1
|
Salem NA, ElShebiney SA, Mabrouk M, Kishta MS, Galal AF, Osama L, Beherei HH. Enhanced bone regeneration using mesenchymal stem cell-loaded 3D-printed alginate-calcium Titanate scaffolds: A Calvarial defect model study. Int J Biol Macromol 2025; 302:140516. [PMID: 39892552 DOI: 10.1016/j.ijbiomac.2025.140516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/10/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
This study investigates the efficacy of a 3D-printed alginate composite scaffold enriched with calcium titanate nano powders and loaded with mesenchymal stem cells (MSCs) for bone regeneration in a calvarial defect model. Scaffolds (20 mm × 20 mm × 4.48 mm) with a slightly rough surface texture were fabricated using a bioprinter. A calvarial defect was created in the skulls of forty male Wistar rats, then divided into four treatment groups: empty defect, scaffold only, MSCs only, and MSC-seeded scaffold. After eight weeks, new bone formation was evaluated. The MSC-seeded scaffold group showed superior outcomes, including significantly higher bone mineral density (BMD), nearly complete defect closure in CT imaging, and enhanced histological results with newly formed bone and marrow cavities. Osteogenic gene markers (RunX2, OSX, COL1, BMP2, and OCN) and the angiogenic marker VEGF were notably upregulated, while the osteoclast-related gene RANKL was downregulated. These findings highlight the synergistic effect of the scaffold's osteoconductive properties and MSCs' regenerative potential. MSC-seeded alginate‑calcium titanate scaffold demonstrates promising results for critical-sized defect repair and may serve as a viable strategy for clinical bone tissue engineering applications.
Collapse
Affiliation(s)
- Neveen A Salem
- Narcotics, Ergogenics, and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
| | - Shaimaa A ElShebiney
- Narcotics, Ergogenics, and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, Giza, Egypt.
| | - Mohamed S Kishta
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt; Stem Cell Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Asmaa F Galal
- Narcotics, Ergogenics, and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Lamyaa Osama
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, Giza, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, Giza, Egypt
| |
Collapse
|
2
|
Zhang L, Yu Z, Liu S, Liu F, Zhou S, Zhang Y, Tian Y. Advanced progress of adipose-derived stem cells-related biomaterials in maxillofacial regeneration. Stem Cell Res Ther 2025; 16:110. [PMID: 40038758 DOI: 10.1186/s13287-025-04191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/24/2025] [Indexed: 03/06/2025] Open
Abstract
The tissue injury in maxillofacial region affects patients' physical function and specific mental health. This decade, utilizing regenerative medicine to achieve tissue regeneration has been proved a hopeful direction. Seed cells play a vital role in regeneration strategy. Among various kinds of stem cells that effectively to regenerate the soft and hard tissue of maxillofacial region, adipose-derived stem cells (ADSCs) have gained increasing interests of researchers due to their abundant sources, easy availability and multi-differentiation potentials in recent decades. Thus, this review focuses on the advances of ADSCs-based biomaterial in maxillofacial regeneration from the progress and strategies perspective. It is structured as introducing the properties of ADSCs, biomaterials (polymers, ceramics and metals) within ADSCs and the latest applications of ADSCs in maxillofacial regeneration, including temporomandibular joint (TMJ), bone, periodontal tissue, tooth, nerve as well as cosmetic field. In order to further facilitate ADSCs-based therapies as an emerging platform for regenerative medicine, this review also emphasized current challenges in translating ADSC-based therapies into clinical application and dissussed the strategies to solve these obstacles.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Zihang Yu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Shuchang Liu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Fan Liu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Shijie Zhou
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Yuanyuan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Yulou Tian
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China.
| |
Collapse
|
3
|
Nokhbatolfoghahaei H, Baniameri S, Tabrizi R, Yousefi-Koma AA, Dehghan MM, Derakhshan S, Gharehdaghi N, Farzad-Mohajeri S, Behroozibakhsh M, Khojasteh A. Pre-vascularized porous gelatin-coated β-tricalcium phosphate scaffolds for bone regeneration: an in vivo and in vitro investigation. In Vitro Cell Dev Biol Anim 2025; 61:67-80. [PMID: 39382735 DOI: 10.1007/s11626-024-00973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/17/2024] [Indexed: 10/10/2024]
Abstract
Vascularization is vital in bone tissue engineering, supporting development, remodeling, and regeneration. Lack of vascularity leads to cell death, necessitating vascularization strategies. Angiogenesis, forming new blood vessels, provides crucial nutrients and oxygen. Pre-vascularized gelatin-coated β-tricalcium phosphate (G/β-TCP) scaffolds show promise in bone regeneration and vascularization. Our study evaluates G/β-TCP scaffolds' osteogenic and angiogenic potential in vitro and a canine model with vascular anastomosis. Channel-shaped G/β-TCP scaffolds were fabricated using foam casting and sintering of a calcium phosphate/silica slurry-coated polyurethane foam, then coated with cross-linked gelatin. Buccal fat pad-derived stem cells (BFPdSCs) were seeded onto scaffolds and assessed over time for adhesion, proliferation, and osteogenic capacity using scanning electron microscopy (SEM), 4,6-diamidino-2-phenylindole (DAPI) staining, Alamar blue, and alkaline phosphatase (ALP) assays. Scaffolds were implanted in a canine model to evaluate osteogenesis and angiogenesis by histology and CT scans at 12 wk. Our studies showed preliminary results for G/β-TCP scaffolds supporting angiogenesis and bone regeneration. In vitro analyses demonstrated excellent proliferation/viability, with BFPdSCs adhering and increasing on the scaffolds. ALP activity and protein levels increased, indicating osteogenic differentiation. Examination of tissue samples revealed granulation tissue with a well-developed vascular network, indicating successful angiogenesis and osteogenesis was further confirmed by a CT scan. In vivo, histology revealed scaffold resorption. However, scaffold placement beneath muscle tissue-restricted bone regeneration. Further optimization is needed for bone regeneration applications.
Collapse
Affiliation(s)
- Hanieh Nokhbatolfoghahaei
- Dental Research Center, School of Dentistry, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Baniameri
- Dental Research Center, School of Dentistry, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Research Assistance, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Tabrizi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Ali Yousefi-Koma
- Dental Research Center, School of Dentistry, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Research Assistance, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Samira Derakhshan
- Oral and Maxillofacial Pathology Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Preclinical Imaging Group, Preclinical Core Facility, Tehran University of Medical Sciences, Tehran, Iran
| | - Niusha Gharehdaghi
- Dental Research Center, School of Dentistry, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Research Assistance, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Farzad-Mohajeri
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Marjan Behroozibakhsh
- Department of Dental Materials School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Dental Research Center, School of Dentistry, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Fekrazad S, Farzad-Mohajeri S, Mashhadiabbas F, Daghighi H, Arany PR, Fekrazad R. Bone Regeneration of Rat Critical-Sized Calvarial Defects by the Combination of Photobiomodulation and Adipose-Derived Mesenchymal Stem Cells. J Lasers Med Sci 2024; 15:e31. [PMID: 39193112 PMCID: PMC11348449 DOI: 10.34172/jlms.2024.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/01/2024] [Indexed: 08/29/2024]
Abstract
Introduction: This study explored the synergistic effects of low-level laser therapy (LLLT) and adipose-derived stem cells (ADSCs) on cranial bone regeneration in rats, addressing the limitations of autogenous grafts and advancing bone tissue engineering with innovative photobiomodulation (PBM) applications. Methods: Sixty Wistar rats were allocated to 5 separate groups randomly; (1) natural bovine bone mineral (NBBM); (2) NBBM+LLLT; (3) NBBM+allogenic ADSCs; (4) NBBM+allogenic ADSCs+LLLT; (5) Only defects. 8-mm calvarial defects were made in each rat in the surgical procedure. A diode laser was applied with the following parameters (continuous mode, power of 100mW, wavelength of 808nm, and 4 J/cm2 energy density) immediately after the procedure and every other day. Bone samples were obtained and assessed histomorphometrically and histologically after staining with hematoxylin and eosin (H&E). Results: Different volumes of bony material were observed in two weeks; 2.94%±1.00 in group 1, 5.1%±1.92 in group 2, 7.11%±2.82 in group 3, 7.34%±2.31 in group 4, and 2.01%±0.83 in group 5 (P<0.05). On the other hand, foreign body residuals were up by 23% in the groups with scaffolding by the end of 2 weeks. Four weeks of observation led to 6.74 %±1.95, 13.24%±1.98, 15.76%±1.19, 15.92%±3.4, and 3.11%±1.00 bone formation in groups 1 to 5, respectively (P<0.05). Generally, the difference between groups 2-4 was not statistically significant based on different types of bone and the extent of inflammation. Conclusion: Bearing in mind the limitations of our research, it was demonstrated that ADSCs in combination with PBM have promising effects on bone tissue regeneration in sizeable bony defects. Furthermore, this study also showed that PBM usage improved the newly regenerated bone quality.
Collapse
Affiliation(s)
- Sepehr Fekrazad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Farzad-Mohajeri
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Mashhadiabbas
- Oral and Maxillofacial Pathology, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hooman Daghighi
- Students’ Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Praveen R. Arany
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, USA
| | - Reza Fekrazad
- Radiation Sciences Research Center, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research, Network (USERN), Tehran, Iran
| |
Collapse
|
5
|
Schumacher A, Mucha P, Puchalska I, Deptuła M, Wardowska A, Tymińska A, Filipowicz N, Mieczkowska A, Sachadyn P, Piotrowski A, Pikuła M, Cichorek M. Angiopoietin-like growth factor-derived peptides as biological activators of adipose-derived mesenchymal stromal cells. Biomed Pharmacother 2024; 177:117052. [PMID: 38943988 DOI: 10.1016/j.biopha.2024.117052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024] Open
Abstract
Adipose-derived mesenchymal stromal cells (AD-MSCs) are an essential issue in modern medicine. Extensive preclinical and clinical studies have shown that mesenchymal stromal/stem cells, including AD-MSCs, have specific properties (ability to differentiate into other cells, recruitment to the site of injury) of particular importance in the regenerative process. Ongoing research aims to elucidate factors supporting AD-MSC culture and differentiation in vitro. Angiopoietin-like proteins (ANGPTLs), known for their pleiotropic effects in lipid and glucose metabolism, may play a significant role in this context. Regeneration is a complex and dynamic process controlled by many factors. ANGPTL6 (Angiopoietin-related growth factor, AGF), among many activities modulated the biological activity of stem cells. This study examined the influence of synthesized AGF-derived peptides, designated as AGF9 and AGF27, on AD-MSCs. AGF9 and AGF27 enhanced the viability and migration of AD-MSCs and acted as a chemotactic factor for these cells. AGF9 stimulated chondrogenesis and lipid synthesis during AD-MSCs differentiation, influenced AD-MSCs cytokine secretion and modulated transcriptome for such basic cell activities as migration, transport of molecules, and apoptosis. The ability of AGF9 to modulate the biological activity of AD-MSCs warrants the consideration of this peptide a noteworthy therapeutic agent that deserves further investigation for applications in regenerative medicine.
Collapse
Affiliation(s)
- Adriana Schumacher
- Division of Embryology, Medical University of Gdansk, Debinki 1 St, Gdansk 80-211, Poland
| | - Piotr Mucha
- Department of Molecular Biochemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk 80-308, Poland
| | - Izabela Puchalska
- Department of Molecular Biochemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk 80-308, Poland
| | - Milena Deptuła
- Division of Embryology, Laboratory of Tissue Engineering and Regenerative Medicine Medical University of Gdansk, Debinki 1 St, Gdansk 80-211, Poland
| | - Anna Wardowska
- Department of Physiopathology, Medical University of Gdansk, Debinki 7 St, Gdansk 80-211, Poland
| | - Agata Tymińska
- Division of Embryology, Medical University of Gdansk, Debinki 1 St, Gdansk 80-211, Poland
| | - Natalia Filipowicz
- International Research Agenda 3P- Medicine Laboratory, Medical University of Gdansk, Debinki 7 St, Gdansk 80-211, Poland
| | - Alina Mieczkowska
- International Research Agenda 3P- Medicine Laboratory, Medical University of Gdansk, Debinki 7 St, Gdansk 80-211, Poland
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdansk University of Technology, Narutowicza 11/12 St, Gdansk 80-233, Poland
| | - Arkadiusz Piotrowski
- International Research Agenda 3P- Medicine Laboratory, Medical University of Gdansk, Debinki 7 St, Gdansk 80-211, Poland
| | - Michał Pikuła
- Division of Embryology, Laboratory of Tissue Engineering and Regenerative Medicine Medical University of Gdansk, Debinki 1 St, Gdansk 80-211, Poland
| | - Miroslawa Cichorek
- Division of Embryology, Medical University of Gdansk, Debinki 1 St, Gdansk 80-211, Poland.
| |
Collapse
|
6
|
Lau CS, Park SY, Ethiraj LP, Singh P, Raj G, Quek J, Prasadh S, Choo Y, Goh BT. Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration. Int J Mol Sci 2024; 25:6805. [PMID: 38928517 PMCID: PMC11204188 DOI: 10.3390/ijms25126805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Bone regeneration involves multiple factors such as tissue interactions, an inflammatory response, and vessel formation. In the event of diseases, old age, lifestyle, or trauma, bone regeneration can be impaired which could result in a prolonged healing duration or requiring an external intervention for repair. Currently, bone grafts hold the golden standard for bone regeneration. However, several limitations hinder its clinical applications, e.g., donor site morbidity, an insufficient tissue volume, and uncertain post-operative outcomes. Bone tissue engineering, involving stem cells seeded onto scaffolds, has thus been a promising treatment alternative for bone regeneration. Adipose-derived mesenchymal stem cells (AD-MSCs) are known to hold therapeutic value for the treatment of various clinical conditions and have displayed feasibility and significant effectiveness due to their ease of isolation, non-invasive, abundance in quantity, and osteogenic capacity. Notably, in vitro studies showed AD-MSCs holding a high proliferation capacity, multi-differentiation potential through the release of a variety of factors, and extracellular vesicles, allowing them to repair damaged tissues. In vivo and clinical studies showed AD-MSCs favoring better vascularization and the integration of the scaffolds, while the presence of scaffolds has enhanced the osteogenesis potential of AD-MSCs, thus yielding optimal bone formation outcomes. Effective bone regeneration requires the interplay of both AD-MSCs and scaffolds (material, pore size) to improve the osteogenic and vasculogenic capacity. This review presents the advances and applications of AD-MSCs for bone regeneration and bone tissue engineering, focusing on the in vitro, in vivo, and clinical studies involving AD-MSCs for bone tissue engineering.
