1
|
Cao Z, Lei L, Zhou Z, Xu S, Wang L, Gong W, Zhang Q, Pan B, Zhang G, Yuan Q, Cui L, Zheng M, Xu T, Wang Y, Zhang S, Liu P. Apolipoprotein A-IV and its derived peptide, T55-121, improve glycemic control and increase energy expenditure. LIFE METABOLISM 2024; 3:loae010. [PMID: 39872504 PMCID: PMC11748984 DOI: 10.1093/lifemeta/loae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 01/30/2025]
Abstract
It is crucial to understand the glucose control within our bodies. Bariatric/metabolic surgeries, including laparoscopic sleeve gastrectomy (LSG) and Roux-en-Y gastric bypass (RYGB), provide an avenue for exploring the potential key factors involved in maintaining glucose homeostasis since these surgeries have shown promising results in improving glycemic control among patients with severe type 2 diabetes (T2D). For the first time, a markedly altered population of serum proteins in patients after LSG was discovered and analyzed through proteomics. Apolipoprotein A-IV (apoA-IV) was revealed to be increased dramatically in diabetic obese patients following LSG, and a similar effect was observed in patients after RYGB surgery. Moreover, recombinant apoA-IV protein treatment was proven to enhance insulin secretion in isolated human islets. These results showed that apoA-IV may play a crucial role in glycemic control in humans, potentially through enhancing insulin secretion in human islets. ApoA-IV was further shown to enhance energy expenditure and improve glucose tolerance in diabetic rodents, through stimulating glucose-dependent insulin secretion in pancreatic β cells, partially via Gαs-coupled GPCR/cAMP (G protein-coupled receptor/cyclic adenosine monophosphate) signaling. Furthermore, T55-121, truncated peptide 55-121 of apoA-IV, was discovered to mediate the function of apoA-IV. These collective findings contribute to our understanding of the relationship between apoA-IV and glycemic control, highlighting its potential as a biomarker or therapeutic target in managing and improving glucose regulation.
Collapse
Affiliation(s)
- Zhen Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Lei
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ziyun Zhou
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Shimeng Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Linlin Wang
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (Bioland Laboratory), Guangzhou, Guangdong 510005, China
| | - Weikang Gong
- Department of Computer Science, School of Computing, National University of Singapore, Singapore 117417, Singapore
| | - Qi Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Pan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoxin Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Quan Yuan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Liujuan Cui
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (Bioland Laboratory), Guangzhou, Guangdong 510005, China
| | - You Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuyan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing 100015, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Onaolapo MC, Alabi OD, Akano OP, Olateju BS, Okeleji LO, Adeyemi WJ, Ajayi AF. Lecithin and cardiovascular health: a comprehensive review. Egypt Heart J 2024; 76:92. [PMID: 39001966 PMCID: PMC11246377 DOI: 10.1186/s43044-024-00523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Cardiovascular diseases are one of the prime causes of mortality globally. Therefore, concerted efforts are made to prevent or manage disruptions from normal functioning of the cardiovascular system. Disruption in lipid metabolism is a major contributor to cardiovascular dysfunction. This review examines how lecithin impacts lipid metabolism and cardiovascular health. It emphasizes lecithin's ability to reduce excess low-density lipoproteins (LDL) while specifically promoting the synthesis of high-density lipoprotein (HDL) particles, thus contributing to clearer understanding of its role in cardiovascular well-being. Emphasizing the importance of lecithin cholesterol acyltransferase (LCAT) in the reverse cholesterol transport (RCT) process, the article delves into its contribution in removing surplus cholesterol from cells. This review aims to clarify existing literature on lipid metabolism, providing insights for targeted strategies in the prevention and management of atherosclerotic cardiovascular disease (ASCVD). This review summarizes the potential of lecithin in cardiovascular health and the role of LCAT in cholesterol metabolism modulation, based on articles from 2000 to 2023 sourced from databases like MEDLINE, PubMed and the Scientific Electronic Library Online. MAIN BODY While studies suggest a positive correlation between increased LCAT activities, reduced LDL particle size and elevated serum levels of triglyceride-rich lipoprotein (TRL) markers in individuals at risk of ASCVD, the review acknowledges existing controversies. The precise nature of LCAT's potential adverse effects remains uncertain, with varying reports in the literature. Notably, gastrointestinal symptoms such as diarrhea and nausea have been sporadically documented. CONCLUSIONS The review calls for a comprehensive investigation into the complexities of LCAT's impact on cardiovascular health, recognizing the need for a nuanced understanding of its potential drawbacks. Despite indications of potential benefits, conflicting findings warrant further research to clarify LCAT's role in atherosclerosis.
Collapse
Affiliation(s)
- Moyinoluwa Comfort Onaolapo
- Department of Physiology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Oyo State, Nigeria
- Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria
| | - Olubunmi Dupe Alabi
- Department of Nutrition and Dietetics, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | | | | | | | | | - Ayodeji Folorunsho Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Oyo State, Nigeria.
- Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria.
- Department of Physiology, Adeleke University, Ede, Osun State, Nigeria.
| |
Collapse
|
3
|
Carriles J, Nguewa P, González-Gaitano G. Advances in Biomedical Applications of Solution Blow Spinning. Int J Mol Sci 2023; 24:14757. [PMID: 37834204 PMCID: PMC10572924 DOI: 10.3390/ijms241914757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
In recent years, Solution Blow Spinning (SBS) has emerged as a new technology for the production of polymeric, nanocomposite, and ceramic materials in the form of nano and microfibers, with similar features to those achieved by other procedures. The advantages of SBS over other spinning methods are the fast generation of fibers and the simplicity of the experimental setup that opens up the possibility of their on-site production. While producing a large number of nanofibers in a short time is a crucial factor in large-scale manufacturing, in situ generation, for example, in the form of sprayable, multifunctional dressings, capable of releasing embedded active agents on wounded tissue, or their use in operating rooms to prevent hemostasis during surgical interventions, open a wide range of possibilities. The interest in this spinning technology is evident from the growing number of patents issued and articles published over the last few years. Our focus in this review is on the biomedicine-oriented applications of SBS for the production of nanofibers based on the collection of the most relevant scientific papers published to date. Drug delivery, 3D culturing, regenerative medicine, and fabrication of biosensors are some of the areas in which SBS has been explored, most frequently at the proof-of-concept level. The promising results obtained demonstrate the potential of this technology in the biomedical and pharmaceutical fields.
Collapse
Affiliation(s)
- Javier Carriles
- Department of Chemistry, Facultad de Ciencias, University of Navarra, 31080 Pamplona, Spain;
| | - Paul Nguewa
- ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, University of Navarra, Irunlarrea 1, 31080 Pamplona, Spain
| | | |
Collapse
|
4
|
Rani A, Marsche G. A Current Update on the Role of HDL-Based Nanomedicine in Targeting Macrophages in Cardiovascular Disease. Pharmaceutics 2023; 15:1504. [PMID: 37242746 PMCID: PMC10221824 DOI: 10.3390/pharmaceutics15051504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
High-density lipoproteins (HDL) are complex endogenous nanoparticles involved in important functions such as reverse cholesterol transport and immunomodulatory activities, ensuring metabolic homeostasis and vascular health. The ability of HDL to interact with a plethora of immune cells and structural cells places it in the center of numerous disease pathophysiologies. However, inflammatory dysregulation can lead to pathogenic remodeling and post-translational modification of HDL, rendering HDL dysfunctional or even pro-inflammatory. Monocytes and macrophages play a critical role in mediating vascular inflammation, such as in coronary artery disease (CAD). The fact that HDL nanoparticles have potent anti-inflammatory effects on mononuclear phagocytes has opened new avenues for the development of nanotherapeutics to restore vascular integrity. HDL infusion therapies are being developed to improve the physiological functions of HDL and to quantitatively restore or increase the native HDL pool. The components and design of HDL-based nanoparticles have evolved significantly since their initial introduction with highly anticipated results in an ongoing phase III clinical trial in subjects with acute coronary syndrome. The understanding of mechanisms involved in HDL-based synthetic nanotherapeutics is critical to their design, therapeutic potential and effectiveness. In this review, we provide a current update on HDL-ApoA-I mimetic nanotherapeutics, highlighting the scope of treating vascular diseases by targeting monocytes and macrophages.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
5
|
Erdi M, Saruwatari MS, Rozyyev S, Acha C, Ayyub OB, Sandler AD, Kofinas P. Controlled Release of a Therapeutic Peptide in Sprayable Surgical Sealant for Prevention of Postoperative Abdominal Adhesions. ACS APPLIED MATERIALS & INTERFACES 2023:10.1021/acsami.3c00283. [PMID: 36884271 PMCID: PMC10485170 DOI: 10.1021/acsami.3c00283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Formation of asymmetric, rigid scar tissue known as surgical adhesions is caused by traumatic disruption of mesothelial-lined surfaces in surgery. A widely adopted prophylactic barrier material (Seprafilm) for the treatment of intra-abdominal adhesions is applied operatively as a pre-dried hydrogel sheet but has reduced translational efficacy due its brittle mechanical properties. Topically administered peritoneal dialysate (Icodextrin) and anti-inflammatory drugs have failed to prevent adhesions due to an uncontrolled release profile. Hence, inclusion of a targeted therapeutic into a solid barrier host matrix with improved mechanical properties could provide dual utility in adhesion prevention and as a surgical sealant. Spray deposition of poly(lactide-co-caprolactone) (PLCL) polymer fibers through solution blow spinning has yielded a tissue-adherent barrier material with previously reported adhesion prevention efficacy due to a surface erosion mechanism that inhibits deposition of inflamed tissue. However, such an approach uniquely presents an avenue for controlled therapeutic release through mechanisms of diffusion and degradation. Such a rate is kinetically tuned via facile blending of "high" molecular weight (HMW) and "low" molecular weight (LMW) PLCL with slow and fast biodegradation rates, respectively. Here, we explore viscoelastic blends of HMW PLCL (70% w/v) and LMW PLCL (30% w/v) as a host matrix for anti-inflammatory drug delivery. In this work, COG133, an apolipoprotein E (ApoE) mimetic peptide with potent anti-inflammatory properties was selected and tested. In vitro studies with PLCL blends presented low (∼30%) and high (∼80%) percent release profiles over a 14-day period based on the nominal molecular weight of the HMW PLCL component. Two independent mouse models of cecal ligation and cecal anastomosis significantly reduced adhesion severity versus Seprafilm, COG133 liquid suspension, and no treatment control. The synergy of physical and chemical methods in a barrier material with proven preclinical studies highlights the value of COG133-loaded PLCL fiber mats in effectively dampening the formation of severe abdominal adhesions.
Collapse
Affiliation(s)
- Metecan Erdi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Michele S Saruwatari
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Joseph E. Robert Jr. Center for Surgical Care, Children's National Medical Center, Washington, District of Columbia 20010, United States
| | - Selim Rozyyev
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Joseph E. Robert Jr. Center for Surgical Care, Children's National Medical Center, Washington, District of Columbia 20010, United States
| | - Christopher Acha
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Omar B Ayyub
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Anthony D Sandler
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Joseph E. Robert Jr. Center for Surgical Care, Children's National Medical Center, Washington, District of Columbia 20010, United States
| | - Peter Kofinas
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
6
|
Benitez Amaro A, Solanelles Curco A, Garcia E, Julve J, Rives J, Benitez S, Llorente Cortes V. Apolipoprotein and LRP1-Based Peptides as New Therapeutic Tools in Atherosclerosis. J Clin Med 2021; 10:jcm10163571. [PMID: 34441867 PMCID: PMC8396846 DOI: 10.3390/jcm10163571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/17/2022] Open
Abstract
Apolipoprotein (Apo)-based mimetic peptides have been shown to reduce atherosclerosis. Most of the ApoC-II and ApoE mimetics exert anti-atherosclerotic effects by improving lipid profile. ApoC-II mimetics reverse hypertriglyceridemia and ApoE-based peptides such as Ac-hE18A-NH2 reduce cholesterol and triglyceride (TG) levels in humans. Conversely, other classes of ApoE and ApoA-I mimetic peptides and, more recently, ApoJ and LRP1-based peptides, exhibit several anti-atherosclerotic actions in experimental models without influencing lipoprotein profile. These other mimetic peptides display at least one atheroprotective mechanism such as providing LDL stability against mechanical modification or conferring protection against the action of lipolytic enzymes inducing LDL aggregation in the arterial intima. Other anti-atherosclerotic effects exerted by these peptides also include protection against foam cell formation and inflammation, and induction of reverse cholesterol transport. Although the underlying mechanisms of action are still poorly described, the recent findings suggest that these mimetics could confer atheroprotection by favorably influencing lipoprotein function rather than lipoprotein levels. Despite the promising results obtained with peptide mimetics, the assessment of their stability, atheroprotective efficacy and tissue targeted delivery are issues currently under progress.
