1
|
Zelleroth S, Stam F, Nylander E, Kjellgren E, Gising J, Larhed M, Grönbladh A, Hallberg M. The decanoate esters of nandrolone, testosterone, and trenbolone induce steroid specific memory impairment and somatic effects in the male rat. Horm Behav 2024; 161:105501. [PMID: 38368844 DOI: 10.1016/j.yhbeh.2024.105501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Long-term use of anabolic androgenic steroids (AAS) in supratherapeutic doses is associated with severe adverse effects, including physical, mental, and behavioral alterations. When used for recreational purposes several AAS are often combined, and in scientific studies of the physiological impact of AAS either a single compound or a cocktail of several steroids is often used. Because of this, steroid-specific effects have been difficult to define and are not fully elucidated. The present study used male Wistar rats to evaluate potential somatic and behavioral effects of three different AAS; the decanoate esters of nandrolone, testosterone, and trenbolone. The rats were exposed to 15 mg/kg of nandrolone decanoate, testosterone decanoate, or trenbolone decanoate every third day for 24 days. Body weight gain and organ weights (thymus, liver, kidney, testis, and heart) were measured together with the corticosterone plasma levels. Behavioral effects were studied in the novel object recognition-test (NOR-test) and the multivariate concentric square field-test (MCSF-test). The results conclude that nandrolone decanoate, but neither testosterone decanoate nor trenbolone decanoate, caused impaired recognition memory in the NOR-test, indicating an altered cognitive function. The behavioral profile and stress hormone level of the rats were not affected by the AAS treatments. Furthermore, the study revealed diverse AAS-induced somatic effects i.e., reduced body weight development and changes in organ weights. Of the three AAS included in the study, nandrolone decanoate was identified to cause the most prominent impact on the male rat, as it affected body weight development, the weights of multiple organs, and caused an impaired memory function.
Collapse
Affiliation(s)
- Sofia Zelleroth
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| | - Frida Stam
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| | - Erik Nylander
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| | - Ellinor Kjellgren
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden
| | - Johan Gising
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, SE-751 23, Uppsala University, Sweden.
| | - Mats Larhed
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, SE-751 23, Uppsala University, Sweden.
| | - Alfhild Grönbladh
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Sweden.
| |
Collapse
|
2
|
Seib DR, Tobiansky DJ, Meitzen J, Floresco SB, Soma KK. Neurosteroids and the mesocorticolimbic system. Neurosci Biobehav Rev 2023; 153:105356. [PMID: 37567491 PMCID: PMC11915106 DOI: 10.1016/j.neubiorev.2023.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The mesocorticolimbic system coordinates executive functions, such as working memory and behavioral flexibility. This circuit includes dopaminergic projections from the ventral tegmental area to the nucleus accumbens and medial prefrontal cortex. In this review, we summarize evidence that cells in multiple nodes of the mesocorticolimbic system produce neurosteroids (steroids synthesized in the nervous system) and express steroid receptors. Here, we focus on neuroandrogens (androgens synthesized in the nervous system), neuroestrogens (estrogens synthesized in the nervous system), and androgen and estrogen receptors. We also summarize how (neuro)androgens and (neuro)estrogens affect dopamine signaling in the mesocorticolimbic system and regulate executive functions. Taken together, the data suggest that steroids produced in the gonads and locally in the brain modulate higher-order cognition and executive functions.
Collapse
Affiliation(s)
- Désirée R Seib
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Daniel J Tobiansky
- Department of Biology and Neuroscience Program, St. Mary's College of Maryland, St. Mary's City, MD, USA
| | - John Meitzen
- Department of Biological Sciences and Center for Human Health and the Environment, NC State University, Raleigh, NC, USA
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Munawar N, Bitar MS, Masocha W. Activation of 5-HT1A Receptors Normalizes the Overexpression of Presynaptic 5-HT1A Receptors and Alleviates Diabetic Neuropathic Pain. Int J Mol Sci 2023; 24:14334. [PMID: 37762636 PMCID: PMC10532078 DOI: 10.3390/ijms241814334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Neuropathic pain is a well-documented phenomenon in experimental and clinical diabetes; however, current treatment is unsatisfactory. Serotoninergic-containing neurons are key components of the descending autoinhibitory pathway, and a decrease in their activity may contribute at least in part to diabetic neuropathic pain (DNP). A streptozotocin (STZ)-treated rat was used as a model for type 1 diabetes mellitus (T1DM). Pain transmission was evaluated using well-established nociceptive-based techniques, including the Hargreaves apparatus, cold plate and dynamic plantar aesthesiometer. Using qRT-PCR, Western blotting, immunohistochemistry, and HPLC-based techniques, we also measured in the central nervous system and peripheral nervous system of diabetic animals the expression and localization of 5-HT1A receptors (5-HT1AR), levels of key enzymes involved in the synthesis and degradation of tryptophan and 5-HT, including tryptophan hydroxylase-2 (Tph-2), tryptophan 2,3-dioxygenase (Tdo), indoleamine 2,3-dioxygenase 1 (Ido1) and Ido2. Moreover, spinal concentrations of 5-HT, 5-hydroxyindoleacetic acid (5-HIAA, a metabolite of 5-HT) and quinolinic acid (QA, a metabolite of tryptophan) were also quantified. Diabetic rats developed thermal hyperalgesia and cold/mechanical allodynia, and these behavioral abnormalities appear to be associated with the upregulation in the levels of expression of critical molecules related to the serotoninergic nervous system, including presynaptic 5-HT1AR and the enzymes Tph-2, Tdo, Ido1 and Ido2. Interestingly, the level of postsynaptic 5-HT1AR remains unaltered in STZ-induced T1DM. Chronic treatment of diabetic animals with 8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT), a selective 5-HT1AR agonist, downregulated the upregulation of neuronal presynaptic 5-HT1AR, increased spinal release of 5-HT (↑ 5-HIAA/5-HT) and reduced the concentration of QA, decreased mRNA expression of Tdo, Ido1 and Ido2, arrested neuronal degeneration and ameliorated pain-related behavior as exemplified by thermal hyperalgesia and cold/mechanical allodynia. These data show that 8-OH-DPAT alleviates DNP and other components of the serotoninergic system, including the ratio of 5-HIAA/5-HT and 5-HT1AR, and could be a useful therapeutic agent for managing DNP.
Collapse
Affiliation(s)
- Neha Munawar
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait;
| | - Milad S. Bitar
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait;
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, Al-Jabriya 046302, Kuwait;
| |
Collapse
|
4
|
Kohne S, Diekhof EK. Testosterone and estradiol affect adolescent reinforcement learning. PeerJ 2022; 10:e12653. [PMID: 35186450 PMCID: PMC8818269 DOI: 10.7717/peerj.12653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/29/2021] [Indexed: 01/11/2023] Open
Abstract
During adolescence, gonadal hormones influence brain maturation and behavior. The impact of 17β-estradiol and testosterone on reinforcement learning was previously investigated in adults, but studies with adolescents are rare. We tested 89 German male and female adolescents (mean age ± sd = 14.7 ± 1.9 years) to determine the extent 17β-estradiol and testosterone influenced reinforcement learning capacity in a response time adjustment task. Our data showed, that 17β-estradiol correlated with an enhanced ability to speed up responses for reward in both sexes, while the ability to wait for higher reward correlated with testosterone primary in males. This suggests that individual differences in reinforcement learning may be associated with variations in these hormones during adolescence, which may shift the balance between a more reward- and an avoidance-oriented learning style.
Collapse
Affiliation(s)
- Sina Kohne
- Faculty of Mathematics, Informatics and Natural Sciences, Department of Biology, Institute of Animal Cell and Systems Biology, Neuroendocrinology and Human Biology Unit, Universität Hamburg, Hamburg, Germany
| | - Esther K. Diekhof
- Faculty of Mathematics, Informatics and Natural Sciences, Department of Biology, Institute of Animal Cell and Systems Biology, Neuroendocrinology and Human Biology Unit, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
5
|
Sex and the serotonergic underpinnings of depression and migraine. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:117-140. [PMID: 33008520 DOI: 10.1016/b978-0-444-64123-6.00009-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most psychiatric disorders demonstrate sex differences in their prevalence and symptomatology, and in their response to treatment. These differences are particularly pronounced in mood disorders. Differences in sex hormone levels are among the most overt distinctions between males and females and are thus an intuitive underpinning for these clinical observations. In fact, treatment with estrogen and testosterone was shown to exert antidepressant effects, which underscores this link. Changes to monoaminergic signaling in general, and serotonergic transmission in particular, are understood as central components of depressive pathophysiology. Thus, modulation of the serotonin system may serve as a mechanism via which sex hormones exert their clinical effects in mental health disorders. Over the past 20 years, various experimental approaches have been applied to identify modes of influence of sex and sex hormones on the serotonin system. This chapter provides an overview of different molecular components of the serotonin system, followed by a review of studies performed in animals and in humans with the purpose of elucidating sex hormone effects. Particular emphasis will be placed on studies performed with positron emission tomography, a method that allows for human in vivo molecular imaging and, therefore, assessment of effects in a clinically representative context. The studies addressed in this chapter provide a wealth of information on the interaction between sex, sex hormones, and serotonin in the brain. In general, they offer evidence for the concept that the influence of sex hormones on various components of the serotonin system may serve as an underpinning for the clinical effects these hormones demonstrate.
Collapse
|
6
|
Losecaat Vermeer AB, Krol I, Gausterer C, Wagner B, Eisenegger C, Lamm C. Exogenous testosterone increases status-seeking motivation in men with unstable low social status. Psychoneuroendocrinology 2020; 113:104552. [PMID: 31884320 DOI: 10.1016/j.psyneuen.2019.104552] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/11/2019] [Accepted: 12/13/2019] [Indexed: 01/30/2023]
Abstract
Testosterone is associated with status-seeking behaviors such as competition, which may depend on whether one wins or loses status, but also on the stability of one's status. We examined (1) to what extent testosterone administration affects competition behavior in repeated social contests in men with high or low rank, and (2), whether this relationship is moderated by hierarchy stability, as predicted by the status instability hypothesis. Using a real effort-based design in healthy male participants (N = 173 males), we first found that testosterone (vs. placebo) increased motivation to compete for status, but only in individuals with an unstable low status. A second part of the experiment, tailored to directly compare stable with unstable hierarchies, indicated that exogenous testosterone again increased competitive motivation in individuals with a low unstable status, but decreased competition behavior in men with low stable status. Additionally, exogenous testosterone increased motivation in those with a stable high status. Further analysis suggested that these effects were moderated by individuals' trait dominance, and genetic differences assessed by the androgen receptor (CAG-repeat) and dopamine transporter (DAT1) polymorphisms. Our study provides evidence that testosterone specifically boosts status-related motivation when there is an opportunity to improve one's social status. The findings contribute to our understanding of testosterone's causal role in status-seeking motivation in competition behavior, and indicate that testosterone adaptively increases our drive for high status in a context-dependent manner. We discuss potential neurobiological pathways through which testosterone may attain these effects on behavior.
