1
|
Teli BB, Nagar P, Priyadarshini Y, Poonia P, Natarajan K. A CUG codon-adapted anchor-away toolkit for functional analysis of genes in Candida albicans. mSphere 2024; 9:e0070323. [PMID: 38251906 PMCID: PMC10900876 DOI: 10.1128/msphere.00703-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Promoter shutoff of essential genes in the diploid Candida albicans has often been insufficient to create tight, conditional null alleles due to leaky expression and has been a stumbling block in pathogenesis research. Moreover, homozygous deletion of non-essential genes has often been problematic due to the frequent aneuploidy in the mutant strains. Rapid, conditional depletion of essential genes by the anchor-away strategy has been successfully employed in Saccharomyces cerevisiae and other model organisms. Here, rapamycin mediates the dimerization of human FK506-binding protein (FKBP12) and FKBP12-rapamycin-binding (FRB) domain-containing target protein, resulting in relocalization to altered sub-cellular locations. In this work, we used the ribosomal protein Rpl13 as the anchor and took two nuclear proteins as targets to construct a set of mutants in a proof-of-principle approach. We first constructed a rapamycin-resistant C. albicans strain by introducing a dominant mutation in the CaTOR1 gene and a homozygous deletion of RBP1, the ortholog of FKBP12, a primary target of rapamycin. The FKBP12 and the FRB coding sequences were then CUG codon-adapted for C. albicans by site-directed mutagenesis. Anchor-away strains expressing the essential TBP1 gene or the non-essential SPT8 gene as FRB fusions were constructed. We found that rapamycin caused rapid cessation of growth of the TBP-AA strain within 15 minutes and the SPT8-AA strain phenocopied the constitutive filamentous phenotype of the spt8Δ/spt8Δ mutant. Thus, the anchor-away toolbox for C. albicans developed here can be employed for genome-wide analysis to identify gene function in a rapid and reliable manner, further accelerating anti-fungal drug development in C. albicans. IMPORTANCE Molecular genetic studies thus far have identified ~27% open-reading frames as being essential for the vegetative growth of Candida albicans in rich medium out of a total 6,198 haploid set of open reading frames. However, a major limitation has been to construct rapid conditional alleles of essential C. albicans genes with near quantitative depletion of encoded proteins. Here, we have developed a toolbox for rapid and conditional depletion of genes that would aid studies of gene function of both essential and non-essential genes.
Collapse
Affiliation(s)
- Basharat Bashir Teli
- Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Priyanka Nagar
- Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Yumnam Priyadarshini
- Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Poonam Poonia
- Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Krishnamurthy Natarajan
- Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
2
|
Yu H, Yang H, Haridas S, Hayes RD, Lynch H, Andersen S, Newman M, Li G, Martínez-Soto D, Milo-Cochavi S, Hazal Ayhan D, Zhang Y, Grigoriev IV, Ma LJ. Conservation and Expansion of Transcriptional Factor Repertoire in the Fusarium oxysporum Species Complex. J Fungi (Basel) 2023; 9:359. [PMID: 36983527 PMCID: PMC10056406 DOI: 10.3390/jof9030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The Fusarium oxysporum species complex (FOSC) includes both plant and human pathogens that cause devastating plant vascular wilt diseases and threaten public health. Each F. oxysporum genome comprises core chromosomes (CCs) for housekeeping functions and accessory chromosomes (ACs) that contribute to host-specific adaptation. This study inspects global transcription factor profiles (TFomes) and their potential roles in coordinating CC and AC functions to accomplish host-specific interactions. Remarkably, we found a clear positive correlation between the sizes of TFomes and the proteomes of an organism. With the acquisition of ACs, the FOSC TFomes were larger than the other fungal genomes included in this study. Among a total of 48 classified TF families, 14 families involved in transcription/translation regulations and cell cycle controls were highly conserved. Among the 30 FOSC expanded families, Zn2-C6 and Znf_C2H2 were most significantly expanded to 671 and 167 genes per family including well-characterized homologs of Ftf1 (Zn2-C6) and PacC (Znf_C2H2) that are involved in host-specific interactions. Manual curation of characterized TFs increased the TFome repertoires by 3% including a disordered protein Ren1. RNA-Seq revealed a steady pattern of expression for conserved TF families and specific activation for AC TFs. Functional characterization of these TFs could enhance our understanding of transcriptional regulation involved in FOSC cross-kingdom interactions, disentangle species-specific adaptation, and identify targets to combat diverse diseases caused by this group of fungal pathogens.
Collapse
Affiliation(s)
- Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - He Yang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sajeet Haridas
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Richard D. Hayes
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Hunter Lynch
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sawyer Andersen
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Madison Newman
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gengtan Li
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Domingo Martínez-Soto
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shira Milo-Cochavi
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Dilay Hazal Ayhan
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Yong Zhang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Igor V. Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94598, USA
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Yu H, Yang H, Haridas S, Hayes RD, Lynch H, Andersen S, Li G, Mart Nez-Soto D, Milo-Cochavi S, Hazal Ayhan D, Zhang Y, Grigoriev IV, Ma LJ. Conservation and Expansion of Transcriptional Factor Repertoire in the Fusarium oxysporum Species Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527873. [PMID: 36798233 PMCID: PMC9934661 DOI: 10.1101/2023.02.09.527873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The Fusarium oxysporum species complex (FOSC) includes both plant and human pathogens that cause devastating plant vascular wilt diseases and threaten public health. Each F. oxysporum genome comprises core chromosomes (CCs) for housekeeping functions and accessory chromosomes (ACs) that contribute to host-specific adaptation. This study inspected global transcription factor profiles (TFomes) and their potential roles in coordinating CCs and ACs functions to accomplish host-specific pathogenicity. Remarkably, we found a clear positive correlation between the sizes of TFome and proteome of an organism, and FOSC TFomes are larger due to the acquisition of ACs. Among a total of 48 classified TF families, 14 families involved in transcription/translation regulations and cell cycle controls are highly conserved. Among 30 FOSC expanded families, Zn2-C6 and Znf_C2H2 are most significantly expanded to 671 and 167 genes per family, including well-characterized homologs of Ftf1 (Zn2-C6) and PacC (Znf_C2H2) involved in host-specific interactions. Manual curation of characterized TFs increased the TFome repertoires by 3%, including a disordered protein Ren1. Expression profiles revealed a steady expression of conserved TF families and specific activation of AC TFs. Functional characterization of these TFs could enhance our understanding of transcriptional regulation involved in FOSC cross-kingdom interactions, disentangle species-specific adaptation, and identify targets to combat diverse diseases caused by this group of fungal pathogens.
Collapse
|
4
|
OsTBP2.1, a TATA-Binding Protein, Alters the Ratio of OsNRT2.3b to OsNRT2.3a and Improves Rice Grain Yield. Int J Mol Sci 2022; 23:ijms231810795. [PMID: 36142708 PMCID: PMC9503026 DOI: 10.3390/ijms231810795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
The OsNRT2.3a and OsNRT2.3b isoforms play important roles in the uptake and transport of nitrate during rice growth. However, it is unclear which cis-acting element controls the transcription of OsNRT2.3 into these specific isoforms. In this study, we used a yeast one-hybrid assay to obtain the TATA-box binding protein OsTBP2.1, which binds to the TATA-box of OsNRT2.3, and verified its important role through transient expression and RNA-seq. We found that the TATA-box of OsNRT2.3 mutants and binding protein OsTBP2.1 together increased the transcription ratio of OsNRT2.3b to OsNRT2.3a. The overexpression of OsTBP2.1 promoted nitrogen uptake and increased rice yield compared with the wild-type; however, the OsTBP2.1 T-DNA mutant lines exhibited the opposite trend. Detailed analyses demonstrated that the TATA-box was the key cis-regulatory element for OsNRT2.3 to be transcribed into OsNRT2.3a and OsNRT2.3b. Additionally, this key cis-regulatory element, together with the binding protein OsTBP2.1, promoted the development of rice and increased grain yield.
Collapse
|
5
|
Peil K, Värv S, Ilves I, Kristjuhan K, Jürgens H, Kristjuhan A. Transcriptional regulator Taf14 binds DNA and is required for the function of transcription factor TFIID in the absence of histone H2A.Z. J Biol Chem 2022; 298:102369. [PMID: 35970389 PMCID: PMC9478928 DOI: 10.1016/j.jbc.2022.102369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
The transcriptional regulator Taf14 is a component of multiple protein complexes involved in transcription initiation and chromatin remodeling in yeast cells. Although Taf14 is not required for cell viability, it becomes essential in conditions where the formation of the transcription preinitiation complex is hampered. The specific role of Taf14 in mediating transcription initiation and preinitiation complex formation is unclear. Here, we explored its role in the general transcription factor IID by mapping Taf14 genetic and proteomic interactions and found that it was needed for the function of the complex if Htz1, the yeast homolog of histone H2A.Z, was absent from chromatin. Dissecting the functional domains of Taf14 revealed that the linker region between the YEATS and ET domains was required for cell viability in the absence of Htz1 protein. We further show that the linker region of Taf14 interacts with DNA. We propose that providing additional DNA binding capacity might be a general role of Taf14 in the recruitment of protein complexes to DNA and chromatin.