Collapse
Affiliation(s)
- Aleyda Benitez Amaro
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (A.B.A.); (E.G.)
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain;
| | | | - Eduardo Garcia
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (A.B.A.); (E.G.)
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain;
| | - Josep Julve
- Metabolic Basis of Cardiovascular Risk Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Jose Rives
- Biochemistry Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08016 Barcelona, Spain
| | - Sonia Benitez
- Cardiovascular Biochemistry Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Correspondence: (S.B.); or (V.L.C.)
| | - Vicenta Llorente Cortes
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (A.B.A.); (E.G.)
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain;
- CIBERCV, Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (S.B.); or (V.L.C.)
| |
Collapse
|
7
|
Husain MA, Laurent B, Plourde M. APOE and Alzheimer's Disease: From Lipid Transport to Physiopathology and Therapeutics. Front Neurosci 2021; 15:630502. [PMID: 33679311 PMCID: PMC7925634 DOI: 10.3389/fnins.2021.630502] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/20/2021] [Indexed: 12/23/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterized by extracellular amyloid β (Aβ) and intraneuronal tau protein aggregations. One risk factor for developing AD is the APOE gene coding for the apolipoprotein E protein (apoE). Humans have three versions of APOE gene: ε2, ε3, and ε4 allele. Carrying the ε4 allele is an AD risk factor while carrying the ε2 allele is protective. ApoE is a component of lipoprotein particles in the plasma at the periphery, as well as in the cerebrospinal fluid (CSF) and in the interstitial fluid (ISF) of brain parenchyma in the central nervous system (CNS). ApoE is a major lipid transporter that plays a pivotal role in the development, maintenance, and repair of the CNS, and that regulates multiple important signaling pathways. This review will focus on the critical role of apoE in AD pathogenesis and some of the currently apoE-based therapeutics developed in the treatment of AD.
Collapse
Affiliation(s)
- Mohammed Amir Husain
- Centre de Recherche Sur le Vieillissement, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Laurent
- Centre de Recherche Sur le Vieillissement, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mélanie Plourde
- Centre de Recherche Sur le Vieillissement, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
8
|
Paul S, Gangwar A, Bhargava K, Ahmad Y. D4F prophylaxis enables redox and energy homeostasis while preventing inflammation during hypoxia exposure. Biomed Pharmacother 2021; 133:111083. [PMID: 33378979 DOI: 10.1016/j.biopha.2020.111083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/18/2020] [Accepted: 11/28/2020] [Indexed: 02/02/2023] Open
Abstract
Apo-A1 is correlated with conditions like hyperlipidemia, cardiovascular diseases, high altitude pulmonary edema and etc. where hypoxia constitutes an important facet.Hypoxia causes oxidative stress, vaso-destructive and inflammatory outcomes.Apo-A1 is reported to have vasoprotective, anti-oxidative, anti-apoptotic, and anti-inflammatory effects. However, effects of Apo-A1 augmentation during hypoxia exposure are unknown.In this study, we investigated the effects of exogenously supplementing Apo-A1-mimetic peptide on SD rats during hypoxia exposure. For easing the processes of delivery, absorption and bio-availability, Apo-A1 mimetic peptide D4F was used. The rats were given 10 mg/kg BW dose (i.p.) of D4F for 7 days and then exposed to hypoxia. D4F was observed to attenuate both oxidative stress and inflammation during hypoxic exposure. D4F improved energy homeostasis during hypoxic exposure. D4F did not affect HIF-1a levels during hypoxia but increased MnSOD levels while decreasing CRP and Apo-B levels. D4F showed promise as a prophylactic against hypoxia exposure.
Collapse
Affiliation(s)
- Subhojit Paul
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Anamika Gangwar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Kalpana Bhargava
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Yasmin Ahmad
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India.
| |
Collapse
|
9
|
Gou S, Wang L, Zhong C, Chen X, Ouyang X, Li B, Bao G, Liu H, Zhang Y, Ni J. A novel apoA-I mimetic peptide suppresses atherosclerosis by promoting physiological HDL function in apoE -/- mice. Br J Pharmacol 2020; 177:4627-4644. [PMID: 32726461 DOI: 10.1111/bph.15213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Apolipoprotein A-I (apoA-I) mimetic peptides (AAMPs) are short peptides that can mimic the physiological effects of apoA-I, including the suppression of atherosclerosis by reversely transporting peripheral cholesterol to the liver. As the hydrophobicity of apoA-I is considered important for its lipid transport, novel AAMPs were designed and synthesized in this study by gradually increasing the hydrophobicity of the parent peptide, and their anti-atherosclerotic effects were tested. EXPERIMENTAL APPROACH Seventeen new AAMPs (P1-P17) with incrementally increased hydrophobicity were designed and synthesized by replacing the amino acids 221-240 of apoA-I (VLESFKVSFLSALEEYTKKL). Their effects on cholesterol efflux were evaluated. Their cytotoxicity and haemolytic activity were also measured. The in vitro mechanism of the action of the new peptides was explored. Adult apolipoprotein E-/- mice were used to evaluate the anti-atherosclerotic activity of the best candidate, and the mechanistic basis of its anti-atherosclerotic effects was explored. KEY RESULTS Seventeen new AAMPs (P1-P17) were synthesized, and their cholesterol efflux activity and cytotoxicity were closely related to their hydrophobicity. P12 (FLEKLKELLEHLKELLTKLL) was the best candidate and most strongly promoted cholesterol efflux among the non-toxic peptides (P1-P12). With its phospholipid affinity, P12 facilitated cholesterol transport through the ATP-binding cassette transporter A1. In vivo, P12 exhibited prominent anti-atherosclerotic activity via coupling with HDL. CONCLUSION AND IMPLICATIONS P12 featured adequate hydrophobicity, which ensured its efficient binding with cytomembrane phospholipids, cholesterol and HDL, and provided a basis for its ability to reversely transport cholesterol and treat atherosclerosis.
Collapse
Affiliation(s)
- Sanhu Gou
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Li Wang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Chao Zhong
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xinyue Chen
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xu Ouyang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Beibei Li
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Guangjun Bao
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hui Liu
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yun Zhang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jingman Ni
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Mamun AA, Uddin MS, Bin Bashar MF, Zaman S, Begum Y, Bulbul IJ, Islam MS, Sarwar MS, Mathew B, Amran MS, Md Ashraf G, Bin-Jumah MN, Mousa SA, Abdel-Daim MM. Molecular Insight into the Therapeutic Promise of Targeting APOE4 for Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5086250. [PMID: 32509144 PMCID: PMC7245681 DOI: 10.1155/2020/5086250] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/17/2020] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that causes chronic cognitive dysfunction. Most of the AD cases are late onset, and the apolipoprotein E (APOE) isoform is a key genetic risk factor. The APOE gene has 3 key alleles in humans including APOE2, APOE3, and APOE4. Among them, APOE4 is the most potent genetic risk factor for late-onset AD (LOAD), while APOE2 has a defensive effect. Research data suggest that APOE4 leads to the pathogenesis of AD through various processes such as accelerated beta-amyloid aggregations that raised neurofibrillary tangle formation, cerebrovascular diseases, aggravated neuroinflammation, and synaptic loss. However, the precise mode of actions regarding in what way APOE4 leads to AD pathology remains unclear. Since APOE contributes to several pathological pathways of AD, targeting APOE4 might serve as a promising strategy for the development of novel drugs to combat AD. In this review, we focus on the recent studies about APOE4-targeted therapeutic strategies that have been advanced in animal models and are being prepared for use in humans for the management of AD.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md. Fahim Bin Bashar
- Department of Pharmacy, University of Development Alternative, Dhaka, Bangladesh
| | - Sonia Zaman
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Yesmin Begum
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | | | | | - Md. Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, New York, NY 12144, USA
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
11
|
Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment. Pharmacol Rev 2020; 72:152-190. [PMID: 31831519 DOI: 10.1124/pr.119.017897] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ria de Haas
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Kornmueller K, Vidakovic I, Prassl R. Artificial High Density Lipoprotein Nanoparticles in Cardiovascular Research. Molecules 2019; 24:E2829. [PMID: 31382521 PMCID: PMC6695986 DOI: 10.3390/molecules24152829] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Lipoproteins are endogenous nanoparticles which are the major transporter of fats and cholesterol in the human body. They play a key role in the regulatory mechanisms of cardiovascular events. Lipoproteins can be modified and manipulated to act as drug delivery systems or nanocarriers for contrast agents. In particular, high density lipoproteins (HDL), which are the smallest class of lipoproteins, can be synthetically engineered either as nascent HDL nanodiscs or spherical HDL nanoparticles. Reconstituted HDL (rHDL) particles are formed by self-assembly of various lipids and apolipoprotein AI (apo-AI). A variety of substances including drugs, nucleic acids, signal emitting molecules, or dyes can be loaded, making them efficient nanocarriers for therapeutic applications or medical diagnostics. This review provides an overview about synthesis techniques, physicochemical properties of rHDL nanoparticles, and structural determinants for rHDL function. We discuss recent developments utilizing either apo-AI or apo-AI mimetic peptides for the design of pharmaceutical rHDL formulations. Advantages, limitations, challenges, and prospects for clinical translation are evaluated with a special focus on promising strategies for the treatment and diagnosis of atherosclerosis and cardiovascular diseases.
Collapse
Affiliation(s)
- Karin Kornmueller
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Ivan Vidakovic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Ruth Prassl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria.
| |
Collapse
|
13
|
Babashamsi MM, Koukhaloo SZ, Halalkhor S, Salimi A, Babashamsi M. ABCA1 and metabolic syndrome; a review of the ABCA1 role in HDL-VLDL production, insulin-glucose homeostasis, inflammation and obesity. Diabetes Metab Syndr 2019; 13:1529-1534. [PMID: 31336517 DOI: 10.1016/j.dsx.2019.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/05/2019] [Indexed: 12/12/2022]
Abstract
ATP-binding cassette transporter A1 (ABCA1) is an integral cell-membrane protein that mediates the rate-limiting step of high density lipoprotein (HDL) biogenesis and suppression of inflammation by triggering a number of signaling pathways via interacting with an apolipoprotein acceptor. The hepatic ABCA1 is involved in regulation of very low density lipoprotein (VLDL) production by affecting the apolipoprotein B trafficking and lipidation of VLDL particles. This protein is involved in protecting the function of pancreatic β-cells and insulin secretion by cholesterol homeostasis. Adipose tissue lipolysis is associated with ABCA1 activity. This transporter is involved in controlling obesity and insulin sensitivity by regulating triglyceride (TG) lipolysis and influencing on adiponectin, visfatin, leptin, and GLUT4 genes expression. The ABCA1 of skeletal muscle cells play a role in increasing the glucose uptake by enhancing the Akt phosphorylation and transferring GLUT4 to the plasma membrane. Abnormal status of ABCA1-regulated phenotypes is observed in metabolic syndrome. This syndrome is associated with the occurrence of many diseases. This review is a summary of the role of ABCA1 in HDL and VLDL production, homeostasis of insulin and glucose, suppression of inflammation and obesity controlling to provide a better insight into the association of this protein with metabolic syndrome.
