1
|
Zeicu C, Legouhy A, Scott CA, Oliveira JFA, Winston G, Duncan JS, Vos SB, Thom M, Lhatoo S, Zhang H, Harper RM, Diehl B. Altered Amygdala Volumes and Microstructure in Focal Epilepsy Patients with Tonic-Clonic Seizures, Ictal and Post-Ictal Central Apnea. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.16.23287369. [PMID: 36993530 PMCID: PMC10055587 DOI: 10.1101/2023.03.16.23287369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Objectives Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death for patients with epilepsy; however, the pathophysiology remains unclear. Focal-to-bilateral tonic-clonic seizures (FBTCS) are a major risk factor, and centrally-mediated respiratory depression may increase the risk further. Here, we determined volume and microstructure of the amygdala, a key structure that can trigger apnea in people with focal epilepsy, stratified by presence or absence of FBTCS, ictal central apnea (ICA) and post-ictal central apnea (PICA). Methods 73 patients with only-focal seizures and 30 with FBTCS recorded during video EEG (VEEG) with respiratory monitoring were recruited prospectively during presurgical investigations. We acquired high-resolution T1-weighted anatomical and multi-shell diffusion images, and computed neurite orientation dispersion and density imaging (NODDI) metrics in all epilepsy patients and 69 healthy controls. Amygdala volumetric and microstructure alterations were compared between healthy subjects, and patients with only-focal seizures or FBTCS The FBTCS group was further subdivided by presence of ICA and PICA, verified by VEEG. Results Bilateral amygdala volumes were significantly increased in the FBTCS cohort compared to healthy controls and the focal cohort. Patients with recorded PICA had the highest increase in bilateral amygdala volume of the FBTCS cohort.Amygdala neurite density index (NDI) values were significantly decreased in both the focal and FBTCS groups relative to healthy controls, with values in the FBTCS group being the lowest of the two. The presence of PICA was associated with significantly lower NDI values vs the non-apnea FBTCS group (p=0.004). Significance Individuals with FBTCS and PICA show significantly increased amygdala volumes and disrupted architecture bilaterally, with greater changes on the left side. The structural alterations reflected by NODDI and volume differences may be associated with inappropriate cardiorespiratory patterns mediated by the amygdala, particularly after FBTCS. Determination of amygdala volumetric and architectural changes may assist identification of individuals at risk.
Collapse
Affiliation(s)
- Claudia Zeicu
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Antoine Legouhy
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - Catherine A. Scott
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Clinical Neurophysiology, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Joana F. A. Oliveira
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Clinical Neurophysiology, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Gavin Winston
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom
- Division of Neurology, Department of Medicine, Queen’s University, Kingston, Ontario, Canada
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sjoerd B. Vos
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Samden Lhatoo
- Department of Neurology, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Hui Zhang
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - Ronald M. Harper
- Brain Research Institute, University of California at Los Angeles, California, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, California, USA
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Clinical Neurophysiology, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
2
|
Aglawe MM, Kale MB, Rahangdale SR, Kotagale NR, Umekar MJ, Taksande BG. Agmatine improves the behavioral and cognitive impairments associated with chronic gestational ethanol exposure in rats. Brain Res Bull 2020; 167:37-47. [PMID: 33242522 DOI: 10.1016/j.brainresbull.2020.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/28/2020] [Accepted: 11/19/2020] [Indexed: 12/30/2022]
Abstract
Chronic maternal ethanol exposure leads to poor intelligence, impaired cognition and array of neurological symptoms in offsprings and commonly referred as fetal alcohol spectrum disorder (FASD). Despite high prevalence and severity, the neurochemical basis of FASD remains largely unexplored. The present study evaluated the pharmacological effects of agmatine in cognitive deficits associated with FAS in rat's offsprings prenatally exposed to alcohol. Pregnant rats received ethanol in liquid modified diet during the entire gestational period of 21 days. Offsprings were treated with agmatine (20-80 mg/Kg, i.p.) during early postnatal days (PND: 21-35) and subsequently evaluated for anxiety in elevated plus maze (EPM), depression in forced swim test (FST) and learning and memory in Morris's water maze (MWM) during post adolescent phase. Hippocampal agmatine, BDNF, TNF-α and IL-6 levels were also analyzed in prenatally ethanol exposed pups. Offsprings prenatally exposed to ethanol demonstrated delayed righting reflex, reduced exploratory behavior along with anxiety, depression-like behavior and impaired memory. These behavioral abnormalities were correlated with a significant reduction in hippocampal agmatine and BDNF levels and elevation in TNF-α and IL-6 immunocontent. Chronic agmatine (40 and 80 mg/Kg, i.p.) administration for 15 days (PND: 21-35), improved entries and time spent in open arm of EPM, decreased immobility time in FST. It also reduced latency to reach the platform location; increased the number of entries, time spent in platform quadrant and also number of crossing over platform quadrant when subjected to MWM test in prenatally ethanol exposed offsprings. This study provides functional evidences for the therapeutic potential of agmatine in cognitive impairment and other neurological complications associated with FASD.
Collapse
Affiliation(s)
- Manish M Aglawe
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra, 441 002, India
| | - Mayur B Kale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra, 441 002, India
| | - Sandip R Rahangdale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra, 441 002, India
| | | | - Milind J Umekar
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra, 441 002, India
| | - Brijesh G Taksande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra, 441 002, India.
| |
Collapse
|
3
|
Dixit MP, Rahmatkar SN, Raut P, Umekar MJ, Taksande BG, Kotagale NR. Evidences for agmatine alterations in Aβ 1-42induced memory impairment in mice. Neurosci Lett 2020; 740:135447. [PMID: 33127446 DOI: 10.1016/j.neulet.2020.135447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/14/2020] [Accepted: 10/08/2020] [Indexed: 02/02/2023]
Abstract
Alzheimer's disease is an age related progressive neurodegenerative disorder characterized by decline in cognitive functions, such as memory loss and behavioural abnormalities. The present study sought to assess alterations in agmatine metabolism in the beta-amyloid (Aβ1-42) Alzheimer's disease mouse model. Aβ1-42 injected mice showed impairment of cognitive functioning as evidenced by increased working and reference memory errors in radial arm maze (RAM). This cognitive impairment was associated with a reduction in the agmatine levels and elevation in its degrading enzyme, agmatinase, whereas reduced immunocontent was observed in its synthesizing enzyme arginine decarboxylase expression within hippocampus and prefrontal cortex. Chronic agmatine treatment and its endogenous modulation by l-arginine, or arcaine or aminoguanidine prevented the learning and memory impairment induced by single intracranial Aβ1-42 peptide injection. In conclusion, the present study suggests the importance of the endogenous agmatinergic system in β-amyloid induced memory impairment in mice.
Collapse
Affiliation(s)
- Madhura P Dixit
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.), 441 002, India
| | - Shubham N Rahmatkar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.), 441 002, India
| | - Prachi Raut
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.), 441 002, India
| | - Milind J Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.), 441 002, India
| | - Brijesh G Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.), 441 002, India
| | - Nandkishor R Kotagale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.), 441 002, India; Government College of Pharmacy, Amravati, Maharashtra, 444 604, India.
| |
Collapse
|
4
|
Baytunca BM, Kalyoncu T, Özbaran B, Köse S, Öngür D, Uzbay T. Reduced blood agmatine level in early-onset schizophrenia. Schizophr Res 2020; 222:528-529. [PMID: 32446703 DOI: 10.1016/j.schres.2020.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Burak M Baytunca
- University of Utah, Department of Psychiatry, Salt Lake City, UT, USA.
| | - Tuğba Kalyoncu
- Ege University, School of Medicine, Department of Child and Adolescent Psychiatry, İzmir, Turkey
| | - Burcu Özbaran
- Ege University, School of Medicine, Department of Child and Adolescent Psychiatry, İzmir, Turkey
| | - Sezen Köse
- Ege University, School of Medicine, Department of Child and Adolescent Psychiatry, İzmir, Turkey
| | - Dost Öngür
- Division of Psychotic Disorders, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| | - Tayfun Uzbay
- Neuropsychopharmacology Application and Research Center (NPARC), Üsküdar University, İstanbul, Turkey
| |
Collapse
|
5
|
Wang W, Snooks HD, Sang S. The Chemistry and Health Benefits of Dietary Phenolamides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6248-6267. [PMID: 32422049 DOI: 10.1021/acs.jafc.0c02605] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phenolamides, also known as hydroxycinnamic acid amides or phenylamides, have been reported throughout the plant kingdom, while a few of these amine-conjugated hydroxycinnamic acids are unique in foods. The current knowledge of their specific functions in plant development and defense is readily available as is their biosynthesis; however, their functionality in humans is still largely unknown. Of the currently known phenolamides, the most common are avenanthramides, which are unique in oats and similar to the well-known drug Tranilast, which possess anti-inflammatory, antioxidant, anti-itch, and antiatherogenic activities. While recent data have brought to light more information regarding the other known phenolamides, such as hordatines, dimers of agmatine conjugated to hydroxycinnamic acid, and kukoamines, spermine-derived phenolamides, the information is still severely limited, leaving their potential health benefits to speculation. Herein, to highlight the importance of dietary phenolamides to human health, we review and summarize the four major subgroups of phenolamides, including their chemical structures, dietary sources, and reported health benefits. We believe that the studies on phenolamides are still in the infancy stage and additional health benefits of these phenolamides may yet be identified.
