1
|
Sánchez-León CA, Sánchez-Garrido Campos G, Fernández M, Sánchez-López Á, Medina JF, Márquez-Ruiz J. Somatodendritic orientation determines tDCS-induced neuromodulation of Purkinje cell activity in awake mice. eLife 2025; 13:RP100941. [PMID: 40228055 PMCID: PMC11996176 DOI: 10.7554/elife.100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Transcranial direct-current stimulation (tDCS) of the cerebellum is a promising non-invasive neuromodulatory technique being proposed for the treatment of neurological and neuropsychiatric disorders. However, there is a lack of knowledge about how externally applied currents affect neuronal spiking activity in cerebellar circuits in vivo. We investigated how Cb-tDCS affects the firing rate of Purkinje cells (PC) and non-PC in the mouse cerebellar cortex to understand the underlying mechanisms behind the polarity-dependent modulation of neuronal activity induced by tDCS. Mice (n=9) were prepared for the chronic recording of local field potentials (LFPs) to assess the actual electric field gradient imposed by Cb-tDCS in our experimental design. Single-neuron extracellular recording of PCs in awake (n=24) and anesthetized (n=27) mice was combined with juxtacellular recordings and subsequent staining of PC with neurobiotin under anesthesia (n=8) to correlate their neuronal orientation with their response to Cb-tDCS. Finally, a high-density Neuropixels recording system was used to demonstrate the relevance of neuronal orientation during the application of Cb-tDCS in awake mice (n=6). In this study, we observe that Cb-tDCS induces a heterogeneous polarity-dependent modulation of the firing rate of PCs and non-PC in the mouse cerebellar cortex. We demonstrate that the apparently heterogeneous effects of tDCS on PC activity can be explained by taking into account the somatodendritic orientation relative to the electric field. Our findings highlight the need to consider neuronal orientation and morphology to improve tDCS computational models, enhance stimulation protocol reliability, and optimize effects in both basic and clinical applications.
Collapse
Affiliation(s)
- Carlos A Sánchez-León
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de UtreraSevilleSpain
- Department of Neurology and Neurobiology, University of California, Los AngelesLos AngelesUnited States
| | | | - Marta Fernández
- Department of Psychiatry, University of California, Los AngelesLos AngelesUnited States
- Department of Pharmacology, University of the Basque Country (UPV/EHU)LeioaSpain
| | | | - Javier F Medina
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Javier Márquez-Ruiz
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de UtreraSevilleSpain
| |
Collapse
|
2
|
Sánchez-León CA, Campos GSG, Fernández M, Sánchez-López A, Medina JF, Márquez-Ruiz J. Somatodendritic orientation determines tDCS-induced neuromodulation of Purkinje cell activity in awake mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.02.18.529047. [PMID: 36824866 PMCID: PMC9949160 DOI: 10.1101/2023.02.18.529047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Transcranial direct-current stimulation (tDCS) of the cerebellum is a promising non-invasive neuromodulatory technique being proposed for the treatment of neurological and neuropsychiatric disorders. However, there is a lack of knowledge about how externally applied currents affect neuronal spiking activity in cerebellar circuits in vivo. We investigated how Cb-tDCS affects the firing rate of Purkinje cells (PC) and non-PC in the mouse cerebellar cortex to understand the underlying mechanisms behind the polarity-dependent modulation of neuronal activity induced by tDCS. Mice (n = 9) were prepared for the chronic recording of LFPs to assess the actual electric field gradient imposed by Cb-tDCS in our experimental design. Single-neuron extracellular recording of PCs in awake (n = 24) and anesthetized (n = 27) mice was combined with juxtacellular recordings and subsequent staining of PC with neurobiotin under anesthesia (n = 8) to correlate their neuronal orientation with their response to Cb-tDCS. Finally, a high-density Neuropixels recording system was used to demonstrate the relevance of neuronal orientation during the application of Cb-tDCS in awake mice (n = 6). In this study, we observe that Cb-tDCS induces a heterogeneous polarity-dependent modulation of the firing rate of Purkinje cells (PC) and non-PC in the mouse cerebellar cortex. We demonstrate that the apparently heterogeneous effects of tDCS on PC activity can be explained by taking into account the somatodendritic orientation relative to the electric field. Our findings highlight the need to consider neuronal orientation and morphology to improve tDCS computational models, enhance stimulation protocol reliability, and optimize effects in both basic and clinical applications.
Collapse
Affiliation(s)
- Carlos A Sánchez-León
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013, Seville, Spain
- Department of Neurology and Neurobiology, University of California Los Angeles, Los Angeles 90095, USA
| | | | - Marta Fernández
- Department of Psychiatry, University of California Los Angeles, Los Angeles 90095, USA
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | | | - Javier F Medina
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Javier Márquez-Ruiz
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013, Seville, Spain
| |
Collapse
|
3
|
Sehatpour P, Kantrowitz JT. Finding the Right Dose: NMDA Receptor-Modulating Treatments for Cognitive and Plasticity Deficits in Schizophrenia and the Role of Pharmacodynamic Target Engagement. Biol Psychiatry 2025; 97:128-138. [PMID: 39218136 PMCID: PMC11634630 DOI: 10.1016/j.biopsych.2024.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Cognitive impairment associated with schizophrenia (CIAS) and related deficits in learning (plasticity) are among the leading causes of disability in schizophrenia. Despite this, there are no Food and Drug Administration-approved treatments for CIAS, and the development of treatments has been limited by numerous phase 2/3 failures of compounds that showed initial promise in small-scale studies. NMDA-type glutamate receptors (NMDARs) have been proposed to play an important role in schizophrenia; moreover, the NMDAR has a well-characterized role in cognition, learning, and neuroplasticity. We review previously published clinical trials in CIAS that focused on NMDAR modulator treatments, focusing on published and recent developments of the use of novel NMDAR-modulating treatments for CIAS both alone and combined with plasticity/learning paradigms to enhance learning. We use this discussion of previous studies to highlight the importance of incorporating pharmacodynamic target engagement biomarkers early in treatment development, which can help predict which compounds will succeed or fail in phase 3. A range of direct and indirect NMDAR modulators are covered, including D-serine, D-cycloserine, memantine, and glycine and first-generation glycine transport inhibitors (e.g., sarcosine and bitopertin), as well as recent positive studies of iclepertin, a novel glycine transport inhibitor, and luvadaxistat, a D-amino acid oxidase inhibitor that increases brain D-serine levels, and indirect noninvasive brain stimulation NMDAR-modulating treatments. Several examples of successful use of pharmacodynamic target engagement biomarkers for dose/drug discovery are emphasized, including the mismatch negativity, auditory steady state, and time-frequency event-related potential approaches.
Collapse
Affiliation(s)
- Pejman Sehatpour
- New York State Psychiatric Institute, New York, New York; College of Physicians and Surgeons, Columbia University, New York, New York; Nathan Kline Institute, Orangeburg, New York
| | - Joshua T Kantrowitz
- New York State Psychiatric Institute, New York, New York; College of Physicians and Surgeons, Columbia University, New York, New York; Nathan Kline Institute, Orangeburg, New York.
| |
Collapse
|
4
|
Prabhu NM, Lehmann N, Kaminski E, Müller N, Taubert M. Online stimulation of the prefrontal cortex during practice increases motor variability and modulates later cognitive transfer: a randomized, double-blinded and sham-controlled tDCS study. Sci Rep 2024; 14:20162. [PMID: 39215020 PMCID: PMC11364672 DOI: 10.1038/s41598-024-70857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
The benefits of learning a motor skill extend to improved task-specific cognitive abilities. The mechanistic underpinnings of this motor-cognition relationship potentially rely on overlapping neural resources involved in both processes, an assumption lacking causal evidence. We hypothesize that interfering with prefrontal networks would inhibit concurrent motor skill performance, long-term learning and associated cognitive functions dependent on similar networks (transfer). We conducted a randomised, double-blinded, sham-controlled brain stimulation study using transcranial direct current stimulation (tDCS) in young adults spanning over three weeks to assess the role of the prefrontal regions in learning a complex balance task and long-term cognitive performance. Balance training combined with active tDCS led to higher performance variability in the trained task as compared to the sham group, impacting the process of learning a complex task without affecting the learning rate. Furthermore, active tDCS also positively influenced performance in untrained motor and cognitive tasks. The findings of this study help ascertaining the networks directly involved in learning a complex motor task and its implications on cognitive function. Hence, opening up the possibility of harnessing the observed frontal networks involved in resource mobilization in instances of aging, brain lesion/injury or dysfunction.
Collapse
Affiliation(s)
- Nisha Maria Prabhu
- Faculty of Human Sciences, Department of Sport Science, Institute III, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.
| | - Nico Lehmann
- Faculty of Human Sciences, Department of Sport Science, Institute III, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| | - Elisabeth Kaminski
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany
| | - Notger Müller
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany
- Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Am Mühlenberg 9, 14476, Potsdam, Germany
- Neuroprotection Lab, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Marco Taubert
- Faculty of Human Sciences, Department of Sport Science, Institute III, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
| |
Collapse
|
5
|
Wu PJ, Huang CH, Lee SY, Chang AYW, Wang WC, Lin CCK. The distinct and potentially conflicting effects of tDCS and tRNS on brain connectivity, cortical inhibition, and visuospatial memory. Front Hum Neurosci 2024; 18:1415904. [PMID: 38873654 PMCID: PMC11169625 DOI: 10.3389/fnhum.2024.1415904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Noninvasive brain stimulation (NIBS) techniques, including transcranial direct current stimulation (tDCS) and transcranial random noise stimulation (tRNS), are emerging as promising tools for enhancing cognitive functions by modulating brain activity and enhancing cognitive functions. Despite their potential, the specific and combined effects of tDCS and tRNS on brain functions, especially regarding functional connectivity, cortical inhibition, and memory performance, are not well-understood. This study aims to explore the distinct and combined impacts of tDCS and tRNS on these neural and cognitive parameters. Using a within-subject design, ten participants underwent four stimulation conditions: sham, tDCS, tRNS, and combined tDCS + tRNS. We assessed the impact on resting-state functional connectivity, cortical inhibition via Cortical Silent Period (CSP), and visuospatial memory performance using the Corsi Block-tapping Test (CBT). Our results indicate that while tDCS appears to induce brain lateralization, tRNS has more generalized and dispersive effects. Interestingly, the combined application of tDCS and tRNS did not amplify these effects but rather suggested a non-synergistic interaction, possibly due to divergent mechanistic pathways, as observed across fMRI, CSP, and CBT measures. These findings illuminate the complex interplay between tDCS and tRNS, highlighting their non-additive effects when used concurrently and underscoring the necessity for further research to optimize their application for cognitive enhancement.