Collapse
Affiliation(s)
| | | | - Sohrab Halalkhor
- Department of Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ali Salimi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Babashamsi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
14
|
Chernick D, Ortiz-Valle S, Jeong A, Swaminathan SK, Kandimalla KK, Rebeck GW, Li L. High-density lipoprotein mimetic peptide 4F mitigates amyloid-β-induced inhibition of apolipoprotein E secretion and lipidation in primary astrocytes and microglia. J Neurochem 2018; 147:647-662. [PMID: 30028014 DOI: 10.1111/jnc.14554] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/26/2018] [Accepted: 07/14/2018] [Indexed: 01/06/2023]
Abstract
The apolipoprotein E (apoE) ε4 allele is the primary genetic risk factor for late-onset Alzheimer's disease (AD). ApoE in the brain is produced primarily by astrocytes; once secreted from these cells, apoE binds lipids and forms high-density lipoprotein (HDL)-like particles. Accumulation of amyloid-β protein (Aβ) in the brain is a key hallmark of AD, and is thought to initiate a pathogenic cascade leading to neurodegeneration and dementia. The level and lipidation state of apoE affect Aβ aggregation and clearance pathways. Elevated levels of plasma HDL are associated with lower risk and severity of AD; the underlying mechanisms, however, have not been fully elucidated. This study was designed to investigate the impact of an HDL mimetic peptide, 4F, on the secretion and lipidation of apoE. We found that 4F significantly increases apoE secretion and lipidation in primary human astrocytes as well as in primary mouse astrocytes and microglia. Aggregated Aβ inhibits glial apoE secretion and lipidation, causing accumulation of intracellular apoE, an effect that is counteracted by co-treatment with 4F. Pharmacological and gene editing approaches show that 4F mediates its effects partially through the secretory pathway from the endoplasmic reticulum to the Golgi apparatus and requires the lipid transporter ATP-binding cassette transporter A1. We conclude that the HDL mimetic peptide 4F promotes glial apoE secretion and lipidation and mitigates the detrimental effects of Aβ on proper cellular trafficking and functionality of apoE. These findings suggest that treatment with such an HDL mimetic peptide may provide therapeutic benefit in AD. Read the Editorial Highlight for this article on page 580.
Collapse
Affiliation(s)
- Dustin Chernick
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Angela Jeong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Suresh K Swaminathan
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Karunya K Kandimalla
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Ling Li
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA.,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
15
|
Pereira-Fantini PM, Byars SG, McCall KE, Perkins EJ, Oakley RB, Dellacà RL, Dargaville PA, Davis PG, Ignjatovic V, Tingay DG. Plasma proteomics reveals gestational age-specific responses to mechanical ventilation and identifies the mechanistic pathways that initiate preterm lung injury. Sci Rep 2018; 8:12616. [PMID: 30135517 PMCID: PMC6105628 DOI: 10.1038/s41598-018-30868-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
The preterm lung is particularly vulnerable to ventilator-induced lung injury (VILI) as a result of mechanical ventilation. However the developmental and pathological cellular mechanisms influencing the changing patterns of VILI have not been comprehensively delineated, preventing the advancement of targeted lung protective therapies. This study aimed to use SWATH-MS to comprehensively map the plasma proteome alterations associated with the initiation of VILI following 60 minutes of standardized mechanical ventilation from birth in three distinctly different developmental lung states; the extremely preterm, preterm and term lung using the ventilated lamb model. Across these gestations, 34 proteins were differentially altered in matched plasma samples taken at birth and 60 minutes. Multivariate analysis of the plasma proteomes confirmed a gestation-specific response to mechanical ventilation with 79% of differentially-expressed proteins altered in a single gestation group only. Six cellular and molecular functions and two physiological functions were uniquely enriched in either the extremely preterm or preterm group. Correlation analysis supported gestation-specific protein-function associations within each group. In identifying the gestation-specific proteome and functional responses to ventilation we provide the founding evidence required for the potential development of individualized respiratory support approaches tailored to both the developmental and pathological state of the lung.
Collapse
Affiliation(s)
- Prue M Pereira-Fantini
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia. .,Department of Paediatrics, University of Melbourne, Parkville, Australia.
| | - Sean G Byars
- Department of Pathology, University of Melbourne, Parkville, Australia.,Centre for Systems Genomics, University of Melbourne, Parkville, Australia
| | - Karen E McCall
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia.,University College Dublin, Dublin, Ireland
| | - Elizabeth J Perkins
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia
| | - Regina B Oakley
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia
| | - R L Dellacà
- Laboratorio di Tecnologie Biomediche, Dipartimento di Elettronica, Informazione e Ingegneria Biomedica-DEIB, Politecnico di Milano University, Milano, Italy
| | - Peter A Dargaville
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Peter G Davis
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia.,The Royal Women's Hospital, Parkville, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Australia
| | - Vera Ignjatovic
- Department of Paediatrics, University of Melbourne, Parkville, Australia.,Haematology Research, Murdoch Childrens Research Institute, Parkville, Australia
| | - David G Tingay
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia.,Department of Neonatology, Royal Children's Hospital, Parkville, Australia
| |
Collapse
|
16
|
APOE and Alzheimer's Disease: Evidence Mounts that Targeting APOE4 may Combat Alzheimer's Pathogenesis. Mol Neurobiol 2018; 56:2450-2465. [PMID: 30032423 DOI: 10.1007/s12035-018-1237-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
Abstract
Alzheimer's disease (AD) is an immutable neurodegenerative disease featured by the two hallmark brain pathologies that are the extracellular amyloid ß (Aß) and intraneuronal tau protein. People carrying the APOE4 allele are at high risk of AD concerning the ones carrying the ε3 allele, while the ε2 allele abates risk. ApoE isoforms exert a central role in controlling the transport of brain lipid, neuronal signaling, mitochondrial function, glucose metabolism, and neuroinflammation. Regardless of widespread indispensable studies, the appropriate function of APOE in AD etiology stays ambiguous. Existing proof recommends that the disparate outcomes of ApoE isoforms on Aβ accretion and clearance have a distinct function in AD pathogenesis. ApoE-lipoproteins combine diverse cell-surface receptors to transport lipids and moreover to lipophilic Aβ peptide, that is believed to begin deadly events that generate neurodegeneration in the AD. ApoE has great influence in tau pathogenesis, tau-mediated neurodegeneration, and neuroinflammation, as well as α-synucleinopathy, lipid metabolism, and synaptic plasticity despite the presence of Aβ pathology. ApoE4 shows the deleterious effect for AD while the lack of ApoE4 is defensive. Therapeutic strategies primarily depend on APOE suggest to lessen the noxious effects of ApoE4 and reestablish the protective aptitudes of ApoE. This appraisal represents the critical interactions of APOE and AD pathology, existing facts on ApoE levels in the central nervous system (CNS), and the credible active stratagems for AD therapy by aiming ApoE. This review also highlighted utmost ApoE targeting therapeutic tactics that are crucial for controlling Alzheimer's pathogenesis.
Collapse
|
17
|
Molecular dynamics simulations of lipid nanodiscs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2094-2107. [PMID: 29729280 DOI: 10.1016/j.bbamem.2018.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 01/02/2023]
Abstract
A lipid nanodisc is a discoidal lipid bilayer stabilized by proteins, peptides, or polymers on its edge. Nanodiscs have two important connections to structural biology. The first is associated with high-density lipoprotein (HDL), a particle with a variety of functionalities including lipid transport. Nascent HDL (nHDL) is a nanodisc stabilized by Apolipoprotein A-I (APOA1). Determining the structure of APOA1 and its mimetic peptides in nanodiscs is crucial to understanding pathologies related to HDL maturation and designing effective therapies. Secondly, nanodiscs offer non-detergent membrane-mimicking environments and greatly facilitate structural studies of membrane proteins. Although seemingly similar, natural and synthetic nanodiscs are different in that nHDL is heterogeneous in size, due to APOA1 elasticity, and gradually matures to become spherical. Synthetic nanodiscs, in contrast, should be homogenous, stable, and size-tunable. This report reviews previous molecular dynamics (MD) simulation studies of nanodiscs and illustrates convergence and accuracy issues using results from new multi-microsecond atomistic MD simulations. These new simulations reveal that APOA1 helices take 10-20 μs to rearrange on the nanodisc, while peptides take 2 μs to migrate from the disc surfaces to the edge. These systems can also become kinetically trapped depending on the initial conditions. For example, APOA1 was trapped in a biologically irrelevant conformation for the duration of a 10 μs trajectory; the peptides were similarly trapped for 5 μs. It therefore remains essential to validate MD simulations of these systems with experiments due to convergence and accuracy issues. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
|
18
|
Yang M, Liu Y, Dai J, Li L, Ding X, Xu Z, Mori M, Miyahara H, Sawashita J, Higuchi K. Apolipoprotein A-II induces acute-phase response associated AA amyloidosis in mice through conformational changes of plasma lipoprotein structure. Sci Rep 2018; 8:5620. [PMID: 29618729 PMCID: PMC5884826 DOI: 10.1038/s41598-018-23755-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/16/2018] [Indexed: 12/25/2022] Open
Abstract
During acute-phase response (APR), there is a dramatic increase in serum amyloid A (SAA) in plasma high density lipoproteins (HDL). Elevated SAA leads to reactive AA amyloidosis in animals and humans. Herein, we employed apolipoprotein A-II (ApoA-II) deficient (Apoa2 -/- ) and transgenic (Apoa2Tg) mice to investigate the potential roles of ApoA-II in lipoprotein particle formation and progression of AA amyloidosis during APR. AA amyloid deposition was suppressed in Apoa2 -/- mice compared with wild type (WT) mice. During APR, Apoa2 -/- mice exhibited significant suppression of serum SAA levels and hepatic Saa1 and Saa2 mRNA levels. Pathological investigation showed Apoa2 -/- mice had less tissue damage and less inflammatory cell infiltration during APR. Total lipoproteins were markedly decreased in Apoa2 -/- mice, while the ratio of HDL to low density lipoprotein (LDL) was also decreased. Both WT and Apoa2 -/- mice showed increases in LDL and very large HDL during APR. SAA was distributed more widely in lipoprotein particles ranging from chylomicrons to very small HDL in Apoa2 -/- mice. Our observations uncovered the critical roles of ApoA-II in inflammation, serum lipoprotein stability and AA amyloidosis morbidity, and prompt consideration of therapies for AA and other amyloidoses, whose precursor proteins are associated with circulating HDL particles.
Collapse
Affiliation(s)
- Mu Yang
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 290-8621, Japan. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Yingye Liu
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 290-8621, Japan.,Institute of Pediatric Research, Children's Hospital of Hebei Province, Shijiazhuang, 050031, China
| | - Jian Dai
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 290-8621, Japan
| | - Lin Li
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 290-8621, Japan
| | - Xin Ding
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 290-8621, Japan
| | - Zhe Xu
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 290-8621, Japan
| | - Masayuki Mori
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 290-8621, Japan.,Department of Advanced Medicine for Health Promotion, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, 290-8621, Japan
| | - Hiroki Miyahara
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 290-8621, Japan
| | - Jinko Sawashita
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 290-8621, Japan.,Department of Biological Science for Intractable Neurological Disease, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, 390-8621, Japan
| | - Keiichi Higuchi
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 290-8621, Japan.,Department of Biological Science for Intractable Neurological Disease, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, 390-8621, Japan
| |
Collapse
|
19
|
Molina-Sánchez P, Jorge I, Martinez-Pinna R, Blanco-Colio LM, Tarin C, Torres-Fonseca MM, Esteban M, Laustsen J, Ramos-Mozo P, Calvo E, Lopez JA, Ceniga MVD, Michel JB, Egido J, Andrés V, Vazquéz J, Meilhac O, Burillo E, Lindholt JS, Martin-Ventura JL. ApoA-I/HDL-C levels are inversely associated with abdominal aortic aneurysm progression. Thromb Haemost 2017; 113:1335-46. [DOI: 10.1160/th14-10-0874] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/21/2015] [Indexed: 12/18/2022]
Abstract
SummaryAbdominal aortic aneurysm (AAA) evolution is unpredictable, and there is no therapy except surgery for patients with an aortic size > 5 cm (large AAA). We aimed to identify new potential biomarkers that could facilitate prognosis and treatment of patients with AAA. A differential quantitative proteomic analysis of plasma proteins was performed in AAA patients at different stages of evolution [small AAA (aortic size=3�5cm) vs large AAA] using iTRAQ labelling, highthroughput nano-LC-MS/MS and a novel multi-layered statistical model. Among the proteins identified, ApoA-I was decreased in patients with large AAA compared to those with small AAA. These results were validated by ELISA on plasma samples from small (n=90) and large AAA (n=26) patients (150 ± 3 vs 133 ± 5 mg/dl, respectively, p< 0.001). ApoA-I levels strongly correlated with HDL-Cholesterol (HDL-C) concentration (r=0.9, p< 0.001) and showed a negative correlation with aortic size (r=-0.4, p< 0.01) and thrombus volume (r=-0.3, p< 0.01), which remained significant after adjusting for traditional risk factors. In a prospective study, HDL-C independently predicted aneurysmal growth rate in multiple linear regression analysis (n=122, p=0.008) and was inversely associated with need for surgical repair (Adjusted hazard ratio: 0.18, 95 % confidence interval: 0.04�0.74, p=0.018). In a nation-wide Danish registry, we found lower mean HDL-C concentration in large AAA patients (n=6,560) compared with patients with aorto-iliac occlusive disease (n=23,496) (0.89 ± 2.99 vs 1.59 ± 5.74 mmol/l, p< 0.001). Finally, reduced mean aortic AAA diameter was observed in AngII-infused mice treated with ApoA-I mimetic peptide compared with saline-injected controls. In conclusion, ApoAI/ HDL-C systemic levels are negatively associated with AAA evolution. Therapies targeting HDL functionality could halt AAA formation.