Collapse
Affiliation(s)
- Weixin Wang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Hunter D Snooks
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
6
|
Patočka J, Kuehn GD. Natural Polyamines and Their Biological Consequence in Mammals. ACTA MEDICA (HRADEC KRÁLOVÉ) 2019. [DOI: 10.14712/18059694.2019.124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The polyamines (putrescine, cadaverine, agmatine, spermidine and spermine), wide-spread in all organisms, have been shown to play a role in regulation of growth and differentiation of virtually all types of cells. Their role in many physiological and pathophysiological processes have been studied very intensively during the last two decades. Inhibitors of polyamine biosynthesis have potential clinical uses as antitumor and antiparasitic agents. The brief summary with regard to their biological consequences in mammals is discussed in this paper.
Collapse
|
7
|
11th International Congress on Psychopharmacology & 7th International Symposium on Child and Adolescent Psychopharmacology. PSYCHIAT CLIN PSYCH 2019. [DOI: 10.1080/24750573.2019.1608692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
8
|
Taksande BG, Khade SD, Aglawe MM, Gujar S, Chopde CT, Kotagale NR. Agmatine Inhibits Behavioral Sensitization to Ethanol Through Imidazoline Receptors. Alcohol Clin Exp Res 2019; 43:747-757. [DOI: 10.1111/acer.13972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Brijesh G. Taksande
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
| | - Supriya D. Khade
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
| | - Manish M. Aglawe
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
| | - Shreyans Gujar
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
| | - Chandrabhan T. Chopde
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
| | - Nandkishor R. Kotagale
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
- Government Colleges of Pharmacy Amravati India
| |
Collapse
|
9
|
Aksenov AV, Aksenov NA, Arutiunov NA, Malyuga VV, Ovcharov SN, Rubin M. Electrophilically activated nitroalkanes in reaction with aliphatic diamines en route to imidazolines. RSC Adv 2019; 9:39458-39465. [PMID: 35540681 PMCID: PMC9076073 DOI: 10.1039/c9ra08630g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/25/2019] [Indexed: 01/15/2023] Open
Abstract
A novel synthetic methodology for the assembly of imidazolines via an unusual reaction between nitroalkanes and aliphatic 1,2-diamines in the presence of phosphorous acid is described. In contrast to the related highly efficient preparation of benzimidazoles from aromatic amines, this process represents a major synthetic challenge and for a long time was elusive. Analysis of the method limitations is provided. Imidazolines were assembled via an unusual reaction between nitroalkanes and aliphatic 1,2-diamines in the presence of phosphorous acid.![]()
Collapse
Affiliation(s)
- Alexander V. Aksenov
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
| | - Nicolai A. Aksenov
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
| | - Nikolai A. Arutiunov
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
| | - Vladimir V. Malyuga
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
| | - Sergey N. Ovcharov
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
| | - Michael Rubin
- Department of Chemistry
- North Caucasus Federal University
- Stavropol 355009
- Russian Federation
- Department of Chemistry
| |
Collapse
|
10
|
Unal G, Ates A, Aricioglu F. Agmatine-attenuated cognitive and social deficits in subchronic MK-801 model of schizophrenia in rats. PSYCHIAT CLIN PSYCH 2018. [DOI: 10.1080/24750573.2018.1426696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Gokhan Unal
- Department of Pharmacology and Psychopharmacology Research Unit, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Alpay Ates
- Department of Psychiatry, GATA Haydarpaşa Training Hospital, Istanbul, Turkey
| | - Feyza Aricioglu
- Department of Pharmacology and Psychopharmacology Research Unit, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| |
Collapse
|
11
|
Neis VB, Rosa PB, Olescowicz G, Rodrigues ALS. Therapeutic potential of agmatine for CNS disorders. Neurochem Int 2017; 108:318-331. [DOI: 10.1016/j.neuint.2017.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/06/2017] [Accepted: 05/12/2017] [Indexed: 12/14/2022]
|
12
|
Agmatine: multifunctional arginine metabolite and magic bullet in clinical neuroscience? Biochem J 2017; 474:2619-2640. [DOI: 10.1042/bcj20170007] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 12/12/2022]
Abstract
Agmatine, the decarboxylation product of arginine, was largely neglected as an important player in mammalian metabolism until the mid-1990s, when it was re-discovered as an endogenous ligand of imidazoline and α2-adrenergic receptors. Since then, a wide variety of agmatine-mediated effects have been observed, and consequently agmatine has moved from a wallflower existence into the limelight of clinical neuroscience research. Despite this quantum jump in scientific interest, the understanding of the anabolism and catabolism of this amine is still vague. The purification and biochemical characterization of natural mammalian arginine decarboxylase and agmatinase still are open issues. Nevertheless, the agmatinergic system is currently one of the most promising candidates in order to pharmacologically interfere with some major diseases of the central nervous system, which are summarized in the present review. Particularly with respect to major depression, agmatine, its derivatives, and metabolizing enzymes show great promise for the development of an improved treatment of this common disease.
Collapse
|
13
|
Freitas AE, Neis VB, Rodrigues ALS. Agmatine, a potential novel therapeutic strategy for depression. Eur Neuropsychopharmacol 2016; 26:1885-1899. [PMID: 27836390 DOI: 10.1016/j.euroneuro.2016.10.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/12/2016] [Accepted: 10/29/2016] [Indexed: 12/19/2022]
Abstract
Major depressive disorder is the most common psychiatric disorder with lifetime prevalence of up to 20% worldwide. It is responsible for more years lost to disability than any other disorder. Despite the fact that current available antidepressant drugs are safe and effective, they are far from ideal. In addition to the need to administer the drugs for weeks or months to obtain clinical benefit, side effects are still a serious problem. Agmatine is an endogenous polyamine synthesized by the enzyme arginine decarboxylase. It modulates several receptors and is considered as a neuromodulator in the brain. In this review, studies demonstrating the antidepressant effects of agmatine are presented and discussed, as well as, the mechanisms of action related to these effects. Also, the potential beneficial effects of agmatine for the treatment of other neurological disorders are presented. In particular, we provide evidence to encourage future clinical studies investigating agmatine as a novel antidepressant drug.
Collapse
Affiliation(s)
- Andiara E Freitas
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil.
| | - Vivian B Neis
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
14
|
Ferreira RB, de Oliveira MG, Antunes E, Almeida WP, Ibrahim BM, Abdel-Rahman AA. New 2-Aminothiazoline derivatives lower blood pressure of spontaneously hypertensive rats (SHR) via I 1-imidazoline and alpha-2 adrenergic receptors activation. Eur J Pharmacol 2016; 791:803-810. [PMID: 27729248 DOI: 10.1016/j.ejphar.2016.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 01/20/2023]
Abstract
2-Aminothiazolines share an isosteric relationship with imidazolines and oxazolines with antihypertensive activity mainly mediated by the imidazoline I1-receptor. In the present work, we have prepared five aminothiazolines, following a previously described synthetic pathway. Aminothiazolines derived from dicyclopropylmethylamine (ATZ1) and cyclohexylamine (3) are unprecedented in the literature. Competitive radioligand assay was carried out with all synthetic compounds, and the I1 receptor affinity in comparison to rilmenidine in PC12 cells was determined. Surprisingly, the rilmenidine isoster (ATZ1) showed no I1-receptor interaction. Diethyl (ATZ4) and 2-ethyl-hexylamine (ATZ5) derivatives bind to the receptor with 11.98 and 10.94nmol/l, respectively. These compounds were selected for in vivo experiments. Both compounds reduced the blood pressure of spontaneously hypertensive rats (SHR). The hypotensive effect of these compounds was abrogated in the presence of α2 adrenergic (yohimbine) and I1 (efaroxan) receptor antagonists suggesting that both aminothiazolines bind to the adrenergic and imidazoline receptors. Lipinski's descriptors of the synthesized aminothiazolines were calculated and are similar to the known imidazoline I1 receptor ligands. 3D-Similarity between ATZ5 and agmatine, the natural imidazoline receptor ligand, was also observed.
Collapse
Affiliation(s)
- Renan B Ferreira
- Institute of Chemistry, University of Campinas, PO Box 6194, ZC 13083-970 Campinas, SP, Brazil
| | - Mariana G de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Wanda P Almeida
- Faculty of Pharmaceutical Sciences, University of Campinas, PO Box 6029, ZC 13083-859 Campinas, SP, Brazil.
| | - Badr M Ibrahim
- Department of Pharmacology and Toxicology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
15
|
Agmatine Reduces Lipopolysaccharide-Mediated Oxidant Response via Activating PI3K/Akt Pathway and Up-Regulating Nrf2 and HO-1 Expression in Macrophages. PLoS One 2016; 11:e0163634. [PMID: 27685463 PMCID: PMC5042521 DOI: 10.1371/journal.pone.0163634] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/12/2016] [Indexed: 01/11/2023] Open
Abstract
Macrophages are key responders of inflammation and are closely related with oxidative stress. Activated macrophages can enhance oxygen depletion, which causes an overproduction of reactive oxygen species (ROS) and leads to further excessive inflammatory response and tissue damage. Agmatine, an endogenous metabolite of L-arginine, has recently been shown to have neuroprotective effects based on its antioxidant properties. However, the antioxidant effects of agmatine in peripheral tissues and cells, especially macrophages, remain unclear. In this study we explored the role of agmatine in mediating antioxidant effects in RAW 264.7 cells and studied its antioxidant mechanism. Our data demonstrate that agmatine is an activator of Nrf2 signaling that markedly enhances Nrf2 nuclear translocation, increases nuclear Nrf2 protein level, up-regulates the expression of the Nrf2 downstream effector HO-1, and attenuates ROS generation induced by Lipopolysaccharide (LPS). We further demonstrated that the agmatine-induced activation of Nrf2 is likely through the PI3K/Akt pathway. LY294002, a specific PI3K/Akt inhibitor, abolished agmatine-induced HO-1 up-regulation and ROS suppression significantly. Inhibiting HO-1 pathway significantly attenuated the antioxidant effect of agmatine which the products of HO-1 enzymatic activity contributed to. Furthermore, the common membrane receptors of agmatine were evaluated, revealing that α2-adrenoceptor, I1-imidazoline receptor or I2-imidazoline receptor are not required by the antioxidant properties of agmatine. Taken together, our findings revealed that agmatine has antioxidant activity against LPS-induced ROS accumulation in RAW 264.7 cells involving HO-1 expression induced by Nrf2 via PI3K/Akt pathway activation.