Collapse
Affiliation(s)
- Pei-Jung Wu
- Department of Neurology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Hsu Huang
- Department of Neurology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuenn-Yuh Lee
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Alice Y. W. Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chi Wang
- Department of Neurology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chou-Ching K. Lin
- Department of Neurology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Farahani F, Khadka N, Parra LC, Bikson M, Vöröslakos M. Transcranial electric stimulation modulates firing rate at clinically relevant intensities. Brain Stimul 2024; 17:561-571. [PMID: 38631548 PMCID: PMC466978 DOI: 10.1016/j.brs.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Notwithstanding advances with low-intensity transcranial electrical stimulation (tES), there remain questions about the efficacy of clinically realistic electric fields on neuronal function. OBJECTIVE To measure electric fields magnitude and their effects on neuronal firing rate of hippocampal neurons in freely moving rats, and to establish calibrated computational models of current flow. METHODS Current flow models were calibrated on electric field measures in the motor cortex (n = 2 anesthetized rats) and hippocampus. A Neuropixels 2.0 probe with 384 channels was used in an in-vivo rat model of tES (n = 4 freely moving and 2 urethane anesthetized rats) to detect effects of weak fields on neuronal firing rate. High-density field mapping and computational models verified field intensity (1 V/m in hippocampus per 50 μA of applied skull currents). RESULTS Electric fields of as low as 0.35 V/m (0.25-0.47) acutely modulated average firing rate in the hippocampus. At these intensities, firing rate effects increased monotonically with electric field intensity at a rate of 11.5 % per V/m (7.2-18.3). For the majority of excitatory neurons, firing increased for soma-depolarizing stimulation and diminished for soma-hyperpolarizing stimulation. While more diverse, the response of inhibitory neurons followed a similar pattern on average, likely as a result of excitatory drive. CONCLUSION In awake animals, electric fields modulate spiking rate above levels previously observed in vitro. Firing rate effects are likely mediated by somatic polarization of pyramidal neurons. We recommend that all future rodent experiments directly measure electric fields to insure rigor and reproducibility.
Collapse
Affiliation(s)
- Forouzan Farahani
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Niranjan Khadka
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Mihály Vöröslakos
- Neuroscience Institute and Department of Neurology, NYU Grossman School of Medicine, New York University, New York, NY, USA.
| |
Collapse
|
7
|
Davidson B, Bhattacharya A, Sarica C, Darmani G, Raies N, Chen R, Lozano AM. Neuromodulation techniques - From non-invasive brain stimulation to deep brain stimulation. Neurotherapeutics 2024; 21:e00330. [PMID: 38340524 PMCID: PMC11103220 DOI: 10.1016/j.neurot.2024.e00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Over the past 30 years, the field of neuromodulation has witnessed remarkable advancements. These developments encompass a spectrum of techniques, both non-invasive and invasive, that possess the ability to both probe and influence the central nervous system. In many cases neuromodulation therapies have been adopted into standard care treatments. Transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and transcranial ultrasound stimulation (TUS) are the most common non-invasive methods in use today. Deep brain stimulation (DBS), spinal cord stimulation (SCS), and vagus nerve stimulation (VNS), are leading surgical methods for neuromodulation. Ongoing active clinical trials using are uncovering novel applications and paradigms for these interventions.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | | | - Can Sarica
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Ghazaleh Darmani
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nasem Raies
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
8
|
Farahani F, Khadka N, Parra LC, Bikson M, Vöröslakos M. Transcranial electric stimulation modulates firing rate at clinically relevant intensities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.24.568618. [PMID: 38045400 PMCID: PMC10690262 DOI: 10.1101/2023.11.24.568618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Notwithstanding advances with low-intensity transcranial electrical stimulation (TES), there remain questions about the efficacy of clinically realistic electric fields on neuronal function. We used Neuropixels 2.0 probe with 384 channels in an in-vivo rat model of TES to detect effects of weak fields on neuronal firing rate. High-density field mapping and computational models verified field intensity (1 V/m in hippocampus per 50 μA of applied skull currents). We demonstrate that electric fields below 0.5 V/m acutely modulate firing rate in 5% of neurons recorded in the hippocampus. At these intensities, average firing rate effects increased monotonically with electric field intensity at a rate of 7 % per V/m. For the majority of excitatory neurons, firing increased for cathodal stimulation and diminished for anodal stimulation. While more diverse, the response of inhibitory neurons followed a similar pattern on average, likely as a result of excitatory drive. Our results indicate that responses to TES at clinically relevant intensities are driven by a fraction of high-responder excitatory neurons, with polarity-specific effects. We conclude that transcranial electric stimulation is an effective neuromodulator at clinically realistic intensities.
Collapse
Affiliation(s)
- Forouzan Farahani
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Niranjan Khadka
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Lucas C. Parra
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Mihály Vöröslakos
- Neuroscience Institute and Department of Neurology, NYU Grossman School of Medicine, New York University, New York, NY, USA
| |
Collapse
|
9
|
Leow LA, Marcos A, Nielsen E, Sewell D, Ballard T, Dux PE, Filmer HL. Dopamine Alters the Effect of Brain Stimulation on Decision-Making. J Neurosci 2023; 43:6909-6919. [PMID: 37648451 PMCID: PMC10573748 DOI: 10.1523/jneurosci.1140-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023] Open
Abstract
Noninvasive brain stimulation techniques, such as transcranial direct current stimulation (tDCS), show promise in treating a range of psychiatric and neurologic conditions. However, optimization of such applications requires a better understanding of how tDCS alters cognition and behavior. Existing evidence implicates dopamine in tDCS alterations of brain activity and plasticity; however, there is as yet no causal evidence for a role of dopamine in tDCS effects on cognition and behavior. Here, in a preregistered, double-blinded study, we examined how pharmacologically manipulating dopamine altered the effect of tDCS on the speed-accuracy trade-off, which taps ubiquitous strategic operations. Cathodal tDCS was delivered over the left prefrontal cortex and the superior medial frontal cortex before participants (N = 62, 24 males, 38 females) completed a dot-motion task, making judgments on the direction of a field of moving dots under instructions to emphasize speed, accuracy, or both. We leveraged computational modeling to uncover how our interventions altered latent decisional processes driving the speed-accuracy trade-off. We show that dopamine in combination with tDCS (but not tDCS alone nor dopamine alone) not only impaired decision accuracy but also impaired discriminability, which suggests that these manipulations altered the encoding or representation of discriminative evidence. This is, to the best of our knowledge, the first direct evidence implicating dopamine in the way tDCS affects cognition and behavior.SIGNIFICANCE STATEMENT tDCS can improve cognitive and behavioral impairments in clinical conditions; however, a better understanding of its mechanisms is required to optimize future clinical applications. Here, using a pharmacological approach to manipulate brain dopamine levels in healthy adults, we demonstrate a role for dopamine in the effects of tDCS in the speed-accuracy trade-off, a strategic cognitive process ubiquitous in many contexts. In doing so, we provide direct evidence implicating dopamine in the way tDCS affects cognition and behavior.
Collapse
Affiliation(s)
- Li-Ann Leow
- School of Psychology, University of Queensland, St Lucia, Brisbane QLD 4072 Australia
| | - Anjeli Marcos
- School of Psychology, University of Queensland, St Lucia, Brisbane QLD 4072 Australia
| | - Esteban Nielsen
- School of Psychology, University of Queensland, St Lucia, Brisbane QLD 4072 Australia
| | - David Sewell
- School of Psychology, University of Queensland, St Lucia, Brisbane QLD 4072 Australia
| | - Timothy Ballard
- School of Psychology, University of Queensland, St Lucia, Brisbane QLD 4072 Australia
| | - Paul E Dux
- School of Psychology, University of Queensland, St Lucia, Brisbane QLD 4072 Australia
| | - Hannah L Filmer
- School of Psychology, University of Queensland, St Lucia, Brisbane QLD 4072 Australia
| |
Collapse
|
10
|
Katoch N, Kim Y, Choi BK, Ha SW, Kim TH, Yoon EJ, Song SG, Kim JW, Kim HJ. Estimation of brain tissue response by electrical stimulation in a subject-specific model implemented by conductivity tensor imaging. Front Neurosci 2023; 17:1197452. [PMID: 37287801 PMCID: PMC10242016 DOI: 10.3389/fnins.2023.1197452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Electrical stimulation such as transcranial direct current stimulation (tDCS) is widely used to treat neuropsychiatric diseases and neurological disorders. Computational modeling is an important approach to understand the mechanisms underlying tDCS and optimize treatment planning. When applying computational modeling to treatment planning, uncertainties exist due to insufficient conductivity information inside the brain. In this feasibility study, we performed in vivo MR-based conductivity tensor imaging (CTI) experiments on the entire brain to precisely estimate the tissue response to the electrical stimulation. A recent CTI method was applied to obtain low-frequency conductivity tensor images. Subject-specific three-dimensional finite element models (FEMs) of the head were implemented by segmenting anatomical MR images and integrating a conductivity tensor distribution. The electric field and current density of brain tissues following electrical stimulation were calculated using a conductivity tensor-based model and compared to results using an isotropic conductivity model from literature values. The current density by the conductivity tensor was different from the isotropic conductivity model, with an average relative difference |rD| of 52 to 73%, respectively, across two normal volunteers. When applied to two tDCS electrode montages of C3-FP2 and F4-F3, the current density showed a focused distribution with high signal intensity which is consistent with the current flowing from the anode to the cathode electrodes through the white matter. The gray matter tended to carry larger amounts of current densities regardless of directional information. We suggest this CTI-based subject-specific model can provide detailed information on tissue responses for personalized tDCS treatment planning.
Collapse
Affiliation(s)
- Nitish Katoch
- Department of Biomedical Engineering, Kyung Hee University, Seoul, Republic of Korea
| | - Youngsung Kim
- Office of Strategic R&D Planning (MOTIE), Seoul, Republic of Korea
| | - Bup Kyung Choi
- Department of Biomedical Engineering, Kyung Hee University, Seoul, Republic of Korea
| | - Sang Woo Ha
- Department of Neurosurgery, Chosun University Hospital and Chosun University College of Medicine, Gwangju, Republic of Korea
| | - Tae Hoon Kim
- Medical Convergence Research Center, Wonkwang University Hospital, Iksan, Republic of Korea
| | - Eun Ju Yoon
- Department of Radiology, Chosun University Hospital and Chosun University College of Medicine, Gwangju, Republic of Korea
| | - Sang Gook Song
- Department of Radiology, Chosun University Hospital and Chosun University College of Medicine, Gwangju, Republic of Korea
| | - Jin Woong Kim
- Department of Radiology, Chosun University Hospital and Chosun University College of Medicine, Gwangju, Republic of Korea
| | - Hyung Joong Kim
- Department of Biomedical Engineering, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Krause MR, Vieira PG, Pack CC. Transcranial electrical stimulation: How can a simple conductor orchestrate complex brain activity? PLoS Biol 2023; 21:e3001973. [PMID: 36716309 PMCID: PMC9886255 DOI: 10.1371/journal.pbio.3001973] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transcranial electrical stimulation (tES) is one of the oldest and yet least understood forms of brain stimulation. The idea that a weak electrical stimulus, applied outside the head, can meaningfully affect neural activity is often regarded as mysterious. Here, we argue that the direct effects of tES are not so mysterious: Extensive data from a wide range of model systems shows it has appreciable effects on the activity of individual neurons. Instead, the real mysteries are how tES interacts with the brain's own activity and how these dynamics can be controlled to produce desirable therapeutic effects. These are challenging problems, akin to repairing a complex machine while it is running, but they are not unique to tES or even neuroscience. We suggest that models of coupled oscillators, a common tool for studying interactions in other fields, may provide valuable insights. By combining these tools with our growing, interdisciplinary knowledge of brain dynamics, we are now in a good position to make progress in this area and meet the high demand for effective neuromodulation in neuroscience and psychiatry.