Collapse
|
20
|
Zhao Y, Leman LJ, Search DJ, Garcia RA, Gordon DA, Maryanoff BE, Ghadiri MR. Self-Assembling Cyclic d,l-α-Peptides as Modulators of Plasma HDL Function. A Supramolecular Approach toward Antiatherosclerotic Agents. ACS CENTRAL SCIENCE 2017; 3:639-646. [PMID: 28691076 PMCID: PMC5492419 DOI: 10.1021/acscentsci.7b00154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 05/26/2023]
Abstract
There is great interest in developing new modes of therapy for atherosclerosis to treat coronary heart disease and stroke, particularly ones that involve modulation of high-density lipoproteins (HDLs). Here, we describe a new supramolecular chemotype for altering HDL morphology and function. Guided by rational design and SAR-driven peptide sequence enumerations, we have synthesized and determined the HDL remodeling activities of over 80 cyclic d,l-α-peptides. We have identified a few distinct sequence motifs that are effective in vitro in remodeling human and mouse plasma HDLs to increase the concentration of lipid-poor pre-beta HDLs, which are key initial acceptors of cholesterol in the reverse cholesterol transport (RCT) process, and concomitantly promote cholesterol efflux from macrophage cells. Functional assays with various control peptides, such as scrambled sequences, linear and enantiomeric cyclic peptide variants, and backbone-modified structures that limit peptide self-assembly, provide strong support for the supramolecular mode of action. Importantly, when the lead cyclic peptide c[wLwReQeR] was administered to mice (ip), it also promoted the formation of small, lipid-poor HDLs in vivo, displayed good plasma half-life (∼6 h), did not appear to have adverse side effects, and exerted potent anti-inflammatory effects in an acute in vivo inflammation assay. Given that previously reported HDL remodeling peptides have been based on α-helical apoA-I mimetic architectures, the present study, involving a new structural class, represents a promising step toward new potential therapeutics to combat atherosclerosis.
Collapse
Affiliation(s)
- Yannan Zhao
- Department
of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Luke J. Leman
- Department
of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Debra J. Search
- Cardiovascular
Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey 08534, United States
| | - Ricardo A. Garcia
- Cardiovascular
Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey 08534, United States
| | - David A. Gordon
- Cardiovascular
Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey 08534, United States
| | - Bruce E. Maryanoff
- Department
of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - M. Reza Ghadiri
- Department
of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
21
|
Liu D, Ding Z, Wu M, Xu W, Qian M, Du Q, Zhang L, Cui Y, Zheng J, Chang H, Huang C, Lin D, Wang Y. The apolipoprotein A-I mimetic peptide, D-4F, alleviates ox-LDL-induced oxidative stress and promotes endothelial repair through the eNOS/HO-1 pathway. J Mol Cell Cardiol 2017; 105:77-88. [PMID: 28274624 DOI: 10.1016/j.yjmcc.2017.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/30/2016] [Accepted: 01/27/2017] [Indexed: 02/08/2023]
Abstract
Apolipoprotein A-I (apoA-I) mimetic peptide exerts many anti-atherogenic properties. However, the underlying mechanisms related to the endothelial protective effects remain elusive. In this study, the apoA-I mimetic peptide, D-4F, was used. Proliferation assay, wound healing, and transwell migration experiments showed that D-4F improved the impaired endothelial proliferation and migration resulting from ox-LDL. Endothelial adhesion molecules expression and monocyte adhesion assay demonstrated that D-4F inhibited endothelial inflammation. Caspase-3 activation and TUNEL stain indicated that D-4F reduced endothelial cell apoptosis. A pivotal anti-oxidant enzyme, heme oxygenase-1 (HO-1) was upregulated by D-4F. The Akt/AMPK/eNOS pathways were involved in the expression of HO-1 induced by D-4F. Moreover, the anti-oxidation, pro-proliferation, and pro-migration capacities of D-4F were diminished by the inhibitors of both eNOS (L-NAME) and HO-1 (Znpp). Additionally, downregulation of ATP-binding cassette transporter A1 (ABCA1) by siRNA abolished the activation of Akt, AMPK and eNOS, and reduced the upregulation of HO-1 triggered by D-4F. Furthermore, D-4F promoted the reendothelialization of injured intima in carotid artery injury model of C57BL/6J mice in vivo. In summary, these findings suggested that D-4F might be a powerful candidate in the protection of endothelial cells and the prevention of cardiovascular disease (CVD).
Collapse
Affiliation(s)
- Donghui Liu
- Department of Cardiology, the Affiliated Xiamen Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen 361004, China.
| | - Zhenzhen Ding
- Department of Cardiology, the Affiliated Xiamen Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen 361004, China; Union Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Mengzhang Wu
- Department of Cardiology, the Affiliated Xiamen Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen 361004, China; Union Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Wenqi Xu
- High-field NMR Research Center, MOE Key Laboratory of Spectrochemical Analysis& Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingming Qian
- Department of Cardiology, the Affiliated Xiamen Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen 361004, China
| | - Qian Du
- Department of Cardiology, the Affiliated Xiamen Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen 361004, China
| | - Le Zhang
- Department of Cardiology, the Affiliated Xiamen Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen 361004, China
| | - Ye Cui
- Department of Ob/Gyn and Neonatal and Reproductive Medicine, the People's Liberation Army 174th Hospital and the Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Jianlan Zheng
- Department of Ob/Gyn and Neonatal and Reproductive Medicine, the People's Liberation Army 174th Hospital and the Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - He Chang
- Department of Cardiology, the Affiliated Xiamen Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen 361004, China
| | - Caihua Huang
- Department of Physical Education, Xiamen University of Technology, Xiamen 361021, China
| | - Donghai Lin
- High-field NMR Research Center, MOE Key Laboratory of Spectrochemical Analysis& Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan Wang
- Department of Cardiology, the Affiliated Xiamen Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen 361004, China.
| |
Collapse
|
22
|
Tang J, Li D, Drake L, Yuan W, Deschaine S, Morin EE, Ackermann R, Olsen K, Smith DE, Schwendeman A. Influence of route of administration and lipidation of apolipoprotein A-I peptide on pharmacokinetics and cholesterol mobilization. J Lipid Res 2017; 58:124-136. [PMID: 27881716 PMCID: PMC5234715 DOI: 10.1194/jlr.m071043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/20/2016] [Indexed: 12/26/2022] Open
Abstract
apoA-I, apoA-I mimetic peptides, and their lipid complexes or reconstituted high-density lipoprotein (HDL) have been studied as treatments for various pathologies. However, consensus is lacking about the best method for administration, by intravenous (IV) or intraperitoneal (IP) routes, and formulation, as an HDL particle or in a lipid-free form. The objective of this study was to systematically examine peptide plasma levels, cholesterol mobilization, and lipoprotein remodeling in vivo following administration of lipid-free apoA-I peptide (22A) or phospholipid reconstituted 22A-sHDL by IV and IP routes. The mean circulation half-life was longer for 22A-sHDL (T1/2 = 6.27 h) than for free 22A (T1/2 = 3.81 h). The percentage of 22A absorbed by the vascular compartment after the IP dosing was ∼50% for both 22A and 22A-sHDL. The strongest pharmacologic response came from IV injection of 22A-sHDL, specifically a 5.3-fold transient increase in plasma-free cholesterol (FC) level compared with 1.3- and 1.8-fold FC increases for 22A-IV and 22A-sHDL-IP groups. Addition of either 22A or 22A-sHDL to rat plasma caused lipoprotein remodeling and appearance of a lipid-poor apoA-I. Hence, both the route of administration and the formulation of apoA-I peptide significantly affect its pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Jie Tang
- Department of Pharmaceutical Sciences North Campus Research Complex, University of Michigan, Ann Arbor, MI
| | - Dan Li
- Department of Pharmaceutical Sciences North Campus Research Complex, University of Michigan, Ann Arbor, MI
| | - Lindsey Drake
- Department of Medicinal Chemistry, North Campus Research Complex, University of Michigan, Ann Arbor, MI
| | - Wenmin Yuan
- Department of Pharmaceutical Sciences North Campus Research Complex, University of Michigan, Ann Arbor, MI
| | - Sara Deschaine
- Department of Pharmaceutical Sciences North Campus Research Complex, University of Michigan, Ann Arbor, MI
| | - Emily E Morin
- Department of Pharmaceutical Sciences North Campus Research Complex, University of Michigan, Ann Arbor, MI
| | - Rose Ackermann
- Department of Pharmaceutical Sciences North Campus Research Complex, University of Michigan, Ann Arbor, MI
| | - Karl Olsen
- Department of Pharmaceutical Sciences North Campus Research Complex, University of Michigan, Ann Arbor, MI
| | - David E Smith
- Department of Pharmaceutical Sciences North Campus Research Complex, University of Michigan, Ann Arbor, MI
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences North Campus Research Complex, University of Michigan, Ann Arbor, MI
- Department of Medicinal Chemistry, North Campus Research Complex, University of Michigan, Ann Arbor, MI
| |
Collapse
|
23
|
Jin X, Sviridov D, Liu Y, Vaisman B, Addadi L, Remaley AT, Kruth HS. ABCA1 (ATP-Binding Cassette Transporter A1) Mediates ApoA-I (Apolipoprotein A-I) and ApoA-I Mimetic Peptide Mobilization of Extracellular Cholesterol Microdomains Deposited by Macrophages. Arterioscler Thromb Vasc Biol 2016; 36:2283-2291. [PMID: 27758769 DOI: 10.1161/atvbaha.116.308334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/02/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We examined the function of ABCA1 (ATP-binding cassette transporter A1) in ApoA-I (apolipoprotein A-I) mobilization of cholesterol microdomains deposited into the extracellular matrix by cholesterol-enriched macrophages. We have also determined whether an ApoA-I mimetic peptide without and with complexing to sphingomyelin can mobilize macrophage-deposited cholesterol microdomains. APPROACH AND RESULTS Extracellular cholesterol microdomains deposited by cholesterol-enriched macrophages were detected with a monoclonal antibody, 58B1. ApoA-I and an ApoA-I mimetic peptide 5A mobilized cholesterol microdomains deposited by ABCA1+/+ macrophages but not by ABCA1-/- macrophages. In contrast, ApoA-I mimetic peptide 5A complexed with sphingomyelin could mobilize cholesterol microdomains deposited by ABCA1-/- macrophages. CONCLUSIONS Our findings show that a unique pool of extracellular cholesterol microdomains deposited by macrophages can be mobilized by both ApoA-I and an ApoA-I mimetic peptide but that mobilization depends on macrophage ABCA1. It is known that ABCA1 complexes ApoA-I and ApoA-I mimetic peptide with phospholipid, a cholesterol-solubilizing agent, explaining the requirement for ABCA1 in extracellular cholesterol microdomain mobilization. Importantly, ApoA-I mimetic peptide already complexed with phospholipid can mobilize macrophage-deposited extracellular cholesterol microdomains even in the absence of ABCA1.