Collapse
|
16
|
Jing Y, Liu P, Leitch B. Region-specific changes in presynaptic agmatine and glutamate levels in the aged rat brain. Neuroscience 2015; 312:10-8. [PMID: 26548412 DOI: 10.1016/j.neuroscience.2015.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/14/2015] [Accepted: 11/01/2015] [Indexed: 01/11/2023]
Abstract
During the normal aging process, the brain undergoes a range of biochemical and structural alterations, which may contribute to deterioration of sensory and cognitive functions. Age-related deficits are associated with altered efficacy of synaptic neurotransmission. Emerging evidence indicates that levels of agmatine, a putative neurotransmitter in the mammalian brain, are altered in a region-specific manner during the aging process. The gross tissue content of agmatine in the prefrontal cortex (PFC) of aged rat brains is decreased whereas levels in the temporal cortex (TE) are increased. However, it is not known whether these changes in gross tissue levels are also mirrored by changes in agmatine levels at synapses and thus could potentially contribute to altered synaptic function with age. In the present study, agmatine levels in presynaptic terminals in the PFC and TE regions (300 terminals/region) of young (3month; n=3) and aged (24month; n=3) brains of male Sprague-Dawley rats were compared using quantitative post-embedding immunogold electron-microscopy. Presynaptic levels of agmatine were significantly increased in the TE region (60%; p<0.001) of aged rats compared to young rats, however no significant differences were detected in synaptic levels in the PFC region. Double immunogold labeling indicated that agmatine and glutamate were co-localized in the same synaptic terminals, and quantitative analyses revealed significantly reduced glutamate levels in agmatine-immunopositive synaptic terminals in both regions in aged rats compared to young animals. This study, for the first time, demonstrates differential effects of aging on agmatine and glutamate in the presynaptic terminals of PFC and TE. Future research is required to understand the functional significance of these changes and the underlying mechanisms.
Collapse
Affiliation(s)
- Y Jing
- Department of Anatomy, Brain Health Research Centre, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - P Liu
- Department of Anatomy, Brain Health Research Centre, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - B Leitch
- Department of Anatomy, Brain Health Research Centre, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
17
|
Agmatine, by Improving Neuroplasticity Markers and Inducing Nrf2, Prevents Corticosterone-Induced Depressive-Like Behavior in Mice. Mol Neurobiol 2015; 53:3030-3045. [DOI: 10.1007/s12035-015-9182-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/15/2015] [Indexed: 12/11/2022]
|
18
|
Freitas AE, Egea J, Buendía I, Navarro E, Rada P, Cuadrado A, Rodrigues ALS, López MG. Agmatine induces Nrf2 and protects against corticosterone effects in hippocampal neuronal cell line. Mol Neurobiol 2014; 51:1504-19. [PMID: 25084759 DOI: 10.1007/s12035-014-8827-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/21/2014] [Indexed: 12/15/2022]
Abstract
Hyperactivation of the hypothalamic-pituitary-adrenal axis is a common finding in major depression; this may lead to increased levels of cortisol, which are known to cause oxidative stress imbalance and apoptotic neuronal cell death, particularly in the hippocampus, a key region implicated in mood regulation. Agmatine, an endogenous metabolite of L-arginine, has been proposed for the treatment of major depression. Corticosterone induced apoptotic cell death and increased ROS production in cultured hippocampal neuronal cells, effects that were abolished in a concentration- and time-dependent manner by agmatine. Interestingly, the combination of sub-effective concentrations of agmatine with fluoxetine or imipramine afforded synergic protection. The neuroprotective effect of agmatine was abolished by yohimbine (α2-adrenoceptor antagonist), ketanserin (5-HT2A receptor antagonist), LY294002 (PI3K inhibitor), PD98059 (MEK1/2 inhibitor), SnPP (HO-1 inhibitor), and cycloheximide (protein synthesis inhibitor). Agmatine increased Akt and ERK phosphorylation and induced the transcription factor Nrf2 and the proteins HO-1 and GCLc; induction of these proteins was prevented by yohimbine, ketanserin, LY294002, and PD98059. In conclusion, agmatine affords neuroprotection against corticosterone effects by a mechanism that implicates Nrf2 induction via α2-adrenergic and 5-HT2A receptors, Akt and ERK pathways, and HO-1 and GCLc expression.
Collapse
Affiliation(s)
- Andiara E Freitas
- Instituto Teofilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 4-28029, Madrid, Spain,
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Agmatine abolishes restraint stress-induced depressive-like behavior and hippocampal antioxidant imbalance in mice. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50:143-50. [PMID: 24370459 DOI: 10.1016/j.pnpbp.2013.12.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/02/2013] [Accepted: 12/14/2013] [Indexed: 12/11/2022]
Abstract
Agmatine has been recently emerged as a novel candidate to assist the conventional pharmacotherapy of depression. The acute restraint stress (ARS) is an unavoidable stress situation that may cause depressive-like behavior in rodents. In this study, we investigated the potential antidepressant-like effect of agmatine (10mg/kg, administered acutely by oral route) in the forced swimming test (FST) in non-stressed mice, as well as its ability to abolish the depressive-like behavior and hippocampal antioxidant imbalance induced by ARS. Agmatine reduced the immobility time in the mouse FST (1-100mg/kg) in non-stressed mice. ARS caused an increase in the immobility time in the FST, indicative of a depressive-like behavior, as well as hippocampal lipid peroxidation, and an increase in the activity of hippocampal superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) activities, reduced catalase (CAT) activity and increased SOD/CAT ratio, an index of pro-oxidative conditions. Agmatine was effective to abolish the depressive-like behavior induced by ARS and to prevent the ARS-induced lipid peroxidation and changes in SOD, GR and CAT activities and in SOD/CAT activity ratio. Hippocampal levels of reduced glutathione (GSH) were not altered by any experimental condition. In conclusion, the present study shows that agmatine was able to abrogate the ARS-induced depressive-like behavior and the associated redox hippocampal imbalance observed in stressed restraint mice, suggesting that its antidepressant-like effect may be dependent on its ability to maintain the pro-/anti-oxidative homeostasis in the hippocampus.
Collapse
|
20
|
Kotagale NR, Walke S, Shelkar GP, Kokare DM, Umekar MJ, Taksande BG. Agmatine attenuates nicotine induced conditioned place preference in mice through modulation of neuropeptide Y system. Behav Brain Res 2014; 262:118-24. [PMID: 24440829 DOI: 10.1016/j.bbr.2014.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 01/06/2014] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
Abstract
The purpose of the present study was to examine the effect of agmatine on nicotine induced conditioned place preference (CPP) in male albino mice. Intra-peritoneal (ip) administration of nicotine (1mg/kg) significantly increased time spent in drug-paired compartment. Agmatine (20 and 40 mg/kg, ip) co-administered with nicotine during the 6 days conditioning sessions completely abolished the acquisition of nicotine-induced CPP in mice. Concomitant administration of neuropeptide Y (NPY) (1 pg/mouse, icv) or [Leu(31), Pro(34)]-NPY (0.1 pg/mouse, icv), selective NPY Y1 receptor agonist potentiated the inhibitory effect of agmatine (10 mg/kg, ip) on nicotine CPP. Conversely, pretreatment with NPY Y1 receptor antagonist, BIBP3226 (0.01 ng/mouse, icv) blocked the effect of agmatine (20 mg/kg, ip) on nicotine induced CPP. In immunohistochemical study, nicotine decreased NPY-immunoreactivity in nucleus accumbens shell (AcbSh), bed nucleus of stria terminalis, lateral part (BNSTl), arcuate nucleus (ARC) and paraventricular nucleus (PVN). Conversely, administration of agmatine prior to the nicotine significantly reversed the effect of nicotine on NPY-immunoreactivity in the above brain nuclei. This data indicate that agmatine attenuate nicotine induced CPP via modulation of NPYergic neurotransmission in brain.