Collapse
Affiliation(s)
- Matthew R. Krause
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail: (MRK); (PGV); (CCP)
| | - Pedro G. Vieira
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail: (MRK); (PGV); (CCP)
| | - Christopher C. Pack
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail: (MRK); (PGV); (CCP)
| |
Collapse
|
12
|
Effectiveness of Anodal otDCS Following with Anodal tDCS Rather than tDCS Alone for Increasing of Relative Power of Intrinsic Matched EEG Bands in Rat Brains. Brain Sci 2022; 13:brainsci13010072. [PMID: 36672053 PMCID: PMC9856406 DOI: 10.3390/brainsci13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND This study sought to determine whether (1) evidence is available of interactions between anodal tDCS and oscillated tDCS stimulation patterns to increase the power of endogenous brain oscillations and (2) the frequency matching the applied anodal otDCS's frequency and the brain's dominant intrinsic frequency influence power shifting during stimulation pattern sessions by both anodal DCS and anodal oscillated DCS. METHOD Rats received different anodal tDCS and otDCS stimulation patterns using 8.5 Hz and 13 Hz state-related dominant intrinsic frequencies of anodal otDCS. The rats were divided into groups with specific stimulation patterns: group A: tDCS-otDCS (8.5 Hz)-otDCS (13 Hz); group B: otDCS (8.5 Hz)-tDCS-otDCS (13 Hz); group C: otDCS (13 Hz)-tDCS-otDCS (8.5 Hz). Acute relative power changes (i.e., following 10 min stimulation sessions) in six frequency bands-delta (1.5-4 Hz), theta (4-7 Hz), alpha-1 (7-10 Hz), alpha-2 (10-12 Hz), beta-1 (12-15 Hz) and beta-2 (15-20 Hz)-were compared using three factors and repeated ANOVA measurement. RESULTS For each stimulation, tDCS increased theta power band and, above bands alpha and beta, a drop in delta power was observed. Anodal otDCS had a mild increasing power effect in both matched intrinsic and delta bands. In group pattern stimulations, increased power of endogenous frequencies matched exogenous otDCS frequencies-8.5 Hz or 13 Hz-with more potent effects in upper bands. The power was markedly more potent with the otDCS-tDCS stimulation pattern than the tDCS-otDCS pattern. SIGNIFICANCE The findings suggest that the otDCS-tDCS pattern stimulation increased the power in matched intrinsic oscillations and, significantly, in the above bands in an ascending order. We provide evidence for the successful corporation between otDCS (as frequency-matched guidance) and tDCS (as a power generator) rather than tDCS alone when stimulating a desired brain intrinsic band (herein, tES specificity).
Collapse
|
13
|
Guidetti M, Arlotti M, Bocci T, Bianchi AM, Parazzini M, Ferrucci R, Priori A. Electric Fields Induced in the Brain by Transcranial Electric Stimulation: A Review of In Vivo Recordings. Biomedicines 2022; 10:biomedicines10102333. [PMID: 36289595 PMCID: PMC9598743 DOI: 10.3390/biomedicines10102333] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 01/12/2023] Open
Abstract
Transcranial electrical stimulation (tES) techniques, such as direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), cause neurophysiological and behavioral modifications as responses to the electric field are induced in the brain. Estimations of such electric fields are based mainly on computational studies, and in vivo measurements have been used to expand the current knowledge. Here, we review the current tDCS- and tACS-induced electric fields estimations as they are recorded in humans and non-human primates using intracerebral electrodes. Direct currents and alternating currents were applied with heterogeneous protocols, and the recording procedures were characterized by a tentative methodology. However, for the clinical stimulation protocols, an injected current seems to reach the brain, even at deep structures. The stimulation parameters (e.g., intensity, frequency and phase), the electrodes’ positions and personal anatomy determine whether the intensities might be high enough to affect both neuronal and non-neuronal cell activity, also deep brain structures.
Collapse
Affiliation(s)
- Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | | | - Tommaso Bocci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| | - Anna Maria Bianchi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Marta Parazzini
- Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni (IEIIT), Consiglio Nazionale delle Ricerche (CNR), 20133 Milan, Italy
| | - Roberta Ferrucci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
- Correspondence:
| |
Collapse
|
14
|
Swissa Y, Hacohen S, Friedman J, Frenkel-Toledo S. Sensorimotor performance after high-definition transcranial direct current stimulation over the primary somatosensory or motor cortices in men versus women. Sci Rep 2022; 12:11117. [PMID: 35778465 PMCID: PMC9249866 DOI: 10.1038/s41598-022-15226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022] Open
Abstract
The primary somatosensory (S1) cortex is a central structure in motor performance. However, transcranial direct current stimulation (tDCS) research aimed at improving motor performance usually targets the primary motor cortex (M1). Recently, sex was found to mediate tDCS response. Thus, we investigated whether tDCS with an anodal electrode placed over S1 improves motor performance and sensation perception in men versus women. Forty-five participants randomly received 15-min high-definition tDCS (HD-tDCS) at 1 mA to S1, M1, or sham stimulation. Reaching performance was tested before and immediately following stimulation. Two-point orientation discrimination (TPOD) of fingers and proprioception of a reaching movement were also tested. Although motor performance did not differ between groups, reaching reaction time improved in the M1 group men. Reaching movement time and endpoint error improved in women and men, respectively. Correct trials percentage for TPOD task was higher in the S1 compared to the M1 group in the posttest and improved only in the S1 group. Reaching movement time for the proprioception task improved, overall, and endpoint error did not change. Despite the reciprocal connections between S1 and M1, effects of active tDCS over S1 and M1 may specifically influence sensation perception and motor performance, respectively. Also, sex may mediate effects of HD-tDCS on motor performance.
Collapse
Affiliation(s)
- Yochai Swissa
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Shlomi Hacohen
- Department of Mechanical Engineering, Ariel University, Ariel, Israel
| | - Jason Friedman
- Department of Physical Therapy, Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Silvi Frenkel-Toledo
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel. .,Department of Neurological Rehabilitation, Loewenstein Rehabilitation Medical Center, Ra'anana, Israel.
| |
Collapse
|
15
|
Adeel M, Chen CC, Lin BS, Chen HC, Liou JC, Li YT, Peng CW. Safety of Special Waveform of Transcranial Electrical Stimulation (TES): In Vivo Assessment. Int J Mol Sci 2022; 23:ijms23126850. [PMID: 35743291 PMCID: PMC9224937 DOI: 10.3390/ijms23126850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Intermittent theta burst (iTBS) powered by direct current stimulation (DCS) can safely be applied transcranially to induce neuroplasticity in the human and animal brain cortex. tDCS-iTBS is a special waveform that is used by very few studies, and its safety needs to be confirmed. Therefore, we aimed to evaluate the safety of tDCS-iTBS in an animal model after brain stimulations for 1 h and 4 weeks. Thirty-one Sprague Dawley rats were divided into two groups: (1) short-term stimulation for 1 h/session (sham, low, and high) and (2) long-term for 30 min, 3 sessions/week for 4 weeks (sham and high). The anodal stimulation applied over the primary motor cortex ranged from 2.5 to 4.5 mA/cm2. The brain biomarkers and scalp tissues were assessed using ELISA and histological analysis (H&E staining) after stimulations. The caspase-3 activity, cortical myelin basic protein (MBP) expression, and cortical interleukin (IL-6) levels increased slightly in both groups compared to sham. The serum MBP, cortical neuron-specific enolase (NSE), and serum IL-6 slightly changed from sham after stimulations. There was no obvious edema or cell necrosis seen in cortical histology after the intervention. The short- and long-term stimulations did not induce significant adverse effects on brain and scalp tissues upon assessing biomarkers and conducting histological analysis.
Collapse
Affiliation(s)
- Muhammad Adeel
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; (M.A.); (J.-C.L.)
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Chun-Ching Chen
- Department of Interaction Design, College of Design, National Taipei University of Technology, Taipei 106, Taiwan;
| | - Bor-Shing Lin
- Department of Computer Science and Information Engineering, National Taipei University, New Taipei City 237, Taiwan;
| | - Hung-Chou Chen
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Jian-Chiun Liou
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; (M.A.); (J.-C.L.)
| | - Yu-Ting Li
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 30261, Taiwan;
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; (M.A.); (J.-C.L.)
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- School of Gerontology Health Management, College of Nursing, Taipei Medical University, Taipei 110, Taiwan
- Correspondence:
| |
Collapse
|
16
|
Preliminary Study on Safety Assessment of 10 Hz Transcranial Alternating Current Stimulation in Rat Brain. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Assessment of the safety of transcranial electrical stimulation devices that contact the scalp and apply electrical stimulations to brain tissues is essential for the prevention of unexpected brain damage caused by electromagnetic fields. In particular, safety studies on transcranial alternating current stimulation (tACS) are needed for active applications to treat brain diseases and for the development of medical devices, because there is a lack of research on the safety of tACS, in contrast to transcranial direct current stimulation. In this study, the safety of tACS with selected parameters, i.e., a stimulation intensity of 1.0 to 2.0 mA, a frequency of 10 Hz, and a treatment time of 20 min, was examined at a preclinical stage using small animals (rats). The results of magnetic resonance imaging and histopathological imaging indicated that the conditions applied in this study provided safe tACS without damaging brain tissues or neuronal components in the acute phase. In addition, the temperature did not increase above 41 °C, which is a temperature limitation for contact-type medical devices, even after 20 min of tACS application.
Collapse
|
17
|
Klomjai W, Aneksan B. A randomized sham-controlled trial on the effects of dual-tDCS "during" physical therapy on lower limb performance in sub-acute stroke and a comparison to the previous study using a "before" stimulation protocol. BMC Sports Sci Med Rehabil 2022; 14:68. [PMID: 35428346 PMCID: PMC9013129 DOI: 10.1186/s13102-022-00463-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/04/2022] [Indexed: 11/26/2022] Open
Abstract
Background Dual-transcranial direct current stimulation (tDCS) has been used to rebalance the cortical excitability of both hemispheres following unilateral-stroke. Our previous study showed a positive effect from a single-session of dual-tDCS applied before physical therapy (PT) on lower limb performance. However, it is still undetermined if other timings of brain stimulation (i.e., during motor practice) induce better effects. The objective of this study was to examine the effect of a single-session of dual-tDCS “during” PT on lower limb performance in sub-acute stroke and then compare the results with our previous data using a “before” stimulation paradigm. Method For the current “during” protocol, 19 participants were participated in a randomized sham-controlled crossover trial. Dual-tDCS over the M1 of both cortices (2 mA) was applied during the first 20 min of PT. The Timed Up and Go and Five-Times-Sit-To-Stand tests were assessed at pre- and post-intervention and 1-week follow-up. Then, data from the current study were compared with those of the previous “before” study performed in a different group of 19 subjects. Both studies were compared by the difference of mean changes from the baseline. Results Dual-tDCS “during” PT and the sham group did not significantly improve lower limb performance. By comparing with the previous data, performance in the “before” group was significantly greater than in the “during” and sham groups at post-intervention, while at follow-up the “before” group had better improvement than sham, but not greater than the “during” group. Conclusion A single-session of dual-tDCS during PT induced no additional advantage on lower limb performance. The “before” group seemed to induce better acute effects; however, the benefits of the after-effects on motor learning for both stimulation protocols were probably not different. Trial registration Current randomized controlled trials was prospectively registered at the clinicaltrials.gov, registration number: NCT04051671. The date of registration was 09/08/2019.
