1
|
Zhao L, Li Y, Li J, Jin W, Chen J, Wang B. Molecular identification and reproductive function of spexin in the big-belly seahorse (Hippocampus abdominalis). Gen Comp Endocrinol 2025; 367:114721. [PMID: 40199389 DOI: 10.1016/j.ygcen.2025.114721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
Limited data are available regarding reproductive endocrinology of seahorse. Here, we reported the potential function of spexin (SPX1) in the reproduction of seahorse. SPX1, also known as neuropeptide Q (NPQ), is a novel neuropeptide that coevolved with galanin and kisspeptin. In the current study, the entire open reading frame (ORF) sequence of spx1 of the big-belly seahorse (Hippocampus abdominalis) was cloned and characterized, which is 360 base pairs in length, encoding a 119-amino acid precursor peptide, with a 26-aa signaling peptide and a 14-aa C-terminal amidated mature peptide. Tissue distribution expression profiles of spx1 transcripts were analyzed and revealed that spx1 mRNA could be detected in a variety of tissues, with the highest abundance in the mixture tissues of brain and pituitary. The expression profile of spx1 mRNA in the mixture of brain and pituitary during the first reproductive cycle of the big-belly seahorse was evaluated, which showed that the expression level of spx1 mRNA was highest during the critical period of ovarian and testicular transition from stage II to stage III at 3.5-month old, and high in females with IV-stage, V-stage and VI-stage, as well as in males with the early-stage brood pouch, suggesting that SPX1 may play a crucial role at these stages of gonadal and brood pouch development. Intraperitoneal injection of SPX1 can suppress the mRNA expressions of galr2b and fshβ in female seahorses, however, it promoted the mRNA expressions of spx1, gal, kiss2, gnrh2, kiss2r, galr1a, galr2b, gnrh3 and gnihr in males, besides, low doses of SPX1 enhanced lhβ mRNA expression, while high dose of SPX1 suppressed it. Intraperitoneal injection of SPX1 did not alter the mRNA levels of spx1, gal, kiss2, galr1a, galr2a, gnihr or plasma 17β-E2 in females, nor did it change the mRNA levels of galr2a, gthα, fshβ or plasma 11-KT in males. These results revealed that SPX1 may participate in regulating reproduction of the big-belly seahorse by controlling production of GnRH2, GnRH3, FSH and LH of HPG axis, as well as some key hypothalamic neuropeptides including Kiss and GAL. Above all, our results indicate the presence of a functional SPX1 system in the big-belly seahorse, as well as reveal its potential significance in the neuroendocrine regulation of reproduction in this species, which also lay a foundation for future research on optimizing fish reproductive performance through the regulation of SPX1.
Collapse
Affiliation(s)
- Limiao Zhao
- School of Fisheries, Ludong University, Yantai 264025, PR China
| | - Yuru Li
- School of Fisheries, Ludong University, Yantai 264025, PR China
| | - Jiajun Li
- School of Fisheries, Ludong University, Yantai 264025, PR China
| | - Weiqi Jin
- School of Fisheries, Ludong University, Yantai 264025, PR China
| | - Jun Chen
- School of Fisheries, Ludong University, Yantai 264025, PR China.
| | - Bin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China.
| |
Collapse
|
2
|
Son YL, Meddle SL, Tobari Y. Metabolic Regulation by the Hypothalamic Neuropeptide, Gonadotropin-Inhibitory Hormone at Both the Central and Peripheral Levels. Cells 2025; 14:267. [PMID: 39996740 PMCID: PMC11853802 DOI: 10.3390/cells14040267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is well-established as a negative regulator of reproductive physiology and behavior across vertebrates, acting on the hypothalamic-pituitary-gonadal (HPG) axis; however, recent data have also demonstrated its involvement in the control of metabolic processes. GnIH neurons and fibers have been identified in hypothalamic regions associated with feeding behavior and energy homeostasis, with GnIH receptors being expressed throughout the hypothalamus. GnIH does not act alone in the hypothalamus, but rather interacts with the melanocortin system, as well as with other neuropeptides. GnIH and its receptors are also expressed in peripheral tissues involved in important metabolic functions. Therefore, the local action of GnIH in peripheral organs, including the pancreas, gastrointestinal tract, gonad, and adipose tissue, is also suggested. This review aims to provide a comprehensive summary of the emerging role of GnIH in metabolic regulation at both the central and peripheral levels.
Collapse
Affiliation(s)
- You Lee Son
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-0815, Japan
| | - Simone L. Meddle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK;
| | - Yasuko Tobari
- Center for Human and Animal Symbiosis Science, Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Fuchinobe 1-17-71, Chuo-ku, Sagamihara 252-5201, Japan;
| |
Collapse
|
3
|
You Y, Huo K, He L, Wang T, Zhao L, Li R, Cheng X, Ma X, Yue Z, Siwko S, Wang N, Liao L, Liu M, Luo J. GnIH secreted by green light exposure, regulates bone mass through the activation of Gpr147. Bone Res 2025; 13:13. [PMID: 39837853 PMCID: PMC11751147 DOI: 10.1038/s41413-024-00389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 01/23/2025] Open
Abstract
Reproductive hormones associated with the hypothalamic-pituitary-gonadal (HPG) axis are closely linked to bone homeostasis. In this study, we demonstrate that Gonadotropin inhibitory hormone (GnIH, one of the key reproductive hormones upstream of the HPG axis) plays an indispensable role in regulating bone homeostasis and maintaining bone mass. We find that deficiency of GnIH or its receptor Gpr147 leads to a significant reduction in bone mineral density (BMD) in mice primarily by enhancement of osteoclast activation in vivo and in vitro. Mechanistically, GnIH/Gpr147 inhibits osteoclastogenesis by the PI3K/AKT, MAPK, NF-κB and Nfatc1 signaling pathways. Furthermore, GnIH treatment was able to alleviate bone loss in aging, ovariectomy (OVX) or LPS-induced mice. Moreover, the therapy using green light promotes the release of GnIH and rescues OVX-induced bone loss. In humans, serum GnIH increases and bone resorption markers decrease after green light exposure. Therefore, our study elucidates that GnIH plays an important role in maintaining bone homeostasis via modulating osteoclast differentiation and demonstrates the potential of GnIH therapy or green light therapy in preventing osteoporosis.
Collapse
Affiliation(s)
- Yu You
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, PR China
| | - Konglin Huo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, PR China
| | - Liang He
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, PR China
| | - Tongyue Wang
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, PR China
| | - Lei Zhao
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, PR China
| | - Rong Li
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, PR China
| | - Xiaoqing Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Xuebin Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, PR China
| | - Zhiying Yue
- Precision Research Center for Refractory Diseases, Shanghai General Hospital,Shanghai Jiaotong University, School of Medicine, Shanghai, PR China
| | - Stefan Siwko
- Department of Translational Medical Sciences, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, 77030, USA
| | - Ning Wang
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China.
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China.
| | - Jian Luo
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, PR China.
| |
Collapse
|
4
|
Khati WH, Al Mutery AF, Moudilou EN, Exbrayat JM, Hammouche S. WITHDRAWN: Distribution of the Novel RFRP-3/receptors system in the epididymis of the seasonal desert rodent, Gerbillus tarabuli, during sexual activity. Morphologie 2024:S1286-0115(21)00233-2. [PMID: 34774455 DOI: 10.1016/j.morpho.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 12/06/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at: https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- W H Khati
- USTHB, Arid Area Research Laboratory, Biological Sciences Faculty, University of Sciences and Technology of Houari-Boumediene, Algiers, Algeria.
| | - A F Al Mutery
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates; Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, United Arab Emirates; Molecular Genetics Research Laboratory, University of Sharjah, Sharjah, United Arab Emirates
| | - E N Moudilou
- UMRS 449 - General Biology - Reproduction and Comparative Development, UDL; École Pratique des Hautes Études, PSL, Lyon Catholic University, Lyon, France
| | - J-M Exbrayat
- UMRS 449 - General Biology - Reproduction and Comparative Development, UDL; École Pratique des Hautes Études, PSL, Lyon Catholic University, Lyon, France
| | - S Hammouche
- USTHB, Arid Area Research Laboratory, Biological Sciences Faculty, University of Sciences and Technology of Houari-Boumediene, Algiers, Algeria
| |
Collapse
|
5
|
Ma J, Wang L, Yang D, Luo J, Gao J, Wang J, Guo H, Li J, Wang F, Wu J, Hu R. Chronic stress causes ovarian fibrosis to impair female fertility in mice. Cell Signal 2024; 122:111334. [PMID: 39102927 DOI: 10.1016/j.cellsig.2024.111334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
OBJECTIVE Chronic psychological stress is associated with impaired follicular development and ovarian dysfunction. Many aspects of this dysfunction and the underlying mechanisms remain unclear. Using a chronic unpredictable mild stress (CUMS) mouse model, we investigate the influence of chronic stress on ovarian function and explore potential mechanisms. METHODS A CUMS mouse model was constructed over eight months, covering the period from sexual maturity to the onset of declining fertility in mice. At the end of the 2nd, 4th, 6th, and 8th months of exposure to CUMS, behavioral and physiological assays, including the sucrose preference test, tail suspension test, and serum corticosterone levels, were conducted to validate the effectiveness of the stress model. Fertility and ovarian function were assessed by analyzing the estrous cycle, number of offspring, sex hormone levels, follicle counts, granulosa cell proliferation and apoptosis, and the expression levels of fibrosis markers. Furthermore, proteomic analyses were performed on the ovaries to investigate the molecular mechanisms of ovarian fibrosis induced by CUMS. RESULTS With continued CUMS exposure, there was a gradual decline in both the ovary-to-body weight ratio and the number of offspring. Moreover, the percentage of atretic follicles was notably higher in the CUMS-exposed groups compared to the control groups. It is noticeable that CUMS triggered granulosa cell apoptosis and halted proliferation. Additionally, increased expression of α-SMA and Collagen I in the ovaries of CUMS-exposed mice indicated that CUMS could induce ovarian fibrosis. Proteomic analysis provided insights into the activation of specific biological processes and molecules associated with fibrosis induced by chronic stress. CONCLUSIONS Our results strongly suggest that exposure to CUMS induces ovarian fibrosis, which influences follicular development and ultimately contributes to fertility decline. These findings offer novel perspectives on the impact of chronic stress on ovarian dysfunction.
Collapse
Affiliation(s)
- Jie Ma
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Lu Wang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Danyu Yang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jia Luo
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jinmei Gao
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jinfang Wang
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Hua Guo
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jialing Li
- Reproductive Medicine Center, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Feimiao Wang
- Reproductive Medicine Center, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Ji Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rong Hu
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; Reproductive Medicine Center, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
6
|
Wang Y, Zuo K, Zhang C, Miao D, Chen J, Yang H, Wang Z. Histological Characteristics of Follicles, Reproductive Hormones and Transcriptomic Analysis of White King Pigeon Illuminated with Red Light. Animals (Basel) 2024; 14:2320. [PMID: 39199854 PMCID: PMC11350841 DOI: 10.3390/ani14162320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/04/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Red light (RL) has been observed to enhance egg production in pigeons, yet the underlying histological characteristics and molecular mechanisms remain less understood. This study included fifty-four pigeons to assess follicular histology, reproductive hormones, and ovarian transcriptomics on the third day of the laying interval under RL and white light (WL). The results showed that the granulosa cell layer was significantly thicker under RL (p < 0.05), whereas the theca cell and connective tissue layers showed no significant differences (p > 0.05). Higher plasma estradiol (E2) levels were recorded in the RL group (p < 0.05), as well as follicle stimulating hormone (FSH), although progesterone (P4) levels were higher under WL (p < 0.05). Moreover, P4 concentrations in follicle yolk significantly decreased under RL (p < 0.01), with higher FSH and E2 levels in F1 yolk and similar increases in SF1 yolk (p < 0.01). Transcriptomic analysis revealed 4991 differentially expressed genes in the pigeon ovary. The protein-protein interaction network highlighted genes like HSD11B1, VEGFD, WNT6, SMAD6, and LGR5 as potential contributors to hierarchical follicle selection under RL. This research provides new insights into the molecular basis by which RL may promote hierarchical follicle selection and improve egg production in pigeons.