Collapse
Affiliation(s)
- Xueting Jin
- From the Experimental Atherosclerosis Section (X.J., Y.L., H.S.K.) and Lipoprotein Metabolism Section (D.S., B.V., A.T.R.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel (L.A.)
| | - Denis Sviridov
- From the Experimental Atherosclerosis Section (X.J., Y.L., H.S.K.) and Lipoprotein Metabolism Section (D.S., B.V., A.T.R.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel (L.A.)
| | - Ying Liu
- From the Experimental Atherosclerosis Section (X.J., Y.L., H.S.K.) and Lipoprotein Metabolism Section (D.S., B.V., A.T.R.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel (L.A.)
| | - Boris Vaisman
- From the Experimental Atherosclerosis Section (X.J., Y.L., H.S.K.) and Lipoprotein Metabolism Section (D.S., B.V., A.T.R.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel (L.A.)
| | - Lia Addadi
- From the Experimental Atherosclerosis Section (X.J., Y.L., H.S.K.) and Lipoprotein Metabolism Section (D.S., B.V., A.T.R.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel (L.A.)
| | - Alan T Remaley
- From the Experimental Atherosclerosis Section (X.J., Y.L., H.S.K.) and Lipoprotein Metabolism Section (D.S., B.V., A.T.R.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel (L.A.)
| | - Howard S Kruth
- From the Experimental Atherosclerosis Section (X.J., Y.L., H.S.K.) and Lipoprotein Metabolism Section (D.S., B.V., A.T.R.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel (L.A.).
| |
Collapse
|
24
|
Yamazaki Y, Painter MM, Bu G, Kanekiyo T. Apolipoprotein E as a Therapeutic Target in Alzheimer's Disease: A Review of Basic Research and Clinical Evidence. CNS Drugs 2016; 30:773-89. [PMID: 27328687 PMCID: PMC5526196 DOI: 10.1007/s40263-016-0361-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that causes progressive cognitive decline. The majority of AD cases are sporadic and late-onset (>65 years old) making it the leading cause of dementia in the elderly. While both genetic and environmental factors contribute to the development of late-onset AD (LOAD), APOE polymorphism is a major genetic risk determinant for LOAD. In humans, the APOE gene has three major allelic variants: ε2, ε3, and ε4, of which APOE ε4 is the strongest genetic risk factor for LOAD, whereas APOE ε2 is protective. Mounting evidence suggests that APOE ε4 contributes to AD pathogenesis through multiple pathways including facilitated amyloid-β deposition, increased tangle formation, synaptic dysfunction, exacerbated neuroinflammation, and cerebrovascular defects. Since APOE modulates multiple biological processes through its corresponding protein apolipoprotein E (apoE), APOE gene and apoE properties have been a promising target for therapy and drug development against AD. In this review, we summarize the current evidence regarding how the APOE ε4 allele contributes to the pathogenesis of AD and how relevant therapeutic approaches can be developed to target apoE-mediated pathways in AD.
Collapse
Affiliation(s)
- Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Meghan M Painter
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
25
|
Tsigkas N, Kidambi S, Tawakol A, Chatzizisis YS. Drug-loaded particles: “Trojan horses” in the therapy of atherosclerosis. Atherosclerosis 2016; 251:528-530. [DOI: 10.1016/j.atherosclerosis.2016.06.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/29/2016] [Indexed: 02/07/2023]
|
26
|
Yang N, Yao Z, Miao L, Liu J, Gao X, Xu Y, Wang G. Homocysteine diminishes apolipoprotein A-I function and expression in patients with hypothyroidism: a cross-sectional study. Lipids Health Dis 2016; 15:123. [PMID: 27457726 PMCID: PMC4960745 DOI: 10.1186/s12944-016-0293-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/16/2016] [Indexed: 01/10/2023] Open
Abstract
Background Hypothyroidism (HO) can significantly impair lipid metabolism and increase cardiovascular disease risk. Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular disease. Our previous study demonstrated that HHcy significantly induced insulin resistance and impaired coronary artery endothelial function in patients with either hypertension or HO. In the present study, we studied whether plasma levels of high-density lipoprotein-cholesterol (HDL-C) and apolipoprotein A-I (Apo A-I) were altered in patients with HO, and if so, whether this change was mediated by HHcy. Methods A total of 258 subjects were enrolled and divided into the following three groups: control group (n = 94), HO group (n = 73), and subclinical hypothyroidism (SHO) group (n = 91). Additionally, all groups were subdivided based on the subjects’ Hcy levels into HHcy (plasma Hcy level over 15 μmol/l) and normal Hcy subgroups. The plasma levels of lipid indexes were measured. Statistical analyses were performed to evaluate the correlations between groups. Results The plasma Hcy levels were significantly higher in the HO group than in the SHO or control groups (all p < 0.05). Moreover, levels of Apo A-I and HDL-C were markedly reduced in the HHcy subgroup compared with the normal Hcy subgroup for patients with either HO (Apo A-I: p < 0.05; HDL-C: p < 0.01) or SHO (Apo A-I: p < 0.05; HDL-C: p < 0.01). In addition, the plasma Hcy levels were negatively correlated with levels of Apo A-I in all three groups (HO group: r = − 0.320, SHO group: r = − 0.337 and control group: r = − 0.317; all p < 0.01). Conclusions Hcy levels were significantly increased in patients with HO or SHO. These increased Hcy levels may impair cardiovascular function via the inhibition of Apo A-1 expression and impairment of its antioxidant capacity. Our findings provide new insights into the pathogenesis of hypothyroidism-induced metabolic disorders.
Collapse
Affiliation(s)
- Ning Yang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, People's Republic of China
| | - Zhi Yao
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, People's Republic of China
| | - Li Miao
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, People's Republic of China
| | - Jia Liu
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, People's Republic of China
| | - Xia Gao
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, People's Republic of China
| | - Yuan Xu
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, People's Republic of China
| | - Guang Wang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, People's Republic of China.
| |
Collapse
|
27
|
Baek AR, Lee JM, Seo HJ, Park JS, Lee JH, Park SW, Jang AS, Kim DJ, Koh ES, Uh ST, Kim YH, Park CS. Apolipoprotein A1 Inhibits TGF-β1-Induced Epithelial-to-Mesenchymal Transition of Alveolar Epithelial Cells. Tuberc Respir Dis (Seoul) 2016; 79:143-52. [PMID: 27433174 PMCID: PMC4943898 DOI: 10.4046/trd.2016.79.3.143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/02/2016] [Accepted: 05/03/2016] [Indexed: 01/11/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease characterized by the accumulation of excessive fibroblasts and myofibroblasts in the extracellular matrix. The transforming growth factor β1 (TGF-β1)–induced epithelial-to-mesenchymal transition (EMT) is thought to be a possible source of fibroblasts/myofibroblasts in IPF lungs. We have previously reported that apolipoprotein A1 (ApoA1) has anti-fibrotic activity in experimental lung fibrosis. In this study, we determine whether ApoA1 modulates TGF-β1–induced EMT in experimental lung fibrosis and clarify its mechanism of action. Methods The A549 alveolar epithelial cell line was treated with TGF-β1 with or without ApoA1. Morphological changes and expression of EMT-related markers, including E-cadherin, N-cadherin, and α-smooth muscle actin were evaluated. Expressions of Smad and non-Smad mediators and TGF-β1 receptor type 1 (TβRI) and type 2 (TβRII) were measured. The silica-induced lung fibrosis model was established using ApoA1 overexpressing transgenic mice. Results TGF-β1–treated A549 cells were changed to the mesenchymal morphology with less E-cadherin and more N-cadherin expression. The addition of ApoA1 inhibited the TGF-β1–induced change of the EMT phenotype. ApoA1 inhibited the TGF-β1–induced increase in the phosphorylation of Smad2 and 3 as well as that of ERK and p38 mitogen-activated protein kinase mediators. In addition, ApoA1 reduced the TGF-β1–induced increase in TβRI and TβRII expression. In a mouse model of silica-induced lung fibrosis, ApoA1 overexpression reduced the silica-mediated effects, which were increased N-cadherin and decreased E-cadherin expression in the alveolar epithelium. Conclusion Our data demonstrate that ApoA1 inhibits TGF-β1–induced EMT in experimental lung fibrosis.
Collapse
Affiliation(s)
- Ae Rin Baek
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Ji Min Lee
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Hyun Jung Seo
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Jong Sook Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - June Hyuk Lee
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Sung Woo Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - An Soo Jang
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Do Jin Kim
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Eun Suk Koh
- Department of Pathology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Soo Taek Uh
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Hospital, Seoul, Korea
| | - Yong Hoon Kim
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Choon Sik Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| |
Collapse
|
28
|
Yao X, Gordon EM, Barochia AV, Remaley AT, Levine SJ. The A's Have It: Developing Apolipoprotein A-I Mimetic Peptides Into a Novel Treatment for Asthma. Chest 2016; 150:283-8. [PMID: 27327118 DOI: 10.1016/j.chest.2016.05.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 01/24/2023] Open
Abstract
New treatments are needed for patients with asthma who are refractory to standard therapies, such as individuals with a phenotype of "type 2-low" inflammation. This important clinical problem could potentially be addressed by the development of apolipoprotein A-I (apoA-I) mimetic peptides. ApoA-I interacts with its cellular receptor, the ATP-binding cassette subfamily A, member 1 (ABCA1), to facilitate cholesterol efflux out of cells to form nascent high-density lipoprotein particles. The ability of the apoA-I/ABCA1 pathway to promote cholesterol efflux from cells that mediate adaptive immunity, such as antigen-presenting cells, can attenuate their function. Data from experimental murine models have shown that the apoA-I/ABCA1 pathway can reduce neutrophilic airway inflammation, primarily by suppressing the production of granulocyte-colony stimulating factor. Furthermore, administration of apoA-I mimetic peptides to experimental murine models of allergic asthma has decreased both neutrophilic and eosinophilic airway inflammation, as well as airway hyperresponsiveness and mucous cell metaplasia. Higher serum levels of apoA-I have also been associated with less severe airflow obstruction in patients with asthma. Collectively, these results suggest that the apoA-I/ABCA1 pathway may have a protective effect in asthma, and support the concept of advancing inhaled apoA-I mimetic peptides to clinical trials that can assess their safety and effectiveness. Thus, we propose that the development of inhaled apoA-I mimetic peptides as a new treatment could represent a clinical advance for patients with severe asthma who are unresponsive to other therapies.
Collapse
Affiliation(s)
- Xianglan Yao
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Elizabeth M Gordon
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Amisha V Barochia
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Stewart J Levine
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
29
|
Sviridov DO, Drake SK, Freeman LA, Remaley AT. Amphipathic polyproline peptides stimulate cholesterol efflux by the ABCA1 transporter. Biochem Biophys Res Commun 2016; 471:560-5. [PMID: 26879139 PMCID: PMC4819318 DOI: 10.1016/j.bbrc.2016.02.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/09/2016] [Indexed: 12/24/2022]
Abstract
ApoA-I mimetics are short synthetic peptides that contain an amphipathic α-helix and stimulate cholesterol efflux by the ABCA1 transporter in a detergent-like extraction mechanism. We investigated the use of amphipathic peptides with a polypro helix for stimulating cholesterol efflux by ABCA1. Polypro peptides were synthesized with modified prolines, containing either a hydrophobic phenyl group (Prop) or a polar N-acetylgalactosamine (Prog) attached to the pyrrolidine ring and were designated as either PP-2, 3, 4, or 5, depending on the number of 3 amino acid repeat units (Prop-Prog-Prop). Based on molecular modeling, these peptides were predicted to be relatively rigid and to bind to a phospholipid bilayer. By CD spectroscopy, PP peptides formed a Type-II polypro helix in an aqueous solution. PP-2 was inactive in promoting cholesterol efflux, but peptides with more than 2 repeat units were active. PP-4 showed a similar Vmax as a much longer amphipathic α-helical peptide, containing 37 amino acids, but had a Km that was approximately 20-fold lower. PP peptides were specific in that they did not stimulate cholesterol efflux from cells not expressing ABCA1 and were also non-cytotoxic. Addition of PP-3, 4 and 5 to serum promoted the formation of smaller size HDL species (7 nM) and increased its capacity for ABCA1-dependent cholesterol efflux by approximately 20-35% (p < 0.05). Because of their relatively small size and increased potency, amphipathic peptides with a polypro helix may represent an alternative structural motif for the development of apoA-I mimetic peptides.