Collapse
Affiliation(s)
- Wanalee Klomjai
- Neuro Electrical Stimulation Laboratory (NeuE), Faculty of Physical Therapy, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand.,Faculty of Physical Therapy, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Benchaporn Aneksan
- Neuro Electrical Stimulation Laboratory (NeuE), Faculty of Physical Therapy, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand. .,Faculty of Physical Therapy, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
18
|
Direct Current Stimulation in Cell Culture Systems and Brain Slices-New Approaches for Mechanistic Evaluation of Neuronal Plasticity and Neuromodulation: State of the Art. Cells 2021; 10:cells10123583. [PMID: 34944091 PMCID: PMC8700319 DOI: 10.3390/cells10123583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Non-invasive direct current stimulation (DCS) of the human brain induces neuronal plasticity and alters plasticity-related cognition and behavior. Numerous basic animal research studies focusing on molecular and cellular targets of DCS have been published. In vivo, ex vivo, and in vitro models enhanced knowledge about mechanistic foundations of DCS effects. Our review identified 451 papers using a PRISMA-based search strategy. Only a minority of these papers used cell culture or brain slice experiments with DCS paradigms comparable to those applied in humans. Most of the studies were performed in brain slices (9 papers), whereas cell culture experiments (2 papers) were only rarely conducted. These ex vivo and in vitro approaches underline the importance of cell and electric field orientation, cell morphology, cell location within populations, stimulation duration (acute, prolonged, chronic), and molecular changes, such as Ca2+-dependent intracellular signaling pathways, for the effects of DC stimulation. The reviewed studies help to clarify and confirm basic mechanisms of this intervention. However, the potential of in vitro studies has not been fully exploited and a more systematic combination of rodent models, ex vivo, and cellular approaches might provide a better insight into the neurophysiological changes caused by tDCS.
Collapse
|
19
|
Sharma M, Farahani F, Bikson M, Parra LC. Weak DCS causes a relatively strong cumulative boost of synaptic plasticity with spaced learning. Brain Stimul 2021; 15:57-62. [PMID: 34749007 PMCID: PMC8816825 DOI: 10.1016/j.brs.2021.10.552] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Electric fields generated during direct current stimulation (DCS) are known to modulate activity-dependent synaptic plasticity in-vitro. This provides a mechanistic explanation for the lasting behavioral effects observed with transcranial direct current stimulation (tDCS) in human learning experiments. However, previous in-vitro synaptic plasticity experiments show relatively small effects despite using strong fields compared to what is expected with conventional tDCS in humans (20 V/m vs. 1 V/m). There is therefore a need to improve the effectiveness of tDCS at realistic field intensities. Here we leverage the observation that effects of learning are known to accumulate over multiple bouts of learning, known as spaced learning. Hypothesis: We propose that effects of DCS on synaptic long-term potentiation (LTP) accumulate over time in a spaced learning paradigm, thus revealing effects at more realistic field intensities. Methods: We leverage a standard model for spaced learning by inducing LTP with repeated bouts of theta burst stimulation (TBS) in hippocampal slice preparations. We studied the cumulative effects of DCS paired with TBS at various intensities applied during the induction of LTP in the CA1 region of rat hippocampal slices. Results: As predicted, DCS applied during repeated bouts of theta burst stimulation (TBS) resulted in an increase of LTP. This spaced learning effect is saturated quickly with strong TBS protocols and stronger fields. In contrast, weaker TBS and the weakest electric fields of 2.5 V/m resulted in the strongest relative efficacies (12% boost in LTP per 1 V/m applied). Conclusions: Weak DCS causes a relatively strong cumulative effect of spaced learning on synaptic plasticity. Staturarion may have masked stronger effects sizes in previous in-vitro studies. Relative effect sizes of DCS are now closer in line with human tDCS experiments.
Collapse
Affiliation(s)
- Mahima Sharma
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY, USA.
| | - Forouzan Farahani
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY, USA.
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY, USA.
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY, USA.
| |
Collapse
|
20
|
Salehinejad MA, Wischnewski M, Ghanavati E, Mosayebi-Samani M, Kuo MF, Nitsche MA. Cognitive functions and underlying parameters of human brain physiology are associated with chronotype. Nat Commun 2021; 12:4672. [PMID: 34344864 PMCID: PMC8333420 DOI: 10.1038/s41467-021-24885-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/08/2021] [Indexed: 01/03/2023] Open
Abstract
Circadian rhythms have natural relative variations among humans known as chronotype. Chronotype or being a morning or evening person, has a specific physiological, behavioural, and also genetic manifestation. Whether and how chronotype modulates human brain physiology and cognition is, however, not well understood. Here we examine how cortical excitability, neuroplasticity, and cognition are associated with chronotype in early and late chronotype individuals. We monitor motor cortical excitability, brain stimulation-induced neuroplasticity, and examine motor learning and cognitive functions at circadian-preferred and non-preferred times of day in 32 individuals. Motor learning and cognitive performance (working memory, and attention) along with their electrophysiological components are significantly enhanced at the circadian-preferred, compared to the non-preferred time. This outperformance is associated with enhanced cortical excitability (prominent cortical facilitation, diminished cortical inhibition), and long-term potentiation/depression-like plasticity. Our data show convergent findings of how chronotype can modulate human brain functions from basic physiological mechanisms to behaviour and higher-order cognition.
Collapse
Affiliation(s)
- Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- International Graduate School of Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Miles Wischnewski
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Elham Ghanavati
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Mohsen Mosayebi-Samani
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany.
| |
Collapse
|
21
|
An Overview of Noninvasive Brain Stimulation: Basic Principles and Clinical Applications. Can J Neurol Sci 2021; 49:479-492. [PMID: 34238393 DOI: 10.1017/cjn.2021.158] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The brain has the innate ability to undergo neuronal plasticity, which refers to changes in its structure and functions in response to continued changes in the environment. Although these concepts are well established in animal slice preparation models, their application to a large number of human subjects could only be achieved using noninvasive brain stimulation (NIBS) techniques. In this review, we discuss the mechanisms of plasticity induction using NIBS techniques including transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), random noise stimulation (RNS), transcranial ultrasound stimulation (TUS), vagus nerve stimulation (VNS), and galvanic vestibular stimulation (GVS). We briefly introduce these techniques, explain the stimulation parameters and potential clinical implications. Although their mechanisms are different, all these NIBS techniques can be used to induce plasticity at the systems level, to examine the neurophysiology of brain circuits and have potential therapeutic use in psychiatric and neurological disorders. TMS is the most established technique for the treatment of brain disorders, and repetitive TMS is an approved treatment for medication-resistant depression. Although the data on the clinical utility of the other modes of stimulation are more limited, the electrical stimulation techniques (tDCS, tACS, RNS, VNS, GVS) have the advantage of lower cost, portability, applicability at home, and can readily be combined with training or rehabilitation. Further research is needed to expand the clinical utility of NIBS and test the combination of different modes of NIBS to optimize neuromodulation induced clinical benefits.
Collapse
|
22
|
The effects of transcranial direct current stimulation on upper-limb function post-stroke: A meta-analysis of multiple-session studies. Clin Neurophysiol 2021; 132:1897-1918. [PMID: 34157634 DOI: 10.1016/j.clinph.2021.05.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/21/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To systematically review how patient characteristics and/or transcranial direct current stimulation (tDCS) parameters influence tDCS effectiveness in respect to upper limb function post-stroke. METHODS Three electronic databases were searched for sham-controlled randomised trials using the Fugl-Meyer Assessment for upper extremity as outcome measure. A meta-analysis and nine subgroup-analyses were performed to identify which tDCS parameters yielded the greatest impact on upper limb function recovery in stroke patients. RESULTS Eighteen high-quality studies (507 patients) were included. tDCS applied in a chronic stage yields greater results than tDCS applied in a (sub)acute stage. Additionally, patients with low baseline upper limb impairments seem to benefit more from tDCS than those with high baseline impairments. Regarding tDCS configuration, all stimulation types led to a significant improvement, but only tDCS applied during therapy, and not before therapy, yielded significant results. A positive dose-response relationship was identified for current/charge density and stimulation duration, but not for number of sessions. CONCLUSION Our results demonstrate that tDCS improves upper limb function post-stroke. However, its effectiveness depends on numerous factors. Especially chronic stroke patients improved, which is promising as they are typically least amenable to recovery. SIGNIFICANCE The current work highlights the importance of several patient-related and protocol-related factors regarding tDCS effectiveness.
Collapse
|
23
|
Zulkifly MFM, Merkohitaj O, Paulus W, Brockmöller J. The roles of caffeine and corticosteroids in modulating cortical excitability after paired associative stimulation (PAS) and transcranial alternating current stimulation (tACS) in caffeine-naïve and caffeine-adapted subjects. Psychoneuroendocrinology 2021; 127:105201. [PMID: 33740589 DOI: 10.1016/j.psyneuen.2021.105201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 11/24/2022]
Abstract
The modulatory effects of non-invasive brain stimulation (NIBS) are highly variable between subjects. This variability may be due to uncontrolled caffeine consumption and circadian rhythms. Therefore, here we studied if caffeine consumption, systemically available caffeine measured in saliva, and daytime have effects on the excitability and plasticity of the motor cortex. Since both, time of the day and caffeine may mediate their effects via cortisol, we also quantified corticosteroids in saliva. Experiment 1 was performed in caffeine-naïve participants (n = 30) and compared the effects of PAS or tACS with different stimulation intensities on the motor cortex with or without caffeine 200 mg administered in a double-blind fashion. Experiment 2 was performed in regular caffeine consumers (n = 30) and compared the influence of time of day on the effects of tACS (true or sham) on the motor cortex also with or without caffeine administered in a double-blind fashion. Caffeine increased the saliva corticosteroid concentrations in both experimental groups, and corticosteroid concentrations were higher in the morning in caffeine consumers. Gender also affected corticosteroid concentrations. There was a positive correlation between caffeine concentrations and baseline cortical excitability in caffeine-adapted participants, and a negative correlation between poststimulation caffeine concentrations and motor evoked potential (MEP) amplitudes after sham stimulation in caffeine-naïve subjects. No correlations were found between poststimulation caffeine or corticosteroid concentrations, and plasticity aftereffects. PAS and tACS did not elicit changes in the corticosteroid concentrations. We conclude that moderate caffeine consumption alters cortical excitability but not plasticity aftereffects. This study was registered in the ClinicalTrials.gov with these registration IDs: 1) NCT03720665 https://clinicaltrials.gov/ct2/results?cond=NCT03720665&term=&cntry=&state=&city=&dist= 2) NCT04011670 https://clinicaltrials.gov/ct2/results?cond=&term=NCT04011670&cntry=&state=&city=&dist=.
