancers. In this review, we summarize the transcriptional and post-translational regulation of p62, and its mechanistic roles in cancers, with the emphasis on its roles in regulation of DNA damage response and its connection to the cGAS-STING-mediated antitumor immune response, which is promising for cancer vaccine design.
Collapse
Affiliation(s)
- Shunbin Ning
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States.,Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Ling Wang
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States.,Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| |
Collapse
|
31
|
Cecarini V, Bonfili L, Gogoi O, Lawrence S, Venanzi FM, Azevedo V, Mancha-Agresti P, Drumond MM, Rossi G, Berardi S, Galosi L, Cuccioloni M, Angeletti M, Suchodolski JS, Pilla R, Lidbury JA, Eleuteri AM. Neuroprotective effects of p62(SQSTM1)-engineered lactic acid bacteria in Alzheimer's disease: a pre-clinical study. Aging (Albany NY) 2020; 12:15995-16020. [PMID: 32855357 PMCID: PMC7485699 DOI: 10.18632/aging.103900] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegeneration characterized by neuron death ending in memory and cognitive decline. A major concern in AD research is the identification of new therapeutics that could prevent or delay the onset of the disorder, with current treatments being effective only in reducing symptoms. In this perspective, the use of engineered probiotics as therapeutic tools for the delivery of molecules to eukaryotic cells is finding application in several disorders. This work introduces a new strategy for AD treatment based on the use of a Lactobacilluslactis strain carrying one plasmid (pExu) that contains a eukaryotic expression cassette encoding the human p62 protein. 3xTg-AD mice orally administered with these bacteria for two months showed an increased expression of endogenous p62 in the brain, with a protein delivery mechanism involving both lymphatic vessels and neural terminations, and positive effects on the major AD hallmarks. Mice showed ameliorated memory, modulation of the ubiquitin-proteasome system and autophagy, reduced levels of amyloid peptides, and diminished neuronal oxidative and inflammatory processes. Globally, we demonstrate that these extremely safe, non-pathogenic and non-invasive bacteria used as delivery vehicles for the p62 protein represent an innovative and realistic therapeutic approach in AD.
Collapse
Affiliation(s)
- Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Olee Gogoi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Solomon Lawrence
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | | | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- FAMINAS- BH, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Martins Drumond
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- FAMINAS- BH, Belo Horizonte, Minas Gerais, Brazil
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET/MG), Departamento de Ciências Biológicas, Belo Horizonte, Brazil
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Sara Berardi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Massimiliano Cuccioloni
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Mauro Angeletti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Science, Texas A&M University, College Station, TX 77843, USA
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Science, Texas A&M University, College Station, TX 77843, USA
| | - Jonathan A. Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Science, Texas A&M University, College Station, TX 77843, USA
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| |
Collapse
|
32
|
Zhao Y, Zhang Y, Zhang J, Zhang X, Yang G. Molecular Mechanism of Autophagy: Its Role in the Therapy of Alzheimer's Disease. Curr Neuropharmacol 2020; 18:720-739. [PMID: 31934838 PMCID: PMC7536828 DOI: 10.2174/1570159x18666200114163636] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/04/2019] [Accepted: 01/11/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder of progressive dementia that is characterized by the accumulation of beta-amyloid (Aβ)-containing neuritic plaques and intracellular Tau protein tangles. This distinctive pathology indicates that the protein quality control is compromised in AD. Autophagy functions as a "neuronal housekeeper" that eliminates aberrant protein aggregates by wrapping then into autophagosomes and delivering them to lysosomes for degradation. Several studies have suggested that autophagy deficits in autophagy participate in the accumulation and propagation of misfolded proteins (including Aβ and Tau). In this review, we summarize current knowledge of autophagy in the pathogenesis of AD, as well as some pathways targeting the restoration of autophagy. Moreover, we discuss how these aspects can contribute to the development of disease-modifying therapies in AD.