Collapse
Affiliation(s)
- Kadri Peil
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia
| | - Signe Värv
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia
| | - Ivar Ilves
- Institute of Technology, University of Tartu; Nooruse 1, Tartu 50411, Estonia
| | - Kersti Kristjuhan
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia
| | - Henel Jürgens
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia
| | - Arnold Kristjuhan
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia.
| |
Collapse
|
6
|
Baptista ISC, Kandavalli V, Chauhan V, Bahrudeen MNM, Almeida BLB, Palma CSD, Dash S, Ribeiro AS. Sequence-dependent model of genes with dual σ factor preference. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194812. [PMID: 35338024 DOI: 10.1016/j.bbagrm.2022.194812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
Escherichia coli uses σ factors to quickly control large gene cohorts during stress conditions. While most of its genes respond to a single σ factor, approximately 5% of them have dual σ factor preference. The most common are those responsive to both σ70, which controls housekeeping genes, and σ38, which activates genes during stationary growth and stresses. Using RNA-seq and flow-cytometry measurements, we show that 'σ70+38 genes' are nearly as upregulated in stationary growth as 'σ38 genes'. Moreover, we find a clear quantitative relationship between their promoter sequence and their response strength to changes in σ38 levels. We then propose and validate a sequence dependent model of σ70+38 genes, with dual sensitivity to σ38 and σ70, that is applicable in the exponential and stationary growth phases, as well in the transient period in between. We further propose a general model, applicable to other stresses and σ factor combinations. Given this, promoters controlling σ70+38 genes (and variants) could become important building blocks of synthetic circuits with predictable, sequence-dependent sensitivity to transitions between the exponential and stationary growth phases.
Collapse
Affiliation(s)
- Ines S C Baptista
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Vinodh Kandavalli
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland; Department of Cell and Molecular Biology, Uppsala University, Uppsala 752 37, Sweden
| | - Vatsala Chauhan
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Mohamed N M Bahrudeen
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Bilena L B Almeida
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Cristina S D Palma
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Suchintak Dash
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Andre S Ribeiro
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland; Center of Technology and Systems (CTS-Uninova), NOVA University of Lisbon, 2829-516 Monte de Caparica, Portugal.
| |
Collapse
|
7
|
Grant PA, Winston F, Berger SL. The biochemical and genetic discovery of the SAGA complex. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194669. [PMID: 33338653 DOI: 10.1016/j.bbagrm.2020.194669] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
One of the major advances in our understanding of gene regulation in eukaryotes was the discovery of factors that regulate transcription by controlling chromatin structure. Prominent among these discoveries was the demonstration that Gcn5 is a histone acetyltransferase, establishing a direct connection between transcriptional activation and histone acetylation. This breakthrough was soon followed by the purification of a protein complex that contains Gcn5, the SAGA complex. In this article, we review the early genetic and biochemical experiments that led to the discovery of SAGA and the elucidation of its multiple activities.
Collapse
Affiliation(s)
- Patrick A Grant
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States of America
| | - Fred Winston
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States of America.
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Department of Biology, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| |
Collapse
|
8
|
Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin. Cells 2018; 7:cells7030017. [PMID: 29498679 PMCID: PMC5870349 DOI: 10.3390/cells7030017] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 02/07/2023] Open
Abstract
Regulation of gene expression is achieved by sequence-specific transcriptional regulators, which convey the information that is contained in the sequence of DNA into RNA polymerase activity. This is achieved by the recruitment of transcriptional co-factors. One of the consequences of co-factor recruitment is the control of specific properties of nucleosomes, the basic units of chromatin, and their protein components, the core histones. The main principles are to regulate the position and the characteristics of nucleosomes. The latter includes modulating the composition of core histones and their variants that are integrated into nucleosomes, and the post-translational modification of these histones referred to as histone marks. One of these marks is the methylation of lysine 4 of the core histone H3 (H3K4). While mono-methylation of H3K4 (H3K4me1) is located preferentially at active enhancers, tri-methylation (H3K4me3) is a mark found at open and potentially active promoters. Thus, H3K4 methylation is typically associated with gene transcription. The class 2 lysine methyltransferases (KMTs) are the main enzymes that methylate H3K4. KMT2 enzymes function in complexes that contain a necessary core complex composed of WDR5, RBBP5, ASH2L, and DPY30, the so-called WRAD complex. Here we discuss recent findings that try to elucidate the important question of how KMT2 complexes are recruited to specific sites on chromatin. This is embedded into short overviews of the biological functions of KMT2 complexes and the consequences of H3K4 methylation.
Collapse
|
9
|
Zhou X, Blocker AW, Airoldi EM, O'Shea EK. A computational approach to map nucleosome positions and alternative chromatin states with base pair resolution. eLife 2016; 5. [PMID: 27623011 PMCID: PMC5094857 DOI: 10.7554/elife.16970] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/13/2016] [Indexed: 11/13/2022] Open
Abstract
Understanding chromatin function requires knowing the precise location of nucleosomes. MNase-seq methods have been widely applied to characterize nucleosome organization in vivo, but generally lack the accuracy to determine the precise nucleosome positions. Here we develop a computational approach leveraging digestion variability to determine nucleosome positions at a base-pair resolution from MNase-seq data. We generate a variability template as a simple error model for how MNase digestion affects the mapping of individual nucleosomes. Applied to both yeast and human cells, this analysis reveals that alternatively positioned nucleosomes are prevalent and create significant heterogeneity in a cell population. We show that the periodic occurrences of dinucleotide sequences relative to nucleosome dyads can be directly determined from genome-wide nucleosome positions from MNase-seq. Alternatively positioned nucleosomes near transcription start sites likely represent different states of promoter nucleosomes during transcription initiation. Our method can be applied to map nucleosome positions in diverse organisms at base-pair resolution.
Collapse
Affiliation(s)
- Xu Zhou
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | | | - Edoardo M Airoldi
- Department of Statistics, Harvard University, Cambridge, United States.,The Broad Institute of MIT and Harvard, Cambridge, United States
| | - Erin K O'Shea
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| |
Collapse
|
10
|
Identifying genetic modulators of the connectivity between transcription factors and their transcriptional targets. Proc Natl Acad Sci U S A 2016; 113:E1835-43. [PMID: 26966232 DOI: 10.1073/pnas.1517140113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of gene expression by transcription factors (TFs) is highly dependent on genetic background and interactions with cofactors. Identifying specific context factors is a major challenge that requires new approaches. Here we show that exploiting natural variation is a potent strategy for probing functional interactions within gene regulatory networks. We developed an algorithm to identify genetic polymorphisms that modulate the regulatory connectivity between specific transcription factors and their target genes in vivo. As a proof of principle, we mapped connectivity quantitative trait loci (cQTLs) using parallel genotype and gene expression data for segregants from a cross between two strains of the yeast Saccharomyces cerevisiae We identified a nonsynonymous mutation in the DIG2 gene as a cQTL for the transcription factor Ste12p and confirmed this prediction empirically. We also identified three polymorphisms in TAF13 as putative modulators of regulation by Gcn4p. Our method has potential for revealing how genetic differences among individuals influence gene regulatory networks in any organism for which gene expression and genotype data are available along with information on binding preferences for transcription factors.
Collapse
|
11
|
Liang C, Wang Y, Murota Y, Liu X, Smith D, Siomi MC, Liu Q. TAF11 Assembles the RISC Loading Complex to Enhance RNAi Efficiency. Mol Cell 2015; 59:807-18. [PMID: 26257286 DOI: 10.1016/j.molcel.2015.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/21/2015] [Accepted: 07/01/2015] [Indexed: 11/16/2022]
Abstract
Assembly of the RNA-induced silencing complex (RISC) requires formation of the RISC loading complex (RLC), which contains the Dicer-2 (Dcr-2)-R2D2 complex and recruits duplex siRNA to Ago2 in Drosophila melanogaster. However, the precise composition and action mechanism of Drosophila RLC remain unclear. Here we identified the missing factor of RLC as TATA-binding protein-associated factor 11 (TAF11) by genetic screen. Although it is an annotated nuclear transcription factor, we found that TAF11 also associated with Dcr-2/R2D2 and localized to cytoplasmic D2 bodies. Consistent with defective RLC assembly in taf11(-/-) ovary extract, we reconstituted the RLC in vitro using the recombinant Dcr-2-R2D2 complex, TAF11, and duplex siRNA. Furthermore, we showed that TAF11 tetramer facilitates Dcr-2-R2D2 tetramerization to enhance siRNA binding and RISC loading activities. Together, our genetic and biochemical studies define the molecular nature of the Drosophila RLC and elucidate a cytoplasmic function of TAF11 in organizing RLC assembly to enhance RNAi efficiency.
Collapse
Affiliation(s)
- Chunyang Liang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yibing Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yukiko Murota
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Xiang Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dean Smith
- Departments of Pharmacology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mikiko C Siomi
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Qinghua Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; International Institute of Integrated Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.
| |
Collapse
|
12
|
Chen WY, Zhang J, Geng H, Du Z, Nakadai T, Roeder RG. A TAF4 coactivator function for E proteins that involves enhanced TFIID binding. Genes Dev 2013; 27:1596-609. [PMID: 23873942 DOI: 10.1101/gad.216192.113] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The multisubunit TFIID plays a direct role in transcription initiation by binding to core promoter elements and directing preinitiation complex assembly. Although TFIID may also function as a coactivator through direct interactions with promoter-bound activators, mechanistic aspects of this poorly defined function remain unclear. Here, biochemical studies show a direct TFIID-E-protein interaction that (1) is mediated through interaction of a novel E-protein activation domain (activation domain 3 [AD3]) with the TAF homology (TAFH) domain of TAF4, (2) is critical for activation of a natural target gene by an E protein, and (3) mechanistically acts by enhancing TFIID binding to the core promoter. Complementary assays establish a gene-specific role for the TAFH domain in TFIID recruitment and activation of a large subset of genes in vivo. These results firmly establish TAF4 as a bona fide E-protein coactivator as well as a mechanism involving facilitated TFIID binding through direct interaction with an E-protein activation domain.