Collapse
Affiliation(s)
- Ying Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (K.Z.); (C.Z.); (D.M.); (J.C.); (H.Y.); (Z.W.)
| | | | | | | | | | | | | |
Collapse
|
7
|
Narwal R, Laxmi RK, Rawat VS, Sehgal N. Molecular cloning and bioinformatic characterization of Gonadotropin Inhibitory Hormone (GnIH) and its receptors in the freshwater murrel, Channa punctatus (Bloch, 1793). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:711-736. [PMID: 37462854 DOI: 10.1007/s10695-023-01211-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/22/2023] [Indexed: 08/11/2023]
Abstract
Gonadotropin inhibitory hormone belonging to the RFamide peptide family, a hypothalamic neuropeptide, regulates Hypothalamus-pituitary-gonadal (HPG) axis and inhibits gonadal development. GnIH polypeptide precursor has an Arg-Phe-NH2 (RFamide) motif at the C-terminal, which has LPXRF (X = Q or L) domain. The actions of GnIH are mediated through G-protein coupled receptors and upto three receptors have been characterized in many teleosts. GnIH exerts its inhibitory effect on the HPG axis through direct interaction with GnRH and Kisspeptin neurons in the brain and acts directly on the pituitary gonadotrophs. To decipher the role of GnIH in Indian freshwater murrel, Channa punctatus, we sequenced the cDNA encoding GnIH and its two receptors. The identified GnIH mRNA encodes three RFamide peptides having -MPMRF, -MPQRF, and -LPQRFamide motifs. In silico analysis of the amino acid sequence of GnIH exhibits its molecular and functional properties and the protein-protein interaction with significant factors regulating the HPG axis. The 3-D structure of GnIH and its receptors, provides more relevant information about the active residues of these proteins which might be involved in their functioning and interaction with other proteins. Molecular dynamic simulation of GnIH protein has provided more insight into its dynamic behavior. The expression of GnIH and its receptors, shows an inverse correlation with gonadal development during the annual reproductive cycle.
Collapse
Affiliation(s)
- Ritu Narwal
- Department of Zoology, University of Delhi, Delhi, India, 110007
| | | | | | - Neeta Sehgal
- Department of Zoology, University of Delhi, Delhi, India, 110007.
| |
Collapse
|
8
|
Dantzer B. Frank Beach Award Winner: The centrality of the hypothalamic-pituitary-adrenal axis in dealing with environmental change across temporal scales. Horm Behav 2023; 150:105311. [PMID: 36707334 DOI: 10.1016/j.yhbeh.2023.105311] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
Understanding if and how individuals and populations cope with environmental change is an enduring question in evolutionary ecology that has renewed importance given the pace of change in the Anthropocene. Two evolutionary strategies of coping with environmental change may be particularly important in rapidly changing environments: adaptive phenotypic plasticity and/or bet hedging. Adaptive plasticity could enable individuals to match their phenotypes to the expected environment if there is an accurate cue predicting the selective environment. Diversifying bet hedging involves the production of seemingly random phenotypes in an unpredictable environment, some of which may be adaptive. Here, I review the central role of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoids (GCs) in enabling vertebrates to cope with environmental change through adaptive plasticity and bet hedging. I first describe how the HPA axis mediates three types of adaptive plasticity to cope with environmental change (evasion, tolerance, recovery) over short timescales (e.g., 1-3 generations) before discussing how the implications of GCs on phenotype integration may depend upon the timescale under consideration. GCs can promote adaptive phenotypic integration, but their effects on phenotypic co-variation could also limit the dimensions of phenotypic space explored by animals over longer timescales. Finally, I discuss how organismal responses to environmental stressors can act as a bet hedging mechanism and therefore enhance evolvability by increasing genetic or phenotypic variability or reducing patterns of genetic and phenotypic co-variance. Together, this emphasizes the crucial role of the HPA axis in understanding fundamental questions in evolutionary ecology.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, MI 48109 Ann Arbor, MI, USA; Department of Ecology and Evolutionary Biology, University of Michigan, MI 48109, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Heppner JJ, Krause JS, Ouyang JQ. Urbanization and maternal hormone transfer: Endocrine and morphological phenotypes across ontogenetic stages. Gen Comp Endocrinol 2023; 333:114166. [PMID: 36402244 DOI: 10.1016/j.ygcen.2022.114166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
The phenotypes observed in urban and rural environments are often distinct; however, it remains unclear how these novel urban phenotypes arise. Hormone-mediated maternal effects likely play a key role in shaping developmental trajectories of offspring in different environments. Thus, we measured corticosterone (Cort) and testosterone (T) concentrations in eggs across the laying sequence in addition to Cort concentrations in nestling and adult female house wrens (Troglodytes aedon) at one urban and one rural site. We found that egg T concentrations were not different between birds from urban and rural sites. However, across all life stages (egg, nestling, and adult female), Cort concentrations were higher at the urban site. Additionally, urban nestling Cort concentrations, but not rural, correlated with fine-scale urban density scores. Furthermore, rural egg volume increased over the laying sequence, but urban egg volume leveled off mid-sequence, suggesting either that urban mothers are resource limited or that they are employing a different brood development strategy than rural mothers. Our study is one of the first to show that egg hormone concentrations differ in an urban environment with differences persisting in chick development and adult life stages. We suggest that maternal endocrine programing may shape offspring phenotypes in urban environments and are an overlooked yet important aspect underlying mechanisms of urban evolution.
Collapse
Affiliation(s)
| | - Jesse S Krause
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Jenny Q Ouyang
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| |
Collapse
|
10
|
A mammalian gonadotropin-inhibitory hormone homolog RFamide-related peptide 3 regulates pain and anxiety in mice. Cell Tissue Res 2023; 391:159-172. [PMID: 36355189 DOI: 10.1007/s00441-022-03695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022]
Abstract
RFamide-related peptide (RFRP) is a homologous neuropeptide to gonadotropin-inhibitory hormone (GnIH), which is a hypothalamic neuropeptide that negatively regulates the hypothalamic-pituitary-gonadal axis. RFRP/GnIH is thought to be the mediator of stress because various stressors increase RFRP/GnIH mRNA expression and/or RFRP/GnIH neuronal activities. RFRP/GnIH may also directly regulate behavior, because RFRP/GnIH neuronal fibers and RFRP/GnIH receptor are widely expressed in the brain. Here, we create a RFRP/GnIH knockout (GnIH-KO) mice and conduct various behavioral tests. Dense RFRP/GnIH neuronal fibers are located in the limbic system and broad areas in the thalamus, hypothalamus, and midbrain in wild-type mice but not in RFRP/GnIH-KO mice. Spatial working memory is not improved in GnIH-KO mice as shown by Y-maze test. GnIH-KO mice perform intensive wheel running exercise for several hours after light-off. Hot plate test shows that GnIH-KO mice have decreased sensitivity to pain and central administration of RFRP3 to GnIH-KO mice recovers pain sensitivity. Elevated plus maze test shows that GnIH-KO mice have decreased level of anxiety and central administration of RFRP3 to GnIH-KO mice recovers anxiety level. These results indicate that RFRP3 regulates pain and anxiety in mice. RFRP3 may be involved in the negative regulation of spontaneous activity in addition to negatively regulating the reproductive neuroendocrine axis in stressful conditions.
Collapse
|
11
|
Zhao X, Si L, Niu L, Wei M, Wang F, Liu X, Chen Z, Qiao Y, Cheng L, Yang S. Effects of RFRP‑3 on an ovariectomized estrogen‑primed rat model and HEC‑1A human endometrial carcinoma cells. Exp Ther Med 2022; 25:76. [PMID: 36684658 PMCID: PMC9842939 DOI: 10.3892/etm.2022.11775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
The hypothalamic peptide gonadotropin inhibitory hormone (GnIH) is a relatively novel hypothalamic neuropeptide, identified in 2000. It can influence the hypothalamic-pituitary-gonadal axis and reproductive function through various neuroendocrine systems. The present study aimed to explore the effects and potential underlying molecular mechanism of RFamide-related peptide-3 (RFRP-3) injection on the uterine fluid protein profile of ovariectomized estrogen-primed (OEP) rats using proteomics. In addition, the possible effects of RFRP-3 on the viability and apoptosis of the human endometrial cancer cell line HEC-1A and associated molecular mechanism were investigated. The OEP rat model was established through injection with GnIH/RFRP-3 through the lateral ventricle. At 6 h after injection, the protein components of uterine fluid of rats in the experimental and control groups were analyzed using liquid chromatography (LC)-tandem mass spectrometry (MS/MS). Differentially expressed proteins (DEPs) were analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Protein-protein interactions (PPI) were investigated using the STRING database. PPI networks were then established before hub proteins were selected using OmicsBean software. The expression of one of the hub proteins, Kras, was then detected using western blot analysis. Cell Counting Kit-8, Annexin V-FITC/PI, reverse transcription-quantitative PCR and western blotting were also performed to analyze cell viability and apoptosis. In total, 417 DEPs were obtained using LC-MS/MS, including 279 upregulated and 138 downregulated proteins. GO analysis revealed that the majority of the DEPs were secretory proteins. According to KEGG enrichment analysis, the DEPs found were generally involved in tumor-associated pathways. In particular, five hub proteins, namely G protein subunit α (Gna)13, Gnaq, Gnai3, Kras and MMP9, were obtained following PPI network analysis. Western blot analysis showed that expression of the hub protein Kras was downregulated following treatment with 10,000 ng/ml RFRP-3. RFRP-3 treatment (10,000 ng/ml) also suppressed HEC-1A cell viability, induced apoptosis, downregulated Bcl-2 and upregulated Bax protein expression, compared with those in the control group. In addition, compared with those in the control group, RFRP-3 significantly reduced the mRNA expression levels of PI3K, AKT and mTOR, while upregulating those of LC3-II. Compared with those in the control group, RFRP-3 significantly decreased the protein expression levels of PI3K, AKT, mTOR and p62, in addition to decreasing AKT phosphorylation. By contrast, RFRP-3 significantly increased the LC3-II/I ratio and G protein-coupled receptor 147 (GPR147) protein expression. In conclusion, the present data suggest that RFRP-3 can alter the protein expression profile of the uterine fluid of OEP rats by upregulating MMP9 expression whilst downregulating that of key hub proteins Gna13, GnaQ, Gnai3 and Kras. Furthermore, RFRP-3 can inhibit HEC-1A cell viability while promoting apoptosis. The underlying molecular mechanism may involve activation of GPR147 receptor by the direct binding of RFRP-3, which further downregulates the hub protein Kras to switch on the PI3K/AKT/mTOR pathway. This subsequently reduces the Bcl-2 expression and promotes Bax expression to induce autophagy.
