1
|
Hashemi Bahramani M, Gharib A, Soeimani M, Rabiei M. Do cord blood CD34 cells stay the same or change after expansion: A comprehensive analysis of gene expression results before and after seven days of cell culture. Transfus Apher Sci 2023; 62:103748. [PMID: 37438246 DOI: 10.1016/j.transci.2023.103748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION Hematopoietic stem cell transplantation is used to treat hematopoietic malignancies and bone marrow failure syndromes. Due to the difficulties of using these cells isolated from the bone marrow, an additional source for receiving essential hematopoietic cells is umbilical cord blood. But the main problem with using the umbilical cord is its insufficient blood volume. The ex-vivo reproductive system of hematopoietic stem cells can overcome this problem that has the ability for Transplantation and hematopoiesis in the long term. This study aimed to evaluate the expression profile of CD133 + umbilical cord blood microRNAs in different stages of hematopoietic stem cells before and after ex-vivo proliferation. MATERIALS AND METHODS The expression profile of 1034 types of microRNA of CD34 + hematopoietic stem cells of the umbilical cord was analyzed before and after ex vivo proliferation. After isolating CD34 + cells from the umbilical cord blood of normal-born babies using MACS (Magnetic-activated cell sorting) column, these cells were cultured in a Stem span culture medium containing SCF, FLT3, and TPO cytokines in 24-well plates. The expression profile of microRNAs was investigated on days 0 and 7 days after cultivation by the Real-Time PCR method. RESULTS The results showed that the production of two-thirds of the micro-RNAs was reduced during the proliferation process. The micro-RNA expression of hematopoietic stem cell proliferation was also lower. At the same time, micro-RNA expression related to differentiation was higher. CONCLUSION The observed reduction in miRNA expression may be attributed to enhanced differentiation through proliferation. Therefore, miRNAs appear to be a viable option for regulating the proliferation processes of Hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Mohammad Hashemi Bahramani
- Department of Pathology and Laboratory Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atoosa Gharib
- Department of Pathology, Shahid Modarres Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soeimani
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Rabiei
- Department of Pathology and Laboratory Medicine, Imam Hossein Hospital, Madani Street, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Deciphering the Role of miR-200c-3p in Type 1 Diabetes (Subclinical Cardiovascular Disease) and Its Correlation with Inflammation and Vascular Health. Int J Mol Sci 2022; 23:ijms232415659. [PMID: 36555301 PMCID: PMC9778946 DOI: 10.3390/ijms232415659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Uncomplicated type 1 diabetes (T1DM) displays all features of subclinical cardiovascular disease (CVD) as is associated with inflammation, endothelial dysfunction and low endothelial progenitor cells. MiR-200c-3p has been shown in animal tissues to be pro-atherogenic. We aimed to explore the role of miR-200c-3p in T1DM, a model of subclinical CVD. 19 samples from T1DM patients and 20 from matched controls (HC) were analyzed. MiR-200c in plasma and peripheral blood mononuclear cells (PBMCs) was measured by real-time quantitative polymerase chain reaction. The results were compared with the following indices of vascular health: circulating endothelial progenitor cells, (CD45dimCD34+VEGFR-2+ or CD45dimCD34+CD133+) and proangiogenic cells (PACs). MiR-200c-3p was significantly downregulated in PBMCs but not in plasma in T1DM. There was a significant negative correlation between the expression of miR-200c-3p and HbA1c, interleukin-7 (IL-7), vascular endothelial growth factor-C (VEGF-C), and soluble vascular cell adhesion molecule-1, and a positive correlation with CD45dimCD34+VEGFR-2+, CD45dimCD34+CD133+ and PACs. Receiver operating curve analyses showed miR-200c-3p as a biomarker for T1DM with significant downregulation of miR-200c-3p, possibly defining subclinical CVD at HbA1c > 44.8 mmol/mol (6.2%). In conclusion, downregulated miR-200c-3p in T1DM correlated with diabetic control, VEGF signaling, inflammation, vascular health and targeting VEGF signaling, and may define subclinical CVD. Further prospective studies are necessary to validate our findings in a larger group of patients.
Collapse
|
3
|
Conserved MicroRNAs in Human Nasopharynx Tissue Samples from Swabs Are Differentially Expressed in Response to SARS-CoV-2. Genes (Basel) 2022; 13:genes13020348. [PMID: 35205390 PMCID: PMC8871708 DOI: 10.3390/genes13020348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
The use of high-throughput small RNA sequencing is well established as a technique to unveil the miRNAs in various tissues. The miRNA profiles are different between infected and non-infected tissues. We compare the SARS-CoV-2 positive and SARS-CoV-2 negative RNA samples extracted from human nasopharynx tissue samples to show different miRNA profiles. We explored differentially expressed miRNAs in response to SARS-CoV-2 in the RNA extracted from nasopharynx tissues of 10 SARS-CoV-2-positive and 10 SARS-CoV-2-negative patients. miRNAs were identified by small RNA sequencing, and the expression levels of selected miRNAs were validated by real-time RT-PCR. We identified 943 conserved miRNAs, likely generated through posttranscriptional modifications. The identified miRNAs were expressed in both RNA groups, NegS and PosS: miR-148a, miR-21, miR-34c, miR-34b, and miR-342. The most differentially expressed miRNA was miR-21, which is likely closely linked to the presence of SARS-CoV-2 in nasopharynx tissues. Our results contribute to further understanding the role of miRNAs in SARS-CoV-2 pathogenesis, which may be crucial for understanding disease symptom development in humans.