Collapse
Affiliation(s)
- Wei-Yi Chen
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
13
|
Genome-wide organization of eukaryotic preinitiation complex is influenced by nonconsensus protein-DNA binding. Biophys J 2013; 104:1107-15. [PMID: 23473494 DOI: 10.1016/j.bpj.2013.01.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/14/2013] [Accepted: 01/28/2013] [Indexed: 01/24/2023] Open
Abstract
Genome-wide binding preferences of the key components of eukaryotic preinitiation complex (PIC) have been recently measured at high resolution in Saccharomyces cerevisiae by Rhee and Pugh. However, the rules determining the PIC binding specificity remain poorly understood. In this study, we show that nonconsensus protein-DNA binding significantly influences PIC binding preferences. We estimate that such nonconsensus binding contributes statistically at least 2-3 kcal/mol (on average) of additional attractive free energy per protein per core-promoter region. The predicted attractive effect is particularly strong at repeated poly(dA:dT) and poly(dC:dG) tracts. Overall, the computed free-energy landscape of nonconsensus protein-DNA binding shows strong correlation with the measured genome-wide PIC occupancy. Remarkably, statistical PIC preferences of binding to both TFIID-dominated and SAGA-dominated genes correlate with the nonconsensus free-energy landscape, yet these two groups of genes are distinguishable based on the average free-energy profiles. We suggest that the predicted nonconsensus binding mechanism provides a genome-wide background for specific promoter elements, such as transcription-factor binding sites, TATA-like elements, and specific binding of the PIC components to nucleosomes. We also show that nonconsensus binding has genome-wide influence on transcriptional frequency.
Collapse
|
14
|
Generation of a Monoclonal Antibody Specifically Reacting with Neuron-specific TATA-Box Binding Protein-Associated Factor 1 (N-TAF1). Antibodies (Basel) 2012. [DOI: 10.3390/antib2010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Zhang J, Poh HM, Peh SQ, Sia YY, Li G, Mulawadi FH, Goh Y, Fullwood MJ, Sung WK, Ruan X, Ruan Y. ChIA-PET analysis of transcriptional chromatin interactions. Methods 2012; 58:289-99. [PMID: 22926262 DOI: 10.1016/j.ymeth.2012.08.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/16/2012] [Accepted: 08/16/2012] [Indexed: 11/19/2022] Open
Abstract
Long-range chromatin contacts between specific DNA regulatory elements play a pivotal role in gene expression regulation, and a global characterization of these interactions in the 3-dimensional (3D) chromatin structure is imperative in understanding signaling networks and cell states. Chromatin Interaction Analysis using Paired-End Tag sequencing (ChIA-PET) is a method which converts functional chromatin structure into millions of short tag sequences. Combining Chromatin Immunoprecipitation (ChIP), proximity ligation and high-throughput sequencing, ChIA-PET provides a global and unbiased interrogation of higher-order chromatin structures associated with specific protein factors. Here, we describe the detailed procedures of the ChIA-PET methodology, unraveling transcription-associated chromatin contacts in a model human cell line.
Collapse
Affiliation(s)
- Jingyao Zhang
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sustained expression of a neuron-specific isoform of the Taf1 gene in development stages and aging in mice. Biochem Biophys Res Commun 2012; 425:273-7. [PMID: 22842574 DOI: 10.1016/j.bbrc.2012.07.081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 07/17/2012] [Indexed: 11/22/2022]
Abstract
TATA-box binding protein associated factor 1 (TAF1) protein is the largest and the essential component of the TFIID complex in the pathway of RNA polymerase II-mediated gene transcription, and it regulates transcription of a large number of genes related to cell division. The neuron-specific isoform of the TAF1 gene (N-TAF1), which we reported previously, may have an essential role in neurons through transcriptional regulation of many neuron-specific genes. In the present study, we cloned the full-length cDNA that encodes the mouse homologue of N-TAF1 (N-Taf1) protein. By carrying out of real time RT-PCR, we investigated the expression analysis of the N-Taf1 mRNA in mouse tissues and cell lines. As well as the human N-TAF1, the N-Taf1 showed limited expression in the brain and neuroblastoma, whereas Taf1 expressed elsewhere. Furthermore, in mouse embryo head or mouse brain, mRNA expression of TAF1 changes dramatically during development but N-Taf1 showed sustained expression. Our result suggests that the N-Taf1 gene has an important role in non-dividing neuronal cell rather than in cell division and proliferation during neurogenesis.
Collapse
|
17
|
Zaborowska J, Taylor A, Roeder RG, Murphy S. A novel TBP-TAF complex on RNA polymerase II-transcribed snRNA genes. Transcription 2012; 3:92-104. [PMID: 22441827 PMCID: PMC3337830 DOI: 10.4161/trns.19783] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Initiation of transcription of most human genes transcribed by RNA polymerase II (RNAP II) requires the formation of a preinitiation complex comprising TFIIA, B, D, E, F, H and RNAP II. The general transcription factor TFIID is composed of the TATA-binding protein and up to 13 TBP-associated factors. During transcription of snRNA genes, RNAP II does not appear to make the transition to long-range productive elongation, as happens during transcription of protein-coding genes. In addition, recognition of the snRNA gene-type specific 3' box RNA processing element requires initiation from an snRNA gene promoter. These characteristics may, at least in part, be driven by factors recruited to the promoter. For example, differences in the complement of TAFs might result in differential recruitment of elongation and RNA processing factors. As precedent, it already has been shown that the promoters of some protein-coding genes do not recruit all the TAFs found in TFIID. Although TAF5 has been shown to be associated with RNAP II-transcribed snRNA genes, the full complement of TAFs associated with these genes has remained unclear. Here we show, using a ChIP and siRNA-mediated approach, that the TBP/TAF complex on snRNA genes differs from that found on protein-coding genes. Interestingly, the largest TAF, TAF1, and the core TAFs, TAF10 and TAF4, are not detected on snRNA genes. We propose that this snRNA gene-specific TAF subset plays a key role in gene type-specific control of expression.
Collapse
Affiliation(s)
| | - Alice Taylor
- Sir William Dunn School of Pathology; University of Oxford; Oxford, UK
| | - Robert G. Roeder
- Laboratory of Biochemistry and Molecular Biology; The Rockefeller University; New York, NY USA
| | - Shona Murphy
- Sir William Dunn School of Pathology; University of Oxford; Oxford, UK
| |
Collapse
|
18
|
Rhee HS, Pugh BF. Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 2012; 483:295-301. [PMID: 22258509 PMCID: PMC3306527 DOI: 10.1038/nature10799] [Citation(s) in RCA: 396] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 12/20/2011] [Indexed: 01/24/2023]
Abstract
The structural and positional organization of transcription pre-initiation complexes (PICs) across eukaryotic genomes is unknown. We employed ChIP-exo to precisely examine ~6,000 PICs in Saccharomyces. PICs, including RNA polymerase II and general factors TFIIA, -B, -D/TBP, -E, -F, -H, and -K were positioned within promoters and excluded from coding regions. Exonuclease patterns agreed with crystallographic models of the PIC, and were sufficiently precise to identify TATA-like elements at so-called TATA-less promoters. These PICs and their transcription start sites were positionally constrained at TFIID-engaged +1 nucleosomes. At TATA box-containing promoters, which are depleted of TFIID, a +1 nucleosome was positioned to be in competition with the PIC, which may afford greater latitude in start site selection. Our genomic localization of mRNA and noncoding RNA PICs reveal that two PICs, in inverted orientation, may occupy the flanking borders of nucleosome-free regions. Their unambiguous detection may help distinguish bona-fide genes from transcriptional noise.
Collapse
Affiliation(s)
- Ho Sung Rhee
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
19
|
Kim DH, Park SE, Kim M, Ji YI, Kang MY, Jung EH, Ko E, Kim Y, Kim S, Shim YM, Park J. A functional single nucleotide polymorphism at the promoter region of cyclin A2 is associated with increased risk of colon, liver, and lung cancers. Cancer 2011; 117:4080-91. [DOI: 10.1002/cncr.25930] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/13/2010] [Accepted: 12/08/2010] [Indexed: 01/10/2023]
|
20
|
Jamal MS, Ravichandran S, Jailkhani N, Chatterjee S, Dua R, Rao KVS. Defining the antigen receptor-dependent regulatory network that induces arrest of cycling immature B-lymphocytes. BMC SYSTEMS BIOLOGY 2010; 4:169. [PMID: 21143896 PMCID: PMC3004859 DOI: 10.1186/1752-0509-4-169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 12/09/2010] [Indexed: 11/16/2022]
Abstract
Background Engagement of the antigen receptor on immature B-lymphocytes leads to cell cycle arrest, and subsequent apoptosis. This is an essential process for eliminating self reactive B cells during its different stages of development. However, the mechanism by which it is achieved is not completely understood. Results Here we employed a systems biology approach that combined extensive experimentation with in silico methodologies to chart the network of receptor-activated pathways that mediated the arrest of immature B cells in the G1 phase of the cell cycle. Interestingly, we found that only a sparse network of signaling intermediates was recruited upon engagement of the antigen receptor. This then led to the activation of a restricted subset of transcription factors, with the consequent induction of genes primarily involved in the cell death pathway. Subsequent experiments revealed that the weak initiation of intracellular signaling pathways derived from desensitization of the receptor-proximal protein tyrosine kinase Lyn, to receptor-dependent activation. Intriguingly, the desensitization was a result of the constitutive activation of this kinase in unstimulated cells, which was likely maintained through a regulatory feedback loop involving the p38 MAP kinase. The high basal activity then attenuated the ability of the antigen receptor to recruit Lyn, and thereby also the downstream signaling intermediates. Finally, integration of these results into a mathematical model provided further substantiation to the novel finding that the ground state of the intracellular signaling machinery constitutes an important determinant of the outcome of receptor-induced cellular responses. Conclusions Our results identify the global events leading to the G1 arrest and subsequent apoptosis in immature B cells upon receptor activation.
