1
|
Zhu M, Feng M, Tao X. NLR-mediated antiviral immunity in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:786-800. [PMID: 39777907 DOI: 10.1111/jipb.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Plant viruses cause substantial agricultural devastation and economic losses worldwide. Plant nucleotide-binding domain leucine-rich repeat receptors (NLRs) play a pivotal role in detecting viral infection and activating robust immune responses. Recent advances, including the elucidation of the interaction mechanisms between NLRs and pathogen effectors, the discovery of helper NLRs, and the resolution of the ZAR1 resistosome structure, have significantly deepened our understanding of NLR-mediated immune responses, marking a new era in NLR research. In this scenario, significant progress has been made in the study of NLR-mediated antiviral immunity. This review comprehensively summarizes the progress made in plant antiviral NLR research over the past decades, with a focus on NLR recognition of viral pathogen effectors, NLR activation and regulation, downstream immune signaling, and the engineering of NLRs.
Collapse
Affiliation(s)
- Min Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingfeng Feng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
2
|
Ershova NM, Kamarova KA, Sheshukova EV, Komarova TV. Cellular Partners of Tobamoviral Movement Proteins. Int J Mol Sci 2025; 26:400. [PMID: 39796254 PMCID: PMC11721203 DOI: 10.3390/ijms26010400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
The size of viral genomes is limited, thus the majority of encoded proteins possess multiple functions. The main function of tobamoviral movement protein (MP) is to perform plasmodesmata gating and mediate intercellular transport of the viral RNA. MP is a remarkable example of a protein that, in addition to the initially discovered and most obvious function, carries out numerous activities that are important both for the manifestation of its key function and for successful and productive infection in general. Briefly, MP binds the viral genome, delivers it to the plasmodesmata (PD) and mediates its intercellular transfer. To implement the transport function, MP interacts with diverse cellular factors. Each of these cellular proteins has its own function, which could be different under normal conditions and upon viral infection. Here, we summarize the data available at present on the plethora of cellular factors that were identified as tobamoviral MP partners and analyze the role of these interactions in infection development.
Collapse
Affiliation(s)
- Natalia M. Ershova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119333 Moscow, Russia; (N.M.E.); (K.A.K.); (E.V.S.)
| | - Kamila A. Kamarova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119333 Moscow, Russia; (N.M.E.); (K.A.K.); (E.V.S.)
| | - Ekaterina V. Sheshukova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119333 Moscow, Russia; (N.M.E.); (K.A.K.); (E.V.S.)
| | - Tatiana V. Komarova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119333 Moscow, Russia; (N.M.E.); (K.A.K.); (E.V.S.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Pan C, Li X, Lu X, Hu J, Zhang C, Shi L, Zhu C, Guo Y, Wang X, Huang Z, Du Y, Liu L, Li J. Identification and Functional Analysis of the Ph-2 Gene Conferring Resistance to Late Blight ( Phytophthora infestans) in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:3572. [PMID: 39771270 PMCID: PMC11679936 DOI: 10.3390/plants13243572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Late blight is a destructive disease affecting tomato production. The identification and characterization of resistance (R) genes are critical for the breeding of late blight-resistant cultivars. The incompletely dominant gene Ph-2 confers resistance against the race T1 of Phytophthora infestans in tomatoes. Herein, we identified Solyc10g085460 (RGA1) as a candidate gene for Ph-2 through the analysis of sequences and post-inoculation expression levels of genes located within the fine mapping interval. The RGA1 was subsequently validated to be a Ph-2 gene through targeted knockout and complementation analyses. It encodes a CC-NBS-LRR disease resistance protein, and transient expression assays conducted in the leaves of Nicotiana benthamiana indicate that Ph-2 is predominantly localized within the nucleus. In comparison to its susceptible allele (ph-2), the transient expression of Ph-2 can elicit hypersensitive responses (HR) in N. benthamiana, and subsequent investigations indicate that the structural integrity of the Ph-2 protein is likely a requirement for inducing HR in this species. Furthermore, ethylene and salicylic acid hormonal signaling pathways may mediate the transmission of the Ph-2 resistance signal, with PR1- and HR-related genes potentially involved in the Ph-2-mediated resistance. Our results could provide a theoretical foundation for the molecular breeding of tomato varieties resistant to late blight and offer valuable insights into elucidating the interaction mechanism between tomatoes and P. infestans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Lei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.P.); (X.L.); (X.L.); (J.H.); (C.Z.); (L.S.); (C.Z.); (Y.G.); (X.W.); (Z.H.); (Y.D.)
| | - Junming Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.P.); (X.L.); (X.L.); (J.H.); (C.Z.); (L.S.); (C.Z.); (Y.G.); (X.W.); (Z.H.); (Y.D.)
| |
Collapse
|
4
|
Qiao B, Wang S, Hou M, Chen H, Zhou Z, Xie X, Pang S, Yang C, Yang F, Zou Q, Sun S. Identifying nucleotide-binding leucine-rich repeat receptor and pathogen effector pairing using transfer-learning and bilinear attention network. Bioinformatics 2024; 40:btae581. [PMID: 39331576 PMCID: PMC11969219 DOI: 10.1093/bioinformatics/btae581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/24/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024] Open
Abstract
MOTIVATION Nucleotide-binding leucine-rich repeat (NLR) family is a class of immune receptors capable of detecting and defending against pathogen invasion. They have been widely used in crop breeding. Notably, the correspondence between NLRs and effectors (CNE) determines the applicability and effectiveness of NLRs. Unfortunately, CNE data is very scarce. In fact, we've found a substantial 91 291 NLRs confirmed via wet experiments and bioinformatics methods but only 387 CNEs are recognized, which greatly restricts the potential application of NLRs. RESULTS We propose a deep learning algorithm called ProNEP to identify NLR-effector pairs in a high-throughput manner. Specifically, we conceptualized the CNE prediction task as a protein-protein interaction (PPI) prediction task. Then, ProNEP predicts the interaction between NLRs and effectors by combining the transfer learning with a bilinear attention network. ProNEP achieves superior performance against state-of-the-art models designed for PPI predictions. Based on ProNEP, we conduct extensive identification of potential CNEs for 91 291 NLRs. With the rapid accumulation of genomic data, we expect that this tool will be widely used to predict CNEs in new species, advancing biology, immunology, and breeding. AVAILABILITY AND IMPLEMENTATION The ProNEP is available at http://nerrd.cn/#/prediction. The project code is available at https://github.com/QiaoYJYJ/ProNEP.
Collapse
Affiliation(s)
- Baixue Qiao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin 150001, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150001, China
| | - Shuda Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin 150001, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150001, China
| | - Mingjun Hou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin 150001, China
| | - Haodi Chen
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin 150001, China
| | - Zhengwenyang Zhou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin 150001, China
| | - Xueying Xie
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin 150001, China
| | - Shaozi Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin 150001, China
| | - Chunxue Yang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150001, China
| | - Fenglong Yang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shanwen Sun
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin 150001, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150001, China
| |
Collapse
|
5
|
Zhang Y, Bai Y, Zheng J, Cui Z. Bacterial recognition and inhibition activities of an LRR-only protein in the Chinese mitten crab, Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109799. [PMID: 39098748 DOI: 10.1016/j.fsi.2024.109799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
LRR-only protein (LRRop) is an important class of immune molecules that function as pattern recognition receptor in invertebrates, however, the bacterial inhibitory activity of this proteins remain largely unknown. Herein, a novel LRRop was cloned from Eriocheir sinensis and named as EsLRRop2. The EsLRRop2 consists of six LRR motifs and formed a horseshoe shape three-dimension structure. EsLRRop2 was mainly expressed in intestine and hepatopancreas. The transcripts of EsLRRop2 in the intestine and hepatopancreas were induced by Vibrio parahaemolyticus and Staphylococcus aureus, and displayed similar transcriptional profiles. The expression levels of EsLRRop2 responded more rapidly and highly to V. parahaemolyticus than S. aureus in the intestine and hepatopancreas. Although the basal expression level of EsLRRop2 in hemocytes was relatively low, its transcripts in hemocytes were significantly induced by V. parahaemolyticus and S. aureus. The recombinant proteins of EsLRRop2 (rEsLRRop2) displayed a wide range of binding spectrum against vibrios, including V. parahaemolyticus, V. alginolyticus, and V. harveryi. The rEsLRRop2 showed dose- and time-dependent inhibitory activity against V. parahaemolyticus and S. aureus, and it could agglutinate the two bacteria. Furthermore, the inhibitory activities of rEsLRRop2 against V. parahaemolyticus, V. alginolyticus, V. harveryi and S. aureus was slightly affected by pH and salinity, and the rEsLRRop2 displayed the strongest inhibitory activity against all the three vibrios when the salinity was 20 ‰ and pH was 8.0. Collectively, these results elucidate the bacterial binding and inhibitory activities of EsLRRop2, and provide theoretical foundations for the application of rEsLRRop2 in prevention and control of vibrio diseases in aquaculture.
Collapse
Affiliation(s)
- Yi Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
| | - Yunhui Bai
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
| | - Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| |
Collapse
|
6
|
Moon H, Jeong AR, Park CJ. Rice NLR protein XinN1, induced by a pattern recognition receptor XA21, confers enhanced resistance to bacterial blight. PLANT CELL REPORTS 2024; 43:72. [PMID: 38376569 DOI: 10.1007/s00299-024-03156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/08/2024] [Indexed: 02/21/2024]
Abstract
KEY MESSAGE Rice CC-type NLR XinN1, specifically induced by a PRR XA21, activates defense pathways against Xoo. Plants have evolved two layers of immune systems regulated by two different types of immune receptors, cell surface located pattern recognition receptors (PRRs) and intracellular nucleotide-binding domain leucine-rich repeat-containing receptors (NLRs). Plant PRRs recognize conserved molecular patterns from diverse pathogens, resulting in pattern-triggered immunity (PTI), whereas NLRs are activated by effectors secreted by pathogens into plant cells, inducing effector-triggered immunity (ETI). Rice PRR, XA21, recognizes a tyrosine-sulfated RaxX peptide (required for activation of XA21-mediated immunity X) as a molecular pattern secreted by Xanthomonas oryzae pv. oryzae (Xoo). Here, we identified a rice NLR gene, XinN1, that is specifically induced during the XA21-mediated immune response against Xoo. Transgenic rice plants overexpressing XinN1 displayed increased resistance to infection by Xoo with reduced lesion length and bacterial growth. Overexpression of autoactive mutant of XinN1 (XinN1D543V) also displayed increased resistance to Xoo, accompanied with severe growth retardation and cell death. In rice protoplast system, overexpression of XinN1 or XinN1D543V significantly elevated reactive oxygen species (ROS) production and cytosolic-free calcium (Ca2+) accumulations. In addition, XinN1 overexpression additionally elevated the ROS burst caused by the interaction between XA21 and RaxX-sY and induced the transcription of PTI signaling components, including somatic embryogenesis receptor kinases (OsSERKs) and receptor-like cytoplasmic kinases (OsRLCKs). Our results suggest that XinN1 induced by the PRR XA21 activates defense pathways and provides enhanced resistance to Xoo in rice.
Collapse
Affiliation(s)
- Hyeran Moon
- Department of Molecular Biology, Sejong University, Seoul, Republic of Korea
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - A-Ram Jeong
- Department of Molecular Biology, Sejong University, Seoul, Republic of Korea
| | - Chang-Jin Park
- Department of Molecular Biology, Sejong University, Seoul, Republic of Korea.
- Department of Bioresources Engineering, Sejong University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Balamurugan A, Mallikarjuna MG, Bansal S, Nayaka SC, Rajashekara H, Chellapilla TS, Prakash G. Genome-wide identification and characterization of NBLRR genes in finger millet (Eleusine coracana L.) and their expression in response to Magnaporthe grisea infection. BMC PLANT BIOLOGY 2024; 24:75. [PMID: 38281915 PMCID: PMC10823742 DOI: 10.1186/s12870-024-04743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND The nucleotide binding site leucine rich repeat (NBLRR) genes significantly regulate defences against phytopathogens in plants. The genome-wide identification and analysis of NBLRR genes have been performed in several species. However, the detailed evolution, structure, expression of NBLRRs and functional response to Magnaporthe grisea are unknown in finger millet (Eleusine coracana (L.) Gaertn.). RESULTS The genome-wide scanning of the finger millet genome resulted in 116 NBLRR (EcNBLRRs1-116) encompassing 64 CC-NB-LRR, 47 NB-LRR and 5 CCR-NB-LRR types. The evolutionary studies among the NBLRRs of five Gramineae species, viz., purple false brome (Brachypodium distachyon (L.) P.Beauv.), finger millet (E. coracana), rice (Oryza sativa L.), sorghum (Sorghum bicolor L. (Moench)) and foxtail millet (Setaria italica (L.) P.Beauv.) showed the evolution of NBLRRs in the ancestral lineage of the target species and subsequent divergence through gene-loss events. The purifying selection (Ka/Ks < 1) shaped the expansions of NBLRRs paralogs in finger millet and orthologs among the target Gramineae species. The promoter sequence analysis showed various stress- and phytohormone-responsive cis-acting elements besides growth and development, indicating their potential role in disease defence and regulatory mechanisms. The expression analysis of 22 EcNBLRRs in the genotypes showing contrasting responses to Magnaporthe grisea infection revealed four and five EcNBLRRs in early and late infection stages, respectively. The six of these nine candidate EcNBLRRs proteins, viz., EcNBLRR21, EcNBLRR26, EcNBLRR30, EcNBLRR45, EcNBLRR55 and EcNBLRR76 showed CC, NB and LRR domains, whereas the EcNBLRR23, EcNBLRR32 and EcNBLRR83 showed NB and LRR somains. CONCLUSION The identification and expression analysis of EcNBLRRs showed the role of EcNBLRR genes in assigning blast resistance in finger millet. These results pave the foundation for in-depth and targeted functional analysis of EcNBLRRs through genome editing and transgenic approaches.