Collapse
Affiliation(s)
- Xueying Zhao
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Lina Si
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Lin Niu
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Meng Wei
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Fengxia Wang
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xiaochao Liu
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Zhihong Chen
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yuebing Qiao
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Luyang Cheng
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China,Correspondence to: Mrs. Luyang Cheng, Department of Immunology, Chengde Medical University, Anyuan Road, Shuangqiao, Chengde, Hebei 067000, P.R. China
| | - Songhe Yang
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China,Correspondence to: Mrs. Luyang Cheng, Department of Immunology, Chengde Medical University, Anyuan Road, Shuangqiao, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
12
|
Zubair H, Saqib M, Khan MN, Shamas S, Irfan S, Shahab M. Variation in Hypothalamic GnIH Expression and Its Association with GnRH and Kiss1 during Pubertal Progression in Male Rhesus Monkeys ( Macaca mulatta). Animals (Basel) 2022; 12:ani12243533. [PMID: 36552453 PMCID: PMC9774706 DOI: 10.3390/ani12243533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Modulation of pulsatile gonadotropin-releasing hormone (GnRH) secretion across postnatal development in higher primates is not fully understood. While gonadotropin-inhibitory hormone (GnIH) is reported to suppress reproductive axis activity in birds and rodents, little is known about the developmental trajectory of GnIH expression in rhesus monkeys throughout the pubertal transition. This study was aimed at examining the variation in GnIH immunoreactivity (-ir) and associated changes among GnIH, GnRH, and Kiss1 mRNA expression in the hypothalamus of infant, juvenile, prepubertal, and adult male rhesus monkeys. The brains from rhesus macaques were collected from infancy until adulthood and were examined using immunofluorescence and RT-qPCR. The mean GnIH-ir was found to be significantly higher in prepubertal animals (p < 0.01) compared to infants, and significantly reduced in adults (p < 0.001). Significantly higher (p < 0.001) GnRH and Kiss1 mRNA expression was noted in adults while GnIH mRNA expression was the highest at the prepubertal stage (p < 0.001). Significant negative correlations were seen between GnIH-GnRH (p < 0.01) and GnIH-Kiss1 (p < 0.001) expression. Our findings suggest a role for GnIH in the prepubertal suppression of the reproductive axis, with disinhibition of the adult reproductive axis occurring through decreases in GnIH. This pattern of expression suggests that GnIH may be a viable target for the development of novel therapeutics and contraceptives for humans.
Collapse
Affiliation(s)
- Hira Zubair
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Correspondence: (H.Z.); (M.S.); Tel.: +92-333-5126713 (H.Z.); +92-331-5579926 (M.S.)
| | - Muhammad Saqib
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Noman Khan
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shazia Shamas
- Department of Zoology, Rawalpindi Women University, Rawalpindi 46300, Pakistan
| | - Shahzad Irfan
- Department of Physiology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Shahab
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Correspondence: (H.Z.); (M.S.); Tel.: +92-333-5126713 (H.Z.); +92-331-5579926 (M.S.)
| |
Collapse
|
13
|
Dias NW, Timlin CL, Santilli FV, Harvey KM, Cooke RF, Clark S, Currin JF, Mercadante VRG. Effects of temperament on reproductive performance of Bos taurus heifers enrolled in the 7-day CO-Synch + controlled internal drug release protocol. Transl Anim Sci 2022; 6:txac156. [PMID: 36568898 PMCID: PMC9772815 DOI: 10.1093/tas/txac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Cattle temperament significantly impacts production traits such as reproduction. The objective of this study was to assess the effects of temperament on pregnancy rates to fixed-timed artificial insemination (TAI) in Bos taurus beef heifers. A total of 297 Angus influenced heifers from 3 different locations were evaluated for temperament based on chute score and exit velocity on the first day of the estrus synchronization protocol (d-9) and classified by temperament type based on temperament score (calm ≤ 3 < excitable). Pregnancy status was determined by transrectal ultrasonography approximately 40 d after TAI. Hair from the tail switch was collected at d-9 and at d0 (TAI) for cumulative cortisol evaluation. A subset of 43 heifers from location 3 had blood samples collected at all handling events and evaluated for cortisol concentrations. Overall, 71% of heifers were classified as calm whereas 29% as excitable. Pregnancy rates to TAI were reduced (P = 0.042) in excitable heifers compared to calm heifers (36% vs. 55%, respectively). Mean concentration of cortisol in the hair was reduced over time (P < 0.001) from d-9 (3.5 ± 0.3 pg/mg) to d0 (1.74 ± 0.3 pg/mg) in all heifers, regardless of temperament. In addition, excitable heifers had increased circulating concentrations of cortisol when compared to calm heifers in all handling events (P = 0.015). More interestingly, despite of temperament, concentrations of circulating cortisol were reduced as the protocol events progressed, with greater cortisol concentrations on d-9, intermediate on d-3, and lesser on d0 (P = 0.031). Therefore, the present study demonstrates that heifer temperament has negative effects in pregnancy rates to TAI programs. However, according to blood cortisol concentrations, no chronic stress response was detected due to cattle handling for the TAI protocol. In fact, blood cortisol concentration was reduced between the initiation and completion of the protocol, indicating that heifers were acclimated to handing. These results support the adoption of acclimation protocols and proper cattle handling as a strategy to increase fertility of heifers that are exposed to TAI.
Collapse
Affiliation(s)
| | - Claire L Timlin
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Felipe V Santilli
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Kelsey M Harvey
- Prairie Research Unit, Mississippi State University, Prairie, MS, 39756, USA
| | - Reinaldo F Cooke
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Sherrie Clark
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24061, USA
| | - John F Currin
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24061, USA
| | - Vitor R G Mercadante
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24061, USA
| |
Collapse
|
14
|
White JH, Heppner JJ, Ouyang JQ. Increased lead and glucocorticoid concentrations reduce reproductive success in house sparrows along an urban gradient. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2688. [PMID: 35754197 PMCID: PMC9722646 DOI: 10.1002/eap.2688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Urbanization is increasing at a rapid pace globally. Understanding the links among environmental characteristics, phenotypes, and fitness enables researchers to predict the impact of changing landscapes on individuals and populations. Although avian reproductive output is typically lower in urban compared with natural areas, the underlying reasons for this discrepancy may lie at the intersection of abiotic and biotic environmental and individual differences. Recent advances in urban ecology highlight the effect of heavy metal contamination on stress physiology. As high levels of glucocorticoid hormones decrease parental investment, these hormones might be the link to decreased reproductive success in areas of high environmental pollution. In this study, we aimed to identify which abiotic stressors are linked to avian reproductive output in urban areas and whether this link is mediated by individual hormone levels. We used fine-scaled estimates (2 m2 spatial resolution) of nighttime light, noise, and urban density to assess their impacts on the physiological condition of adult house sparrows (Passer domesticus). We measured circulating levels of lead and glucocorticoid concentrations in 40 breeding pairs of free-living house sparrows and related these physiological traits to reproductive success. Using structural equation modeling, we found that increased urban density levels linked directly to increased plasma corticosterone and lead concentrations that subsequently led to decreased fledgling mass. Sparrows with increased lead concentrations in plasma also had higher corticosterone levels. Although urban areas may be attractive due to decreased natural predators and available nesting sites, they may act as ecological traps that increase physiological damage and decrease fitness. To illustrate, avian development is strongly explained by parental corticosterone levels, which vary significantly in response to urban density and lead pollution. With fine-scale ecological mapping for a species with small home ranges, we demonstrated the presence and impacts of urban stressors in a small city with high human densities.
Collapse
Affiliation(s)
- Justin H White
- Department of Economics and Geosciences, United States Air Force Academy, Colorado Springs, Colorado, USA
| | | | - Jenny Q Ouyang
- Department of Biology, University of Nevada Reno, Reno, Nevada, USA
| |
Collapse
|
15
|
Bulut F, Kacar E, Bilgin B, Hekim MG, Keleştemur MM, Sahin Z, Ayar A, Ozcan M. Crosstalk between kisspeptin and gonadotropin-inhibitory hormone in the silence of puberty: preclinical evidence from a calcium signaling study. J Recept Signal Transduct Res 2022; 42:608-613. [PMID: 36137227 DOI: 10.1080/10799893.2022.2125014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Kisspeptin and gonadotropin-inhibitory hormone (GnIH) are among suggested neuroendocrine modulators of reproductive function. Intracellular calcium signaling is a critical component in the regulation of a variety of physiological and pathological processes including neurotransmitter release, and, therefore, can be used as signaling indicator for investigating the involvement of kisspeptin, GnIH, and gonadotropin-releasing hormone (GnRH) release. Hence, this study investigated the effects of kisspeptin and GnIH on calcium signaling using immortalized hypothalamic cells (rHypoE-8) as a model. Kisspeptin neurons were loaded with the ratiometric calcium dye (Fura-2 AM, 1 μmol) and intracellular free calcium ([Ca2+]i) responses were quantified using digital fluorescence imaging system. Kisspeptin-10 (100, 300, and 1000 nM) caused a significant increase in [Ca2+]i in rHypoE-8 cells (n = 58, n = 64, and n = 49, respectively, p < 0.001). The kisspeptin receptor antagonist, P234, inhibited the calcium responses to kisspeptin (p < 0.001, n = 32). GnIH (100 and 1000 nM), alone, did not cause any significant change in the mean basal [Ca2+]i levels in kisspeptin cells, but GnIH attenuated the kisspeptin-evoked [Ca2+]i transients (n = 47, p < 0.001). This novel findings of [Ca2+]i signaling in in vitro setting implicate that kisspeptin and GnIH may exert their effects on hypothalamus-pituitary-gonadal (HPG) axis by modulating kisspeptin neurons. These results also implicate that kisspeptin neurons may have an autocrine regulation.
Collapse
Affiliation(s)
- Ferah Bulut
- Department of Biophysics, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Emine Kacar
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Batuhan Bilgin
- Department of Biophysics, Faculty of Medicine, Firat University, Elazig, Turkey
| | | | | | - Zafer Sahin
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ahmet Ayar
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mete Ozcan
- Department of Biophysics, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
16
|
Helmy H, Hamid Sadik NA, Badawy L, Sayed NH. Mechanistic insights into the protective role of eugenol against stress-induced reproductive dysfunction in female rat model. Chem Biol Interact 2022; 367:110181. [PMID: 36108715 DOI: 10.1016/j.cbi.2022.110181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
The challenging and highly demanding life rhythm nowadays subjects people to unavoidable chronic stress. Chronic stress is associated with a wide array of serious health complications including neuroendocrine dysregulations. Women are more prone to chronic stress-related hormonal disturbances and their physical and psychological consequences, especially reproductive impairment. Eugenol is a natural phenolic anti-oxidant that has several beneficial biological activities. The current study intended to scrutinize the potential protective effect of eugenol in female Wistar rats exposed to chronic unpredictable mild stress (CUMS). Rats were randomly allocated into 4 groups; group 1 received olive oil, group 2 received eugenol in olive oil, groups 3 and 4 were subjected to CUMS protocol for 8 weeks, with pre- and concomitant treatment with eugenol (50 mg/kg/day; p.o.) in group 4. The results showed that CUMS exposure led to weight loss and depressive-like behaviours. CUMS induced hypothalamic-pituitary-adrenal axis activation with subsequent elevation of serum corticosterone level which, in turn, caused decline in ovarian release of estradiol and antimullerian hormones together with an increased production of follicle-stimulating and luteinizing hormones by the anterior pituitary, leading to reproductive disturbances. In ovaries, CUMS imposed oxidative stress, insulin resistance and molecular damage. Intriguingly, all these adverse effects were significantly mitigated by the administration of eugenol that improved animals' behaviours, corrected corticosterone upsurge, tempered hormonal disturbances, and amended ovarian damage. All biochemical results were further confirmed by hippocampal and ovarian histopathological examinations. In conclusion, the current study highlights the prophylactic role of eugenol against reproductive disturbances induced by chronic stress in female rats.