Collapse
|
4
|
Laurenzana I, Trino S, Lamorte D, De Stradis A, Santodirocco M, Sgambato A, De Luca L, Caivano A. Multiple Myeloma-Derived Extracellular Vesicles Impair Normal Hematopoiesis by Acting on Hematopoietic Stem and Progenitor Cells. Front Med (Lausanne) 2022; 8:793040. [PMID: 34977093 PMCID: PMC8716627 DOI: 10.3389/fmed.2021.793040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Multiple myeloma (MM) is characterized by the abnormal proliferation of clonal plasma cells (PCs) in bone marrow (BM). MM-PCs progressively occupy and likely alter BM niches where reside hematopoietic stem and progenitor cells (HSPCs) whose viability, self-renewal, proliferation, commitment, and differentiation are essential for normal hematopoiesis. Extracellular vesicles (EVs) are particles released by normal and neoplastic cells, such as MM cells. They are important cell-to-cell communicators able to modify the phenotype, genotype, and the fate of the recipient cells. Investigation of mechanisms and mediators underlying HSPC-MM-PC crosstalk is warranted to better understand the MM hematopoietic impairment and for the identification of novel therapeutic strategies against this incurable malignancy. This study is aimed to evaluate whether EVs released by MM-PCs interact with HSPCs, what effects they exert, and the underlying mechanisms involved. Therefore, we investigated the viability, cell cycle, phenotype, clonogenicity, and microRNA profile of HSPCs exposed to MM cell line-released EVs (MM-EVs). Our data showed that: (i) MM cells released a heterogeneous population of EVs; (ii) MM-EVs caused a dose-dependent reduction of HSPCs viability; (iii) MM-EVs caused a redistribution of the HSPC pool characterized by a significant increase in the frequency of stem and early precursors accompanied by a reduction of late precursor cells, such as common myeloid progenitors (CMPs), megakaryocyte erythroid progenitors (MEPs), B and NK progenitors, and a slight increase of granulocyte macrophage progenitors (GMPs); (iv) MM-EVs caused an increase of stem and early precursors in S phase with a decreased number of cells in G0/G1 phase in a dose-dependent manner; (v) MM-EVs reduced the HSPC colony formation; and (vi) MM-EVs caused an increased expression level of C-X-C motif chemokine receptor type 4 (CXCR4) and activation of miRNAs. In conclusion, MM cells through the release of EVs, by acting directly on normal HSPCs, negatively dysregulate normal hematopoiesis, and this could have important therapeutic implications.
Collapse
Affiliation(s)
- Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Stefania Trino
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Daniela Lamorte
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Angelo De Stradis
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Michele Santodirocco
- Trasfusional Medicine Department, Puglia CBB, Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Alessandro Sgambato
- Scientific Direction, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Luciana De Luca
- Unit of Clinical Pathology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Antonella Caivano
- Unit of Clinical Pathology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| |
Collapse
|
5
|
Bermick J, Schaller M. Epigenetic regulation of pediatric and neonatal immune responses. Pediatr Res 2022; 91:297-327. [PMID: 34239066 DOI: 10.1038/s41390-021-01630-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation of transcription is a collective term that refers to mechanisms known to regulate gene transcription without changing the underlying DNA sequence. These mechanisms include DNA methylation and histone tail modifications which influence chromatin accessibility, and microRNAs that act through post-transcriptional gene silencing. Epigenetics is known to regulate a variety of biological processes, and the role of epigtenetics in immunity and immune-mediated diseases is becoming increasingly recognized. While DNA methylation is the most widely studied, each of these systems play an important role in the development and maintenance of appropriate immune responses. There is clear evidence that epigenetic mechanisms contribute to developmental stage-specific immune responses in a cell-specific manner. There is also mounting evidence that prenatal exposures alter epigenetic profiles and subsequent immune function in exposed offspring. Early life exposures that are associated with poor long-term health outcomes also appear to impact immune specific epigenetic patterning. Finally, each of these epigenetic mechanisms contribute to the pathogenesis of a wide variety of diseases that manifest during childhood. This review will discuss each of these areas in detail. IMPACT: Epigenetics, including DNA methylation, histone tail modifications, and microRNA expression, dictate immune cell phenotypes. Epigenetics influence immune development and subsequent immune health. Prenatal, perinatal, and postnatal exposures alter immune cell epigenetic profiles and subsequent immune function. Numerous pediatric-onset diseases have an epigenetic component. Several successful strategies for childhood diseases target epigenetic mechanisms.
Collapse
Affiliation(s)
- Jennifer Bermick
- Department of Pediatrics, Division of Neonatology, University of Iowa, Iowa City, IA, USA. .,Iowa Inflammation Program, University of Iowa, Iowa City, IA, USA.
| | - Matthew Schaller
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Abdelbaky I, Tayara H, Chong KT. Identification of miRNA-Small Molecule Associations by Continuous Feature Representation Using Auto-Encoders. Pharmaceutics 2021; 14:pharmaceutics14010003. [PMID: 35056899 PMCID: PMC8780428 DOI: 10.3390/pharmaceutics14010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that play important roles in the body and affect various diseases, including cancers. Controlling miRNAs with small molecules is studied herein to provide new drug repurposing perspectives for miRNA-related diseases. Experimental methods are time- and effort-consuming, so computational techniques have been applied, relying mostly on biological feature similarities and a network-based scheme to infer new miRNA–small molecule associations. Collecting such features is time-consuming and may be impractical. Here we suggest an alternative method of similarity calculation, representing miRNAs and small molecules through continuous feature representation. This representation is learned by the proposed deep learning auto-encoder architecture. Our suggested representation was compared to previous works and achieved comparable results using 5-fold cross validation (92% identified within top 25% predictions), and better predictions for most of the case studies (avg. of 31% vs. 25% identified within the top 25% of predictions). The results proved the effectiveness of our proposed method to replace previous time- and effort-consuming methods.