Collapse
Affiliation(s)
- Alexander Balamurugan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Shilpi Bansal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Department of Science and Humanities, SRM Institute of Science and Technology, Modinagar, Uttar Pradesh, 201204, India
| | - S Chandra Nayaka
- Department of Studies in Applied Botany and Biotechnology, University of Mysore, Mysore, 570005, India
| | | | | | - Ganesan Prakash
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
8
|
Boissot N, Chovelon V, Rittener-Ruff V, Giovinazzo N, Mistral P, Pitrat M, Charpentier M, Troadec C, Bendahmane A, Dogimont C. A highly diversified NLR cluster in melon contains homologs that confer powdery mildew and aphid resistance. HORTICULTURE RESEARCH 2024; 11:uhad256. [PMID: 38269294 PMCID: PMC10807702 DOI: 10.1093/hr/uhad256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/29/2023] [Indexed: 01/26/2024]
Abstract
Podosphaera xanthii is the main causal agent of powdery mildew (PM) on Cucurbitaceae. In Cucumis melo, the Pm-w resistance gene, which confers resistance to P. xanthii, is located on chromosome 5 in a cluster of nucleotide-binding leucine-rich repeat receptors (NLRs). We used positional cloning and transgenesis, to isolate the Pm-wWMR 29 gene encoding a coiled-coil NLR (CC-NLR). Pm-wWMR 29 conferred high level of resistance to race 1 of PM and intermediate level of resistance to race 3 of PM. Pm-wWMR 29 turned out to be a homolog of the Aphis gossypii resistance gene Vat-1PI 161375. We confirmed that Pm-wWMR 29 did not confer resistance to aphids, while Vat-1PI 161375 did not confer resistance to PM. We showed that both homologs were included in a highly diversified cluster of NLRs, the Vat cluster. Specific Vat-1PI 161375 and Pm-wWMR 29 markers were present in 10% to 13% of 678 accessions representative of wild and cultivated melon types worldwide. Phylogenic reconstruction of 34 protein homologs of Vat-1PI 161375 and Pm-wWMR 29 identified in 24 melon accessions revealed an ancestor with four R65aa-a specific motif in the LRR domain, evolved towards aphid and virus resistance, while an ancestor with five R65aa evolved towards PM resistance. The complexity of the cluster comprising the Vat/Pm-w genes and its diversity in melon suggest that Vat homologs may contribute to the recognition of a broad range of yet to be identified pests and pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Myriam Charpentier
- INRAE, IPS2, 91190 Gif-sur-Yvette, France
- John Innes Centre, Department Cell & Developmental Biology, Colney Lane, Norwich NR4 7UH, UK
| | | | | | | |
Collapse
|
9
|
Ferguson ME, Eyles RP, Garcia-Oliveira AL, Kapinga F, Masumba EA, Amuge T, Bredeson JV, Rokhsar DS, Lyons JB, Shah T, Rounsley S, Mkamilo G. Candidate genes for field resistance to cassava brown streak disease revealed through the analysis of multiple data sources. FRONTIERS IN PLANT SCIENCE 2023; 14:1270963. [PMID: 38023930 PMCID: PMC10655247 DOI: 10.3389/fpls.2023.1270963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Cassava (Manihot esculenta Crantz) is a food and industrial storage root crop with substantial potential to contribute to managing risk associated with climate change due to its inherent resilience and in providing a biodegradable option in manufacturing. In Africa, cassava production is challenged by two viral diseases, cassava brown streak disease (CBSD) and cassava mosaic disease. Here we detect quantitative trait loci (QTL) associated with CBSD in a biparental mapping population of a Tanzanian landrace, Nachinyaya and AR37-80, phenotyped in two locations over three years. The purpose was to use the information to ultimately facilitate either marker-assisted selection or adjust weightings in genomic selection to increase the efficiency of breeding. Results from this study were considered in relation to those from four other biparental populations, of similar genetic backgrounds, that were phenotyped and genotyped simultaneously. Further, we investigated the co-localization of QTL for CBSD resistance across populations and the genetic relationships of parents based on whole genome sequence information. Two QTL on chromosome 4 for resistance to CBSD foliar symptoms and one on each of chromosomes 11 and 18 for root necrosis were of interest. Of significance within the candidate genes underlying the QTL on chromosome 4 are Phenylalanine ammonia-lyase (PAL) and Cinnamoyl-CoA reductase (CCR) genes and three PEPR1-related kinases associated with the lignin pathway. In addition, a CCR gene was also underlying the root necrosis-resistant QTL on chromosome 11. Upregulation of key genes in the cassava lignification pathway from an earlier transcriptome study, including PAL and CCR, in a CBSD-resistant landrace compared to a susceptible landrace suggests a higher level of basal lignin deposition in the CBSD-resistant landrace. Earlier RNAscope® in situ hybridisation imaging experiments demonstrate that cassava brown streak virus (CBSV) is restricted to phloem vessels in CBSV-resistant varieties, and phloem unloading for replication in mesophyll cells is prevented. The results provide evidence for the involvement of the lignin pathway. In addition, five eukaryotic initiation factor (eIF) genes associated with plant virus resistance were found within the priority QTL regions.
Collapse
Affiliation(s)
- Morag E. Ferguson
- Cassava Breeding, International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | - Rodney P. Eyles
- Cassava Breeding, International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | | | - Fortunus Kapinga
- Cassava Breeding, International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
- Cassava Breeding, Naliendele Agricultural Research Institute, Mtwara, Tanzania
| | - Esther A. Masumba
- Cassava Breeding, International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
- Cassava Breeding, Sugarcane Research Institute, Kibaha, Tanzania
| | - Teddy Amuge
- Cassava Breeding, International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
- Cassava Breeding, National Crops Resources Research Institute (NaCRRI), Namulonge, Uganda
| | - Jessen V. Bredeson
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, United States
| | - Daniel S. Rokhsar
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, United States
| | - Jessica B. Lyons
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, United States
| | - Trushar Shah
- Bioinformatics, International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | - Steve Rounsley
- Seeds & Traits R&D, Dow AgroSciences, Indianapolis, IN, United States
| | - Geoffrey Mkamilo
- Cassava Breeding, Naliendele Agricultural Research Institute, Mtwara, Tanzania
| |
Collapse
|
10
|
Nalla MK, Schafleitner R, Pappu HR, Barchenger DW. Current status, breeding strategies and future prospects for managing chilli leaf curl virus disease and associated begomoviruses in Chilli ( Capsicum spp.). FRONTIERS IN PLANT SCIENCE 2023; 14:1223982. [PMID: 37936944 PMCID: PMC10626458 DOI: 10.3389/fpls.2023.1223982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Chilli leaf curl virus disease caused by begomoviruses, has emerged as a major threat to global chilli production, causing severe yield losses and economic harm. Begomoviruses are a highly successful and emerging group of plant viruses that are primarily transmitted by whiteflies belonging to the Bemisia tabaci complex. The most effective method for mitigating chilli leaf curl virus disease losses is breeding for host resistance to Begomovirus. This review highlights the current situation of chilli leaf curl virus disease and associated begomoviruses in chilli production, stressing the significant issues that breeders and growers confront. In addition, the various breeding methods used to generate begomovirus resistant chilli cultivars, and also the complicated connections between the host plant, vector and the virus are discussed. This review highlights the importance of resistance breeding, emphasising the importance of multidisciplinary approaches that combine the best of traditional breeding with cutting-edge genomic technologies. subsequently, the article highlights the challenges that must be overcome in order to effectively deploy begomovirus resistant chilli varieties across diverse agroecological zones and farming systems, as well as understanding the pathogen thus providing the opportunities for improving the sustainability and profitability of chilli production.
Collapse
Affiliation(s)
- Manoj Kumar Nalla
- World Vegetable Center, South and Central Asia Regional Office, Hyderabad, India
| | | | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | |
Collapse
|
11
|
Guo L, Mu Y, Wang D, Ye C, Zhu S, Cai H, Zhu Y, Peng Y, Liu J, He X. Structural mechanism of heavy metal-associated integrated domain engineering of paired nucleotide-binding and leucine-rich repeat proteins in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1187372. [PMID: 37448867 PMCID: PMC10338059 DOI: 10.3389/fpls.2023.1187372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023]
Abstract
Plant nucleotide-binding and leucine-rich repeat (NLR) proteins are immune sensors that detect pathogen effectors and initiate a strong immune response. In many cases, single NLR proteins are sufficient for both effector recognition and signaling activation. These proteins possess a conserved architecture, including a C-terminal leucine-rich repeat (LRR) domain, a central nucleotide-binding (NB) domain, and a variable N-terminal domain. Nevertheless, many paired NLRs linked in a head-to-head configuration have now been identified. The ones carrying integrated domains (IDs) can recognize pathogen effector proteins by various modes; these are known as sensor NLR (sNLR) proteins. Structural and biochemical studies have provided insights into the molecular basis of heavy metal-associated IDs (HMA IDs) from paired NLRs in rice and revealed the co-evolution between pathogens and hosts by combining naturally occurring favorable interactions across diverse interfaces. Focusing on structural and molecular models, here we highlight advances in structure-guided engineering to expand and enhance the response profile of paired NLR-HMA IDs in rice to variants of the rice blast pathogen MAX-effectors (Magnaporthe oryzae AVRs and ToxB-like). These results demonstrate that the HMA IDs-based design of rice materials with broad and enhanced resistance profiles possesses great application potential but also face considerable challenges.
Collapse
Affiliation(s)
- Liwei Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yuanyu Mu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dongli Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Chen Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hong Cai
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Youyong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Youliang Peng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Junfeng Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China
| |
Collapse
|
12
|
Vermeulen A, Takken FLW, Sánchez-Camargo VA. Translation Arrest: A Key Player in Plant Antiviral Response. Genes (Basel) 2023; 14:1293. [PMID: 37372472 DOI: 10.3390/genes14061293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Plants evolved several mechanisms to protect themselves against viruses. Besides recessive resistance, where compatible host factors required for viral proliferation are absent or incompatible, there are (at least) two types of inducible antiviral immunity: RNA silencing (RNAi) and immune responses mounted upon activation of nucleotide-binding domain leucine-rich repeat (NLR) receptors. RNAi is associated with viral symptom recovery through translational repression and transcript degradation following recognition of viral double-stranded RNA produced during infection. NLR-mediated immunity is induced upon (in)direct recognition of a viral protein by an NLR receptor, triggering either a hypersensitive response (HR) or an extreme resistance response (ER). During ER, host cell death is not apparent, and it has been proposed that this resistance is mediated by a translational arrest (TA) of viral transcripts. Recent research indicates that translational repression plays a crucial role in plant antiviral resistance. This paper reviews current knowledge on viral translational repression during viral recovery and NLR-mediated immunity. Our findings are summarized in a model detailing the pathways and processes leading to translational arrest of plant viruses. This model can serve as a framework to formulate hypotheses on how TA halts viral replication, inspiring new leads for the development of antiviral resistance in crops.
Collapse
Affiliation(s)
- Annemarie Vermeulen
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Frank L W Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Victor A Sánchez-Camargo
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
13
|
Wang X, Cheng R, Xu D, Huang R, Li H, Jin L, Wu Y, Tang J, Sun C, Peng D, Chu C, Guo X. MG1 interacts with a protease inhibitor and confers resistance to rice root-knot nematode. Nat Commun 2023; 14:3354. [PMID: 37291108 PMCID: PMC10250356 DOI: 10.1038/s41467-023-39080-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
The rice root-knot nematode (Meloidogyne graminicola) is one of the most destructive pests threatening rice (Oryza sativa L.) production in Asia; however, no rice resistance genes have been cloned. Here, we demonstrate that M. GRAMINICOLA-RESISTANCE GENE 1 (MG1), an R gene highly expressed at the site of nematode invasion, determines resistance against the nematode in several rice varieties. Introgressing MG1 into susceptible varieties increases resistance comparable to resistant varieties, for which the leucine-rich repeat domain is critical for recognizing root-knot nematode invasion. We also report transcriptome and cytological changes that are correlated with a rapid and robust response during the incompatible interaction that occurs in resistant rice upon nematode invasion. Furthermore, we identified a putative protease inhibitor that directly interacts with MG1 during MG1-mediated resistance. Our findings provide insight into the molecular basis of nematode resistance as well as valuable resources for developing rice varieties with improved nematode resistance.