Collapse
Affiliation(s)
- Chau Sang Lau
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - So Yeon Park
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Lalith Prabha Ethiraj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Priti Singh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Grace Raj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Jolene Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Somasundaram Prasadh
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Yen Choo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Bee Tin Goh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
7
|
Grillo R, Balel Y, Brozoski MA, Stanbouly D, Samieirad S, de Oliveira NK. Science mapping analysis of maxillofacial reconstruction over the last four decades. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101701. [PMID: 37979780 DOI: 10.1016/j.jormas.2023.101701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
PURPOSE This paper aims to provide a bibliometric analysis of the maxillofacial reconstruction literature over 40 years and to compare the data with previous studies. METHODS A bibliographical search for oral and maxillofacial surgery literature in maxillofacial reconstruction was conducted on Wef of Science. A graphic representation of authorship and keywords was created with VOSviewer. Mendeley and Microsoft Excel were used for tabulation and data visualization. Some statistical tests were performed with a 95 % confidence interval, which was considered significant. RESULTS A total of 7417 articles from specialized journals were included in the study. These articles received 138,493 citations from 63,390 other studies, with an average citation count of 18.67, and a very high H-index. A total of 2375 specific keywords were analyzed, covering a wide range of topics, with two noteworthy MeSH keywords that have recently gained prominence. A total of 33 journals were included in the study, with a mean Impact Factor of 2.404, indicating a relatively high influence in the subject area. CONCLUSION The high h-index reflects abundant and high-quality literature on maxillofacial reconstruction, with the United States leading in publication quantity. Emerging topics in maxillofacial reconstruction were discussed. These areas shape the discipline, driving advancements and offering opportunities for researchers and clinicians to contribute to progress and improve patient outcomes.
Collapse
Affiliation(s)
- Ricardo Grillo
- Department of Oral and Maxillofacial Surgery, Traumatology and Prosthesis, Faculty of Dentistry of the University of São Paulo, Av. Prof. Lineu Prestes, 2227, Cidade Universitária, São Paulo, SP 05508-000, Brazil; Department of Oral and Maxillofacial Surgery, Faculdade Patos de Minas, Brasília, Brazil.
| | - Yunus Balel
- Department of Oral and Maxillofacial Surgery, University of Tokat Gaziosmanpasa, Tokat, Turkey; TR Ministry of Health, Oral and Dental Health Hospital, Sivas, Turkey
| | - Mariana Aparecida Brozoski
- Department of Oral and Maxillofacial Surgery, Traumatology and Prosthesis, Faculty of Dentistry of the University of São Paulo, Av. Prof. Lineu Prestes, 2227, Cidade Universitária, São Paulo, SP 05508-000, Brazil
| | - Dani Stanbouly
- College of Dental Medicine, Columbia University, New York, NY, USA
| | - Sahand Samieirad
- Department of Oral and Maxillofacial Surgery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Natacha Kalline de Oliveira
- Department of Oral and Maxillofacial Surgery, Traumatology and Prosthesis, Faculty of Dentistry of the University of São Paulo, Av. Prof. Lineu Prestes, 2227, Cidade Universitária, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
8
|
Faqeer A, Wang M, Alam G, Padhiar AA, Zheng D, Luo Z, Zhao IS, Zhou G, van den Beucken JJJP, Wang H, Zhang Y. Cleaved SPP1-rich extracellular vesicles from osteoclasts promote bone regeneration via TGFβ1/SMAD3 signaling. Biomaterials 2023; 303:122367. [PMID: 38465579 DOI: 10.1016/j.biomaterials.2023.122367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 03/12/2024]
Abstract
Bone remodeling is a tightly coupled process between bone forming osteoblasts (OBs) and bone resorbing osteoclasts (OCs) to maintain bone architecture and systemic mineral homeostasis throughout life. However, the mechanisms responsible for the coupling between OCs and OBs have not been fully elucidated. Herein, we first validate that secreted extracellular vesicles by osteoclasts (OC-EVs) promote osteogenic differentiation of mesenchymal stem cells (MSCs) and further demonstrate the efficacy of osteoclasts and their secreted EVs in treating tibial bone defects. Furthermore, we show that OC-EVs contain several osteogenesis-promoting proteins as cargo. By employing proteomic and functional analysis, we reveal that mature osteoclasts secrete thrombin cleaved phosphoprotein 1 (SPP1) through extracellular vesicles which triggers MSCs osteogenic differentiation into OBs by activating Transforming Growth Factor β1 (TGFβ1) and Smad family member 3 (SMAD3) signaling. In conclusion, our findings prove an important role of SPP1, present as cargo in OC-derived EVs, in signaling to MSCs and driving their differentiation into OBs. This biological mechanism implies a paradigm shift regarding the role of osteoclasts and their signaling toward the treatment of skeletal disorders which require bone formation.
Collapse
Affiliation(s)
- Abdullah Faqeer
- School of Dentistry, Health Science Center, Shenzhen University, Shenzhen, 518015, China; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518015, China
| | - Mengzhen Wang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518015, China
| | - Gulzar Alam
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518015, China
| | - Arshad Ahmed Padhiar
- School of Basic Medicine, Health Science Center, Shenzhen University, Shenzhen, 518015, China; Department of Ecology and Evoluitonary Biology, University of Connecticut, Storrs, CT, 06269-3043, USA
| | - Dexiu Zheng
- School of Dentistry, Health Science Center, Shenzhen University, Shenzhen, 518015, China
| | - Zhiming Luo
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518015, China
| | - Irene Shuping Zhao
- School of Dentistry, Health Science Center, Shenzhen University, Shenzhen, 518015, China
| | - Guangqian Zhou
- School of Basic Medicine, Health Science Center, Shenzhen University, Shenzhen, 518015, China
| | - Jeroen J J P van den Beucken
- Department of Dentistry - Regenerative Biomaterials, Radboudumc, Nijmegen, 6525EX, the Netherlands; Research Institute for Medical Innovation, Radboudumc, 6500HB, Nijmegen, the Netherlands.
| | - Huanan Wang
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, 116023, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Yang Zhang
- School of Dentistry, Health Science Center, Shenzhen University, Shenzhen, 518015, China; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518015, China.
| |
Collapse
|
9
|
Baron M, Drohat P, Crawford B, Hornicek FJ, Best TM, Kouroupis D. Mesenchymal Stem/Stromal Cells: Immunomodulatory and Bone Regeneration Potential after Tumor Excision in Osteosarcoma Patients. Bioengineering (Basel) 2023; 10:1187. [PMID: 37892917 PMCID: PMC10604230 DOI: 10.3390/bioengineering10101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Osteosarcoma (OS) is a type of bone cancer that is derived from primitive mesenchymal cells typically affecting children and young adults. The current standard of treatment is a combination of neoadjuvant chemotherapy and surgical resection of the cancerous bone. Post-resection challenges in bone regeneration arise. To determine the appropriate amount of bone to be removed, preoperative imaging techniques such as bone and CT scans are employed. To prevent local recurrence, the current standard of care suggests maintaining bony and soft tissue margins from 3 to 7 cm beyond the tumor. The amount of bone removed in an OS patient leaves too large of a deficit for bone to form on its own and requires reconstruction with metal implants or allografts. Both methods require the bone to heal, either to the implant or across the allograft junction, often in the setting of marrow-killing chemotherapy. Therefore, the issue of bone regeneration within the surgically resected margins remains an important challenge for the patient, family, and treating providers. Mesenchymal stem/stromal cells (MSCs) are potential agents for enhancing bone regeneration post tumor resection. MSCs, used with scaffolds and growth factors, show promise in fostering bone regeneration in OS cases. We spotlight two MSC types-bone marrow-derived (BM-MSCs) and adipose tissue-derived (ASCs)-highlighting their bone regrowth facilitation and immunomodulatory effects on immune cells like macrophages and T cells, enhancing therapeutic outcomes. The objective of this review is two-fold: review work demonstrating any ability of MSCs to target the deranged immune system in the OS microenvironment, and synthesize the available literature on the use of MSCs as a therapeutic option for stimulating bone regrowth in OS patients post bone resection. When it comes to repairing bone defects, both MB-MSCs and ASCs hold great potential for stimulating bone regeneration. Research has showcased their effectiveness in reconstructing bone defects while maintaining a non-tumorigenic role following wide resection of bone tumors, underscoring their capability to enhance bone healing and regeneration following tumor excisions.
Collapse
Affiliation(s)
- Max Baron
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (M.B.); (P.D.); (T.M.B.)
| | - Philip Drohat
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (M.B.); (P.D.); (T.M.B.)
| | - Brooke Crawford
- Sarcoma Biology Laboratory, Department of Orthopedics, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (B.C.); (F.J.H.)
| | - Francis J. Hornicek
- Sarcoma Biology Laboratory, Department of Orthopedics, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (B.C.); (F.J.H.)
| | - Thomas M. Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (M.B.); (P.D.); (T.M.B.)
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (M.B.); (P.D.); (T.M.B.)
- Diabetes Research Institute, Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
10
|
Baecher H, Hoch CC, Knoedler S, Maheta BJ, Kauke-Navarro M, Safi AF, Alfertshofer M, Knoedler L. From bench to bedside - current clinical and translational challenges in fibula free flap reconstruction. Front Med (Lausanne) 2023; 10:1246690. [PMID: 37886365 PMCID: PMC10598714 DOI: 10.3389/fmed.2023.1246690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Fibula free flaps (FFF) represent a working horse for different reconstructive scenarios in facial surgery. While FFF were initially established for mandible reconstruction, advancements in planning for microsurgical techniques have paved the way toward a broader spectrum of indications, including maxillary defects. Essential factors to improve patient outcomes following FFF include minimal donor site morbidity, adequate bone length, and dual blood supply. Yet, persisting clinical and translational challenges hamper the effectiveness of FFF. In the preoperative phase, virtual surgical planning and artificial intelligence tools carry untapped potential, while the intraoperative role of individualized surgical templates and bioprinted prostheses remains to be summarized. Further, the integration of novel flap monitoring technologies into postoperative patient management has been subject to translational and clinical research efforts. Overall, there is a paucity of studies condensing the body of knowledge on emerging technologies and techniques in FFF surgery. Herein, we aim to review current challenges and solution possibilities in FFF. This line of research may serve as a pocket guide on cutting-edge developments and facilitate future targeted research in FFF.
Collapse
Affiliation(s)
- Helena Baecher
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Cosima C. Hoch
- Medical Faculty, Friedrich Schiller University Jena, Jena, Germany
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bhagvat J. Maheta
- College of Medicine, California Northstate University, Elk Grove, CA, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Ali-Farid Safi
- Craniologicum, Center for Cranio-Maxillo-Facial Surgery, Bern, Switzerland
- Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
11
|
Vaswani BK, Mundada BP, Bhola N, Paul P, Reche A, Ahuja KP. Stem-Cell Therapy: Filling Gaps in Oro-Maxillofacial Region. Cureus 2023; 15:e47171. [PMID: 38022051 PMCID: PMC10652057 DOI: 10.7759/cureus.47171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
How do stem cells function? Why should we, as dentists, care about stem cells? How might dental procedures be substituted by stem cells? Are stem cells capable of regenerating a tooth or temporomandibular joint (TMJ)? Although the ability to regenerate a destroyed tissue has been known for a while, research into regenerative medicine and dentistry has made significant strides in molecular biology. A paradigm shift in the therapeutic toolbox for dental and oral diseases is likely to result from a growing understanding of biological concepts in the regeneration of oral/dental tissues along with stem cell research, leading to an intense search for "biological solutions to biological problems." Among other tissues, orofacial tissues effectively separate stem cells from human tissues. Because they can self-renew and produce different cell types, stem cells offer novel techniques for regenerating damaged tissues and curing illnesses. A number of significant milestone successes have shown their practical applicability, traditional biomaterial-based treatments in regenerative dentistry as therapeutic alternatives that offer regeneration of damaged oral tissues rather than merely "filling the gaps." In order to use these innovative accomplishments for patient well-being, the ultimate goal of this ground-breaking technology, well-designed clinical studies must be implemented as a crucial next step. The review's objective is to briefly synthesize the literature on stem cells in terms of their traits, subtypes, and uses for dental stem cells. It has been highlighted that stem cell therapy has the ability to treat craniofacial abnormalities and regenerate teeth in the oral and maxillofacial regions.