Collapse
Affiliation(s)
- D O Sviridov
- Lipoprotein Metabolism Section, Cardiopulmonary Branch, NHLBI, National Institutes of Health, Bethesda, MD, USA.
| | - S K Drake
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - L A Freeman
- Lipoprotein Metabolism Section, Cardiopulmonary Branch, NHLBI, National Institutes of Health, Bethesda, MD, USA
| | - A T Remaley
- Lipoprotein Metabolism Section, Cardiopulmonary Branch, NHLBI, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW The review summarizes information pertaining to the preclinical development of new apolipoprotein (apo) E mimetic peptides that stimulate cellular cholesterol efflux. RECENT FINDINGS Small α-helical peptides based on the C-terminal domain of apoE have been developed for therapeutic applications. These peptides stimulate cellular cholesterol efflux via the ATP-binding cassette transporter A1 (ABCA1) with high potency, like native apolipoproteins on a molar basis. This potent activity has been related to the unique ability of these peptides to maintain α-helix structure upon dilution. Recent structure-activity studies improving the safety features of these mimetic peptides have greatly improved their potential for clinical use. These studies have identified structural features of the class A α-helix motif that induce muscle toxicity and hypertriglyceridemia, which may have implications for the design of other HDL mimetic peptides. SUMMARY ABCA1 is an integral membrane protein that plays a central role in biology. Its principal function is to mediate the efflux of cholesterol and phospholipid from cells to extracellular apo, preventing a build-up of excess cholesterol in membranes. This process generates HDL particles that perform a variety of functions to protect against disease. A number of these functions can be viewed as directly or indirectly supporting ABCA1 activity, thus constituting a positive feedback system to optimize cellular lipid efflux responses and disease prevention. Consequently, therapeutic approaches that mimic the activities of apos may prove highly effective to combat disease. One such approach involves the use of peptides. The broad biological relevance of ABCA1 suggests these apo mimetic peptides may be useful for the treatment of a number of diseases, such as atherosclerosis, diabetes, and Alzheimer's disease.
Collapse
Affiliation(s)
- John K Bielicki
- Donner Laboratory, Life Sciences Division, Lawrence Berkeley National Laboratory, University of California at Berkeley, Berkeley, California, USA
| |
Collapse
|
31
|
Dai C, Yao X, Vaisman B, Brenner T, Meyer KS, Gao M, Keeran KJ, Nugent GZ, Qu X, Yu ZX, Dagur PK, McCoy JP, Remaley AT, Levine SJ. ATP-binding cassette transporter 1 attenuates ovalbumin-induced neutrophilic airway inflammation. Am J Respir Cell Mol Biol 2015; 51:626-36. [PMID: 24813055 DOI: 10.1165/rcmb.2013-0264oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Apolipoprotein A-I (apoA-I) is an important component of high-density lipoprotein particles that mediates reverse cholesterol transport out of cells by interacting with the ATP-binding cassette transporter 1 (ABCA1). apoA-I has also been shown to attenuate neutrophilic airway inflammation in experimental ovalbumin (OVA)-induced asthma by reducing the expression of granulocyte colony-stimulating factor (G-CSF). Here, we hypothesized that overexpression of the ABCA1 transporter might similarly attenuate OVA-induced neutrophilic airway inflammation. Tie2-human ABCA1 (hABCA1) mice expressing human ABCA1 under the control of the Tie2 promoter, which is primarily expressed by vascular endothelial cells, but can also be expressed by macrophages, received daily intranasal OVA challenges, 5 d/wk for 5 weeks. OVA-challenged Tie2-hABCA1 mice had significant reductions in total bronchoalveolar lavage fluid (BALF) cells that reflected a decrease in neutrophils, as well as reductions in peribronchial inflammation, OVA-specific IgE levels, and airway epithelial thickness. The reduced airway neutrophilia in OVA-challenged Tie2-hABCA1 mice was associated with significant decreases in G-CSF protein levels in pulmonary vascular endothelial cells, alveolar macrophages, and BALF. Intranasal administration of recombinant murine G-CSF to OVA-challenged Tie2-hABCA1 mice for 5 days increased BALF neutrophils to a level comparable to that of OVA-challenged wild-type mice. We conclude that ABCA1 suppresses OVA-induced airway neutrophilia by reducing G-CSF production by vascular endothelial cells and alveolar macrophages. These findings suggest that ABCA1 expressed by vascular endothelial cells and alveolar macrophages may play important roles in attenuating the severity of neutrophilic airway inflammation in asthma.
Collapse
|
32
|
Pastuszka MK, Wang X, Lock LL, Janib SM, Cui H, DeLeve LD, MacKay JA. An amphipathic alpha-helical peptide from apolipoprotein A1 stabilizes protein polymer vesicles. J Control Release 2014; 191:15-23. [PMID: 25016969 DOI: 10.1016/j.jconrel.2014.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/03/2014] [Accepted: 07/03/2014] [Indexed: 01/04/2023]
Abstract
L4F, an alpha helical peptide inspired by the lipid-binding domain of the ApoA1 protein, has potential applications in the reduction of inflammation involved with cardiovascular disease as well as an antioxidant effect that inhibits liver fibrosis. In addition to its biological activity, amphipathic peptides such as L4F are likely candidates to direct the molecular assembly of peptide nanostructures. Here we describe the stabilization of the amphipathic L4F peptide through fusion to a high molecular weight protein polymer. Comprised of multiple pentameric repeats, elastin-like polypeptides (ELPs) are biodegradable protein polymers inspired from the human gene for tropoelastin. Dynamic light scattering confirmed that the fusion peptide forms nanoparticles with a hydrodynamic radius of approximately 50nm, which is unexpectedly above that observed for the free ELP (~5.1nm). To further investigate their morphology, conventional and cryogenic transmission electron microscopy were used to reveal that they are unilamellar vesicles. On average, these vesicles are 49nm in radius with lamellae 8nm in thickness. To evaluate their therapeutic potential, the L4F nanoparticles were incubated with hepatic stellate cells. Stellate cell activation leads to hepatic fibrosis; furthermore, their activation is suppressed by anti-oxidant activity of ApoA1 mimetic peptides. Consistent with this observation, L4F nanoparticles were found to suppress hepatic stellate cell activation in vitro. To evaluate the in vivo potential for these nanostructures, their plasma pharmacokinetics were evaluated in rats. Despite the assembly of nanostructures, both free L4F and L4F nanoparticles exhibited similar half-lives of approximately 1h in plasma. This is the first study reporting the stabilization of peptide-based vesicles using ApoA1 mimetic peptides fused to a protein polymer; furthermore, this platform for peptide-vesicle assembly may have utility in the design of biodegradable nanostructures.
Collapse
Affiliation(s)
- Martha K Pastuszka
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA
| | - Xiangdong Wang
- Research Center for Liver Diseases and the Division of Gastrointestinal and Liver Diseases, Keck School of Medicine at the University of Southern California, Los Angeles, CA 90033, USA
| | - Lye Lin Lock
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Siti Mohd Janib
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Laurie D DeLeve
- Research Center for Liver Diseases and the Division of Gastrointestinal and Liver Diseases, Keck School of Medicine at the University of Southern California, Los Angeles, CA 90033, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
33
|
Zhao Y, Black AS, Bonnet DJ, Maryanoff BE, Curtiss LK, Leman LJ, Ghadiri MR. In vivo efficacy of HDL-like nanolipid particles containing multivalent peptide mimetics of apolipoprotein A-I. J Lipid Res 2014; 55:2053-63. [PMID: 24975585 DOI: 10.1194/jlr.m049262] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have observed that molecular constructs based on multiple apoA-I mimetic peptides attached to a branched scaffold display promising anti-atherosclerosis functions in vitro. Building on these promising results, we now describe chronic in vivo studies to assess anti-atherosclerotic efficacy of HDL-like nanoparticles assembled from a trimeric construct, administered over 10 weeks either ip or orally to LDL receptor-null mice. When dosed ip, the trimer-based nanolipids markedly reduced plasma LDL-cholesterol levels by 40%, unlike many other apoA-I mimetic peptides, and were substantially atheroprotective. Surprisingly, these nanoparticles were also effective when administered orally at a dose of 75 mg/kg, despite the peptide construct being composed of l-amino acids and being undetectable in the plasma. The orally administered nanoparticles reduced whole aorta lesion areas by 55% and aortic sinus lesion volumes by 71%. Reductions in plasma cholesterol were due to the loss of non-HDL lipoproteins, while plasma HDL-cholesterol levels were increased. At a 10-fold lower oral dose, the nanoparticles were marginally effective in reducing atherosclerotic lesions. Intriguingly, analogous results were obtained with nanolipids of the corresponding monomeric peptide. These nanolipid formulations provide an avenue for developing orally efficacious therapeutic agents to manage atherosclerosis.
Collapse
Affiliation(s)
- Yannan Zhao
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - Audrey S Black
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - David J Bonnet
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - Bruce E Maryanoff
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - Linda K Curtiss
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - Luke J Leman
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - M Reza Ghadiri
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
34
|
Abstract
High-density lipoproteins (HDL) are a target for drug development because of their proposed anti-atherogenic properties. In this review, we will briefly discuss the currently established drugs for increasing HDL-C, namely niacin and fibrates, and some of their limitations. Next, we will focus on novel alternative therapies that are currently being developed for raising HDL-C, such as CETP inhibitors. Finally, we will conclude with a review of novel drugs that are being developed for modulating the function of HDL based on HDL mimetics. Gaps in our knowledge and the challenges that will have to be overcome for these new HDL based therapies will also be discussed.
Collapse
Affiliation(s)
- Alan T Remaley
- National Heart, Lung and Blood Institute, NIH, 10 Center Drive, Bldg. 10, Rm. 2C-433, Bethesda, MD, USA
| | - Giuseppe D Norata
- Department of Pharmacological Sciences, Università degli Studi di Milano, Milano, Italy Center for the Study of Atherosclerosis, Società Italiana Studio Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, Italy The Blizard Institute, Centre for Diabetes, Barts and The London School of Medicine & Dentistry, Queen Mary University, London, UK
| | - Alberico L Catapano
- Department of Pharmacological Sciences, Università degli Studi di Milano, Milano, Italy IRCCS Multimedica, Milan, Italy
| |
Collapse
|
35
|
Abstract
The vast majority of Alzheimer's disease (AD) cases are late onset (LOAD), which is genetically complex with heritability estimates up to 80%. Apolipoprotein E (APOE) has been irrefutably recognized as the major genetic risk factor, with semidominant inheritance, for LOAD. Although the mechanisms that underlie the pathogenic nature of APOE in AD are still not completely understood, emerging data suggest that APOE contributes to AD pathogenesis through both amyloid-β (Aβ)-dependent and Aβ-independent pathways. Given the central role for APOE in the modulation of AD pathogenesis, many therapeutic strategies have emerged, including converting APOE conformation, regulating APOE expression, mimicking APOE peptides, blocking the APOE/Aβ interaction, modulating APOE lipidation state, and gene therapy. Accumulating evidence also suggests the utility of APOE genotyping in AD diagnosis, risk assessment, prevention, and treatment response.
Collapse
Affiliation(s)
- Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China; ,
| | | | | |
Collapse
|
36
|
van Capelleveen JC, Brewer HB, Kastelein JJP, Hovingh GK. Novel therapies focused on the high-density lipoprotein particle. Circ Res 2014; 114:193-204. [PMID: 24385512 DOI: 10.1161/circresaha.114.301804] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cardiovascular disease (CVD) remains a major burden for morbidity and mortality in the general population, despite current efficacious low-density lipoprotein-cholesterol-lowering therapies. Consequently, novel therapies are required to reduce this residual risk. Prospective epidemiological studies have shown that high-density lipoprotein-cholesterol (HDL-C) levels are inversely correlated with cardiovascular disease risk, and this initiated the quest for HDL-C-increasing therapies. Consequently, several different targets in HDL metabolism have been identified. Initial studies addressing the effect of cholesteryl ester transfer protein inhibition on cardiovascular disease outcome have been discontinued for reasons of futility or increased mortality. As of yet, 2 cholesteryl ester transfer protein inhibitors are still in phase III studies. Other HDL-based interventions, such as apolipoprotein A1-based compounds, ABC-transporter upregulators, selective peroxisome proliferator-activated receptor modulators and lecithin-cholesterol acyltransferase-based therapy, hold great promise for the future. The aim of this review is to provide a comprehensive overview of HDL-targeted pharmaceutical strategies in humans, both in early development as well as in late stage clinical trials.