Collapse
Affiliation(s)
| | | | | | | | - Guofeng Yang
- Address correspondence to this author at the Department of Geriatrics, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, China; Tel: +86-311-66636243; E-mail:
| |
Collapse
|
33
|
Kumsta C, Chang JT, Lee R, Tan EP, Yang Y, Loureiro R, Choy EH, Lim SHY, Saez I, Springhorn A, Hoppe T, Vilchez D, Hansen M. The autophagy receptor p62/SQST-1 promotes proteostasis and longevity in C. elegans by inducing autophagy. Nat Commun 2019; 10:5648. [PMID: 31827090 PMCID: PMC6906454 DOI: 10.1038/s41467-019-13540-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Autophagy can degrade cargos with the help of selective autophagy receptors such as p62/SQSTM1, which facilitates the degradation of ubiquitinated cargo. While the process of autophagy has been linked to aging, the impact of selective autophagy in lifespan regulation remains unclear. We have recently shown in Caenorhabditis elegans that transcript levels of sqst-1/p62 increase upon a hormetic heat shock, suggesting a role of SQST-1/p62 in stress response and aging. Here, we find that sqst-1/p62 is required for hormetic benefits of heat shock, including longevity, improved neuronal proteostasis, and autophagy induction. Furthermore, overexpression of SQST-1/p62 is sufficient to induce autophagy in distinct tissues, extend lifespan, and improve the fitness of mutants with defects in proteostasis in an autophagy-dependent manner. Collectively, these findings illustrate that increased expression of a selective autophagy receptor is sufficient to induce autophagy, enhance proteostasis and extend longevity, and demonstrate an important role for sqst-1/p62 in proteotoxic stress responses. While the cellular recycling process autophagy has been linked to aging, the impact of selective autophagy on lifespan remains unclear. Here Kumsta et al. show that the autophagy receptor p62/SQSTM1 is required for hormetic benefits and p62/SQSTM1 overexpression is sufficient to extend C. elegans lifespan and improve proteostasis.
Collapse
Affiliation(s)
- Caroline Kumsta
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Jessica T Chang
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Reina Lee
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ee Phie Tan
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yongzhi Yang
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Rute Loureiro
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - Elizabeth H Choy
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Shaun H Y Lim
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Isabel Saez
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - Alexander Springhorn
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - David Vilchez
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
34
|
Shaping the Nrf2-ARE-related pathways in Alzheimer's and Parkinson's diseases. Ageing Res Rev 2019; 54:100942. [PMID: 31415806 DOI: 10.1016/j.arr.2019.100942] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
A failure in redox homeostasis is a common hallmark of Alzheimer's Disease (AD) and Parkinson's Disease (PD), two age-dependent neurodegenerative disorders (NDD), causing increased oxidative stress, oxidized/damaged biomolecules, altered neuronal function and consequent cell death. Activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a redox-regulated transcription factor, results in upregulation of cytoprotective and antioxidant enzymes/proteins, protecting against oxidative stress. Nrf2 regulation is achieved by various proteins and pathways, at both cytoplasmatic and nuclear level; however, the elaborate network of mechanisms involved in Nrf2 regulation may restrain Nrf2 pathway normal activity. Indeed, altered Nrf2 activity is involved in aging and NDD, such as AD and PD. Therefore, understanding the diversity of Nrf2 control mechanisms and regulatory proteins is of high interest, since more effective NDD therapeutics can be identified. In this review, we first introduce Keap1-Nrf2-ARE structure, function and regulation, with a special focus on the several pathways involved in Nrf2 positive and negative modulation, namely p62, PKC, PI3K/Akt/GSK-3β, NF-kB and p38 MAPK. We then briefly describe the evidences for oxidative stress and Nrf2 pathway deregulation in different stages of NDDs. Finally, we discuss the potential of Nrf2-related pathways as potential therapeutic targets to possibly prevent or slowdown NDD progression.