Collapse
Affiliation(s)
- Mohammad Sarwar Jamal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | |
Collapse
|
21
|
Baumann M, Pontiller J, Ernst W. Structure and basal transcription complex of RNA polymerase II core promoters in the mammalian genome: an overview. Mol Biotechnol 2010; 45:241-7. [PMID: 20300884 DOI: 10.1007/s12033-010-9265-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mammalian core promoter is a sophisticated and crucial component for the regulation of transcription mediated by the RNA polymerase II. It is generally defined as the minimal region of contiguous DNA sequence that is sufficient to accurately initiate a basal level of gene expression. The core promoter represents the ultimate target for nucleation of a functional pre-initiation complex composed of the RNA polymerase II and associated general transcription factors. Among the more than 40 distinct proteins assembling the basal transcription complex, TFIID plays a central role in recognizing and binding specific core promoter elements to support creating an environment that facilitates transcription initiation. Several common DNA motifs, like the TATA box, initiator region, or the downstream promoter element, are found in a subset of core promoters present in various combinations. Another class of promoters that is usually absent of a TATA box is constituted by the so-called CpG islands, which are associated with the majority of protein-coding genes within the mammalian genome.
Collapse
Affiliation(s)
- Martina Baumann
- Department of Biotechnology, Austrian Center of Biopharmaceutical Technology, University of Natural Resources and Applied Life Sciences, Vienna, Austria.
| | | | | |
Collapse
|
22
|
Bhaumik SR. Distinct regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:97-108. [PMID: 20800707 DOI: 10.1016/j.bbagrm.2010.08.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 01/08/2023]
Abstract
A growing number of human diseases are linked to abnormal gene expression which is largely controlled at the level of transcriptional initiation. The gene-specific activator promotes the initiation of transcription through its interaction with one or more components of the transcriptional initiation machinery, hence leading to stimulated transcriptional initiation or activation. However, all activator proteins do not target the same component(s) of the transcriptional initiation machinery. Rather, they can have different target specificities, and thus, can lead to distinct mechanisms of transcriptional activation. Two such distinct mechanisms of transcriptional activation in yeast are mediated by the SAGA (Spt-Ada-Gcn5-Acetyltransferase) and TFIID (Transcription factor IID) complexes, and are termed as "SAGA-dependent" and "TFIID-dependent" transcriptional activation, respectively. SAGA is the target of the activator in case of SAGA-dependent transcriptional activation, while the targeting of TFIID by the activator leads to TFIID-dependent transcriptional activation. Both the SAGA and TFIID complexes are highly conserved from yeast to human, and play crucial roles in gene activation among eukaryotes. The regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID are discussed here. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
Affiliation(s)
- Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illnois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
23
|
Mischerikow N, Spedale G, Altelaar AFM, Timmers HTM, Pijnappel WWMP, Heck AJR. In-depth profiling of post-translational modifications on the related transcription factor complexes TFIID and SAGA. J Proteome Res 2010; 8:5020-30. [PMID: 19731963 DOI: 10.1021/pr900449e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The basal transcription factor TFIID and the chromatin-modifying complex SAGA, which have several subunits in common, are crucial for transcription regulation. Here, we describe an in-depth profiling of post-translational modifications (PTMs) on both TFIID and SAGA from yeast. We took a multipronged approach using high-resolution mass spectrometry (LC-MS) in combination with the proteases Trypsin, Chymotrypsin and Glu-C. The cumulative peptide identification data, at a false discovery rate <1%, allowed us to cover most TFIID and SAGA subunit sequences to near completion. Additionally, for TFIID/SAGA subunits, we identified 118/102 unique phosphorylated and 54/61 unique lysine acetylated sites. Especially, several lysine residues on the SAGA subunits Spt7p and Sgf73p were found to be acetylated. Using a spectral counting approach, we found that the shared subunit TAF5p is phosphorylated to a significant greater extent in SAGA than in TFIID. Finally, we were able to map for the first time the cleavage site in Spt7p that is related to formation of the SAGA-like complex SLIK/SALSA. In general, our combination of tandem affinity enrichment, digestion with different proteases, extensive prefractionation and high-resolution LC-MS identifies a large number of PTMs of TFIID and SAGA/SLIK that might aid in future functional studies on these transcription factors.
Collapse
Affiliation(s)
- Nikolai Mischerikow
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
TAF6delta orchestrates an apoptotic transcriptome profile and interacts functionally with p53. BMC Mol Biol 2010; 11:10. [PMID: 20096117 PMCID: PMC2827470 DOI: 10.1186/1471-2199-11-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 01/22/2010] [Indexed: 01/30/2023] Open
Abstract
Background TFIID is a multiprotein complex that plays a pivotal role in the regulation of RNA polymerase II (Pol II) transcription owing to its core promoter recognition and co-activator functions. TAF6 is a core TFIID subunit whose splice variants include the major TAF6α isoform that is ubiquitously expressed, and the inducible TAF6δ. In contrast to TAF6α, TAF6δ is a pro-apoptotic isoform with a 10 amino acid deletion in its histone fold domain that abolishes its interaction with TAF9. TAF6δ expression can dictate life versus death decisions of human cells. Results Here we define the impact of endogenous TAF6δ expression on the global transcriptome landscape. TAF6δ was found to orchestrate a transcription profile that included statistically significant enrichment of genes of apoptotic function. Interestingly, gene expression patterns controlled by TAF6δ share similarities with, but are not equivalent to, those reported to change following TAF9 and/or TAF9b depletion. Finally, because TAF6δ regulates certain p53 target genes, we tested and demonstrated a physical and functional interaction between TAF6δ and p53. Conclusion Together our data define a TAF6δ-driven apoptotic gene expression program and show crosstalk between the p53 and TAF6δ pathways.
Collapse
|
25
|
Hart DO, Santra MK, Raha T, Green MR. Selective interaction between Trf3 and Taf3 required for early development and hematopoiesis. Dev Dyn 2010; 238:2540-9. [PMID: 19777587 PMCID: PMC2861292 DOI: 10.1002/dvdy.22083] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In zebrafish, TATA-box-binding protein (TBP)-related factor 3, Trf3, is required for early development and initiation of hematopoiesis, and functions by promoting expression of a single target gene, mespa. Recent studies have shown that in murine muscle cells, TRF3 interacts with the TBP-associated factor TAF3. Here we investigate the role of Taf3 in zebrafish embryogenesis. We find that like Trf3-depleted zebrafish embryos, Taf3-depleted embryos exhibit multiple developmental defects and fail to undergo hematopoiesis. Both Trf3 and Taf3 are selectively bound to the mespa promoter and are required for mespa expression. Significantly, Taf3 interacts with Trf3 but not Tbp, and a Trf3 mutant that disrupts this interaction fails to support mespa transcription, early development, and hematopoiesis. Thus, a selective interaction between Trf3 and Taf3 is required for early zebrafish development and initiation of hematopoiesis. Finally, we provide evidence that TRF3 and TAF3 are also required for hematopoiesis initiation in the mouse.
Collapse
Affiliation(s)
- Daniel O Hart
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
26
|
Malik S, Shukla A, Sen P, Bhaumik SR. The 19 s proteasome subcomplex establishes a specific protein interaction network at the promoter for stimulated transcriptional initiation in vivo. J Biol Chem 2010; 284:35714-24. [PMID: 19843524 DOI: 10.1074/jbc.m109.035709] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 26 S proteasome complex that comprises the 20 S core and 19 S regulatory (with six ATPases) particles is engaged in an ATP-dependent degradation of a variety of key regulatory proteins and, thus, controls important cellular processes. Interestingly, several recent studies have implicated the 19 S regulatory particle in controlling eukaryotic transcriptional initiation or activation independently of the 20 S core particle. However, the mechanism of action of the 19 S proteasome subcomplex in regulation of eukaryotic transcriptional activation is not clearly understood in vivo. Here, using a chromatin immunoprecipitation assay in conjunction with mutational and transcriptional analyses in Saccharomyces cerevisiae, we show that the 19 S proteasomal subcomplex establishes a specific protein interaction network at the upstream activating sequence of the promoter. Such an interaction network is essential for formation of the preinitiation complex at the core promoter to initiate transcription. Furthermore, we demonstrate that the formation of the transcription complex assembly at the promoter is dependent on 19 S ATPase activity. Intriguingly, 19 S ATPases appear to cross-talk for stimulation of the assembly of transcription factors at the promoter. Together, these results provide significant insights as to how the 19 S proteasome subcomplex regulates the formation of the active transcription complex assembly (and, hence, transcriptional initiation) at the promoter in vivo.
Collapse
Affiliation(s)
- Shivani Malik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901, USA
| | | | | | | |
Collapse
|
27
|
Pelka P, Ablack JNG, Shuen M, Yousef AF, Rasti M, Grand RJ, Turnell AS, Mymryk JS. Identification of a second independent binding site for the pCAF acetyltransferase in adenovirus E1A. Virology 2009; 391:90-8. [PMID: 19541337 DOI: 10.1016/j.virol.2009.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/22/2009] [Accepted: 05/26/2009] [Indexed: 11/19/2022]
Abstract
The conserved region 3 (CR3) portion of the human adenovirus (HAdV) 5 E1A protein functions as a potent transcriptional activator that induces expression of viral early genes during infection. Expression of HAdV-5 CR3 in the yeast Saccharomyces cerevisiae inhibits growth, as do the corresponding regions of the HAdV-3, 4, 9, 12 and 40 E1A proteins, which represent the remaining five HAdV subgroups. Growth inhibition is alleviated by disruption of the SAGA transcriptional regulatory complex, suggesting that CR3 targets the yeast SAGA complex. In yeast, transcriptional activation by several, but not all, of the CR3 regions requires the Gcn5 acetyltransferase component of SAGA. The CR3 regions of HAdV-3, 5, 9 and 40, but not HAdV-4 and 12 interact with the pCAF acetyltransferase, a mammalian ortholog of yeast Gcn5. Disruption of the previously described N-terminal pCAF binding site abrogates binding by the HAdV-5 243R E1A protein, but not the larger 289R E1A protein, which is otherwise identical except for the presence of CR3. RNA interference directed against pCAF decreased HAdV-5 CR3 dependent transcriptional activation in mammalian cells. Our results identify a second independent binding site for pCAF in E1A and suggest that it contributes to CR3 dependent transcriptional activation.