Collapse
Affiliation(s)
- Julian C van Capelleveen
- From the Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (J.C.v.C., J.J.P.K., G.K.H.); and MedStar Research Institute, Washington Hospital Center, Washington, DC (H.B.B.)
| | | | | | | |
Collapse
|
37
|
Sharifov OF, Nayyar G, Ternovoy VV, Palgunachari MN, Garber DW, Anantharamaiah G, Gupta H. Comparison of anti-endotoxin activity of apoE and apoA mimetic derivatives of a model amphipathic peptide 18A. Innate Immun 2013; 20:867-80. [PMID: 24323453 DOI: 10.1177/1753425913514621] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Endotoxemia is a major cause of chronic inflammation, and is an important pathogenic factor in the development of metabolic syndrome and atherosclerosis. Human apolipoprotein E (apoE) and apoA-I are protein components of high-density lipoprotein, which have strong anti-endotoxin activity. Here, we compared anti-endotoxin activity of Ac-hE18A-NH2 and 4F peptides, modified from model amphipathic helical 18A peptide, to mimic, respectively, apoE and apoA-I properties. Ac-hE18A-NH2, stronger than 4F, inhibited endotoxin activity and disaggregated Escherichia coli 055:B5 (wild smooth serotype). Ac-hE18A-NH2 and 4F inhibited endotoxin activity of E. coli 026:B6 (rough-like serotype) to a similar degree. This suggests that Ac-hE18A-NH2 as a dual-domain molecule might interact with both the lipid A and headgroup of smooth LPS, whereas 4F binds lipid A. In C57BL/6 mice, Ac-hE18A-NH2 was superior to 4F in inhibiting the inflammatory responses mediated by E. coli 055:B5, but not E. coli 026:B6. However, in THP-1 cells, isolated human primary leukocytes, and whole human blood, Ac-hE18A-NH2 reduced responses more strongly than 4F to both E. coli serotypes either when peptides were pre-incubated or co-incubated with LPS, indicating that Ac-hE18A-NH2 also has strong anti-inflammatory effects independent of endotoxin-neutralizing properties. In conclusion, Ac-hE18A-NH2 is more effective than 4F in inhibiting LPS-mediated inflammation, which opens prospective clinical applications for Ac-hE18A-NH2.
Collapse
Affiliation(s)
- Oleg F Sharifov
- Department of Medicine, University of Alabama at Birmingham, AL, USA
| | - Gaurav Nayyar
- Department of Medicine, University of Alabama at Birmingham, AL, USA
| | | | | | - David W Garber
- Department of Medicine, University of Alabama at Birmingham, AL, USA
| | - Gm Anantharamaiah
- Department of Medicine, University of Alabama at Birmingham, AL, USA Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, AL, USA
| | - Himanshu Gupta
- Department of Medicine, University of Alabama at Birmingham, AL, USA VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
38
|
van Capelleveen JC, Bochem AE, Motazacker MM, Hovingh GK, Kastelein JJP. Genetics of HDL-C: a causal link to atherosclerosis? Curr Atheroscler Rep 2013; 15:326. [PMID: 23591671 DOI: 10.1007/s11883-013-0326-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prospective epidemiological studies have consistently reported an inverse association between HDL cholesterol (HDL-C) levels and the risk of cardiovascular disease (CVD). However, large intervention trials on HDL-C-increasing drugs and recent Mendelian randomization studies have questioned a causal relationship between HDL-C and atherosclerosis. HDL-C levels have been shown to be highly heritable, and the combination of HDL-C-associated SNPs in recent large-scale genome-wide association studies (GWAS) only explains a small proportion of this heritability. As a large part of our current understanding of HDL metabolism comes from genetic studies, further insights in this research field may aid us in elucidating HDL functionality in relation to CVD risk. In this review we focus on the question of whether genetically defined HDL-C levels are associated with risk of atherosclerosis. We also discuss the latest insights for HDL-C-associated genes and recent GWAS data.
Collapse
Affiliation(s)
- Julian C van Capelleveen
- Department of Vascular Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
39
|
Leman LJ, Maryanoff BE, Ghadiri MR. Molecules that mimic apolipoprotein A-I: potential agents for treating atherosclerosis. J Med Chem 2013; 57:2169-96. [PMID: 24168751 DOI: 10.1021/jm4005847] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Certain amphipathic α-helical peptides can functionally mimic many of the properties of full-length apolipoproteins, thereby offering an approach to modulate high-density lipoprotein (HDL) for combating atherosclerosis. In this Perspective, we summarize the key findings and advances over the past 25 years in the development of peptides that mimic apolipoproteins, especially apolipoprotein A-I (apoA-I). This assemblage of information provides a reasonably clear picture of the state of the art in the apolipoprotein mimetic field, an appreciation of the potential for such agents in pharmacotherapy, and a sense of the opportunities for optimizing the functional properties of HDL.
Collapse
Affiliation(s)
- Luke J Leman
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | |
Collapse
|
40
|
Mishra A, Yao X, Levine SJ. From bedside to bench to clinic trials: identifying new treatments for severe asthma. Dis Model Mech 2013; 6:877-88. [PMID: 23828644 PMCID: PMC3701207 DOI: 10.1242/dmm.012070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Asthmatics with a severe form of the disease are frequently refractory to standard medications such as inhaled corticosteroids, underlining the need for new treatments to prevent the occurrence of potentially life-threatening episodes. A major obstacle in the development of new treatments for severe asthma is the heterogeneous pathogenesis of the disease, which involves multiple mechanisms and cell types. Furthermore, new therapies might need to be targeted to subgroups of patients whose disease pathogenesis is mediated by a specific pathway. One approach to solving the challenge of developing new treatments for severe asthma is to use experimental mouse models of asthma to address clinically relevant questions regarding disease pathogenesis. The mechanistic insights gained from mouse studies can be translated back to the clinic as potential treatment approaches that require evaluation in clinical trials to validate their effectiveness and safety in human subjects. Here, we will review how mouse models have advanced our understanding of severe asthma pathogenesis. Mouse studies have helped us to uncover the underlying inflammatory mechanisms (mediated by multiple immune cell types that produce Th1, Th2 or Th17 cytokines) and non-inflammatory pathways, in addition to shedding light on asthma that is associated with obesity or steroid unresponsiveness. We propose that the strategy of using mouse models to address clinically relevant questions remains an attractive and productive research approach for identifying mechanistic pathways that can be developed into novel treatments for severe asthma.
Collapse
Affiliation(s)
- Amarjit Mishra
- Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1590, USA
| | | | | |
Collapse
|
41
|
Kones R. Molecular sources of residual cardiovascular risk, clinical signals, and innovative solutions: relationship with subclinical disease, undertreatment, and poor adherence: implications of new evidence upon optimizing cardiovascular patient outcomes. Vasc Health Risk Manag 2013; 9:617-70. [PMID: 24174878 PMCID: PMC3808150 DOI: 10.2147/vhrm.s37119] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Residual risk, the ongoing appreciable risk of major cardiovascular events (MCVE) in statin-treated patients who have achieved evidence-based lipid goals, remains a concern among cardiologists. Factors that contribute to this continuing risk are atherogenic non-low-density lipoprotein (LDL) particles and atherogenic processes unrelated to LDL cholesterol, including other risk factors, the inherent properties of statin drugs, and patient characteristics, ie, genetics and behaviors. In addition, providers, health care systems, the community, public policies, and the environment play a role. Major statin studies suggest an average 28% reduction in LDL cholesterol and a 31% reduction in relative risk, leaving a residual risk of about 69%. Incomplete reductions in risk, and failure to improve conditions that create risk, may result in ongoing progression of atherosclerosis, with new and recurring lesions in original and distant culprit sites, remodeling, arrhythmias, rehospitalizations, invasive procedures, and terminal disability. As a result, identification of additional agents to reduce residual risk, particularly administered together with statin drugs, has been an ongoing quest. The current model of atherosclerosis involves many steps during which disease may progress independently of guideline-defined elevations in LDL cholesterol. Differences in genetic responsiveness to statin therapy, differences in ability of the endothelium to regenerate and repair, and differences in susceptibility to nonlipid risk factors, such as tobacco smoking, hypertension, and molecular changes associated with obesity and diabetes, may all create residual risk. A large number of inflammatory and metabolic processes may also provide eventual therapeutic targets to lower residual risk. Classically, epidemiologic and other evidence suggested that raising high-density lipoprotein (HDL) cholesterol would be cardioprotective. When LDL cholesterol is aggressively lowered to targets, low HDL cholesterol levels are still inversely related to MCVE. The efflux capacity, or ability to relocate cholesterol out of macrophages, is believed to be a major antiatherogenic mechanism responsible for reduction in MCVE mediated in part by healthy HDL. HDL cholesterol is a complex molecule with antioxidative, anti-inflammatory, anti-thrombotic, antiplatelet, and vasodilatory properties, among which is protection of LDL from oxidation. HDL-associated paraoxonase-1 has a major effect on endothelial function. Further, HDL promotes endothelial repair and progenitor cell health, and supports production of nitric oxide. HDL from patients with cardiovascular disease, diabetes, and autoimmune disease may fail to protect or even become proinflammatory or pro-oxidant. Mendelian randomization and other clinical studies in which raising HDL cholesterol has not been beneficial suggest that high plasma levels do not necessarily reduce cardiovascular risk. These data, coupled with extensive preclinical information about the functional heterogeneity of HDL, challenge the "HDL hypothesis", ie, raising HDL cholesterol per se will reduce MCVE. After the equivocal AIM-HIGH (Atherothrombosis Intervention in Metabolic Syndrome With Low HDL/High Triglycerides: Impact on Global Health Outcomes) study and withdrawal of two major cholesteryl ester transfer protein compounds, one for off-target adverse effects and the other for lack of efficacy, development continues for two other agents, ie, anacetrapib and evacetrapib, both of which lower LDL cholesterol substantially. The negative but controversial HPS2-THRIVE (the Heart Protection Study 2-Treatment of HDL to Reduce the Incidence of Vascular Events) trial casts further doubt on the HDL cholesterol hypothesis. The growing impression that HDL functionality, rather than abundance, is clinically important is supported by experimental evidence highlighting the conditional pleiotropic actions of HDL. Non-HDL cholesterol reflects the cholesterol in all atherogenic particles containing apolipoprotein B, and has outperformed LDL cholesterol as a lipid marker of cardiovascular risk and future mortality. In addition to including a measure of residual risk, the advantages of using non-HDL cholesterol as a primary lipid target are now compelling. Reinterpretation of data from the Treating to New Targets study suggests that better control of smoking, body weight, hypertension, and diabetes will help lower residual risk. Although much improved, control of risk factors other than LDL cholesterol currently remains inadequate due to shortfalls in compliance with guidelines and poor patient adherence. More efficient and greater use of proven simple therapies, such as aspirin, beta-blockers, angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers, combined with statin therapy, may be more fruitful in improving outcomes than using other complex therapies. Comprehensive, intensive, multimechanistic, global, and national programs using primordial, primary, and secondary prevention to lower the total level of cardiovascular risk are necessary.
Collapse
Affiliation(s)
- Richard Kones
- Cardiometabolic Research Institute, Houston, TX, USA
| |
Collapse
|
42
|
Kotani K, Sekine Y, Ishikawa S, Ikpot IZ, Suzuki K, Remaley AT. High-density lipoprotein and prostate cancer: an overview. J Epidemiol 2013; 23:313-9. [PMID: 23985823 PMCID: PMC3775524 DOI: 10.2188/jea.je20130006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Prostate cancer is a common disease in modern, developed societies and has a high incidence and mortality. High-density lipoprotein cholesterol (HDL-C) has recently received much attention as a possible risk marker of prostate cancer development and prognosis. In the present article, we summarized findings from epidemiologic studies of the association between HDL-C and prostate cancer. Low HDL-C level was found to be a risk and prognostic factor of prostate cancer in several epidemiologic studies, although the overall linkage between HDL and prostate cancer has not been definitively established. The mechanisms for this association remain uncertain; however, limited data from experimental studies imply a possible role of HDL in the pathophysiology of prostate cancer. More epidemiologic research, in combination with experimental studies, is needed in this field.