Collapse
|
35
|
Liu J, Li L. Targeting Autophagy for the Treatment of Alzheimer's Disease: Challenges and Opportunities. Front Mol Neurosci 2019; 12:203. [PMID: 31507373 PMCID: PMC6713911 DOI: 10.3389/fnmol.2019.00203] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 08/02/2019] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia which characterized by a progressive loss of memory and cognitive function due to degeneration of synapses and axons. Currently, there is no cure for AD. Deposition of extracellular amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles (NFTs) are two hallmark pathologic changes in the brains of Alzheimer's patients. Autophagy is the major mechanism in cells responsible for removing protein aggregates. Accumulation of immature autophagic vacuoles (AVs) in dystrophic neurites of Alzheimer patients' brains suggests that autophagy process is disrupted. Till now, it is far from clear what role autophagy plays in AD, a causative role, a protective role, or just a consequence of the disease process itself. To design more effective therapeutic strategies towards this devastating disorder, it is essential to understand the exact role of autophagy played during different stages of AD.
Collapse
Affiliation(s)
- Jie Liu
- Translational Center for Stem Cell Research, Stem Cell Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lian Li
- Translational Center for Stem Cell Research, Stem Cell Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Aparicio R, Rana A, Walker DW. Upregulation of the Autophagy Adaptor p62/SQSTM1 Prolongs Health and Lifespan in Middle-Aged Drosophila. Cell Rep 2019; 28:1029-1040.e5. [PMID: 31340141 PMCID: PMC6688777 DOI: 10.1016/j.celrep.2019.06.070] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 04/21/2019] [Accepted: 06/19/2019] [Indexed: 01/27/2023] Open
Abstract
Autophagy, a lysosomal degradation pathway, plays crucial roles in health and disease. p62/SQSTM1 (hereafter p62) is an autophagy adaptor protein that can shuttle ubiquitinated cargo for autophagic degradation. Here, we show that upregulating the Drosophila p62 homolog ref(2)P/dp62, starting in midlife, delays the onset of pathology and prolongs healthy lifespan. Midlife induction of dp62 improves proteostasis, in aged flies, in an autophagy-dependent manner. Previous studies have reported that p62 plays a role in mediating the clearance of dysfunctional mitochondria via mitophagy. However, the causal relationships between p62 expression, mitochondrial homeostasis, and aging remain largely unexplored. We show that upregulating dp62, in midlife, promotes mitochondrial fission, facilitates mitophagy, and improves mitochondrial function in aged flies. Finally, we show that mitochondrial fission is required for the anti-aging effects of midlife dp62 induction. Our findings indicate that p62 represents a potential therapeutic target to counteract aging and prolong health in aged mammals.
Collapse
Affiliation(s)
- Ricardo Aparicio
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anil Rana
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David W Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
37
|
Shanmugam G, Challa AK, Devarajan A, Athmanathan B, Litovsky SH, Krishnamurthy P, Davidson CJ, Rajasekaran NS. Exercise Mediated Nrf2 Signaling Protects the Myocardium From Isoproterenol-Induced Pathological Remodeling. Front Cardiovasc Med 2019; 6:68. [PMID: 31245386 PMCID: PMC6563599 DOI: 10.3389/fcvm.2019.00068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 05/07/2019] [Indexed: 12/14/2022] Open
Abstract
Although exercise derived activation of Nrf2 signaling augments myocardial antioxidant signaling, the molecular mechanisms underlying the benefits of moderate exercise training (MET) in the heart remain elusive. Here we hypothesized that exercise training stabilizes Nrf2-dependent antioxidant signaling, which then protects the myocardium from isoproterenol-induced damage. The present study assessed the effects of 6 weeks of MET on the Nrf2/antioxidant function, glutathione redox state, and injury in the myocardium of C57/BL6J mice that received isoproterenol (ISO; 50 mg/kg/day for 7 days). ISO administration significantly reduced the Nrf2 promoter activity (p < 0.05) and downregulated the expression of cardiac antioxidant genes (Gclc, Nqo1, Cat, Gsr, and Gst-μ) in the untrained (UNT) mice. Furthermore, increased oxidative stress with severe myocardial injury was evident in UNT+ISO when compared to UNT mice receiving PBS under basal condition. Of note, MET stabilized the Nrf2-promoter activity and upheld the expression of Nrf2-dependent antioxidant genes in animals receiving ISO, and attenuated the oxidative stress-induced myocardial damage. Echocardiography analysis revealed impaired diastolic ventricular function in UNT+ISO mice, but this was partially normalized in the MET animals. Interestingly, while there was a marginal reduction in ubiquitinated proteins in MET mice that received ISO, the pathological signs were attenuated along with near normal cardiac function in response to exercise training. Thus, moderate intensity exercise training conferred protection against ISO-induced myocardial injury by augmentation of Nrf2-antioxidant signaling and attenuation of isoproterenol-induced oxidative stress.