Collapse
Affiliation(s)
- Peter Pelka
- Department of Oncology, The University of Western Ontario, London Regional Cancer Centre, London, Ontario, Canada N6A 4L6
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Campbell JM, Lockwood WW, Buys TPH, Chari R, Coe BP, Lam S, Lam WL. Integrative genomic and gene expression analysis of chromosome 7 identified novel oncogene loci in non-small cell lung cancer. Genome 2009; 51:1032-9. [PMID: 19088816 DOI: 10.1139/g08-086] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lung cancer accounts for over a quarter of cancer deaths, with non-small cell lung cancer (NSCLC) accounting for approximately 80% of cases. Several genome studies have been undertaken in both cell models of NSCLC and clinical samples to identify alterations underlying disease behaviour, and many have identified recurring aberrations of chromosome 7. The presence of recurring chromosome 7 alterations that do not span the well-studied oncogenes EGFR (at 7p11.2) and MET (at 7q31.2) has raised the hypothesis of additional genes on this chromosome that contribute to tumourigenesis. In this study, we demonstrated that multiple loci on chromosome 7 are indeed amplified in NSCLC, and through integrative analysis of gene dosage alterations and parallel gene expression changes, we identified new lung cancer oncogene candidates, including FTSJ2, NUDT1, TAF6, and POLR2J. Activation of these key genes was confirmed in panels of clinical lung tumour tissue as compared with matched normal lung tissue. The detection of gene activation in multiple cohorts of samples strongly supports the presence of key genes involved in lung cancer that are distinct from the EGFR and MET loci on chromosome 7.
Collapse
Affiliation(s)
- Jennifer M Campbell
- Department of Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z1L3 Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Distinct modes of gene regulation by a cell-specific transcriptional activator. Proc Natl Acad Sci U S A 2009; 106:4213-8. [PMID: 19251649 DOI: 10.1073/pnas.0808347106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The architectural layout of a eukaryotic RNA polymerase II core promoter plays a role in general transcriptional activation. However, its role in tissue-specific expression is not known. For example, differing modes of its recognition by general transcription machinery can provide an additional layer of control within which a single tissue-restricted transcription factor may operate. Erythroid Kruppel-like factor (EKLF) is a hematopoietic-specific transcription factor that is critical for the activation of subset of erythroid genes. We find that EKLF interacts with TATA binding protein-associated factor 9 (TAF9), which leads to important consequences for expression of adult beta-globin. First, TAF9 functionally supports EKLF activity by enhancing its ability to activate the beta-globin gene. Second, TAF9 interacts with a conserved beta-globin downstream promoter element, and ablation of this interaction by beta-thalassemia-causing mutations decreases its promoter activity and disables superactivation. Third, depletion of EKLF prevents recruitment of TAF9 to the beta-globin promoter, whereas depletion of TAF9 drastically impairs beta-promoter activity. However, a TAF9-independent mode of EKLF transcriptional activation is exhibited by the alpha-hemoglobin-stabilizing protein (AHSP) gene, which does not contain a discernable downstream promoter element. In this case, TAF9 does not enhance EKLF activity and depletion of TAF9 has no effect on AHSP promoter activation. These studies demonstrate that EKLF directs different modes of tissue-specific transcriptional activation depending on the architecture of its target core promoter.
Collapse
|
30
|
Gopalakrishnan AM, Nyindodo LA, Ross Fergus M, López-Estraño C. Plasmodium falciparum: Preinitiation complex occupancy of active and inactive promoters during erythrocytic stage. Exp Parasitol 2008; 121:46-54. [PMID: 18951895 DOI: 10.1016/j.exppara.2008.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 07/22/2008] [Accepted: 09/30/2008] [Indexed: 10/21/2022]
Abstract
Over 80% of Plasmodium falciparum genes are developmentally regulated during the parasite's life cycle with most genes expressed in a "just in time" fashion. However, the molecular mechanisms of gene regulation are still poorly understood. Analysis of P. falciparum genome shows that the parasite appears to encode relatively few transcription factors homologous to those in other eukaryotes. We used Chromatin immunoprecipitation (ChIP) to study interaction of PfTBP and PfTFIIE with stage specific Plasmodium promoters. Our results indicate that PfTBP and PfTFIIE are bound to their cognate sequence in active and inactive erythrocytic-expressed promoters. In addition, TF occupancy appears to extend beyond the promoter regions, since PfTBP interaction with the coding and 3' end regions was also detected. No PfTBP or PfTFIIE interaction was detected on csp and pfs25 genes which are not active during the erythrocytic asexual stage. Furthermore, PfTBP and PfTFIIE binding did not appear to correlate with histone 3 and/or 4 acetylation, suggesting that histone acetylation may not be a prerequisite for PfTBP or PfTFIIE promoter interaction. Based on our observations we concluded that the PfTBP/PfTFIIE-containing preinitiation complex (PIC) would be preassembled on promoters of all erythrocytic-expressed genes in a fashion independent of histone acetylation, providing support for the "poised" model. Contrary to the classical model of eukaryotic gene regulation, PIC interaction with Plasmodium promoters occurred independent of transcriptional activity and to the notion that chromatin acetylation leads to PIC assembly.
Collapse
Affiliation(s)
- Anusha M Gopalakrishnan
- Department of Biology, Life Sciences Building, Room 409B, The University of Memphis, 3774 Walker Avenue, Memphis, TN 38152, USA
| | | | | | | |
Collapse
|
31
|
Guven-Ozkan T, Nishi Y, Robertson SM, Lin R. Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TAF-4. Cell 2008; 135:149-60. [PMID: 18854162 PMCID: PMC2652481 DOI: 10.1016/j.cell.2008.07.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 04/18/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
Abstract
In C. elegans, four asymmetric divisions, beginning with the zygote (P0), generate transcriptionally repressed germline blastomeres (P1-P4) and somatic sisters that become transcriptionally active. The protein PIE-1 represses transcription in the later germline blastomeres but not in the earlier germline blastomeres P0 and P1. We show here that OMA-1 and OMA-2, previously shown to regulate oocyte maturation, repress transcription in P0 and P1 by binding to and sequestering in the cytoplasm TAF-4, a component critical for assembly of TFIID and the pol II preinitiation complex. OMA-1/2 binding to TAF-4 is developmentally regulated, requiring phosphorylation by the DYRK kinase MBK-2, which is activated at meiosis II after fertilization. OMA-1/2 are normally degraded after the first mitosis, but ectopic expression of wild-type OMA-1 is sufficient to repress transcription in both somatic and later germline blastomeres. We propose that phosphorylation by MBK-2 serves as a developmental switch, converting OMA-1/2 from oocyte to embryo regulators.
Collapse
Affiliation(s)
- Tugba Guven-Ozkan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Scott M. Robertson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rueyling Lin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
32
|
Kimura J, Nguyen ST, Liu H, Taira N, Miki Y, Yoshida K. A functional genome-wide RNAi screen identifies TAF1 as a regulator for apoptosis in response to genotoxic stress. Nucleic Acids Res 2008; 36:5250-9. [PMID: 18684994 PMCID: PMC2532742 DOI: 10.1093/nar/gkn506] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Evasion from apoptotic cell death is a characteristic of cancer; genes that modulate this process may be optimal for therapeutic attack. Identifying key regulators of apoptosis is thus a central goal in cancer therapy. Here, we describe a loss-of-function screen that uses RNA interference libraries to identify genes required for induction of apoptosis. We used a short-hairpin RNA expressing vector with high gene-expression silencing activity that contained fetal brain cDNAs. Survived cells from genotoxic stress were isolated to determine knock-down of molecules that are crucial for induction of apoptosis. We identified TBP-associated factor 1 (TAF1), a gene previously implicated as an essential component of transcription machinery. Depletion of TAF1 was associated with substantial attenuation of apoptosis induced by oxidative as well as genotoxic stress. Microarray analysis further demonstrated that a number of genes were transcriptionally declined in cells silenced for TAF1. Surprisingly, knocking down TAF1 exhibited a marked decrease in p27(Kip1) expression, allowing cells resistant from oxidative stress-induced apoptosis. These results suggest that TAF1 regulates apoptosis by controlling p27(Kip1) expression. Our system provides a novel approach to identifying candidate genes that modulate apoptosis.