Collapse
Affiliation(s)
- Bhumika K Vaswani
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Bhushan P Mundada
- Oral and Maxillofacial Surgery, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Nitin Bhola
- Oral and Maxillofacial Surgery, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Priyanka Paul
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amit Reche
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Kajal P Ahuja
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
12
|
Song Y, Wang N, Shi H, Zhang D, Wang Q, Guo S, Yang S, Ma J. Biomaterials combined with ADSCs for bone tissue engineering: current advances and applications. Regen Biomater 2023; 10:rbad083. [PMID: 37808955 PMCID: PMC10551240 DOI: 10.1093/rb/rbad083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/07/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
In recent decades, bone tissue engineering, which is supported by scaffold, seed cells and bioactive molecules (BMs), has provided new hope and direction for treating bone defects. In terms of seed cells, compared to bone marrow mesenchymal stem cells, which were widely utilized in previous years, adipose-derived stem cells (ADSCs) are becoming increasingly favored by researchers due to their abundant sources, easy availability and multi-differentiation potentials. However, there is no systematic theoretical basis for selecting appropriate biomaterials loaded with ADSCs. In this review, the regulatory effects of various biomaterials on the behavior of ADSCs are summarized from four perspectives, including biocompatibility, inflammation regulation, angiogenesis and osteogenesis, to illustrate the potential of combining various materials with ADSCs for the treatment of bone defects. In addition, we conclude the influence of additional application of various BMs on the bone repair effect of ADSCs, in order to provide more evidences and support for the selection or preparation of suitable biomaterials and BMs to work with ADSCs. More importantly, the associated clinical case reports and experiments are generalized to provide additional ideas for the clinical transformation and application of bone tissue engineering loaded with ADSCs.
Collapse
Affiliation(s)
- Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Dan Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Jia Ma
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| |
Collapse
|
13
|
Karyagina AS, Orlova PA, Zhulina AV, Krivozubov MS, Grunina TM, Strukova NV, Nikitin KE, Manskikh VN, Senatov FS, Gromov AV. Hybrid Implants Based on Calcium-Magnesium Silicate Ceramic Diopside as a Carrier of Recombinant BMP-2 and Demineralized Bone Matrix as a Scaffold: Ectopic Osteogenesis in Intramuscular Implantation in Mice. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1116-1125. [PMID: 37758311 DOI: 10.1134/s0006297923080060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 10/03/2023]
Abstract
High efficiency of hybrid implants based on calcium-magnesium silicate ceramic, diopside, as a carrier of recombinant BMP-2 and xenogenic demineralized bone matrix (DBM) as a scaffold for bone tissue regeneration was demonstrated previously using the model of critical size cranial defects in mice. In order to investigate the possibility of using these implants for growing autologous bone tissue using in vivo bioreactor principle in the patient's own body, effectiveness of ectopic osteogenesis induced by them in intramuscular implantation in mice was studied. At the dose of 7 μg of BMP-2 per implant, dense agglomeration of cells, probably skeletal muscle satellite precursor cells, was observed one week after implantation with areas of intense chondrogenesis, initial stage of indirect osteogenesis, around the implants. After 12 weeks, a dense bone capsule of trabecular structure was formed covered with periosteum and mature bone marrow located in the spaces between the trabeculae. The capsule volume was about 8-10 times the volume of the original implant. There were practically no signs of inflammation and foreign body reaction. Microcomputed tomography data showed significant increase of the relative bone volume, number of trabeculae, and bone tissue density in the group of mice with BMP-2-containing implant in comparison with the group without BMP-2. Considering that DBM can be obtained in practically unlimited quantities with required size and shape, and that BMP-2 is obtained by synthesis in E. coli cells and is relatively inexpensive, further development of the in vivo bioreactor model based on the hybrid implants constructed from BMP-2, diopside, and xenogenic DBM seems promising.
Collapse
Affiliation(s)
- Anna S Karyagina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, 127550, Russia
| | - Polina A Orlova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Anna V Zhulina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Mikhail S Krivozubov
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Tatyana M Grunina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, 127550, Russia
| | - Natalia V Strukova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Kirill E Nikitin
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Vasily N Manskikh
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Fedor S Senatov
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Alexander V Gromov
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia.
| |
Collapse
|
14
|
Zenobi E, Merco M, Mochi F, Ruspi J, Pecci R, Marchese R, Convertino A, Lisi A, Del Gaudio C, Ledda M. Tailoring the Microarchitectures of 3D Printed Bone-like Scaffolds for Tissue Engineering Applications. Bioengineering (Basel) 2023; 10:567. [PMID: 37237637 PMCID: PMC10215619 DOI: 10.3390/bioengineering10050567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/15/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Material extrusion (MEX), commonly referred to as fused deposition modeling (FDM) or fused filament fabrication (FFF), is a versatile and cost-effective technique to fabricate suitable scaffolds for tissue engineering. Driven by a computer-aided design input, specific patterns can be easily collected in an extremely reproducible and repeatable process. Referring to possible skeletal affections, 3D-printed scaffolds can support tissue regeneration of large bone defects with complex geometries, an open major clinical challenge. In this study, polylactic acid scaffolds were printed resembling trabecular bone microarchitecture in order to deal with morphologically biomimetic features to potentially enhance the biological outcome. Three models with different pore sizes (i.e., 500, 600, and 700 µm) were prepared and evaluated by means of micro-computed tomography. The biological assessment was carried out seeding SAOS-2 cells, a bone-like cell model, on the scaffolds, which showed excellent biocompatibility, bioactivity, and osteoinductivity. The model with larger pores, characterized by improved osteoconductive properties and protein adsorption rate, was further investigated as a potential platform for bone-tissue engineering, evaluating the paracrine activity of human mesenchymal stem cells. The reported findings demonstrate that the designed microarchitecture, better mimicking the natural bone extracellular matrix, favors a greater bioactivity and can be thus regarded as an interesting option for bone-tissue engineering.
Collapse
Affiliation(s)
- Eleonora Zenobi
- Hypatia Research Consortium, Via del Politecnico snc, 00133 Rome, Italy
- E. Amaldi Foundation, Via del Politecnico snc, 00133 Rome, Italy
| | - Miriam Merco
- Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Federico Mochi
- Hypatia Research Consortium, Via del Politecnico snc, 00133 Rome, Italy
| | - Jacopo Ruspi
- Biomedical Engineering, Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Piazzale Aldo Moro, 00184 Rome, Italy
| | - Raffaella Pecci
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 00161 Rome, Italy
| | - Rodolfo Marchese
- Department of Clinical Pathology, Fatebenefratelli S. Peter Hospital, Via Cassia, 00189 Rome, Italy
| | - Annalisa Convertino
- Institute for Microelectronics and Microsystems, National Research Council, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Antonella Lisi
- Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | | | - Mario Ledda
- Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
15
|
Nadine S, Fernandes IJ, Correia CR, Mano JF. Close-to-native bone repair via tissue-engineered endochondral ossification approaches. iScience 2022; 25:105370. [PMID: 36339269 PMCID: PMC9626746 DOI: 10.1016/j.isci.2022.105370] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In order to solve the clinical challenges related to bone grafting, several tissue engineering (TE) strategies have been proposed to repair critical-sized defects. Generally, the classical TE approaches are designed to promote bone repair via intramembranous ossification. Although promising, strategies that direct the osteogenic differentiation of mesenchymal stem/stromal cells are usually characterized by a lack of functional vascular supply, often resulting in necrotic cores. A less explored alternative is engineering bone constructs through a cartilage-mediated approach, resembling the embryological process of endochondral ossification. The remodeling of an intermediary hypertrophic cartilaginous template triggers vascular invasion and bone tissue deposition. Thus, employing this knowledge can be a promising direction for the next generation of bone TE constructs. This review highlights the most recent biomimetic strategies for applying endochondral ossification in bone TE while discussing the plethora of cell types, culture conditions, and biomaterials essential to promote a successful bone regeneration process.
Collapse
|
16
|
Gonzalez Matheus I, Hutmacher DW, Olson S, Redmond M, Sutherland A, Wagels M. A Medical-Grade Polycaprolactone and Tricalcium Phosphate Scaffold System With Corticoperiosteal Tissue Transfer for the Reconstruction of Acquired Calvarial Defects in Adults: Protocol for a Single-Arm Feasibility Trial. JMIR Res Protoc 2022; 11:e36111. [PMID: 36227628 PMCID: PMC9614622 DOI: 10.2196/36111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Background Large skull defects present a reconstructive challenge. Conventional cranioplasty options include autologous bone grafts, vascularized bone, metals, synthetic ceramics, and polymers. Autologous options are affected by resorption and residual contour deformities. Synthetic materials may be customized via digital planning and 3D printing, but they all carry a risk of implant exposure, failure, and infection, which increases when the defect is large. These complications can be a threat to life. Without reconstruction, patients with cranial defects may experience headaches and stigmatization. The protection of the brain necessitates lifelong helmet use, which is also stigmatizing. Objective Our clinical trial will formally study a hybridized technique's capacity to reconstruct large calvarial defects. Methods A hybridized technique that draws on the benefits of autologous and synthetic materials has been developed by the research team. This involves wrapping a biodegradable, ultrastructured, 3D-printed scaffold made of medical-grade polycaprolactone and tricalcium phosphate in a vascularized, autotransplanted periosteum to exploit the capacity of vascularized periostea to regenerate bone. In vitro, the scaffold system supports cell attachment, migration, and proliferation with slow but sustained degradation to permit host tissue regeneration and the replacement of the scaffold. The in vivo compatibility of this scaffold system is robust—the base material has been used clinically as a resorbable suture material for decades. The importance of scaffold vascularization, which is inextricably linked to bone regeneration, is underappreciated. A variety of methods have been described to address this, including scaffold prelamination and axial vascularization via arteriovenous loops and autotransplanted flaps. However, none of these directly promote bone regeneration. Results We expect to have results before the end of 2023. As of December 2020, we have enrolled 3 participants for the study. Conclusions The regenerative matching axial vascularization technique may be an alternative method of reconstruction for large calvarial defects. It involves performing a vascularized free tissue transfer and using a bioresorbable, 3D-printed scaffold to promote and support bone regeneration (termed the regenerative matching axial vascularization technique). This technique may be used to reconstruct skull bone defects that were previously thought to be unreconstructable, reduce the risk of implant-related complications, and achieve consistent outcomes in cranioplasty. This must now be tested in prospective clinical trials. Trial Registration Australian New Zealand Clinical Trials Registry ACTRN12620001171909; https://tinyurl.com/4rakccb3 International Registered Report Identifier (IRRID) DERR1-10.2196/36111
Collapse
Affiliation(s)
- Isabel Gonzalez Matheus
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Queenland, Australia.,Herston Biofabrication Institute, Herston, Australia.,The Australian Centre for Complex Integrated Surgical Solutions, Translational Research Institute, Woolloongabba, Australia.,School of Medicine, University of Queensland, Brisbane, Australia
| | - Dietmar W Hutmacher
- Regenerative Medicine Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Sarah Olson
- Department of Neurosurgery, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Michael Redmond
- Herston Biofabrication Institute, Herston, Australia.,Department of Neurosurgery, Royal Brisbane & Women's Hospital, Herston, Australia
| | - Allison Sutherland
- The Australian Centre for Complex Integrated Surgical Solutions, Translational Research Institute, Woolloongabba, Australia
| | - Michael Wagels
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Queenland, Australia.,Herston Biofabrication Institute, Herston, Australia.,The Australian Centre for Complex Integrated Surgical Solutions, Translational Research Institute, Woolloongabba, Australia.,School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
17
|
Rudiansyah M, El-Sehrawy AA, Ahmad I, Terefe EM, Abdelbasset WK, Bokov DO, Salazar A, Rizaev JA, Muthanna FMS, Shalaby MN. Osteoporosis treatment by mesenchymal stromal/stem cells and their exosomes: Emphasis on signaling pathways and mechanisms. Life Sci 2022; 306:120717. [PMID: 35792178 DOI: 10.1016/j.lfs.2022.120717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023]
Abstract
Osteoporosis is the loss of bone density, which is one of the main problems in developed and developing countries and is more common in the elderly. Because this disease is often not diagnosed until a bone fracture, it can become a life-threatening disease and cause hospitalization. With the increase of older people in a population, this disease's personal and social costs increase year by year and affect different communities. Most current treatments focus on pain relief and usually do not lead to bone tissue recovery and regeneration. But today, the use of stem cell therapy is recommended to treat and improve this disease recovery, which helps restore bone tissue by improving the imbalance in the osteoblast-osteoclast axis. Due to mesenchymal stromal/stem cells (MSCs) characteristics and their exosomes, these cells and vesicles are excellent sources for treating and preventing the progression and improvement of osteoporosis. Due to the ability of MSCs to differentiate into different cells and migrate to the site of injury, these cells are used in tissue regenerative medicine. Also, due to their contents, the exosomes of these cells help regenerate and treat various tissue injuries by affecting the injury site's cells. In this article, we attempted to review new studies in which MSCs and their exosomes were used to treat osteoporosis.