Collapse
Affiliation(s)
- A B Losecaat Vermeer
- Neuropsychopharmacology and Biopsychology Unit, Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Austria.
| | - I Krol
- Neuropsychopharmacology and Biopsychology Unit, Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Austria
| | - C Gausterer
- FDZ-Forensisches DNA Zentrallabor GmbH, Medical University of Vienna, Austria
| | - B Wagner
- Laboratory for Chromatographic & Spectrometric Analysis, FH JOANNEUM, Graz, Austria
| | - C Eisenegger
- Neuropsychopharmacology and Biopsychology Unit, Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Austria
| | - C Lamm
- Neuropsychopharmacology and Biopsychology Unit, Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Austria; Vienna Cognitive Science Hub, University of Vienna, Austria
| |
Collapse
|
7
|
Tabor J, Collins R, Debert CT, Shultz SR, Mychasiuk R. Neuroendocrine Whiplash: Slamming the Breaks on Anabolic-Androgenic Steroids Following Repetitive Mild Traumatic Brain Injury in Rats May Worsen Outcomes. Front Neurol 2019; 10:481. [PMID: 31133974 PMCID: PMC6517549 DOI: 10.3389/fneur.2019.00481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/23/2019] [Indexed: 11/13/2022] Open
Abstract
Sport-related concussion is an increasingly common injury among adolescents, with repetitive mild traumatic brain injuries (RmTBI) being a significant risk factor for long-term neurobiological and psychological consequences. It is not uncommon for younger professional athletes to consume anabolic-androgenic steroids (AAS) in an attempt to enhance their performance, subjecting their hormonally sensitive brains to potential impairment during neurodevelopment. Furthermore, RmTBI produces acute neuroendocrine dysfunction, specifically in the anterior pituitary, disrupting the hypothalamic-pituitary adrenal axis, lowering cortisol secretion that is needed to appropriately respond to injury. Some AAS users exhibit worse symptoms post-RmTBI if they quit their steroid regime. We sought to examine the pathophysiological outcomes associated with the abrupt cessation of the commonly abused AAS, Metandienone (Met) on RmTBI outcomes in rats. Prior to injury, adolescent male rats received either Met or placebo, and exercise. Rats were then administered RmTBIs or sham injuries, followed by steroid and exercise cessation (SEC) or continued treatment. A behavioral battery was conducted to measure outcomes consistent with clinical representations of post-concussion syndrome and chronic AAS exposure, followed by analysis of serum hormone levels, and qRT-PCR for mRNA expression and telomere length. RmTBI increased loss of consciousness and anxiety-like behavior, while also impairing balance and short-term working memory. SEC induced hyperactivity while Met treatment alone increased depressive-like behavior. There were cumulative effects whereby RmTBI and SEC exacerbated anxiety and short-term memory outcomes. mRNA expression in the prefrontal cortex, amygdala, hippocampus, and pituitary were modified in response to Met and SEC. Analysis of telomere length revealed the negative impact of SEC while Met and SEC produced changes in serum levels of testosterone and corticosterone. We identified robust changes in mRNA to serotonergic circuitry, neuroinflammation, and an enhanced stress response. Interestingly, Met treatment promoted glucocorticoid secretion after injury, suggesting that maintained AAS may be more beneficial than abstaining after mTBI.
Collapse
Affiliation(s)
- Jason Tabor
- Department of Psychology, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Reid Collins
- Department of Psychology, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Chantel T Debert
- Department of Psychology, University of Calgary, Calgary, AB, Canada.,Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
8
|
A meta-analytical evaluation of the dual-hormone hypothesis: Does cortisol moderate the relationship between testosterone and status, dominance, risk taking, aggression, and psychopathy? Neurosci Biobehav Rev 2019; 96:250-271. [DOI: 10.1016/j.neubiorev.2018.12.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 12/28/2022]
|
9
|
Qi C, Ji X, Zhang G, Kang Y, Huang Y, Cui R, Li S, Cui H, Shi G. Haloperidol ameliorates androgen-induced behavioral deficits in developing male rats. J Endocrinol 2018; 237:193-205. [PMID: 29563235 DOI: 10.1530/joe-17-0642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 03/21/2018] [Indexed: 01/06/2023]
Abstract
The purpose of present study was to infer the potential effects of testosterone increase in some male-based childhood-onset neuropsychiatric disorders, such as Tourette syndrome. Thus, the influence of early postnatal androgen exposure upon the neurobehaviors and its possible neural basis were investigated in the study. Male pup rats received consecutive 14-day testosterone propionate (TP) subcutaneous injection from postnatal day (PND) 7. The TP treatment produced the hyperactive motor behavior and grooming behavior as well as the increased levels of dopamine, tyrosine hydroxylase and dopamine transporter in the mesodopaminergic system and the elevated levels of serotonin in the nucleus accumbens, without affecting the levels of glutamate, γ-aminobutyric acid, norepinephrine and histamine in the caudate putamen and nucleus accumbens of PND21 and PND49 rats. Dopamine D2 receptor antagonist haloperidol was administered to the early postnatal TP-exposed PND21 and PND49 male rats 30 min prior to open field test. Haloperidol significantly ameliorated the motor behavioral and grooming behavioral defects induced by early postnatal TP exposure. The results demonstrated that early postnatal androgen exposure significantly disturbed the brain activity of developing male rats via enhancing the mesodopaminergic activity. It was suggested that abnormal increments of testosterone levels during the early postnatal development might be a potential risk factor for the incidence of some male-based childhood-onset neuropsychiatric disorders by affecting the mesodopaminergic system.
Collapse
Affiliation(s)
- Chunxiao Qi
- Department of NeurobiologyHebei Medical University, Shijiazhuang, People's Republic of China
- Department of Human AnatomyHebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiaoming Ji
- Department of NeurobiologyHebei Medical University, Shijiazhuang, People's Republic of China
| | - Guoliang Zhang
- Department of Human AnatomyHebei Medical University, Shijiazhuang, People's Republic of China
| | - Yunxiao Kang
- Department of NeurobiologyHebei Medical University, Shijiazhuang, People's Republic of China
| | - Yuanxiang Huang
- Grade 2015 Eight-year Clinical Medicine ProgramSchool of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Rui Cui
- Department of Human AnatomyHebei Medical University, Shijiazhuang, People's Republic of China
| | - Shuangcheng Li
- Department of Human AnatomyHebei Medical University, Shijiazhuang, People's Republic of China
| | - Huixian Cui
- Department of Human AnatomyHebei Medical University, Shijiazhuang, People's Republic of China
- Neuroscience Research CenterHebei Medical University, Shijiazhuang, People's Republic of China
| | - Geming Shi
- Department of NeurobiologyHebei Medical University, Shijiazhuang, People's Republic of China
- Department of Human AnatomyHebei Medical University, Shijiazhuang, People's Republic of China
- Neuroscience Research CenterHebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
10
|
Del Pino J, Moyano P, Ruiz M, Anadón MJ, Díaz MJ, García JM, Labajo-González E, Frejo MT. Amitraz changes NE, DA and 5-HT biosynthesis and metabolism mediated by alterations in estradiol content in CNS of male rats. CHEMOSPHERE 2017; 181:518-529. [PMID: 28463726 DOI: 10.1016/j.chemosphere.2017.04.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 05/21/2023]
Abstract
Amitraz is a formamidine insecticide/acaricide that alters different neurotransmitters levels, among other neurotoxic effects. Oral amitraz exposure (20, 50 and 80 mg/kg bw, 5 days) has been reported to increase serotonin (5-HT), norepinephrine (NE) and dopamine (DA) content and to decrease their metabolites and turnover rates in the male rat brain, particularly in the striatum, prefrontal cortex, and hippocampus. However, the mechanisms by which these alterations are produced are not completely understood. One possibility is that amitraz monoamine oxidase (MAO) inhibition could mediate these effects. Alternatively, it alters serum concentrations of sex steroids that regulate the enzymes responsible for these neurotransmitters synthesis and metabolism. Thus, alterations in sex steroids in the brain could also mediate the observed effects. To test these hypothesis regarding possible mechanisms, we treated male rats with 20, 50 and 80 mg/kg bw for 5 days and then isolated tissue from striatum, prefrontal cortex, and hippocampus. We then measured tissue levels of expression and/or activity of MAO, catechol-O-metyltransferase (COMT), dopamine-β-hydroxylase (DBH), tyrosine hydroxylase (TH) and tryptophan hydroxylase (TRH) as well as estradiol levels in these regions. Our results show that amitraz did not inhibit MAO activity at these doses, but altered MAO, COMT, DBH, TH and TRH gene expression, as well as TH and TRH activity and estradiol levels. The alteration of these enzymes was partially mediated by dysregulation of estradiol levels. Our present results provide new understanding of the mechanisms contributing to the harmful effects of amitraz.
Collapse
Affiliation(s)
- Javier Del Pino
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Paula Moyano
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Matilde Ruiz
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - María José Anadón
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - María Jesús Díaz
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - José Manuel García
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Elena Labajo-González
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - María Teresa Frejo
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
11
|
Eisenegger C, Kumsta R, Naef M, Gromoll J, Heinrichs M. Testosterone and androgen receptor gene polymorphism are associated with confidence and competitiveness in men. Horm Behav 2017; 92:93-102. [PMID: 27702564 DOI: 10.1016/j.yhbeh.2016.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 09/24/2016] [Accepted: 09/29/2016] [Indexed: 11/27/2022]
Abstract
A contribution to a special issue on Hormones and Human Competition. Studies in non-human animals and humans have demonstrated the important role of testosterone in competitive interactions. Here, we investigated whether endogenous testosterone levels predict the decision to compete, in a design excluding spite as a motive underlying competitiveness. In a laboratory experiment with real monetary incentives, 181 men solved arithmetic problems, first under a noncompetitive piece rate, followed by a competition incentive scheme. We also assessed several parameters relevant to competition, such as risk taking, performance, and confidence in one's own performance. Salivary testosterone levels were measured before and 20min after the competition task using mass spectrometry. Participants were also genotyped for the CAG repeat polymorphism of the androgen receptor gene, known to influence the efficacy of testosterone signaling in a reciprocal relationship to the number of CAG repeats. We observed a significant positive association between basal testosterone levels and the decision to compete, and that higher testosterone levels were related to greater confidence in one's own performance. Whereas the number of CAG repeats was not associated with the choice to compete, a lower number of CAG repeats was related to greater confidence in those who chose to compete, but this effect was attributable to the polymorphism's effect on actual performance. An increase in testosterone levels was observed following the experiment, and this increase varied with self-reported high-school math grades. We expand upon the latest research by documenting effects of the androgen system in confidence in one's own ability, and conclude that testosterone promotes competitiveness without spite.