Collapse
Affiliation(s)
- Hebatullah Helmy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | | | | | - Noha H Sayed
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
17
|
Li P, Gao M, Song B, Yan S, Zhao Y, Gong L, Liu Y, Lv Z, Guo Y. Soya saponin fails to improve the antioxidation and immune function of laying hens with antibiotics treated. Poult Sci 2022; 101:101921. [PMID: 35691239 PMCID: PMC9194864 DOI: 10.1016/j.psj.2022.101921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Abstract
Soya saponin (SS) helps to improve antioxidant and immune function of body, and intestinal bacteria might play an important role here. In the present study, the co-occurring network of the ileal flora was analyzed with 50 mg/kg SS supplemented to the diet, and Romboutsia was found to have evolved into a dominant flora. In addition, the co-occurring network of the flora was changed with the combined antibiotic treated, and the unidentified-cyanobacteria developed into the dominant flora, whereas the relative abundance of Romboutsia was dropped. Dietary SS failed to elevate the relative abundance of Romboutsia with antibiotics treated, at the same time, it was not helpful for the antioxidant and immune function of laying hens. While dietary SS had a little help on the egg-laying performance. Intestinal bacteria did play a key role in the biological functions of SS on laying hens. In conclusion, SS failed to improve the antioxidation and immune function of laying hens with antibiotics treated.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Mingkun Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Bochen Song
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Shaojia Yan
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Yizhu Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Lu Gong
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Yongfa Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
18
|
Comparative insights of the neuroanatomical distribution of the gonadotropin-inhibitory hormone (GnIH) in fish and amphibians. Front Neuroendocrinol 2022; 65:100991. [PMID: 35227766 DOI: 10.1016/j.yfrne.2022.100991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 11/21/2022]
Abstract
This paper intends to apprise the reader regarding the existing knowledge on the neuroanatomical distribution of GnIH-like peptides in in fish and amphibians in both the adult stage and during ontogenesis. The neuroanatomical distribution of GnIH-like neuropeptides appears quite different in the studied species, irrespective of the evolutionary closeness. The topology of the olfactory bulbs can affect the distribution of neurons producing the GnIH-like peptides, with a tendency to show a more extended distribution into the brains with pedunculate olfactory bulbs. Therefore, the variability of the GnIH-like system could also reflect specific adaptations rather than evolutionary patterns. The onset of GnIH expression was detected very early during development suggesting its precocious roles, and the neuroanatomical distribution of GnIH-like elements showed a generally increasing trend. This review highlights some critical technical aspects and the need to increase the number of species to be studied to obtain a complete neuroanatomical picture of the GnIH-like system.
Collapse
|
19
|
Gołyszny M, Obuchowicz E, Zieliński M. Neuropeptides as regulators of the hypothalamus-pituitary-gonadal (HPG) axis activity and their putative roles in stress-induced fertility disorders. Neuropeptides 2022; 91:102216. [PMID: 34974357 DOI: 10.1016/j.npep.2021.102216] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022]
Abstract
Neuropeptides being regulators of the hypothalamus-pituitary-adrenal (HPA) axis activity, also affect the function of the hypothalamus-pituitary-gonadal (HPG) axis by regulating gonadotrophin-releasing hormone (GnRH) secretion from hypothalamic neurons. Here, we review the available data on how neuropeptides affect HPG axis activity directly or indirectly via their influence on the HPA axis. The putative role of neuropeptides in stress-induced infertility, such as polycystic ovary syndrome, is also described. This review discusses both well-known neuropeptides (i.e., kisspeptin, Kp; oxytocin, OT; arginine-vasopressin, AVP) and more recently discovered peptides (i.e., relaxin-3, RLN-3; nesfatin-1, NEFA; phoenixin, PNX; spexin, SPX). For the first time, we present an up-to-date review of all published data regarding interactions between the aforementioned neuropeptide systems. The reviewed literature suggest new pathophysiological mechanisms leading to fertility disturbances that are induced by stress.
Collapse
Affiliation(s)
- Miłosz Gołyszny
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 Street, 40-752 Katowice, Poland.
| | - Ewa Obuchowicz
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 Street, 40-752 Katowice, Poland.
| | - Michał Zieliński
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 Street, 40-752 Katowice, Poland.
| |
Collapse
|
20
|
Li P, Zhao Y, Yan S, Song B, Liu Y, Gao M, Tang D, Guo Y. Soya saponin improves egg-laying performance and immune function of laying hens. J Anim Sci Biotechnol 2022; 12:126. [PMID: 34986871 PMCID: PMC8729039 DOI: 10.1186/s40104-021-00647-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Soya saponin (SS), an active compound in soybean meals, has been widely studied in the medical field. However, it was considered as an anti-nutritional factor in poultry diets. The objective of this experiment was to measure the effects of dietary SS using three dietary treatments on egg-laying performance and immune function of laying hens. Birds were fed a low soybean meal basal diet (CON), a low-SS diet (50 SS) containing 50 mg/kg SS, or a high-SS diet (500 SS) containing 500 mg/kg SS for 10 weeks. At the end of the 5th and 10th week of the trial, samples were collected for analysis. RESULTS Results showed that with 50 mg/kg SS supplementation, the egg production rate, feed conversion ratio (FCR), and eggshell quality tended to be improved. Serum follicle stimulating hormone (FSH) and Interleukin-4 (IL-4) levels were also elevated as well as the peripheral blood LPS stimulation index, the proportion of B lymphocytes, and antibody titer of bovine serum albumin (BSA). We also found that mRNA levels of follicle stimulating hormone receptor (FSHR) in ovarian, nuclear transcription factor kappa B (NF-κB), Transforming growth factor (TGF-β) and interferon γ (IFN-γ) in spleen were up-regulated at the end of the trial. Additionally, dietary 50 mg/kg SS improved the ileal flora via up-regulating the relative abundance of Lactobacillus, Romboutsia and Lactobacillus delbrueckii. Although the immune related indicators were improved with 500 mg/kg SS supplemented, it seemed to have a negative influence on the laying-performance. Specifically, serum alanine aminotransferase (ALT), alkaline phosphatase (ALP), and the ratio of IFN-γ to IL-4 were increased in the 500 SS group at the end of the trial. The mRNA levels of gonadotropin releasing hormone 1 (GnRH1) in Hypothalamus, the estrogen related receptor (ERR) in ovaries were downregulated as well as the egg production rate during the trial with 500 mg/kg SS supplemented. CONCLUSIONS The egg production performance was improved by dietary supplemented with 50 mg/kg SS via increasing ovarian FSHR transcription level and serum estrogen level. A beneficial shift in intestinal microflora was recorded, and the immune function of laying hens was also improved with 50 mg/kg SS supplementation. Surprisingly, the long-term supplementation of 500 mg/kg SS exerted a negative impact on the laying performance and physiological functions of the liver of laying hens.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yizhu Zhao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Shaojia Yan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Bocheng Song
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yongfa Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Mingkun Gao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Dazhi Tang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
21
|
Advancing reproductive neuroendocrinology through research on the regulation of GnIH and on its diverse actions on reproductive physiology and behavior. Front Neuroendocrinol 2022; 64:100955. [PMID: 34767778 DOI: 10.1016/j.yfrne.2021.100955] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023]
Abstract
The discovery of gonadotropin-inhibitory hormone (GnIH) in 2000 has led to a new research era of reproductive neuroendocrinology because, for a long time, researchers believed that only gonadotropin-releasing hormone (GnRH) regulated reproduction as a neurohormone. Later studies on GnIH demonstrated that it acts as a new key neurohormone inhibiting reproduction in vertebrates. GnIH reduces gonadotropin release andsynthesis via the GnIH receptor GPR147 on gonadotropes and GnRH neurons. Furthermore, GnIH inhibits reproductive behavior, in addition to reproductive neuroendocrine function. The modification of the synthesis of GnIH and its release by the neuroendocrine integration of environmental and internal factors has also been demonstrated. Thus, the discovery of GnIH has facilitated advances in reproductive neuroendocrinology. Here, we describe the advances in reproductive neuroendocrinology driven by the discovery of GnIH, research on the effects of GnIH on reproductive physiology and behavior, and the regulatory mechanisms underlying GnIH synthesis and release.
Collapse
|
22
|
Regulation of stress response on the hypothalamic-pituitary-gonadal axis via gonadotropin-inhibitory hormone. Front Neuroendocrinol 2022; 64:100953. [PMID: 34757094 DOI: 10.1016/j.yfrne.2021.100953] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/16/2021] [Accepted: 10/24/2021] [Indexed: 11/21/2022]
Abstract
Under stressful condition, reproductive function is impaired due to the activation of various components of the hypothalamic-pituitaryadrenal (HPA) axis, which can suppress the activity of the hypothalamic-pituitary-gonadal (HPG) axis at multiple levels. A hypothalamic neuropeptide, gonadotropin-inhibitory hormone (GnIH) is a key negative regulator of reproduction that governs the HPG axis. Converging lines of evidence have suggested that different stress types and their duration, such as physical or psychological, and acute or chronic, can modulate the GnIH system. To clarify the sensitivity and reactivity of the GnIH system in response to stress, we summarize and critically review the available studies that investigated the effects of various stressors, such as restraint, nutritional/metabolic and social stress, on GnIH expression and/or its neuronal activity leading to altered HPG action. In this review, we focus on GnIH as the potential novel mediator responsible for stress-induced reproductive dysfunction.
Collapse
|
23
|
Gonadotropin-inhibitory hormone as a regulator of social interactions in vertebrates. Front Neuroendocrinol 2022; 64:100954. [PMID: 34757092 DOI: 10.1016/j.yfrne.2021.100954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/12/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022]
Abstract
The social environment changes circulating hormone levels and expression of social behavior in animals. Social information is perceived by sensory systems, leading to cellular and molecular changes through neural processes. Peripheral reproductive hormone levels are regulated by activity in the hypothalamic-pituitary-gonadal (HPG) axis. Until the end of the last century, the neurochemical systems that convey social information to the HPG axis were not well understood. Gonadotropin-inhibitory hormone (GnIH) was the first hypothalamic neuropeptide shown to inhibit gonadotropin release, in 2000. GnIH is now regarded as a negative upstream regulator of the HPG axis, and it is becoming increasingly evident that it responds to social cues. In addition to controlling reproductive physiology, GnIH seems to modulate the reproductive behavior of animals. Here, we review studies investigating how GnIH neurons respond to social information and describe the mechanisms through which GnIH regulates social behavior.
Collapse
|
24
|
Song JA, Park HS, Park YS, Kho KH, Choi CY. Exogenous cortisol and red light irradiation affect reproductive parameters in the goldfish Carassius auratus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1711-1724. [PMID: 34480244 DOI: 10.1007/s10695-021-01013-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Reproductive hormones play essential roles in the control of reproduction and gonadal maturation in fish. The purpose of this study was to determine the effects of cortisol administration (10 µg/g or 50 µg/g) or red light irradiation at two intensities (0.5 W/m2 or 1.0 W/m2) on the reproductive hormones in goldfish (Carassius auratus). The effects of different treatments were analyzed by determining the mRNA expression levels of gonadotropin-inhibitory hormone receptor (GnIH-R), chicken gonadotropin-releasing hormone (cGnRH-II), salmon GnRH (sGnRH), FSHβ, LHβ, and plasma testosterone and the level of 17β-estradiol for 48 h. Additionally, by double immunofluorescence staining, we detected the expression of both GnIH and GnRH in the diencephalons of goldfish brains. The mRNA expression of GnIH-R was significantly higher in the cortisol group and red light-irradiated group from 3 to 48 h than in the control group. Additionally, the mRNA levels of cGnRH-II, sGnRH, FSHβ, LHβ, testosterone, and 17β-estradiol were significantly lower in the cortisol group than in the other groups from 3 to 48 h. These results indicated that both cortisol and red light-emitting diode (LED) light increased GnIH expression and inhibited GnRH expression. In particular, red light irradiation suppressed reproductive responses as much as the cortisol treatment at 48 h. Thus, it could be an alternative method for suppressing reproductive responses in future aquacultures.