Collapse
Affiliation(s)
- Junko Kimura
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Zhang H, Kruk JA, Reese JC. Dissection of coactivator requirement at RNR3 reveals unexpected contributions from TFIID and SAGA. J Biol Chem 2008; 283:27360-27368. [PMID: 18682387 DOI: 10.1074/jbc.m803831200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gene encoding ribonucleotide reductase 3 (RNR3) is strongly induced in response to DNA damage. Its expression is strictly dependent upon the TAF(II) subunits of TFIID, which are required for the recruitment of SWI/SNF and nucleosome remodeling. However, full activation of RNR3 also requires GCN5, the catalytic subunit of the SAGA histone acetyltransferase complex. Thus, RNR3 is dependent upon both TFIID and SAGA, two complexes that deliver TATA-binding protein (TBP) to promoters. Furthermore, unlike the majority of TFIID-dominated genes, RNR3 contains a consensus TATA-box, a feature of SAGA-regulated core promoters. Although a large fraction of the genome can be characterized as either TFIID- or SAGA-dominant, it is expected that many genes utilize both. The mechanism of activation and the relative contributions of SAGA and TFIID at genes regulated by both complexes have not been examined. Here we delineated the role of SAGA in the regulation of RNR3 and contrast it to that of TFIID. We find that SAGA components fulfill distinct functions in the regulation of RNR3. The core promoter of RNR3 is SAGA-dependent, and we provide evidence that SAGA, not TAF(II)s within TFIID, are largely responsible for TBP recruitment. This taken together with our previous work provides evidence that SAGA recruits TBP, whereas TFIID mediates chromatin remodeling. Thus, we described an unexpected shift in the division of labor between these two complexes and provide the first characterization of a gene that requires both SAGA and TFIID.
Collapse
Affiliation(s)
- Hesheng Zhang
- Department of Biochemistry and Molecular Biology, Center for Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jennifer A Kruk
- Department of Biochemistry and Molecular Biology, Center for Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Joseph C Reese
- Department of Biochemistry and Molecular Biology, Center for Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802.
| |
Collapse
|
34
|
Wilhelm E, Pellay FX, Benecke A, Bell B. TAF6delta controls apoptosis and gene expression in the absence of p53. PLoS One 2008; 3:e2721. [PMID: 18628956 PMCID: PMC2444026 DOI: 10.1371/journal.pone.0002721] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 06/18/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Life and death decisions of metazoan cells hinge on the balance between the expression of pro- versus anti-apoptotic gene products. The general RNA polymerase II transcription factor, TFIID, plays a central role in the regulation of gene expression through its core promoter recognition and co-activator functions. The core TFIID subunit TAF6 acts in vitro as an essential co-activator of transcription for the p53 tumor suppressor protein. We previously identified a splice variant of TAF6, termed TAF6delta that can be induced during apoptosis. METHODOLOGY/PRINCIPAL FINDINGS To elucidate the impact of TAF6delta on cell death and gene expression, we have employed modified antisense oligonucleotides to enforce expression of endogenous TAF6delta. The induction of endogenous TAF6delta triggered apoptosis in tumor cell lines, including cells devoid of p53. Microarray experiments revealed that TAF6delta activates gene expression independently of cellular p53 status. CONCLUSIONS Our data define TAF6delta as a pivotal node in a signaling pathway that controls gene expression programs and apoptosis in the absence of p53.
Collapse
Affiliation(s)
- Emmanuelle Wilhelm
- RNA Group, Département de microbiologie et d'infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - François-Xavier Pellay
- Institut des Hautes Études Scientifiques and Institut de Recherche Interdisciplinaire – CNRS USR3078 - Université de Lille, Bures sur Yvette, France
| | - Arndt Benecke
- Institut des Hautes Études Scientifiques and Institut de Recherche Interdisciplinaire – CNRS USR3078 - Université de Lille, Bures sur Yvette, France
| | - Brendan Bell
- RNA Group, Département de microbiologie et d'infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
35
|
Yeast Rap1 contributes to genomic integrity by activating DNA damage repair genes. EMBO J 2008; 27:1575-84. [PMID: 18480842 DOI: 10.1038/emboj.2008.93] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 04/14/2008] [Indexed: 11/08/2022] Open
Abstract
Rap1 (repressor-activator protein 1) is a multifunctional protein that controls telomere function, silencing and the activation of glycolytic and ribosomal protein genes. We have identified a novel function for Rap1, regulating the ribonucleotide reductase (RNR) genes that are required for DNA repair and telomere expansion. Both the C terminus and DNA-binding domain of Rap1 are required for the activation of the RNR genes, and the phenotypes of different Rap1 mutants suggest that it utilizes both regions to carry out distinct steps in the activation process. Recruitment of Rap1 to the RNR3 gene is dependent on activation of the DNA damage checkpoint and chromatin remodelling by SWI/SNF. The dependence on SWI/SNF for binding suggests that Rap1 acts after remodelling to prevent the repositioning of nucleosomes back to the repressed state. Furthermore, the recruitment of Rap1 requires TAF(II)s, suggesting a role for TFIID in stabilizing activator binding in vivo. We propose that Rap1 acts as a rheostat controlling nucleotide pools in response to shortened telomeres and DNA damage, providing a mechanism for fine-tuning the RNR genes during checkpoint activation.
Collapse
|
36
|
Zabierowski SE, Deluca NA. Stabilized binding of TBP to the TATA box of herpes simplex virus type 1 early (tk) and late (gC) promoters by TFIIA and ICP4. J Virol 2008; 82:3546-54. [PMID: 18216093 PMCID: PMC2268492 DOI: 10.1128/jvi.02560-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 01/10/2008] [Indexed: 11/20/2022] Open
Abstract
We have recently shown that ICP4 has a differential requirement for the general transcription factor TFIIA in vitro (S. Zabierowski and N. DeLuca, J. Virol. 78:6162-6170, 2004). TFIIA was dispensable for ICP4 activation of a late promoter (gC) but was required for the efficient activation of an early promoter (tk). An intact INR element was required for proficient ICP4 activation of the late promoter in the absence of TFIIA. Because TFIIA is known to stabilize the binding of both TATA binding protein (TBP) and TFIID to the TATA box of core promoters and ICP4 has been shown to interact with TFIID, we tested the ability of ICP4 to stabilize the binding of either TBP or TFIID to the TATA box of representative early, late, and INR-mutated late promoters (tk, gC, and gC8, respectively). Utilizing DNase I footprinting analysis, we found that ICP4 was able to facilitate TFIIA stabilized binding of TBP to the TATA box of the early tk promoter. Using mutant ICP4 proteins, the ability to stabilize the binding of TBP to both the wild-type and the INR-mutated gC promoters was located in the amino-terminal region of ICP4. When TFIID was substituted for TBP, ICP4 could stabilize the binding of TFIID to the TATA box of the wild-type gC promoter. ICP4, however, could not effectively stabilize TFIID binding to the TATA box of the INR-mutated late promoter. The additional activities of TFIIA were required to stabilize the binding of TFIID to the INR-mutated late promoter. Collectively, these data suggest that TFIIA may be dispensable for ICP4 activation of the wild-type late promoter because ICP4 can substitute for TFIIA's ability to stabilize the binding of TFIID to the TATA box. In the absence of a functional INR, ICP4 can no longer stabilize TFIID binding to the TATA box of the late promoter and requires the additional activities of TFIIA. The stabilized binding of TFIID by TFIIA may in turn allow ICP4 to more efficiently activate transcription from non-INR containing promoters.
Collapse
Affiliation(s)
- Susan E Zabierowski
- Biomedical Science Tower, Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
37
|
An acetylation switch in p53 mediates holo-TFIID recruitment. Mol Cell 2008; 28:408-21. [PMID: 17996705 DOI: 10.1016/j.molcel.2007.09.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 07/16/2007] [Accepted: 09/06/2007] [Indexed: 11/22/2022]
Abstract
Posttranslational modifications mediate important regulatory functions in biology. The acetylation of the p53 transcription factor, for example, promotes transcriptional activation of target genes including p21. Here we show that the acetylation of two lysine residues in p53 promotes recruitment of the TFIID subunit TAF1 to the p21 promoter through its bromodomains. UV irradiation of cells diacetylates p53 at lysines 373 and 382, which in turn recruits TAF1 to a distal p53-binding site on the p21 promoter prior to looping to the core promoter. Disruption of acetyl-p53/bromodomain interaction inhibits TAF1 recruitment to both the distal p53-binding site and the core promoter. Further, the TFIID subunits TAF4, TAF5, and TBP are detected on the core promoter prior to TAF1, suggesting that, upon DNA damage, distinct subunits of TFIID may be recruited separately to the p21 promoter and that the transcriptional activation depends on posttranslational modification of the p53 transcription factor.
Collapse
|
38
|
Baker SP, Grant PA. The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene 2007; 26:5329-40. [PMID: 17694076 PMCID: PMC2746020 DOI: 10.1038/sj.onc.1210603] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Throughout the last decade, great advances have been made in our understanding of how DNA-templated cellular processes occur in the native chromatin environment. Proteins that regulate transcription, replication, DNA repair, mitosis and other processes must be targeted to specific regions of the genome and granted access to DNA, which is normally tightly packaged in the higher-order chromatin structure of eukaryotic nuclei. Massive multiprotein complexes have been discovered, which facilitate access to DNA and recruitment of downstream effectors through three distinct mechanisms: chemical modification of histone amino-acid residues, ATP-dependent chromatin remodeling and histone exchange. The yeast Spt-Ada-Gcn5-Acetyl transferase (SAGA) transcriptional co-activator complex regulates numerous cellular processes through coordination of multiple histone post-translational modifications. SAGA is known to generate and interact with a number of histone modifications, including acetylation, methylation, ubiquitylation and phosphorylation. Although best characterized for its role in regulating transcriptional activation, SAGA is also required for optimal transcription elongation, mRNA export and perhaps nucleotide excision repair. Here, we discuss findings from recent years that have elucidated the function of this 1.8-MDa complex in multiple cellular processes, and how misregulation of the homologous complexes in humans may ultimately play a role in development of disease.