Collapse
Affiliation(s)
- Christoph Eisenegger
- Neuropsychopharmacology and Biopsychology Unit, Faculty of Psychology, University of Vienna, Austria.
| | - Robert Kumsta
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Germany.
| | - Michael Naef
- Department of Economics, Royal Holloway, University of London, United Kingdom
| | - Jörg Gromoll
- Department of Reproductive Medicine, University of Münster, Germany
| | - Markus Heinrichs
- Department of Psychology, Laboratory for Biological and Personality Psychology, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, University Medical Center, University of Freiburg, Germany
| |
Collapse
|
12
|
Sex-specific metabolic profiles of androgens and its main binding protein SHBG in a middle aged population without diabetes. Sci Rep 2017; 7:2235. [PMID: 28533544 PMCID: PMC5440388 DOI: 10.1038/s41598-017-02367-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/10/2017] [Indexed: 01/21/2023] Open
Abstract
The role of androgens in metabolism with respect to sex-specific disease associations is poorly understood. Therefore, we aimed to provide molecular signatures in plasma and urine of androgen action in a sex-specific manner using state-of-the-art metabolomics techniques. Our study population consisted of 430 men and 343 women, aged 20-80 years, who were recruited for the cross-sectional population-based Study of Health in Pomerania (SHIP-TREND), Germany. We used linear regression models to identify associations between testosterone, androstenedione and dehydroepiandrosterone-sulfate (DHEAS) as well as sex hormone-binding globulin and plasma or urine metabolites measured by mass spectrometry. The analyses revealed major sex-specific differences in androgen-associated metabolites, particularly for levels of urate, lipids and metabolic surrogates of lifestyle factors, like cotinine or piperine. In women, in particular in the postmenopausal state, androgens showed a greater impact on the metabolome than in men (especially DHEAS and lipids were highly related in women). We observed a novel association of androstenedione on the metabolism of biogenic amines and only a small sex-overlap of associations within steroid metabolism. The present study yields new insights in the interaction between androgens and metabolism, especially about their implication in female metabolism.
Collapse
|
13
|
Competition, testosterone, and adult neurobehavioral plasticity. PROGRESS IN BRAIN RESEARCH 2016; 229:213-238. [PMID: 27926439 DOI: 10.1016/bs.pbr.2016.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Motivation in performance is often measured via competitions. Winning a competition has been found to increase the motivation to perform in subsequent competitions. One potential neurobiological mechanism that regulates the motivation to compete involves sex hormones, such as the steroids testosterone and estradiol. A wealth of studies in both nonhuman animals and humans have shown that a rise in testosterone levels before and after winning a competition enhances the motivation to compete. There is strong evidence for acute behavioral effects in response to steroid hormones. Intriguingly, a substantial testosterone surge following a win also appears to improve an individual's performance in later contests resulting in a higher probability of winning again. These effects may occur via androgen and estrogen pathways modulating dopaminergic regions, thereby behavior on longer timescales. Hormones thus not only regulate and control social behavior but are also key to adult neurobehavioral plasticity. Here, we present literature showing hormone-driven behavioral effects that persist for extended periods of time beyond acute effects of the hormone, highlighting a fundamental role of sex steroid hormones in adult neuroplasticity. We provide an overview of the relationship between testosterone, motivation measured from objective effort, and their influence in enhancing subsequent effort in competitions. Implications for an important role of testosterone in enabling neuroplasticity to improve performance will be discussed.
Collapse
|
14
|
Zhang G, Li S, Kang Y, Che J, Cui R, Song S, Cui H, Shi G. Enhancement of dopaminergic activity and region-specific activation of Nrf2-ARE pathway by intranasal supplements of testosterone propionate in aged male rats. Horm Behav 2016; 80:103-116. [PMID: 26893122 DOI: 10.1016/j.yhbeh.2016.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 02/13/2016] [Accepted: 02/13/2016] [Indexed: 12/22/2022]
Abstract
UNLABELLED The potential influence of intranasal testosterone propionate (InTP) supplements on mesodopaminergic system in aged male rats was investigated by analyzing the exploratory and motor behaviors as well as dopamine neurobiochemical indices. Meanwhile, oxidative stress parameters and pathway of nuclear factor erythroid 2-related factor 2 (Nrf2)-binding antioxidant response elements (Nrf2-ARE) were examined to check whether the Nrf2-ARE pathway was involved in the InTP-induced alteration of mesodopaminergic system in aged male rats. The exploratory and motor behavioral deficits, as well as the reduced expression of dopamine, tyrosine hydroxylase, and dopamine transporter, which indicated the declined activity of mesodopaminergic system, were ameliorated in rats administered with 12-week InTP. The results indicated that chronic InTP supplements could effectively influence the brain function activity in a way opposite to the effect of aging on the mesodopaminergic system of rats. The increased levels of Nrf2, heme oxygenase-1, and NAD(P)H quinone oxidoreductase-1 in the substantia nigra and ventral tegmental area, but not in the hippocampus of InTP-administered aged male rats, indicated that the ameliorative effect of InTP supplements on mesodopaminergic system might be related to the region-specific activation of the Nrf2-ARE pathway.
Collapse
Affiliation(s)
- Guoliang Zhang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Shuangcheng Li
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Yunxiao Kang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Jing Che
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Department of Neurology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, PR China
| | - Rui Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Shuang Song
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Geming Shi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China.
| |
Collapse
|
15
|
Turillazzi E, Neri M, Cerretani D, Cantatore S, Frati P, Moltoni L, Busardò FP, Pomara C, Riezzo I, Fineschi V. Lipid peroxidation and apoptotic response in rat brain areas induced by long-term administration of nandrolone: the mutual crosstalk between ROS and NF-kB. J Cell Mol Med 2016; 20:601-612. [PMID: 26828721 PMCID: PMC5125979 DOI: 10.1111/jcmm.12748] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to evaluate the played by oxidative stress in the apoptotic response in different brain areas of rats chronically treated with supra-physiological doses of nandrolone decanoate (ND). Immunohistochemical study and Western blot analysis were performed to evaluate cells' apoptosis and to measure the effects of expression of specific mediators, such as NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), Bcl-2 (B-cell lymphoma 2), SMAC/DIABLO (second mitochondria-derived activator of caspases/direct IAP-binding protein with low PI) and VMAT2 (vesicular monoamine transporter 2) on apoptosis. The results of the present study indicate that a long-term administration of ND promotes oxidative injury in rat brain specific areas. A link between oxidative stress and NF-κB signalling pathways is supported by our results. In addition to high levels of oxidative stress, we consistently observed a strong immunopositivity to NF-κB. It has been argued that one of the pathways leading to the activation of NF-κB could be under reactive oxygen species (ROS)-mediated control. In fact, growing evidence suggests that although in limited doses, endogenous ROS may play an activating role in NF-κB signalling, while above a certain threshold, they may negatively impact upon this signalling. However, a mutual crosstalk between ROS and NF-κB exists and recent studies have shown that ROS activity is subject to negative feedback regulation by NF-κB, and that this negative regulation of ROS is the means through which NF-κB counters programmed cells.
Collapse
Affiliation(s)
- Emanuela Turillazzi
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Margherita Neri
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Daniela Cerretani
- Pharmacology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Santina Cantatore
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Roma, Italy
- Neuromed, Istituto Mediterraneo Neurologico (IRCCS), Pozzilli, Isernia, Italy
| | - Laura Moltoni
- Pharmacology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Francesco Paolo Busardò
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Roma, Italy
| | - Cristoforo Pomara
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Irene Riezzo
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Roma, Italy
| |
Collapse
|
16
|
Deficits in coordinated motor behavior and in nigrostriatal dopaminergic system ameliorated and VMAT2 expression up-regulated in aged male rats by administration of testosterone propionate. Exp Gerontol 2016; 78:1-11. [PMID: 26956479 DOI: 10.1016/j.exger.2016.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/23/2016] [Accepted: 03/02/2016] [Indexed: 12/16/2022]
Abstract
The effects of testosterone propionate (TP) supplements on the coordinated motor behavior and nigrostriatal dopaminergic (NSDA) system were analyzed in aged male rats. The present study showed the coordinated motor behavioral deficits, the reduced activity of NSDA system and the decreased expression of vesicular monoamine transporter 2 (VMAT2) in 24 month-old male rats. Long term TP treatment improved the motor coordination dysfunction with aging. Increased tyrosine hydroxylase and dopamine transporter, as well as dopamine and its metabolites were found in the NSDA system of TP-treated 24 month-old male rats, indicative of the amelioratory effects of TP supplements on NSDA system of aged male rats. The enhancement of dopaminergic (DAergic) activity of NSDA system by TP supplements might underlie the amelioration of the coordinated motor dysfunction in aged male rats. TP supplements up-regulated VMAT2 expression in NSDA system of aged male rats. Up-regulation of VMAT2 expression in aged male rats following chronic TP treatment might be involved in the maintenance of DAergic function of NSDA system in aged male rats.
Collapse
|
17
|
Mhillaj E, Morgese MG, Tucci P, Bove M, Schiavone S, Trabace L. Effects of anabolic-androgens on brain reward function. Front Neurosci 2015; 9:295. [PMID: 26379484 PMCID: PMC4549565 DOI: 10.3389/fnins.2015.00295] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/06/2015] [Indexed: 12/02/2022] Open
Abstract
Androgens are mainly prescribed to treat several diseases caused by testosterone deficiency. However, athletes try to promote muscle growth by manipulating testosterone levels or assuming androgen anabolic steroids (AAS). These substances were originally synthesized to obtain anabolic effects greater than testosterone. Although AAS are rarely prescribed compared to testosterone, their off-label utilization is very wide. Furthermore, combinations of different steroids and doses generally higher than those used in therapy are common. Symptoms of the chronic use of supra-therapeutic doses of AAS include anxiety, depression, aggression, paranoia, distractibility, confusion, amnesia. Interestingly, some studies have shown that AAS elicited electroencephalographic changes similar to those observed with amphetamine abuse. The frequency of side effects is higher among AAS abusers, with psychiatric complications such as labile mood, lack of impulse control and high violence. On the other hand, AAS addiction studies are complex because data collection is very difficult due to the subjects' reticence and can be biased by many variables, including physical exercise, that alter the reward system. Moreover, it has been reported that AAS may imbalance neurotransmitter systems involved in the reward process, leading to increased sensitivity toward opioid narcotics and central stimulants. The goal of this article is to review the literature on steroid abuse and changes to the reward system in preclinical and clinical studies.