Collapse
Affiliation(s)
- Mohammad Rudiansyah
- Division of Nephrology & Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Lambung Mangkurat/Ulin Hospital, Banjarmasin, Indonesia
| | - Amr A El-Sehrawy
- Department of Internal Medicine, Mansoura Specialized Medical Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ermias Mergia Terefe
- School of pharmacy and Health science, United States International University, Nairobi, Kenya
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Aleli Salazar
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City, Mexico
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector of Samarkand State Medical Institute, Samarkand, Uzbekistan
| | | | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Egypt
| |
Collapse
|
18
|
Tsiklin IL, Shabunin AV, Kolsanov AV, Volova LT. In Vivo Bone Tissue Engineering Strategies: Advances and Prospects. Polymers (Basel) 2022; 14:polym14153222. [PMID: 35956735 PMCID: PMC9370883 DOI: 10.3390/polym14153222] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 12/12/2022] Open
Abstract
Reconstruction of critical-sized bone defects remains a tremendous challenge for surgeons worldwide. Despite the variety of surgical techniques, current clinical strategies for bone defect repair demonstrate significant limitations and drawbacks, including donor-site morbidity, poor anatomical match, insufficient bone volume, bone graft resorption, and rejection. Bone tissue engineering (BTE) has emerged as a novel approach to guided bone tissue regeneration. BTE focuses on in vitro manipulations with seed cells, growth factors and bioactive scaffolds using bioreactors. The successful clinical translation of BTE requires overcoming a number of significant challenges. Currently, insufficient vascularization is the critical limitation for viability of the bone tissue-engineered construct. Furthermore, efficacy and safety of the scaffolds cell-seeding and exogenous growth factors administration are still controversial. The in vivo bioreactor principle (IVB) is an exceptionally promising concept for the in vivo bone tissue regeneration in a predictable patient-specific manner. This concept is based on the self-regenerative capacity of the human body, and combines flap prefabrication and axial vascularization strategies. Multiple experimental studies on in vivo BTE strategies presented in this review demonstrate the efficacy of this approach. Routine clinical application of the in vivo bioreactor principle is the future direction of BTE; however, it requires further investigation for overcoming some significant limitations.
Collapse
Affiliation(s)
- Ilya L. Tsiklin
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
- Correspondence: ; Tel.: +7-903-621-81-88
| | - Aleksey V. Shabunin
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
| | - Alexandr V. Kolsanov
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| | - Larisa T. Volova
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| |
Collapse
|
19
|
Labusca L. Adipose tissue in bone regeneration - stem cell source and beyond. World J Stem Cells 2022; 14:372-392. [PMID: 35949397 PMCID: PMC9244952 DOI: 10.4252/wjsc.v14.i6.372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/30/2021] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue (AT) is recognized as a complex organ involved in major home-ostatic body functions, such as food intake, energy balance, immunomodulation, development and growth, and functioning of the reproductive organs. The role of AT in tissue and organ homeostasis, repair and regeneration is increasingly recognized. Different AT compartments (white AT, brown AT and bone marrow AT) and their interrelation with bone metabolism will be presented. AT-derived stem cell populations - adipose-derived mesenchymal stem cells and pluripotent-like stem cells. Multilineage differentiating stress-enduring and dedifferentiated fat cells can be obtained in relatively high quantities compared to other sources. Their role in different strategies of bone and fracture healing tissue engineering and cell therapy will be described. The current use of AT- or AT-derived stem cell populations for fracture healing and bone regenerative strategies will be presented, as well as major challenges in furthering bone regenerative strategies to clinical settings.
Collapse
Affiliation(s)
- Luminita Labusca
- Magnetic Materials and Sensors, National Institute of Research and Development for Technical Physics, Iasi 700050, Romania
- Orthopedics and Traumatology, County Emergency Hospital Saint Spiridon Iasi, Iasi 700050, Romania.
| |
Collapse
|
20
|
Nokhbatolfoghahaei H, Bastami F, Farzad-Mohajeri S, Rezai Rad M, Dehghan MM, Bohlouli M, Farajpour H, Nadjmi N, Khojasteh A. Prefabrication technique by preserving a muscular pedicle from masseter muscle as an in vivo bioreactor for reconstruction of mandibular critical-sized bone defects in canine models. J Biomed Mater Res B Appl Biomater 2022; 110:1675-1686. [PMID: 35167181 DOI: 10.1002/jbm.b.35028] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 11/08/2022]
Abstract
In vivo bioreactors serve as regenerative niches that improve vascularization and regeneration of bone grafts. This study has evaluated the masseter muscle as a natural bioreactor for βTCP or PCL/βTCP scaffolds, in terms of bone regeneration. The effect of pedicle preservation, along with sole, or MSC- or rhBMP2-combined application of scaffolds, has also been studied. Twenty-four mongrel dogs were randomly placed in six groups, including βTCP, βTCP/rhBMP2, βTCP/MSCs, PCL/βTCP, PCL/βTCP/rhBMP2, and PCL/βTCP/MSCs. During the first surgery, the scaffolds were implanted into the masseter muscle for being prefabricated. After 2 months, each group was divided into two subgroups prior to mandibular bone defect reconstruction; one with a preserved vascularized pedicle and one without. After 12 weeks, animals were euthanized, and new bone formation was evaluated using histological analysis. Histological analysis showed that all β-TCP scaffold groups had resulted in significantly greater rates of new bone formation, either with a pedicle surgical approach or non-pedicle surgical approach, comparing to their parallel groups of βTCP/PCL scaffolds (p ≤ .05). Pedicled β-TCP scaffold groups that were treated with either rhBMP2 (48.443% ± 0.250%) or MSCs (46.577% ± 0.601%) demonstrated the highest rates of new bone formation (p ≤ .05). Therefore, masseter muscle can be used as a local in vivo bioreactor with potential clinical advantages in reconstruction of human mandibular defects. In addition, scaffold composition, pedicle preservation, and treatment with MSCs or rhBMP2, influence new bone formation and scaffold degradation rates in the prefabrication technique.
Collapse
Affiliation(s)
- Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Bastami
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Farzad-Mohajeri
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Maryam Rezai Rad
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Mahboubeh Bohlouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hekmat Farajpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Nadjmi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Cranio-Maxillofacial Surgery/University Hospital, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Arash Khojasteh
- Department of Cranio-Maxillofacial Surgery/University Hospital, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
21
|
Shao R, Dong Y, Zhang S, Wu X, Huang X, Sun B, Zeng B, Xu F, Liang W. State of the art of bone biomaterials and their interactions with stem cells: Current state and future directions. Biotechnol J 2022; 17:e2100074. [PMID: 35073451 DOI: 10.1002/biot.202100074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ruyi Shao
- Department of Orthopedics Zhuji People's Hospital Shaoxing Zhejiang Province 312500 P. R. China
| | - Yongqiang Dong
- Department of Orthopaedics Xinchang People's Hospital Shaoxing Zhejiang Province 312500 P. R. China
| | - Songou Zhang
- College of Medicine Shaoxing University Shaoxing Zhejiang Province 312000 P. R. China
| | - Xudong Wu
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Xiaogang Huang
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Bin Sun
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Bin Zeng
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Fangming Xu
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Wenqing Liang
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| |
Collapse
|
22
|
Al-Ghadban S, Artiles M, Bunnell BA. Adipose Stem Cells in Regenerative Medicine: Looking Forward. Front Bioeng Biotechnol 2022; 9:837464. [PMID: 35096804 PMCID: PMC8792599 DOI: 10.3389/fbioe.2021.837464] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
Over the last decade, stem cell-based regenerative medicine has progressed to clinical testing and therapeutic applications. The applications range from infusions of autologous and allogeneic stem cells to stem cell-derived products. Adult stem cells from adipose tissue (ASCs) show significant promise in treating autoimmune and neurodegenerative diseases, vascular and metabolic diseases, bone and cartilage regeneration and wound defects. The regenerative capabilities of ASCs in vivo are primarily orchestrated by their secretome of paracrine factors and cell-matrix interactions. More recent developments are focused on creating more complex structures such as 3D organoids, tissue elements and eventually fully functional tissues and organs to replace or repair diseased or damaged tissues. The current and future applications for ASCs in regenerative medicine are discussed here.
Collapse
Affiliation(s)
| | | | - Bruce A. Bunnell
- Department of Microbiology Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
23
|
D’Alessandro D, Ricci C, Milazzo M, Strangis G, Forli F, Buda G, Petrini M, Berrettini S, Uddin MJ, Danti S, Parchi P. Piezoelectric Signals in Vascularized Bone Regeneration. Biomolecules 2021; 11:1731. [PMID: 34827729 PMCID: PMC8615512 DOI: 10.3390/biom11111731] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023] Open
Abstract
The demand for bone substitutes is increasing in Western countries. Bone graft substitutes aim to provide reconstructive surgeons with off-the-shelf alternatives to the natural bone taken from humans or animal species. Under the tissue engineering paradigm, biomaterial scaffolds can be designed by incorporating bone stem cells to decrease the disadvantages of traditional tissue grafts. However, the effective clinical application of tissue-engineered bone is limited by insufficient neovascularization. As bone is a highly vascularized tissue, new strategies to promote both osteogenesis and vasculogenesis within the scaffolds need to be considered for a successful regeneration. It has been demonstrated that bone and blood vases are piezoelectric, namely, electric signals are locally produced upon mechanical stimulation of these tissues. The specific effects of electric charge generation on different cells are not fully understood, but a substantial amount of evidence has suggested their functional and physiological roles. This review summarizes the special contribution of piezoelectricity as a stimulatory signal for bone and vascular tissue regeneration, including osteogenesis, angiogenesis, vascular repair, and tissue engineering, by considering different stem cell sources entailed with osteogenic and angiogenic potential, aimed at collecting the key findings that may enable the development of successful vascularized bone replacements useful in orthopedic and otologic surgery.
Collapse
Affiliation(s)
- Delfo D’Alessandro
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy; (D.D.); (F.F.); (S.B.)
| | - Claudio Ricci
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (C.R.); (P.P.)
| | - Mario Milazzo
- The BioRobotics Intitute, Scuola Superiore Sant’Anna, 56024 Pontedera, Italy;
| | - Giovanna Strangis
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
| | - Francesca Forli
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy; (D.D.); (F.F.); (S.B.)
| | - Gabriele Buda
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.B.); (M.P.)
| | - Mario Petrini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.B.); (M.P.)
| | - Stefano Berrettini
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy; (D.D.); (F.F.); (S.B.)
| | - Mohammed Jasim Uddin
- Department of Chemistry, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Serena Danti
- The BioRobotics Intitute, Scuola Superiore Sant’Anna, 56024 Pontedera, Italy;
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
| | - Paolo Parchi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (C.R.); (P.P.)
| |
Collapse
|
24
|
Asahina I, Kagami H, Agata H, Honda MJ, Sumita Y, Inoue M, Nagamura-Inoue T, Tojo A. Clinical Outcome and 8-Year Follow-Up of Alveolar Bone Tissue Engineering for Severely Atrophic Alveolar Bone Using Autologous Bone Marrow Stromal Cells with Platelet-Rich Plasma and β-Tricalcium Phosphate Granules. J Clin Med 2021; 10:jcm10225231. [PMID: 34830513 PMCID: PMC8623501 DOI: 10.3390/jcm10225231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Although bone tissue engineering for dentistry has been studied for many years, the clinical outcome for severe cases has not been established. Furthermore, there are limited numbers of studies that include long-term follow-up. In this study, the safety and efficacy of bone tissue engineering for patients with a severely atrophic alveolar bone were examined using autogenous bone marrow stromal cells (BMSCs), and the long-term stability was also evaluated. Methods: BMSCs from iliac bone marrow aspirate were cultured and expanded. Then, induced osteogenic cells were transplanted with autogenous platelet-rich plasma (PRP) and β-tricalcium phosphate granules (β-TCP) for maxillary sinus floor and alveolar ridge augmentation. Eight patients (two males and six females) with an average age of 54.2 years underwent cell transplantation. Safety was assessed by monitoring adverse events. Radiographic evaluation and bone biopsies were performed to evaluate the regenerated bone. Results: The major population of transplanted BMSCs belonged to the fraction of CD34−, CD45dim, and CD73+ cells, which was only 0.065% of the total bone marrow cells. Significant deviations were observed in cell growth and alkaline phosphatase activities among individuals. However, bone regeneration was observed in all patients and the average bone area in the biopsy samples was 41.9% 6 months following transplantation, although there were also significant deviations among each case. No adverse events related to the transplants were observed. In the regenerated bone, 27 out of 29 dental implants were integrated. Dental implants and regenerated bone were stable for an average follow-up period of 7 years and 10 months. Conclusions: Although individual variations were observed, the results showed that bone tissue engineering using BMSCs with PRP and β-TCP was feasible for patients with severe atrophic maxilla throughout a long-term follow-up period and was considered safe. However, further studies with a larger number of cases and controls to confirm the efficacy of BMSCs and the development of a protocol to establish a reproducible quality of stem cell-based graft material will be required.