Collapse
Affiliation(s)
- Gobinath Shanmugam
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anil K. Challa
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Asokan Devarajan
- Department of Medicine, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Baskaran Athmanathan
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Silvio H. Litovsky
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christopher J. Davidson
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Namakkal Soorappan Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, United States
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
38
|
Hur J, Kim M, Choi SY, Jang Y, Ha TY. Isobavachalcone attenuates myotube atrophy induced by TNF-α through muscle atrophy F-box signaling and the nuclear factor erythroid 2-related factor 2 cascade. Phytother Res 2018; 33:403-411. [PMID: 30421466 DOI: 10.1002/ptr.6235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 12/12/2022]
Abstract
Skeletal muscle atrophy is a condition characterized by damaged muscle fibers and reduced numbers of muscle cells due to various causes. Muscle atrophy is associated with chronic diseases, such as heart failure, diabetes, and aging-related diseases. Isobavachalcone (IBC) is a flavonoid found in various foods and natural products, and studies have investigated its diverse effects, including its neuroprotective and anticancer effects. However, no studies have evaluated the effects of IBC on muscle atrophy. Thus, in this study, we assessed the effects of IBC on prevention of muscle atrophy. To evaluate the preventive effects of IBC on muscle atrophy, we used C2C12 myoblasts and induced muscle atrophy by tumor necrosis factor (TNF)-α. IBC regulated the expression levels of muscle atrophy F-box and muscle RING finger-1 in response to damaged muscle cells, thereby restoring the expression of myosin heavy chain and myogenin. Moreover, IBC regulated the phosphorylation of the nuclear factor-κB and p38 and upregulated the expression of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1, which are involved in regulating oxidative stress. Our results indicated that IBC acted to relieve TNF-α-induced skeletal muscle atrophy by regulating the factors related to inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jinyoung Hur
- Nutrition and Metabolism Research Division, Korea Food Research Institute, Wanju, Republic of Korea.,Divisions of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Mina Kim
- Nutrition and Metabolism Research Division, Korea Food Research Institute, Wanju, Republic of Korea
| | - Sang Yoon Choi
- Nutrition and Metabolism Research Division, Korea Food Research Institute, Wanju, Republic of Korea.,Divisions of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - YoungJin Jang
- Nutrition and Metabolism Research Division, Korea Food Research Institute, Wanju, Republic of Korea
| | - Tae Youl Ha
- Nutrition and Metabolism Research Division, Korea Food Research Institute, Wanju, Republic of Korea.,Divisions of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
39
|
Sánchez-Martín P, Komatsu M. p62/SQSTM1 - steering the cell through health and disease. J Cell Sci 2018; 131:131/21/jcs222836. [PMID: 30397181 DOI: 10.1242/jcs.222836] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
SQSTM1 (also known as p62) is a multifunctional stress-inducible scaffold protein involved in diverse cellular processes. Its functions are tightly regulated through an extensive pattern of post-translational modifications, and include the isolation of cargos degraded by autophagy, induction of the antioxidant response by the Keap1-Nrf2 system, as well as the regulation of endosomal trafficking, apoptosis and inflammation. Accordingly, malfunction of SQSTM1 is associated with a wide range of diseases, including bone and muscle disorders, neurodegenerative and metabolic diseases, and multiple forms of cancer. In this Review, we summarize current knowledge regarding regulation, post-translational modifications and functions of SQSTM1, as well as how they are dysregulated in various pathogenic contexts.