Collapse
Affiliation(s)
- S P Baker
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
39
|
Di Pietro C, Ragusa M, Duro L, Guglielmino MR, Barbagallo D, Carnemolla A, Laganà A, Buffa P, Angelica R, Rinaldi A, Calafato MS, Milicia I, Caserta C, Giugno R, Pulvirenti A, Giunta V, Rapisarda A, Di Pietro V, Grillo A, Messina A, Ferro A, Grzeschik KH, Purrello M. Genomics, evolution, and expression of TBPL2, a member of the TBP family. DNA Cell Biol 2007; 26:369-85. [PMID: 17570761 DOI: 10.1089/dna.2006.0527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
TBPL2 is the most recently discovered and less characterized member of the TATA box binding protein (TBP) family that also comprises TBP, TATA box binding protein-like 1 (TBPL1), and Drosophila melanogaster TBP related factor (TRF). In this paper we report our in silico and in vitro data on (i) the genomics of the TBPL2 gene in Homo sapiens, Pan troglodytes, Mus musculus, Rattus norvegicus, Gallus gallus, Xenopus tropicalis, and Takifugu rubripes; (ii) its evolution and phylogenetic relationship with TBP, TBPL1, and TRF; (iii) the structure of the TBPL2 proteins that belong to the recently identified group of the intrinsically unstructured proteins (IUPs); and (iv) TBPL2 expression in different organs and cell types of Homo sapiens and Rattus norvegicus. Similar to TBP, both the TBPL2 gene and protein are bimodular. The 3' region of the gene encoding the DNA binding domain (DBD) was well conserved during evolution. Its high homology to vertebrate TBP suggests that TBPL2 also should bind to the TATA box and interact with the proteins binding to TBP carboxy-terminal domain, such as the TBP associated factors (TAFs). As already demonstrated for TBP, TBPL2 amino-terminal segment is intrinsically unstructured and, even though variable among vertebrates, comprises a highly conserved motif not found in any other known protein. Absence of TBPL2 from the genome of invertebrates and plants demonstrates its specific origin within the subphylum of vertebrates. Our RT-PCR analysis of human and rat RNA shows that, similar to TBP, TBPL2 is ubiquitously synthesized even though at variable levels that are at least two orders of magnitude lower. Higher expression of TBPL2 in the gonads than in other organs suggests that it could perform important functions in gametogenesis. Our genomic and expression data should contribute to clarify why TBP has a general master role within the transcription apparatus (TA), whereas both TBPL1 and TBPL2 perform tissue-specific functions.
Collapse
Affiliation(s)
- Cinzia Di Pietro
- Dipartimento di Scienze Biomediche-Unità di Biologia Genetica e BioInformatica, Università di Catania, Catania, Italy, EU
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wang X, Lee C, Gilmour DS, Gergen JP. Transcription elongation controls cell fate specification in the Drosophila embryo. Genes Dev 2007; 21:1031-6. [PMID: 17473169 PMCID: PMC1855229 DOI: 10.1101/gad.1521207] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The simple combinatorial rules for regulation of the sloppy-paired-1 (slp1) gene by the pair-rule transcription factors during early Drosophila embryogenesis offer a unique opportunity to investigate the molecular mechanisms of developmentally regulated transcription repression. We find that the initial repression of slp1 in response to Runt and Fushi-tarazu (Ftz) does not involve chromatin remodeling, or histone modification. Chromatin immunoprecipitation and in vivo footprinting experiments indicate RNA polymerase II (Pol II) initiates transcription in slp1-repressed cells and pauses downstream from the promoter in a complex that includes the negative elongation factor NELF. The finding that NELF also associates with the promoter regions of wingless (wg) and engrailed (en), two other pivotal targets of the pair-rule transcription factors, strongly suggests that developmentally regulated transcriptional elongation is central to the process of cell fate specification during this critical stage of embryonic development.
Collapse
Affiliation(s)
- Xiaoling Wang
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, New York 11794, USA
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Chanhyo Lee
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - David S. Gilmour
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - J. Peter Gergen
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, New York 11794, USA
- Corresponding author.E-MAIL ; FAX (631) 632-8575
| |
Collapse
|
41
|
Zhang H, Reese JC. Exposing the core promoter is sufficient to activate transcription and alter coactivator requirement at RNR3. Proc Natl Acad Sci U S A 2007; 104:8833-8. [PMID: 17502614 PMCID: PMC1885588 DOI: 10.1073/pnas.0701666104] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromatin is a formidable barrier to transcription. Nucleosome density is lowest over the regulatory regions of active genes, and many repressed genes have a tightly positioned nucleosome over their core promoter. However, it has not been shown that nucleosome positioning is sufficient for repression or whether disrupting a core promoter nucleosome specifically can activate gene expression in the absence of activating signals. Here we show that disrupting the nucleosome over the core promoter of RNR3 is sufficient to drive preinitiation complex assembly and activate transcription in the absence of activating signals. Remodeling of chromatin over the RNR3 promoter requires the recruitment of the SWI/SNF complex by the general transcription factor TFIID. We found that disrupting the nucleosome over the RNR3 core promoter relieves its dependence on TFIID and SWI/SNF, indicating a functional link between these two complexes. These results suggest that the specific function of TAF(II)s is to direct the chromatin remodeling step through SWI/SNF recruitment, and not core promoter selectivity. Our results indicate that nucleosome placement plays a dominant role in repression and that the ability of the core promoter to position a nucleosome is a major determinant in TAF(II) dependency of genes in vivo.
Collapse
Affiliation(s)
- Hesheng Zhang
- Department of Biochemistry and Molecular Biology, Center for Gene Regulation, Pennsylvania State University, University Park, PA 16802
| | - Joseph C. Reese
- Department of Biochemistry and Molecular Biology, Center for Gene Regulation, Pennsylvania State University, University Park, PA 16802
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Cheng Y, Buffone MG, Kouadio M, Goodheart M, Page DC, Gerton GL, Davidson I, Wang PJ. Abnormal sperm in mice lacking the Taf7l gene. Mol Cell Biol 2007; 27:2582-9. [PMID: 17242199 PMCID: PMC1899882 DOI: 10.1128/mcb.01722-06] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
TFIID is a general transcription factor required for transcription of most protein-coding genes by RNA polymerase II. TAF7L is an X-linked germ cell-specific paralogue of TAF7, which is a generally expressed component of TFIID. Here, we report the generation of Taf7l mutant mice by homologous recombination in embryonic stem cells by using the Cre-loxP strategy. While spermatogenesis was completed in Taf7l(-/Y) mice, the weight of Taf7l(-/Y) testis decreased and the amount of sperm in the epididymides was sharply reduced. Mutant epididymal sperm exhibited abnormal morphology, including folded tails. Sperm motility was significantly reduced, and Taf7l(-/Y) males were fertile with reduced litter size. Microarray profiling revealed that the abundance of six gene transcripts (including Fscn1) in Taf7l(-/Y) testes decreased more than twofold. In particular, FSCN1 is an F-action-bundling protein and thus may be critical for normal sperm morphology and sperm motility. Although deficiency of Taf7l may be compensated in part by Taf7, Taf7l has apparently evolved new specialized functions in the gene-selective transcription in male germ cell differentiation. Our mouse studies suggest that mutations in the human TAF7L gene might be implicated in X-linked oligozoospermia in men.
Collapse
Affiliation(s)
- Yong Cheng
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Garbett KA, Tripathi MK, Cencki B, Layer JH, Weil PA. Yeast TFIID serves as a coactivator for Rap1p by direct protein-protein interaction. Mol Cell Biol 2007; 27:297-311. [PMID: 17074814 PMCID: PMC1800639 DOI: 10.1128/mcb.01558-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 09/06/2006] [Accepted: 10/13/2006] [Indexed: 11/20/2022] Open
Abstract
In vivo studies have previously shown that Saccharomyces cerevisiae ribosomal protein (RP) gene expression is controlled by the transcription factor repressor activator protein 1 (Rap1p) in a TFIID-dependent fashion. Here we have tested the hypothesis that yeast TFIID serves as a coactivator for RP gene transcription by directly interacting with Rap1p. We have found that purified recombinant Rap1p specifically interacts with purified TFIID in pull-down assays, and we have mapped the domains of Rap1p and subunits of TFIID responsible. In vitro transcription of a UAS(RAP1) enhancer-driven reporter gene requires both Rap1p and TFIID and is independent of the Fhl1p-Ifh1p coregulator. UAS(RAP1) enhancer-driven transactivation in extracts depleted of both Rap1p and TFIID is efficiently rescued by addition of physiological amounts of these two purified factors but not TATA-binding protein. We conclude that Rap1p and TFIID directly interact and that this interaction contributes importantly to RP gene transcription.
Collapse
Affiliation(s)
- Krassimira A Garbett
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN 37232-0615, USA
| | | | | | | | | |
Collapse
|
44
|
Tamada Y, Nakamori K, Nakatani H, Matsuda K, Hata S, Furumoto T, Izui K. Temporary expression of the TAF10 gene and its requirement for normal development of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2007; 48:134-46. [PMID: 17148695 DOI: 10.1093/pcp/pcl048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
TAF10 is one of the TATA box-binding protein (TBP)-associated factors (TAFs) which constitute a TFIID with a TBP. Initially most TAFs were thought to be necessary for accurate transcription initiation from a broad group of core promoters. However, it was recently revealed that several TAFs are expressed in limited tissues during animal embryogenesis, and are indispensable for normal development of the tissues. They are called 'selective' TAFs. In plants, however, little is known as to these 'selective' TAFs and their function. Here we isolated the Arabidopsis thaliana TAF10 gene (atTAF10), which is a single gene closely related to the TAF10 genes of other organisms. atTAF10 was expressed transiently during the development of several organs such as lateral roots, rosette leaves and most floral organs. Such an expression pattern was clearly distinct from that of Arabidopsis Rpb1, which encodes a component of RNA polymerase II, suggesting that atTAF10 functions in not only general transcription but also the selective expression of a subset of genes. In a knockdown mutant of atTAF10, we observed several abnormal phenotypes involved in meristem activity and leaf development, suggesting that atTAF10 is concerned in pleiotropic, but selected morphological events in Arabidopsis. These results clearly demonstrate that TAF10 is a 'selective' TAF in plants, providing a new insight into the function of TAFs in plants.