Collapse
Affiliation(s)
- Emanuela Mhillaj
- Department of Physiology and Pharmacology, Sapienza University of Rome Rome, Italy
| | - Maria G Morgese
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Maria Bove
- Department of Physiology and Pharmacology, Sapienza University of Rome Rome, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| |
Collapse
|
18
|
Cross‐sensitization between testosterone and cocaine in adolescent and adult rats. Int J Dev Neurosci 2015; 46:33-7. [DOI: 10.1016/j.ijdevneu.2015.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 06/25/2015] [Accepted: 07/01/2015] [Indexed: 02/02/2023] Open
|
19
|
del Pino J, Moyano-Cires PV, Anadon MJ, Díaz MJ, Lobo M, Capo MA, Frejo MT. Molecular Mechanisms of Amitraz Mammalian Toxicity: A Comprehensive Review of Existing Data. Chem Res Toxicol 2015; 28:1073-94. [PMID: 25973576 DOI: 10.1021/tx500534x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Javier del Pino
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Paula Viviana Moyano-Cires
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Maria Jose Anadon
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - María Jesús Díaz
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Margarita Lobo
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Miguel Andrés Capo
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - María Teresa Frejo
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| |
Collapse
|
20
|
Purves-Tyson TD, Boerrigter D, Allen K, Zavitsanou K, Karl T, Djunaidi V, Double KL, Desai R, Handelsman DJ, Weickert CS. Testosterone attenuates and the selective estrogen receptor modulator, raloxifene, potentiates amphetamine-induced locomotion in male rats. Horm Behav 2015; 70:73-84. [PMID: 25747465 DOI: 10.1016/j.yhbeh.2015.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/16/2015] [Accepted: 02/28/2015] [Indexed: 11/17/2022]
Abstract
Although sex steroids are known to modulate brain dopamine, it is still unclear how testosterone modifies locomotor behaviour controlled, at least in part, by striatal dopamine in adolescent males. Our previous work suggests that increasing testosterone during adolescence may bias midbrain neurons to synthesise more dopamine. We hypothesised that baseline and amphetamine-induced locomotion would differ in adult males depending on testosterone exposure during adolescence. We hypothesised that concomitant stimulation of estrogen receptor signaling, through a selective estrogen receptor modulator (SERM), raloxifene, can counter testosterone effects on locomotion. Male Sprague-Dawley rats at postnatal day 45 were gonadectomised (G) or sham-operated (S) prior to the typical adolescent testosterone increase. Gonadectomised rats were either given testosterone replacement (T) or blank implants (B) for six weeks and sham-operated (i.e. intact or endogenous testosterone group) were given blank implants. Subgroups of sham-operated, gonadectomised and gonadectomised/testosterone-replaced rats were treated with raloxifene (R, 5mg/kg) or vehicle (V), daily for the final four weeks. There were six groups (SBV, GBV, GTV, SBR, GBR, GTR). Saline and amphetamine-induced (1.25mg/kg) locomotion in the open field was measured at PND85. Gonadectomy increased amphetamine-induced locomotion compared to rats with endogenous or with exogenous testosterone. Raloxifene increased amphetamine-induced locomotion in rats with either endogenous or exogenous testosterone. Amphetamine-induced locomotion was negatively correlated with testosterone and this relationship was abolished by raloxifene. Lack of testosterone during adolescence potentiates and testosterone exposure during adolescence attenuates amphetamine-induced locomotion. Treatment with raloxifene appears to potentiate amphetamine-induced locomotion and to have an opposite effect to that of testosterone in male rats.
Collapse
Affiliation(s)
- Tertia D Purves-Tyson
- Schizophrenia Research Institute, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Sydney, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, Australia.
| | - Danny Boerrigter
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Sydney, Australia
| | - Katherine Allen
- Schizophrenia Research Institute, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Sydney, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Katerina Zavitsanou
- Schizophrenia Research Institute, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Sydney, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Tim Karl
- Neuroscience Research Australia, Barker Street, Sydney, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, Australia
| | - Vanezha Djunaidi
- Schizophrenia Research Institute, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Sydney, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, Australia
| | - Kay L Double
- Discipline of Biomedical Science, School of Medical Sciences, Sydney Medical School, University of Sydney, Australia
| | - Reena Desai
- ANZAC Research Institute, University of Sydney, Concord Hospital, Australia
| | - David J Handelsman
- ANZAC Research Institute, University of Sydney, Concord Hospital, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Sydney, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
21
|
Pomara C, Neri M, Bello S, Fiore C, Riezzo I, Turillazzi E. Neurotoxicity by synthetic androgen steroids: oxidative stress, apoptosis, and neuropathology: A review. Curr Neuropharmacol 2015; 13:132-45. [PMID: 26074748 PMCID: PMC4462038 DOI: 10.2174/1570159x13666141210221434] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/30/2014] [Accepted: 10/25/2014] [Indexed: 12/25/2022] Open
Abstract
Anabolic-androgenic steroids (AAS) are synthetic substances derived from testosterone that are largely employed due to their trophic effect on muscle tissue of athletes at all levels. Since a great number of organs and systems are a target of AAS, their adverse effects are primarily on the following systems: reproductive, hepatic, musculoskeletal, endocrine, renal, immunological, infectious, cardiovascular, cerebrovascular, and hematological. Neuropsychiatric and behavioral effects as a result of AAS abuse are well known and described in the literature. Mounting evidence exists suggesting that in addition to psychiatric and behavioral effects, non-medical use of AAS carries neurodegenerative potential. Although, the nature of this association remains largely unexplored, recent animal studies have shown the recurrence of this AAS effect, ranging from neurotrophin unbalance to increased neuronal susceptibility to apoptotic stimuli. Experimental and animal studies strongly suggest that apoptotic mechanisms are at least in part involved in AAS-induced neurotoxicity. Furthermore, a great body of evidence is emerging suggesting that increased susceptibility to cellular oxidative stress could play a pivotal role in the pathogenesis of many neurodegenerative disorders and cognitive impairment. As in other drug-evoked encephalopathies, the key mechanisms involved in AAS - induced neuropathology could represent a target for future neuroprotective strategies. Progress in the understanding of these mechanisms will provide important insights into the complex pathophysiology of AAS-induced neurodegeneration, and will pave the way for forthcoming studies. Supplementary to abandoning the drug abuse that represents the first step in reducing the possibility of irreversible brain damage in AAS abusers, neuroprotective strategies have to be developed and implemented in future.
Collapse
Affiliation(s)
- Cristoforo Pomara
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- Department of Anatomy, University of Malta. Msida, Malta
| | - Margherita Neri
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Stefania Bello
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Carmela Fiore
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Irene Riezzo
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Emanuela Turillazzi
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
22
|
Busardò FP, Frati P, Sanzo MD, Napoletano S, Pinchi E, Zaami S, Fineschi V. The impact of nandrolone decanoate on the central nervous system. Curr Neuropharmacol 2015; 13:122-131. [PMID: 26074747 PMCID: PMC4462037 DOI: 10.2174/1570159x13666141210225822] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/10/2014] [Accepted: 10/25/2014] [Indexed: 01/31/2023] Open
Abstract
Nandrolone is included in the class II of anabolic androgenic steroids (AAS) which is composed of 19-nor-testosterone-derivates. In general, AAS is a broad and rapidly increasing group of synthetic androgens used both clinically and illicitly. AAS in general and nandrolone decanoate (ND) in particular have been associated with several behavioral disorders. The purpose of this review is to summarize the literature concerning studies dealing with ND exposure on animal models, mostly rats that mimic human abuse systems (i.e. supraphysiological doses). We have focused in particular on researches that have investigated how ND alters the function and expression of neuronal signaling molecules that underlie behavior, anxiety, aggression, learning and memory, reproductive behaviors, locomotion and reward.
Collapse
Affiliation(s)
- Francesco P. Busardò
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
- Neuromed, Istituto Mediterraneo Neurologico (IRCCS), Via Atinense 18, Pozzilli, 86077 Isernia, Italy
| | - Mariantonia Di Sanzo
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| | - Simona Napoletano
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| | - Enrica Pinchi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| |
Collapse
|
23
|
Gould RW, Duke AN, Nader MA. PET studies in nonhuman primate models of cocaine abuse: translational research related to vulnerability and neuroadaptations. Neuropharmacology 2014; 84:138-51. [PMID: 23458573 PMCID: PMC3692588 DOI: 10.1016/j.neuropharm.2013.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 01/07/2013] [Accepted: 02/07/2013] [Indexed: 01/11/2023]
Abstract
The current review highlights the utility of positron emission tomography (PET) imaging to study the neurobiological substrates underlying vulnerability to cocaine addiction and subsequent adaptations following chronic cocaine self-administration in nonhuman primate models of cocaine abuse. Environmental (e.g., social rank) and sex-specific influences on dopaminergic function and sensitivity to the reinforcing effects of cocaine are discussed. Cocaine-related cognitive deficits have been hypothesized to contribute to high rates of relapse and are described in nonhuman primate models. Lastly, the long-term consequences of cocaine on neurobiology are discussed. PET imaging and longitudinal, within-subject behavioral studies in nonhuman primates have provided a strong framework for designing pharmacological and behavioral treatment strategies to aid drug-dependent treatment seekers. Non-invasive PET imaging will allow for individualized treatment strategies. Recent advances in radiochemistry of novel PET ligands and other imaging modalities can further advance our understanding of stimulant use on the brain. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.
Collapse
Affiliation(s)
- Robert W Gould
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Angela N Duke
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1083, USA.
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1083, USA.
| |
Collapse
|
24
|
Relationships between androgens, serotonin gene expression and innervation in male macaques. Neuroscience 2014; 274:341-56. [PMID: 24909896 DOI: 10.1016/j.neuroscience.2014.05.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/21/2014] [Accepted: 05/28/2014] [Indexed: 01/06/2023]
Abstract
Androgen administration to castrated individuals was purported to decrease activity in the serotonin system. However, we found that androgen administration to castrated male macaques increased fenfluramine-induced serotonin release as reflected by increased prolactin secretion. In this study, we sought to define the effects of androgens and aromatase inhibition on serotonin-related gene expression in the dorsal raphe, as well as serotonergic innervation of the LC. Male Japanese macaques (Macaca fuscata) were castrated for 5-7 months and then treated for 3 months with (1) placebo, (2) testosterone (T), (3) dihydrotestosterone (DHT; non-aromatizable androgen) and ATD (steroidal aromatase inhibitor), or (4) Flutamide (FLUT; androgen antagonist) and ATD (n=5/group). This study reports the expression of serotonin-related genes: tryptophan hydroxylase 2 (TPH2), serotonin reuptake transporter (SERT) and the serotonin 1A autoreceptor (5HT1A) using digoxigenin-ISH and image analysis. To examine the production of serotonin and the serotonergic innervation of a target area underlying arousal and vigilance, we measured the serotonin axon density entering the LC with ICC and image analysis. TPH2 and SERT expression were significantly elevated in T- and DHT + ATD-treated groups over placebo- and FLUT + ATD-treated groups in the dorsal raphe (p < 0.007). There was no difference in 5HT1A expression between the groups. There was a significant decrease in the pixel area of serotonin axons and in the number of varicosities in the LC across the treatment groups with T > placebo > DHT + ATD = FLUT + ATD treatments. Comparatively, T- and DHT + ATD-treated groups had elevated TPH2 and SERT gene expression, but the DHT + ATD group had markedly suppressed serotonin axon density relative to the T-treated group. Further comparison with previously published data indicated that TPH2 and SERT expression reflected yawning and basal prolactin secretion. The serotonin axon density in the LC agreed with the area under the fenfluramine-stimulated prolactin curve, providing a morphological basis for the pharmacological results. This suggested that androgen activity increased TPH2 and SERT gene expression but, aromatase activity, and neural production of estradiol (E), may subserve axonal serotonin and determination of the compartment acted upon by fenfluramine. In summary, androgens stimulated serotonin-related gene expression, but aromatase inhibition dissociated gene expression from the serotonin innervation of the LC terminal field and fenfluramine-stimulated prolactin secretion.