Collapse
Affiliation(s)
- Xiaomin Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rui Cheng
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Daochao Xu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Renliang Huang
- Nanchang Subcenter of Rice National Engineering Laboratory, Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Haoxing Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Jin
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiuyou Tang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 625014, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoli Guo
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Han Z, Li F, Qiao W, Zheng X, Cheng Y, Zhang L, Huang J, Wang Y, Lou D, Xing M, Fan W, Nie Y, Guo W, Wang S, Liu Z, Yang Q. Global whole-genome comparison and analysis to classify subpopulations and identify resistance genes in weedy rice relevant for improving crops. FRONTIERS IN PLANT SCIENCE 2023; 13:1089445. [PMID: 36704170 PMCID: PMC9872009 DOI: 10.3389/fpls.2022.1089445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Common weedy rice plants are important genetic resources for modern breeding programs because they are the closest relatives to rice cultivars and their genomes contain elite genes. Determining the utility and copy numbers of WRKY and nucleotide-binding site (NBS) resistance-related genes may help to clarify their variation patterns and lead to crop improvements. In this study, the weedy rice line LM8 was examined at the whole-genome level. To identify the Oryza sativa japonica subpopulation that LM8 belongs to, the single nucleotide polymorphisms (SNPs) of 180 cultivated and 23 weedy rice varieties were used to construct a phylogenetic tree and a principal component analysis and STRUCTURE analysis were performed. The results indicated that LM8 with admixture components from japonica (GJ) and indica (XI) belonged to GJ-admixture (GJ-adm), with more than 60% of its genetic background derived from XI-2 (22.98%), GJ-tropical (22.86%), and GJ-subtropical (17.76%). Less than 9% of its genetic background was introgressed from weedy rice. Our results also suggested LM8 may have originated in a subtropical or tropical geographic region. Moreover, the comparisons with Nipponbare (NIP) and Shuhui498 (R498) revealed many specific structure variations (SVs) in the LM8 genome and fewer SVs between LM8 and NIP than between LM8 and R498. Next, 96 WRKY and 464 NBS genes were identified and mapped on LM8 chromosomes to eliminate redundancies. Three WRKY genes (ORUFILM02g002693, ORUFILM05g002725, and ORUFILM05g001757) in group III and one RNL [including the resistance to powdery mildew 8 (RPW8) domain, NBS, and leucine rich repeats (LRRs)] type NBS gene (ORUFILM12g000772) were detected in LM8. Among the NBS genes, the RPW8 domain was detected only in ORUFILM12g000772. This gene may improve plant resistance to pathogens as previously reported. Its classification and potential utility imply LM8 should be considered as a germplasm resource relevant for rice breeding programs.
Collapse
Affiliation(s)
- Zhenyun Han
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weihua Qiao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
- International Rice Research Institute, Metro Manila, Philippines
| | - Yunlian Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lifang Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingfen Huang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanyan Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Danjing Lou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng Xing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiya Fan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yamin Nie
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlong Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shizhuang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ziran Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingwen Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
15
|
Nam JC, Bhatt PS, Kim SI, Kang HG. Co-immunoprecipitation for Assessing Protein-Protein Interactions in Agrobacterium-Mediated Transient Expression System in Nicotiana benthamiana. Methods Mol Biol 2023; 2690:101-110. [PMID: 37450140 DOI: 10.1007/978-1-0716-3327-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The characterization of protein-protein interactions (PPI) often provides functional information about a target protein. Yeast-two-hybrid (Y2H) and luminescence/fluorescence-based detections, therefore, have been widely utilized for assessing PPI. In addition, a co-immunoprecipitation (co-IP) method has also been adopted with transient protein expression in Nicotiana benthamiana (N. benthamiana) infiltrated with Agrobacterium tumefaciens. Herein, we describe a co-IP procedure in which structural maintenance of chromosome 1 (SMC1), identified from a Y2H screening, was verified as an interacting partner for microchidia 1 (MORC1), a protein well known for its function in plant immunity and epigenetics. SMC1 and MORC1 were transiently expressed in N. benthamiana when infiltrated by Agrobacterium with the respective genes. From this approach, we identified a region of SMC1 responsible for interacting with MORC1. The co-IP method, of which outputs are mainly from immunoblot analysis, provided information about target protein expression as well, which is often useful for troubleshooting. Using this feature, we showcased a PPI confirmation from our SMC1-MORC1 study in which a full-length SMC1 protein was not detectable, and, therefore, a subsequent truncated mutant analysis had to be employed for PPI verification.
Collapse
Affiliation(s)
- Ji Chul Nam
- Department of Molecular Biosciences, Institute for Cellular & Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Padam S Bhatt
- Department of Biology, Texas State University, San Marcos, TX, USA
| | - Sung-Il Kim
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Hong-Gu Kang
- Department of Biology, Texas State University, San Marcos, TX, USA.
| |
Collapse
|
16
|
Chelliah A, Arumugam C, Suthanthiram B, Raman T, Subbaraya U. Genome-wide identification, characterization, and evolutionary analysis of NBS genes and their association with disease resistance in Musa spp. Funct Integr Genomics 2022; 23:7. [PMID: 36538175 DOI: 10.1007/s10142-022-00925-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
Banana is an important food crop that is susceptible to a wide range of pests and diseases that can reduce yield and quality. The primary objective of banana breeding programs is to increase disease resistance, which requires the identification of resistance (R) genes. Despite the fact that resistant sources have been identified in bananas, the genes, particularly the nucleotide-binding site (NBS) family, which play an important role in protecting plants against pathogens, have received little attention. As a result, this study included a thorough examination of the NBS disease resistance gene family's classification, phylogenetic analysis, genome organization, evolution, cis-elements, differential expression, regulation by microRNAs, and protein-protein interaction. A total of 116 and 43 putative NBS genes from M. acuminata and M. balbisiana, respectively, were identified and characterized, and were classified into seven sub-families. Structural analysis of NBS genes revealed the presence of signal peptides, their sub-cellular localization, molecular weight and pI. Eight commonly conserved motifs were found, and NBS genes were unevenly distributed across multiple chromosomes, with the majority of NBS genes being located in chr3 and chr1 of the A and B genomes, respectively. Tandem duplication occurrences have helped bananas' NBS genes spread throughout evolution. Transcriptome analysis of NBS genes revealed significant differences in expression between resistant and susceptible cultivars of fusarium wilt, eumusae leaf spot, root lesion nematode, and drought, implying that they can be used as candidate resistant genes. Ninety miRNAs were discovered to have targets in 104 NBS genes from the A genome, providing important insights into NBS gene expression regulation. Overall, this study offers a valuable genomic resource and understanding of the function and evolution of NBS genes in relation to rapidly evolving pathogens, as well as providing breeders with selection targets for fast-tracking breeding of banana varieties with more durable resistance to pathogens.
Collapse
Affiliation(s)
- Anuradha Chelliah
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli - 620 102, Tamil Nadu, India.
| | - Chandrasekar Arumugam
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli - 620 102, Tamil Nadu, India
| | - Backiyarani Suthanthiram
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli - 620 102, Tamil Nadu, India
| | - Thangavelu Raman
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli - 620 102, Tamil Nadu, India
| | - Uma Subbaraya
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli - 620 102, Tamil Nadu, India
| |
Collapse
|
17
|
Xie Y, Wang Y, Yu X, Lin Y, Zhu Y, Chen J, Xie H, Zhang Q, Wang L, Wei Y, Xiao Y, Cai Q, Zheng Y, Wang M, Xie H, Zhang J. SH3P2, an SH3 domain-containing protein that interacts with both Pib and AvrPib, suppresses effector-triggered, Pib-mediated immunity in rice. MOLECULAR PLANT 2022; 15:1931-1946. [PMID: 36321201 DOI: 10.1016/j.molp.2022.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/03/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Plants usually keep resistance (R) proteins in a static state under normal conditions to avoid autoimmunity and save energy for growth, but R proteins can be rapidly activated upon perceiving pathogen invasion. Pib, the first cloned blast disease R gene in rice, encoding a nucleotide-binding leucine-rich repeat (NLR) protein, mediates resistance to the blast fungal (Magnaporthe oryzae) isolates carrying the avirulence gene AvrPib. However, the molecular mechanisms about how Pib recognizes AvrPib and how it is inactivated and activated remain largely unclear. In this study, through map-based cloning and CRISPR-Cas9 gene editing, we proved that Pib contributes to the blast disease resistance of rice cultivar Yunyin (YY). Furthermore, an SH3 domain-containing protein, SH3P2, was found to associate with Pib mainly at clathrin-coated vesicles in rice cells, via direct binding with the coiled-coil (CC) domain of Pib. Interestingly, overexpression of SH3P2 in YY compromised Pib-mediated resistance to M. oryzae isolates carrying AvrPib and Pib-AvrPib recognition-induced cell death. SH3P2 competitively inhibits the self-association of the Pib CC domain in vitro, suggesting that binding of SH3P2 with Pib undermines its homodimerization. Moreover, SH3P2 can also interact with AvrPib and displays higher affinity to AvrPib than to Pib, which leads to dissociation of SH3P2 from Pib in the presence of AvrPib. Taken together, our results suggest that SH3P2 functions as a "protector" to keep Pib in a static state by direct interaction during normal growth but could be triggered off by the invasion of AvrPib-carrying M. oryzae isolates. Our study reveals a new mechanism about how an NLR protein is inactivated under normal conditions but is activated upon pathogen infection.
Collapse
Affiliation(s)
- Yunjie Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yupeng Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Xiangzhen Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yuelong Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yongsheng Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Jinwen Chen
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Hongguang Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Qingqing Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lanning Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yanjia Xiao
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yanmei Zheng
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Mo Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huaan Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China.
| | - Jianfu Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China.
| |
Collapse
|
18
|
Wu Q, Cui Y, Jin X, Wang G, Yan L, Zhong C, Yu M, Li W, Wang Y, Wang L, Wang H, Dang C, Zhang X, Chen Y, Zhang P, Zhao X, Wu J, Fu D, Xia L, Nevo E, Vogel J, Huo N, Li D, Gu YQ, Jackson AO, Zhang Y, Liu Z. The CC-NB-LRR protein BSR1 from Brachypodium confers resistance to Barley stripe mosaic virus in gramineous plants by recognising TGB1 movement protein. THE NEW PHYTOLOGIST 2022; 236:2233-2248. [PMID: 36059081 DOI: 10.1111/nph.18457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Although some nucleotide binding, leucine-rich repeat immune receptor (NLR) proteins conferring resistance to specific viruses have been identified in dicot plants, NLR proteins involved in viral resistance have not been described in monocots. We have used map-based cloning to isolate the CC-NB-LRR (CNL) Barley stripe mosaic virus (BSMV) resistance gene barley stripe resistance 1 (BSR1) from Brachypodium distachyon Bd3-1 inbred line. Stable BSR1 transgenic Brachypodium line Bd21-3, barley (Golden Promise) and wheat (Kenong 199) plants developed resistance against BSMV ND18 strain. Allelic variation analyses indicated that BSR1 is present in several Brachypodium accessions collected from countries in the Middle East. Protein domain swaps revealed that the intact LRR domain and the C-terminus of BSR1 are required for resistance. BSR1 interacts with the BSMV ND18 TGB1 protein in planta and shows temperature-sensitive antiviral resistance. The R390 and T392 residues of TGB1ND (ND18 strain) and the G196 and K197 residues within the BSR1 P-loop motif are key amino acids required for immune activation. BSR1 is the first cloned virus resistance gene encoding a typical CNL protein in monocots, highlighting the utility of the Brachypodium model for isolation and analysis of agronomically important genes for crop improvement.