Collapse
Affiliation(s)
- Mohd Faizal Mohd Zulkifly
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University, Göttingen, Germany; Brain and Behaviour Cluster, Department of Neurosciences, School of Medical Science, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kota Bharu, Kelantan, Malaysia.
| | - Ornela Merkohitaj
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University, Göttingen, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University, Göttingen, Germany
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University Medical Center, Georg-August University, Göttingen, Germany
| |
Collapse
|
24
|
Confounding effects of caffeine on neuroplasticity induced by transcranial alternating current stimulation and paired associative stimulation. Clin Neurophysiol 2021; 132:1367-1379. [PMID: 33762129 DOI: 10.1016/j.clinph.2021.01.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/27/2020] [Accepted: 01/06/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE We examined the effects of caffeine, time of day, and alertness fluctuation on plasticity effects after transcranial alternating current stimulation (tACS) or 25 ms paired associative stimulation (PAS25) in caffeine-naïve and caffeine-adapted subjects. METHODS In two randomised, double-blinded, cross-over or placebo-controlled (caffeine) studies, we measured sixty subjects in eight sessions (n = 30, Male: Female = 1:1 in each study). RESULTS We found caffeine increased motor cortex excitability in caffeine naïve subjects. The aftereffects in caffeine naïve subjects were enhanced and prolonged when combined with PAS 25. Caffeine also increased alertness and the motor evoked potentials (MEPs) were reduced under light deprivation in caffeine consumers both with and without caffeine. In caffeine consumers, the time of day had no effect on tACS-induced plasticity. CONCLUSIONS We conclude that caffeine should be avoided or controlled as confounding factor for brain stimulation protocols. It is also important to keep the brightness constant in all sessions and study groups should not be mixed with caffeine-naïve and caffeine consuming participants. SIGNIFICANCE Caffeine is one of the confounding factors in the plasticity induction studies and it induces different excitability effects in caffeine-naïve and caffeine-adapted subjects. This study was registered in the ClinicalTrials.gov with these registration IDs: 1) NCT03720665 https://clinicaltrials.gov/ct2/results?cond=NCT03720665&term=&cntry=&state=&city=&dist= 2) NCT04011670 https://clinicaltrials.gov/ct2/results?cond=&term=NCT04011670&cntry=&state=&city=&dist=.
Collapse
|
25
|
Farahani F, Kronberg G, FallahRad M, Oviedo HV, Parra LC. Effects of direct current stimulation on synaptic plasticity in a single neuron. Brain Stimul 2021; 14:588-597. [PMID: 33766677 DOI: 10.1016/j.brs.2021.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/02/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (DCS) has lasting effects that may be explained by a boost in synaptic long-term potentiation (LTP). We hypothesized that this boost is the result of a modulation of somatic spiking in the postsynaptic neuron, as opposed to indirect network effects. To test this directly we record somatic spiking in a postsynaptic neuron during LTP induction with concurrent DCS. METHODS We performed rodent in-vitro patch-clamp recordings at the soma of individual CA1 pyramidal neurons. LTP was induced with theta-burst stimulation (TBS) applied concurrently with DCS. To test the causal role of somatic polarization, we manipulated polarization via current injections. We also used a computational multi-compartment neuron model that captures the effect of electric fields on membrane polarization and activity-dependent synaptic plasticity. RESULTS TBS-induced LTP was enhanced when paired with anodal DCS as well as depolarizing current injections. In both cases, somatic spiking during the TBS was increased, suggesting that evoked somatic activity is the primary factor affecting LTP modulation. However, the boost of LTP with DCS was less than expected given the increase in spiking activity alone. In some cells, we also observed DCS-induced spiking, suggesting DCS also modulates LTP via induced network activity. The computational model reproduces these results and suggests that they are driven by both direct changes in postsynaptic spiking and indirect changes due to network activity. CONCLUSION DCS enhances synaptic plasticity by increasing postsynaptic somatic spiking, but we also find that an increase in network activity may boost but also limit this enhancement.
Collapse
Affiliation(s)
- Forouzan Farahani
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| | - Greg Kronberg
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Mohamad FallahRad
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Hysell V Oviedo
- Biology Department, The City College of New York, New York, NY, USA; CUNY Graduate Center, New York, NY, USA
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| |
Collapse
|
26
|
Sánchez-León CA, Cordones I, Ammann C, Ausín JM, Gómez-Climent MA, Carretero-Guillén A, Sánchez-Garrido Campos G, Gruart A, Delgado-García JM, Cheron G, Medina JF, Márquez-Ruiz J. Immediate and after effects of transcranial direct-current stimulation in the mouse primary somatosensory cortex. Sci Rep 2021; 11:3123. [PMID: 33542338 PMCID: PMC7862679 DOI: 10.1038/s41598-021-82364-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/24/2020] [Indexed: 01/30/2023] Open
Abstract
Transcranial direct-current stimulation (tDCS) is a non-invasive brain stimulation technique consisting in the application of weak electric currents on the scalp. Although previous studies have demonstrated the clinical value of tDCS for modulating sensory, motor, and cognitive functions, there are still huge gaps in the knowledge of the underlying physiological mechanisms. To define the immediate impact as well as the after effects of tDCS on sensory processing, we first performed electrophysiological recordings in primary somatosensory cortex (S1) of alert mice during and after administration of S1-tDCS, and followed up with immunohistochemical analysis of the stimulated brain regions. During the application of cathodal and anodal transcranial currents we observed polarity-specific bidirectional changes in the N1 component of the sensory-evoked potentials (SEPs) and associated gamma oscillations. On the other hand, 20 min of cathodal stimulation produced significant after-effects including a decreased SEP amplitude for up to 30 min, a power reduction in the 20-80 Hz range and a decrease in gamma event related synchronization (ERS). In contrast, no significant changes in SEP amplitude or power analysis were observed after anodal stimulation except for a significant increase in gamma ERS after tDCS cessation. The polarity-specific differences of these after effects were corroborated by immunohistochemical analysis, which revealed an unbalance of GAD 65-67 immunoreactivity between the stimulated versus non-stimulated S1 region only after cathodal tDCS. These results highlight the differences between immediate and after effects of tDCS, as well as the asymmetric after effects induced by anodal and cathodal stimulation.
Collapse
Affiliation(s)
- Carlos A. Sánchez-León
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Isabel Cordones
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Claudia Ammann
- grid.428486.40000 0004 5894 9315HM CINAC, Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - José M. Ausín
- grid.157927.f0000 0004 1770 5832Instituto de Investigación E Innovación en Bioingeniería, Universidad Politécnica de Valencia, Valencia, Spain
| | - María A. Gómez-Climent
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Alejandro Carretero-Guillén
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Guillermo Sánchez-Garrido Campos
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Agnès Gruart
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - José M. Delgado-García
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Guy Cheron
- grid.8364.90000 0001 2184 581XLaboratory of Electrophysiology, Université de Mons, Mons, Belgium ,grid.4989.c0000 0001 2348 0746Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Javier F. Medina
- grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Javier Márquez-Ruiz
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| |
Collapse
|
27
|
Kunori N, Takashima I. Cortical direct current stimulation improves signal transmission between the motor cortices of rats. Neurosci Lett 2021; 741:135492. [PMID: 33171210 DOI: 10.1016/j.neulet.2020.135492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 11/17/2022]
Abstract
Transcranial direct current (DC) stimulation is a noninvasive brain stimulation technique that is now widely used to improve motor and cognitive function. The neuromodulatory effects of DC is considered to extend to nearby as well as remote brain areas from the site of stimulation because of current flowing into the brain and/or signal transmission in neuronal networks. However, the effects of DC on cortico-cortical neuronal transmission are not well known. In the present study, we focused on signal transmission from the primary (M1) to secondary (M2) motor cortex of rats. Intra-cortical microstimulation (ICMS) was applied to the M1 under DC conditions, and changes in synaptic activity in the M2 were examined using current-source density analyses. The synaptic input to the M2 superficial layers was enhanced during DC stimulation, while the synaptic input to the M2 deeper layers was increased after DC stimulation. These results suggest that DC stimulation improves cortico-cortical neuronal transmission from M1 to M2, and that the effectiveness of DC may be different among different projection neuron types in the M1.
Collapse
Affiliation(s)
- Nobuo Kunori
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Ichiro Takashima
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan.
| |
Collapse
|
28
|
Indahlastari A, Hardcastle C, Albizu A, Alvarez-Alvarado S, Boutzoukas EM, Evangelista ND, Hausman HK, Kraft J, Langer K, Woods AJ. A Systematic Review and Meta-Analysis of Transcranial Direct Current Stimulation to Remediate Age-Related Cognitive Decline in Healthy Older Adults. Neuropsychiatr Dis Treat 2021; 17:971-990. [PMID: 33824591 PMCID: PMC8018377 DOI: 10.2147/ndt.s259499] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has been proposed as a possible method for remediating age-associated cognitive decline in the older adult population. While tDCS has shown potential for improving cognitive functions in healthy older adults, stimulation outcomes on various cognitive domains have been mixed. METHODS A systematic search was performed in four databases: PubMed, EMBASE, Web of Science, and PsychInfo. Search results were then screened for eligibility based on inclusion/exclusion criteria to only include studies where tDCS was applied to improve cognition in healthy older adults 65 years and above. Eligible studies were reviewed and demographic characteristics, tDCS dose parameters, study procedures, and cognitive outcomes were extracted. Reported effect sizes for active compared to sham group in representative cognitive domain were converted to Hedges' g. MAIN RESULTS A total of thirteen studies involving healthy older adults (n=532, mean age=71.2+5.3 years) were included in the meta-analysis. The majority of included studies (94%) targeted the prefrontal cortex with stimulation intensity 1-2 mA using various electrode placements with anodes near the frontal region. Across all studies, we found Hedges' g values ranged from -0.31 to 1.85 as reported group effect sizes of active stimulation compared to sham. CONCLUSION While observed outcomes varied, overall findings indicated promising effects of tDCS to remediate cognitive aging and thus deserves further exploration. Future characterization of inter-individual variability in tDCS dose response and applications in larger cohorts are warranted to further validate benefits of tDCS for cognition in healthy older adults.
Collapse
Affiliation(s)
- Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Cheshire Hardcastle
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Stacey Alvarez-Alvarado
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Emanuel M Boutzoukas
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Nicole D Evangelista
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Hanna K Hausman
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Jessica Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Kailey Langer
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| |
Collapse
|
29
|
Gomes JI, Farinha-Ferreira M, Rei N, Gonçalves-Ribeiro J, Ribeiro JA, Sebastião AM, Vaz SH. Of adenosine and the blues: The adenosinergic system in the pathophysiology and treatment of major depressive disorder. Pharmacol Res 2020; 163:105363. [PMID: 33285234 DOI: 10.1016/j.phrs.2020.105363] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Major depressive disorder (MDD) is the foremost cause of global disability, being responsible for enormous personal, societal, and economical costs. Importantly, existing pharmacological treatments for MDD are partially or totally ineffective in a large segment of patients. As such, the search for novel antidepressant drug targets, anchored on a clear understanding of the etiological and pathophysiological mechanisms underpinning MDD, becomes of the utmost importance. The adenosinergic system, a highly conserved neuromodulatory system, appears as a promising novel target, given both its regulatory actions over many MDD-affected systems and processes. With this goal in mind, we herein review the evidence concerning the role of adenosine as a potential player in pathophysiology and treatment of MDD, combining data from both human and animal studies. Altogether, evidence supports the assertions that the adenosinergic system is altered in both MDD patients and animal models, and that drugs targeting this system have considerable potential as putative antidepressants. Furthermore, evidence also suggests that modifications in adenosine signaling may have a key role in the effects of several pharmacological and non-pharmacological antidepressant treatments with demonstrated efficacy, such as electroconvulsive shock, sleep deprivation, and deep brain stimulation. Lastly, it becomes clear from the available literature that there is yet much to study regarding the role of the adenosinergic system in the pathophysiology and treatment of MDD, and we suggest several avenues of research that are likely to prove fruitful.