Collapse
Affiliation(s)
- Izumi Asahina
- Division of Stem Cell Engineering, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Hideaki Kagami
- Division of Stem Cell Engineering, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Tissue Engineering Research Group, Division of Molecular Therapy, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Oral and Maxillofacial Surgery, Matsumoto Dental University, Shiojiri 399-0781, Japan
| | - Hideki Agata
- Division of Stem Cell Engineering, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Masaki J Honda
- Division of Stem Cell Engineering, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Oral Anatomy, Aichi-Gakuin University School of Dentistry, Nagoya 464-0821, Japan
| | - Yoshinori Sumita
- Division of Stem Cell Engineering, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Minoru Inoue
- Tissue Engineering Research Group, Division of Molecular Therapy, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Oral and Maxillofacial Surgery, Matsumoto Dental University, Shiojiri 399-0781, Japan
| | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Arinobu Tojo
- Tissue Engineering Research Group, Division of Molecular Therapy, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
25
|
Mitrofanov VN, Zhivtsov OP, Orlinskaya NY, Davydenko DV, Charykova IN, Aleinik DY. Technology for Repairing Osteomyelitic Bone Defects Using Autologous Mesenchymal Stromal Cells on a Collagen Matrix in Experiment. Sovrem Tekhnologii Med 2021; 13:42-49. [PMID: 34513065 PMCID: PMC8353696 DOI: 10.17691/stm2021.13.1.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 11/21/2022] Open
Abstract
The aim of the study was to develop a technology for repairing an osteomyelitic bone defect using autologous adipose tissue mesenchymal stromal cells (MSCs) bound to a collagen matrix and to test the efficacy of this technique.
Collapse
Affiliation(s)
- V N Mitrofanov
- Head of the Department of Septic Surgery, University Clinic, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - O P Zhivtsov
- Researcher, Physician of Trauma Surgery, Department of Septic Surgery, University Clinic, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - N Yu Orlinskaya
- Professor, Head of the Department of Pathological Anatomy, University Clinic, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - D V Davydenko
- Researcher, Department of Pathological Anatomy, University Clinic, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - I N Charykova
- Physician of Clinical Laboratory Diagnostics, Laboratory of Biotechnology, University Clinic, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - D Ya Aleinik
- Senior Researcher, Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
26
|
Abu-Shahba AG, Wilkman T, Kornilov R, Adam M, Salla KM, Lindén J, Lappalainen AK, Björkstrand R, Seppänen-Kaijansinkko R, Mannerström B. Periosteal Flaps Enhance Prefabricated Engineered Bone Reparative Potential. J Dent Res 2021; 101:166-176. [PMID: 34514892 PMCID: PMC8808084 DOI: 10.1177/00220345211037247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The clinical translation of bone tissue engineering for reconstructing large bone defects has not advanced without hurdles. The in vivo bioreactor (IVB) concept may therefore bridge between bone tissue engineering and reconstructive surgery by employing the patient body for prefabricating new prevascularized tissues. Ideally, IVB should minimize the need for exogenous growth factors/cells. Periosteal tissues are promising for IVB approaches to prefabricate tissue-engineered bone (TEB) flaps. However, the significance of preserving the periosteal vascular supply has not been adequately investigated. This study assessed muscle IVB with and without periosteal/pericranial grafts and flaps for prefabricating TEB flaps to reconstruct mandibular defects in sheep. The sheep (n = 14) were allocated into 4 groups: muscle IVB (M group; nM = 3), muscle + periosteal graft (MP group; nMP = 4), muscle + periosteal flap (MVP group; nMVP = 4), and control group (nControl = 3). In the first surgery, alloplastic bone blocks were implanted in the brachiocephalic muscle (M) with a periosteal graft (MP) or with a vascularized periosteal flap (MVP). After 9 wk, the prefabricated TEB flaps were transplanted to reconstruct a mandibular angle defect. In the control group, the defects were reconstructed by non-prevascularized bone blocks. Computed tomography (CT) scans were performed after 13 wk and after 23 wk at termination, followed by micro-CT (µCT) and histological analyses. Both CT and µCT analysis revealed enhanced new bone formation and decreased residual biomaterial volume in the MVP group compared with control and MP groups, while the M group showed less new bone formation and more residual biomaterial. The histological analysis showed that most of the newly formed bone emerged from defect edges, but larger areas of new bone islands were found in MP and MVP groups. The MVP group showed enhanced vascularization and higher biomaterial remodeling rates. The periosteal flaps boosted the reconstructive potential of the prefabricated TEB flaps. The regenerative potential of the periosteum was manifested after the transplantation into the mechanically stimulated bony defect microenvironment.
Collapse
Affiliation(s)
- A G Abu-Shahba
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - T Wilkman
- Department of Oral and Maxillofacial Surgery, Helsinki University Hospital, Helsinki, Finland
| | - R Kornilov
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - M Adam
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - K M Salla
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - J Lindén
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.,Finnish Centre for Laboratory Animal Pathology (FCLAP), HiLIFE, University of Helsinki, Helsinki, Finland
| | - A K Lappalainen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - R Björkstrand
- Department of Mechanical Engineering, Aalto University, Espoo, Finland
| | - R Seppänen-Kaijansinkko
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Oral and Maxillofacial Surgery, Helsinki University Hospital, Helsinki, Finland
| | - B Mannerström
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
27
|
Liu T, Xu J, Pan X, Ding Z, Xie H, Wang X, Xie H. Advances of adipose-derived mesenchymal stem cells-based biomaterial scaffolds for oral and maxillofacial tissue engineering. Bioact Mater 2021; 6:2467-2478. [PMID: 33553828 PMCID: PMC7850942 DOI: 10.1016/j.bioactmat.2021.01.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 02/05/2023] Open
Abstract
The management of oral and maxillofacial tissue defects caused by tumors, trauma, and congenital or acquired deformities has been a major challenge for surgeons over the last few decades. Autologous tissue transplantation, the gold standard of tissue reconstruction, is a valid method for repairing the oral and maxillofacial functions and aesthetics. However, several limitations hinder its clinical applications including complications of donor sites, limited tissue volume, and uncertain long-term outcomes. Adipose-derived mesenchymal stem cells (ADMSCs) widely exist in adipose tissue and can be easily obtained through liposuction. Like the bone marrow-derived mesenchymal stem cells (BMSCs), ADMSCs also have the multi-pluripotent potencies to differentiate into osteoblasts, chondrocytes, neurons, and myocytes. Therefore, the multilineage capacity of ADMSCs makes them valuable for cell-based medical therapies. In recent years, researchers have developed many candidates of ADMSCs-based biomaterial scaffolds to cater for the needs of oral and maxillofacial tissue engineering due to their superior performance. This review presents the advances and applications of ADMSCs-based biomaterial scaffolds, and explores their tissue engineering prospects in oral and maxillofacial reconstructions.
Collapse
Affiliation(s)
- Tong Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jia Xu
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, School of Stomatology, Nanchang University, Nanchang, 330006, China
| | - Xun Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhangfan Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hao Xie
- General Surgery Department, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, 241000, China
| | - Xiaoyi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Huixu Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
28
|
Barachini S, Montali M, Panvini FM, Carnicelli V, Gatti GL, Piolanti N, Bonicoli E, Scaglione M, Buda G, Parchi PD. Mesangiogenic Progenitor Cells Are Tissue Specific and Cannot Be Isolated From Adipose Tissue or Umbilical Cord Blood. Front Cell Dev Biol 2021; 9:669381. [PMID: 34291045 PMCID: PMC8287027 DOI: 10.3389/fcell.2021.669381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Mesangiogenic progenitor cells (MPCs) have been isolated from human bone marrow (BM) mononuclear cells. They attracted particular attention for the ability to differentiate into exponentially growing mesenchymal stromal cells while retaining endothelial differentiative potential. MPC power to couple mesengenesis and angiogenesis highlights their tissue regenerative potential and clinical value, with particular reference to musculoskeletal tissues regeneration. BM and adipose tissue represent the most promising adult multipotent cell sources for bone and cartilage repair, although discussion is still open on their respective profitability. Culture determinants, as well as tissues of origin, appeared to strongly affect the regenerative potential of cell preparations, making reliable methods for cell isolation and growth a prerequisite to obtain cell-based medicinal products. Our group had established a definite consistent protocol for MPC culture, and here, we present data showing MPCs to be tissue specific.
Collapse
Affiliation(s)
- Serena Barachini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marina Montali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca M Panvini
- Sant'Anna School of Advanced Studies, Institute of Life Sciences, Pisa, Italy
| | - Vittoria Carnicelli
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Gian Luca Gatti
- Plastic and Reconstructive Surgery Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Nicola Piolanti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Enrico Bonicoli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Michelangelo Scaglione
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Gabriele Buda
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo D Parchi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
29
|
Kaboodkhani R, Mehrabani D, Karimi-Busheri F. Achievements and Challenges in Transplantation of Mesenchymal Stem Cells in Otorhinolaryngology. J Clin Med 2021; 10:2940. [PMID: 34209041 PMCID: PMC8267672 DOI: 10.3390/jcm10132940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Otorhinolaryngology enrolls head and neck surgery in various tissues such as ear, nose, and throat (ENT) that govern different activities such as hearing, breathing, smelling, production of vocal sounds, the balance, deglutition, facial animation, air filtration and humidification, and articulation during speech, while absence of these functions can lead to high morbidity and even mortality. Conventional therapies for head and neck damaged tissues include grafts, transplants, and artificial materials, but grafts have limited availability and cause morbidity in the donor site. To improve these limitations, regenerative medicine, as a novel and rapidly growing field, has opened a new therapeutic window in otorhinolaryngology by using cell transplantation to target the healing and replacement of injured tissues. There is a high risk of rejection and tumor formation for transplantation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs); mesenchymal stem cells (MSCs) lack these drawbacks. They have easy expansion and antiapoptotic properties with a wide range of healing and aesthetic functions that make them a novel candidate in otorhinolaryngology for craniofacial defects and diseases and hold immense promise for bone tissue healing; even the tissue sources and types of MSCs, the method of cell introduction and their preparation quality can influence the final outcome in the injured tissue. In this review, we demonstrated the anti-inflammatory and immunomodulatory properties of MSCs, from different sources, to be safely used for cell-based therapies in otorhinolaryngology, while their achievements and challenges have been described too.
Collapse
Affiliation(s)
- Reza Kaboodkhani
- Otorhinolaryngology Research Center, Department of Otorhinolaryngology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71936-36981, Iran;
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71987-74731, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Feridoun Karimi-Busheri
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
30
|
Wang J, Wang X, Zhen P, Fan B. [Research progress of in vivo bioreactor for bone tissue engineering]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:627-635. [PMID: 33998218 DOI: 10.7507/1002-1892.202012083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To review the research progress of in vivo bioreactor (IVB) for bone tissue engineering in order to provide reference for its future research direction. Methods The literature related to IVB used in bone tissue engineering in recent years was reviewed, and the principles of IVB construction, tissue types, sites, and methods of IVB construction, as well as the advantages of IVB used in bone tissue engineering were summarized. Results IVB takes advantage of the body's ability to regenerate itself, using the body as a bioreactor to regenerate new tissues or organs at injured sites or at ectopic sites that can support the regeneration of new tissues. IVB can be constructed by tissue flap (subcutaneous pocket, muscle flap/pocket, fascia flap, periosteum flap, omentum flap/abdominal cavity) and axial vascular pedicle (axial vascular bundle, arteriovenous loop) alone or jointly. IVB is used to prefabricate vascularized tissue engineered bone that matched the shape and size of the defect. The prefabricated vascularized tissue engineered bone can be used as bone graft, pedicled bone flap, or free bone flap to repair bone defect. IVB solves the problem of insufficient vascularization in traditional bone tissue engineering to a certain extent. Conclusion IVB is a promising method for vascularized tissue engineered bone prefabrication and subsequent bone defect reconstruction, with unique advantages in the repair of large complex bone defects. However, the complexity of IVB construction and surgical complications hinder the clinical application of IVB. Researchers should aim to develop a simple, safe, and efficient IVB.
Collapse
Affiliation(s)
- Jian Wang
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, P.R.China.,Orthopaedic Center, the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou Gansu, 730000, P.R.China
| | - Xiao Wang
- School of Design and Art, Lanzhou University of Technology, Lanzhou Gansu, 730000, P.R.China
| | - Ping Zhen
- Orthopaedic Center, the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou Gansu, 730000, P.R.China
| | - Bo Fan
- Orthopaedic Center, the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou Gansu, 730000, P.R.China
| |
Collapse
|
31
|
Bouland C, Philippart P, Dequanter D, Corrillon F, Loeb I, Bron D, Lagneaux L, Meuleman N. Cross-Talk Between Mesenchymal Stromal Cells (MSCs) and Endothelial Progenitor Cells (EPCs) in Bone Regeneration. Front Cell Dev Biol 2021; 9:674084. [PMID: 34079804 PMCID: PMC8166285 DOI: 10.3389/fcell.2021.674084] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Bone regeneration is a complex, well-orchestrated process based on the interactions between osteogenesis and angiogenesis, observed in both physiological and pathological situations. However, specific conditions (e.g., bone regeneration in large quantity, immunocompromised regenerative process) require additional support. Tissue engineering offers novel strategies. Bone regeneration requires a cell source, a matrix, growth factors and mechanical stimulation. Regenerative cells, endowed with proliferation and differentiation capacities, aim to recover, maintain, and improve bone functions. Vascularization is mandatory for bone formation, skeletal development, and different osseointegration processes. The latter delivers nutrients, growth factors, oxygen, minerals, etc. The development of mesenchymal stromal cells (MSCs) and endothelial progenitor cells (EPCs) cocultures has shown synergy between the two cell populations. The phenomena of osteogenesis and angiogenesis are intimately intertwined. Thus, cells of the endothelial line indirectly foster osteogenesis, and conversely, MSCs promote angiogenesis through different interaction mechanisms. In addition, various studies have highlighted the importance of the microenvironment via the release of extracellular vesicles (EVs). These EVs stimulate bone regeneration and angiogenesis. In this review, we describe (1) the phenomenon of bone regeneration by different sources of MSCs. We assess (2) the input of EPCs in coculture in bone regeneration and describe their contribution to the osteogenic potential of MSCs. We discuss (3) the interaction mechanisms between MSCs and EPCs in the context of osteogenesis: direct or indirect contact, production of growth factors, and the importance of the microenvironment via the release of EVs.