Collapse
Affiliation(s)
- Qiuhong Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
| | - Yu Cui
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Guoxin Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lijie Yan
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Chenchen Zhong
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Meihua Yu
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wenli Li
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hao Wang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Chen Dang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xinyu Zhang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yongxing Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Panpan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofei Zhao
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jiajie Wu
- College of Agronomy, Shandong Agriculture University, Taian, 271018, China
| | - Daolin Fu
- College of Agronomy, Shandong Agriculture University, Taian, 271018, China
| | - Lanqin Xia
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Eviatar Nevo
- Institute of Evolution, Haifa University, Haifa, 31905, Israel
| | - John Vogel
- Joint Genome Institute, DOE, Walnut Creek, CA, 94598, USA
| | - Naxin Huo
- USDA-ARS Western Regional Research Center, Albany, CA, 94710, USA
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yong Q Gu
- USDA-ARS Western Regional Research Center, Albany, CA, 94710, USA
| | - Andrew O Jackson
- Department of Plant and Microbiology, University of California, Berkeley, CA, 94720, USA
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Yang J, Xiong C, Li S, Zhou C, Li L, Xue Q, Liu W, Niu Z, Ding X. Evolution patterns of NBS genes in the genus Dendrobium and NBS-LRR gene expression in D. officinale by salicylic acid treatment. BMC PLANT BIOLOGY 2022; 22:529. [PMID: 36376794 PMCID: PMC9661794 DOI: 10.1186/s12870-022-03904-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Dendrobium officinale Kimura et Migo, which contains rich polysaccharides, flavonoids and alkaloids, is a Traditional Chinese Medicine (TCM) with important economic benefits, while various pathogens have brought huge losses to its industrialization. NBS gene family is the largest class of plant disease resistance (R) genes, proteins of which are widely distributed in the upstream and downstream of the plant immune systems and are responsible for receiving infection signals and regulating gene expression respectively. It is of great significance for the subsequent disease resistance breeding of D. officinale to identify NBS genes by using the newly published high-quality chromosome-level D. officinale genome. RESULTS In this study, a total of 655 NBS genes were uncovered from the genomes of D. officinale, D. nobile, D. chrysotoxum, V. planifolia, A. shenzhenica, P. equestris and A. thaliana. The phylogenetic results of CNL-type protein sequences showed that orchid NBS-LRR genes have significantly degenerated on branches a and b. The Dendrobium NBS gene homology analysis showed that the Dendrobium NBS genes have two obvious characteristics: type changing and NB-ARC domain degeneration. Because the NBS-LRR genes have both NB-ARC and LRR domains, 22 D. officinale NBS-LRR genes were used for subsequent analyses, such as gene structures, conserved motifs, cis-elements and functional annotation analyses. All these results suggested that D. officinale NBS-LRR genes take part in the ETI system, plant hormone signal transduction pathway and Ras signaling pathway. Finally, there were 1,677 DEGs identified from the salicylic acid (SA) treatment transcriptome data of D. officinale. Among them, six NBS-LRR genes (Dof013264, Dof020566, Dof019188, Dof019191, Dof020138 and Dof020707) were significantly up-regulated. However, only Dof020138 was closely related to other pathways from the results of WGCNA, such as pathogen identification pathways, MAPK signaling pathways, plant hormone signal transduction pathways, biosynthetic pathways and energy metabolism pathways. CONCLUSION Our results revealed that the NBS gene degenerations are common in the genus Dendrobium, which is the main reason for the diversity of NBS genes, and the NBS-LRR genes generally take part in D. officinale ETI system and signal transduction pathways. In addition, the D. officinale NBS-LRR gene Dof020138, which may have an important breeding value, is indirectly activated by SA in the ETI system.
Collapse
Affiliation(s)
- Jiapeng Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Caijun Xiong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Siyuan Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Cheng Zhou
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Lingli Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China.
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China.
| |
Collapse
|
20
|
Zhang L, Liu Y, Wang Q, Wang C, Lv S, Wang Y, Wang J, Wang Y, Yuan J, Zhang H, Kang Z, Ji W. An alternative splicing isoform of wheat TaYRG1 resistance protein activates immunity by interacting with dynamin-related proteins. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5474-5489. [PMID: 35652375 DOI: 10.1093/jxb/erac245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Wheat (Triticum aestivum) is a commercially important crop and its production is seriously threatened by the fungal pathogen Puccinia striiformis f. sp. tritici West (Pst). Resistance (R) genes are critical factors that facilitate plant immune responses. Here, we report a wheat R gene NB-ARC-LRR ortholog, TaYRG1, that is associated with distinct alternative splicing events in wheat infected by Pst. The native splice variant, TaYRG1.6, encodes internal-motif-deleted polypeptides with the same N- and C-termini as TaYRG1.1, resulting in gain of function. Transient expression of protein variants in Nicotiana benthamiana showed that the NB and ARC domains, and TaYRG1.6 (half LRR domain), stimulate robust elicitor-independent cell death based on a signal peptide, although the activity was negatively modulated by the CC and complete LRR domains. Furthermore, molecular genetic analyses indicated that TaYRG1.6 enhanced resistance to Pst in wheat. Moreover, we provide multiple lines of evidence that TaYRG1.6 interacts with a dynamin-related protein, TaDrp1. Proteome profiling suggested that the TaYRG1.6-TaDrp1-DNM complex in the membrane trafficking systems may trigger cell death by mobilizing lipid and kinase signaling in the endocytosis pathway. Our findings reveal a unique mechanism by which TaYRG1 activates cell death and enhances disease resistance by reconfiguring protein structure through alternative splicing.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanming Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiaohui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shikai Lv
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanzhen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
21
|
Shaw RK, Shen Y, Yu H, Sheng X, Wang J, Gu H. Multi-Omics Approaches to Improve Clubroot Resistance in Brassica with a Special Focus on Brassica oleracea L. Int J Mol Sci 2022; 23:9280. [PMID: 36012543 PMCID: PMC9409056 DOI: 10.3390/ijms23169280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Brassica oleracea is an agronomically important species of the Brassicaceae family, including several nutrient-rich vegetables grown and consumed across the continents. But its sustainability is heavily constrained by a range of destructive pathogens, among which, clubroot disease, caused by a biotrophic protist Plasmodiophora brassicae, has caused significant yield and economic losses worldwide, thereby threatening global food security. To counter the pathogen attack, it demands a better understanding of the complex phenomenon of Brassica-P. brassicae pathosystem at the physiological, biochemical, molecular, and cellular levels. In recent years, multiple omics technologies with high-throughput techniques have emerged as successful in elucidating the responses to biotic and abiotic stresses. In Brassica spp., omics technologies such as genomics, transcriptomics, ncRNAomics, proteomics, and metabolomics are well documented, allowing us to gain insights into the dynamic changes that transpired during host-pathogen interactions at a deeper level. So, it is critical that we must review the recent advances in omics approaches and discuss how the current knowledge in multi-omics technologies has been able to breed high-quality clubroot-resistant B. oleracea. This review highlights the recent advances made in utilizing various omics approaches to understand the host resistance mechanisms adopted by Brassica crops in response to the P. brassicae attack. Finally, we have discussed the bottlenecks and the way forward to overcome the persisting knowledge gaps in delivering solutions to breed clubroot-resistant Brassica crops in a holistic, targeted, and precise way.
Collapse
Affiliation(s)
| | | | | | | | | | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
22
|
Qi S, Shen Y, Wang X, Zhang S, Li Y, Islam MM, Wang J, Zhao P, Zhan X, Zhang F, Liang Y. A new NLR gene for resistance to Tomato spotted wilt virus in tomato (Solanum lycopersicum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1493-1509. [PMID: 35179614 DOI: 10.1007/s00122-022-04049-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
A typical NLR gene, Sl5R-1, which regulates Tomato spotted wilt virus resistance, was fine mapped to a region less than 145 kb in the tomato genome. Tomato spotted wilt is a viral disease caused by Tomato spotted wilt virus (TSWV), which is a devastating disease that affects tomato (Solanum lycopersicum) production worldwide, and the resistance provided by the Sw-5 gene has broken down in some cases. In order to identify additional genes that confer resistance to TSWV, the F2 population was mapped using susceptible (M82) and resistant (H149) tomato lines. After 3 years of mapping, the main quantitative trait locus on chromosome 05 was narrowed to a genomic region of 145 kb and was subsequently identified by the F2 population, with 1971 plants in 2020. This region encompassed 14 candidate genes, and in it was found a gene cluster consisting of three genes (Sl5R-1, Sl5R-2, and Sl5R-3) that code for NBS-LRR proteins. The qRT-PCR and virus-induced gene silencing approach results confirmed that Sl5R-1 is a functional resistance gene for TSWV. Analysis of the Sl5R-1 promoter region revealed that there is a SlTGA9 transcription factor binding site caused by a base deletion in resistant plants, and its expression level was significantly up-regulated in infected resistant plants. Analysis of salicylic acid (SA) and jasmonic acid (JA) levels and the expression of SA- and JA-regulated genes suggest that SlTGA9 interacts or positively regulates Sl5R-1 to affect the SA- and JA-signaling pathways to resist TSWV. These results demonstrate that the identified Sl5R-1 gene regulates TSWV resistance by its own promoter interacting with the transcription factor SlTGA9.
Collapse
Affiliation(s)
- Shiming Qi
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Yuanbo Shen
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Xinyu Wang
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Shijie Zhang
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Yushun Li
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Md Monirul Islam
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Jin Wang
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Pan Zhao
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Xiangqiang Zhan
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Fei Zhang
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China.
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
23
|
Margaritopoulou T, Kizis D, Kotopoulis D, Papadakis IE, Anagnostopoulos C, Baira E, Termentzi A, Vichou AE, Leifert C, Markellou E. Enriched HeK4me3 marks at Pm-0 resistance-related genes prime courgette against Podosphaera xanthii. PLANT PHYSIOLOGY 2022; 188:576-592. [PMID: 34597395 PMCID: PMC8774738 DOI: 10.1093/plphys/kiab453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Powdery mildew (PM) disease, caused by the obligate biotrophic fungal pathogen Podosphaera xanthii, is the most reported and destructive disease on cultivated Cucurbita species all over the world. Recently, the appearance of highly aggressive P. xanthii isolates has led to PM outbreaks even in resistant crops, making disease management a very difficult task. To challenge this, breeders rely on genetic characteristics for PM control. Analysis of commercially available intermediate resistance courgette (Cucurbita pepo L. var. cylindrica) varieties using cytological, molecular, and biochemical approaches showed that the plants were under a primed state and induced systemic acquired resistance (SAR) responses, exhibiting enhanced callose production, upregulation of salicylic acid (SA) defense signaling pathway genes, and accumulation of SA and defense metabolites. Additionally, the intermediate resistant varieties showed an altered epigenetic landscape in histone marks that affect transcriptional activation. We demonstrated that courgette plants had enriched H3K4me3 marks on SA-BINDING PROTEIN 2 and YODA (YDA) genes of the Pm-0 interval introgression, a genomic region that confers resistant to Cucurbits against P. xanthii. The open chromatin of SA-BINDING PROTEIN 2 and YDA genes was consistent with genes' differential expression, induced SA pathway, altered stomata characteristics, and activated SAR responses. These findings demonstrate that the altered epigenetic landscape of the intermediate resistant varieties modulates the activation of SA-BINDING PROTEIN 2 and YDA genes leading to induced gene transcription that primes courgette plants.
Collapse
Affiliation(s)
- Theoni Margaritopoulou
- Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Dimosthenis Kizis
- Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Dimitris Kotopoulis
- Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Ioannis E Papadakis
- Faculty of Crop Science, Agricultural University of Athens, Athens 11855, Greece
| | - Christos Anagnostopoulos
- Scientific Directorate of Pesticides' Assessment & Phytopharmacy, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Eirini Baira
- Scientific Directorate of Pesticides' Assessment & Phytopharmacy, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Aikaterini Termentzi
- Scientific Directorate of Pesticides' Assessment & Phytopharmacy, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Aikaterini-Eleni Vichou
- Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Carlo Leifert
- SCU Plant Science, Southern Cross University, Lismore, Australia
- Department of Nutrition, IMB, University of Oslo, Oslo 0372, Norway
| | - Emilia Markellou
- Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, Athens 14561, Greece
| |
Collapse
|
24
|
Wang S, Wang X, Zhang R, Liu Q, Sun X, Wang J, Wang Y, Xing J, Liu Y, Zhao Y, Shi Z, Su A, Li C, Xiao S, Jiao Y, Li Z, Wang R, Song W, Zhao J. RppM, Encoding a Typical CC-NBS-LRR Protein, Confers Resistance to Southern Corn Rust in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:951318. [PMID: 35903220 PMCID: PMC9317930 DOI: 10.3389/fpls.2022.951318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 05/12/2023]
Abstract
Southern corn rust (SCR) caused by Puccinia polysora Underw. poses a major threat to maize production worldwide. The utilization of host SCR-resistance genes and the cultivation of resistant cultivars are the most effective, economical strategies for controlling SCR. Here, we identified and cloned a new SCR resistance gene, RppM, from the elite maize inbred line Jing2416K. RppM was found to encode a typical CC-NBS-LRR protein localized in both the nucleus and cytoplasm. This gene was constitutively expressed at all developmental stages and in all tissues examined, with the strongest expression detected in leaves at the mature stage. A transcriptome analysis provided further evidence that multiple defense systems were initiated in Jing2416K, including pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity, reinforcement of cell walls, accumulation of antimicrobial compounds, and activation of phytohormone signaling pathways. Finally, we developed functional Kompetitive allele-specific PCR markers for RppM using two conserved SNP sites and successfully applied these functional markers for the detection of RppM and the cultivation of resistant maize cultivars, demonstrating their great potential utility in maize breeding.