Collapse
Affiliation(s)
- Kazuhiko Kotani
- Cardiopulmonary Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Zhao Y, Imura T, Leman LJ, Curtiss LK, Maryanoff BE, Ghadiri MR. Mimicry of high-density lipoprotein: functional peptide-lipid nanoparticles based on multivalent peptide constructs. J Am Chem Soc 2013; 135:13414-24. [PMID: 23978057 DOI: 10.1021/ja404714a] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We describe an approach for engineering peptide-lipid nanoparticles that function similarly to high-density lipoprotein (HDL). Branched, multivalent constructs, bearing multiple 23- or 16-amino-acid peptides, were designed, synthesized, and combined with phospholipids to produce nanometer-scale discoidal HDL-like particles. A variety of biophysical techniques were employed to characterize the constructs, including size exclusion chromatography, analytical ultracentrifuge sedimentation, circular dichroism, transmission electron microscopy, and fluorescence spectroscopy. The nanoparticles functioned in vitro (human and mouse plasma) and in vivo (mice) to rapidly remodel large native HDLs into small lipid-poor HDL particles, which are key acceptors of cholesterol in reverse cholesterol transport. Fluorescent labeling studies showed that the constituents of the nanoparticles readily distributed into native HDLs, such that the peptide constructs coexisted with apolipoprotein A-I (apoA-I), the main structural protein in HDLs. Importantly, nanolipid particles containing multivalent peptides promoted efficient cellular cholesterol efflux and were functionally superior to those derived from monomeric apoA-I mimetic peptides. The multivalent peptide-lipid nanoparticles were also remarkably stable toward enzymatic digestion in vitro and displayed long half-lives and desirable pharmacokinetic profiles in mice, providing a real practical advantage over previously studied linear or tandem helical peptides. Encouragingly, a two-week exploratory efficacy study in a widely used animal model for atherosclerosis research (LDLr-null mice) using nanoparticles constructed from a trimeric peptide demonstrated an exceptional 50% reduction in the plasma total cholesterol levels compared to the control group. Altogether, the studies reported here point to an attractive avenue for designing synthetic, HDL-like nanoparticles, with potential for treating atherosclerosis.
Collapse
Affiliation(s)
- Yannan Zhao
- Department of Chemistry, ‡Department of Immunology and Microbial Science, and §The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | |
Collapse
|
44
|
Ditiatkovski M, D’Souza W, Kesani R, Chin-Dusting J, de Haan JB, Remaley A, Sviridov D. An apolipoprotein A-I mimetic peptide designed with a reductionist approach stimulates reverse cholesterol transport and reduces atherosclerosis in mice. PLoS One 2013; 8:e68802. [PMID: 23874769 PMCID: PMC3706315 DOI: 10.1371/journal.pone.0068802] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/01/2013] [Indexed: 01/19/2023] Open
Abstract
Apolipoprotein A-I (apoA-I) mimetic peptides are considered a promising novel therapeutic approach to prevent and/or treat atherosclerosis. An apoA-I mimetic peptide ELK-2A2K2E was designed with a reductionist approach and has shown exceptional activity in supporting cholesterol efflux but modest anti-inflammatory and anti-oxidant properties in vitro. In this study we compared these in vitro properties with the capacity of this peptide to modify rates of reverse cholesterol transport and development of atherosclerosis in mouse models. The peptide enhanced the rate of reverse cholesterol transport in C57BL/6 mice and reduced atherosclerosis in Apoe(-/-) mice receiving a high fat diet. The peptide modestly reduced the size of the plaques in aortic arch, but was highly active in reducing vascular inflammation and oxidation. Administration of the peptide to Apoe(-/-) mice on a high fat diet reduced the levels of total, high density lipoprotein and non-high density lipoprotein cholesterol and triglycerides. It increased the proportion of smaller HDL particles in plasma at the expense of larger HDL particles, and increased the capacity of the plasma to support cholesterol efflux. Thus, ELK-2A2K2E peptide reduced atherosclerosis in Apoe(-/-) mice, however, the functional activity profile after chronic in vivo administration was different from that found in acute in vitro studies.
Collapse
Affiliation(s)
| | - Wilissa D’Souza
- Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
| | - Rajitha Kesani
- Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
| | | | - Judy B. de Haan
- Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
| | - Alan Remaley
- Lipoprotein Section, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
- * E-mail:
| |
Collapse
|
45
|
Tapryal S, Gaur V, Kaur KJ, Salunke DM. Structural evaluation of a mimicry-recognizing paratope: plasticity in antigen-antibody interactions manifests in molecular mimicry. THE JOURNAL OF IMMUNOLOGY 2013; 191:456-63. [PMID: 23733869 DOI: 10.4049/jimmunol.1203260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Molecular mimicry manifests antagonistically with respect to the specificity of immune recognition. However, it often occurs because different Ags share surface topologies in terms of shape or chemical nature. It also occurs when a flexible paratope accommodates dissimilar Ags by adjusting structural features according to the antigenic epitopes or differential positioning in the Ag combining site. Toward deciphering the structural basis of molecular mimicry, mAb 2D10 was isolated from a maturing immune response elicited against methyl α-d-mannopyranoside and also bound equivalently to a dodecapeptide. The physicochemical evidence of this carbohydrate-peptide mimicry in the case of mAb 2D10 had been established earlier. These studies had strongly suggested direct involvement of a flexible paratope in the observed mimicry. Surprisingly, comparison of the Ag-free structure of single-chain variable fragment 2D10 with those bound to sugar and peptide Ags revealed a conformationally invariant state of the Ab while binding to chemically and structurally disparate Ags. This equivalent binding of the two dissimilar Ags was through mutually independent interactions, demonstrating functional equivalence in the absence of structural correlation. Thus, existence of a multispecific, mature Ab in the secondary immune response was evident, as was the plasticity in the interactions while accommodating topologically diverse Ags. Although our data highlight the structural basis of receptor multispecificity, they also illustrate mechanisms adopted by the immune system to neutralize the escape mutants generated during pathogenic insult.
Collapse
Affiliation(s)
- Suman Tapryal
- National Institute of Immunology, New Delhi 110067, India
| | | | | | | |
Collapse
|
46
|
Söderström E, Eliasson M, Johnson O, Hallmans G, Weinehall L, Jansson JH, Hultdin J. Plasma folate, but not homocysteine, is associated with Apolipoprotein A1 levels in a non-fortified population. Lipids Health Dis 2013; 12:74. [PMID: 23697869 PMCID: PMC3679998 DOI: 10.1186/1476-511x-12-74] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/15/2013] [Indexed: 11/22/2022] Open
Abstract
Background Elevated total plasma homocysteine (tHcy) in humans is associated with cardiovascular disease but prevention trials have failed to confirm causality. Reported reasons for this association have been that homocysteine and its major genetic determinant methylenetetrahydrofolate reductase (MTHFR) may have an effect on HDL and Apolipoprotein (Apo) A1 levels. We wanted to study if tHcy and its major determinants were correlated with Apo A1 levels in a large population without folate fortification. Methods This study was a prospective incident nested case-referent study within the Northern Sweden Health and Disease Study Cohort (NSHDSC), including 545 cases with first myocardial infarction and 1054 matched referents, median age at inclusion was 59 years. Univariate and multiple regression analyzes was used to study the associations between apolipoproteins Apo A1 and B, tHcy, folate and vitamin B12 in plasma as well as MTHFR polymorphisms 677C>T and 1298A>C. Results Apo A1 and Apo B were strongly associated with the risk of a first myocardial infarction. tHcy was not associated with Apo A1 levels. Instead, folate had an independent positive association with Apo A1 levels in univariate and multiple regression models. The associations were seen in all men and women, among referents but not among cases. MTHFR polymorphisms had no clear effect on Apo A1 levels. Conclusions Analyzing over 1500 subjects we found an independent positive association between plasma folate (major dietary determinant of tHcy) and Apo A1 levels among those who later did not develop a first myocardial infarction. No association was seen between tHcy and Apo A1.
Collapse
Affiliation(s)
- Elisabet Söderström
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 90185 Umeå, Sweden.
| | | | | | | | | | | | | |
Collapse
|
47
|
Du L, Qu X, Zheng H, Li R, Wang J, Chen M, Zhao P, Zhang Z, Gong K. Reverse Apolipoprotein A-I Mimetic Peptide R-D4F Inhibits Neointimal Formation following Carotid Artery Ligation in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1932-9. [DOI: 10.1016/j.ajpath.2013.01.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/23/2012] [Accepted: 01/23/2013] [Indexed: 11/26/2022]
|
48
|
Abstract
Extracellular microRNAs (miRNA) are present in most biological fluids, relatively stable, and hold great potential for disease biomarkers and novel therapeutics. Circulating miRNAs are transported by membrane-derived vesicles (exosomes and microparticles), lipoproteins, and other ribonucleoprotein complexes. Evidence suggests that miRNAs are selectively exported from cells with distinct signatures that have been found to be altered in many pathophysiologies, including cardiovascular disease. Protected from plasma ribonucleases by their carriers, functional miRNAs are delivered to recipient cells by various routes. Transferred miRNAs use cellular machinery to reduce target gene expression and alter cellular phenotype. Similar to soluble factors, miRNAs mediate cell-to-cell communication linking disparate cell types, diverse biological mechanisms, and homeostatic pathways. Although significant advances have been made, miRNA intercellular communication is full of complexities and many questions remain. This review brings into focus what is currently known and outstanding in a novel field of study with applicability to cardiovascular disease.
Collapse
Affiliation(s)
- Reinier A Boon
- Institute for Cardiovascular Regeneration, J.W. Goethe University Hospital, Frankfurt am Main, Germany
| | | |
Collapse
|
49
|
Abstract
Extracellular microRNAs (miRNA) are present in most biological fluids, relatively stable, and hold great potential for disease biomarkers and novel therapeutics. Circulating miRNAs are transported by membrane-derived vesicles (exosomes and microparticles), lipoproteins, and other ribonucleoprotein complexes. Evidence suggests that miRNAs are selectively exported from cells with distinct signatures that have been found to be altered in many pathophysiologies, including cardiovascular disease. Protected from plasma ribonucleases by their carriers, functional miRNAs are delivered to recipient cells by various routes. Transferred miRNAs use cellular machinery to reduce target gene expression and alter cellular phenotype. Similar to soluble factors, miRNAs mediate cell-to-cell communication linking disparate cell types, diverse biological mechanisms, and homeostatic pathways. Although significant advances have been made, miRNA intercellular communication is full of complexities and many questions remain. This review brings into focus what is currently known and outstanding in a novel field of study with applicability to cardiovascular disease.
Collapse
Affiliation(s)
- Reinier A Boon
- Institute for Cardiovascular Regeneration, J.W. Goethe University Hospital, Frankfurt am Main, Germany
| | | |
Collapse
|
50
|
Kanter MM, Kris-Etherton PM, Fernandez ML, Vickers KC, Katz DL. Exploring the factors that affect blood cholesterol and heart disease risk: is dietary cholesterol as bad for you as history leads us to believe? Adv Nutr 2012; 3:711-7. [PMID: 22983850 PMCID: PMC3648753 DOI: 10.3945/an.111.001321] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
This paper summarizes presentations given at the 2011 Experimental Biology meetings about the latest research and a paleoanthropological perspective pertaining to the relationship between dietary cholesterol intake and cardiovascular disease risk. For much of the past 50 years, a great deal of the scientific literature regarding dietary fat and cholesterol intake has indicated a strong positive correlation with heart disease. In recent years, however, there have been a number of epidemiological studies that did not support a relationship between cholesterol intake and cardiovascular disease. Further, a number of recent clinical trials that looked at the effects of long-term egg consumption (as a vehicle for dietary cholesterol) reported no negative impact on various indices of cardiovascular health and disease. Coupled with data indicating that the impact of lowering dietary cholesterol intake on serum LDL levels is small compared with other dietary and lifestyle factors, there is a need to consider how otherwise healthy foods can be incorporated in the diet to meet current dietary cholesterol recommendations. Because eggs are a healthful food, it is particularly important that sensible strategies be recommended for inclusions of eggs in a healthy diet.
Collapse
Affiliation(s)
- Mitchell M. Kanter
- Egg Nutrition Center, Park Ridge, IL,To whom correspondence should be addressed. E-mail:
| | | | | | | | - David L. Katz
- Yale University Prevention Research Center, New Haven, CT
| |
Collapse
|