Collapse
Affiliation(s)
- Cyril Bouland
- Department of Stomatology and Maxillofacial Surgery, Saint-Pierre Hospital, Brussels, Belgium.,Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Philippart
- Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.,Department of Stomatology and Maxillofacial Surgery, IRIS South Hospital, Brussels, Belgium
| | - Didier Dequanter
- Department of Stomatology and Maxillofacial Surgery, Saint-Pierre Hospital, Brussels, Belgium.,Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Florent Corrillon
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Loeb
- Department of Stomatology and Maxillofacial Surgery, Saint-Pierre Hospital, Brussels, Belgium.,Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Dominique Bron
- Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.,Department of Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium.,Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.,Department of Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
32
|
Lin Z, Tang X, Wan J, Zhang X, Liu C, Liu T. Functions and mechanisms of circular RNAs in regulating stem cell differentiation. RNA Biol 2021; 18:2136-2149. [PMID: 33896374 DOI: 10.1080/15476286.2021.1913551] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Stem cells are a class of undifferentiated cells with great self-renewal and differentiation capabilities that can differentiate into mature cells in specific tissue types. Stem cell differentiation plays critical roles in body homoeostasis, injury repair and tissue generation. The important functions of stem cell differentiation have resulted in numerous studies focusing on the complex molecular mechanisms and various signalling pathways controlling stem cell differentiation. Circular RNAs (circRNAs) are a novel class of noncoding RNAs with a covalently closed structure present in eukaryotes. Numerous studies have highlighted important biological functions of circRNAs, and they play multiple regulatory roles in various physiological and pathological processes. Importantly, multiple lines of evidence have shown the abnormal expression of numerous circRNAs during stem cell differentiation, and some play a role in regulating stem cell differentiation, highlighting the role of circRNAs as novel biomarkers of stem cell differentiation and novel targets for stem cell-based therapy. In this review, we systematically summarize and discuss recent advances in our understanding of the roles and underlying mechanisms of circRNAs in modulating stem cell differentiation, thus providing guidance for future studies to investigate stem cell differentiation and stem cell-based therapy.Abbreviations: CircRNAs: circular RNAs; ESCs: embryonic stem cells; ADSCs: adipose-derived mesenchymal stem cells; ecircRNAs: exonic circRNAs; EIciRNAs: exon-intron circRNAs; eiRNAs: circular intronic RNAs; tricRNAs: tRNA intronic circRNAs; pol II: polymerase II; snRNP: small nuclear ribonucleoprotein; m6A: N6-methyladenosine; AGO2: Argonaute 2; RBPs: RNA-binding proteins; MBNL: muscleblind-like protein 1; MSCs: mesenchymal stem cells; hiPSCs: human induced pluripotent stem cells; hiPSC-CMs: hiPSC-derived cardiomyocytes; hBMSCs: human bone marrow mesenchymal stem cells; hADSCs: human adipose-derived mesenchymal stem cells; hDPSCs: human dental pulp stem cells; RNA-seq: high-throughput RNA sequencing; HSCs: haematopoietic stem cells; NSCs: neural stem cells; EpSCs: epidermal stem cells; hESCs: human embryonic stem cells; mESCs: murine embryonic stem cells; MNs: motor neurons; SSUP: small subunit processome; BMSCs: bone marrow-derived mesenchymal stem cells; OGN: osteoglycin; GIOP: glucocorticoid‑induced osteoporosis; CDR1as: cerebellar degeneration-related protein 1 transcript; SONFH: steroid-induced osteogenesis of the femoral head; rBMSCs: rat bone marrow-derived mesenchymal stem cells; QUE: quercetin; AcvR1b: activin A receptor type 1B; BSP: bone sialoprotein; mADSCs: mouse ADSCs; PTBP1: polypyrimidine tract-binding protein; ER: endoplasmic reticulum; hUCMSCs: MSCs derived from human umbilical cord; MSMSCs: maxillary sinus membrane stem cells; SCAPs: stem cells from the apical papilla; MyoD: myogenic differentiation protein 1; MSTN: myostatin; MEF2C: myocyte enhancer factor 2C; BCLAF1: BCL2-associated transcription factor 1; EpSCs: epidermal stem cells; ISCs: intestinal stem cells; NSCs: neural stem cells; Lgr5+ ISCs: crypt base columnar cells; ILCs: innate lymphoid cells.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Xianzhe Tang
- Department of Orthopedics, Chenzhou No.1 People's Hospital, Chenzhou, Hunan, China
| | - Jia Wan
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chunfeng Liu
- Department of Orthopedics, Suzhou Kowloon Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Suzhou, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
33
|
Sun B, Qu R, Fan T, Yang Y, Jiang X, Khan AU, Zhou Z, Zhang J, Wei K, Ouyang J, Dai J. Actin polymerization state regulates osteogenic differentiation in human adipose-derived stem cells. Cell Mol Biol Lett 2021; 26:15. [PMID: 33858321 PMCID: PMC8048231 DOI: 10.1186/s11658-021-00259-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/03/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Actin is an essential cellular protein that assembles into microfilaments and regulates numerous processes such as cell migration, maintenance of cell shape, and material transport. METHODS In this study, we explored the effect of actin polymerization state on the osteogenic differentiation of human adipose-derived stem cells (hASCs). The hASCs were treated for 7 days with different concentrations (0, 1, 5, 10, 20, and 50 nM) of jasplakinolide (JAS), a reagent that directly polymerizes F-actin. The effects of the actin polymerization state on cell proliferation, apoptosis, migration, and the maturity of focal adhesion-related proteins were assessed. In addition, western blotting and alizarin red staining assays were performed to assess osteogenic differentiation. RESULTS Cell proliferation and migration in the JAS (0, 1, 5, 10, and 20 nM) groups were higher than in the control group and the JAS (50 nM) group. The FAK, vinculin, paxillin, and talin protein expression levels were highest in the JAS (20 nM) group, while zyxin expression was highest in the JAS (50 nM) group. Western blotting showed that osteogenic differentiation in the JAS (0, 1, 5, 10, 20, and 50 nM) group was enhanced compared with that in the control group, and was strongest in the JAS (50 nM) group. CONCLUSIONS In summary, our data suggest that the actin polymerization state may promote the osteogenic differentiation of hASCs by regulating the protein expression of focal adhesion-associated proteins in a concentration-dependent manner. Our findings provide valuable information for exploring the mechanism of osteogenic differentiation in hASCs.
Collapse
Affiliation(s)
- Bing Sun
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Xin Jiang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Zhitao Zhou
- Central Laboratory, Southern Medical University, Guangzhou, China
| | - Jingliao Zhang
- Department of Foot and Ankle Surgery, Henan Luoyang Orthopedic Hospital, Zhengzhou, China
| | - Kuanhai Wei
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| |
Collapse
|
34
|
Arpornmaeklong P, Sareethammanuwat M, Apinyauppatham K, Boonyuen S. Characteristics and biologic effects of thermosensitive quercetin-chitosan/collagen hydrogel on human periodontal ligament stem cells. J Biomed Mater Res B Appl Biomater 2021; 109:1656-1670. [PMID: 33644957 DOI: 10.1002/jbm.b.34823] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/05/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022]
Abstract
Thermosensitive hydrogels could function as scaffolds and delivery vehicle of natural flavonoids. The current study aimed to investigate effects of chitosan/collagen ratios on properties of thermosensitive beta-glycerophosphate (bGP) chitosan/collagen hydrogels as delivery vehicle of quercetin and then examined effects of quercetin-hydrogels on growth and cell viability of human periodontal ligament stem cells (hPDLSCs). Microstructure and physical, mechanical and antioxidant properties and quercetin release profiles of the hydrogels were investigated. Fourier transform infrared spectroscopy and X-ray powder diffraction analyses were performed to examine gelation process of the hydrogels. Antioxidant assays were conducted to measure antioxidant capacity of quercetin-hydrogels. It was found that bGP-chitosan/collagen hydrogels exhibited porous structures with interconnected pore architecture and could sustain quercetin release. Chitosan content improved well defined porous structure, increased porosity of the hydrogels and decreased releasing rate of quercetin from the hydrogels. The quercetin-bGP-2:1 (wt/wt) chitosan/collagen hydrogels exhibited antioxidant capacity and were able to promote growth of hPDLSCs in a dose dependent manner. In conclusion, the thermosensitive quercetin-bGP-2:1 (wt/wt) chitosan/collagen hydrogel demonstrated optimal properties of scaffolds for bone tissue engineering and sustained release of natural flavonoids. Incorporating quercetin in the chitosan/collagen hydrogel enhanced bioactive microenvironment that supported stem cell encapsulation.
Collapse
Affiliation(s)
- Premjit Arpornmaeklong
- Oral and Maxillofacial Surgery Division, Faculty of Dentistry, Thammasat University-Rangsit campus, Khlong Luang, Pathum Thani, Thailand
| | - Maytha Sareethammanuwat
- Master of Science Program in Dental Implantology, Faculty of Dentistry, Thammasat University-Rangsit campus, Khlong Luang, Pathum Thani, Thailand
| | - Komsan Apinyauppatham
- Oral and Maxillofacial Surgery Division, Faculty of Dentistry, Thammasat University-Rangsit campus, Khlong Luang, Pathum Thani, Thailand
| | - Supakorn Boonyuen
- Department of Chemistry, Faculty of Science and Technology, Thammasat University-Rangsit campus, Khlong Luang, Pathum Thani, Thailand
| |
Collapse
|
35
|
Kaul P, Singh MP, Poonia DR, Jat BR, Seenivasagam RK, Agarwal SP, Garg PK. A Single-Stage Reconstruction of Maxillectomy Defects with Temporalis Muscle Flap—Revisiting the Past. Indian J Surg 2021; 83:107-113. [DOI: 10.1007/s12262-020-02319-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/30/2020] [Indexed: 11/30/2022] Open
|
36
|
Guo Z, Zhao L, Ji S, Long T, Huang Y, Ju R, Tang W, Tian W, Long J. CircRNA-23525 regulates osteogenic differentiation of adipose-derived mesenchymal stem cells via miR-30a-3p. Cell Tissue Res 2021; 383:795-807. [PMID: 33151455 DOI: 10.1007/s00441-020-03305-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/16/2020] [Indexed: 01/08/2023]
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) are considered to be seed cells in bone tissue engineering and emerging evidence indicates that circular RNAs (circRNAs) function in the osteogenic differentiation of ADSCs. The mechanisms of osteoblastic differentiation of ADSCs from the perspective of circRNA modulation are examined in this study. First, circRNA-23525 was upregulated during osteoblastic differentiation of ADSCs. Second, overexpression of circRNA-23525 increased Runx2, ALP and OCN at both mRNA and protein levels. Alkaline phosphatase (ALP) and Alizarin Red staining indicated a similar tendency. Silencing circRNA-23525 produced the opposite effect. Bioinformatics analysis with luciferase assays confirmed that circRNA-23525 functioned as a sponge for miR-30a-3p. In the osteoblastic differentiation of ADSCs, the dynamic expression of miR-30a-3p and circRNA-23525 resulted in an opposite trend at 3, 7 and 14 days. Overexpression of circRNA-23525 downregulated miR-30a-3p and knockdown of circRNA-23525 promoted the expression of miR-30a-3p. Bioinformatics methods and luciferase assays suggested that miR-30a-3p modulated Runx2 expression by targeting 3'UTR. Knockdown of miR-30a-3p facilitated osteogenesis in ADSCs and enhancing miR-30a-3p interfered with the osteogenic process. Finally, circRNA-23525 overexpression significantly increased Runx2 expression, while co-transfection of miR-30a-3p mimics reversed it. Runx2 expression was decreased in circRNA-23525-knockdown ADSCs but expression was rescued by including the miR-30a-3p inhibitor in the osteoblastic process. ALP activity and mineralized bone matrix confirmed the function of circRNA-23525/miR-30a-3p in osteogenesis. Taken together, the current study demonstrated that circRNA-23525 regulates Runx2 expression via targeting miR-30a-3p and is thus a positive regulator in the osteoblastic differentiation of ADSCs.