Collapse
Affiliation(s)
- Pablo Sánchez-Martín
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8510, Japan
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8510, Japan .,Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
40
|
Loera-Valencia R, Piras A, Ismail MAM, Manchanda S, Eyjolfsdottir H, Saido TC, Johansson J, Eriksdotter M, Winblad B, Nilsson P. Targeting Alzheimer's disease with gene and cell therapies. J Intern Med 2018; 284:2-36. [PMID: 29582495 DOI: 10.1111/joim.12759] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) causes dementia in both young and old people affecting more than 40 million people worldwide. The two neuropathological hallmarks of the disease, amyloid beta (Aβ) plaques and neurofibrillary tangles consisting of protein tau are considered the major contributors to the disease. However, a more complete picture reveals significant neurodegeneration and decreased cell survival, neuroinflammation, changes in protein and energy homeostasis and alterations in lipid and cholesterol metabolism. In addition, gene and cell therapies for severe neurodegenerative disorders have recently improved technically in terms of safety and efficiency and have translated to the clinic showing encouraging results. Here, we review broadly current data within the field for potential targets that could modify AD through gene and cell therapy strategies. We envision that not only Aβ will be targeted in a disease-modifying treatment strategy but rather that a combination of treatments, possibly at different intervention times may prove beneficial in curing this devastating disease. These include decreased tau pathology, neuronal growth factors to support neurons and modulation of neuroinflammation for an appropriate immune response. Furthermore, cell based therapies may represent potential strategies in the future.
Collapse
Affiliation(s)
- R Loera-Valencia
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - A Piras
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - M A M Ismail
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden.,Theme Neuro, Diseases of the Nervous System Patient Flow, Karolinska University Hospital, Huddinge, Sweden
| | - S Manchanda
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - H Eyjolfsdottir
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - T C Saido
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - J Johansson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - M Eriksdotter
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - B Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - P Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
41
|
Lu M, Liu T, Jiao Q, Ji J, Tao M, Liu Y, You Q, Jiang Z. Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway. Eur J Med Chem 2018; 146:251-259. [DOI: 10.1016/j.ejmech.2018.01.063] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/13/2022]
|
42
|
The Efficacy and Pharmacological Mechanism of Zn 7MT3 to Protect against Alzheimer's Disease. Sci Rep 2017; 7:13763. [PMID: 29061973 PMCID: PMC5653791 DOI: 10.1038/s41598-017-12800-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/15/2017] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the leading causes of death for people over 65 years. Worse still, no completely effective therapeutic agent is available so far. One important pathological hallmark of AD is accumulated amyloid-β (Aβ) plaques with dysregulated metal homeostasis. Human metallothionin 3 (MT3), a regulator of metal homeostasis, is downregulated at least 30% in AD brain. So far, some in vitro studies demonstrated its multiple functions related to AD. However, it is a great pity that systematic in vivo studies of MT3 on AD model animals are still a blank so far. In this study, we treated APP/PS1 mice with sustained drug release of Zn7MT3 directly to the central nervous system, and investigated the role and molecular mechanism of Zn7MT3 to protect against AD mice systematically. The results demonstrated that Zn7MT3 can significantly ameliorate cognitive deficits, regulate metal homeostasis, abolish Aβ plaque load, and reduce oxidative stress. Additionally, it has been confirmed that MT3 is penetrable to the blood brain barrier of AD mice. All these results support that Zn7MT3 is an effective AD suppressing agent and has potential for applications in Alzheimer’s disease therapy.