Collapse
|
25
|
Purves-Tyson TD, Owens SJ, Double KL, Desai R, Handelsman DJ, Weickert CS. Testosterone induces molecular changes in dopamine signaling pathway molecules in the adolescent male rat nigrostriatal pathway. PLoS One 2014; 9:e91151. [PMID: 24618531 PMCID: PMC3949980 DOI: 10.1371/journal.pone.0091151] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/10/2014] [Indexed: 01/11/2023] Open
Abstract
Adolescent males have an increased risk of developing schizophrenia, implicating testosterone in the precipitation of dopamine-related psychopathology. Evidence from adult rodent brain indicates that testosterone can modulate nigrostriatal dopamine. However, studies are required to understand the role testosterone plays in maturation of dopamine pathways during adolescence and to elucidate the molecular mechanism(s) by which testosterone exerts its effects. We hypothesized that molecular indices of dopamine neurotransmission [synthesis (tyrosine hydroxylase), breakdown (catechol-O-methyl transferase; monoamine oxygenase), transport [vesicular monoamine transporter (VMAT), dopamine transporter (DAT)] and receptors (DRD1-D5)] would be changed by testosterone or its metabolites, dihydrotestosterone and 17β-estradiol, in the nigrostriatal pathway of adolescent male rats. We found that testosterone and dihydrotestosterone increased DAT and VMAT mRNAs in the substantia nigra and that testosterone increased DAT protein at the region of the cell bodies, but not in target regions in the striatum. Dopamine receptor D2 mRNA was increased and D3 mRNA was decreased in substantia nigra and/or striatum by androgens. These data suggest that increased testosterone at adolescence may change dopamine responsivity of the nigrostriatal pathway by modulating, at a molecular level, the capacity of neurons to transport and respond to dopamine. Further, dopamine turnover was increased in the dorsal striatum following gonadectomy and this was prevented by testosterone replacement. Gene expression changes in the dopaminergic cell body region may serve to modulate both dendritic dopamine feedback inhibition and reuptake in the dopaminergic somatodendritic field as well as dopamine release and re-uptake dynamics at the presynaptic terminals in the striatum. These testosterone-induced changes of molecular indices of dopamine neurotransmission in males are primarily androgen receptor-driven events as estradiol had minimal effect. We conclude that nigrostriatal responsivity to dopamine may be modulated by testosterone acting via androgen receptors to alter gene expression of molecules involved in dopamine signaling during adolescence.
Collapse
Affiliation(s)
- Tertia D. Purves-Tyson
- Schizophrenia Research Institute, Sydney, New South Wales, Australia
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha J. Owens
- Schizophrenia Research Institute, Sydney, New South Wales, Australia
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Kay L. Double
- Discipline of Biomedical Science, School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Reena Desai
- ANZAC Research Institute, University of Sydney, Concord Hospital, Concord, New South Wales, Australia
| | - David J. Handelsman
- ANZAC Research Institute, University of Sydney, Concord Hospital, Concord, New South Wales, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Sydney, New South Wales, Australia
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Godar SC, Bortolato M. Gene-sex interactions in schizophrenia: focus on dopamine neurotransmission. Front Behav Neurosci 2014; 8:71. [PMID: 24639636 PMCID: PMC3944784 DOI: 10.3389/fnbeh.2014.00071] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/19/2014] [Indexed: 02/02/2023] Open
Abstract
Schizophrenia is a severe mental disorder, with a highly complex and heterogenous clinical presentation. Our current perspectives posit that the pathogenic mechanisms of this illness lie in complex arrays of gene × environment interactions. Furthermore, several findings indicate that males have a higher susceptibility for schizophrenia, with earlier age of onset and overall poorer clinical prognosis. Based on these premises, several authors have recently begun exploring the possibility that the greater schizophrenia vulnerability in males may reflect specific gene × sex (G×S) interactions. Our knowledge on such G×S interactions in schizophrenia is still rudimentary; nevertheless, the bulk of preclinical evidence suggests that the molecular mechanisms for such interactions are likely contributed by the neurobiological effects of sex steroids on dopamine (DA) neurotransmission. Accordingly, several recent studies suggest a gender-specific association of certain DAergic genes with schizophrenia. These G×S interactions have been particularly documented for catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO), the main enzymes catalyzing DA metabolism. In the present review, we will outline the current evidence on the interactions of DA-related genes and sex-related factors, and discuss the potential molecular substrates that may mediate their cooperative actions in schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Sean C Godar
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas Lawrence, KS, USA
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas Lawrence, KS, USA ; Consortium for Translational Research on Aggression and Drug Abuse, University of Kansas Lawrence, KS, USA
| |
Collapse
|
27
|
Inhibition of 17α-hydroxylase/C17,20 lyase reduces gating deficits consequent to dopaminergic activation. Psychoneuroendocrinology 2014; 39:204-213. [PMID: 24140269 PMCID: PMC3940882 DOI: 10.1016/j.psyneuen.2013.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/01/2013] [Accepted: 09/15/2013] [Indexed: 11/23/2022]
Abstract
Cogent evidence points to the involvement of neurosteroids in the regulation of dopamine (DA) neurotransmission and signaling, yet the neurobiological bases of this link remain poorly understood. We previously showed that inhibition of 5α-reductase (5αR), a key neurosteroidogenic enzyme, attenuates the sensorimotor gating deficits induced by DA receptor activation, as measured by the prepulse inhibition (PPI) of the acoustic startle reflex. To extend these findings, the present study was aimed at the assessment of the role of other key neurosteroidogenic enzymes in PPI, such as 17α-hydroxylase/C17,20 lyase (CYP17A1), 3α- and 3β-hydroxysteroid dehydrogenase (HSD), in Sprague-Dawley rats. The PPI deficits induced by the DAergic non-selective agonist apomorphine (APO, 0.25mg/kg, SC) were dose-dependently attenuated by the selective CYP17A1 inhibitor abiraterone (ABI, 10-50mg/kg, IP) in a fashion akin to that of the 5αR inhibitor finasteride (FIN, 100mg/kg, IP). These systemic effects were reproduced by intracerebroventricular injection of ABI (1 μg/1 μl), suggesting the involvement of brain CYP17A1 in PPI regulation. Conversely, the PPI disruption induced by APO was not significantly affected by the 3α- and 3β-HSD inhibitors indomethacin and trilostane. Given that CYP17A1 catalyzes androgen synthesis, we also tested the impact on PPI of the androgen receptor (AR) antagonist flutamide (10mg/kg, IP). However, this agent failed to reverse APO-induced PPI deficits; furthermore, AR endogenous ligands testosterone and dihydrotestosterone failed to disrupt PPI. Collectively, these data highlight CYP17A1 as a novel target for antipsychotic-like action, and suggest that the DAergic regulation of PPI is modulated by androgenic neurosteroids, through AR-unrelated mechanisms.
Collapse
|
28
|
Tran L, Lasher BK, Young KA, Keele NB. Depletion of serotonin in the basolateral amygdala elevates glutamate receptors and facilitates fear-potentiated startle. Transl Psychiatry 2013; 3:e298. [PMID: 24002084 PMCID: PMC3784761 DOI: 10.1038/tp.2013.66] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/23/2013] [Accepted: 07/15/2013] [Indexed: 11/09/2022] Open
Abstract
Our previous experiments demonstrated that systemic depletion of serotonin (5-hydroxytryptamine, 5-HT), similar to levels reported in patients with emotional disorders, enhanced glutamateric activity in the lateral nucleus of the amygdala (LA) and potentiated fear behaviors. However, the effects of isolated depletion of 5-HT in the LA, and the molecular mechanisms underlying enhanced glutamatergic activity are unknown. In the present study, we tested the hypothesis that depletion of 5-HT in the LA induces increased fear behavior, and concomitantly enhances glutamate receptor (GluR) expression. Bilateral infusions of 5,7-dihydroxytryptamine (4 μg per side) into the LA produced a regional reduction of serotonergic fibers, resulting in decreased 5-HT concentrations. The induction of low 5-HT in the LA elevated fear-potentiated startle, with a parallel increase in GluR1 mRNA and GluR1 protein expression. These findings suggest that low 5-HT concentrations in the LA may facilitate fear behavior through enhanced GluR-mediated mechanisms. Moreover, our data support a relationship between 5-HT and glutamate in psychopathologies.
Collapse
Affiliation(s)
- L Tran
- Institute for Biomedical Studies, Baylor University, Waco, TX, USA
| | - B K Lasher
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - K A Young
- Department of Psychiatry and Behavioral Sciences, Texas A&M Health Science Center College of Medicine, Temple, TX, USA
- Neuropsychiatry Research Program, Central Texas Veterans Health Care System, Temple, TX, USA
| | - N B Keele
- Institute for Biomedical Studies, Baylor University, Waco, TX, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| |
Collapse
|
29
|
Cunningham RL, Lumia AR, McGinnis MY. Androgenic anabolic steroid exposure during adolescence: ramifications for brain development and behavior. Horm Behav 2013; 64:350-6. [PMID: 23274699 PMCID: PMC3633688 DOI: 10.1016/j.yhbeh.2012.12.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/04/2012] [Accepted: 12/17/2012] [Indexed: 01/13/2023]
Abstract
This article is part of a Special Issue "Puberty and Adolescence". Puberty is a critical period for brain maturation that is highly dependent on gonadal sex hormones. Modifications in the gonadal steroid environment, via the use of anabolic androgenic steroids (AAS), have been shown to affect brain development and behavior. Studies in both humans and animal models indicate that AAS exposure during adolescence alters normal brain remodeling, including structural changes and neurotransmitter function. The most commonly reported behavioral effect is an increase in aggression. Evidence has been presented to identify factors that influence the effect of AAS on the expression of aggression. The chemical composition of the AAS plays a major role in determining whether aggression is displayed, with testosterone being the most effective. The hormonal context, the environmental context, physical provocation and the perceived threat during the social encounter have all been found to influence the expression of aggression and sexual behavior. All of these factors point toward an altered behavioral state that includes an increased readiness to respond to a social encounter with heightened vigilance and enhanced motivation. This AAS-induced state may be defined as emboldenment. The evidence suggests that the use of AAS during this critical period of development may increase the risk for maladaptive behaviors along with neurological disorders.