Collapse
Affiliation(s)
- Jin Ah Song
- Division of Marine BioScience, National Korea Maritime and Ocean University, Busan, 49112, Korea
| | - Heung-Sik Park
- Marine Ecosystem and Biological Research Center, KIOST, Busan, 49111, Korea
| | | | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu, 59626, Korea.
| | - Cheol Young Choi
- Division of Marine BioScience, National Korea Maritime and Ocean University, Busan, 49112, Korea.
| |
Collapse
|
25
|
Rana MS, Campbell DLM. Application of Ultraviolet Light for Poultry Production: A Review of Impacts on Behavior, Physiology, and Production. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.699262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The application of ultraviolet (UV) light in poultry production is garnering increased interest with the drive toward improved poultry welfare and optimized production. Poultry can see in the UV spectrum (UVA wavelengths: 320–400 nm) thus inclusion of these shorter wavelengths may be viewed as more natural but are typically excluded in conventional artificial lights. Furthermore, UVB wavelengths (280–315) have physiological impact through stimulation of vitamin D pathways that can then improve skeletal health. However, better understanding of the effects of UV supplementation must occur before implementation practically. This non-systematic literature review aimed to summarize the impacts of UV supplementation on the behavior, welfare, and production of laying hens, meat chickens (breeders and growers), and other domestic poultry species including directions for future research. The literature demonstrated that UVA light has positive impacts on reducing fear and stress responses but in some research, it significantly increases feather pecking over age during the production phase. UVB light will significantly improve skeletal health, but an optimum duration of exposure is necessary to get this benefit. Supplementation with UVB light may have more distinct impacts on egg production and eggshell quality when hens are experiencing a dietary vitamin D3 deficiency, or if they are at the terminal end of production. The relative benefits of UVB supplementation across different ages needs to be further verified along with commercial trials to confirm beneficial or detrimental impacts of adding UVA wavelengths. Further research is warranted to determine whether adding natural light wavelengths to indoor poultry production is indeed a positive step toward optimizing commercial housing systems.
Collapse
|
26
|
Rodrigues MS, Fallah HP, Zanardini M, Malafaia G, Habibi HR, Nóbrega RH. Interaction between thyroid hormones and gonadotropin inhibitory hormone in ex vivo culture of zebrafish testis: An approach to study multifactorial control of spermatogenesis. Mol Cell Endocrinol 2021; 532:111331. [PMID: 34038752 DOI: 10.1016/j.mce.2021.111331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022]
Abstract
Reproduction is under multifactorial control of neurohormones, pituitary gonadotropins, as well as of local gonadal signaling systems including sex steroids, growth factors and non-coding RNAs. Among the factors, gonadotropin-inhibitory hormone (Gnih) is a novel RFamide neuropeptide which directly modulates gonadotropin synthesis and release from pituitary, and in the gonads, Gnih mediated inhibitory actions on gonadotropin response of zebrafish spermatogenesis. Thyroid hormones are peripheral hormones which are also known to interact with reproductive axis, in particular, regulating testicular development and function. This study investigated the interaction between Gnih and thyroid hormones in zebrafish spermatogenesis using in vivo and ex vivo approaches. Three experimental groups were established: "control" (non-treated fish), "methimazole" and "methimazole + T4". Fish were exposed to goitrogen methimazole for 3 weeks; T4 (100 μg/L) was added in the water from the second week only in the "reversal treatment" group. After exposure, testes were dissected out and immediately incubated in Leibovitz's L-15 culture medium containing hCG, Gnih or hCG + Gnih for 7 days. Germ cell cysts and haploid cell population were evaluated by histomorphometry and flow cytometry, respectively. Our results showed that hypothyroidism affected germ cell development in basal and gonadotropin-induced spermatogenesis, in particular, meiosis and spermiogenesis. Hypothyroid testes showed lower amount of spermatozoa, and decreased potency of hCG. We also showed that goitrogen treatment nullified the inhibitory actions of Gnih on the gonadotropin-induced spermatogenesis. This study provided evidences that thyroid hormones are important regulatory factors for hCG- and Gnih-mediated functions in zebrafish spermatogenesis.
Collapse
Affiliation(s)
- Maira S Rodrigues
- Aquaculture Program (CAUNESP), São Paulo State University (UNESP), 14884-900, Jaboticabal, São Paulo, Brazil; Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada; Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970, Botucatu, São Paulo, Brazil
| | - Hamideh P Fallah
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Maya Zanardini
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Guilherme Malafaia
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970, Botucatu, São Paulo, Brazil; Biological Research Laboratory, Goiano Federal Institution, Urata Campus, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, Goiás, Brazil
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Rafael H Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970, Botucatu, São Paulo, Brazil.
| |
Collapse
|
27
|
Ladisa C, Ma Y, Habibi HR. Seasonally related metabolic changes and energy allocation associated with growth and reproductive phases in the liver of male goldfish (Carassius auratus). J Proteomics 2021; 241:104237. [PMID: 33894374 DOI: 10.1016/j.jprot.2021.104237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022]
Abstract
Reproduction and growth follow a seasonal pattern in many fish species involving changes in gonadal development, growth, and metabolism. Significant metabolic energy is needed during gametogenesis in both female and male to produce hundreds of eggs and billions of sperms. Seasonal variations are controlled by the hormones of brain-pituitary-peripheral axis and are accompanied by significant metabolic changes. There is evidence that GnRH and GnIH are among the key neurohormones that regulate the reciprocal control of growth and reproduction. The objective of this study was to investigate changes in metabolic profile and energy allocation patterns at different stages of reproduction, using goldfish as a model organism and LC-MS as analytical platform for metabolic analysis. Goldfish undergoes a clear seasonal cycle of growth and reproduction. In vivo experiments were conducted at three different time point of the annual cycle: regressed gonadal phase (peak growth phase), mid gametogenesis and late gametogenesis. Emphasis is placed on changes in liver metabolic pathways to energetically sustain the physiological processes related to growth and reproduction. Moreover, we tested the hypothesis that GnRH and GnIH may play a role in the regulation of metabolism by investigating acute effects of these peptides at different stages of reproductive cycle. SIGNIFICANCE: The findings in this paper provide novel information on the seasonal changes in basal metabolism during different stages of reproductive cycle, and evidence for differential allocation of energy during reciprocal control of reproduction and growth in goldfish. Chemometrics combined with pathway-driven bioinformatics elucidated a shift in the metabolic profile, indicating distinct patterns of energy allocation in the reproductive and growth seasons. Furthermore, to our knowledge this is the first study to provide evidence for a possible regulatory role of GnRH and GnIH in liver metabolism and energy allocation patterns associated with growth and reproductive processes. Together our findings present a framework for better understanding of the hormonally induced changes in metabolism to energetically sustain growth and reproduction in fish and other oviparous species undergoing seasonal cycle.
Collapse
Affiliation(s)
- Claudia Ladisa
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Yifei Ma
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
28
|
Djouahra N, Moudilou EN, Exbrayat JM, Hammouche S. Immunodistribution of RFamide-related peptide-3 (RFRP-3) during the seminiferous epithelium cycle in a desert rodent Psammomys obesus. Tissue Cell 2021; 69:101484. [PMID: 33450652 DOI: 10.1016/j.tice.2020.101484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
The Sand rat, Psammomys obesus, living northwest of the Algerian Sahara, presents a seasonal reproductive cycle. The purposes of this study were firstly to determine the stages of seminiferous epithelium cycle (SEC) by histological and morphometric analysis and secondly to investigate, for the first time, the testicular expression of RFamide-related peptide-3 (RFRP-3) during the SEC by immunohistochemistry. The results showed that the SEC consists of 14 stages according to the tubular morphology method. RFRP-3 was observed in both testicular compartments: the tubular and the interstitial. Leydig cells exhibited the highest RFRP-3 signal (30.73 % ± 4.80) compared to Sertoli cells (13-15 %). In the germline, RFRP-3 was detected during the late prophase I of meiosis in late pachytene, diplotene and metaphasic spermatocytes I. In addition, only round and triangular spermatids were positive during spermiogenesis. Referring to the SEC, it was found that the increased staining of RFRP-3 in spermatocytes I coincided with late pachytene of XI and XII stages (16.90 % ± 0.69 and 16.61 % ± 0.28, respectively). In spermatids, the labeling decreased in the triangular ones at stage IX (8.04 % ± 0.42). These results suggest the involvement of RFRP-3 in the control of SEC in P. obesus.
Collapse
Affiliation(s)
- Nassima Djouahra
- USTHB, University of Sciences and Technology of Houari Boumediene, Biological Sciences Faculty, Arid Area Research Laboratory, Algiers, Algeria.
| | - Elara N Moudilou
- Confluence Sciences and Humanities Research Unit, Biosciences Technologies Ethics Laboratory, Lyon Catholic University, 10 Place des Archives, Lyon, 69002, France
| | - Jean-Marie Exbrayat
- Confluence Sciences and Humanities Research Unit, Biosciences Technologies Ethics Laboratory, Lyon Catholic University, 10 Place des Archives, Lyon, 69002, France
| | - Sadjia Hammouche
- USTHB, University of Sciences and Technology of Houari Boumediene, Biological Sciences Faculty, Arid Area Research Laboratory, Algiers, Algeria
| |
Collapse
|
29
|
Tsutsui K, Ubuka T. Gonadotropin-inhibitory hormone (GnIH): A new key neurohormone controlling reproductive physiology and behavior. Front Neuroendocrinol 2021; 61:100900. [PMID: 33450199 DOI: 10.1016/j.yfrne.2021.100900] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/04/2021] [Accepted: 01/10/2021] [Indexed: 11/17/2022]
Abstract
The discovery of novel neurohormones is important for the advancement of neuroendocrinology. In early 1970s, gonadotropin-releasing hormone (GnRH), a hypothalamic neuropeptide that promotes gonadotropin release, was identified to be an endogenous neurohormone in mammals. In 2000, thirty years later, another hypothalamic neuropeptide, gonadotropin-inhibitory hormone (GnIH), that inhibits gonadotropin release, was found in quail. GnIH acts via GPR147 and inhibits gonadotropin release and synthesis and reproductive function in birds through actions on GnRH neurons in the hypothalamus and pituitary gonadotrophs. Later, GnIH was found in other vertebrates including humans. GnIH studies have advanced the progress of reproductive neuroendocrinology. Furthermore, recent GnIH studies have indicated that abnormal changes in GnIH expression may cause pubertal disorder and reproductive dysfunction. Here, we describe GnIH discovery and its impact on the progress of reproductive neuroendocrinology. This review also highlights advancement and perspective of GnIH studies on drug development for pubertal disorder and reproductive dysfunction. (149/150).
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan.
| | - Takayoshi Ubuka
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
30
|
Anjum S, Khattak MNK, Tsutsui K, Krishna A. RF-amide related peptide-3 (RFRP-3): a novel neuroendocrine regulator of energy homeostasis, metabolism, and reproduction. Mol Biol Rep 2021; 48:1837-1852. [PMID: 33566226 DOI: 10.1007/s11033-021-06198-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
A hypothalamic neuropeptide, RF-amide related peptide-3 (RFRP-3), the mammalian ortholog of the avian gonadotropin-inhibitory hormone (GnIH) has inhibitory signals for reproductive axis via G-protein coupled receptor 147 in mammals. Moreover, RFRP-3 has orexigenic action but the mechanism involved in energy homeostasis and glucose metabolism is not yet known. Though, the RFRP-3 modulates orexigenic action in co-operation with other neuropeptides, which regulates metabolic cues in the hypothalamus. Administration of GnIH/RFRP-3 suppresses plasma luteinizing hormone, at the same time stimulates feeding behavior in birds and mammals. Likewise, in the metabolically deficient conditions, its expression is up-regulated suggests that RFRP-3 contributes to the integration of energy balance and reproduction. However, in many other metabolic conditions like induced diabetes and high-fat diet obesity, etc. its role is still not clear while, RFRP-3 induces the glucose homeostasis by adipocytes is reported. The physiological role of RFRP-3 in metabolic homeostasis and the metabolic effects of RFRP-3 signaling in pharmacological studies need a detailed discussion. Further studies are required to find out whether RFRP-3 is associated with restricted neuroendocrine function observed in type II diabetes mellitus, aging, or sub-fertility. In this context, the current review is focused on the role of RFRP-3 in the above-mentioned mechanisms. Studies from search engines including PubMed, Google Scholar, and science.gov are included after following set inclusion/exclusion criteria. As a developing field few mechanisms are still inconclusive, however, based on the available information RFRP-3 seems to be a putative tool in future treatment strategies towards metabolic disease.