Collapse
Affiliation(s)
- Ibrahim Abdelbaky
- Artificial Intelligence Department, Faculty of Computers and Artificial Intelligence, Benha University, Banha 13518, Egypt;
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (H.T.); (K.T.C.); Tel.: +82-63-270-2478 (K.T.C.)
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Korea
- Advanced Electronics and Information Research Center, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (H.T.); (K.T.C.); Tel.: +82-63-270-2478 (K.T.C.)
| |
Collapse
|
7
|
Fasoulakis Z, Theodora M, Tsirkas I, Tsirka T, Kalagasidou S, Inagamova L, Papamanolis V, Blontzos N, Kontomanolis EN. The Role of microRNAs Identified in the Amniotic Fluid. Microrna 2021; 9:8-16. [PMID: 30887932 DOI: 10.2174/2211536608666190318105140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/14/2019] [Accepted: 03/08/2019] [Indexed: 02/08/2023]
Abstract
AIM The study aimed to provide an overall view of current data considering the presence of microRNAs in amniotic fluid. METHODS The available literature in MEDLINE, regarding the role of the amniotic fluid in pregnancy and fetal development, was searched for related articles including terms such as "microRNA", "Amniotic fluid", "Adverse outcome" and others. RESULTS The amniotic fluid has an undoubtedly significant part in fetal nutrition, with a protecting and thermoregulatory role alongside. MicroRNAs have proven to be highly expressed during pregnancy in many body liquids including amniotic fluid and are transferred between cells loaded in exosomes, while they are also implicated in many processes during fetal development and could be potential biomarkers for early prediction of adverse outcomes. CONCLUSION Current knowledge reveals that amniotic fluid microRNAs participate in many developmental and physiological processes of pregnancy including proliferation of fibroblasts, fetal development, angiogenesis, cardioprotection, activation of signaling pathways, differentiation and cell motility, while the expression profile of specific microRNAs has a potential prognostic role in the prediction of Down syndrome, congenital hydronephrosis and kidney fibrosis.
Collapse
Affiliation(s)
- Zacharias Fasoulakis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Thrace, Greece
| | - Marianna Theodora
- 1st Department of Obstetrics & Gynaecology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Tsirkas
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Thrace, Greece
| | - Theodora Tsirka
- Molecular Biology and Genetics, Democritus University of Thrace, Thrace, Greece
| | - Sofia Kalagasidou
- Department of Obstetrics and Gynecology, Bodosakio General Hospital of Ptolemaida, Ptolemaida, Greece
| | - Lola Inagamova
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Thrace, Greece
| | - Valentinos Papamanolis
- Department of Obstetrics and Gynecology, General Hospital of Korinthos, Korinthos, Greece
| | - Nikolaos Blontzos
- 1st Department of Obstetrics & Gynaecology, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
8
|
Massillo C, Duca RB, Lacunza E, Dalton GN, Farré PL, Taha N, Piccioni F, Scalise GD, Gardner K, De Siervi A. Adipose tissue from metabolic syndrome mice induces an aberrant miRNA signature highly relevant in prostate cancer development. Mol Oncol 2020; 14:2868-2883. [PMID: 32875710 PMCID: PMC7607170 DOI: 10.1002/1878-0261.12788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/11/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) remains an important public health concern in Western countries. Metabolic syndrome (MeS) is a cluster of pathophysiological disorders with increasing prevalence in the general population that is a risk factor for PCa. Several studies have determined that a crosstalk between white adipose tissue (WAT) and solid tumors favors cancer aggressiveness. In this work, our main goal was to investigate the interaction between WAT and PCa cells through microRNAs (miRNAs), in MeS mice. We developed a MeS‐like disease model using C57BL/6J mice chronically fed with high‐fat diet (HFD) that were inoculated with TRAMP‐C1 PCa cells. A group of five miRNAs (mmu‐miR‐221‐3p, 27a‐3p, 34a‐5p, 138‐5p, and 146a‐5p) were increased in gonadal WAT (gWAT), tumors, and plasma of MeS mice compared to control animals. Three of these five miRNAs were detected in the media from gWAT and TRAMP‐C1 cell cocultures, and significantly increased in MeS context. More importantly, hsa‐miR‐221‐3p, 146a‐5p, and 27a‐3p were increased in bloodstream of PCa patients compared to healthy donors. Using miRNA microarrays, we found that 121 miRNAs were differentially released to the coculture media between HFD‐gWAT and tumor cells compared to control diet‐gWAT and tumor cells. Target genes for the 66 most deregulated miRNAs were involved in common pathways, mainly related to fatty acid metabolism, ER protein processing, amino acid degradation, PI3K AKT signaling, and PCa. Our findings show for the first time a signature of five miRNAs as important players involved in the interaction between WAT and PCa in MeS mice. Further research will be necessary to track these miRNAs in the interaction between these tissues as well as their role in PCa patients with MeS.