Collapse
Affiliation(s)
- Nandkishor R Kotagale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, India
| | - Sonali Walke
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, India
| | - Gajanan P Shelkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Milind J Umekar
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, India
| | - Brijesh G Taksande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, India.
| |
Collapse
|
21
|
Jung HJ, Jeon YH, Bokara KK, Koo BN, Lee WT, Park KA, Lee JE. Agmatine promotes the migration of murine brain endothelial cells via multiple signaling pathways. Life Sci 2012; 92:42-50. [PMID: 23154244 DOI: 10.1016/j.lfs.2012.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 09/28/2012] [Accepted: 10/23/2012] [Indexed: 11/26/2022]
Abstract
AIMS The combination of adhesion and migration of endothelial cells (ECs) is an integral process for evolution, organization, repair and vessel formation in living organisms. Agmatine, a polycationic amine existing in brain, has been investigated to exert neuroprotective effects. Up to date, there are no studies reporting that agmatine modulates murine brain endothelial (bEnd.3) cells migration. In the present study, we intend to investigate the role of agmatine in bEnd.3 cells migration and the molecular mechanism mediating this action. MAIN METHODS The effect of agmatine on the bEnd.3 cells migration was examined by migration assay, and the mechanism involved for this effect was investigated by western blot analysis and NO contents measurements. KEY FINDINGS Agmatine treatment (50, 100 and 200 μM) significantly accelerated bEnd.3 cells migration in a concentration-dependent manner. Western blotting revealed that agmatine treatment significantly induced vascular endothelial growth factor (VEGF), VEGF receptor 2 (Flk-1/KDR or VEGFR2), phosphatidylinositol 3-kinase (PI3K), Akt/protein kinase B (also known as PKB, PI3K downstream effector protein), endothelial nitric oxide synthase (eNOS) nitric oxide (NO; product by eNOS) and intercellular adhesion molecule 1 (ICAM-1) expressions during bEnd.3 cells migration. The expression of ICAM-1 and migration of bEnd.3 cells, induced by agmatine, were significantly attenuated by treatment of wortmannin, a specific PI3K inhibitor. SIGNIFICANCE Taken together, we provide the first evidence that activation of VEGF/VEGFR2 and the consequential PI3K/Akt/eNOS/NO/ICAM-1 signaling pathways are serial events, through which the treatment of agmatine could lead to bEnd.3 cells migration.
Collapse
Affiliation(s)
- Hyun-Joo Jung
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
The interaction of melatonin and agmatine on pentylenetetrazole-induced seizure threshold in mice. Epilepsy Behav 2011; 22:200-6. [PMID: 21840768 DOI: 10.1016/j.yebeh.2011.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/03/2011] [Accepted: 07/04/2011] [Indexed: 11/21/2022]
Abstract
Melatonin, the major hormone produced by the pineal gland, has a number of functions in mammals, for example, its function as an anticonvulsant. Agmatine, a biogenic amine formed by decarboxylation of L-arginine by arginine decarboxylase, also has anticonvulsant effects. This study investigated the effect of the interaction of melatonin and agmatine on seizure susceptibility in the mouse model of pentylenetetrazole (PTZ)-induced clonic seizures. Further, the researchers investigated the involvement of melatonin receptors in this interaction using luzindole, a ML(1/2) receptor antagonist and prazosin, a ML(3) receptor antagonist. Melatonin, at 40 and 80 mg/kg, and agmatine, at 10 and 20mg/kg, exerted anticonvulsant effects. Luzindole, at 1.25 and 2.5mg/kg, or prazosin, at 0.5mg/kg, did not change the seizure threshold as compared with that of vehicle-treated mice. The anticonvulsant effect of melatonin (40 and 80 mg/kg) was prevented by luzindole (2.5mg/kg) (P<0.001) but not prazosin (0.5mg/kg), indicating the possible involvement of ML(1/2) receptors in the anticonvulsant effect of melatonin. Agmatine (5mg/kg) significantly increased the anticonvulsant effect of both the noneffective dose (20mg/kg) (P<0.05) and the effective dose (80 mg/kg) (P<0.001) of melatonin. Luzindole (2.5mg/kg), but not prazosin (0.5mg/kg), decreased the anticonvulsant effect of agmatine (20mg/kg) (P<0.05). Luzindole (2.5mg/kg), but not prazosin (0.5mg/kg), also decreased the seizure threshold when agmatine (5mg/kg) was administered before melatonin (20mg/kg); the decrease was significant compared with that of the group that received only agmatine and melatonin (P<0.001). In conclusion, melatonin and agmatine exhibit an additive effect in decreasing pentylenetetrazole-induced seizure threshold in mice, probably through ML(1/2) receptors.
Collapse
|
23
|
Agmatine blocks ethanol-induced locomotor hyperactivity in male mice. Eur J Pharmacol 2011; 659:26-9. [DOI: 10.1016/j.ejphar.2011.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/18/2011] [Accepted: 03/09/2011] [Indexed: 11/23/2022]
|
24
|
Edwards LP, Brown-Bryan TA, McLean L, Ernsberger P. Pharmacological Properties of the Central Antihypertensive Agent, Moxonidine. Cardiovasc Ther 2011; 30:199-208. [DOI: 10.1111/j.1755-5922.2011.00268.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
25
|
Li JX, Zhang Y. Imidazoline I2 receptors: target for new analgesics? Eur J Pharmacol 2011; 658:49-56. [PMID: 21371460 DOI: 10.1016/j.ejphar.2011.02.038] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 01/19/2011] [Accepted: 02/15/2011] [Indexed: 12/22/2022]
Abstract
Pain remains a major clinical challenge because there are no effective analgesics for some pain conditions and the mainstay analgesics for severe pain, opioids, have serious unwanted effects. There is a dire need for novel analgesics in the clinic. Imidazoline receptors are a family of three receptors (I(1), I(2) and I(3)) that all can recognize compounds with an imidazoline structure. Accumulating evidence suggests that I(2) receptors are involved in pain modulation. Ligands acting at I(2) receptors are effective for tonic inflammatory and neuropathic pain but are much less effective for acute phasic pain. When studied in combination, I(2) receptor ligands enhance the analgesic effects of opioids in both acute phasic and chronic tonic pain. During chronic use, patients can develop tolerance to and dependence on opioids. Imidazoline I(2) receptor ligands can attenuate the development of tolerance to opioid analgesia and inhibit drug withdrawal or antagonist precipitation induced abstinence syndrome in animals. Taken together, drugs acting on I(2) receptors may be useful as a monotherapy or combined with opioids as an adjuvant for treating pain. Future studies should focus on understanding the relative efficacy of I(2) receptor ligands and developing new compounds to fill the gap in intrinsic efficacy continuum of I(2) receptors.
Collapse
Affiliation(s)
- Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14214, USA.
| | | |
Collapse
|
26
|
Li WG, Yu Y, Zhang ZD, Cao H, Xu TL. ASIC3 channels integrate agmatine and multiple inflammatory signals through the nonproton ligand sensing domain. Mol Pain 2010; 6:88. [PMID: 21143836 PMCID: PMC3017031 DOI: 10.1186/1744-8069-6-88] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/08/2010] [Indexed: 01/15/2023] Open
Abstract
Background Acid-sensing ion channels (ASICs) have long been known to sense extracellular protons and contribute to sensory perception. Peripheral ASIC3 channels represent natural sensors of acidic and inflammatory pain. We recently reported the use of a synthetic compound, 2-guanidine-4-methylquinazoline (GMQ), to identify a novel nonproton sensing domain in the ASIC3 channel, and proposed that, based on its structural similarity with GMQ, the arginine metabolite agmatine (AGM) may be an endogenous nonproton ligand for ASIC3 channels. Results Here, we present further evidence for the physiological correlation between AGM and ASIC3. Among arginine metabolites, only AGM and its analog arcaine (ARC) activated ASIC3 channels at neutral pH in a sustained manner similar to GMQ. In addition to the homomeric ASIC3 channels, AGM also activated heteromeric ASIC3 plus ASIC1b channels, extending its potential physiological relevance. Importantly, the process of activation by AGM was highly sensitive to mild acidosis, hyperosmolarity, arachidonic acid (AA), lactic acid and reduced extracellular Ca2+. AGM-induced ASIC3 channel activation was not through the chelation of extracellular Ca2+ as occurs with increased lactate, but rather through a direct interaction with the newly identified nonproton ligand sensing domain. Finally, AGM cooperated with the multiple inflammatory signals to cause pain-related behaviors in an ASIC3-dependent manner. Conclusions Nonproton ligand sensing domain might represent a novel mechanism for activation or sensitization of ASIC3 channels underlying inflammatory pain-sensing under in vivo conditions.
Collapse
Affiliation(s)
- Wei-Guang Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
27
|
Winter TN, Elmquist WF, Fairbanks CA. OCT2 and MATE1 provide bidirectional agmatine transport. Mol Pharm 2010; 8:133-42. [PMID: 21128598 DOI: 10.1021/mp100180a] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Agmatine is a biogenic amine (l-arginine metabolite) of potential relevance to several central nervous system (CNS) conditions. The identities of transporters underlying agmatine and polyamine disposition in mammalian systems are not well-defined. The SLC-family organic cation transporters (OCT) OCT1 and OCT2 and multidrug and toxin extrusion transporter-1 (MATE1) are transport systems that may be of importance for the cellular disposition of agmatine and putrescine. We investigated the transport of [(3)H]agmatine and [(3)H]putrescine in human embryonic kidney (HEK293) cells stably transfected with hOCT1, hOCT2, and hMATE1. Agmatine transport by hOCT1 and hOCT2 was concentration-dependent, whereas only hOCT2 demonstrated pH-dependent transport. hOCT2 exhibited a greater affinity for agmatine (K(m) = 1.84 ± 0.38 mM) than did hOCT1 (K(m) = 18.73 ± 4.86 mM). Putrescine accumulation was pH- and concentration-dependent in hOCT2-HEK cells (K(m) = 11.29 ± 4.26 mM) but not hOCT1-HEK cells. Agmatine accumulation, in contrast to putrescine, was significantly enhanced by hMATE1 overexpression, and was saturable (K(m) = 240 ± 31 μM; V(max) = 192 ± 10 pmol/min/mg of protein). Intracellular agmatine was also trans-stimulated (effluxed) from hMATE1-HEK cells in the presence of an inward proton-gradient. The hMATE1-mediated transport of agmatine was inhibited by polyamines, the prototypical substrates MPP+ and paraquat, as well as guanidine and arcaine, but not l-arginine. These results suggest that agmatine disposition may be influenced by hOCT2 and hMATE1, two transporters critical in the renal elimination of xenobiotic compounds.