Collapse
Affiliation(s)
- Joana I Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Farinha-Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
30
|
Primary motor cortex in Parkinson's disease: Functional changes and opportunities for neurostimulation. Neurobiol Dis 2020; 147:105159. [PMID: 33152506 DOI: 10.1016/j.nbd.2020.105159] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023] Open
Abstract
Movement abnormalities of Parkinson's disease (PD) arise from disordered neural activity in multiple interconnected brain structures. The planning and execution of movement requires recruitment of a heterogeneous collection of pyramidal projection neurons in the primary motor cortex (M1). The neural representations of movement in M1 single-cell and field potential recordings are directly and indirectly influenced by the midbrain dopaminergic neurons that degenerate in PD. This review examines M1 functional alterations in PD as uncovered by electrophysiological recordings and neurostimulation studies in patients and experimental animal models. Dysfunction of the parkinsonian M1 depends on the severity and/or duration of dopamine-depletion and the species examined, and is expressed as alterations in movement-related firing dynamics; functional reorganisation of local circuits; and changes in field potential beta oscillations. Neurostimulation methods that modulate M1 activity directly (e.g., transcranial magnetic stimulation) or indirectly (subthalamic nucleus deep brain stimulation) improve motor function in PD patients, showing that targeted neuromodulation of M1 is a realistic therapy. We argue that the therapeutic profile of M1 neurostimulation is likely to be greatly enhanced with alternative technologies that permit cell-type specific control and incorporate feedback from electrophysiological biomarkers measured locally.
Collapse
|
31
|
Albizu A, Fang R, Indahlastari A, O'Shea A, Stolte SE, See KB, Boutzoukas EM, Kraft JN, Nissim NR, Woods AJ. Machine learning and individual variability in electric field characteristics predict tDCS treatment response. Brain Stimul 2020; 13:1753-1764. [PMID: 33049412 PMCID: PMC7731513 DOI: 10.1016/j.brs.2020.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is widely investigated as a therapeutic tool to enhance cognitive function in older adults with and without neurodegenerative disease. Prior research demonstrates that electric current delivery to the brain can vary significantly across individuals. Quantification of this variability could enable person-specific optimization of tDCS outcomes. This pilot study used machine learning and MRI-derived electric field models to predict working memory improvements as a proof of concept for precision cognitive intervention. METHODS Fourteen healthy older adults received 20 minutes of 2 mA tDCS stimulation (F3/F4) during a two-week cognitive training intervention. Participants performed an N-back working memory task pre-/post-intervention. MRI-derived current models were passed through a linear Support Vector Machine (SVM) learning algorithm to characterize crucial tDCS current components (intensity and direction) that induced working memory improvements in tDCS responders versus non-responders. MAIN RESULTS SVM models of tDCS current components had 86% overall accuracy in classifying treatment responders vs. non-responders, with current intensity producing the best overall model differentiating changes in working memory performance. Median current intensity and direction in brain regions near the electrodes were positively related to intervention responses (r=0.811,p<0.001 and r=0.774,p=0.001). CONCLUSIONS This study provides the first evidence that pattern recognition analyses of MRI-derived tDCS current models can provide individual prognostic classification of tDCS treatment response with 86% accuracy. Individual differences in current intensity and direction play important roles in determining treatment response to tDCS. These findings provide important insights into mechanisms of tDCS response as well as proof of concept for future precision dosing models of tDCS intervention.
Collapse
Affiliation(s)
- Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, USA
| | - Ruogu Fang
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA
| | - Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, USA
| | - Skylar E Stolte
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA
| | - Kyle B See
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA
| | - Emanuel M Boutzoukas
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, USA
| | - Jessica N Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, USA
| | - Nicole R Nissim
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, USA.
| |
Collapse
|
32
|
Sun Y, Dhamne SC, Carretero-Guillén A, Salvador R, Goldenberg MC, Godlewski BR, Pascual-Leone A, Madsen JR, Stone SSD, Ruffini G, Márquez-Ruiz J, Rotenberg A. Drug-Responsive Inhomogeneous Cortical Modulation by Direct Current Stimulation. Ann Neurol 2020; 88:489-502. [PMID: 32542794 PMCID: PMC10675838 DOI: 10.1002/ana.25822] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Cathodal direct current stimulation (cDCS) induces long-term depression (LTD)-like reduction of cortical excitability (DCS-LTD), which has been tested in the treatment of epilepsy with modest effects. In part, this may be due to variable cortical neuron orientation relative to the electric field. We tested, in vivo and in vitro, whether DCS-LTD occurs throughout the cortical thickness, and if not, then whether drug-DCS pairing can enhance the uniformity of the cortical response and the cDCS antiepileptic effect. METHODS cDCS-mediated changes in cortical excitability were measured in vitro in mouse motor cortex (M1) and in human postoperative neocortex, in vivo in mouse somatosensory cortex (S1), and in a mouse kainic acid (KA)-seizure model. Contributions of N-methyl-D-aspartate-type glutamate receptors (NMDARs) to cDCS-mediated plasticity were tested with application of NMDAR blockers (memantine/D-AP5). RESULTS cDCS reliably induced DCS-LTD in superficial cortical layers, and a long-term potentiation (LTP)-like enhancement (DCS-LTP) was recorded in deep cortical layers. Immunostaining confirmed layer-specific increase of phospho-S6 ribosomal protein in mouse M1. Similar nonuniform cDCS aftereffects on cortical excitability were also found in human neocortex in vitro and in S1 of alert mice in vivo. Application of memantine/D-AP5 either produced a more uniform DCS-LTD throughout the cortical thickness or at least abolished DCS-LTP. Moreover, a combination of memantine and cDCS suppressed KA-induced seizures. INTERPRETATION cDCS aftereffects are not uniform throughout cortical layers, which may explain the incomplete cDCS clinical efficacy. NMDAR antagonists may augment cDCS efficacy in epilepsy and other disorders where regional depression of cortical excitability is desirable. ANN NEUROL 2020;88:489-502.
Collapse
Affiliation(s)
- Yan Sun
- Department of Neurology and the F. M. Kirby Neurobiology Center, Boston, Massachusetts, USA
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sameer C Dhamne
- Department of Neurology and the F. M. Kirby Neurobiology Center, Boston, Massachusetts, USA
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Marti C Goldenberg
- Department of Neurology and the F. M. Kirby Neurobiology Center, Boston, Massachusetts, USA
- Repository Core, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Guttmann Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Joseph R Madsen
- Department of Neurosurgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Scellig S D Stone
- Department of Neurosurgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Giulio Ruffini
- Neuroelectrics Corporation, Cambridge, Massachusetts, USA
| | - Javier Márquez-Ruiz
- Department of Physiology, Anatomy and Cellular Biology, Pablo de Olavide University, Seville, Spain
| | - Alexander Rotenberg
- Department of Neurology and the F. M. Kirby Neurobiology Center, Boston, Massachusetts, USA
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Guttmann Institute, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
33
|
Pedron S, Dumontoy S, Dimauro J, Haffen E, Andrieu P, Van Waes V. Open-tES: An open-source stimulator for transcranial electrical stimulation designed for rodent research. PLoS One 2020; 15:e0236061. [PMID: 32663223 PMCID: PMC7360043 DOI: 10.1371/journal.pone.0236061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Non-invasive neuromodulatory techniques, including transcranial direct current stimulation (tDCS), have been shown to modulate neuronal function and are used both in cognitive neuroscience and to treat neuropsychiatric conditions. In this context, animal models provide a powerful tool to identify the neurobiological mechanisms of action of tDCS. However, finding a current generator that is easily usable and which allows a wide range of stimulation parameters can be difficult and/or expensive. Here, we introduce the Open-tES device, a project under a Creative Commons License (CC BY, SA 4.0) shared on the collaborative platform Git-Hub. This current generator allows tDCS (and other kinds of stimulations) to be realized, is suitable for rodents, is easy to use, and is low-cost. Characterization has been performed to measure the precision and accuracy of the current delivered. We also aimed to compare its effects with a commercial stimulator used in clinical trials (DC-Stimulator Plus, NeuroConn, Germany). To achieve this, a behavioral study was conducted to evaluate its efficacy for decreasing depression related-behavior in mice. The stimulator precision and accuracy were better than 250 nA and 25 nA, respectively. The behavioral evaluation performed in mice in the present study did not reveal any significant differences between the commercial stimulator used in clinical trials and the Open-tES device. Accuracy and precision of the stimulator ensure high repeatability of the stimulations. This current generator constitutes a reliable and inexpensive tool that is useful for preclinical studies in the field of non-invasive electrical brain stimulation.
Collapse
Affiliation(s)
- Solène Pedron
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| | - Stéphanie Dumontoy
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| | - Julien Dimauro
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| | - Emmanuel Haffen
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| | - Patrice Andrieu
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| | - Vincent Van Waes
- Laboratory of Integrative and Clinical Neuroscience EA481, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
34
|
Tanaka T, Isomura Y, Kobayashi K, Hanakawa T, Tanaka S, Honda M. Electrophysiological Effects of Transcranial Direct Current Stimulation on Neural Activity in the Rat Motor Cortex. Front Neurosci 2020; 14:495. [PMID: 32714126 PMCID: PMC7340144 DOI: 10.3389/fnins.2020.00495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 04/20/2020] [Indexed: 02/04/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive technique that modulates the neuronal membrane potential. We have previously documented a sustainable increase in extracellular dopamine levels in the rat striatum of cathodal tDCS, suggesting that cathodal tDCS enhances the neuronal excitability of the cortex. In the present study, we investigated changes in neuronal activity in the cerebral cortex induced by tDCS at the point beneath the stimulus electrode in anesthetized rats in vivo. Multiunit recordings were performed to examine changes in neuronal activity before and after the application of tDCS. In the cathodal tDCS group, multiunit activity (indicating the collective firing rate of recorded neuronal populations) increased in the cerebral cortex. Both anodal and cathodal tDCS increased the firing rate of isolated single units in the cerebral cortex. Significant differences in activity were observed immediately following stimulation and persisted for more than an hour after stimulation. The primary finding of this study was that both anodal and cathodal tDCS increased in vivo neuronal activity in the rat cerebral cortex underneath the stimulus electrode.