Collapse
Affiliation(s)
- Rebecca L Cunningham
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Centre at Fort Worth, Fort Worth, TX 76107 USA.
| | | | | |
Collapse
|
30
|
Mesoaccumbens dopamine signaling alteration underlies behavioral transition from tolerance to sensitization to morphine rewarding properties during morphine withdrawal. Brain Struct Funct 2013; 219:1755-71. [DOI: 10.1007/s00429-013-0599-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
|
31
|
Del Pino J, Martínez M, Castellano V, Ramos E, Martínez-Larrañaga M, Anadón A. Effects of exposure to amitraz on noradrenaline, serotonin and dopamine levels in brain regions of 30 and 60 days old male rats. Toxicology 2013; 308:88-95. [PMID: 23541472 DOI: 10.1016/j.tox.2013.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/27/2013] [Accepted: 03/19/2013] [Indexed: 10/27/2022]
|
32
|
Tanehkar F, Rashidy-Pour A, Vafaei AA, Sameni HR, Haghighi S, Miladi-Gorji H, Motamedi F, Akhavan MM, Bavarsad K. Voluntary exercise does not ameliorate spatial learning and memory deficits induced by chronic administration of nandrolone decanoate in rats. Horm Behav 2013; 63:158-65. [PMID: 23068768 DOI: 10.1016/j.yhbeh.2012.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/30/2012] [Accepted: 10/02/2012] [Indexed: 01/15/2023]
Abstract
Chronic exposure to the anabolic androgenic steroids (AAS) nandrolone decanoate (ND) in supra-physiological doses is associated with learning and memory impairments. Given the well-known beneficial effects of voluntary exercise on cognitive functions, we examined whether voluntary exercise would improve the cognitive deficits induced by chronic administration of ND. We also investigated the effects of ND and voluntary exercise on hippocampal BDNF levels. The rats were randomly distributed into 4 experimental groups: the vehicle-sedentary group, the ND-sedentary group, the vehicle-exercise group, and the ND-exercise group. The vehicle-exercise and the ND-exercise groups were allowed to freely exercise in a running wheel for 15 days. The vehicle-sedentary and the ND-sedentary groups were kept sedentary for the same period. Vehicle or ND injections were started 14 days prior to the voluntary exercise and continued throughout the 15 days of voluntary exercise. After the 15-day period, the rats were trained and tested on a water maze spatial task using four trials per day for 5 consecutive days followed by a probe trial two days later. Exercise significantly improved performance during both the training and retention of the water maze task, and enhanced hippocampal BDNF. ND impaired spatial learning and memory, and this effect was not rescued by exercise. ND also potentiated the exercise-induced increase in hippocampal BDNF levels. These results seem to indicate that voluntary exercise is unable to improve the disruption of cognitive functions by chronic ND. Moreover, increased levels of BDNF may play a role in ND-induced impairments in learning and memory. The harmful effects of ND and other AAS on learning and memory should be taken into account when athletes decide to use AAS for performance or body image improvement.
Collapse
Affiliation(s)
- Fatemeh Tanehkar
- Laboratory of Learning and Memory, Research Center and Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Purves-Tyson TD, Handelsman DJ, Double KL, Owens SJ, Bustamante S, Weickert CS. Testosterone regulation of sex steroid-related mRNAs and dopamine-related mRNAs in adolescent male rat substantia nigra. BMC Neurosci 2012; 13:95. [PMID: 22867132 PMCID: PMC3467168 DOI: 10.1186/1471-2202-13-95] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/06/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Increased risk of schizophrenia in adolescent males indicates that a link between the development of dopamine-related psychopathology and testosterone-driven brain changes may exist. However, contradictions as to whether testosterone increases or decreases dopamine neurotransmission are found and most studies address this in adult animals. Testosterone-dependent actions in neurons are direct via activation of androgen receptors (AR) or indirect by conversion to 17β-estradiol and activation of estrogen receptors (ER). How midbrain dopamine neurons respond to sex steroids depends on the presence of sex steroid receptor(s) and the level of steroid conversion enzymes (aromatase and 5α-reductase). We investigated whether gonadectomy and sex steroid replacement could influence dopamine levels by changing tyrosine hydroxylase (TH) protein and mRNA and/or dopamine breakdown enzyme mRNA levels [catechol-O-methyl transferase (COMT) and monoamine oxygenase (MAO) A and B] in the adolescent male rat substantia nigra. We hypothesized that adolescent testosterone would regulate sex steroid signaling through regulation of ER and AR mRNAs and through modulation of aromatase and 5α-reductase mRNA levels. RESULTS We find ERα and AR in midbrain dopamine neurons in adolescent male rats, indicating that dopamine neurons are poised to respond to circulating sex steroids. We report that androgens (T and DHT) increase TH protein and increase COMT, MAOA and MAOB mRNAs in the adolescent male rat substantia nigra. We report that all three sex steroids increase AR mRNA. Differential action on ER pathways, with ERα mRNA down-regulation and ERβ mRNA up-regulation by testosterone was found. 5α reductase-1 mRNA was increased by AR activation, and aromatase mRNA was decreased by gonadectomy. CONCLUSIONS We conclude that increased testosterone at adolescence can shift the balance of sex steroid signaling to favor androgenic responses through promoting conversion of T to DHT and increasing AR mRNA. Further, testosterone may increase local dopamine synthesis and metabolism, thereby changing dopamine regulation within the substantia nigra. We show that testosterone action through both AR and ERs modulates synthesis of sex steroid receptor by altering AR and ER mRNA levels in normal adolescent male substantia nigra. Increased sex steroids in the brain at adolescence may alter substantia nigra dopamine pathways, increasing vulnerability for the development of psychopathology.
Collapse
Affiliation(s)
- Tertia D Purves-Tyson
- Schizophrenia Research Institute, Sydney 2021, Australia
- Neuroscience Research Australia, Sydney 2031, Australia
- School of Medical Sciences, University of New South Wales, Sydney 2031, Australia
| | | | - Kay L Double
- Neuroscience Research Australia, Sydney 2031, Australia
- School of Medical Sciences, University of New South Wales, Sydney 2031, Australia
| | - Samantha J Owens
- Schizophrenia Research Institute, Sydney 2021, Australia
- Neuroscience Research Australia, Sydney 2031, Australia
- School of Medical Sciences, University of New South Wales, Sydney 2031, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectroscopy Facility, University of New South Wales, Sydney 2031, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Sydney 2021, Australia
- Neuroscience Research Australia, Sydney 2031, Australia
- School of Psychiatry, University of New South Wales, Sydney 2031, Australia
| |
Collapse
|
34
|
Cui R, Zhang G, Kang Y, Cheng Q, Tan H, Cui H, Shi G. Amelioratory effects of testosterone propionate supplement on behavioral, biochemical and morphological parameters in aged rats. Exp Gerontol 2012; 47:67-76. [DOI: 10.1016/j.exger.2011.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 10/20/2011] [Accepted: 10/24/2011] [Indexed: 01/04/2023]
|
35
|
Mello NK, Knudson IM, Kelly M, Fivel PA, Mendelson JH. Effects of progesterone and testosterone on cocaine self-administration and cocaine discrimination by female rhesus monkeys. Neuropsychopharmacology 2011; 36:2187-99. [PMID: 21796112 PMCID: PMC3176575 DOI: 10.1038/npp.2011.130] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/25/2011] [Accepted: 06/15/2011] [Indexed: 01/31/2023]
Abstract
The neuroactive steroid hormone progesterone attenuates cocaine's abuse-related effects in women and in rodents under some conditions, but the effects of testosterone are unknown. We compared the acute effects of progesterone (0.1, 0.2, and 0.3 mg/kg, intramuscularly (i.m.)), testosterone (0.001, 0.003, and 0.01 mg/kg, i.m.), and placebo on cocaine self-administration and cocaine discrimination dose-effect curves in female rhesus monkeys. Cocaine self-administration (0.03 mg/kg per inj.) was maintained on a fixed ratio 30 schedule of reinforcement, and monkeys had unlimited access to cocaine for 2 h each day. Cocaine doses were administered in an irregular order during each dose-effect curve determination, and the same dose order was used in each subject in all treatment conditions. Blood samples for hormone analysis were collected at the end of each test session. Banana-flavored food pellets (1 g) were also available in three 1-h daily sessions. In drug discrimination studies, the effects of pretreatment with progesterone (0.032-0.32 mg/kg, i.m.) and testosterone (0.001-0.01 mg/kg, i.m.) on the discriminative stimulus effects of cocaine (0.18 mg/kg, i.m.) were examined. Progesterone and testosterone did not alter cocaine discrimination, and did not substitute for cocaine. In contrast, progesterone and testosterone each significantly decreased cocaine self-administration, and produced a downward and rightward shift in the cocaine self-administration dose-effect curve. These findings are concordant with clinical reports that progesterone administration may decrease ratings of positive subjective effects of cocaine in women, and suggest the possible value of neuroactive steroid hormones for the treatment of cocaine abuse and reduction of risk for relapse.
Collapse
Affiliation(s)
- Nancy K Mello
- Alcohol and Drug Abuse Research Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
| | | | | | | | | |
Collapse
|
36
|
Increased medial temporal lobe and striatal grey-matter volume in a rare disorder of androgen excess: a voxel-based morphometry (VBM) study. Int J Neuropsychopharmacol 2011; 14:445-57. [PMID: 20860880 PMCID: PMC4947374 DOI: 10.1017/s1461145710001136] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Major questions remain about how sex hormones influence human brain development and cognition. Studies in humans and animals suggest a strong impact of androgen on the structure and function of the medial temporal lobe (MTL) and striatum. Using voxel-based morphometry (DARTEL), we compared MTL and striatal structures in 13 [mean age (±S.D.) 12.7±3.2 yr, mean bone age 14.8±3.2 yr] boys with familial male precocious puberty (FMPP), characterized by early excess androgen secretion, and 39 healthy age-matched boys (mean age 14.3±2.5 yr). The FMPP group showed significantly larger grey-matter volume (GMV) in parahippocampal and fusiform gyri as well as putamen relative to controls. By comparison, larger GMV for controls relative to patients was only apparent in the precentral gyrus. Exploratory regression analyses that examined the impact of age on the current findings revealed a significant increase of GMV in the putamen with age in patients suffering from excess androgen but not in controls. Finally, current levels of free testosterone were obtained in the patient group. Analyses revealed a significant negative association indicating that FMPP boys with low levels of bioavailable testosterone exhibited high GMV in the bilateral striatum. The findings suggest a critical influence of androgen on human brain development and are discussed in relation to male-dominant psychiatric childhood disorders.