Collapse
Affiliation(s)
- Yosuke Tamada
- Laboratory of Plant Physiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Yang C, Bolotin E, Jiang T, Sladek FM, Martinez E. Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters. Gene 2006; 389:52-65. [PMID: 17123746 PMCID: PMC1955227 DOI: 10.1016/j.gene.2006.09.029] [Citation(s) in RCA: 256] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Revised: 09/12/2006] [Accepted: 09/22/2006] [Indexed: 10/24/2022]
Abstract
The core promoter of eukaryotic genes is the minimal DNA region that recruits the basal transcription machinery to direct efficient and accurate transcription initiation. The fraction of human and yeast genes that contain specific core promoter elements such as the TATA box and the initiator (INR) remains unclear and core promoter motifs specific for TATA-less genes remain to be identified. Here, we present genome-scale computational analyses indicating that approximately 76% of human core promoters lack TATA-like elements, have a high GC content, and are enriched in Sp1-binding sites. We further identify two motifs - M3 (SCGGAAGY) and M22 (TGCGCANK) - that occur preferentially in human TATA-less core promoters. About 24% of human genes have a TATA-like element and their promoters are generally AT-rich; however, only approximately 10% of these TATA-containing promoters have the canonical TATA box (TATAWAWR). In contrast, approximately 46% of human core promoters contain the consensus INR (YYANWYY) and approximately 30% are INR-containing TATA-less genes. Significantly, approximately 46% of human promoters lack both TATA-like and consensus INR elements. Surprisingly, mammalian-type INR sequences are present - and tend to cluster - in the transcription start site (TSS) region of approximately 40% of yeast core promoters and the frequency of specific core promoter types appears to be conserved in yeast and human genomes. Gene Ontology analyses reveal that TATA-less genes in humans, as in yeast, are frequently involved in basic "housekeeping" processes, while TATA-containing genes are more often highly regulated, such as by biotic or stress stimuli. These results reveal unexpected similarities in the occurrence of specific core promoter types and in their associated biological processes in yeast and humans and point to novel vertebrate-specific DNA motifs that might play a selective role in TATA-independent transcription.
Collapse
Affiliation(s)
- Chuhu Yang
- Genetics Genomics and Bioinformatics Graduate Program, University of California, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
47
|
Yu Z, Costello LC, Feng P, Franklin RB. Characterization of the mitochondrial aconitase promoter and the identification of transcription factor binding. Prostate 2006; 66:1061-9. [PMID: 16598741 DOI: 10.1002/pros.20442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Mitochondrial (m) aconitase plays an important role in the unique pathway of citrate accumulation in prostate epithelial cells through its limited activity. In the current study, we characterized the human m-aconitase gene promoter. METHODS A 1,411-bp 5'-flanking fragment of the human m-aconitase gene was cloned, followed by 5' serial deletion analysis of promoter activity. Transcriptional start sties and transcription factors bound to the promoter were identified by 5' RACE, DNA pull-down assay and transcription factor array analysis. RESULTS Two transcriptional start sites were identified. The promoter fragment pulled down 15 transcription factors, some without consensus sequences in the promoter. Deletion of one Sp1 site eliminated all promoter activity. CONCLUSIONS The m-aconitase promoter is contained in a 153-bp 5' fragment lacking a TATA or CAAT sequence. Sp1 binding to a specific Sp1 site is required for promoter activity while other transcription factors are recruited through protein-protein interactions.
Collapse
Affiliation(s)
- Ziqiang Yu
- Department of Biomedical Sciences, Dental School, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
48
|
Gershenzon NI, Trifonov EN, Ioshikhes IP. The features of Drosophila core promoters revealed by statistical analysis. BMC Genomics 2006; 7:161. [PMID: 16790048 PMCID: PMC1538597 DOI: 10.1186/1471-2164-7-161] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 06/21/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Experimental investigation of transcription is still a very labor- and time-consuming process. Only a few transcription initiation scenarios have been studied in detail. The mechanism of interaction between basal machinery and promoter, in particular core promoter elements, is not known for the majority of identified promoters. In this study, we reveal various transcription initiation mechanisms by statistical analysis of 3393 nonredundant Drosophila promoters. RESULTS Using Drosophila-specific position-weight matrices, we identified promoters containing TATA box, Initiator, Downstream Promoter Element (DPE), and Motif Ten Element (MTE), as well as core elements discovered in Human (TFIIB Recognition Element (BRE) and Downstream Core Element (DCE)). Promoters utilizing known synergetic combinations of two core elements (TATA_Inr, Inr_MTE, Inr_DPE, and DPE_MTE) were identified. We also establish the existence of promoters with potentially novel synergetic combinations: TATA_DPE and TATA_MTE. Our analysis revealed several motifs with the features of promoter elements, including possible novel core promoter element(s). Comparison of Human and Drosophila showed consistent percentages of promoters with TATA, Inr, DPE, and synergetic combinations thereof, as well as most of the same functional and mutual positions of the core elements. No statistical evidence of MTE utilization in Human was found. Distinct nucleosome positioning in particular promoter classes was revealed. CONCLUSION We present lists of promoters that potentially utilize the aforementioned elements/combinations. The number of these promoters is two orders of magnitude larger than the number of promoters in which transcription initiation was experimentally studied. The sequences are ready to be experimentally tested or used for further statistical analysis. The developed approach may be utilized for other species.
Collapse
Affiliation(s)
- Naum I Gershenzon
- Department of Biomedical Informatics, The Ohio State University, 333 West 10Avenue, Columbus OH 43210, USA
- Department of Physics, Wright State University, Dayton OH 45435, USA
| | - Edward N Trifonov
- Genome Diversity Center, Institute of Evolution, University of Haifa, Haifa 31905, Israel
| | - Ilya P Ioshikhes
- Department of Biomedical Informatics, The Ohio State University, 333 West 10Avenue, Columbus OH 43210, USA
| |
Collapse
|
49
|
Hu X, Malik S, Negroiu CC, Hubbard K, Velalar CN, Hampton B, Grosu D, Catalano J, Roeder RG, Gnatt A. A Mediator-responsive form of metazoan RNA polymerase II. Proc Natl Acad Sci U S A 2006; 103:9506-11. [PMID: 16769904 PMCID: PMC1480437 DOI: 10.1073/pnas.0603702103] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA polymerase II (Pol II), whose 12 subunits are conserved across eukaryotes, is at the heart of the machinery responsible for transcription of mRNA. Although associated general transcription factors impart promoter specificity, responsiveness to gene- and tissue-selective activators additionally depends on the multiprotein Mediator coactivator complex. We have isolated from tissue extracts a distinct and abundant mammalian Pol II subpopulation that contains an additional tightly associated polypeptide, Gdown1. Our results establish that Gdown1-containing Pol II, designated Pol II(G), is selectively dependent on and responsive to Mediator. Thus, in an in vitro assay with general transcription factors, Pol II lacking Gdown1 displays unfettered levels of activator-dependent transcription in the presence or absence of Mediator. In contrast, Pol II(G) is dramatically less efficient in responding to activators in the absence of Mediator yet is highly and efficiently responsive to activators in the presence of Mediator. Our results reveal a transcriptional control mechanism in which Mediator-dependent regulation is enforced by means of Gdown1, which likely restricts Pol II function only to be reversed by Mediator.
Collapse
Affiliation(s)
- Xiaopeng Hu
- *Department of Pharmacology and Experimental Therapeutics
| | - Sohail Malik
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| | | | - Kyle Hubbard
- *Department of Pharmacology and Experimental Therapeutics
| | | | | | - Dan Grosu
- *Department of Pharmacology and Experimental Therapeutics
| | | | - Robert G. Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| | - Averell Gnatt
- *Department of Pharmacology and Experimental Therapeutics
- Marlene and Stewart Greenebaum Cancer Center and Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Abstract
Transcription factor IID (TFIID) plays a central role in regulating the expression of most eukaryotic genes. Of the 14 TBP-associated factor (TAF) subunits that compose TFIID, TAF1 is one of the largest and most functionally diverse. Yeast TAF1 can be divided into four regions including a putative histone acetyltransferase domain and TBP, TAF, and promoter binding domains. Establishing the importance of each region in gene expression through deletion analysis has been hampered by the cellular requirement of TAF1 for viability. To circumvent this limitation we introduced galactose-inducible deletion derivatives of previously defined functional regions of TAF1 into a temperature-sensitive taf1ts2 yeast strain. After galactose induction of the TAF1 mutants and temperature-induced elimination of the resident Taf1ts2 protein, we examined the properties and phenotypes of the mutants, including their impact on genome-wide transcription. Virtually all TAF1-dependent genes, which comprise approximately 90% of the yeast genome, displayed a strong dependence upon all regions of TAF1 that were tested. This finding might reflect the need for each region of TAF1 to stabilize TAF1 against degradation or may indicate that all TAF1-dependent genes require the many activities of TAF1. Paradoxically, deletion of the region of TAF1 that is important for promoter binding interfered with the expression of many genes that are normally TFIID-independent/SAGA (Spt-Ada-Gcn5-acetyltransferase)-dominated, suggesting that this region normally prevents TAF1 (TFIID) from interfering with the expression of SAGA-regulated genes.
Collapse
Affiliation(s)
- Jordan D Irvin
- Department of Biochemistry and Molecular Biology, Center for Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|