Collapse
Affiliation(s)
- Cintia Massillo
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Rocío Belén Duca
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Ezequiel Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Guillermo Nicolás Dalton
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Paula Lucía Farré
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Nicolás Taha
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Flavia Piccioni
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Georgina Daniela Scalise
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Adriana De Siervi
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| |
Collapse
|
9
|
DNA damage response and preleukemic fusion genes induced by ionizing radiation in umbilical cord blood hematopoietic stem cells. Sci Rep 2020; 10:13722. [PMID: 32839487 PMCID: PMC7445283 DOI: 10.1038/s41598-020-70657-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 07/27/2020] [Indexed: 12/25/2022] Open
Abstract
There is clear evidence that ionizing radiation (IR) causes leukemia. For many types of leukemia, the preleukemic fusion genes (PFG), as consequences of DNA damage and chromosomal translocations, occur in hematopoietic stem and progenitor cells (HSPC) in utero and could be detected in umbilical cord blood (UCB) of newborns. However, relatively limited information is available about radiation-induced apoptosis, DNA damage and PFG formation in human HSPC. In this study we revealed that CD34+ HSPC compared to lymphocytes: (i) are extremely radio-resistant showing delayed time kinetics of apoptosis, (ii) accumulate lower level of endogenous DNA damage/early apoptotic γH2AX pan-stained cells, (iii) have higher level of radiation-induced 53BP1 and γH2AX/53BP1 co-localized DNA double stranded breaks, and (iv) after low dose of IR may form very low level of BCR-ABL PFG. Within CD34+ HSPC we identified CD34+CD38+ progenitor cells as a highly apoptosis-resistant population, while CD34+CD38- hematopoietic stem/multipotent progenitor cells (HSC/MPP) as a population very sensitive to radiation-induced apoptosis. Our study provides critical insights into how human HSPC respond to IR in the context of DNA damage, apoptosis and PFG.
Collapse
|
10
|
Huang S, Tang Z, Wang Y, Chen D, Li J, Zhou C, Lu X, Yuan Y. Comparative profiling of exosomal miRNAs in human adult peripheral and umbilical cord blood plasma by deep sequencing. Epigenomics 2020; 12:825-842. [DOI: 10.2217/epi-2019-0213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: To assess differential expression profiles of miRNAs in exosomes derived from human peripheral blood (PB) and umbilical cord blood (UCB). Materials & methods: Small RNA sequencing was performed to characterize the miRNA expression in plasma exosomes processed from UCB of five healthy newborns and PB of five normal adult volunteers, and differentially expressed miRNAs were further analyzed. Results: A total of 65 exosomal miRNAs, including 46 upregulated and 19 downregulated, showed differential expression between UCB and PB. Target genes of these miRNAs were mainly enriched in signaling pathways associated with pregnancy, cancers, cell mobility and nervous system. Conclusion: Exosomal miRNAs may have essential roles in the biological functions of UCB, suggesting the therapeutic and biomarker potentials of exosomes in UCB.
Collapse
Affiliation(s)
- Sirui Huang
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Number 280 Outer Ring East Road, Higher Education Mega Center, Guangzhou, Guangdong 510006,PR China
| | - Zhenlin Tang
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Number 280 Outer Ring East Road, Higher Education Mega Center, Guangzhou, Guangdong 510006,PR China
| | - Yuheng Wang
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Number 280 Outer Ring East Road, Higher Education Mega Center, Guangzhou, Guangdong 510006,PR China
| | - Danliang Chen
- Department of Gynecology and Obstetrics, the First Affiliated Hospital of Jinan University, Number 613 Huangpu Avenue, Guangzhou, Guangdong 510630, PR China
| | - Jinhua Li
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Number 280 Outer Ring East Road, Higher Education Mega Center, Guangzhou, Guangdong 510006,PR China
| | - Chang Zhou
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Number 280 Outer Ring East Road, Higher Education Mega Center, Guangzhou, Guangdong 510006,PR China
| | - Xin Lu
- School of Life Science, South China Normal University, Number 55 Zhongshan Avenue, Guangzhou, Guangdong 510631, PR China
| | - Yin Yuan
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Number 280 Outer Ring East Road, Higher Education Mega Center, Guangzhou, Guangdong 510006,PR China
| |
Collapse
|
11
|
Naser Al Deen N, Nassar F, Nasr R, Talhouk R. Cross-Roads to Drug Resistance and Metastasis in Breast Cancer: miRNAs Regulatory Function and Biomarker Capability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:335-364. [DOI: 10.1007/978-3-030-20301-6_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Arabkari V, Amirizadeh N, Nikougoftar M, Soleimani M. microRNA expression profiles in two- and three-dimensional culture conditions of human-umbilical-cord blood-derived CD34 + cells. J Cell Physiol 2019; 234:20072-20084. [PMID: 30953369 DOI: 10.1002/jcp.28606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/16/2022]
Abstract
Human umbilical cord blood (HUCB) is a suitable source of hematopoietic stem cells (HSCs) for therapeutic transplantation. Different approaches have been used to expand the number of HSCs to increase the rate of HSC transplantation success in patients, such as using different cocktails of cytokines, feeder cell layers, and biocompatible scaffolds. microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression posttranscriptionally. They play crucial roles in hematopoiesis including stem cell proliferation, differentiation, stemness, and self-renewal properties. Here, we studied the UCB-derived CD34+ cell expansion and the miRNA signatures of CD34+ cells on two- and three-dimensional (2D and 3D) culture conditions. We successfully expanded the UCB-derived CD34+ cells in both liquid culture (2D) and on aminated polyethersulfone nanofiber scaffolds (3D). Next, we identified the miRNA signature of CD34+ cells and their target genes. We found 58 dysregulated miRNAs in 3D culture condition and 34 dysregulated miRNAs in 2D culture condition when compared to the freshly isolated CD34+ cells. Various types of target genes were also predicted in both conditions using two online databases.