Collapse
Affiliation(s)
- Tate N Winter
- Departments of Pharmaceutics, Pharmacology, and Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
28
|
Uzbay T, Kayir H, Goktalay G, Yildirim M. Agmatine disrupts prepulse inhibition of acoustic startle reflex in rats. J Psychopharmacol 2010; 24:923-9. [PMID: 19282421 DOI: 10.1177/0269881109102533] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Agmatine is a guanidine-amine formed by the enzymatic decarboxylation of arginine. Agmatine has been proposed to be a neuromodulator and its downstream derivatives, the polyamines, have been suggested to be responsible for sensory gating deficits seen in schizophrenia. In this study, male Wistar rats underwent treatments with agmatine, vehicle or other agents known to alter sensory gating in an experimental paradigm of prepulse inhibition (PPI) of the acoustic startle response. Apomorphine (1 mg/kg s.c.), a nonselective dopamine agonist known to disrupt PPI responses, was injected as the positive reference. Neither apomorphine nor agmatine (40-160 mg/kg i.p.) induced effects on the intensity of startle reflex without a prepulse. However, apomorphine or agmatine (160 mg/kg i.p.) disrupted the PPI of acoustic startle reflex. Furthermore, when given 30 min prior, agmatine acted additively with apomorphine's effect on PPI. In an attempt to gain more insight, haloperidol (1 and 2 mg/kg i.p.), clozapine (2.5-7.5 mg/kg i.p.) or quetiapine (2.5 and 7.5 mg/kg i.p.) was also injected prior to agmatine (160 mg/kg i.p.). Haloperidol (1 mg/kg) and clozapine (2.5 and 5 mg/kg) were able to prevent the PPI-disrupting effects of apomorphine. However, none of these antipsychotics prevent the PPI-disrupting effects of agmatine. These results suggest that agmatine disrupts the PPI of acoustic startle reflex of rats in a fundamentally different manner than apomorphine does. It may also have a critical role in the pathogenesis of sensorimotor gating-related dysfunctions.
Collapse
Affiliation(s)
- T Uzbay
- Gulhane Military Medical Academy, Faculty of Medicine, Department of Medical Pharmacology, Psychopharmacology Research Unit, Ankara, Turkey.
| | | | | | | |
Collapse
|
29
|
Repeated agmatine treatment attenuates nicotine sensitization in mice: modulation by alpha2-adrenoceptors. Behav Brain Res 2010; 213:161-74. [PMID: 20450939 DOI: 10.1016/j.bbr.2010.04.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 04/24/2010] [Accepted: 04/28/2010] [Indexed: 11/22/2022]
Abstract
Agmatine [2-(4-aminobutyl)guanidine] is an endogenous amine proposed as a neurotransmitter/neuromodulator that binds to multiple target receptors in brain. Besides, many central and peripheral functions, agmatine have been implicated in the process of drug addiction. The purpose of the present study was to examine the effects of centrally injected agmatine on nicotine induced locomotor sensitization in Swiss male mice. Our data shows that repeated injections of nicotine (0.4 mg/kg, sc, twice daily for 7 days) gradually increased locomotion during 7 days development period or after 3 days (nicotine) withdrawal phase challenged with nicotine (0.4 mg/kg, sc) on day 11. Mice were pretreated with agmatine (40-80 microg, icv) or agents known to increase endogenous brain agmatine levels [e.g. an agmatine biosynthetic precursor, L-arginine (80 microg, icv), ornithine decarboxylase inhibitor, difluoromethyl-ornithine (50 microg, icv), diamine oxidase inhibitor, aminoguanidine (25 microg, icv) and agmatinase inhibitor, arcaine (50 microg, icv)] 30 min before daily first nicotine injection or during nicotine withdrawal phase. All these treatments attenuated the development as well as incubation of locomotor sensitization to nicotine. Coadministration of agmatine (20 microg, icv) and alpha(2)-adrenoreceptors agonist, clonidine (0.1 microg, icv) evoked synergistic inhibition of nicotine sensitization. Conversely, prior administration of alpha(2)-adrenoceptor antagonist, yohimbine (5mg/kg, ip) or idazoxan (0.4 mg/kg, ip) reversed the inhibitory effect of agmatine on nicotine sensitization. There was no significant difference in activity between mice injected with any of these agents/saline alone and saline/saline groups. These data indicate that agmatine attenuates nicotine induced locomotor sensitization via a mechanism which may involve alpha(2)-adrenergic receptors. Thus, agmatine might have therapeutic implications in the treatment of nicotine addiction and deserve further investigations.
Collapse
|
30
|
Taksande BG, Kotagale NR, Patel MR, Shelkar GP, Ugale RR, Chopde CT. Agmatine, an endogenous imidazoline receptor ligand modulates ethanol anxiolysis and withdrawal anxiety in rats. Eur J Pharmacol 2010; 637:89-101. [PMID: 20394743 DOI: 10.1016/j.ejphar.2010.03.058] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/06/2010] [Accepted: 03/31/2010] [Indexed: 11/15/2022]
Abstract
Present study investigated the role of agmatine in ethanol-induced anxiolysis and withdrawal anxiety using elevated plus maze (EPM) test in rats. The anxiolytic-like effect of ethanol was potentiated by pretreatment with imidazoline I(1)/I(2) receptor agonist agmatine (10-20 mg/kg, i.p.), imidazoline I(1) receptor agonists, moxonidine (0.25 mg/kg, i.p.) and clonidine (0.015 mg/kg, i.p.), imidazoline I(2) receptor agonist, 2-BFI (5 mg/kg, i.p.) as well as by the drugs known to increase endogenous agmatine levels in brain viz., L-arginine, an agmatine biosynthetic precursor (100 microg/rat, i.c.v.), ornithine decarboxylase inhibitor, DFMO (125 microg/rat, i.c.v.), diamine oxidase inhibitor, aminoguanidine (65 microg/rat, i.c.v.) and agmatinase inhibitor, arcaine (50 microg/rat, i.c.v.). Conversely, prior administration of I(1) receptor antagonist, efaroxan (1 mg/kg, i.p.), I(2) receptor antagonist, idazoxan (0.25mg/kg, i.p.) and arginine decarboxylase inhibitor, D-arginine (100 microg/rat, i.c.v.) blocked the anxiolytic-like effect of ethanol. Moreover, ethanol withdrawal anxiety was markedly attenuated by agmatine (10-20 mg/kg, i.p.), moxonidine (0.25 mg/kg, i.p.), clonidine (0.015 mg/kg, i.p.), 2-BFI (5 mg/kg, i.p.), L-arginine (100 microg/rat, i.c.v.), DFMO (125 microg/rat, i.c.v.), aminoguanidine (65 microg/rat, i.c.v.) and arcaine (50 microg/rat, i.c.v.). The anti-anxiety effect of agmatine in ethanol-withdrawn rats was completely blocked by efaroxan (1 mg/kg, i.p.) and idazoxan (0.25 mg/kg, i.p.). These results suggest that agmatine and imidazoline receptor system may be implicated in ethanol-induced anxiolysis and withdrawal anxiety and strongly support further investigation of agmatine in ethanol dependence mechanism. The data also project agmatine as a potential therapeutic target in overcoming alcohol withdrawal symptoms such as anxiety.
Collapse
Affiliation(s)
- Brijesh G Taksande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar, College of Pharmacy, New Kamptee, Nagpur, MS, India
| | | | | | | | | | | |
Collapse
|
31
|
Uzbay T, Kose A, Kayir H, Ulusoy G, Celik T. Sex-related effects of agmatine on caffeine-induced locomotor activity in Swiss Webster mice. Eur J Pharmacol 2010; 630:69-73. [DOI: 10.1016/j.ejphar.2009.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 11/23/2009] [Accepted: 12/15/2009] [Indexed: 10/20/2022]
|
32
|
New analogues of agmatine with higher affinity to imidazoline receptors. Bioorg Med Chem Lett 2009; 19:1009-11. [DOI: 10.1016/j.bmcl.2008.11.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 11/14/2008] [Accepted: 11/17/2008] [Indexed: 11/20/2022]
|
33
|
Wade CL, Schuster DJ, Domingo KM, Kitto KF, Fairbanks CA. Supraspinally-administered agmatine attenuates the development of oral fentanyl self-administration. Eur J Pharmacol 2008; 587:135-40. [PMID: 18495108 DOI: 10.1016/j.ejphar.2008.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 03/19/2008] [Accepted: 04/02/2008] [Indexed: 11/29/2022]
Abstract
The decarboxylation product of arginine, agmatine, has effectively reduced or prevented opioid-induced tolerance and dependence when given either systemically (intraperitoneally or subcutaneously) or centrally (intrathecally or intracerebroventricularly). Systemically administered agmatine also reduces the escalation phase of intravenous fentanyl self-administration in rats. The present study assessed whether centrally (intracerebroventricular, i.c.v.) delivered agmatine could prevent the development of fentanyl self-administration in mice. Mice were trained to respond under a fixed-ratio 1 (FR1) schedule for either fentanyl (0.7 microg/70 microl, p.o.) or food reinforcement. Agmatine (10 nmol/5 microl), injected i.c.v. 12-14 h before the first session and every other evening (12-14 h before session) for 2 weeks, completely attenuated oral fentanyl self-administration (but not food-maintained responding) compared to saline-injected controls. When agmatine was administered after fentanyl self-administration had been established (day 8) it had no attenuating effects on bar pressing. This dose of agmatine does not decrease locomotor activity as assessed by rotarod. The present findings significantly extend the previous observation that agmatine prevents opioid-maintained behavior to a chronic model of oral fentanyl self-administration as well as identifying a supraspinal site of action for agmatine inhibition of drug addiction.