Collapse
|
37
|
Frahm KA, Lumia AR, Fernandez E, Strong R, Roberts JL, McGinnis MY. Effects of anabolic androgenic steroids and social subjugation on behavior and neurochemistry in male rats. Pharmacol Biochem Behav 2010; 97:416-22. [PMID: 20932994 DOI: 10.1016/j.pbb.2010.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 10/19/2022]
Abstract
Early abuse and anabolic androgenic steroids (AAS) both increase aggression. We assessed the behavioral and neurochemical consequences of AAS, alone or in combination with social subjugation (SS), an animal model of child abuse. On P26, gonadally intact male rats began SS consisting of daily pairings with an adult male for 2 weeks followed by daily injections of the AAS, testosterone on P40. As adults, males were tested for sexual and aggressive behaviors towards females in various hormonal conditions and inter-male aggression in a neutral setting using home or opponent bedding. Neurotransmitter levels were assessed using HPLC. Results showed that AAS males displayed significantly more mounts toward sexually receptive, vaginally obstructed females (OBS) and displayed significantly more threats towards ovariectomized females. SS males mounted OBS females significantly less and were not aggressive toward females. The role of olfactory cues in a neutral setting did not affect aggression regardless of treatment. AAS significantly increased brainstem DOPAC and NE. SS decreased 5HIAA, DA, DOPAC, and NE in brainstem. 5HIAA was significantly increased in the prefrontal cortex of all experimental groups. We conclude that AAS and SS differentially affect behavior towards females as well as neurotransmitter levels.
Collapse
Affiliation(s)
- Krystle A Frahm
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | |
Collapse
|
38
|
Kanayama G, Hudson JI, Pope HG. Illicit anabolic-androgenic steroid use. Horm Behav 2010; 58:111-21. [PMID: 19769977 PMCID: PMC2883629 DOI: 10.1016/j.yhbeh.2009.09.006] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/07/2009] [Accepted: 09/09/2009] [Indexed: 01/20/2023]
Abstract
The anabolic-androgenic steroids (AAS) are a family of hormones that includes testosterone and its derivatives. These substances have been used by elite athletes since the 1950s, but they did not become widespread drugs of abuse in the general population until the 1980s. Thus, knowledge of the medical and behavioral effects of illicit AAS use is still evolving. Surveys suggest that many millions of boys and men, primarily in Western countries, have abused AAS to enhance athletic performance or personal appearance. AAS use among girls and women is much less common. Taken in supraphysiologic doses, AAS show various long-term adverse medical effects, especially cardiovascular toxicity. Behavioral effects of AAS include hypomanic or manic symptoms, sometimes accompanied by aggression or violence, which usually occur while taking AAS, and depressive symptoms occurring during AAS withdrawal. However, these symptoms are idiosyncratic and afflict only a minority of illicit users; the mechanism of these idiosyncratic responses remains unclear. AAS users may also ingest a range of other illicit drugs, including both "body image" drugs to enhance physical appearance or performance, and classical drugs of abuse. In particular, AAS users appear particularly prone to opioid use. There may well be a biological basis for this association, since both human and animal data suggest that AAS and opioids may share similar brain mechanisms. Finally, AAS may cause a dependence syndrome in a substantial minority of users. AAS dependence may pose a growing public health problem in future years but remains little studied.
Collapse
Affiliation(s)
- Gen Kanayama
- Biological Psychiatry Laboratory, McLean Hospital, Belmont, and Harvard Medical School, Boston, MA 02478, USA
| | | | | |
Collapse
|
39
|
Melloni RH, Ricci LA. Adolescent exposure to anabolic/androgenic steroids and the neurobiology of offensive aggression: a hypothalamic neural model based on findings in pubertal Syrian hamsters. Horm Behav 2010; 58:177-91. [PMID: 19914254 DOI: 10.1016/j.yhbeh.2009.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 01/12/2023]
Abstract
Considerable public attention has been focused on the issue of youth violence, particularly that associated with drug use. It is documented that anabolic steroid use by teenagers is associated with a higher incidence of aggressive behavior and serious violence, yet little is known about how these drugs produce the aggressive phenotype. Here we discuss work from our laboratory on the relationship between the development and activity of select neurotransmitter systems in the anterior hypothalamus and anabolic steroid-induced offensive aggression using pubertal male Syrian hamsters (Mesocricetus auratus) as an adolescent animal model, with the express goal of synthesizing these data into an cogent neural model of the developmental adaptations that may underlie anabolic steroid-induced aggressive behavior. Notably, alterations in each of the neural systems identified as important components of the anabolic steroid-induced aggressive response occurred in a sub-division of the anterior hypothalamic brain region we identified as the hamster equivalent of the latero-anterior hypothalamus, indicating that this sub-region of the hypothalamus is an important site of convergence for anabolic steroid-induced neural adaptations that precipitate offensive aggression. Based on these findings we present in this review a neural model to explain the neurochemical regulation of anabolic steroid-induced offensive aggression showing the hypothetical interaction between the arginine vasopressin, serotonin, dopamine, gamma-aminobutyric acid, and glutamate neural systems in the anterior hypothalamic brain region.
Collapse
Affiliation(s)
- Richard H Melloni
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
40
|
Abstract
Nicotine and cocaine each stimulate hypothalamic-pituitary-adrenal and -gonadal axis hormones, and there is increasing evidence that the hormonal milieu may modulate the abuse-related effects of these drugs. This review summarizes some clinical studies of the acute effects of cigarette smoking or IV cocaine on plasma drug and hormone levels and subjective effects ratings. The temporal covariance between these dependent measures was assessed with a rapid (2 min) sampling procedure in nicotine-dependent volunteers or current cocaine users. Cigarette smoking and IV cocaine each stimulated a rapid increase in LH and ACTH, followed by gradual increases in cortisol and DHEA. Positive subjective effects ratings increased immediately after initiation of cigarette smoking or IV cocaine administration. However, in contrast to cocaine's sustained positive effects (<20 min), ratings of "high" and "rush" began to decrease within one or two puffs of a high-nicotine cigarette while nicotine levels were increasing. Peak nicotine levels increased progressively after each of three successive cigarettes smoked at 60 min intervals, but the magnitude of the subjective effects ratings and peak ACTH and cortisol levels diminished. Only DHEA increased consistently after successive cigarettes. The possible influence of neuroactive hormones on nicotine dependence and cocaine abuse and the implications for treatment of these addictive disorders are discussed.
Collapse
Affiliation(s)
- Nancy K Mello
- McLean Hospital/Harvard Medical School, Alcohol and Drug Abuse Research Center, 115 Mill Street, Belmont, MA 02478, USA.
| |
Collapse
|
41
|
Kurling-Kailanto S, Kankaanpää A, Seppälä T. Subchronic nandrolone administration reduces cocaine-induced dopamine and 5-hydroxytryptamine outflow in the rat nucleus accumbens. Psychopharmacology (Berl) 2010; 209:271-81. [PMID: 20186395 DOI: 10.1007/s00213-010-1796-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/08/2010] [Indexed: 10/19/2022]
Abstract
RATIONALE The abuse of anabolic androgenic steroids (AASs) is not only a problem in the world of sports but is associated with the polydrug use of nonathletes. Investigations of the neurochemical effects of AAS have focused in part on the monoaminergic systems, involving, among other things, the development of dependence. We have previously shown that pretreatment with nandrolone decanoate attenuates dose-dependently the increase in extracellular dopamine (DA) concentration evoked by amphetamine and 3,4-methylenedioyxymethamphetamine in the nucleus accumbens (NAc). OBJECTIVES The aim of this study was to investigate whether the nandrolone pre-exposure modulates the acute neurochemical and behavioral effects of cocaine in rats and whether the effects are long lasting. METHODS DA, 5-hydroxytryptamine (5-HT), and their metabolites were measured from samples collected from the NAc by microdialysis. The behavior of the animals was recorded. RESULTS The present study demonstrates that five injections of nandrolone (5 and 20 mg/kg) inhibited cocaine-evoked DA and 5-HT outflow in the NAc, locomotor activity (LMA), and stereotyped behavior in experimental animals, and that these effects are seen even after elimination of nandrolone from bloodstream. CONCLUSIONS Given that accumbal outflow of DA and 5-HT, as well as LMA and stereotyped behavior, is related to gratification of stimulant drugs, this study suggests that nandrolone, at the doses tested, has a significant effect on the pleasurable properties of cocaine. Furthermore, because neurochemical and behavioral responses were still attenuated after a fairly long recovery period, it seems that nandrolone may induce long-lasting changes in the brains of rat.
Collapse
Affiliation(s)
- Sanna Kurling-Kailanto
- Department of Alcohol, Drugs and Addiction, National Institute for Health and Welfare, P.O. Box 30, 00271, Helsinki, Finland.
| | | | | |
Collapse
|
42
|
Salas-Ramirez KY, Montalto PR, Sisk CL. Anabolic steroids have long-lasting effects on male social behaviors. Behav Brain Res 2009; 208:328-35. [PMID: 20036695 DOI: 10.1016/j.bbr.2009.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/21/2009] [Accepted: 11/16/2009] [Indexed: 12/17/2022]
Abstract
Anabolic androgenic steroids (AAS) use by adolescents is steadily increasing. Adolescence involves remodeling of steroid-sensitive neural circuits that mediate social behaviors, and previous studies using animal models document effects of AAS on male social behaviors. The present experiments tested whether AAS have persistent and more pronounced behavioral consequences when drug exposure occurs during adolescence as compared to exposure in adulthood. Male Syrian hamsters were injected daily for 14 days with either vehicle or an AAS cocktail containing testosterone cypionate (2 mg/kg), nandrolone decanoate (2 mg/kg), and boldenone undecylenate (1 mg/kg), either during adolescence (27-41 days of age) or adulthood (63-77 days of age). As adults, subjects were tested two or four weeks after the last injection for either sexual behavior with a receptive female or male-male agonistic behavior in a resident-intruder test. Compared with vehicle-treated males, AAS-treated males, regardless of age of treatment, displayed fewer long intromissions and a significant increase in latency to the first long intromission, indicative of reduced potential to reach sexual satiety. Increased aggression was observed in males exposed to AAS compared with males treated with vehicle, independently of age of AAS treatment. However, unlike hamsters exposed to AAS in adulthood, hamsters exposed to AAS during adolescence did not display any submissive or risk-assessment behaviors up to 4 weeks after discontinuation of AAS treatment. Thus, AAS have long-lasting effects on male sexual and agonistic behaviors, with AAS exposure during adolescence resulting in a more pronounced reduction in submissive behavior compared to AAS exposure in adulthood.