Collapse
Affiliation(s)
- Vahid Arabkari
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Iran Blood Transfusion Organization, Tehran, Iran
| | - Naser Amirizadeh
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Iran Blood Transfusion Organization, Tehran, Iran
| | - Mahin Nikougoftar
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Iran Blood Transfusion Organization, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
13
|
Ajami M, Sadeghian MH, Soleimani M, Keramati MR, Ajami M, Anbarlou A, Atashi A. Comparison of miRNA Profiles of Cord Blood Stem Cells in Identical and Fraternal Twins. CELL JOURNAL 2019; 21:78-85. [PMID: 30507092 PMCID: PMC6275421 DOI: 10.22074/cellj.2019.5683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/12/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The role of epigenetic in regulating of the gene expression profile the embryo has been documented. MicroRNAs (miRNAs) are one of these epigenetic mechanisms. Twins are valuable models in determining the relative contributions of genetics and the environment. In this study, we compared differences in the expression levels of 44 miRNAs in hematopoietic stem cells (HSCs) of identical twins to that of fraternal twins as a controls. MATERIALS AND METHODS In this experimental study, CD133+ HSCs were isolated from cord blood of identical and fraternal twins via magnetic-activated cell sorting (MACS). Variation in of gene expression levels of 44 miRNAs were evaluated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS Significant differences in expression were observed in both fraternal and identical twins to varying degrees, but variations alteration in expression of the miRNAs were higher in fraternal twins. CONCLUSION Identical twins had a positive correlation in miRNA expression, while the correlation was not statistically significant in fraternal twins. Altogether, more differences in miRNA expression level in fraternal twins can be attributed to the both genetics and the intrauterine environment. The contribution of the intrauterine environment and genetics to miRNAs expression in HSCs was estimated 8 and 92%, respectively. By comparing of miRNA expression in identical and fraternal twins and identification of their target genes and biological pathways, it could be possible to estimate the effects of genetics and the environment on a number of biological pathways.
Collapse
Affiliation(s)
- Monireh Ajami
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hadi Sadeghian
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic Address:
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Electronic Address:
| | - Mohammad Reza Keramati
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mansoureh Ajami
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Azadeh Anbarlou
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
14
|
Brennan GP, Vitsios DM, Casey S, Looney AM, Hallberg B, Henshall DC, Boylan GB, Murray DM, Mooney C. RNA-sequencing analysis of umbilical cord plasma microRNAs from healthy newborns. PLoS One 2018; 13:e0207952. [PMID: 30507953 PMCID: PMC6277075 DOI: 10.1371/journal.pone.0207952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are a class of small non-coding RNA that regulate gene expression at a post-transcriptional level. MicroRNAs have been identified in various body fluids under normal conditions and their stability as well as their dysregulation in disease has led to ongoing interest in their diagnostic and prognostic potential. Circulating microRNAs may be valuable predictors of early-life complications such as birth asphyxia or neonatal seizures but there are relatively few data on microRNA content in plasma from healthy babies. Here we performed small RNA-sequencing analysis of plasma processed from umbilical cord blood in a set of healthy newborns. MicroRNA levels in umbilical cord plasma of four male and four female healthy babies, from two different centres were profiled. A total of 1,004 individual microRNAs were identified, which ranged from 426 to 659 per sample, of which 269 microRNAs were common to all eight samples. Many of these microRNAs are highly expressed and consistent with previous studies using other high throughput platforms. While overall microRNA expression did not differ between male and female cord blood plasma, we did detect differentially edited microRNAs in female plasma compared to male. Of note, and consistent with other studies of this type, adenylation and uridylation were the two most prominent forms of editing. Six microRNAs, miR-128-3p, miR-29a-3p, miR-9-5p, miR-218-5p, 204-5p and miR-132-3p were consistently both uridylated and adenylated in female cord blood plasma. These results provide a benchmark for microRNA profiling and biomarker discovery using umbilical cord plasma and can be used as comparative data for future biomarker profiles from complicated births or those with early-life developmental disorders.
Collapse
Affiliation(s)
- Gary P. Brennan
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Dimitrios M. Vitsios
- European Molecular Biology Laboratory–European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Sophie Casey
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | | | - Boubou Hallberg
- Neonatology, Karolinska University Hospital, Stockholm, Sweden
| | - David C. Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Geraldine B. Boylan
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Deirdre M. Murray
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Catherine Mooney
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
- School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
- * E-mail:
| |
Collapse
|
15
|
Ha TW, Kang HS, Kim TH, Kwon JH, Kim HK, Ryu A, Jeon H, Han J, Broxmeyer HE, Hwang Y, Lee YK, Lee MR. MiR-9 Controls Chemotactic Activity of Cord Blood CD34⁺ Cells by Repressing CXCR4 Expression. Int J Stem Cells 2018; 11:187-195. [PMID: 30343551 PMCID: PMC6285292 DOI: 10.15283/ijsc18057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/30/2018] [Accepted: 09/07/2018] [Indexed: 11/09/2022] Open
Abstract
Improved approaches for promoting umbilical cord blood (CB) hematopoietic stem cell (HSC) homing are clinically important to enhance engraftment of CB-HSCs. Clinical transplantation of CB-HSCs is used to treat a wide range of disorders. However, an improved understanding of HSC chemotaxis is needed for facilitation of the engraftment process. We found that ectopic overexpression of miR-9 and antisense-miR-9 respectively down- and up-regulated C-X-C chemokine receptor type 4 (CXCR4) expression in CB-CD34+ cells as well as in 293T and TF-1 cell lines. Since CXCR4 is a specific receptor for the stromal cell derived factor-1 (SDF-1) chemotactic factor, we investigated whether sense miR-9 and antisense miR-9 influenced CXCR4-mediated chemotactic mobility of primary CB CD34+ cells and TF-1 cells. Ectopic overexpression of sense miR-9 and antisense miR-9 respectively down- and up-regulated SDF-1-mediated chemotactic cell mobility. To our knowledge, this study is the first to report that miR-9 may play a role in regulating CXCR4 expression and SDF-1-mediated chemotactic activity of CB CD34+ cells.