Collapse
|
43
|
From autophagy to mitophagy: the roles of P62 in neurodegenerative diseases. J Bioenerg Biomembr 2017; 49:413-422. [DOI: 10.1007/s10863-017-9727-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/20/2017] [Indexed: 12/31/2022]
|
44
|
O'Mealey GB, Plafker KS, Berry WL, Janknecht R, Chan JY, Plafker SM. A PGAM5-KEAP1-Nrf2 complex is required for stress-induced mitochondrial retrograde trafficking. J Cell Sci 2017; 130:3467-3480. [PMID: 28839075 DOI: 10.1242/jcs.203216] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/20/2017] [Indexed: 12/12/2022] Open
Abstract
The Nrf2 transcription factor is a master regulator of the cellular anti-stress response. A population of the transcription factor associates with the mitochondria through a complex with KEAP1 and the mitochondrial outer membrane histidine phosphatase, PGAM5. To determine the function of this mitochondrial complex, we knocked down each component and assessed mitochondrial morphology and distribution. We discovered that depletion of Nrf2 or PGAM5, but not KEAP1, inhibits mitochondrial retrograde trafficking induced by proteasome inhibition. Mechanistically, this disrupted motility results from aberrant degradation of Miro2, a mitochondrial GTPase that links mitochondria to microtubules. Rescue experiments demonstrate that this Miro2 degradation involves the KEAP1-cullin-3 E3 ubiquitin ligase and the proteasome. These data are consistent with a model in which an intact complex of PGAM5-KEAP1-Nrf2 preserves mitochondrial motility by suppressing dominant-negative KEAP1 activity. These data further provide a mechanistic explanation for how age-dependent declines in Nrf2 expression impact mitochondrial motility and induce functional deficits commonly linked to neurodegeneration.
Collapse
Affiliation(s)
- Gary B O'Mealey
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73118, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73118, USA
| | - Kendra S Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73118, USA
| | - William L Berry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73118, USA
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73118, USA
| | - Jefferson Y Chan
- Department of Pathology, University of Irvine School of Medicine, Irvine, CA 92697, USA
| | - Scott M Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73118, USA
| |
Collapse
|
45
|
Caccamo A, Ferreira E, Branca C, Oddo S. p62 improves AD-like pathology by increasing autophagy. Mol Psychiatry 2017; 22:865-873. [PMID: 27573878 PMCID: PMC5479312 DOI: 10.1038/mp.2016.139] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/09/2016] [Accepted: 07/04/2016] [Indexed: 12/25/2022]
Abstract
The multifunctional protein p62 is associated with neuropathological inclusions in several neurodegenerative disorders, including frontotemporal lobar degeneration, amyotrophic lateral sclerosis and Alzheimer's disease (AD). Strong evidence shows that in AD, p62 immunoreactivity is associated with neurofibrillary tangles and is involved in tau degradation. However, it remains to be determined whether p62 also plays a role in regulating amyloid-β (Aβ) aggregation and degradation. Using a gene therapy approach, here we show that increasing brain p62 expression rescues cognitive deficits in APP/PS1 mice, a widely used animal model of AD. The cognitive improvement was associated with a decrease in Aβ levels and plaque load. Using complementary genetic and pharmacologic approaches, we found that the p62-mediated changes in Aβ were due to an increase in autophagy. To this end, we showed that removing the LC3-interacting region of p62, which facilitates p62-mediated selective autophagy, or blocking autophagy with a pharmacological inhibitor, was sufficient to prevent the decrease in Aβ. Overall, we believe these data provide the first direct in vivo evidence showing that p62 regulates Aβ turnover.