Collapse
Affiliation(s)
- Carrie L Wade
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
34
|
Santhanam AVR, Viswanathan S, Dikshit M. Activation of protein kinase B/Akt and endothelial nitric oxide synthase mediates agmatine-induced endothelium-dependent relaxation. Eur J Pharmacol 2007; 572:189-96. [PMID: 17640632 DOI: 10.1016/j.ejphar.2007.06.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Revised: 06/11/2007] [Accepted: 06/12/2007] [Indexed: 12/16/2022]
Abstract
The ability of agmatine, formed from L-arginine by the enzyme arginine decarboxylase (ADC), to modulate vasomotor function in rat aorta was investigated in the present study. Agmatine-mediated modulation of vasomotor tone was studied in organ chambers, protein expression quantified by Western blot analysis and cyclic guanosine 5'-monophosphate (cGMP) levels measured by radioimmunoassay. Agmatine (10(-10) to 10(-3) M) produced concentration-dependent relaxations (82+/-5%) in phenylephrine-contracted endothelium intact rat aorta. Relaxations to agmatine were diminished on denudation of endothelium and nitric oxide synthase (NOS) inhibition by L-Nomega-nitro arginine or soluble guanylate cyclase inhibition by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (P<0.001) abolished agmatine-mediated relaxations, while relaxations were insensitive to inducible NOS inhibition by 1400W. Agmatine-treated aorta demonstrated increased protein expression of phosphorylated S473-Akt and phosphorylated S1177-endothelial nitric oxide synthase (eNOS), and elevated the levels of cyclic GMP (P<0.01). Agmatine-mediated potentiation of relaxations and elevation of cGMP levels was sensitive to phosphatidylinositol 3'-kinase inhibitor, wortmannin. Relaxations to agmatine were also affected by pre-treatment with tetraethylammonium (P<0.01) or apamin (P<0.05), and were not affected by charybdotoxin. Relaxations to agmatine were partially affected by pre-treatment of aortic rings with barium chloride (P<0.05), and glybenclamide (P<0.05). Results obtained suggest that agmatine activates protein kinase B/Akt to phosphorylate eNOS and elevate cyclic GMP levels to produce vasodilatation of aorta. Agmatine-mediated relaxations in rat aorta seems to be mediated mainly by endothelial NO-mediated activation of small conductance Ca2+-activated K+ channels, and partly by ATP-sensitive and inward rectifying K+ channels.
Collapse
Affiliation(s)
- Anantha Vijay R Santhanam
- Department of Anesthesiology, and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
35
|
Goracke-Postle CJ, Overland AC, Riedl MS, Stone LS, Fairbanks CA. Potassium- and capsaicin-induced release of agmatine from spinal nerve terminals. J Neurochem 2007; 102:1738-1748. [PMID: 17539920 DOI: 10.1111/j.1471-4159.2007.04647.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Agmatine (decarboxylated arginine) was originally identified in the CNS as an imidazoline receptor ligand. Further studies demonstrated that agmatine antagonizes NMDA receptors and inhibits nitric oxide synthase. Intrathecally administered agmatine inhibits opioid tolerance and hyperalgesia evoked by inflammation, nerve injury, and intrathecally administered NMDA. These actions suggest an anti-glutamatergic role for agmatine in the spinal cord. We have previously reported that radiolabeled agmatine is transported into spinal synaptosomes in an energy- and temperature-dependent manner. In the present study, we demonstrate that agmatine is releasable from purified spinal nerve terminals upon depolarization. When exposed to either elevated potassium or capsaicin, tritiated agmatine (but not its precursor L-arginine or its metabolite putrescine) is released in a calcium-dependent manner. Control experiments confirmed that the observed release was specific to depolarization and not due to permeabilization of or degradation of synaptosomes. That capsaicin-evoked stimulation results in agmatine release implicates the participation of primary afferent nerve terminals. Radiolabeled agmatine also accumulates in purified spinal synaptosomal vesicles in a temperature-dependent manner, suggesting that the source of releasable agmatine may be vesicular in origin. These results support the proposal that agmatine may serve as a spinal neuromodulator involved in pain processing.
Collapse
Affiliation(s)
- Cory J Goracke-Postle
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USADepartment of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USADepartment of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USADepartment of Anesthesiology, University of Minnesota, Minneapolis, Minnesota, USACenter for Pain Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Aaron C Overland
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USADepartment of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USADepartment of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USADepartment of Anesthesiology, University of Minnesota, Minneapolis, Minnesota, USACenter for Pain Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Maureen S Riedl
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USADepartment of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USADepartment of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USADepartment of Anesthesiology, University of Minnesota, Minneapolis, Minnesota, USACenter for Pain Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Laura S Stone
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USADepartment of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USADepartment of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USADepartment of Anesthesiology, University of Minnesota, Minneapolis, Minnesota, USACenter for Pain Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Carolyn A Fairbanks
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USADepartment of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USADepartment of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USADepartment of Anesthesiology, University of Minnesota, Minneapolis, Minnesota, USACenter for Pain Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
36
|
Horvath G, Kekesi G, Tuboly G, Benedek G. Antinociceptive interactions of triple and quadruple combinations of endogenous ligands at the spinal level. Brain Res 2007; 1155:42-8. [PMID: 17482581 DOI: 10.1016/j.brainres.2007.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 03/30/2007] [Accepted: 04/08/2007] [Indexed: 11/18/2022]
Abstract
A very interesting and rapidly developing field of pain research is related to the roles of different endogenous ligands. This study determined the antinociceptive interactions of triple and quadruple combinations of different endogenous ligands (endomorphin-1, adenosine, agmatine and kynurenic acid) on carrageenan-induced inflammatory pain model at the spinal level. Intrathecal infusion (60 min) of these drugs alone, in double, triple or quadruple combinations, was followed by a 60-min observation period. During the infusion, antihyperalgesic effect of 0.3 microg/min endomorphin-1 was higher in the triple combinations than those in the double combinations. After cessation of drug administration, only the combination of 0.3 microg/min endomorphin-1, 1 microg/min agmatine, and 0.3 microg/min adenosine was more effective than the double combinations. In quadruple combinations, the antinociceptive effects of both 0.1 and 0.3 microg/min endomorphin-1 were significantly potentiated by the otherwise ineffective triple combination of adenosine, agmatine, and kynurenic acid. No side effects could be observed at these doses. These results demonstrate that triple and quadruple combinations of these endogenous ligands caused more effective antihyperalgesia compared with double combinations. Accordingly, the doses of these substances could be further reduced, thus, reinforcing the view that complex activation and/or inhibition of different systems can be sufficiently effective in blocking nociception without adverse effects. Because all of these drugs had effects on various receptors and systems, the possible types of these interactions were discussed.
Collapse
Affiliation(s)
- Gyongyi Horvath
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | | | | | | |
Collapse
|
37
|
Tahsili-Fahadan P, Yahyavi-Firouz-Abadi N, Khoshnoodi MA, Motiei-Langroudi R, Tahaei SA, Ghahremani MH, Dehpour AR. Agmatine potentiates morphine-induced conditioned place preference in mice: modulation by alpha2-adrenoceptors. Neuropsychopharmacology 2006; 31:1722-32. [PMID: 16237388 DOI: 10.1038/sj.npp.1300929] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The effects of agmatine, an endogenous polyamine metabolite formed by decarboxylation of L-arginine, and its combination with morphine on conditioned place preference (CPP) has been investigated in male mice. Our data show that subcutaneous administration of morphine (1-7.5 mg/kg) significantly increases the time spent in the drug-paired compartment in a dose-dependent manner. Intraperitoneal administration of agmatine (1-40 mg/kg) alone does not induce either CPP or conditioned place aversion, while combination of agmatine and subeffective doses of morphine leads to potent rewarding effects. Lower doses of morphine (0.1, 0.05, and 0.01 mg/kg) are able to induce CPP in mice pretreated with agmatine 1, 5, and 10 mg/kg, respectively. Concomitant intraperitoneal administration of UK 14 304 (0.5 mg/kg), a highly selective alpha2-agonist, with per se noneffective dose of morphine (0.5 mg/kg) and also its combination with noneffective doses of agmatine (1 mg/kg) plus morphine (0.05 mg/kg) produces significant CPP. UK 14 304 (0.05, 0.5 mg/kg) alone, or in combination with agmatine (1, 5 mg/kg) have had no effect. We have further investigated the possible involvement of the alpha2-adrenoceptors in the potentiating effect of agmatine on morphine-induced place preference. Selective alpha2-antagonists, yohimbine (0.005 mg/kg) and RX821002 (0.1, 0.5 mg/kg), block the CPP induced by concomitant administration of agmatine (5 mg/kg) and morphine (0.05 mg/kg). Yohimbine (0.001-0.05 mg/kg) or RX821002 (0.05-0.5 mg/kg) alone or in combination with morphine (0.05 mg/kg) or agmatine (5 mg/kg) fail to show any significant place preference or aversion. Our results indicate that pretreatment of animals with agmatine enhances the rewarding properties of morphine via a mechanism which may involve alpha2-adrenergic receptors.