Collapse
Affiliation(s)
- Tae Won Ha
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan, Korea
| | - Hyun Soo Kang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan, Korea
| | - Tae-Hee Kim
- Department of Obstetrics and Gynecology, Soon Chun Hyang University College of Medicine, Bucheon, Korea
| | - Ji Hyun Kwon
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan, Korea
| | - Hyun Kyu Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan, Korea
| | - Aeli Ryu
- Department of Obstetrics and Gynecology, Soon Chun Hyang University Cheonan Hospital, Cheonan, Korea
| | - Hyeji Jeon
- Department of Obstetrics and Gynecology, Soon Chun Hyang University Cheonan Hospital, Cheonan, Korea
| | - Jaeseok Han
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan, Korea
| | - Hal E Broxmeyer
- Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan, Korea
| | - Yun Kyung Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan, Korea
| | - Man Ryul Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan, Korea
| |
Collapse
|
16
|
MicroRNA-143 targets ERK5 in granulopoiesis and predicts outcome of patients with acute myeloid leukemia. Cell Death Dis 2018; 9:814. [PMID: 30050105 PMCID: PMC6062564 DOI: 10.1038/s41419-018-0837-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/30/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Abstract
Hematopoiesis, the formation of blood cells from hematopoietic stem cells (HSC), is a highly regulated process. Since the discovery of microRNAs (miRNAs), several studies have shown their significant role in the regulation of the hematopoietic system. Impaired expression of miRNAs leads to disrupted cellular pathways and in particular causes loss of hematopoietic ability. Here, we report a previously unrecognized function of miR-143 in granulopoiesis. Hematopoietic cells undergoing granulocytic differentiation exhibited increased miR-143 expression. Overexpression or ablation of miR-143 expression resulted in accelerated granulocytic differentiation or block of differentiation, respectively. The absence of miR-143 in mice resulted in a reduced number of mature granulocytes in blood and bone marrow. Additionally, we observed an association of high miR-143 expression levels with a higher probability of survival in two different cohorts of patients with acute myeloid leukemia (AML). Overexpression of miR-143 in AML cells impaired cell growth, partially induced differentiation, and caused apoptosis. Argonaute2-RNA-Immunoprecipitation assay revealed ERK5, a member of the MAPK-family, as a target of miR-143 in myeloid cells. Further, we observed an inverse correlation of miR-143 and ERK5 in primary AML patient samples, and in CD34+ HSPCs undergoing granulocytic differentiation and we confirmed functional relevance of ERK5 in myeloid cells. In conclusion, our data describe miR-143 as a relevant factor in granulocyte differentiation, whose expression may be useful as a prognostic and therapeutic factor in AML therapy.
Collapse
|
17
|
Hromadnikova I, Kotlabova K, Ivankova K, Vedmetskaya Y, Krofta L. Profiling of cardiovascular and cerebrovascular disease associated microRNA expression in umbilical cord blood in gestational hypertension, preeclampsia and fetal growth restriction. Int J Cardiol 2018; 249:402-409. [PMID: 29121743 DOI: 10.1016/j.ijcard.2017.07.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/14/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND METHODS Gene expression of 29 cardiovascular and cerebrovascular disease associated microRNAs was assessed in whole umbilical cord blood, compared between groups [47 gestational hypertension (GH), 56 preeclampsia (PE), 37 fetal growth restriction (FGR) and 44 normal pregnancies] and correlated with the severity of the disease with respect to clinical signs (mild PE vs. severe PE), delivery date (before and after 34weeks of gestation), and Doppler ultrasound parameters [pulsatility index (PI) in the umbilical artery, PI in the middle cerebral artery and the cerebroplacental ratio]. RESULTS GH showed a down-regulation of miR-195-5p (p=0.025). The down-regulation of miR-26a-5p (p=0.031, p=0.05), miR-145-5p (p=0.042, p=0.015), and miR-574-3p (p=0.002, p=0.022) was observed in severe PE pregnancies requiring termination before 34weeks of gestation. Severe PE occurring regardless of the delivery date was associated with downregulation of miR-195-5p (p=0.01), miR-199a-5p (p=0.048), and miR-221-3p (p=0.028). On the other hand, mild PE showed upregulation of miR-92a-3p (p=0.044). The centralization of fetal circulation tended to higher levels of miR-1-3p (ρ=-0.302, p=0.045) and miR-133a-3p (ρ=-0.348, p=0.020) in PE pregnancies. FGR pregnancies with abnormal values of flow rate in the umbilical artery (miR-221-3p: ρ=-0.390, p=0.017) and the middle cerebral artery (miR-143-3p: ρ=0.350, p=0.036) demonstrated down-regulation of relevant microRNAs. CONCLUSION Epigenetic changes induced by pregnancy-related complications in umbilical cord blood may appear as a result of dysfunctional placenta and impaired maternal cardiovascular function (hidden cardiovascular and cerebrovascular diseases) and may cause later onset of cardiovascular and cerebrovascular diseases in offspring.