Collapse
Affiliation(s)
- Zeyou Guo
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Luyang Zhao
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Suhui Ji
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ting Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanling Huang
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Rui Ju
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Wei Tang
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Weidong Tian
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, Chengdu, 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, Chengdu, 610041, People's Republic of China
| | - Jie Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
37
|
Walladbegi J, Schaefer C, Pernevik E, Sämfors S, Kjeller G, Gatenholm P, Sándor GK, Rasmusson L. Three-Dimensional Bioprinting Using a Coaxial Needle with Viscous Inks in Bone Tissue Engineering - An In vitro Study. Ann Maxillofac Surg 2020; 10:370-376. [PMID: 33708582 PMCID: PMC7943998 DOI: 10.4103/ams.ams_288_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 01/22/2023] Open
Abstract
Introduction: Vascularized autologous tissue grafts are considered “gold standard” for the management of larger bony defects in the craniomaxillofacial area. This modality does however carry limitations, such as the absolute requirement for healthy donor tissues and recipient vessels. In addition, the significant morbidity of large bone graft is deterrent to fibula bone flap use. Therefore, less morbid strategies would be beneficial. The purpose of this study was to develop a printing method to manufacture scaffold structure with viable stem cells. Materials and Methods: In total, three different combinations of ground beta tri-calcium phosphate and CELLINK (bioinks) were printed with a nozzle to identify a suitable bioink for three-dimensional printing. Subsequently, a coaxial needle, with three different nozzle gauge combinations, was evaluated for printing of the bioinks. Scaffold structures (grids) were then printed alone and with additional adipose stem cells before being transferred into an active medium and incubated overnight. Following incubation, grid stability was evaluated by assessing the degree of maintained grid outline, and cell viability was determined using the live/dead cell assay. Results: Among the three evaluated combinations of bioinks, two resulted in good printability for bioprinting. Adequate printing was obtained with two out of the three nozzle gauge combinations tested. However, due to the smaller total opening, one combination revealed a better stability. Intact grids with maintained stability were obtained using Ink B23 and Ink B42, and approximately 80% of the printed stem cells were viable following 24 hours. Discussion: Using a coaxial needle enables printing of a stable scaffold with viable stem cells. Furthermore, cell viability is maintained after the bioprinting process.
Collapse
Affiliation(s)
- Java Walladbegi
- Department of Oral and Maxillofacial Surgery, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christian Schaefer
- Department of Oral and Maxillofacial Surgery, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elin Pernevik
- Wallenberg Wood Science Center, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Sanna Sämfors
- Wallenberg Wood Science Center, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Göran Kjeller
- Department of Oral and Maxillofacial Surgery, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Paul Gatenholm
- Wallenberg Wood Science Center, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - George K Sándor
- Department of Oral and Maxillofacial Surgery, Medical Research Center, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Lars Rasmusson
- Department of Oral and Maxillofacial Surgery, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Oral and Maxillofacial Surgery, Linkoping University Hospital, Linkoping, Sweden
| |
Collapse
|
38
|
Pourlak T, Pourlak T, Ghodrati M, Mortazavi A, Dolati S, Yousefi M. Usage of stem cells in oral and maxillofacial region. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2020; 122:441-452. [PMID: 33099018 DOI: 10.1016/j.jormas.2020.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/07/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022]
Abstract
Malformations of the maxillofacial region has disturbing psychosocial effects and causes enormous socioeconomic concerns. The management of maxillofacial defects caused by congenital anomalies, trauma, osteoporotic fractures, periodontitis, or cancer treatment is challenging for oral and maxillofacial surgeons. Numerous approaches have been recommended for the managing of these deficiencies. The traditional treatment for maxillofacial defects or their repair is an intricate process by autologous bone grafts from the scapula, ribs, fibula, or iliac crest origins. Regenerative medicine is well thought-out as a perfect substitute approach for autologous bone grafts to renovate bone deficiencies. The use of stem cells has improved results and offered a technique to reconstruct craniofacial bone defects. The field of tissue engineering for the regeneration of maxillofacial needs integration of biochemical and biomaterial engineering aspects with cell transplantation to generate better-quality biomimetic scaffolds, prevascularize three-dimensional (3D) tissue structures, and engineer the composite interface of diverse facial tissues. In this review, we have discussed the application of different adult stem cells to repair oral and maxillofacial defects in animal models and clinical trials.
Collapse
Affiliation(s)
- T Pourlak
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - T Pourlak
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Ghodrati
- Department of Endodontics, Dental and Periodental Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - A Mortazavi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - S Dolati
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - M Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
39
|
Katagiri T, Kondo K, Shibata R, Hayashida R, Shintani S, Yamaguchi S, Shimizu Y, Unno K, Kikuchi R, Kodama A, Takanari K, Kamei Y, Komori K, Murohara T. Therapeutic angiogenesis using autologous adipose-derived regenerative cells in patients with critical limb ischaemia in Japan: a clinical pilot study. Sci Rep 2020; 10:16045. [PMID: 32994527 PMCID: PMC7525513 DOI: 10.1038/s41598-020-73096-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose-derived regenerative cell (ADRC) is a promising alternative source of autologous somatic stem cells for the repair of damaged tissue. This study aimed to assess the safety and feasibility of autologous ADRC implantation for therapeutic angiogenesis in patients with critical limb ischaemia (CLI). A clinical pilot study—Therapeutic Angiogenesis by Cell Transplantation using ADRCs (TACT-ADRC) study—was initiated in Japan. Adipose tissue was obtained by ordinary liposuction method. Isolated ADRCs were injected into the ischaemic limb. We performed TACT-ADRC procedure in five patients with CLI. At 6 months, no adverse events related to the TACT-ADRC were observed. No patients required major limb amputation, and ischaemic ulcers were partly or completely healed during the 6-month follow-up. In all cases, significant clinical improvements were seen in terms of rest pain and 6-min walking distance. Numbers of circulating CD34+ and CD133+ cells markers of progenitor cell persistently increased after ADRC implantation. The ratio of VEGF-A165b (an anti-angiogenic isoform of VEGF) to total VEGF-A in plasma significantly decreased after ADRC implantation. In vitro experiments, cultured with ADRC-conditioned media (CM) resulted in increased total VEGF-A and decreased VEGF-A165b in C2C12 cells, but not in macrophages. ADRC-CM also increased CD206+ cells expression and decreased TNF-α in macrophages. Autologous ADRC implantation was safe and effective in patients with CLI and could repair damaged tissue via its ability to promote angiogenesis and suppress tissue inflammation.
Collapse
Affiliation(s)
- Takeshi Katagiri
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuhisa Kondo
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Rei Shibata
- Department of Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan.
| | - Ryo Hayashida
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Satoshi Shintani
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shukuro Yamaguchi
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuuki Shimizu
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazumasa Unno
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ryosuke Kikuchi
- Department of Medical Technique, Nagoya University Hospital, Nagoya, Japan
| | - Akio Kodama
- Department of Vascular Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Takanari
- Department of Plastic and Reconstructive Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuzuru Kamei
- Department of Plastic and Reconstructive Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kimihiro Komori
- Department of Vascular Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
40
|
Frazier T, Alarcon A, Wu X, Mohiuddin OA, Motherwell JM, Carlsson AH, Christy RJ, Edwards JV, Mackin RT, Prevost N, Gloster E, Zhang Q, Wang G, Hayes DJ, Gimble JM. Clinical Translational Potential in Skin Wound Regeneration for Adipose-Derived, Blood-Derived, and Cellulose Materials: Cells, Exosomes, and Hydrogels. Biomolecules 2020; 10:E1373. [PMID: 32992554 PMCID: PMC7650547 DOI: 10.3390/biom10101373] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Acute and chronic skin wounds due to burns, pressure injuries, and trauma represent a substantial challenge to healthcare delivery with particular impacts on geriatric, paraplegic, and quadriplegic demographics worldwide. Nevertheless, the current standard of care relies extensively on preventive measures to mitigate pressure injury, surgical debridement, skin flap procedures, and negative pressure wound vacuum measures. This article highlights the potential of adipose-, blood-, and cellulose-derived products (cells, decellularized matrices and scaffolds, and exosome and secretome factors) as a means to address this unmet medical need. The current status of this research area is evaluated and discussed in the context of promising avenues for future discovery.
Collapse
Affiliation(s)
- Trivia Frazier
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (A.A.); (X.W.)
| | - Andrea Alarcon
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (A.A.); (X.W.)
| | - Xiying Wu
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (A.A.); (X.W.)
- LaCell LLC, New Orleans, LA 70148, USA
| | - Omair A. Mohiuddin
- Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Science, University of Karachi, Karachi 75270, Pakistan;
| | | | - Anders H. Carlsson
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA; (A.H.C.); (R.J.C.)
| | - Robert J. Christy
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA; (A.H.C.); (R.J.C.)
| | - Judson V. Edwards
- Southern Regional Research Center-USDA-ARS, New Orleans, LA 70124, USA; (J.V.E.); (R.T.M.); (N.P.)
| | - Robert T. Mackin
- Southern Regional Research Center-USDA-ARS, New Orleans, LA 70124, USA; (J.V.E.); (R.T.M.); (N.P.)
| | - Nicolette Prevost
- Southern Regional Research Center-USDA-ARS, New Orleans, LA 70124, USA; (J.V.E.); (R.T.M.); (N.P.)
| | - Elena Gloster
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA; (E.G.); (Q.Z.); (G.W.)
| | - Qiang Zhang
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA; (E.G.); (Q.Z.); (G.W.)
| | - Guangdi Wang
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA; (E.G.); (Q.Z.); (G.W.)
| | - Daniel J. Hayes
- Department of Biomedical Engineering, State College, Pennsylvania State University, Centre County, PA 16802, USA;
| | - Jeffrey M. Gimble
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (A.A.); (X.W.)
- LaCell LLC, New Orleans, LA 70148, USA
| |
Collapse
|
41
|
Vidal L, Brennan MÁ, Krissian S, De Lima J, Hoornaert A, Rosset P, Fellah BH, Layrolle P. In situ production of pre-vascularized synthetic bone grafts for regenerating critical-sized defects in rabbits. Acta Biomater 2020; 114:384-394. [PMID: 32688088 DOI: 10.1016/j.actbio.2020.07.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/16/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
Abstract
Reconstructing large bone defects caused by severe trauma or resection of tumors remains a challenge for surgeons. A fibula free flap and its vascularized bed can be transplanted to the reconstruction site to achieve healing. However, this technique adds morbidity, and requires microsurgery and sculpting of the bone tissue to adapt the graft to both the vasculature and the anatomy of the defect. The aim of the current study was to evaluate an alternative approach consisting of the in situ production of a pre-vascularized synthetic bone graft and its subsequent transplantation to a critical-sized bone defect. 3D printed chambers containing biphasic calcium phosphate (BCP) granules, perfused by a local vascular pedicle, with or without the addition of stromal vascular fraction (SVF), were subcutaneously implanted into New Zealand White female rabbits. SVF was prepared extemporaneously from autologous adipose tissue, the vascular pedicle was isolated from the inguinal site, while BCP granules alone served as a control group. After 8 weeks, the constructs containing a vascular pedicle exhibited abundant neovascularization with blood vessels sprouting from the pedicle, leading to significantly increased vascularization compared to BCP controls. Pre-vascularized synthetic bone grafts were then transplanted into 15 mm critical-sized segmental ulnar defects for a further 8 weeks. Micro-CT and decalcified histology revealed that pre-vascularization of synthetic bone grafts led to enhanced bone regeneration. This pre-clinical study demonstrates the feasibility and efficacy of the in situ production of pre-vascularized synthetic bone grafts for regenerating large bone defects, thereby addressing an important clinical need. STATEMENT OF SIGNIFICANCE: The current gold standard in large bone defect regeneration is vascularized fibula grafting. An alternative approach consisting of in situ production of a pre-vascularized synthetic bone graft and its subsequent transplantation to a bone defect is presented here. 3D printed chambers were filled with biphasic calcium phosphate granules, supplemented with autologous stromal vascular fraction and an axial vascular pedicle and subcutaneously implanted in inguinal sites. These pre-vascularized synthetic grafts were then transplanted into critical-sized segmental ulnar defects. Micro-CT and decalcified histology revealed that the pre-vascularized synthetic bone grafts led to higher bone regeneration than non-vascularized constructs. An alternative to vascularized fibula grafting is provided and may address an important clinical need for large bone defect reconstruction.
Collapse
|
42
|
Suchyta M, Mardini S. Innovations and Future Directions in Head and Neck Microsurgical Reconstruction. Clin Plast Surg 2020; 47:573-593. [PMID: 32892802 DOI: 10.1016/j.cps.2020.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Head and neck reconstructive microsurgery is constantly innovating because of a combination of multidisciplinary advances. This article examines recent innovations that have affected the field as well as presenting research leading to future advancement. Innovations include the use of virtual surgical planning and three-dimensional printing in craniofacial reconstruction, advances in intraoperative navigation and imaging, as well as postoperative monitoring, development of minimally invasive reconstructive microsurgery techniques, integration of regenerative medicine and stem cell biology with reconstruction, and the dramatic advancement of face transplant.
Collapse
Affiliation(s)
- Marissa Suchyta
- Division of Plastic and Reconstructive Surgery, Mayo Clinic, MA1244W, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Samir Mardini
- Division of Plastic and Reconstructive Surgery, Mayo Clinic, MA1244W, 200 First Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
43
|
Distler T, Fournier N, Grünewald A, Polley C, Seitz H, Detsch R, Boccaccini AR. Polymer-Bioactive Glass Composite Filaments for 3D Scaffold Manufacturing by Fused Deposition Modeling: Fabrication and Characterization. Front Bioeng Biotechnol 2020; 8:552. [PMID: 32671025 PMCID: PMC7326953 DOI: 10.3389/fbioe.2020.00552] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/07/2020] [Indexed: 01/03/2023] Open
Abstract
Critical size bone defects are regularly treated by auto- and allograft transplantation. However, such treatments require to harvest bone from patient donor sites, with often limited tissue availability or risk of donor site morbidity. Not requiring bone donation, three-dimensionally (3D) printed implants and biomaterial-based tissue engineering (TE) strategies promise to be the next generation therapies for bone regeneration. We present here polylactic acid (PLA)-bioactive glass (BG) composite scaffolds manufactured by fused deposition modeling (FDM), involving the fabrication of PLA-BG composite filaments which are used to 3D print controlled open-porous and osteoinductive scaffolds. We demonstrated the printability of PLA-BG filaments as well as the bioactivity and cytocompatibility of PLA-BG scaffolds using pre-osteoblast MC3T3E1 cells. Gene expression analyses indicated the beneficial impact of BG inclusions in FDM scaffolds regarding osteoinduction, as BG inclusions lead to increased osteogenic differentiation of human adipose-derived stem cells in comparison to pristine PLA. Our findings confirm that FDM is a convenient additive manufacturing technology to develop PLA-BG composite scaffolds suitable for bone tissue engineering.