Collapse
Affiliation(s)
- Pouya Tahsili-Fahadan
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
38
|
Riazi K, Honar H, Homayoun H, Rashidi N, Kiani S, Ebrahimkhani MR, Noorian AR, Ghaffari K, Jannati A, Dehpour AR. The synergistic anticonvulsant effect of agmatine and morphine: Possible role of alpha 2-adrenoceptors. Epilepsy Res 2005; 65:33-40. [PMID: 15975766 DOI: 10.1016/j.eplepsyres.2005.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 03/20/2005] [Accepted: 04/08/2005] [Indexed: 11/27/2022]
Abstract
Recent demonstrations of the anticonvulsant properties of agmatine suggest it may be considered as a potential adjunct for protection against seizure. We investigated the possibility of an additive anticonvulsant effect between low doses of agmatine and morphine. The thresholds for the clonic seizures induced by the intravenous administration of gamma-aminobutyric acid (GABA)-antagonist, pentylenetetrazole (PTZ) were assessed in mice. Morphine at lower doses (1-3mg/kg) increased and at higher doses (30, 60 mg/kg) decreased the seizure threshold. Pretreatment with a per se non-effective dose of agmatine (1mg/kg) potentiated the anticonvulsant effect of morphine. The combination of subeffective doses of agmatine and morphine led to potent anticonvulsant effects. The pro-convulsant effect of morphine was attenuated by agmatine. Yohimbine with a dose (1mg/kg) incapable of affecting seizure threshold reversed the effect of agmatine on both anticonvulsant and pro-convulsant effects of morphine. These results suggest that agmatine potentiates the anticonvulsant effect of morphine and alpha 2-adrenoceptors may be involved in this effect.
Collapse
Affiliation(s)
- Kiarash Riazi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dardonville C, Rozas I. Imidazoline binding sites and their ligands: an overview of the different chemical structures. Med Res Rev 2004; 24:639-61. [PMID: 15224384 DOI: 10.1002/med.20007] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Since Bousquet et al. discovered the imidazoline binding sites (IBS) two decades ago, when they realized that the antihypertensive drug clonidine interacts not only with the alpha2-adrenenoceptors (alpha2-AR) but also with a distinct imidazoline preferring binding site, these receptors have been paid a great deal of attention. At least two subtypes, I1 and I2, have been characterised based on their binding affinity for different radioligands, but their structures still remain unknown. The pharmacological profile of these IBSs has been the objective of several and very thorough reviews. However, a medicinal chemistry overview of the different IBS ligands prepared to date has never been attempted. In this study, we attempt to compile all the different chemical structures reported to date as IBS ligands and classify them in function of their chemical structure and binding affinity for the different IBS subtypes. Thus, we comment on the different endogenous IBS ligands known as well as the drugs described to interact with the I1-IBS which have found application as antihypertensive drugs. Then, we review those compounds described in the literature to interact with the I2-IBS, classifying them by their chemical families (imidazolines, guanidines, 2-aminoimidazolines, beta-carbolines). Finally, some conclusions are drawn.
Collapse
|
40
|
Kekesi G, Joo G, Csullog E, Peter-Szabo M, Benedek G, Horvath G. Dose-independent antinociceptive interaction of endogenous ligands at the spinal level. Brain Res 2004; 1029:93-102. [PMID: 15533320 DOI: 10.1016/j.brainres.2004.09.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2004] [Indexed: 11/26/2022]
Abstract
Adenosine, agmatine and kynurenic acid are endogenous ligands acting on different (e.g. adenosine, NMDA, alpha(2)-adrenergic and imidazoline) receptors with a potential role in nociception at the spinal level. Their antinociceptive effects have already been investigated as monotherapy, but only a few studies have reported on their effects on the potency of other drugs. The purpose of the present study was carried out to analyse their interactions during continuous intrathecal co-administration in a carrageenan-induced thermal hyperalgesia model in rats. A paw withdrawal test was used for nociceptive testing. The intrathecal infusion (60 min) of these three drugs was administered alone or in combinations (kynurenic acid+adenosine or agmatine; adenosine+agmatine), which was followed by an additional 60-min observation period. Kynurenic acid alone was ineffective, while adenosine and agmatine alone caused a slight increase in pain threshold. However, independently of the applied doses all of the combinations significantly (p<0.05) increased the paw withdrawal latencies on the inflamed side during and after the infusion, but were almost ineffective on the normal side. The adenosine+kynurenic acid combination was the most effective: namely, that it relieved thermal hyperalgesia in all the applied dose combinations. Treatment with the kynurenic acid-containing combinations also caused dose-dependent side-effects (motor impairment and excitation), despite the fact that monotherapy with kynurenic acid in the applied dose (0.1 microg/min) did not result in adverse effects.
Collapse
Affiliation(s)
- Gabriella Kekesi
- Department of Physiology, Faculty of Medicine, University of Szeged, P.O. Box 427, H-6701, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
41
|
Kekesi G, Dobos I, Benedek G, Horvath G. The Antinociceptive Potencies and Interactions of Endogenous Ligands During Continuous Intrathecal Administration: Adenosine, Agmatine, and Endomorphin-1. Anesth Analg 2004; 98:420-426. [PMID: 14742381 DOI: 10.1213/01.ane.0000096066.26157.2a] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED Recently, a series of endogenous ligands related to inhibition of sensory transduction of noxious stimuli at the spinal level has been described, including endomorphins, agmatine, and adenosine, which act on different receptors; however, little data exist concerning their effect during continuous administration or their interactions. In this study, we investigated the antinociceptive properties of continuously administered (for 60 min) adenosine and agmatine on carrageenan-induced thermal hyperalgesia by means of a thermal paw withdrawal test in awake rats. The possible interaction between endomorphin-1 and adenosine or agmatine was also determined. Continuous administration of adenosine (0.3-3 microg/min) did not influence the paw withdrawal latencies of the normal or inflamed paws during the infusion but in larger doses it resulted in a significant increase in latencies after the cessation of the infusion. Agmatine (0.3-3 microg/min) dose-dependently decreased the hyperalgesia, but the largest dose caused a temporary excitation in 50% of animals. The continuous administration of adenosine or agmatine (3 micro g/min) potentiated and prolonged the antinociceptive effect of endomorphin-1 (1 microg/min). Our results revealed that adenosine and agmatine have a small antinociceptive efficacy during continuous intrathecal administration but that both potentiate the effect of endomorphin-1. These data suggest that the combination of these endogenous ligands might represent novel targets for the therapeutic modulation of pain; however, the systematic examination of side effects is essential. IMPLICATIONS Adenosine and agmatine have little antinociceptive efficacy during continuous intrathecal administration, as shown by the inflammatory pain test in rats, but both potentiate the effect of endomorphin-1. These data suggest that the combination of these endogenous ligands might represent novel targets for the therapeutic modulation of pain; however, the systematic examination of side effects is essential.
Collapse
Affiliation(s)
- Gabriella Kekesi
- *Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary; and †Department of Physical Therapy, Faculty of Health Science, University of Szeged, Szeged, Hungary
| | | | | | | |
Collapse
|
42
|
Ruzafa C, Monserrat F, Cremades A, Peñafiel R. Influence of dietary arginine on sexual dimorphism of arginine metabolism in mice. J Nutr Biochem 2003; 14:333-41. [PMID: 12873715 DOI: 10.1016/s0955-2863(03)00055-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have studied the influence of dietary arginine on tissue arginine content, and arginine metabolism in CD1 mice. Dietary arginine restriction produced by feeding mice with a low arginine diet (0.06%) produced a marked decrease in arginine concentrations in the plasma, skeletal muscle and kidney of female mice (72%, 67% and 54%, respectively) while in male mice the decreases were smaller (58% in blood and 18% in the skeletal muscle). This diet abolished not only the sexual dimorphism in arginine content observed in mice fed with the diet containing 1% arginine, but also reduced renal activities of arginase and nitric oxide synthase in the female mice and ornithine decarboxylase and the decarboxylation of arginine in the male mice. Urinary putrescine excretion was dramatically reduced by arginine restriction in the male mice whereas orotic acid excretion increased about 30 fold in both sexes; urea and creatinine excretion did not change. Taken together our results indicate that dietary arginine plays a relevant role in the maintenance of the sexual dimorphism in arginine content and arginine metabolism in CD1 mice, and that this may have physiological significance because of the important effects that arginine-derived products exert on a variety of cellular processes.