Collapse
Affiliation(s)
- Ilona Hromadnikova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Katerina Kotlabova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katarina Ivankova
- Institute for the Care of the Mother and Child, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Yulia Vedmetskaya
- Institute for the Care of the Mother and Child, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ladislav Krofta
- Institute for the Care of the Mother and Child, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
18
|
Zedan AH, Hansen TF, Assenholt J, Pleckaitis M, Madsen JS, Osther PJS. microRNA expression in tumour tissue and plasma in patients with newly diagnosed metastatic prostate cancer. Tumour Biol 2018; 40:1010428318775864. [PMID: 29775158 DOI: 10.1177/1010428318775864] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is the most common cancer among men in the western world. Clinical practice is continuously challenged by the pitfalls of the available diagnostic tools. microRNAs may represent promising biomarkers in many types of human cancers, including prostate cancer. The aim of this study was to investigate microRNA expression in tumour tissue and matched plasma in a cohort of patients with primary metastatic prostate cancer. The relative expression of 12 microRNAs was assessed in diagnostic needle biopsies from the prostate and matched plasma samples in two prospective cohorts (screening cohorts) comprising 21 patients with metastatic prostate cancer and 25 control patients. An independent validation cohort of plasma samples was collected prospectively from 149 newly diagnosed patients with local/locally advanced prostate cancer. Analyses were performed using real-time polymerase chain reaction. miRNA-93 showed a significant negative correlation between expression in tumour tissue and plasma in patients with metastatic prostate cancer. Furthermore, the plasma level of miRNA-93 significantly decreased after treatment in patients with local/locally advanced prostate cancer compared to baseline plasma level. The expression of six microRNAs (let-7b, miRNA-34a, -125b, -143, -145 and -221) was downregulated, and three microRNAs (miRNA-21, -25 and miRNA-93) were upregulated in tumour tissue compared to benign prostate tissue. In plasma, six microRNAs were upregulated (miRNA-21, -125b, -126, -141, -143 and -375), while let-7b was downregulated in patients with metastatic prostate cancer compared to the control cohort. In the metastatic prostate cancer cohort, the expression of four microRNAs (miRNA-125b, -126, -143 and -221), and miRNA-141 in tissue was associated with Gleason score and prostate-specific antigen, respectively. The expression of miRNA-93 in tumour tissue was correlated with matched plasma levels and showed a significant decrease in plasma level after intervention in local prostate cancer. Differential expression between tumour and benign prostate was detected for several microRNAs in both tissue and plasma.
Collapse
Affiliation(s)
- Ahmed Hussein Zedan
- 1 Urological Research Center, Department of Urology, Vejle Hospital, Vejle, Denmark.,2 Oncological Department, Vejle Hospital, Vejle, Denmark.,3 Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Torben Frøstrup Hansen
- 2 Oncological Department, Vejle Hospital, Vejle, Denmark.,3 Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Jannie Assenholt
- 4 Department of Biochemistry and Immunology, Vejle Hospital, Vejle, Denmark
| | | | - Jonna Skov Madsen
- 3 Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.,4 Department of Biochemistry and Immunology, Vejle Hospital, Vejle, Denmark
| | - Palle Jörn Sloth Osther
- 1 Urological Research Center, Department of Urology, Vejle Hospital, Vejle, Denmark.,3 Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
19
|
Rajasekhar M, Schmitz U, Flamant S, Wong JJL, Bailey CG, Ritchie W, Holst J, Rasko JEJ. Identifying microRNA determinants of human myelopoiesis. Sci Rep 2018; 8:7264. [PMID: 29739970 PMCID: PMC5940821 DOI: 10.1038/s41598-018-24203-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/23/2018] [Indexed: 01/05/2023] Open
Abstract
Myelopoiesis involves differentiation of hematopoietic stem cells to cellular populations that are restricted in their self-renewal capacity, beginning with the common myeloid progenitor (CMP) and leading to mature cells including monocytes and granulocytes. This complex process is regulated by various extracellular and intracellular signals including microRNAs (miRNAs). We characterised the miRNA profile of human CD34+CD38+ myeloid progenitor cells, and mature monocytes and granulocytes isolated from cord blood using TaqMan Low Density Arrays. We identified 19 miRNAs that increased in both cell types relative to the CMP and 27 that decreased. miR-125b and miR-10a were decreased by 10-fold and 100-fold respectively in the mature cells. Using in vitro granulopoietic differentiation of human CD34+ cells we show that decreases in both miR-125b and miR-10a correlate with a loss of CD34 expression and gain of CD11b and CD15 expression. Candidate target mRNAs were identified by co-incident predictions between the miRanda algorithm and genes with increased expression during differentiation. Using luciferase assays we confirmed MCL1 and FUT4 as targets of miR-125b and the transcription factor KLF4 as a target of miR-10a. Together, our data identify miRNAs with differential expression during myeloid development and reveal some relevant miRNA-target pairs that may contribute to physiological differentiation.
Collapse
Affiliation(s)
- Megha Rajasekhar
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Stephane Flamant
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Justin J-L Wong
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.,Gene Regulation in Cancer Laboratory, Centenary Institute, University of Sydney, Camperdown, 2050, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - William Ritchie
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Jeff Holst
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.,Origins of Cancer Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia. .,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia. .,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, 2050, Australia.
| |
Collapse
|
20
|
Li S, Wang C, Wang W, Liu W, Zhang G. Abnormally high expression of POLD1, MCM2, and PLK4 promotes relapse of acute lymphoblastic leukemia. Medicine (Baltimore) 2018; 97:e10734. [PMID: 29768346 PMCID: PMC5976347 DOI: 10.1097/md.0000000000010734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study aimed to explore the underlying mechanism of relapsed acute lymphoblastic leukemia (ALL).Datasets of GSE28460 and GSE18497 were downloaded from Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) between diagnostic and relapsed ALL samples were identified using Limma package in R, and a Venn diagram was drawn. Next, functional enrichment analyses of co-regulated DEGs were performed. Based on the String database, protein-protein interaction network and module analyses were also conducted. Moreover, transcription factors and miRNAs targeting co-regulated DEGs were predicted using the WebGestalt online tool.A total of 71 co-regulated DEGs were identified, including 56 co-upregulated genes and 15 co-downregulated genes. Functional enrichment analyses showed that upregulated DEGs were significantly enriched in the cell cycle, and DNA replication, and repair related pathways. POLD1, MCM2, and PLK4 were hub proteins in both protein-protein interaction network and module, and might be potential targets of E2F. Additionally, POLD1 and MCM2 were found to be regulated by miR-520H via E2F1.High expression of POLD1, MCM2, and PLK4 might play positive roles in the recurrence of ALL, and could serve as potential therapeutic targets for the treatment of relapsed ALL.