Collapse
Affiliation(s)
| | - Eric Ferreira
- The Biodesign Neurodegenerative Disease Research Center
| | | | - Salvatore Oddo
- The Biodesign Neurodegenerative Disease Research Center,School of Life Sciences, Arizona State University, Tempe, Arizona, 85281,To whom correspondence should be addressed: SALVATORE ODDO, Ph.D., The Biodesign Neurodegenerative Disease Research Center, School of Life Sciences, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, 480-727-3490,
| |
Collapse
|
46
|
Silva-Palacios A, Colín-González AL, López-Cervantes SP, Zazueta C, Luna-López A, Santamaría A, Königsberg M. Tert-buthylhydroquinone pre-conditioning exerts dual effects in old female rats exposed to 3-nitropropionic acid. Redox Biol 2017; 12:610-624. [PMID: 28391182 PMCID: PMC5384325 DOI: 10.1016/j.redox.2017.03.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 01/08/2023] Open
Abstract
The brain is a very susceptible organ to structural and functional alterations caused by oxidative stress and its vulnerability increases with age. Understanding the antioxidant response activated by the transcription factor Nrf2 has become very important in the aging field in order to activate cellular protection. However, the role of Nrf2 inducers during old age has not been completely understood. Our aim was to activate the Nrf2 pathway by pre-treating old rats with a widely used Nrf2-inducer, tert-buthylhydroquinone (tBHQ), prior to 3-nitropropionic acid (3-NP) insult, in order to evaluate its effects at a behavioral, morphological and biochemical levels. 3-NP has been used to reproduce the biochemical and pathophysiological characteristics of Huntington's disease due to an oxidative effect. Our results suggest that tBHQ confers an important protective effect against 3-NP toxicity; nevertheless, Nrf2 seems not to be the main protective pathway associated to neuroprotection. Hormetic responses include the activation of more than one transcription factor. Nrf2 and NFκB are known to simultaneously initiate different cellular responses against stress by triggering parallel mechanisms, therefore NFκB nuclear accumulation was also evaluated. Old rats are able to activate an hormetic response against 3NP toxicity. tBHQ pre-conditioning exerts an antioxidant-prooxidant, dual role in old rats. tBHQ activates a crosstalk mechanism between NFκB and Nrf2.
Collapse
Affiliation(s)
- Alejandro Silva-Palacios
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México 09340, Mexico; Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico; Posgrado en Biología Experimental, Universidad Autonomas Metropolitana, Iztapalapa, Ciudad de México, Mexico
| | - Ana L Colín-González
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, SSA, Ciudad de México 14269, Mexico
| | - Stefanie P López-Cervantes
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México 09340, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | | | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, SSA, Ciudad de México 14269, Mexico
| | - Mina Königsberg
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México 09340, Mexico.
| |
Collapse
|
47
|
Mitochondrial ferritin protects the murine myocardium from acute exhaustive exercise injury. Cell Death Dis 2016; 7:e2475. [PMID: 27853170 PMCID: PMC5260894 DOI: 10.1038/cddis.2016.372] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/13/2016] [Accepted: 10/11/2016] [Indexed: 12/16/2022]
Abstract
Mitochondrial ferritin (FtMt) is a mitochondrially localized protein possessing ferroxidase activity and the ability to store iron. FtMt overexpression in cultured cells protects against oxidative damage by sequestering redox-active, intracellular iron. Here, we found that acute exhaustive exercise significantly increases FtMt expression in the murine heart. FtMt gene disruption decreased the exhaustion exercise time and altered heart morphology with severe cardiac mitochondrial injury and fibril disorganization. The number of apoptotic cells as well as the levels of apoptosis-related proteins was increased in the FtMt−/− mice, though the ATP levels did not change significantly. Concomitant to the above was a high ‘uncommitted' iron level found in the FtMt−/− group when exposed to acute exhaustion exercise. As a result of the increase in catalytic metal, reactive oxygen species were generated, leading to oxidative damage of cellular components. Taken together, our results show that the absence of FtMt, which is highly expressed in the heart, increases the sensitivity of mitochondria to cardiac injury via oxidative stress.