Collapse
|
25
|
Huang H, Huang S, Li J, Wang H, Zhao Y, Feng M, Dai J, Wang T, Zhu M, Tao X. Stepwise artificial evolution of an Sw-5b immune receptor extends its resistance spectrum against resistance-breaking isolates of Tomato spotted wilt virus. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2164-2176. [PMID: 34036713 PMCID: PMC8541788 DOI: 10.1111/pbi.13641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 05/20/2023]
Abstract
Plants use intracellular nucleotide-binding leucine-rich repeat immune receptors (NLRs) to recognize pathogen-encoded effectors and initiate immune responses. Tomato spotted wilt virus (TSWV), which has been found to infect >1000 plant species, is among the most destructive plant viruses worldwide. The Sw-5b is the most effective and widely used resistance gene in tomato breeding to control TSWV. However, broad application of tomato cultivars carrying Sw-5b has resulted in an emergence of resistance-breaking (RB) TSWV. Therefore, new effective genes are urgently needed to prevent further RB TSWV outbreaks. In this study, we conducted artificial evolution to select Sw-5b mutants that could extend the resistance spectrum against TSWV RB isolates. Unlike regular NLRs, Sw-5b detects viral elicitor NSm using both the N-terminal Solanaceae-specific domain (SD) and the C-terminal LRR domain in a two-step recognition process. Our attempts to select gain-of-function mutants by random mutagenesis involving either the SD or the LRR of Sw-5b failed; therefore, we adopted a stepwise strategy, first introducing a NSmRB -responsive mutation at the R927 residue in the LRR, followed by random mutagenesis involving the Sw-5b SD domain. Using this strategy, we obtained Sw-5bL33P/K319E/R927A and Sw-5bL33P/K319E/R927Q mutants, which are effective against TSWV RB carrying the NSmC118Y or NSmT120N mutation, and against other American-type tospoviruses. Thus, we were able to extend the resistance spectrum of Sw-5b; the selected Sw-5b mutants will provide new gene resources to control RB TSWV.
Collapse
Affiliation(s)
- Haining Huang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Shen Huang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Jia Li
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Huiyuan Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Yaqian Zhao
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Mingfeng Feng
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Jing Dai
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Tongkai Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Min Zhu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Xiaorong Tao
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
26
|
Yu X, Zhong S, Yang H, Chen C, Chen W, Yang H, Guan J, Fu P, Tan F, Ren T, Shen J, Zhang M, Luo P. Identification and Characterization of NBS Resistance Genes in Akebia trifoliata. FRONTIERS IN PLANT SCIENCE 2021; 12:758559. [PMID: 34777439 PMCID: PMC8585750 DOI: 10.3389/fpls.2021.758559] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/08/2021] [Indexed: 05/26/2023]
Abstract
Akebia trifoliata is an important multiuse perennial plant that often suffers attacks from various pathogens due to its long growth cycle, seriously affecting its commercial value. The absence of research on the resistance (R) genes of A. trifoliata has greatly limited progress in the breeding of resistant varieties. Genes encoding proteins containing nucleotide binding sites (NBSs) and C-terminal leucine-rich repeats (LRRs), the largest family of plant resistance (R) genes, are vital for plant disease resistance. A comprehensive genome-wide analysis showed that there were only 73 NBS genes in the A. trifoliata genome, including three main subfamilies (50 coiled coil (CC)-NBS-LRR (CNL), 19 Toll/interleukin-1 receptor (TIR)-NBS-LRR (TNL) and four resistance to powdery mildew8 (RPW8)-NBS-LRR (RNL) genes). Additionally, 64 mapped NBS candidates were unevenly distributed on 14 chromosomes, most of which were assigned to the chromosome ends; 41 of these genes were located in clusters, and the remaining 23 genes were singletons. Both the CNLs and TNLs were further divided into four subgroups, and the CNLs had fewer exons than the TNLs. Structurally, all eight previously reported conserved motifs were identified in the NBS domains, and both their order and their amino acid sequences exhibited high conservation. Evolutionarily, tandem and dispersed duplications were shown to be the two main forces responsible for NBS expansion, producing 33 and 29 genes, respectively. A transcriptome analysis of three fruit tissues at four developmental stages showed that NBS genes were generally expressed at low levels, while a few of these genes showed relatively high expression during later development in rind tissues. Overall, this research is the first to identify and characterize A. trifoliata NBS genes and is valuable for both the development of new resistant cultivars and the study of molecular mechanisms of resistance.
Collapse
Affiliation(s)
- Xiaojiao Yu
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Shengfu Zhong
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Huai Yang
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Chen Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Wei Chen
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Akebia trifoliata Biotechnology Co., Ltd., Chengdu, China
| | - Hao Yang
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Akebia trifoliata Biotechnology Co., Ltd., Chengdu, China
| | - Ju Guan
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Peng Fu
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Feiquan Tan
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
| | - Tianheng Ren
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jinliang Shen
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Min Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Peigao Luo
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
27
|
NB-LRR-encoding genes conferring susceptibility to organophosphate pesticides in sorghum. Sci Rep 2021; 11:19828. [PMID: 34615901 PMCID: PMC8494876 DOI: 10.1038/s41598-021-98908-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Organophosphate is the commonly used pesticide to control pest outbreak, such as those by aphids in many crops. Despite its wide use, however, necrotic lesion and/or cell death following the application of organophosphate pesticides has been reported to occur in several species. To understand this phenomenon, called organophosphate pesticide sensitivity (OPS) in sorghum, we conducted QTL analysis in a recombinant inbred line derived from the Japanese cultivar NOG, which exhibits OPS. Mapping OPS in this population identified a prominent QTL on chromosome 5, which corresponded to Organophosphate-Sensitive Reaction (OSR) reported previously in other mapping populations. The OSR locus included a cluster of three genes potentially encoding nucleotide-binding leucine-rich repeat (NB-LRR, NLR) proteins, among which NLR-C was considered to be responsible for OPS in a dominant fashion. NLR-C was functional in NOG, whereas the other resistant parent, BTx623, had a null mutation caused by the deletion of promoter sequences. Our finding of OSR as a dominant trait is important not only in understanding the diversified role of NB-LRR proteins in cereals but also in securing sorghum breeding free from OPS.
Collapse
|
28
|
Zhao X, Chen Z, Wu Q, Cai Y, Zhang Y, Zhao R, Yan J, Qian X, Li J, Zhu M, Hong L, Xing J, Khan NU, Ji Y, Wu P, Huang C, Ding XS, Zhang H, Tao X. The Sw-5b NLR nucleotide-binding domain plays a role in oligomerization, and its self-association is important for activation of cell death signaling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6581-6595. [PMID: 34115862 DOI: 10.1093/jxb/erab279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Plant and animal intracellular nucleotide-binding and leucine-rich repeat (NLR) receptors play important roles in sensing pathogens and activating defense signaling. However, the molecular mechanisms underlying the activation of host defense signaling by NLR proteins remain largely unknown. Many studies have determined that the coil-coil (CC) or Toll and interleukin-1 receptor/resistance protein (TIR) domain of NLR proteins and their dimerization/oligomerization are critical for activating downstream defense signaling. In this study, we demonstrated that, in tomato, the nucleotide-binding (NB) domain Sw-5b NLR alone can activate downstream defense signaling, leading to elicitor-independent cell death. Sw-5b NB domains can self-associate, and this self-association is crucial for activating cell death signaling. The self-association was strongly compromised after the introduction of a K568R mutation into the P-loop of the NB domain. Consequently, the NBK568R mutant induced cell death very weakly. The NBCΔ20 mutant lacking the C-terminal 20 amino acids can self-associate but cannot activate cell death signaling. The NBCΔ20 mutant also interfered with wild-type NB domain self-association, leading to compromised cell death induction. By contrast, the NBK568R mutant did not interfere with wild-type NB domain self-association and its ability to induce cell death. Structural modeling of Sw-5b suggests that NB domains associate with one another and likely participate in oligomerization. As Sw-5b-triggered cell death is dependent on helper NLR proteins, we propose that the Sw-5b NB domain acts as a nucleation point for the assembly of an oligomeric resistosome, probably by recruiting downstream helper partners, to trigger defense signaling.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, Jiangsu, China
| | - Zhengqiang Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Qian Wu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yazhen Cai
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yu Zhang
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Ruizhen Zhao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jiaoling Yan
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Xin Qian
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jia Li
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Min Zhu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Lizhou Hong
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, Jiangsu, China
| | - Jincheng Xing
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, Jiangsu, China
| | - Nasr Ullah Khan
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yinghua Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Peijun Wu
- Financial Department, Nanjing Agricultural University, Nanjing, China
| | - Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Xin Shun Ding
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Hui Zhang
- Institute of Horticulture Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaorong Tao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
29
|
Chen H, Qian X, Chen X, Yang T, Feng M, Chen J, Cheng R, Hong H, Zheng Y, Mei Y, Shen D, Xu Y, Zhu M, Ding XS, Tao X. Cytoplasmic and nuclear Sw-5b NLR act both independently and synergistically to confer full host defense against tospovirus infection. THE NEW PHYTOLOGIST 2021; 231:2262-2281. [PMID: 34096619 DOI: 10.1111/nph.17535] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Plant intracellular nucleotide-binding leucine-rich repeat (NLR) receptors play critical roles in mediating host immunity to pathogen attack. We use tomato Sw-5b::tospovirus as a model system to study the specific role of the compartmentalized plant NLR in dictating host defenses against the virus at different infection steps. We demonstrated here that tomato NLR Sw-5b distributes to the cytoplasm and nucleus, respectively, to play different roles in inducing host resistances against tomato spotted wilt orthotospovirus (TSWV) infection. The cytoplasmic-enriched Sw-5b induces a strong cell death response to inhibit TSWV replication. This host response is, however, insufficient to block viral intercellular and long-distance movement. The nuclear-enriched Sw-5b triggers a host defense that weakly inhibits viral replication but strongly impedes virus intercellular and systemic movement. Furthermore, the cytoplasmic and nuclear Sw-5b act synergistically to dictate a full host defense of TSWV infection. We further demonstrated that the extended N-terminal Solanaceae domain (SD) of Sw-5b plays critical roles in cytoplasm/nucleus partitioning. Sw-5b NLR controls its cytoplasm localization. Strikingly, the SD but not coil-coil domain is crucial for Sw-5b receptor to import into the nucleus to trigger the immunity. The SD was found to interact with importins. Silencing both importin α and β expression disrupted Sw-5b nucleus import and host immunity against TSWV systemic infection. Collectively, our findings suggest that Sw-5b bifurcates disease resistances by cytoplasm/nucleus partitioning to block different infection steps of TSWV. The findings also identified a new regulatory role of extra domain of a plant NLR in mediating host innate immunity.
Collapse
Affiliation(s)
- Hongyu Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Qian
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huaian, Jiangsu, 223001, China
| | - Xiaojiao Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Tongqing Yang
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingfeng Feng
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruixiang Cheng
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Hong
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Zheng
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuzhen Mei
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hanghzou, 310029, China
| | - Danyu Shen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Xu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Zhu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Shun Ding
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaorong Tao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
30
|
Karki HS, Abdullah S, Chen Y, Halterman DA. Natural Genetic Diversity in the Potato Resistance Gene RB Confers Suppression Avoidance from Phytophthora Effector IPI-O4. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1048-1056. [PMID: 33970667 DOI: 10.1094/mpmi-11-20-0313-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
RB is a potato gene that provides resistance to a broad spectrum of genotypes of the late blight pathogen Phytophthora infestans. RB belongs to the CC-NB-LRR (coiled-coil, nucleotide-binding, leucine-rich repeat) class of resistance (R) genes, a major component of the plant immune system. The RB protein detects the presence of class I and II IPI-O effectors from P. infestans to initiate a hypersensitive resistance response, but this activity is suppressed in the presence of the Class III effector IPI-O4. Using natural genetic variation of RB within potato wild relatives, we identified two amino acids in the CC domain that alter interactions needed for suppression of resistance by IPI-O4. We have found that separate modification of these amino acids in RB can diminish or expand the resistance capability of this protein against P. infestans in both Nicotiana benthamiana and potato. Our results demonstrate that increased knowledge of the molecular mechanisms that determine resistance activation and R protein suppression by effectors can be utilized to tailor-engineer genes with the potential to provide increased durability.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Hari S Karki
- United States Department of Agriculture-Agricultural Research Service, Madison, WI 53706, U.S.A
| | - Sidrat Abdullah
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Yu Chen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Dennis A Halterman
- United States Department of Agriculture-Agricultural Research Service, Madison, WI 53706, U.S.A
| |
Collapse
|
31
|
MiR1885 Regulates Disease Tolerance Genes in Brassica rapa during Early Infection with Plasmodiophora brassicae. Int J Mol Sci 2021; 22:ijms22179433. [PMID: 34502341 PMCID: PMC8430504 DOI: 10.3390/ijms22179433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/23/2022] Open
Abstract
Clubroot caused by Plasmodiophora brassicae is a severe disease of cruciferous crops that decreases crop quality and productivity. Several clubroot resistance-related quantitative trait loci and candidate genes have been identified. However, the underlying regulatory mechanism, the interrelationships among genes, and how genes are regulated remain unexplored. MicroRNAs (miRNAs) are attracting attention as regulators of gene expression, including during biotic stress responses. The main objective of this study was to understand how miRNAs regulate clubroot resistance-related genes in P. brassicae-infected Brassica rapa. Two Brassica miRNAs, Bra-miR1885a and Bra-miR1885b, were revealed to target TIR-NBS genes. In non-infected plants, both miRNAs were expressed at low levels to maintain the balance between plant development and basal immunity. However, their expression levels increased in P. brassicae-infected plants. Both miRNAs down-regulated the expression of the TIR-NBS genes Bra019412 and Bra019410, which are located at a clubroot resistance-related quantitative trait locus. The Bra-miR1885-mediated down-regulation of both genes was detected for up to 15 days post-inoculation in the clubroot-resistant line CR Shinki and in the clubroot-susceptible line 94SK. A qRT-PCR analysis revealed Bra019412 expression was negatively regulated by miR1885. Both Bra019412 and Bra019410 were more highly expressed in CR Shinki than in 94SK; the same expression pattern was detected in multiple clubroot-resistant and clubroot-susceptible inbred lines. A 5′ rapid amplification of cDNA ends analysis confirmed the cleavage of Bra019412 by Bra-miR1885b. Thus, miR1885s potentially regulate TIR-NBS gene expression during P. brassicae infections of B. rapa.