Collapse
Affiliation(s)
- Shabana Anjum
- Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Kazuyoshi Tsutsui
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima, 739-8521, Japan
| | - Amitabh Krishna
- Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
31
|
Fallah HP, Rodrigues MS, Zanardini M, Nóbrega RH, Habibi HR. Effects of gonadotropin-inhibitory hormone on early and late stages of spermatogenesis in ex-vivo culture of zebrafish testis. Mol Cell Endocrinol 2021; 520:111087. [PMID: 33249103 DOI: 10.1016/j.mce.2020.111087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 11/29/2022]
Abstract
Gonadotropin-inhibitory hormone (Gnih) is known to play a role in the regulation of reproduction in vertebrates by influencing gonadotropin release and synthesis. While the endocrine actions of Gnih have been identified in several species, its paracrine/autocrine effects in the control of spermatogenesis are less defined. We have used ex vivo culture of zebrafish testis to investigate the role of gonadal zebrafish Gnih (zGnih) in the regulation of the spermatogenic process. We used FACScan cell cycle analysis, morphometric quantifications, BrdU incorporation and caspase-3 activity assays as well as measuring 11-Ketotestosterone (11-KT) level in the culture media. FACScan analysis and morphometric quantification results demonstrated direct action of zGnih on basal and gonadotropin (Lh and Fsh)-induced spermatogenesis. Treatment with zGnih (10 nM) significantly decreased the number of G0/G1 cells after 7-days of culture while no significant changes were found in the proportion area of spermatogonia cell types. Investigation of DNA synthesis using BrdU (5-Bromo-2'-Deoxyuridine) labeling showed that treatment with zGnih (10 nM) significantly decreased proliferative activity of type A spermatogonia, while increased the mitotic activity of type B spermatogonia. We also showed that treatment with zGnih (100 nM) completely eliminated 11-KT release induced by 100 ng/ml Fsh. Treatment with zGnih (10 and 100 nM) also inhibited both hCG and Fsh-induced spermatogenesis. These results, plus our previous findings, demonstrate that zGnih produced locally in the testis is a component of a complex multifactorial system that regulates testicular function in zebrafish.
Collapse
Affiliation(s)
- Hamideh P Fallah
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Maira S Rodrigues
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada; Department of Morphology, Reproductive and Molecular Biology Group, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Maya Zanardini
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Rafael H Nóbrega
- Department of Morphology, Reproductive and Molecular Biology Group, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
32
|
Li X, Xu G, Li Z, Liu H, Ma X, Yang L, Zhang P, Zhao J, Wang J, Lu W. Gonadotropin-inhibiting hormone promotes apoptosis of bovine ovary granulosa cells. Life Sci 2021; 270:119063. [PMID: 33460664 DOI: 10.1016/j.lfs.2021.119063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 02/02/2023]
Abstract
Gonadotropin-inhibiting hormone (GnIH) inhibits the synthesis and release of gonadotropin by binding to its receptor. GnIH is involved in animal reproductive regulation, especially ovary function. It can regulate the proliferation, apoptosis and hormone secretion of follicular cells. However, the role and molecular mechanism of GnIH in bovine granulosa cell (bGC) apoptosis is unclear. Here, the effects of GnIH on proliferation, apoptosis, and mitochondrial function of bGCs were detected. A 10-6 mol/mL concentration of GnIH inhibited bGC proliferation, promoted GC apoptosis, and damaged mitochondrial function. Additionally, GnIH significantly decreased the phosphorylation level of p38 (P < 0.01). To explore the role of the p38 signaling pathway in the process of GnIH-induced apoptosis in bGCs, an activator of p38 (U46619) was used to pretreat bGCs. U46619 pretreatment significantly alleviated GnIH damage to bGCs, including proliferation, apoptosis, and mitochondrial function. In conclusion, these results demonstrated that GnIH inhibited proliferation and promoted apoptosis of bGCs via the p38 signaling pathway.
Collapse
Affiliation(s)
- Xu Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, Jilin 136100, China
| | - Gaoqing Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhiqiang Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongyu Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xin Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Lianyu Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Pengju Zhang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, Jilin 136100, China
| | - Jing Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Jun Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Wenfa Lu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
33
|
Glatz PC, Tilbrook AJ. Welfare issues associated with moulting of laying hens. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an19700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A practice that is used to extend the period of lay of hens is induced moulting. It involves restriction of nutrients, and sometimes manipulation of lighting, with the consequent loss of bodyweight and feathers, regression of the reproductive tract and cessation of egg lay. When the period of moulting is completed, the reproductive tract will regenerate and egg production will resume, thereby extending the overall period of lay. Towards the end of the laying cycle of hens, the production and quality of eggs decline. At this point, some egg farmers will induce a moult in the flocks to reduce bird-replacement costs and improve profitability. In the Australian egg industry, less than 10% of layers are moulted. There are implications for the welfare of hens that are induced to moult, particularly due to loss of bodyweight and feathers. Histopathological studies have shown the extent to which loss of feathers may affect welfare from a physical perspective, and it terms of pain. It is apparent that induced moulting can lead to an increase in aggression and injurious pecking, and birds with poor feather cover are vulnerable to damage from this pecking. Induced moulting can increase stress, although the implications of this for the welfare of hens is not well understood. The endocrine events associated with induced moulting are reasonably well known and it is possible to manipulate the endocrine system to extend the lay of hens without the need to moult. Nevertheless, these approaches are unlikely to be adopted into practice. More importantly, hens should always have feed and water available and are in good condition before undergoing a moult. This is essential from the perspective of ensuring adequate standards of welfare of birds.
Collapse
|
34
|
Manoochehri R, Jafarzadeh Shirazi MR, Akhlaghi A, Tsutsui K, Namavar MR, Zamiri MJ, Rezazadeh FM. The localization and expression of gonadotropin inhibitory hormone in the hypothalamus of turkey hens during the prepubertal, pubertal and postpubertal phases. Domest Anim Endocrinol 2021; 74:106486. [PMID: 32882449 DOI: 10.1016/j.domaniend.2020.106486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/27/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
Gonadotropin inhibitory hormone (GnIH), initially discovered in birds as a hypothalamic neuropeptide, inhibits the synthesis and release of gonadotropins by affecting GnRH neurons and gonadotropes. Therefore, it may be a key neuropeptide in reproduction in birds. The aim of the present study was to investigate the prepubertal, pubertal, and postpubertal localization of GnIH and changes in hypothalamic GnIH expression in British United Turkey hens. In prepubertal, pubertal, and postpubertal periods, the brains of turkey hens (n = 15) were removed after fixation. Sections (30 μm) were prepared from the entire hypothalamus and stained immunohistochemically against GnIH antibody. Gonadotropin inhibitory hormone-immunoreactive neurons were observed in the paraventricular nucleus. These neurons were significantly more abundant in the prepubertal turkeys than pubertal and postpubertal turkeys (P < 0.05). The results suggested that GnIH neurons have an important role in regulating the pubertal events in British United Turkey hens.
Collapse
Affiliation(s)
- R Manoochehri
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | | | - A Akhlaghi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - K Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| | - M R Namavar
- Department of Anatomy, Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Anatomy, Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M J Zamiri
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - F M Rezazadeh
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
35
|
Beriotto AC, Di Yorio MP, Pérez Sirkin DI, Toledo-Solis FJ, Peña-Marín ES, Álvarez-González CA, Tsutsui K, Vissio PG. Gonadotropin-inhibitory hormone (GnIH) distribution in the brain of the ancient fish Atractosteus tropicus (Holostei, Lepisosteiformes). Gen Comp Endocrinol 2020; 299:113623. [PMID: 32976836 DOI: 10.1016/j.ygcen.2020.113623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/14/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022]
Abstract
The Holostei group occupies a critical phylogenetic position as the sister group of the Teleostei. However, little is known about holostean pituitary anatomy or brain distribution of important reproductive neuropeptides, such as the gonadotropin-inhibitory hormone (GnIH). Thus, the present study set out to characterize the structure of the pituitary and to localize GnIH-immunoreactive cells in the brain of Atractosteus tropicus from the viewpoint of comparative neuroanatomy. Juveniles of both sexes were processed for general histology and immunohistochemistry. Based on the differences in cell organization, morphology, and staining properties, the neurohypophysis and three regions in the adenohypophysis were identified: the rostral and proximal pars distalis (PPD) and the pars intermedia. This last region was found to be innervated by the neurohypophysis. This organization, together with the presence of a saccus vasculosus, resembles the general teleost pituitary organization. A vast number of blood vessels were also recognized between the infundibulum floor of the hypothalamus and the PPD, evidencing the characteristic presence of a median eminence and a portal system. However, this well-developed pituitary portal system resembles that of tetrapods. As regards the immunohistochemical localization of GnIH, we found four GnIH-immunoreactive (GnIH-ir) populations in three hypothalamic nuclei (suprachiasmatic, retrotuberal, and tuberal nuclei) and one in the diencephalon (prethalamic nucleus), as well as a few scattered neurons throughout the olfactory bulbs, the telencephalon, and the intersection between them. GnIH-ir fibers showed a widespread distribution over almost all brain regions, suggesting that GnIH function is not restricted to reproduction only. In conclusion, the present study describes, for the first time, the pituitary of A. tropicus and the neuroanatomical localization of GnIH in a holostean fish that exhibits a similar distribution pattern to that of teleosts and other vertebrates, suggesting a high degree of phylogenetic conservation of this system.
Collapse
Affiliation(s)
- Agustina C Beriotto
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) - CONICET. Buenos Aires, Argentina
| | - María P Di Yorio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) - CONICET. Buenos Aires, Argentina
| | - Daniela I Pérez Sirkin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) - CONICET. Buenos Aires, Argentina
| | - Francisco J Toledo-Solis
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco. Villahermosa, Mexico
| | - Emyr S Peña-Marín
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco. Villahermosa, Mexico
| | - Carlos A Álvarez-González
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco. Villahermosa, Mexico
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University. Tokyo, Japan
| | - Paula G Vissio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) - CONICET. Buenos Aires, Argentina.
| |
Collapse
|
36
|
Tsutsui K, Ubuka T. Discovery of gonadotropin-inhibitory hormone (GnIH), progress in GnIH research on reproductive physiology and behavior and perspective of GnIH research on neuroendocrine regulation of reproduction. Mol Cell Endocrinol 2020; 514:110914. [PMID: 32535039 DOI: 10.1016/j.mce.2020.110914] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023]
Abstract
Based on extensive studies on gonadotropin-releasing hormone (GnRH) it was assumed that GnRH is the only hypothalamic neurohormone regulating gonadotropin release in vertebrates. In 2000, however, Tsutsui's group discovered gonadotropin-inhibitory hormone (GnIH), a novel hypothalamic neuropeptide that inhibits gonadotropin release, in quail. Subsequent studies by Tsutsui's group demonstrated that GnIH is conserved among vertebrates, acting as a new key neurohormone regulating reproduction. GnIH inhibits gonadotropin synthesis and release through actions on gonadotropes and GnRH neurons via GnIH receptor, GPR147. Thus, GnRH is not the sole hypothalamic neurohormone controlling vertebrate reproduction. The following studies by Tsutsui's group have further demonstrated that GnIH has several important functions in addition to the control of reproduction. Accordingly, GnIH has drastically changed our understanding about reproductive neuroendocrinology. This review summarizes the discovery of GnIH, progress in GnIH research on reproductive physiology and behavior and perspective of GnIH research on neuroendocrine regulation of reproduction.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, 162-8480, Japan.