Collapse
Affiliation(s)
- Tomoko Tanaka
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan.,Department of Information Medicine, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira, Japan
| | - Yoshikazu Isomura
- Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takashi Hanakawa
- Department of Information Medicine, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira, Japan.,Department of Advanced Neuroimaging, Integrative Brain Imaging Centre, National Centre of Neurology and Psychiatry, Kodaira, Japan
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Manabu Honda
- Department of Information Medicine, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
35
|
Ortiz M, Iáñez E, Gaxiola-Tirado JA, Gutiérrez D, Azorín JM. Study of the Functional Brain Connectivity and Lower-Limb Motor Imagery Performance After Transcranial Direct Current Stimulation. Int J Neural Syst 2020; 30:2050038. [DOI: 10.1142/s0129065720500380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The use of transcranial direct current stimulation (tDCS) has been related to the improvement of motor and learning tasks. The current research studies the effects of an asymmetric tDCS setup over brain connectivity, when the subject is performing a motor imagery (MI) task during five consecutive days. A brain–computer interface (BCI) based on electroencephalography is simulated in offline analysis to study the effect that tDCS has over different electrode configurations for the BCI. This way, the BCI performance is used as a validation index of the effect of the tDCS setup by the analysis of the classifier accuracy of the experimental sessions. In addition, the relationship between the brain connectivity and the BCI accuracy performance is analyzed. Results indicate that tDCS group, in comparison to the placebo sham group, shows a higher significant number of connectivity interactions in the motor electrodes during MI tasks and an increasing BCI accuracy over the days. However, the asymmetric tDCS setup does not improve the BCI performance of the electrodes in the intended hemisphere.
Collapse
Affiliation(s)
- Mario Ortiz
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Avenida Universidad sn. Ed. Innova, Elche, Alicante 03202, Spain
| | - Eduardo Iáñez
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Avenida Universidad sn. Ed. Innova, Elche, Alicante 03202, Spain
| | - Jorge A. Gaxiola-Tirado
- Center for Research and Advanced Studies (Cinvestav), Monterrey’s Unit, Vía del Conocimiento 201 PIIT, 66600, Apodaca NL 66600, Mexico
| | - David Gutiérrez
- Center for Research and Advanced Studies (Cinvestav), Monterrey’s Unit, Vía del Conocimiento 201 PIIT, 66600, Apodaca NL 66600, Mexico
| | - José M. Azorín
- Systems Engineering and Automation Department, Miguel Hernández University of Elche, Avenida Universidad sn. Ed. Innova, Elche, Alicante 03202, Spain
| |
Collapse
|
36
|
Workman CD, Fietsam AC, Rudroff T. Different Effects of 2 mA and 4 mA Transcranial Direct Current Stimulation on Muscle Activity and Torque in a Maximal Isokinetic Fatigue Task. Front Hum Neurosci 2020; 14:240. [PMID: 32714170 PMCID: PMC7344304 DOI: 10.3389/fnhum.2020.00240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Studies investigating the effects of transcranial direct current stimulation (tDCS) on fatigue and muscle activity have elicited measurable improvements using stimulation intensities ≤2 mA and submaximal effort tasks. The purpose of this study was to determine the effects of 2 mA and 4 mA anodal tDCS over the primary motor cortex (M1) on performance fatigability and electromyographic (EMG) activity of the leg muscles during a maximal isokinetic task in healthy young adults. A double-blind, randomized, sham-controlled crossover study design was applied. Twenty-seven active young adults completed four sessions, each spaced by 5-8 days. During session 1, dominance was verified with isokinetic strength testing, and subjects were familiarized with the fatigue task (FT). The FT protocol included 40 continuous maximum isokinetic contractions of the knee extensors and flexors (120°/s, concentric/concentric). During Sessions 2-4, tDCS was applied for 20 min with one of three randomly assigned intensities (sham, 2 mA or 4 mA) and the FT was repeated. The anode and cathode of the tDCS device were placed over C3 and the contralateral supraorbital area, respectively. A wireless EMG system collected muscle activity during the FT. The 2 mA tDCS condition had significantly less torque (65.9 ± 32.7 Nm) during the FT than both the sham (68.4 ± 33.9 Nm, p < 0.001) and 4 mA conditions (68.4 ± 33.9 Nm, p = 0.001). Furthermore, the 2 mA condition (33.8 ± 11.7%) had significantly less EMG activity during the FT than both the sham (39.7 ± 10.6%, p < 0.001) and 4 mA conditions (40.5 ± 13.4%, p = 0.001). Contrary to previous submaximal isometric fatigue investigations, the 2 mA tDCS condition significantly reduced torque production and EMG activity of the leg extensors during a maximal isokinetic FT compared with the sham and 4 mA conditions. Also, torque production and EMG activity in the 4 mA condition were not significantly different from sham. Thus, the effects of tDCS, and the underlying mechanisms, might not be the same for different tasks and warrants more investigation.
Collapse
Affiliation(s)
- Craig David Workman
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, United States
| | - Alexandra C Fietsam
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, United States
| | - Thorsten Rudroff
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, United States.,Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|
37
|
Transcranial Direct Current Stimulation for Motor Recovery Following Brain Injury. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020. [DOI: 10.1007/s40141-020-00262-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
38
|
Denoyer Y, Merlet I, Wendling F, Benquet P. Modelling acute and lasting effects of tDCS on epileptic activity. J Comput Neurosci 2020; 48:161-176. [DOI: 10.1007/s10827-020-00745-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/10/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022]
|
39
|
Transcranial alternating current stimulation induced excitatory aftereffects are abolished by decaffeinated espresso and reversed into inhibition by espresso with caffeine. Clin Neurophysiol 2020; 131:778-779. [DOI: 10.1016/j.clinph.2019.11.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 11/17/2022]
|
40
|
Kronberg G, Rahman A, Sharma M, Bikson M, Parra LC. Direct current stimulation boosts hebbian plasticity in vitro. Brain Stimul 2020; 13:287-301. [PMID: 31668982 PMCID: PMC6989352 DOI: 10.1016/j.brs.2019.10.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/10/2019] [Accepted: 10/16/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND There is evidence that transcranial direct current stimulation (tDCS) can improve learning performance. Arguably, this effect is related to long term potentiation (LTP), but the precise biophysical mechanisms remain unknown. HYPOTHESIS We propose that direct current stimulation (DCS) causes small changes in postsynaptic membrane potential during ongoing endogenous synaptic activity. The altered voltage dynamics in the postsynaptic neuron then modify synaptic strength via the machinery of endogenous voltage-dependent Hebbian plasticity. This hypothesis predicts that DCS should exhibit Hebbian properties, namely pathway specificity and associativity. METHODS We studied the effects of DCS applied during the induction of LTP in the CA1 region of rat hippocampal slices and using a biophysical computational model. RESULTS DCS enhanced LTP, but only at synapses that were undergoing plasticity, confirming that DCS respects Hebbian pathway specificity. When different synaptic pathways cooperated to produce LTP, DCS enhanced this cooperation, boosting Hebbian associativity. Further slice experiments and computer simulations support a model where polarization of postsynaptic pyramidal neurons drives these plasticity effects through endogenous Hebbian mechanisms. The model is able to reconcile several experimental results by capturing the complex interaction between the induced electric field, neuron morphology, and endogenous neural activity. CONCLUSIONS These results suggest that tDCS can enhance associative learning. We propose that clinical tDCS should be applied during tasks that induce Hebbian plasticity to harness this phenomenon, and that the effects should be task specific through their interaction with endogenous plasticity mechanisms. Models that incorporate brain state and plasticity mechanisms may help to improve prediction of tDCS outcomes.
Collapse
Affiliation(s)
- Greg Kronberg
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY, USA.
| | - Asif Rahman
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY, USA
| | - Mahima Sharma
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY, USA
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY, USA
| |
Collapse
|
41
|
Memory and Cognition-Related Neuroplasticity Enhancement by Transcranial Direct Current Stimulation in Rodents: A Systematic Review. Neural Plast 2020; 2020:4795267. [PMID: 32211039 PMCID: PMC7061127 DOI: 10.1155/2020/4795267] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/27/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Brain stimulation techniques, including transcranial direct current stimulation (tDCS), were identified as promising therapeutic tools to modulate synaptic plasticity abnormalities and minimize memory and learning deficits in many neuropsychiatric diseases. Here, we revised the effect of tDCS on the modulation of neuroplasticity and cognition in several animal disease models of brain diseases affecting plasticity and cognition. Studies included in this review were searched following the terms (“transcranial direct current stimulation”) AND (mice OR mouse OR animal) and according to the PRISMA statement requirements. Overall, the studies collected suggest that tDCS was able to modulate brain plasticity due to synaptic modifications within the stimulated area. Changes in plasticity-related mechanisms were achieved through induction of long-term potentiation (LTP) and upregulation of neuroplasticity-related proteins, such as c-fos, brain-derived neurotrophic factor (BDNF), or N-methyl-D-aspartate receptors (NMDARs). Taken into account all revised studies, tDCS is a safe, easy, and noninvasive brain stimulation technique, therapeutically reliable, and with promising potential to promote cognitive enhancement and neuroplasticity. Since the use of tDCS has increased as a novel therapeutic approach in humans, animal studies are important to better understand its mechanisms as well as to help improve the stimulation protocols and their potential role in different neuropathologies.
Collapse
|
42
|
In Vivo Modulation of the Blood-Brain Barrier Permeability by Transcranial Direct Current Stimulation (tDCS). Ann Biomed Eng 2020; 48:1256-1270. [PMID: 31916126 DOI: 10.1007/s10439-020-02447-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/03/2020] [Indexed: 01/28/2023]
Abstract
tDCS has been used to treat various brain disorders and its mechanism of action (MoA) was found to be neuronal polarization. Since the blood-brain barrier (BBB) tightly regulates the neuronal microenvironment, we hypothesized that another MoA of tDCS is direct vascular activation by modulating the BBB structures to increase its permeability (P). To test this hypothesis, we used high resolution multiphoton microscopy to determine P of the cerebral microvessels in rat brain. We found that 20 min 0.1-1 mA tDCS transiently increases P to a small solute, sodium fluorescein (MW 376) and to a large solute, Dextran-70k, with a much higher increase in P to the large solute. By pretreating the vessel with a nitric oxide synthase inhibitor, we revealed that the tDCS-induced increase in P is NO dependent. A transport model for the BBB was further employed to predict the structural changes by the tDCS. Comparing model predictions with the measured data suggests that tDCS increases P by temporarily disrupting the structural components forming the paracellular pathway of the BBB. That the transient and reversible increase in the BBB permeability also suggests new applications of tDCS such as a non-invasive approach for brain drug delivery through the BBB.