Collapse
|
32
|
Akhter MS, Nakahara KS, Masuta C. Resistance induction based on the understanding of molecular interactions between plant viruses and host plants. Virol J 2021; 18:176. [PMID: 34454519 PMCID: PMC8400904 DOI: 10.1186/s12985-021-01647-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Viral diseases cause significant damage to crop yield and quality. While fungi- and bacteria-induced diseases can be controlled by pesticides, no effective approaches are available to control viruses with chemicals as they use the cellular functions of their host for their infection cycle. The conventional method of viral disease control is to use the inherent resistance of plants through breeding. However, the genetic sources of viral resistance are often limited. Recently, genome editing technology enabled the publication of multiple attempts to artificially induce new resistance types by manipulating host factors necessary for viral infection. MAIN BODY In this review, we first outline the two major (R gene-mediated and RNA silencing) viral resistance mechanisms in plants. We also explain the phenomenon of mutations of host factors to function as recessive resistance genes, taking the eIF4E genes as examples. We then focus on a new type of virus resistance that has been repeatedly reported recently due to the widespread use of genome editing technology in plants, facilitating the specific knockdown of host factors. Here, we show that (1) an in-frame mutation of host factors necessary to confer viral resistance, sometimes resulting in resistance to different viruses and that (2) certain host factors exhibit antiviral resistance and viral-supporting (proviral) properties. CONCLUSION A detailed understanding of the host factor functions would enable the development of strategies for the induction of a new type of viral resistance, taking into account the provision of a broad resistance spectrum and the suppression of the appearance of resistance-breaking strains.
Collapse
Affiliation(s)
- Md Shamim Akhter
- Plant Pathology Division, Bangladesh Agricultural Research Institute (BARI), Joydebpur, Gazipur, 1701, Bangladesh
| | - Kenji S Nakahara
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Chikara Masuta
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan.
| |
Collapse
|
33
|
Abebe DA, van Bentum S, Suzuki M, Ando S, Takahashi H, Miyashita S. Plant death caused by inefficient induction of antiviral R-gene-mediated resistance may function as a suicidal population resistance mechanism. Commun Biol 2021; 4:947. [PMID: 34373580 PMCID: PMC8352862 DOI: 10.1038/s42003-021-02482-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/23/2021] [Indexed: 11/15/2022] Open
Abstract
Land plant genomes carry tens to hundreds of Resistance (R) genes to combat pathogens. The induction of antiviral R-gene-mediated resistance often results in a hypersensitive response (HR), which is characterized by virus containment in the initially infected tissues and programmed cell death (PCD) of the infected cells. Alternatively, systemic HR (SHR) is sometimes observed in certain R gene-virus combinations, such that the virus systemically infects the plant and PCD induction follows the spread of infection, resulting in systemic plant death. SHR has been suggested to be the result of inefficient resistance induction; however, no quantitative comparison has been performed to support this hypothesis. In this study, we report that the average number of viral genomes that establish cell infection decreased by 28.7% and 12.7% upon HR induction by wild-type cucumber mosaic virus and SHR induction by a single-amino acid variant, respectively. These results suggest that a small decrease in the level of resistance induction can change an HR to an SHR. Although SHR appears to be a failure of resistance at the individual level, our simulations imply that suicidal individual death in SHR may function as an antiviral mechanism at the population level, by protecting neighboring uninfected kin plants.
Collapse
Affiliation(s)
- Derib A Abebe
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Sietske van Bentum
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Machi Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Sugihiro Ando
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shuhei Miyashita
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| |
Collapse
|
34
|
Zhang H, Li H, Zhang X, Yan W, Deng P, Zhang Y, Peng S, Wang Y, Wang C, Ji W. Wall-associated Receptor Kinase and The Expression Profiles in Wheat Responding to Fungal Stress.. [PMID: 0 DOI: 10.1101/2021.07.11.451968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
AbstractCell wall-associated kinases (WAKs), which are encoded by conserved gene families in plants, are crucial for development and responses to diverse stresses. However, the wheat (Triticum aestivum L.) WAKs have not been systematically classified, especially those involved in protecting plants from disease. Here, we classified 129 WAK proteins (encoded by 232 genes) and 75 WAK-Like proteins (WAKLs; encoded by 109 genes) into four groups, via a phylogenetic analysis. An examination of protein sequence alignment revealed diversity in the GUB-domain of WAKs structural organization, but it was usually characterized by a PYPFG motif followed by CxGxGCC motifs, while the EGF-domain was usually initiated with a YAC motif, and eight cysteine residues were spliced by GNPY motif. The expression profiles of WAK-encoding homologous genes varied in response to Blumeria graminis f. sp. tritici (Bgt), Puccinia striiformis f. sp. tritici (Pst) and Puccinia triticina (Pt) stress. A quantitative real-time polymerase chain reaction (qRT-PCR) analysis proved that TaWAK75 and TaWAK76b were involved in wheat resistance to Bgt. This study revealed the structure of the WAK-encoding genes in wheat, which may be useful for future functional elucidation of wheat WAKs responses to fungal infections.
Collapse
|
35
|
Chen J, Zhang J, Kong M, Freeman A, Chen H, Liu F. More stories to tell: NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1, a salicylic acid receptor. PLANT, CELL & ENVIRONMENT 2021; 44:1716-1727. [PMID: 33495996 DOI: 10.1111/pce.14003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 05/20/2023]
Abstract
Salicylic acid (SA) plays pivotal role in plant defense against biotrophic and hemibiotrophic pathogens. Tremendous progress has been made in the field of SA biosynthesis and SA signaling pathways over the past three decades. Among the key immune players in SA signaling pathway, NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) functions as a master regulator of SA-mediated plant defense. The function of NPR1 as an SA receptor has been controversial; however, after years of arguments among several laboratories, NPR1 has finally been proven as one of the SA receptors. The function of NPR1 is strictly regulated via post-translational modifications and transcriptional regulation that were recently found. More recent advances in NPR1 biology, including novel functions of NPR1 and the structure of SA receptor proteins, have brought this field forward immensely. Therefore, based on these recent discoveries, this review acts to provide a full picture of how NPR1 functions in plant immunity and how NPR1 gene and NPR1 protein are regulated at multiple levels. Finally, we also discuss potential challenges in future studies of SA signaling pathway.
Collapse
Affiliation(s)
- Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Jingyi Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Mengmeng Kong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Lab of Biocontrol & Bacterial Molecular Biology, Nanjing, China
| | - Andrew Freeman
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Huan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| |
Collapse
|
36
|
Du JS, Hang LF, Hao Q, Yang HT, Ali S, Badawy RSE, Xu XY, Tan HQ, Su LH, Li HX, Zou KX, Li Y, Sun B, Lin LJ, Lai YS. The dissection of R genes and locus Pc5.1 in Phytophthora capsici infection provides a novel view of disease resistance in peppers. BMC Genomics 2021; 22:372. [PMID: 34016054 PMCID: PMC8139160 DOI: 10.1186/s12864-021-07705-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/06/2021] [Indexed: 01/22/2023] Open
Abstract
Background Phytophthora capsici root rot (PRR) is a disastrous disease in peppers (Capsicum spp.) caused by soilborne oomycete with typical symptoms of necrosis and constriction at the basal stem and consequent plant wilting. Most studies on the QTL mapping of P. capsici resistance suggested a consensus broad-spectrum QTL on chromosome 5 named Pc.5.1 regardless of P. capsici isolates and resistant resources. In addition, all these reports proposed NBS-ARC domain genes as candidate genes controlling resistance. Results We screened out 10 PRR-resistant resources from 160 Capsicum germplasm and inspected the response of locus Pc.5.1 and NBS-ARC genes during P. capsici infection by comparing the root transcriptomes of resistant pepper 305R and susceptible pepper 372S. To dissect the structure of Pc.5.1, we anchored genetic markers onto pepper genomic sequence and made an extended Pc5.1 (Ext-Pc5.1) located at 8.35Mb38.13Mb on chromosome 5 which covered all Pc5.1 reported in publications. A total of 571 NBS-ARC genes were mined from the genome of pepper CM334 and 34 genes were significantly affected by P. capsici infection in either 305R or 372S. Only 5 inducible NBS-ARC genes had LRR domains and none of them was positioned at Ext-Pc5.1. Ext-Pc5.1 did show strong response to P. capsici infection and there were a total of 44 differentially expressed genes (DEGs), but no candidate genes proposed by previous publications was included. Snakin-1 (SN1), a well-known antimicrobial peptide gene located at Pc5.1, was significantly decreased in 372S but not in 305R. Moreover, there was an impressive upregulation of sugar pathway genes in 305R, which was confirmed by metabolite analysis of roots. The biological processes of histone methylation, histone phosphorylation, DNA methylation, and nucleosome assembly were strongly activated in 305R but not in 372S, indicating an epigenetic-related defense mechanism. Conclusions Those NBS-ARC genes that were suggested to contribute to Pc5.1 in previous publications did not show any significant response in P. capsici infection and there were no significant differences of these genes in transcription levels between 305R and 372S. Other pathogen defense-related genes like SN1 might account for Pc5.1. Our study also proposed the important role of sugar and epigenetic regulation in the defense against P. capsici. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07705-z.
Collapse
Affiliation(s)
- Jin-Song Du
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin-Feng Hang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Hao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hai-Tao Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siyad Ali
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | | | - Xiao-Yu Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hua-Qiang Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li-Hong Su
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huan-Xiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai-Xi Zou
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li-Jin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yun-Song Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
37
|
Xin J, Liu Y, Li H, Chen S, Jiang J, Song A, Fang W, Chen F. CmMLO17 and its partner CmKIC potentially support Alternaria alternata growth in Chrysanthemum morifolium. HORTICULTURE RESEARCH 2021; 8:101. [PMID: 33931614 PMCID: PMC8087703 DOI: 10.1038/s41438-021-00534-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 05/16/2023]
Abstract
The Mildew Resistance Locus O (MLO) gene family has been investigated in many species. However, there are few studies on chrysanthemum MLO genes. We report in this study that CmMLO17 in Chrysanthemum morifolium was upregulated after Alternaria alternata infection. Silencing of CmMLO17 by artificial microRNA resulted in reduced susceptibility of chrysanthemum to A. alternata infection. Genes in the abscisic acid (ABA) and Ca2+ signaling pathways were upregulated in the CmMLO17-silenced line R20 compared to the wild-type plants. We speculated that CmMLO17-silenced plants had a faster and stronger defense response that was mediated by the ABA and Ca2+ signaling pathways, resulting in reduced susceptibility of chrysanthemum to A. alternata infection. In addition, a candidate gene, CmKIC, that may interact with CmMLO17 was discovered by the yeast two-hybrid assay. The interaction between CmMLO17 and CmKIC was confirmed using the yeast two-hybrid assay and bimolecular fluorescence complementation (BiFC) analysis. CmMLO17 and CmKIC were both located on the plasma membrane, and CmKIC was also located on the nucleus. CmKIC overexpression increased the susceptibility of chrysanthemum to A. alternata, whereas CmKIC silencing resulted in reduced susceptibility. Therefore, CmMLO17 and CmKIC may work together in C. morifolium to support the growth of A. alternata. The results of this study will provide insight into the potential function of MLO and improve the understanding of plant defense responses to necrotrophic pathogens.