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, 162-8480, Japan
| |
Collapse
|
37
|
Rahdar P, Khazali H. Rfamide-related peptide-3 suppresses the substance P-induced promotion of the reproductive performance in female rats modulating hypothalamic Kisspeptin expression. Exp Brain Res 2020; 238:2457-2467. [PMID: 32783107 DOI: 10.1007/s00221-020-05860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/22/2020] [Indexed: 11/28/2022]
Abstract
RFamide-related peptide-3 (RFRP-3) has been postulated as the suppressor of the reproductive axis at hypothalamic, pituitary and gonadal levels. Considering the hypothalamic level, RFRP-3 can suppress the activity of gonadotropin-releasing hormone (GnRH) neurons and their upstream neuronal stimulator, namely; the kisspeptin neurons. The effects of the RFRP-3 on the other regulators of GnRH neurons, however, are not completely investigated. Furthermore, substance P (SP) has been known as one of the coordinators of GnRH/ luteinizing hormone (LH) and the kisspeptin/G protein-coupled receptor 54 (GPR54) systems. The present study was aimed at investigating the impacts of RFRP-3 on the effects of SP on the reproductive performance in ovariectomized female rats. After intracerebroventricular (ICV) cannulation, the rats were subjected to the ICV injection of either SP or RFRP-3 and simultaneous injection of them and their selective antagonists. Blood and hypothalamic samplings and also sexual behavioral test were carried out on two main groups of rats. The analyses of the results of LH radioimmunoassay, gene expression assay for hypothalamic Gnrh1, Kisspeptin and Gpr54 accompanied by sexual behavioral examination revealed that the SP administration promotes reproductive behavior and GnRH/LH system and upregulates Kisspeptin expression. The RFRP-3 administration suppressed reproductive behavior, GnRH / LH system and Kisspeptin expression; however, the simultaneous injection of SP and RFRP-3 was devoid of significant alterations in the assessed parameters. The results showed that RFRP-3 can modulates the impacts of SP on the reproductive performance in ovariectomized female rats in part through adjusting Kisspeptin expression.
Collapse
Affiliation(s)
- Parastoo Rahdar
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Homayoun Khazali
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
38
|
England A, Ruhnke I. The influence of light of different wavelengths on laying hen production and egg quality. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1789023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ashley England
- Animal Science, School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, Australia
| | - Isabelle Ruhnke
- Animal Science, School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, Australia
| |
Collapse
|
39
|
Disruption of energy homeostasis by food restriction or high ambient temperature exposure affects gonadal function in male house finches (Haemorhous mexicanus). J Comp Physiol B 2020; 190:611-628. [PMID: 32712710 DOI: 10.1007/s00360-020-01295-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/18/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Abstract
Reproductive success requires that individuals acquire sufficient energy resources. Restricting food availability or increasing energy expenditure (e.g., thermoregulation) inhibits reproductive development in multiple avian species, but the nature of the energy-related signal mediating this effect is unclear. To investigate this question, we examined reproductive and metabolic physiology in male house finches that either underwent moderate food restriction (FR) or were exposed to high temperature (HT), in which birds were held at a high, but not locally atypical, ambient temperature cycle (37.8 °C day, 29.4 °C night) compared to a control group (CT; 29.4 °C day, 21.1 °C night). We hypothesized that FR and HT inhibit reproductive development by lowering available metabolic fuel, in particular plasma glucose (GLU) and free fatty acids (FFA). Following FR for 4 weeks, finches lost body mass, had marginally higher plasma FFA, and experienced a 90% reduction in testis mass compared to CT birds. Four weeks of HT exposure resulted in reduced voluntary food consumption and muscle mass, as well as an 80% reduction in testis mass relative to CT birds. Both FR and HT birds expressed less testicular 17β-hydroxysteroid dehydrogenase (17β-HSD) mRNA than controls but the expression of other testicular genes measured was unaffected by either treatment. Neither treatment significantly influenced plasma GLU. This study is among the first to demonstrate a negative effect of HT on reproductive development in a wild bird. Further studies are needed to clarify the role of metabolic mediators and their involvement under various conditions of energy availability and demand.
Collapse
|
40
|
Chen J, Huang S, Zhang J, Li J, Wang Y. Characterization of the neuropeptide FF (NPFF) gene in chickens: evidence for a single bioactive NPAF peptide encoded by the NPFF gene in birds. Domest Anim Endocrinol 2020; 72:106435. [PMID: 32247990 DOI: 10.1016/j.domaniend.2020.106435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/09/2019] [Accepted: 01/03/2020] [Indexed: 01/06/2023]
Abstract
The 2 structurally related peptides, neuropeptide FF (NPFF) and neuropeptide AF (NPAF), are encoded by the NPFF gene and have been identified as neuromodulators that regulate nociception and opiate-mediated analgesia via NPFF receptor (NPFFR2) in mammals. However, little is known about these 2 peptides in birds. In this study, we examined the structure, tissue expression profile, and functionality of NPAF and NPFF in chickens. Our results showed that: 1) unlike mammalian NPFF, NPFF from chicken and other avian species is predicted to produce a single bioactive NPAF peptide, whereas the putative avian NPFF peptide likely lacks activity due to the absence of functional RFamide motif at its C-terminus; 2) synthetic chicken (c-) NPAF can potently activate cNPFFR2 (and not cNPFFR1) expressed in HEK293 cells, as monitored by 3 cell-based luciferase reporter systems, indicating that cNPAF is a potent ligand for cNPFFR2, which activation could decrease intracellular cAMP levels and stimulate the MAPK/ERK signaling cascade; interestingly, gonadotropin-inhibitory hormone, a peptide sharing high structural similarity to NPAF, could specifically activate cNPFFR1 (but not cNPFFR2); 3) Quantitative real-time PCR revealed that cNPFF mRNA is widely expressed in chicken tissues with the highest level detected in the hypothalamus, whereas cNPFFR2 is expressed in all tissues examined with the highest level noted in the hypothalamus and anterior pituitary. Taken together, our data reveal that avian NPFF encodes a single bioactive NPAF peptide, which preferentially activates NPFFR2, and provides insights into potential structural and functional changes of NPFF-derived peptides during vertebrate evolution.
Collapse
Affiliation(s)
- J Chen
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - S Huang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - J Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - J Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Y Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
41
|
Ozkaya M, Oztekin U, Caniklioglu M, Ekmekcioglu O. Re-determination of upper reference range of follicular stimulating hormone in infertile men. Syst Biol Reprod Med 2020; 66:329-336. [PMID: 32441570 DOI: 10.1080/19396368.2020.1758834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
FSH in infertile patients may be measured in the normal range and abnormal semen analysis findings may be observed in patients with normal FSH values. A recent study predicts that the sperm morphology and concentration may be impaired if the FSH value is above 4.5 IU/L. Therefore, this study aimed to define a clinically more useful upper limit for FSH as an indicator for male infertility. In this study 1,893 infertile male patients were evaluated retrospectively. Physical examination, hormone analysis (total testosterone (TT), FSH, luteinizing hormone (LH), estradiol (E2), sex hormone binding globulin (SHBG) and prolactin (PRL)), semen analyzes were recorded and analyzed retrospectively. Logistic regression analysis, 95% confidence intervals and probability ratios were calculated to show the relationship between categorical hormone levels (quarters) and semen parameters. Hormone levels were categorized using the distribution quarters in the study population. FSH values of 62% of the cases with sperm concentration <15 million/ml were greater than 4.8 IU/L. 59.7% of patients with sperm count <39 million had FSH values greater than 4.8 IU/L. In conclusion, FSH values above 4.8 IU/L were found to be abnormal when the male factor was investigated for infertility. ABBREVIATIONS FSH: Follicular Stimulating Hormone; GnRH: Gonadotropin-releasing Hormone; HPGA: Hypothalamic-Pituitary-Gonadal Axis; TT: Total Testosterone; LH: Luteinizing Hormone; E2: Estradiol; SHBG: Sex Hormone Binding Globulin; PRL: Prolactin; WHO: World Health Organization; AUC: Area Under the Curve.
Collapse
Affiliation(s)
| | - Unal Oztekin
- Department of Urology, Research and Application Hospital, Yozgat Bozok University , Yozgat, Turkey
| | - Mehmet Caniklioglu
- Department of Urology, Research and Application Hospital, Yozgat Bozok University , Yozgat, Turkey
| | | |
Collapse
|
42
|
Chung-Davidson YW, Bussy U, Fissette SD, Huerta B, Li W. Waterborne pheromones modulate gonadotropin-inhibitory hormone levels in sea lamprey (Petromyzon marinus). Gen Comp Endocrinol 2020; 288:113358. [PMID: 31837303 DOI: 10.1016/j.ygcen.2019.113358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 12/31/2022]
Abstract
The relationships between pheromone stimuli and neuropeptides are not well established in vertebrates due to the limited number of unequivocally identified pheromone molecules. The sea lamprey (Petromyzon marinus) is an advantageous vertebrate model to study the effects of pheromone exposure on neuropeptides since many pheromone molecules and neuropeptides have been identified in this species. Sexually mature male sea lamprey release pheromones 7α, 12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3 keto-petromyzonol sulfate, 3kPZS) and 7α, 12α-dihydroxy-5α-cholan-3-one-24-oic acid (3-keto allocholic acid, 3kACA) that differentially regulate gonadotropin-releasing hormone (lGnRH) and steroid levels in sexually immature sea lamprey. However, the effects of these pheromones on gonadotropin-inhibitory hormones (GnIHs), hypothalamic neuropeptides that regulate lGnRH release, are still elusive. In this report, we sought to examine the effects of waterborne pheromones on lamprey GnIH-related neuropeptide levels in sexually immature sea lamprey. Ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) analyses revealed sex differences in GnIH-related neuropeptide levels in the brain and plasma of immature sea lamprey. Exposure to 3kPZS and 3kACA exerted differential effects on GnIH-related neuropeptide levels in both sexes, but the effects were more prominent in female brains. We conclude that sea lamprey pheromones regulate GnIH-related neuropeptide levels in a sexually dimorphic manner.
Collapse
Affiliation(s)
- Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA.
| | - Ugo Bussy
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA
| | - Skye Daniel Fissette
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA.
| | - Belinda Huerta
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA.
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA.
| |
Collapse
|
43
|
Hadinia SH, Carneiro PRO, Fitzsimmons CJ, Bédécarrats GY, Zuidhof MJ. Post-photostimulation energy intake accelerated pubertal development in broiler breeder pullets. Poult Sci 2020; 99:2215-2229. [PMID: 32241507 PMCID: PMC7587636 DOI: 10.1016/j.psj.2019.11.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 01/24/2023] Open
Abstract
The effect of ME intake (MEI) on the reproductive system was evaluated. Ross 308 broiler breeder pullets (n = 140) were assigned to 2 treatments from 22 to 26 wk of age: (1) Low-energy diet fed restricted (2,807 kcal/kg, low MEI) and (2) high-energy diet fed unrestricted (3,109 kcal/kg, high MEI). Daylength was increased from 8 to 14 h at 22 wk of age with a light intensity of 30 lux. Daily palpation was used to detect sexual maturity via the presence of a hard-shelled egg in the shell gland. Expression of gonadotropin releasing hormone-I (GnRH) and gonadotropin inhibitory hormone (GnIH) genes in the hypothalamus and GnRH receptor (GnRH-RI) and GnIH receptor (GnIH-R) genes in the anterior pituitary gland of each pullet was evaluated from 22 to 26 wk of age using quantitative real time-PCR. Blood samples were taken weekly and luteinizing hormone (LH), follicle stimulating-hormone (FSH), and 17-beta-estradiol (E2) determined using commercial ELISA kits. Carcass samples were used for determination of CP and fat content. Data were analyzed using the MIXED procedure in SAS, and differences were reported where P ≤ 0.05. High MEI treatment pullets had 2.3-fold higher GnRH and 1.8-fold higher GnRH-RI mRNA levels than low MEI pullets. MEI affected neither expression of GnIH and GnIH-R nor carcass protein content. For high MEI (489 kcal/D) and low MEI treatments (258 kcal/D), respectively, from 22 to 26 wk of age (P ≤ 0.05), LH concentration was 3.05 and 1.60 ng/mL; FSH concentration was 145 and 89.3 pg/mL; E2 concentration was 429 and 266 pg/mL, and carcass lipid was 13.9 and 10.3%. The onset of lay for pullets in the high MEI treatment advanced such that 100% had laid by 26 wk of age compared with 30% in the low MEI treatment. We concluded that higher MEI advanced the activation of the hypothalamic–pituitary–gonadal axis and also increased body lipid deposition, and moreover, stimulated reproductive hormone levels which overall accelerated puberty in broiler breeder pullets.