Collapse
|
43
|
Rohan JG, Miklasevich MK, McInturf SM, Bechmann NA, Moore RJ, Hatcher-Solis C, Jankord R. Polarity and subfield specific effects of transcranial direct current stimulation on hippocampal plasticity. Neurobiol Learn Mem 2020; 167:107126. [DOI: 10.1016/j.nlm.2019.107126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/12/2019] [Accepted: 11/20/2019] [Indexed: 01/14/2023]
|
44
|
Bikson M, Dmochowski J. What it means to go deep with non-invasive brain stimulation. Clin Neurophysiol 2019; 131:752-754. [PMID: 31917081 DOI: 10.1016/j.clinph.2019.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/14/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States.
| | - Jacek Dmochowski
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States
| |
Collapse
|
45
|
Barbati SA, Cocco S, Longo V, Spinelli M, Gironi K, Mattera A, Paciello F, Colussi C, Podda MV, Grassi C. Enhancing Plasticity Mechanisms in the Mouse Motor Cortex by Anodal Transcranial Direct-Current Stimulation: The Contribution of Nitric Oxide Signaling. Cereb Cortex 2019; 30:2972-2985. [PMID: 31821409 DOI: 10.1093/cercor/bhz288] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 05/01/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022] Open
Abstract
Consistent body of evidence shows that transcranial direct-current stimulation (tDCS) over the primary motor cortex (M1) facilitates motor learning and promotes recovery after stroke. However, the knowledge of molecular mechanisms behind tDCS effects needs to be deepened for a more rational use of this technique in clinical settings. Here we characterized the effects of anodal tDCS of M1, focusing on its impact on glutamatergic synaptic transmission and plasticity. Mice subjected to tDCS displayed increased long-term potentiation (LTP) and enhanced basal synaptic transmission at layer II/III horizontal connections. They performed better than sham-stimulated mice in the single-pellet reaching task and exhibited increased forelimb strength. Dendritic spine density of layer II/III pyramidal neurons was also increased by tDCS. At molecular level, tDCS enhanced: 1) BDNF expression, 2) phosphorylation of CREB, CaMKII, and GluA1, and 3) S-nitrosylation of GluA1 and HDAC2. Blockade of nitric oxide synthesis by L-NAME prevented the tDCS-induced enhancement of GluA1 phosphorylation at Ser831 and BDNF levels, as well as of miniature excitatory postsynaptic current (mEPSC) frequency, LTP and reaching performance. Collectively, these findings demonstrate that anodal tDCS engages plasticity mechanisms in the M1 and highlight a role for nitric oxide (NO) as a novel mediator of tDCS effects.
Collapse
Affiliation(s)
| | - Sara Cocco
- Istituto di Fisiologia Umana, Università Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Valentina Longo
- Istituto di Fisiologia Umana, Università Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Matteo Spinelli
- Istituto di Fisiologia Umana, Università Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Katia Gironi
- Istituto di Fisiologia Umana, Università Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Andrea Mattera
- Istituto di Fisiologia Umana, Università Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Fabiola Paciello
- Istituto di Fisiologia Umana, Università Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Claudia Colussi
- Istituto di Fisiologia Umana, Università Cattolica del Sacro Cuore, Roma 00168, Italy.,Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti" (IASI) - CNR, Rome 00185, Italy
| | - Maria Vittoria Podda
- Istituto di Fisiologia Umana, Università Cattolica del Sacro Cuore, Roma 00168, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma 00168, Italy
| | - Claudio Grassi
- Istituto di Fisiologia Umana, Università Cattolica del Sacro Cuore, Roma 00168, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma 00168, Italy
| |
Collapse
|
46
|
BinDawood A, Dickinson A, Aytemur A, Howarth C, Milne E, Jones M. Investigating the effects of tDCS on Visual Orientation Discrimination Task Performance: 'The possible influence of placebo'. JOURNAL OF COGNITIVE ENHANCEMENT 2019; 4:235-249. [PMID: 32747876 DOI: 10.1007/s41465-019-00154-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The non-invasive neuromodulation technique tDCS offers the promise of a low cost tool for both research and clinical applications in psychology, psychiatry and neuroscience. However, findings regarding its efficacy are often equivocal. A key issue is that the clinical and cognitive applications studied are often complex and thus effects of tDCS are difficult to predict given its known effects on the basic underlying neurophysiology, namely alterations in cortical inhibition-excitation balance. As such, it may be beneficial to assess the effects of tDCS in tasks whose performance has a clear link to cortical inhibition-excitation balance such as the visual orientation discrimination task (ODT). In prior studies in our laboratory no practise effects were found during 2 consecutive runs of the ODT, thus in the current investigation, to examine the effects of tDCS, subjects received 10 minutes of 2mA occipital tDCS (sham, anode, cathode) between a first and second run of ODT. Surprisingly, subjects' performance significantly improved in the second run of ODT compared to the first one regardless of the tDCS stimulation type they received (anodal, cathodal, or sham-tDCS). Possible causes for such an improvement could have been due to either a generic 'placebo' effect of tDCS (as all subjects received some form of tDCS) or an increased delay period between the two runs of ODT of the current study compared to our previous work (10 minutes duration required to administer tDCS as opposed to ~2 minutes in previous studies as a 'break'). As such, we tested these two possibilities with a subsequent experiment in which subjects received 2 minutes or 10 minutes delay between the 2 runs (with no tDCS) or 10 minutes of sham-tDCS. Only sham-tDCS resulted in improved performance thus these data add to a growing literature suggesting that tDCS has powerful placebo effect that may occur even in the absence of active cortical modulation.
Collapse
Affiliation(s)
- A BinDawood
- Department of Psychology, University of Sheffield, Cathedral Court, 1 Vicar Lane, Sheffield UK, S1 2LT.,Department of Psychology, King Saud University, Riyadh, Saudi Arabia
| | - A Dickinson
- Center for Autism Research and Treatment, University of California, Semel Institute for Neuroscience, 760 Westwood Plaza, Suite A7-448, Los Angeles, CA 90095, United States of America
| | - A Aytemur
- Department of Psychology, University of Sheffield, Cathedral Court, 1 Vicar Lane, Sheffield UK, S1 2LT
| | - C Howarth
- Department of Psychology, University of Sheffield, Cathedral Court, 1 Vicar Lane, Sheffield UK, S1 2LT
| | - E Milne
- Department of Psychology, University of Sheffield, Cathedral Court, 1 Vicar Lane, Sheffield UK, S1 2LT
| | - M Jones
- Department of Psychology, University of Sheffield, Cathedral Court, 1 Vicar Lane, Sheffield UK, S1 2LT
| |
Collapse
|
47
|
Chakraborty D, Truong DQ, Bikson M, Kaphzan H. Neuromodulation of Axon Terminals. Cereb Cortex 2019; 28:2786-2794. [PMID: 28655149 DOI: 10.1093/cercor/bhx158] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/07/2017] [Indexed: 11/13/2022] Open
Abstract
Understanding which cellular compartments are influenced during neuromodulation underpins any rational effort to explain and optimize outcomes. Axon terminals have long been speculated to be sensitive to polarization, but experimentally informed models for CNS stimulation are lacking. We conducted simultaneous intracellular recording from the neuron soma and axon terminal (blebs) during extracellular stimulation with weak sustained (DC) uniform electric fields in mouse cortical slices. Use of weak direct current stimulation (DCS) allowed isolation and quantification of changes in axon terminal biophysics, relevant to both suprathreshold (e.g., deep brain stimulation, spinal cord stimulation, and transcranial magnetic stimulation) and subthreshold (e.g., transcranial DCS and transcranial alternating current stimulation) neuromodulation approaches. Axon terminals polarized with sensitivity (mV of membrane polarization per V/m electric field) 4 times than somas. Even weak polarization (<2 mV) of axon terminals significantly changes action potential dynamics (including amplitude, duration, conduction velocity) in response to an intracellular pulse. Regarding a cellular theory of neuromodulation, we explain how suprathreshold CNS stimulation activates the action potential at terminals while subthreshold approaches modulate synaptic efficacy through axon terminal polarization. We demonstrate that by virtue of axon polarization and resulting changes in action potential dynamics, neuromodulation can influence analog-digital information processing.
Collapse
Affiliation(s)
| | - Dennis Q Truong
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA
| | - Hanoch Kaphzan
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| |
Collapse
|
48
|
Evaluation of acute anodal direct current stimulation-induced effects on somatosensory-evoked responses in the rat. Brain Res 2019; 1720:146318. [DOI: 10.1016/j.brainres.2019.146318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 01/02/2023]
|
49
|
Ganho-Ávila A, Gonçalves ÓF, Guiomar R, Boggio PS, Asthana MK, Krypotos AM, Almeida J. The effect of cathodal tDCS on fear extinction: A cross-measures study. PLoS One 2019; 14:e0221282. [PMID: 31532768 PMCID: PMC6750569 DOI: 10.1371/journal.pone.0221282] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/02/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Extinction-based procedures are often used to inhibit maladaptive fear responses. However, because extinction procedures show efficacy limitations, transcranial direct current stimulation (tDCS) has been suggested as a promising add-on enhancer. OBJECTIVE In this study, we tested how cathodal tDCS over the right dorsolateral prefrontal cortex affects extinction and tried to unveil the processes at play that boost the effectiveness of extinction procedures and its translational potential to the treatment of anxiety disorders. METHODS We implemented a fear conditioning paradigm whereby 41 healthy women (mean age = 20.51 ± 5.0) were assigned to either cathodal tDCS (n = 27) or sham tDCS (n = 16). Fear responses were measured with self-reports, autonomic responses, and implicit avoidance tendencies. RESULTS Cathodal tDCS shows no statistically significant effect in extinction, according to self-reports, and seems to even negatively affect fear conditioned skin conductance responses. However, one to three months after the tDCS session and extinction, we found a group difference in the action tendencies towards the neutral stimuli (F (1, 41) = 12.04, p = .001, ηp2 = .227), with the cathodal tDCS group (as opposed to the sham group) showing a safety learning (a positive bias towards the CS-), with a moderate effect size. This suggests that cathodal tDCS may foster stimuli discrimination, leading to a decreased generalization effect. DISCUSSION Cathodal tDCS may have enhanced long-term distinctiveness between threatening cues and perceptively similar neutral cues through a disambiguation process of the value of the neutral stimuli-a therapeutic target in anxiety disorders. Future studies should confirm these results and extend the study of cathodal tDCS effect on short term avoidance tendencies.
Collapse
Affiliation(s)
- Ana Ganho-Ávila
- Proaction Laboratory, Cognitive and Behavior Center for Research and Intervention Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- Neuropsychophysiology Lab, CiPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Óscar F. Gonçalves
- Neuropsychophysiology Lab, CiPsi, School of Psychology, University of Minho, Braga, Portugal
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Raquel Guiomar
- Proaction Laboratory, Cognitive and Behavior Center for Research and Intervention Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Paulo Sérgio Boggio
- Social and Cognitive Neuroscience Laboratory and Developmental Disorders Program, Center for Health and Biological Sciences, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Manish Kumar Asthana
- Social and Cognitive Neuroscience Laboratory and Developmental Disorders Program, Center for Health and Biological Sciences, Mackenzie Presbyterian University, São Paulo, Brazil
- Department of Humanities and Social Sciences, Indian Institute of Technology, Roorkee, India
| | | | - Jorge Almeida
- Proaction Laboratory, Cognitive and Behavior Center for Research and Intervention Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
50
|
Calker D, Biber K, Domschke K, Serchov T. The role of adenosine receptors in mood and anxiety disorders. J Neurochem 2019; 151:11-27. [DOI: 10.1111/jnc.14841] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Dietrich Calker
- Department for Psychiatry and Psychotherapy, Medical Center ‐ University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Knut Biber
- Section Medical Physiology, Department of Neuroscience University Medical Center Groningen, University of Groningen Groningen The Netherlands
| | - Katharina Domschke
- Department for Psychiatry and Psychotherapy, Medical Center ‐ University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Tsvetan Serchov
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, Medical Center ‐ University Freiburg University of Freiburg Freiburg Germany
| |
Collapse
|