Collapse
Affiliation(s)
- Jingjing Xin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huiyun Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
38
|
Liu M, Li Y, Zhu Y, Sun Y, Wang G. Maize nicotinate N-methyltransferase interacts with the NLR protein Rp1-D21 and modulates the hypersensitive response. MOLECULAR PLANT PATHOLOGY 2021; 22:564-579. [PMID: 33675291 PMCID: PMC8035639 DOI: 10.1111/mpp.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/08/2021] [Accepted: 02/04/2021] [Indexed: 05/03/2023]
Abstract
Most plant intracellular immune receptors belong to nucleotide-binding, leucine-rich repeat (NLR) proteins. The recognition between NLRs and their corresponding pathogen effectors often triggers a hypersensitive response (HR) at the pathogen infection sites. The nicotinate N-methyltransferase (NANMT) is responsible for the conversion of nicotinate to trigonelline in plants. However, the role of NANMT in plant defence response is unknown. In this study, we demonstrated that the maize ZmNANMT, but not its close homolog ZmCOMT, an enzyme in the lignin biosynthesis pathway, suppresses the HR mediated by the autoactive NLR protein Rp1-D21 and its N-terminal coiled-coil signalling domain (CCD21 ). ZmNANMT, but not ZmCOMT, interacts with CCD21 , and they form a complex with HCT1806 and CCoAOMT2, two key enzymes in lignin biosynthesis, which can also suppress the autoactive HR mediated by Rp1-D21. ZmNANMT is mainly localized in the cytoplasm and nucleus, and either localization is important for suppressing the HR phenotype. These results lay the foundation for further elucidating the molecular mechanism of NANMTs in plant disease resistance.
Collapse
Affiliation(s)
- Mengjie Liu
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
- The Key Laboratory of Integrated Crop Pest Management of Shandong ProvinceCollege of Plant Health and MedicineQingdao Agricultural UniversityQingdaoChina
| | - Ya‐Jie Li
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| | - Yu‐Xiu Zhu
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| | - Yang Sun
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| | - Guan‐Feng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| |
Collapse
|
39
|
Ross BT, Zidack NK, Flenniken ML. Extreme Resistance to Viruses in Potato and Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:658981. [PMID: 33889169 PMCID: PMC8056081 DOI: 10.3389/fpls.2021.658981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 05/31/2023]
Abstract
Plant pathogens, including viruses, negatively impact global crop production. Plants have evolved complex immune responses to pathogens. These responses are often controlled by nucleotide-binding leucine-rich repeat proteins (NLRs), which recognize intracellular, pathogen-derived proteins. Genetic resistance to plant viruses is often phenotypically characterized by programmed cell death at or near the infection site; a reaction termed the hypersensitive response. Although visualization of the hypersensitive response is often used as a hallmark of resistance, the molecular mechanisms leading to the hypersensitive response and associated cell death vary. Plants with extreme resistance to viruses rarely exhibit symptoms and have little to no detectable virus replication or spread beyond the infection site. Both extreme resistance and the hypersensitive response can be activated by the same NLR genes. In many cases, genes that normally provide an extreme resistance phenotype can be stimulated to cause a hypersensitive response by experimentally increasing cellular levels of pathogen-derived elicitor protein(s). The molecular mechanisms of extreme resistance and its relationship to the hypersensitive response are largely uncharacterized. Studies on potato and soybean cultivars that are resistant to strains of Potato virus Y (PVY), Potato virus X (PVX), and Soybean mosaic virus (SMV) indicate that abscisic acid (ABA)-mediated signaling and NLR nuclear translocation are important for the extreme resistance response. Recent research also indicates that some of the same proteins are involved in both extreme resistance and the hypersensitive response. Herein, we review and synthesize published studies on extreme resistance in potato and soybean, and describe studies in additional species, including model plant species, to highlight future research avenues that may bridge the gaps in our knowledge of plant antiviral defense mechanisms.
Collapse
Affiliation(s)
- Brian T. Ross
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Nina K. Zidack
- Montana State Seed Potato Certification Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
- Montana State Seed Potato Certification Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
40
|
Wang Z, Huang J, Nie L, Hu Y, Zhang N, Guo Q, Guo J, Du B, Zhu L, He G, Chen R. Molecular and functional analysis of a brown planthopper resistance protein with two nucleotide-binding site domains. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2657-2671. [PMID: 33345280 DOI: 10.1093/jxb/eraa586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/15/2020] [Indexed: 05/26/2023]
Abstract
The brown planthopper (Nilaparvata lugens Stål, BPH) resistance gene BPH9 encodes an unusual coiled-coil (CC) nucleotide-binding leucine-rich repeat (LRR) protein with two nucleotide-binding site (NBS) domains. To understand how this CC-NBS-NBS-LRR (CNNL) protein regulates defense signaling and BPH resistance, we dissected each domain's functions. The CC domain of BPH9 self-associated and was sufficient to induce cell death. The region of 97-115 residues in the CC domain is crucial for self-association and activation. NBS2, which contains a complete set of NBS function motifs and inhibits CC domain activation, rather than NBS1, acts as a molecular switch to regulate the activity of BPH9. We demonstrated that the CC domain, the NBS domain, and the LRR domain of BPH9 associate with each other and themselves in planta. Further domain swapping experiments revealed that the CC domains of BPH9 and susceptible alleles were similarly competent to induce resistance and the hypersensitive response, while the LRR domain of BPH9 confers resistance specificity to BPH. These findings provide new insights into the regulatory mechanisms governing the activity of CNNL proteins.
Collapse
Affiliation(s)
- Zhizheng Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jin Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lingyun Nie
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yinxia Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ning Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qin Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianping Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
41
|
Hasan J, Megha S, Rahman H. Clubroot in Brassica: recent advances in genomics, breeding, and disease management. Genome 2021; 64:735-760. [PMID: 33651640 DOI: 10.1139/gen-2020-0089] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clubroot disease, caused by Plasmodiophora brassicae, affects Brassica oilseed and vegetable production worldwide. This review is focused on various aspects of clubroot disease and its management, including understanding the pathogen and resistance in the host plants. Advances in genetics, molecular biology techniques, and omics research have helped to identify several major loci, QTL, and genes from the Brassica genomes involved in the control of clubroot resistance. Transcriptomic studies have helped to extend our understanding of the mechanism of infection by the pathogen and the molecular basis of resistance/susceptibility in the host plants. A comprehensive understanding of the clubroot disease and host resistance would allow developing a better strategy by integrating the genetic resistance with cultural practices to manage this disease from a long-term perspective.
Collapse
Affiliation(s)
- Jakir Hasan
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Swati Megha
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
42
|
Calvo-Baltanás V, Wang J, Chae E. Hybrid Incompatibility of the Plant Immune System: An Opposite Force to Heterosis Equilibrating Hybrid Performances. FRONTIERS IN PLANT SCIENCE 2021; 11:576796. [PMID: 33717206 PMCID: PMC7953517 DOI: 10.3389/fpls.2020.576796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Hybridization is a core element in modern rice breeding as beneficial combinations of two parental genomes often result in the expression of heterosis. On the contrary, genetic incompatibility between parents can manifest as hybrid necrosis, which leads to tissue necrosis accompanied by compromised growth and/or reduced reproductive success. Genetic and molecular studies of hybrid necrosis in numerous plant species revealed that such self-destructing symptoms in most cases are attributed to autoimmunity: plant immune responses are inadvertently activated in the absence of pathogenic invasion. Autoimmunity in hybrids predominantly occurs due to a conflict involving a member of the major plant immune receptor family, the nucleotide-binding domain and leucine-rich repeat containing protein (NLR; formerly known as NBS-LRR). NLR genes are associated with disease resistance traits, and recent population datasets reveal tremendous diversity in this class of immune receptors. Cases of hybrid necrosis involving highly polymorphic NLRs as major causes suggest that diversified R gene repertoires found in different lineages would require a compatible immune match for hybridization, which is a prerequisite to ensure increased fitness in the resulting hybrids. In this review, we overview recent genetic and molecular findings on hybrid necrosis in multiple plant species to provide an insight on how the trade-off between growth and immunity is equilibrated to affect hybrid performances. We also revisit the cases of hybrid weakness in which immune system components are found or implicated to play a causative role. Based on our understanding on the trade-off, we propose that the immune system incompatibility in plants might play an opposite force to restrict the expression of heterosis in hybrids. The antagonism is illustrated under the plant fitness equilibrium, in which the two extremes lead to either hybrid necrosis or heterosis. Practical proposition from the equilibrium model is that breeding efforts for combining enhanced disease resistance and high yield shall be achieved by balancing the two forces. Reverse breeding toward utilizing genomic data centered on immune components is proposed as a strategy to generate elite hybrids with balanced immunity and growth.
Collapse
|
43
|
Baudin M, Martin EC, Sass C, Hassan JA, Bendix C, Sauceda R, Diplock N, Specht CD, Petrescu AJ, Lewis JD. A natural diversity screen in Arabidopsis thaliana reveals determinants for HopZ1a recognition in the ZAR1-ZED1 immune complex. PLANT, CELL & ENVIRONMENT 2021; 44:629-644. [PMID: 33103794 DOI: 10.1111/pce.13927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Pathogen pressure on hosts can lead to the evolution of genes regulating the innate immune response. By characterizing naturally occurring polymorphisms in immune receptors, we can better understand the molecular determinants of pathogen recognition. ZAR1 is an ancient Arabidopsis thaliana NLR (Nucleotide-binding [NB] Leucine-rich-repeat [LRR] Receptor) that recognizes multiple secreted effector proteins from the pathogenic bacteria Pseudomonas syringae and Xanthomonas campestris through its interaction with receptor-like cytoplasmic kinases (RLCKs). ZAR1 was first identified for its role in recognizing P. syringae effector HopZ1a, through its interaction with the RLCK ZED1. To identify additional determinants of HopZ1a recognition, we performed a computational screen for ecotypes from the 1001 Genomes project that were likely to lack HopZ1a recognition, and tested ~300 ecotypes. We identified ecotypes containing polymorphisms in ZAR1 and ZED1. Using our previously established Nicotiana benthamiana transient assay and Arabidopsis ecotypes, we tested for the effect of naturally occurring polymorphisms on ZAR1 interactions and the immune response. We identified key residues in the NB or LRR domain of ZAR1 that impact the interaction with ZED1. We demonstrate that natural diversity combined with functional assays can help define the molecular determinants and interactions necessary to regulate immune induction in response to pathogens.
Collapse
Affiliation(s)
- Maël Baudin
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Eliza C Martin
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Chodon Sass
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Jana A Hassan
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Claire Bendix
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Rolin Sauceda
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Nathan Diplock
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Chelsea D Specht
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, New York, USA
| | - Andrei J Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Jennifer D Lewis
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
- Plant Gene Expression Center, United States Department of Agriculture, Albany, California, USA
| |
Collapse
|
44
|
Seong K, Seo E, Witek K, Li M, Staskawicz B. Evolution of NLR resistance genes with noncanonical N-terminal domains in wild tomato species. THE NEW PHYTOLOGIST 2020; 227:1530-1543. [PMID: 32344448 DOI: 10.1111/nph.16628] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Nucleotide-binding and leucine-rich repeat immune receptors (NLRs) provide resistance against diverse pathogens. To create comparative NLR resources, we conducted resistance gene enrichment sequencing (RenSeq) with single-molecule real-time sequencing of PacBio for 18 accessions in Solanaceae, including 15 accessions of five wild tomato species. We investigated the evolution of a class of NLRs, CNLs with extended N-terminal sequences previously named Solanaceae Domain. Through comparative genomic analysis, we revealed that the extended CNLs (exCNLs) anciently emerged in the most recent common ancestor between Asterids and Amaranthaceae, far predating the Solanaceae family. In tomatoes, the exCNLs display exceptional modes of evolution in a clade-specific manner. In the clade G3, exCNLs have substantially elongated their N-termini through tandem duplications of exon segments. In the clade G1, exCNLs have evolved through recent proliferation and sequence diversification. In the clade G6, an ancestral exCNL has lost its N-terminal domains in the course of evolution. Our study provides high-quality NLR gene models for close relatives of domesticated tomatoes that can serve as a useful resource for breeding and molecular engineering for disease resistance. Our findings regarding the exCNLs offer unique backgrounds and insights for future functional studies of the NLRs.