Collapse
|
43
|
Abstract
AIMS Anabolic-androgenic steroids (AAS) are widely used illicitly to gain muscle and lose body fat. Here we review the accumulating human and animal evidence showing that AAS may cause a distinct dependence syndrome, often associated with adverse psychiatric and medical effects. METHOD We present an illustrative case of AAS dependence, followed by a summary of the human and animal literature on this topic, based on publications known to us or obtained by searching the PubMed database. RESULTS About 30% of AAS users appear to develop a dependence syndrome, characterized by chronic AAS use despite adverse effects on physical, psychosocial or occupational functioning. AAS dependence shares many features with classical drug dependence. For example, hamsters will self-administer AAS, even to the point of death, and both humans and animals exhibit a well-documented AAS withdrawal syndrome, mediated by neuroendocrine and cortical neurotransmitter systems. AAS dependence may particularly involve opioidergic mechanisms. However, AAS differ from classical drugs in that they produce little immediate reward of acute intoxication, but instead a delayed effect of muscle gains. Thus standard diagnostic criteria for substance dependence, usually crafted for acutely intoxicating drugs, must be adapted slightly for cumulatively acting drugs such as AAS. CONCLUSIONS AAS dependence is a valid diagnostic entity, and probably a growing public health problem. AAS dependence may share brain mechanisms with other forms of substance dependence, especially opioid dependence. Future studies are needed to characterize AAS dependence more clearly, identify risk factors for this syndrome and develop treatment strategies.
Collapse
Affiliation(s)
- Gen Kanayama
- Biological Psychiatry Laboratory, McLean Hospital, Belmont, Massachusetts, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
44
|
Attenuating effects of testosterone on depressive-like behavior in the forced swim test in healthy male rats. Brain Res Bull 2009; 79:182-6. [DOI: 10.1016/j.brainresbull.2009.02.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/09/2009] [Accepted: 02/24/2009] [Indexed: 11/19/2022]
|
45
|
Parrilla-Carrero J, Figueroa O, Lugo A, García-Sosa R, Brito-Vargas P, Cruz B, Rivera M, Barreto-Estrada JL. The anabolic steroids testosterone propionate and nandrolone, but not 17alpha-methyltestosterone, induce conditioned place preference in adult mice. Drug Alcohol Depend 2009; 100:122-7. [PMID: 19028026 PMCID: PMC2671726 DOI: 10.1016/j.drugalcdep.2008.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 08/17/2008] [Accepted: 09/24/2008] [Indexed: 11/19/2022]
Abstract
Anabolic androgenic steroids (AAS) are often misused by adolescents and athletes. Their effects vary according to chemical structure and metabolism, route of administration, and AAS regimen. In this study, adult C57Bl/6 male mice were systemically exposed to testosterone propionate (TP), nandrolone or 17alpha-methyltestosterone (17alpha-meT), type I, type II and type III AAS, respectively, in order to determine the hedonic or aversive properties of each drug. For this purpose, the conditioned place preference (CPP) test was employed at three different AAS doses (0.075, 0.75 and 7.5 mg/kg). Other behavioral domains monitored were light-dark transitions (side changes) and general activity. TP shifted place preference at all doses tested, and nandrolone shifted place preference at 0.75 and 7.5 mg/kg, but not at 0.075 mg/kg, the lower dose tested. Conversely, mice receiving 17alpha-meT did not show alteration in the preference score. The lower dose of nandrolone did modify exploratory-based anxiety showing a decrease in light-dark transitions if compared to vehicle-treated animals, while mice treated with TP or 17alpha-meT were not affected. Our data suggest that when studying hedonic and rewarding properties of synthetic androgens, distinction has to be made based on type of AAS and metabolism.
Collapse
|
46
|
Nandrolone abuse decreases anxiety and impairs memory in rats via central androgenic receptors. Int J Neuropsychopharmacol 2008; 11:925-34. [PMID: 18405416 DOI: 10.1017/s1461145708008754] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Anabolic androgenic steroids (AASs) affect areas of the central nervous system, which are involved in emotional and cognitive responses such as sexuality, anxiety, and memory. In the present study we imitated the abuse of AASs by administering high doses of the AAS nandrolone decanoate (ND) to rats. Thereafter rats were exposed to an elevated plus-maze and an olfactory social memory test to evaluate their anxiety-like and cognitive behaviour. To reveal whether these emotional and cognitive changes evoked by ND were caused via direct activation of androgenic receptors (ARs) in the brain, the AR antagonist flutamide (FL) was administered intracerebroventricularly (i.c.v.). Male rats were randomly divided in four groups, one group received 15 mg/kg ND subcutaneously, once daily for 6 wk (ND group). In the second group, in addition to ND, a daily dose of 5 microg FL was injected i.c.v. also for 6 wk (ND+FL group). The third group of rats received only FL and in the control group the vehicle was injected. The ND group clearly spent more time investigating the open arms in the maze test and recognizing the juvenile during the olfactory social memory test in comparison to the control group. In the ND+FL group rats showed similar emotional behaviour and cognitive ability to that of the control group. Injection of FL alone did not affect either anxiety or memory. These results indicate that repeated, high-dose administration of ND decreases anxiety and impairs memory in rats via direct activation of central ARs.
Collapse
|
47
|
Wood RI. Anabolic-androgenic steroid dependence? Insights from animals and humans. Front Neuroendocrinol 2008; 29:490-506. [PMID: 18275992 PMCID: PMC2585375 DOI: 10.1016/j.yfrne.2007.12.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 12/21/2007] [Accepted: 12/25/2007] [Indexed: 11/21/2022]
Abstract
Anabolic-androgenic steroids (AAS) are drugs of abuse. They are taken in large quantities by athletes and others to increase performance, with negative health consequences. As a result, in 1991 testosterone and related AAS were declared controlled substances. However, the relative abuse and dependence liability of AAS have not been fully characterized. In humans, it is difficult to separate the direct psychoactive effects of AAS from reinforcement due to their systemic anabolic effects. However, using conditioned place preference and self-administration, studies in animals have demonstrated that AAS are reinforcing in a context where athletic performance is irrelevant. Furthermore, AAS share brain sites of action and neurotransmitter systems in common with other drugs of abuse. In particular, recent evidence links AAS with opioids. In humans, AAS abuse is associated with prescription opioid use. In animals, AAS overdose produces symptoms resembling opioid overdose, and AAS modify the activity of the endogenous opioid system.
Collapse
Affiliation(s)
- Ruth I Wood
- Department of Cell & Neurobiology, Keck School of Medicine of the University of Southern California, 1333 San Pablo Street, BMT 401, Los Angeles, CA 90033, USA.
| |
Collapse
|
48
|
Birgner C, Kindlundh-Högberg AMS, Alsiö J, Lindblom J, Schiöth HB, Bergström L. The anabolic androgenic steroid nandrolone decanoate affects mRNA expression of dopaminergic but not serotonergic receptors. Brain Res 2008; 1240:221-8. [PMID: 18809391 DOI: 10.1016/j.brainres.2008.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 09/04/2008] [Accepted: 09/06/2008] [Indexed: 01/14/2023]
Abstract
The abuse of anabolic androgenic steroids (AASs) at supratherapeutic doses is a problem not only in the world of sports, but also among non-athletes using AASs to improve physical appearance and to become more bold and courageous. Investigations of the possible neurochemical effects of AAS have focused partially on the monoaminergic systems, which are involved in aggressive behaviours and the development of drug dependence. In the present study, we administered nandrolone decanoate (3 or 15 mg/kg/day for 14 days) and measured mRNA expression of dopaminergic and serotonergic receptors, transporters and enzymes in the male rat brain using quantitative real-time polymerase chain reaction. Expression of the dopamine D1-receptor transcript was elevated in the amygdala and decreased in the hippocampus while the transcript level of the dopamine D4-receptor was increased in the nucleus accumbens. No changes in transcriptional levels were detected among the serotonin-related genes examined in this study. The altered mRNA expression of the dopamine receptors may contribute to some of the behavioural changes often reported in AAS abusers of increased impulsivity, aggression and drug-seeking.
Collapse
Affiliation(s)
- Carolina Birgner
- Department of Pharmaceutical Biosciences, Division of Pharmaceutical Pharmacology, Uppsala University, Box 591 Biomedical Centre, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
49
|
Birgner C, Kindlundh-Högberg AMS, Oreland L, Alsiö J, Lindblom J, Schiöth HB, Bergström L. Reduced activity of monoamine oxidase in the rat brain following repeated nandrolone decanoate administration. Brain Res 2008; 1219:103-10. [PMID: 18539264 DOI: 10.1016/j.brainres.2008.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 05/01/2008] [Accepted: 05/09/2008] [Indexed: 11/15/2022]
Abstract
Anabolic androgenic steroids (AAS) are known as doping agents within sports and body-building, but are currently also abused by other groups in society in order to promote increased courage and aggression. We previously showed that 14 days of daily intramuscular injections of the AAS nandrolone decanoate (15 mg/kg) reduced the extracellular levels of the dopaminergic metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the nucleus accumbens shell using microdialysis. The aim of the present study was to investigate whether the same dose regimen of nandrolone decanoate may affect the activities of the dopamine-metabolizing enzymes monoamine oxidases A and B (MAO-A and MAO-B). A radiometric assay was used to determine the activities of MAO-A and MAO-B in rat brain tissues after 14 days of daily i.m. nandrolone decanoate injections at the doses 3 and 15 mg/kg. Gene transcript contents of MAO-A, MAO-B and cathecol-O-methyltransferase (COMT) were measured with quantitative real-time reverse transcription PCR. 3 mg/kg of nandrolone decanoate significantly reduced the activity of both MAO-A and -B in the caudate putamen. 15 mg/kg of nandrolone decanoate significantly reduced the activity of MAO-A in the amygdala and increased the gene transcript level of MAO-B in the substantia nigra. In conclusion, imbalanced MAO activities may contribute to explain the impulsive and aggressive behaviour often described in AAS abusers. The reduced MAO activities observed are in line with our previously presented findings of decreased extracellular levels of DOPAC and HVA in the rat brain, indicating decreased monoaminergic activity following repeated AAS administration.
Collapse
Affiliation(s)
- Carolina Birgner
- Department of Pharmaceutical Biosciences, Division of Pharmaceutical Pharmacology, Uppsala University, Box 591 Biomedical Centre, SE-751 24 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
50
|
Kurling S, Kankaanpää A, Seppälä T. Sub-chronic nandrolone treatment modifies neurochemical and behavioral effects of amphetamine and 3,4-methylenedioxymethamphetamine (MDMA) in rats. Behav Brain Res 2008; 189:191-201. [DOI: 10.1016/j.bbr.2007.12.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 12/28/2007] [Indexed: 11/29/2022]
|