Collapse
Affiliation(s)
- S H Hadinia
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB, Canada, T6G 2P5
| | - P R O Carneiro
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB, Canada, T6G 2P5
| | - C J Fitzsimmons
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB, Canada, T6G 2P5; Agriculture and Agri-Food Canada, Edmonton, AB, Canada
| | - G Y Bédécarrats
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - M J Zuidhof
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB, Canada, T6G 2P5.
| |
Collapse
|
44
|
Fernandes JRD, Moitra A, Tsutsui K, Banerjee A. Regulation of the hypothalamic GnRH-GnIH system by putrescine in adult female rats and GT1-7 neuronal cell line. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:214-229. [PMID: 32039555 DOI: 10.1002/jez.2351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
The gonadotropin-releasing hormone-gonadotropin inhibitor (GnRH-GnIH) system in the hypothalamus of mammals is the key factor that controls the entire reproductive system. The aim of this study was to immunolocalize GnIH (RFRP-3) in the hypothalamus during the estrous cycle and to study the effect of putrescine on the expression of GnRH-I and GnIH through both in vivo and in vitro (GT1-7 cells) approach and the circulatory levels of GnRH-I, GnIH, and gonadotropins were also investigated. The study also aims in analyzing all the immunofluorescence images by measuring the relative pixel count of an image. This study showed the effect of putrescine on the morphology of ovary, uterus, and the expression of the steroidogenic acute regulatory protein in the ovary. This study showed GnIH expression was intense during the diestrus and moderate during proestrus and estrus, whereas mild staining during the metestrus. The study further showed that putrescine supplementation to adult female rats increased both GnRH-I expression in the hypothalamus as well as the GnRH-I levels in circulation. The study, for the first time, also showed that putrescine supplementation decreased the expression and release of GnIH. These effects of upregulating GnRH-I expression and downregulating GnIH expression were confirmed by in vitro experiments using GT1-7 cells. Putrescine supplementation also increased the gonadotropin levels in the serum. To summarize, putrescine can regulate the hypothalamic-pituitary-gonadal axis by increasing the GnRH-I, luteinizing hormone, and follicle-stimulating hormone levels and suppressing GnIH levels. This is the first report showing the simultaneous effects of putrescine on the regulation of both GnRH-I and GnIH in the hypothalamus.
Collapse
Affiliation(s)
- Joseph R D Fernandes
- Department of Biological Sciences, KK Birla Goa Campus, BITS Pilani, Zuarinagar, Goa, India
| | - Abhishek Moitra
- Department of Electrical and Electronics Engineering, KK Birla Goa Campus, BITS Pilani, Zuarinagar, Goa, India
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Center for Medical Life Science of Waseda University, Waseda University, Tokyo, Japan
| | - Arnab Banerjee
- Department of Biological Sciences, KK Birla Goa Campus, BITS Pilani, Zuarinagar, Goa, India
| |
Collapse
|
45
|
van der Klein SA, Zuidhof MJ, Bédécarrats GY. Diurnal and seasonal dynamics affecting egg production in meat chickens: A review of mechanisms associated with reproductive dysregulation. Anim Reprod Sci 2020; 213:106257. [DOI: 10.1016/j.anireprosci.2019.106257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/30/2019] [Accepted: 12/13/2019] [Indexed: 01/16/2023]
|
46
|
Ma Y, Ladisa C, Chang JP, Habibi HR. Multifactorial control of reproductive and growth axis in male goldfish: Influences of GnRH, GnIH and thyroid hormone. Mol Cell Endocrinol 2020; 500:110629. [PMID: 31678419 DOI: 10.1016/j.mce.2019.110629] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/24/2023]
Abstract
Reproduction and growth are under multifactorial control of neurohormones and peripheral hormones. This study investigated seasonally related effects of GnIH, GnRH, and T3 on the reproductive and growth axis in male goldfish at three stages of gonadal recrudescence. The effects of injection treatments with GnRH, GnIH and/or T3 were examined by measuring serum LH and GH levels, as well as peripheral transcript levels, using a factorial design. As expected, GnRH elevated serum LH and GH levels in a seasonally dependant manner, with maximal elevations of LH in late stages of gonadal recrudescence (Spring) and maximal increases in GH in the regressed gonadal stage (Summer). GnIH injection increased serum LH and GH levels only in fish at the regressed stage but exerted both stimulatory and inhibitory effects on GnRH-induced LH responses depending on season. T3 treatment mainly had stimulatory effects on circulating LH levels and inhibitory effects on serum GH concentrations. In the liver and testes, we observed seasonal differences in thyroid receptors, estrogen receptors, vitellogenin, follicle-stimulating hormone receptor, aromatase and IGF-I transcript levels that were tissue- and sex-specific. Generally, there were no clear correlation between circulating LH and GH levels and peripheral transcript levels, presumably due to time-related response and possible direct interaction of GnRH and GnIH at the level of liver and testis. The results support the hypothesis that GnRH and GnIH are important components of multifactorial mechanisms that work in concert with T3 to regulate reciprocal control of reproduction and growth in goldfish.
Collapse
Affiliation(s)
- Y Ma
- Department of Biological Sciences University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - C Ladisa
- Department of Biological Sciences University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - J P Chang
- Department of Biological Sciences University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4; Department of Biological Sciences University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - H R Habibi
- Department of Biological Sciences University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4.
| |
Collapse
|
47
|
Luo M, Huang JC, Yang ZQ, Wang YS, Guo B, Yue ZP. Hydroxysafflor yellow A exerts beneficial effects by restoring hormone secretion and alleviating oxidative stress in polycystic ovary syndrome mice. Exp Physiol 2020; 105:282-292. [PMID: 31803965 DOI: 10.1113/ep088147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the potential therapeutic roles of ginsenoside Rb1 and hydroxysafflor yellow A (HSYA) in polycystic ovary syndrome (PCOS). What is the main finding and its importance? HSYA restored the oestrous cycles of PCOS mice, reduced follicular cysts in ovaries and rescued abnormal hormone secretion; ginsenoside Rb1 did not ameliorate the main symptoms of PCOS mice. HSYA alleviated oxidative stress along with an enhancement of antioxidant enzyme activity. This highlights a potential role of HSYA in PCOS therapy. ABSTRACT Polycystic ovary syndrome (PCOS) is the most common endocrine disease resulting in female infertility. Hydroxysafflor yellow A (HSYA) and ginsenoside Rb1 have been shown to have antioxidant properties, but little is known about their impact in PCOS. Here dehydroepiandrosterone was used to induce PCOS in a mouse model that was characterized by an irregular oestrous cycle, cystic follicles and an elevated serum testosterone level. Supplementation of HSYA restored the oestrous cycle of PCOS mice, reduced follicular cysts in PCOS mouse ovaries and brought about a decline in serum testosterone level, while ginsenoside Rb1 did not ameliorate the above symptoms of PCOS mice. After HSYA treatment, there was elevation of serum oestradiol, progesterone, luteinizing hormone and anti-Müllerian hormone levels and a reduction of follicle-stimulating hormone level, but ginsenoside Rb1 only rescued the levels of follicle-stimulating hormone and anti-Müllerian hormone. Further analysis evidenced that HSYA reversed the expression of steroid hormone secretion-related genes Star, Hsd3b1, Cyp11a1 and Cyp19a1. In PCOS mice HSYA weakened the elevation of ovarian malondialdehyde, which is regarded as a biomarker for oxidative stress. Moreover, HSYA improved reduced glutathione content accompanied by a simultaneous increase in reduced to oxidized glutathione ratio, and enhanced the activities of the antioxidant enzymes superoxide dismutase, glutathione peroxidase and catalase. Collectively, HSYA exerted beneficial effects on PCOS mice by restoring hormone secretion and alleviating oxidative stress.
Collapse
Affiliation(s)
- Man Luo
- College of Veterinary Medicine, Jilin University, Changchun, P. R. China
| | - Ji-Cheng Huang
- College of Veterinary Medicine, Jilin University, Changchun, P. R. China
| | - Zhan-Qing Yang
- College of Veterinary Medicine, Jilin University, Changchun, P. R. China
| | - Yu-Si Wang
- College of Veterinary Medicine, Jilin University, Changchun, P. R. China
| | - Bin Guo
- College of Veterinary Medicine, Jilin University, Changchun, P. R. China
| | - Zhan-Peng Yue
- College of Veterinary Medicine, Jilin University, Changchun, P. R. China
| |
Collapse
|
48
|
Pinelli C, Jadhao AG, Bhoyar RC, Tsutsui K, D’Aniello B. Distribution of gonadotropin-inhibitory hormone (GnIH)-like immunoreactivity in the brain and pituitary of the frog (Pelophylax esculentus) during development. Cell Tissue Res 2019; 380:115-127. [DOI: 10.1007/s00441-019-03139-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022]
|
49
|
Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2019; 100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.
Collapse
Affiliation(s)
- Sylvie Dufour
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Bruno Quérat
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Catherine Pasqualini
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hubert Vaudry
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| |
Collapse
|
50
|
Zhang H, Chen L, Zhang B, Lin Q. Molecular identification of GnIH and its potential role in reproductive physiology and male pregnancy of the lined seahorse (Hippocampus erectus). Gen Comp Endocrinol 2019; 279:196-202. [PMID: 31002825 DOI: 10.1016/j.ygcen.2019.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 01/29/2023]
Abstract
The gonadotropin-inhibitory hormone (GnIH) plays a negative role in the hypothalamic-pituitary-gonadal (HPG) axis by inhibiting gonadotropin secretion in vertebrates. Male pregnancy and ovoviviparous behavior are unique phenomena among vertebrates. To better understand the neuroendocrine regulatory mechanisms in ovoviviparous fish with male pregnancy, we identified the orthologous GnIH gene in the lined seahorse (Hippocampus erectus). The full-length cDNA of the GnIH precursor was 658 base pairs with an open reading frame of 528 base pairs that encoded a 175-amino acid prepro-GnIH peptide. The seahorse GnIH precursor contained two putative LPXRFamide peptides. Both seahorse LPXRFa-1 and LPXRFa-2 were found to be unique among vertebrates. The synteny blocks of GnIH gene loci were conserved in mammals and teleosts. Tissue distribution analysis revealed that seahorse GnIH mRNA was mainly expressed in the hypothalamus, with relatively high levels observed in the brood pouch. The expression patterns of seahorse GnIH during different reproductive stages and pregnancy stages were also detected, and GnIH mRNA expression was significantly reduced during the early puberty stage. In addition, GnIH mRNA expression was significantly increased during the pregnancy stage compared to non-pregnancy stages. In summary, our results reveal the existence of GnIH in ovoviviparous fish and suggest its involvement in regulation of reproductive behavior and male pregnancy in the male seahorse.
Collapse
Affiliation(s)
- Huixian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Institute of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Lingzhen Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Institute of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bo Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Institute of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Institute of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|