Collapse
Affiliation(s)
- Carolina Ruzafa
- Biochemistry and Molecular Biology, School of Medicine, University of Murcia, 30100 Murcia, Spain
| | | | | | | |
Collapse
|
43
|
Ferry X, Landry Y. Agmatine: a mastoparan-like activity related to direct activation of heterotrimeric G proteins. Eur J Pharmacol 2002; 435:19-26. [PMID: 11790374 DOI: 10.1016/s0014-2999(01)01561-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We examined agmatine and imidazoline derivatives as putative ligands of trimeric G protein in rat peritoneal mast cells. Agmatine induced a concentration-dependent and pertussis toxin-sensitive secretion of histamine (exocytosis) and arachidonate. Clonidine and idazoxan had no effect. Blockage of Gbetagamma dimers by a specific anti-Gbeta antibody inhibited exocytosis elicited by agmatine and mastoparan. The G protein antagonist [p-Glu(5),D-Trp(7,9,10)]substance P-(5-11) prevented both mastoparan- and agmatine-induced exocytosis when it was allowed to reach its intracellular targets by streptolysin-O permeabilisation. In intact cells, this response was prevented by both the removal of sialic acid residues by neuraminidase and by [D-Pro(4),D-Trp(7,9,10)]substance P-(4-11) acting at the mast cell surface. Exocytosis was restored by permeabilisation of the plasma membrane with streptolysin-O. These results suggest that agmatine might have several molecular targets, exerting its neurotransmitter function at low concentrations (i.e., with high affinity) through membrane receptors and at high concentrations (i.e., with weak affinity) through direct G protein activation.
Collapse
Affiliation(s)
- Xavier Ferry
- Faculté de Pharmacie, bp 24, Laboratoire de Neuroimmunopharmacologie, INSERM U425, Université Louis Pasteur-Strasbourg I, 67401 Illkirch Cedex, France
| | | |
Collapse
|
44
|
Piletz JE, Zhu H, Ordway G, Stockmeier C, Dilly G, Reis D, Halaris A. Imidazoline receptor proteins are decreased in the hippocampus of individuals with major depression. Biol Psychiatry 2000; 48:910-9. [PMID: 11074229 DOI: 10.1016/s0006-3223(00)00892-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND A downregulation of I(2)-imidazoline binding sites has been reported in frontal cortices of depressed suicide victims, according to I(2)-radioligand binding and confirmed by Western blotting. We now report Western blots of imidazoline receptor proteins in hippocampi of subjects with and without depression at the time of death. METHODS Postmortem diagnoses were obtained from 17 cases of Axis I major depressive disorder and 17 cases without Axis I psychopathology. No psychotropic compounds were found in body fluids. Hippocampi were removed, sectioned, and assessed histologically. Throughout the analysis, each major depressive disorder sample was paired with a sample from a psychiatrically healthy subject based on equivalent life spans and postmortem delays. The antiserum was identical to that used in previous studies that reported a downregulation of cortical 29/30-kd imidazoline receptor-binding proteins in depression. RESULTS A triad of imidazoline receptor-binding protein bands (40-50 kd) was detected in the human hippocampus. Subjects with major depressive disorder had significantly less intensity in each imidazoline receptor-binding proteins band compared with control subjects (p =. 01 for overall bands). CONCLUSIONS The present results can be aligned with previous reports of downregulation of I(2)-radioligand binding sites in both cortices and platelets of depressed patients.
Collapse
Affiliation(s)
- J E Piletz
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Babál P, Ruchko M, Olson JW, Gillespie MN. Interactions between agmatine and polyamine uptake pathways in rat pulmonary artery endothelial cells. GENERAL PHARMACOLOGY 2000; 34:255-61. [PMID: 11282219 DOI: 10.1016/s0306-3623(00)00072-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Agmatine, a product of arginine metabolism in vascular endothelial cells, is structurally similar to the natural polyamines, putrescine, spermidine and spermine. To test the hypothesis that agmatine and polyamines interacted at the level of the polyamine transporter, we determined if polyamines competed with agmatine for import and whether interventions modulating polyamine import exerted coordinate effects on agmatine uptake. Multiple lines of evidence were obtained to suggest that agmatine enters pulmonary artery endothelial cells (PAECs) via the polyamine transporter, though its intracellular disposition after uptake appears different from the natural polyamines.
Collapse
Affiliation(s)
- P Babál
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | |
Collapse
|
46
|
Ando M, Kim HT, Takase I, Kawahara A. Imidazoline Receptor Contributes to Ion and Water Transport across the Intestine of the Eel Acclimated to Sea Water. Zoolog Sci 2000; 17:307-12. [PMID: 18494583 DOI: 10.2108/jsz.17.307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/1999] [Accepted: 10/22/1999] [Indexed: 11/17/2022]
Abstract
Guanabenz, an I2-imidazoline-related compound with high affinity for intestinal membrane of the eel (), enhanced the transepithelial potential difference (PD) and short-circuit current (Isc) from serosa to mucosa after pretreatment with isobutylmethylxanthine (IBMX), serotonin (5-HT) and methacholine (MCh). The mucosal effect of guanabenz was not mimicked by adrenaline, indicating that the mucosal guanabenz binding site is not adrenoceptors. The mucosal guanabenz enhanced the Isc in a concentration-dependent manner. Similar enhancement in the Isc was also obtained after addition of other imidazoline derivatives such as ST93, clonidine, ST91, naphazoline and UK14,304 into the mucosal fluid. On the other hand, the effect of guanabenz was completely blocked by mucosal RX821002 or efaroxan, another imidazoline derivatives. Since some imidazoline derivatives act as agonists and others as antagonist, there must exist imidazoline receptor on the mucosal side of the eel intestine. Accompanied by an increase in the PD, NaCl and water absorption across the intestine was also enhanced by mucosal guanabenz. To search for endogenous ligands for the imidazoline receptor, luminal fluid in the intestine of the seawater eels was collected. However, most luminal fluid was ineffective. Only one among 10 samples showed guanabenz-like activity, suggesting that the endogenous ligands is secreted into the lumen under restricted condition alone.
Collapse
|
47
|
Uzbay IT, Yeşilyurt O, Celik T, Ergün H, Işimer A. Effects of agmatine on ethanol withdrawal syndrome in rats. Behav Brain Res 2000; 107:153-9. [PMID: 10628739 DOI: 10.1016/s0166-4328(99)00127-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Effects of agmatine, which is an endogenous polyamine metabolite formed by decarboxylation of L-arginine, have been investigated on the ethanol withdrawal syndrome in rats. Adult male Wistar rats were used in the study. Ethanol (7.2% v/v) was given to the rats by a liquid diet for 21 days. Agmatine (20, 40, 80 and 160 mg/kg) and saline were injected to rats intraperitoneally 30 min before ethanol withdrawal testing. After 30th min, 2nd and 6th h of ethanol withdrawal, rats were observed for 5 min, and withdrawal signs which included locomotor hyperactivity, agitation, stereotyped behavior, wet dog shakes and tremor were recorded or rated. A second series of injections was given at 6 h after the first one, and subjects were then tested for audiogenic seizures. Agmatine caused dose-dependent and significant inhibitory effects on stereotyped behaviors, wet dog shakes and tremors during the observation period. It did not cause any significant change in motor coordination of naive (not ethanol-dependent) rats. Our results suggest that agmatine attenuates withdrawal syndrome in ethanol-dependent rats; thus, this drug may be beneficial in the treatment of ethanol dependence.
Collapse
Affiliation(s)
- I T Uzbay
- Department of Medical Pharmacology, Faculty of Medicine, Gülhane Military Medical Academy, Ankara, Turkey.
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Carvajal N, Olate J, Salas M, López V, Cerpa J, Herrera P, Uribe E. Evidence that histidine-163 is critical for catalytic activity, but not for substrate binding to Escherichia coli agmatinase. Biochem Biophys Res Commun 1999; 264:196-200. [PMID: 10527864 DOI: 10.1006/bbrc.1999.1505] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Agmatinase (agmatine ureohydrolase, EC 3.5.3.11) from Escherichia coli was inactivated by diethyl pyrocarbonate (DEPC) and illumination in the presence of Rose bengal. Protection against photoinactivation was afforded by the product putrescine, and the dissociation constant of the enzyme-protector complex (12 mM) was essentially equal to the K(i) value for this compound acting as a competitive inhibitor of agmatine hydrolysis. Upon mutation of His163 by phenylalanine, the agmatinase activity was reduced to 3-5% of wild-type activity, without any change in K(m) for agmatine or K(i) for putrescine inhibition. The mutant was insensitive to DEPC and dye-sensitized inactivations. We conclude that His163 plays an important role in the catalytic function of agmatinase, but it is not directly involved in substrate binding.
Collapse
Affiliation(s)
- N Carvajal
- Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Normally, the kidney plays the dominant role in setting long-term arterial pressure, and the nervous system acts primarily as a short-term regulator, adjusting arterial pressure to acute challenges (eg, standing, running, and stress). However, in several animal models and in subsets of hypertensive human patients, the nervous system seems to play a more significant role in the chronic elevation of arterial pressure. Many clinical studies suggest that the peripheral sympathetic nerves are intimately involved in hypertension, and researchers recently characterized abnormalities in the brain that seem to predispose animal models to sympathetic nervous system overactivity and hypertension. Together, the current data strongly suggest that the brain, via the sympathetic nervous system, directly contributes to some forms of hypertension and indirectly contributes to all of them. This review is not intended as an exhaustive examination of all studies on the role of the nervous system in hypertension but rather focuses on several intriguing experiments that provide provocative new insights on this topic.
Collapse
Affiliation(s)
- J M Wyss
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|