Collapse
Affiliation(s)
- Kyungyong Seong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94704, USA
| | - Eunyoung Seo
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94704, USA
| | - Kamil Witek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Meng Li
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94704, USA
| | - Brian Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94704, USA
| |
Collapse
|
45
|
Wang S, Zhang R, Shi Z, Zhao Y, Su A, Wang Y, Xing J, Ge J, Li C, Wang X, Wang J, Sun X, Liu Q, Chen Y, Zhang Y, Wang S, Song W, Zhao J. Identification and Fine Mapping of RppM, a Southern Corn Rust Resistance Gene in Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:1057. [PMID: 32733529 PMCID: PMC7363983 DOI: 10.3389/fpls.2020.01057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/26/2020] [Indexed: 05/26/2023]
Abstract
Southern corn rust (SCR) caused by Puccinia polysora Underw. is a major disease causing severe yield losses during maize production. Here, we identified and mapped the SCR resistance gene RppM from the near-isogenic line Kangxiujing2416 (Jing2416K), which harbors RppM in the genetic background of the susceptible inbred line Jing2416. In this study, the inheritance of SCR resistance was investigated in F2 and F3 populations derived from a cross between Jing2416K and Jing2416. The observed 3:1 segregation ratio of resistant to susceptible plants indicated that the SCR resistance is controlled by a single dominant gene. Using an F2 population, we performed bulked segregant analysis (BSA) sequencing and mapped RppM to a 3.69-Mb region on chromosome arm 10S. To further narrow down the region harboring RppM, we developed 13 insertion/deletion (InDel) markers based on the sequencing data. Finally, RppM was mapped to a region spanning 110-kb using susceptible individuals from a large F2 population. Two genes (Zm00001d023265 and Zm00001d023267) encoding putative CC-NBS-LRR (coiled-coiled, nucleotide-binding site, and leucine-rich repeat) proteins, a common characteristic of R genes, were located in this region (B73 RefGen_v4 reference genome). Sequencing and comparison of the two genes cloned from Jing2416K and Jing2416 revealed sequence variations in their coding regions. The relative expression levels of these two genes in Jing2416K were found to be significantly higher than those in Jing2416. Zm00001d023265 and Zm00001d023267 are thus potential RppM candidates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Wei Song
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, China
| | - Jiuran Zhao
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, China
| |
Collapse
|
46
|
Leonetti P, Miesen P, van Rij RP, Pantaleo V. Viral and subviral derived small RNAs as pathogenic determinants in plants and insects. Adv Virus Res 2020; 107:1-36. [PMID: 32711727 DOI: 10.1016/bs.aivir.2020.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The phenotypic manifestations of disease induced by viruses and subviral infectious entities are the result of complex molecular interactions between host and viral factors. The viral determinants of the diseased phenotype have traditionally been sought at the level of structural or non-structural proteins. However, the discovery of RNA silencing mechanisms has led to speculations that determinants of the diseased phenotype are caused by viral nucleic acid sequences in addition to proteins. RNA silencing is a gene regulation mechanism conserved within eukaryotic kingdoms (with the exception of some yeast species), and in plants and insects it also functions as an antiviral mechanism. Non-coding RNAs of viral origin, ranging in size from 21 to 24 nucleotides (viral small interfering RNAs, vsiRNAs) accumulate in virus-infected tissues and organs, in some cases to comparable levels as the entire complement of host-encoded small interfering RNAs. Upon incorporation into RNA-induced silencing complexes, vsiRNAs can mediate cleavage or induce translational inhibition of nucleic acid targets in a sequence-specific manner. This review focuses on recent findings that suggest an increased complexity of small RNA-based interactions between virus and host. We mainly address plant viruses, but where applicable discuss insect viruses as well. Prominence is given to studies that have indisputably demonstrated that vsiRNAs determine diseased phenotype by either carrying sequence determinants or, indirectly, by altering host-gene regulatory pathways. Results from these studies suggest biotechnological applications, which are also discussed.
Collapse
Affiliation(s)
- Paola Leonetti
- Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Vitantonio Pantaleo
- Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection, CNR, Bari, Italy..
| |
Collapse
|
47
|
Liu Y, Xin J, Liu L, Song A, Guan Z, Fang W, Chen F. A temporal gene expression map of Chrysanthemum leaves infected with Alternaria alternata reveals different stages of defense mechanisms. HORTICULTURE RESEARCH 2020; 7:23. [PMID: 32140232 PMCID: PMC7049303 DOI: 10.1038/s41438-020-0245-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/24/2019] [Accepted: 01/04/2020] [Indexed: 05/28/2023]
Abstract
Chrysanthemum (Chrysanthemum morifolium) black spot disease (CBS) poses a major threat to Chrysanthemum cultivation owing to suitable climate conditions and current lack of resistant cultivars for greenhouse cultivation. In this study, we identified a number of genes that respond to Alternaria alternata infection in resistant and susceptible Chrysanthemum cultivars. Based on RNA sequencing technology and a weighted gene coexpression network analysis (WGCNA), we constructed a model to elucidate the response of Chrysanthemum leaves to A. alternata infection at different stages and compared the mapped response of the resistant cultivar 'Jinba' to that of the susceptible cultivar 'Zaoyihong'. In the early stage of infection, when lesions had not yet formed, abscisic acid (ABA), salicylic acid (SA) and EDS1-mediated resistance played important roles in the Chrysanthemum defense system. With the formation of necrotic lesions, ethylene (ET) metabolism and the Ca2+ signal transduction pathway strongly responded to A. alternata infection. During the late stage, when necrotic lesions continued to expand, members of the multidrug and toxic compound extrusion (MATE) gene family were highly expressed, and their products may be involved in defense against A. alternata invasion by exporting toxins produced by the pathogen, which plays important roles in the pathogenicity of A. alternata. Furthermore, the function of hub genes was verified by qPCR and transgenic assays. The identification of hub genes at different stages, the comparison of hub genes between the two cultivars and the highly expressed genes in the resistant cultivar 'Jinba' provide a theoretical basis for breeding cultivars resistant to CBS.
Collapse
Affiliation(s)
- Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jingjing Xin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lina Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
48
|
Yin D, Ji C, Song Q, Zhang W, Zhang X, Zhao K, Chen CY, Wang C, He G, Liang Z, Ma X, Li Z, Tang Y, Wang Y, Li K, Ning L, Zhang H, Zhao K, Li X, Yu H, Lei Y, Wang M, Ma L, Zheng H, Zhang Y, Zhang J, Hu W, Chen ZJ. Comparison of Arachis monticola with Diploid and Cultivated Tetraploid Genomes Reveals Asymmetric Subgenome Evolution and Improvement of Peanut. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901672. [PMID: 32099754 PMCID: PMC7029647 DOI: 10.1002/advs.201901672] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/16/2019] [Indexed: 05/05/2023]
Abstract
Like many important crops, peanut is a polyploid that underwent polyploidization, evolution, and domestication. The wild allotetraploid peanut species Arachis monticola (A. monticola) is an important and unique link from the wild diploid species to cultivated tetraploid species in the Arachis lineage. However, little is known about A. monticola and its role in the evolution and domestication of this important crop. A fully annotated sequence of ≈2.6 Gb A. monticola genome and comparative genomics of the Arachis species is reported. Genomic reconstruction of 17 wild diploids from AA, BB, EE, KK, and CC groups and 30 tetraploids demonstrates a monophyletic origin of A and B subgenomes in allotetraploid peanuts. The wild and cultivated tetraploids undergo asymmetric subgenome evolution, including homoeologous exchanges, homoeolog expression bias, and structural variation (SV), leading to subgenome functional divergence during peanut domestication. Significantly, SV-associated homoeologs tend to show expression bias and correlation with pod size increase from diploids to wild and cultivated tetraploids. Moreover, genomic analysis of disease resistance genes shows the unique alleles present in the wild peanut can be introduced into breeding programs to improve some resistance traits in the cultivated peanuts. These genomic resources are valuable for studying polyploid genome evolution, domestication, and improvement of peanut production and resistance.
Collapse
Affiliation(s)
- Dongmei Yin
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Changmian Ji
- Biomarker Technologies CorporationBeijing101300China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off‐Season Reproduction RegionsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikou571101China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
- Department of Molecular Biosciences and Center for Computational Biology and BioinformaticsThe University of Texas at AustinAustin78705USA
| | - Wanke Zhang
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijing100101China
| | - Xingguo Zhang
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Kunkun Zhao
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | | | | | - Guohao He
- Department of Agricultural and Environmental SciencesTuskegee UniversityTuskegeeAL36088USA
| | - Zhe Liang
- Centre for Organismal StudiesUniversity of HeidelbergD‐69120HeidelbergGermany
| | - Xingli Ma
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Zhongfeng Li
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Yueyi Tang
- Shandong Peanut Research InstituteQingdao266000China
| | - Yuejun Wang
- National Key Laboratory of Plant Molecular GeneticsCenter for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200032China
| | - Ke Li
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Longlong Ning
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Hui Zhang
- College of AgricultureAuburn UniversityAuburnAL36849USA
| | - Kai Zhao
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Xuming Li
- Biomarker Technologies CorporationBeijing101300China
| | - Haiyan Yu
- Biomarker Technologies CorporationBeijing101300China
| | - Yan Lei
- Biomarker Technologies CorporationBeijing101300China
| | | | - Liming Ma
- Biomarker Technologies CorporationBeijing101300China
| | - Hongkun Zheng
- Biomarker Technologies CorporationBeijing101300China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular GeneticsCenter for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200032China
| | - Jinsong Zhang
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijing100101China
| | - Wei Hu
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off‐Season Reproduction RegionsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikou571101China
| | - Z. Jeffrey Chen
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
- Department of Molecular Biosciences and Center for Computational Biology and BioinformaticsThe University of Texas at AustinAustin78705USA
| |
Collapse
|
49
|
Bolus S, Akhunov E, Coaker G, Dubcovsky J. Dissection of Cell Death Induction by Wheat Stem Rust Resistance Protein Sr35 and Its Matching Effector AvrSr35. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:308-319. [PMID: 31556346 PMCID: PMC7309591 DOI: 10.1094/mpmi-08-19-0216-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nucleotide-binding leucine-rich repeat receptors (NLRs) are the most abundant type of immune receptors in plants and can trigger a rapid cell-death (hypersensitive) response upon sensing pathogens. We previously cloned the wheat NLR Sr35, which encodes a coiled-coil (CC) NLR that confers resistance to the virulent wheat stem rust race Ug99. Here, we investigated Sr35 signaling after Agrobacterium-mediated transient expression in Nicotiana benthamiana. Expression of Sr35 in N. benthamiana leaves triggered a mild cell-death response, which is enhanced in the autoactive mutant Sr35 D503V. The N-terminal tagging of Sr35 with green fluorescent protein (GFP) blocked the induction of cell death, whereas a C-terminal GFP tag did not. No domain truncations of Sr35 generated cell-death responses as strong as the wild type, but a truncation including the NB-ARC (nucleotide binding adaptor) shared by APAF-1, R proteins, and CED-4 domains in combination with the D503V autoactive mutation triggered cell death. In addition, coexpression of Sr35 with the matching pathogen effector protein AvrSr35 resulted in robust cell death and electrolyte leakage levels that were similar to autoactive Sr35 and significantly higher than Sr35 alone. Coexpression of Sr35-CC-NB-ARC and AvrSr35 did not induce cell death, confirming the importance of the leucine-rich repeat (LRR) domain for AvrSr35 recognition. These findings were confirmed through Agrobacterium-mediated transient expression in barley. Taken together, these results implicate the CC-NB-ARC domains of Sr35 in inducing cell death and the LRR domain in AvrSr35 recognition.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Stephen Bolus
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
- Department of Plant Pathology, University of California, Davis
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, U.S.A
| |
Collapse
|
50
|
Unravelling the Roles of Nitrogen Nutrition in Plant Disease Defences. Int J Mol Sci 2020; 21:ijms21020572. [PMID: 31963138 PMCID: PMC7014335 DOI: 10.3390/ijms21020572] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Nitrogen (N) is one of the most important elements that has a central impact on plant growth and yield. N is also widely involved in plant stress responses, but its roles in host-pathogen interactions are complex as each affects the other. In this review, we summarize the relationship between N nutrition and plant disease and stress its importance for both host and pathogen. From the perspective of the pathogen, we describe how N can affect the pathogen’s infection strategy, whether necrotrophic or biotrophic. N can influence the deployment of virulence factors such as type III secretion systems in bacterial pathogen or contribute nutrients such as gamma-aminobutyric acid to the invader. Considering the host, the association between N nutrition and plant defence is considered in terms of physical, biochemical and genetic mechanisms. Generally, N has negative effects on physical defences and the production of anti-microbial phytoalexins but positive effects on defence-related enzymes and proteins to affect local defence as well as systemic resistance. N nutrition can also influence defence via amino acid metabolism and hormone production to affect downstream defence-related gene expression via transcriptional regulation and nitric oxide (NO) production, which represents a direct link with N. Although the critical role of N nutrition in plant defences is stressed in this review, further work is urgently needed to provide a comprehensive understanding of how opposing virulence and defence mechanisms are influenced by interacting networks.
Collapse
|