Collapse
|
48
|
Hoppins JJ, Gruber DR, Miears HL, Kiryutin AS, Kasymov RD, Petrova DV, Endutkin AV, Popov AV, Yurkovskaya AV, Fedechkin SO, Brockerman JA, Zharkov DO, Smirnov SL. 8-Oxoguanine Affects DNA Backbone Conformation in the EcoRI Recognition Site and Inhibits Its Cleavage by the Enzyme. PLoS One 2016; 11:e0164424. [PMID: 27749894 PMCID: PMC5066940 DOI: 10.1371/journal.pone.0164424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022] Open
Abstract
8-oxoguanine is one of the most abundant and impactful oxidative DNA lesions. However, the reasons underlying its effects, especially those not directly explained by the altered base pairing ability, are poorly understood. We report the effect of the lesion on the action of EcoRI, a widely used restriction endonuclease. Introduction of 8-oxoguanine inside, or adjacent to, the GAATTC recognition site embedded within the Drew—Dickerson dodecamer sequence notably reduced the EcoRI activity. Solution NMR revealed that 8-oxoguanine in the DNA duplex causes substantial alterations in the sugar—phosphate backbone conformation, inducing a BI→BII transition. Moreover, molecular dynamics of the complex suggested that 8-oxoguanine, although does not disrupt the sequence-specific contacts formed by the enzyme with DNA, shifts the distribution of BI/BII backbone conformers. Based on our data, we propose that the disruption of enzymatic cleavage can be linked with the altered backbone conformation and dynamics in the free oxidized DNA substrate and, possibly, at the protein—DNA interface.
Collapse
Affiliation(s)
- Joanna J. Hoppins
- Chemistry Department, Western Washington University, Bellingham, WA, United States of America
| | - David R. Gruber
- Chemistry Department, Western Washington University, Bellingham, WA, United States of America
| | - Heather L. Miears
- Chemistry Department, Western Washington University, Bellingham, WA, United States of America
| | - Alexey S. Kiryutin
- SB RAS International Tomography Center, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Rustem D. Kasymov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Institute of Biochemistry, Stuttgart University, Stuttgart, Germany
| | - Darya V. Petrova
- Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Anton V. Endutkin
- Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Alexander V. Popov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Alexandra V. Yurkovskaya
- SB RAS International Tomography Center, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Stanislav O. Fedechkin
- Chemistry Department, Western Washington University, Bellingham, WA, United States of America
- University of California Santa Cruz, Program in Biomedical Science and Engineering, Santa Cruz, CA, United States of America
| | - Jacob A. Brockerman
- Chemistry Department, Western Washington University, Bellingham, WA, United States of America
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Dmitry O. Zharkov
- Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- * E-mail: (SLS); (DOZ)
| | - Serge L. Smirnov
- Chemistry Department, Western Washington University, Bellingham, WA, United States of America
- * E-mail: (SLS); (DOZ)
| |
Collapse
|
49
|
Ntsapi C, Loos B. Caloric restriction and the precision-control of autophagy: A strategy for delaying neurodegenerative disease progression. Exp Gerontol 2016; 83:97-111. [DOI: 10.1016/j.exger.2016.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 01/07/2023]
|
50
|
Ramos E, Romero A, Marco-Contelles J, Del Pino J. Upregulation of Antioxidant Enzymes by ASS234, a Multitarget Directed Propargylamine for Alzheimer's Disease Therapy. CNS Neurosci Ther 2016; 22:799-802. [PMID: 27380946 DOI: 10.1111/cns.12590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/17/2016] [Accepted: 06/17/2016] [Indexed: 01/21/2023] Open
Affiliation(s)
- Eva Ramos
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Alejandro Romero
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | | | - Javier Del Pino
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|