Collapse
Affiliation(s)
- Thomas Distler
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Niklas Fournier
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Alina Grünewald
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Christian Polley
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - Hermann Seitz
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - Rainer Detsch
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
44
|
Ledesma-Martínez E, Mendoza-Núñez VM, Santiago-Osorio E. Mesenchymal Stem Cells for Periodontal Tissue Regeneration in Elderly Patients. J Gerontol A Biol Sci Med Sci 2020; 74:1351-1358. [PMID: 30289440 DOI: 10.1093/gerona/gly227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cell (MSC) grafting is a highly promising alternative strategy for periodontal regeneration in periodontitis, which is one of the primary causes of tooth loss in the elderly. However, aging progressively decreases the proliferative and differentiation potential of MSCs and diminishes their regenerative capacity, which represents a limiting factor for their endogenous use in elderly patients. Therefore, tissue regeneration therapy with MSCs in this age group may require a cellular source without the physiological limitations that MSCs exhibit in aging. In this sense, exogenous or allogeneic MSCs could have a better chance of success in regenerating periodontal tissue in elderly patients. This review examines and synthesizes recent data in support of the use of MSCs for periodontal regenerative therapy in patients. Additionally, we analyze the progress of the therapeutic use of exogenous MSCs in humans.
Collapse
Affiliation(s)
- Edgar Ledesma-Martínez
- Haematopoiesis and Leukaemia Laboratory, Research Unit on Cell Differentiation and Cancer, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Edelmiro Santiago-Osorio
- Haematopoiesis and Leukaemia Laboratory, Research Unit on Cell Differentiation and Cancer, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
45
|
Abu-Shahba AG, Gebraad A, Kaur S, Paananen RO, Peltoniemi H, Seppänen-Kaijansinkko R, Mannerström B. Proangiogenic Hypoxia-Mimicking Agents Attenuate Osteogenic Potential of Adipose Stem/Stromal Cells. Tissue Eng Regen Med 2020; 17:477-493. [PMID: 32449039 PMCID: PMC7392999 DOI: 10.1007/s13770-020-00259-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Insufficient vascularization hampers bone tissue engineering strategies for reconstructing large bone defects. Delivery of prolyl-hydroxylase inhibitors (PHIs) is an interesting approach to upregulate vascular endothelial growth factor (VEGF) by mimicking hypoxic stabilization of hypoxia-inducible factor-1alpha (HIF-1α). This study assessed two PHIs: dimethyloxalylglycine (DMOG) and baicalein for their effects on human adipose tissue-derived mesenchymal stem/stromal cells (AT-MSCs). METHODS Isolated AT-MSCs were characterized and treated with PHIs to assess the cellular proliferation response. Immunostaining and western-blots served to verify the HIF-1α stabilization response. The optimized concentrations for long-term treatment were tested for their effects on the cell cycle, apoptosis, cytokine secretion, and osteogenic differentiation of AT-MSCs. Gene expression levels were evaluated for alkaline phosphatase (ALPL), bone morphogenetic protein 2 (BMP2), runt-related transcription factor 2 (RUNX2), vascular endothelial growth factor A (VEGFA), secreted phosphoprotein 1 (SPP1), and collagen type I alpha 1 (COL1A1). In addition, stemness-related genes Kruppel-like factor 4 (KLF4), Nanog homeobox (NANOG), and octamer-binding transcription factor 4 (OCT4) were assessed. RESULTS PHIs stabilized HIF-1α in a dose-dependent manner and showed evident dose- and time dependent antiproliferative effects. With doses maintaining proliferation, DMOG and baicalein diminished the effect of osteogenic induction on the expression of RUNX2, ALPL, and COL1A1, and suppressed the formation of mineralized matrix. Suppressed osteogenic response of AT-MSCs was accompanied by an upregulation of stemness-related genes. CONCLUSION PHIs significantly reduced the osteogenic differentiation of AT-MSCs and rather upregulated stemness-related genes. PHIs proangiogenic potential should be weighed against their longterm direct inhibitory effects on the osteogenic differentiation of AT-MSCs.
Collapse
Affiliation(s)
- Ahmed G Abu-Shahba
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, PO Box 63, 00014, Helsinki, Finland.
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tanta University, El-Gaish, Tanta Qism 2, Tanta, Gharbia Governorate, Egypt.
| | - Arjen Gebraad
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, PO Box 63, 00014, Helsinki, Finland
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Kalevantie 4, 33100, Tampere, Finland
| | - Sippy Kaur
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, PO Box 63, 00014, Helsinki, Finland
| | - Riku O Paananen
- Helsinki Eye Lab, Ophthalmology, University of Helsinki and Helsinki University Hospital, Yliopistonkatu 4, 00100, Helsinki, Finland
| | - Hilkka Peltoniemi
- Laser Tilkka Ltd, Mannerheimintie 164, 2. krs, Helsinki, 00300, Finland
| | - Riitta Seppänen-Kaijansinkko
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, PO Box 63, 00014, Helsinki, Finland
| | - Bettina Mannerström
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, PO Box 63, 00014, Helsinki, Finland
| |
Collapse
|
46
|
Regeneration of segmental defects in metatarsus of sheep with vascularized and customized 3D-printed calcium phosphate scaffolds. Sci Rep 2020; 10:7068. [PMID: 32341459 PMCID: PMC7184564 DOI: 10.1038/s41598-020-63742-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/31/2020] [Indexed: 11/12/2022] Open
Abstract
Although autografts are considered to be the gold standard treatment for reconstruction of large bone defects resulting from trauma or diseases, donor site morbidity and limited availability restrict their use. Successful bone repair also depends on sufficient vascularization and to address this challenge, novel strategies focus on the development of vascularized biomaterial scaffolds. This pilot study aimed to investigate the feasibility of regenerating large bone defects in sheep using 3D-printed customized calcium phosphate scaffolds with or without surgical vascularization. Pre-operative computed tomography scans were performed to visualize the metatarsus and vasculature and to fabricate customized scaffolds and surgical guides by 3D printing. Critical-sized segmental defects created in the mid-diaphyseal region of the metatarsus were either left empty or treated with the 3D scaffold alone or in combination with an axial vascular pedicle. Bone regeneration was evaluated 1, 2 and 3 months post-implantation. After 3 months, the untreated defect remained non-bridged while the 3D scaffold guided bone regeneration. The presence of the vascular pedicle further enhanced bone formation. Histology confirmed bone growth inside the porous 3D scaffolds with or without vascular pedicle inclusion. Taken together, this pilot study demonstrated the feasibility of precised pre-surgical planning and reconstruction of large bone defects with 3D-printed personalized scaffolds.
Collapse
|
47
|
Tatullo M, Marrelli B, Palmieri F, Amantea M, Nuzzolese M, Valletta R, Zavan B, De Vito D. Promising Scaffold-Free Approaches in Translational Dentistry. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3001. [PMID: 32357435 PMCID: PMC7246530 DOI: 10.3390/ijerph17093001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 12/28/2022]
Abstract
Regenerative medicine has recently improved the principal therapies in several medical fields. In the past ten years, the continuous search for novel approaches to treat the most common dental pathologies has developed a new branch called regenerative dentistry. The main research fields of translational dentistry involve biomimetic materials, orally derived stem cells, and tissue engineering to populate scaffolds with autologous stem cells and bioactive growth factors. The scientific literature has reported two main research trends in regenerative dentistry: scaffold-based and scaffold-free approaches. This article aims to critically review the main biological properties of scaffold-free regenerative procedures in dentistry. The most impactful pros and cons of the exosomes, the leading role of hypoxia-based mesenchymal stem cells (MSCs), and the strategic use of heat shock proteins in regenerative dentistry will be highlighted and discussed in terms of the use of such tools in dental regeneration and repair.
Collapse
Affiliation(s)
- Marco Tatullo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, 70122 Bari, Italy;
- Marrelli Health, Tecnologica Research Institute, 88900 Crotone, Italy; (B.M.); (F.P.); (M.A.)
- Department of Therapeutic Dentistry, Sechenov University Russia, Moscow 119146, Russia
| | - Benedetta Marrelli
- Marrelli Health, Tecnologica Research Institute, 88900 Crotone, Italy; (B.M.); (F.P.); (M.A.)
| | - Francesca Palmieri
- Marrelli Health, Tecnologica Research Institute, 88900 Crotone, Italy; (B.M.); (F.P.); (M.A.)
| | - Massimiliano Amantea
- Marrelli Health, Tecnologica Research Institute, 88900 Crotone, Italy; (B.M.); (F.P.); (M.A.)
| | | | - Rosa Valletta
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples, 80131 Naples, Italy;
| | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Danila De Vito
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, 70122 Bari, Italy;
| |
Collapse
|
48
|
Safarova Y, Umbayev B, Hortelano G, Askarova S. Mesenchymal stem cells modifications for enhanced bone targeting and bone regeneration. Regen Med 2020; 15:1579-1594. [PMID: 32297546 DOI: 10.2217/rme-2019-0081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In pathological bone conditions (e.g., osteoporotic fractures or critical size bone defects), increasing the pool of osteoblast progenitor cells is a promising therapeutic approach to facilitate bone healing. Since mesenchymal stem cells (MSCs) give rise to the osteogenic lineage, a number of clinical trials investigated the potential of MSCs transplantation for bone regeneration. However, the engraftment of transplanted cells is often hindered by insufficient oxygen and nutrients supply and the tendency of MSCs to home to different sites of the body. In this review, we discuss various approaches of MSCs transplantation for bone regeneration including scaffold and hydrogel constructs, genetic modifications and surface engineering of the cell membrane aimed to improve homing and increase cell viability, proliferation and differentiation.
Collapse
Affiliation(s)
- Yuliya Safarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.,School of Engineering & Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bauyrzhan Umbayev
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Gonzalo Hortelano
- School of Sciences & Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
49
|
Tatullo M, Riccitiello F, Rengo S, Marrelli B, Valletta R, Spagnuolo G. Management of Endodontic and Periodontal Lesions: the Role of Regenerative Dentistry and Biomaterials. Dent J (Basel) 2020; 8:E32. [PMID: 32260114 PMCID: PMC7346003 DOI: 10.3390/dj8020032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 02/03/2023] Open
Abstract
Regenerative dentistry represents a novel interdisciplinary approach involving biomaterials, several molecules and mesenchymal stem cells (MSCs), preferably derived from oral tissues. The pivotal role of MSCs depends on the fact that they can differentiate into different cell lineages and have the strategic role to release bioactive substances that stimulate the renewal and regeneration of damaged tissues. The role of regenerative dentistry is promising in all the branches of dentistry: the most intriguing application is related to the management of endodontic and periodontal defects, overcoming the surgical approach and the implantology as a consequence of a poorly efficient therapeutic plan.
Collapse
Affiliation(s)
- Marco Tatullo
- Department of Medical Sciences, Neurosciences and Sense Organs, University of Bari, 70124 Bari, Italy
| | - Francesco Riccitiello
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Napoli Federico II, 80131 Naples, Italy; (F.R.); (R.V.); (G.S.)
| | - Sandro Rengo
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Benedetta Marrelli
- Marrelli Health-Healthcare Center, St. Enrico Fermi, 88900 Crotone, Italy;
| | - Rosa Valletta
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Napoli Federico II, 80131 Naples, Italy; (F.R.); (R.V.); (G.S.)
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Napoli Federico II, 80131 Naples, Italy; (F.R.); (R.V.); (G.S.)
| |
Collapse
|
50
|
Shafaei H, Kalarestaghi H. Adipose-derived stem cells: An appropriate selection for osteogenic differentiation. J Cell Physiol 2020; 235:8371-8386. [PMID: 32239731 DOI: 10.1002/jcp.29681] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are a major component of various forms of tissue engineering. MSCs have self-renewal and multidifferential potential. Osteogenic differentiation of MSCs is an area of attention in bone regeneration. One form of MSCs are adipose-derived stem cells (ASCs), which can be simply harvested and differentiated into several cell lineages, such as chondrocytes, adipocytes, or osteoblasts. Due to special properties, ASCs are frequently used in vitro and in vivo bone regeneration. Identifying factors involved in osteogenic differentiation of ASCs is important for better understanding the mechanism of osteogenic differentiation. Different methods are used to stimulate osteogenesis of ASCs in literature, including common osteogenic media, growth factors, hormones, hypoxia, mechanical and chemical stimuli, genetic modification, and nanotechnology. This review article provides an overview describing the isolation procedure, characterization, properties, current methods for osteogenic differentiation of ASCs, and their basic biological mechanism.
Collapse
Affiliation(s)
- Hajar Shafaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Kalarestaghi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|