Collapse
|
21
|
Durdik M, Kosik P, Kruzliakova J, Jakl L, Markova E, Belyaev I. Hematopoietic stem/progenitor cells are less prone to undergo apoptosis than lymphocytes despite similar DNA damage response. Oncotarget 2018; 8:48846-48853. [PMID: 28415626 PMCID: PMC5564729 DOI: 10.18632/oncotarget.16455] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem/progenitor CD34+ cells (HSPC) give rise to all types of blood cells and represent a key cellular target for origination of leukemia. Apoptosis and repair of DNA double strand breaks (DSB) are vital processes in leukemogenesis. High doses of ionizing radiation are the best known agent that induces leukemia, but less is known about the leukemogenic potential of low doses. While umbilical cord blood (UCB) serves as a valuable source of the HSPC for both research and clinics, the data on DNA damage response and apoptosis in UCB HSPC are very limited. We have studied apoptosis and DSB in the UCB-derived CD34+HSPC and CD34- lymphocytes at different time points post-irradiation with low and therapeutic doses of γ-rays. DSB were enumerated with γH2AX foci using imaging flow cytometry. Different stages of apoptosis were analyzed using Annexin/7-AAD assay and γH2AX pan-staining by flow cytometry and imaging flow cytometry, respectively. Our results have consistently shown significantly higher resistance of CD34+ stem/progenitor cells to endogenous and radiation induced apoptosis as compared to CD34- lymphocytes. At the same time, no statistically significant difference was found in DSB repair between HSPC and lymphocytes as enumerated by the γH2AX foci. To conclude, we show for the first time that hematopoietic stem/progenitor cells are less prone to undergo apoptosis than lymphocytes what may be accounted for higher expression of anti-apoptotic proteins in CD34+ cells but was unlikely dealt with DSB repair.
Collapse
Affiliation(s)
- Matus Durdik
- Laboratory of Radiobiology, Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavol Kosik
- Laboratory of Radiobiology, Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Kruzliakova
- Laboratory of Radiobiology, Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lukas Jakl
- Laboratory of Radiobiology, Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eva Markova
- Laboratory of Radiobiology, Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Igor Belyaev
- Laboratory of Radiobiology, Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
22
|
Li T, Cox CD, Ozer BH, Nguyen NT, Nguyen HN, Lai TJ, Li S, Liu F, Kornblum HI, Liau LM, Nghiemphu PL, Cloughesy TF, Lai A. D-2-Hydroxyglutarate Is Necessary and Sufficient for Isocitrate Dehydrogenase 1 Mutant-Induced MIR148A Promoter Methylation. Mol Cancer Res 2018; 16:947-960. [PMID: 29545476 DOI: 10.1158/1541-7786.mcr-17-0367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/13/2018] [Accepted: 02/20/2018] [Indexed: 12/14/2022]
Abstract
Mutant isocitrate dehydrogenase (IDH) 1/2 converts α-ketoglutarate (α-KG) to D-2 hydroxyglutarate (D-2-HG), a putative oncometabolite that can inhibit α-KG-dependent enzymes, including ten-eleven translocation methylcytosine dioxygenase (TET) DNA demethylases. We recently established that miRNAs are components of the IDH1 mutant-associated glioma CpG island methylator phenotype (G-CIMP) and specifically identified MIR148A as a tumor-suppressive miRNA within G-CIMP. However, the precise mechanism by which mutant IDH induces hypermethylation of MIR148A and other G-CIMP promoters remains to be elucidated. In this study, we demonstrate that treatment with exogenous D-2-HG induces MIR148A promoter methylation and transcriptional silencing in human embryonic kidney 293T (293T) cells and primary normal human astrocytes. Conversely, we show that the development of MIR148A promoter methylation in mutant IDH1-overexpressing 293T cells is abrogated via treatment with C227, an inhibitor of mutant IDH1 generation of D-2-HG. Using dot blot assays for global assessment of 5-hydroxymethylcytosine (5-hmC), we show that D-2-HG treatment reduces 5-hmC levels, whereas C227 treatment increases 5-hmC levels, strongly suggesting TET inhibition by D-2-HG. Moreover, we show that withdrawal of D-2-HG treatment reverses methylation with an associated increase in MIR148A transcript levels and transient generation of 5-hmC. We also demonstrate that RNA polymerase II binds endogenously to the predicted promoter region of MIR148A, validating the hypothesis that its transcription is driven by an independent promoter.Implications: Establishment of D-2-HG as a necessary and sufficient intermediate by which mutant IDH1 induces CpG island methylation of MIR148A will help with understanding the efficacy of selective mutant IDH1 inhibitors in the clinic. Mol Cancer Res; 16(6); 947-60. ©2018 AACR.
Collapse
Affiliation(s)
- Tie Li
- Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Christopher D Cox
- Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Byram H Ozer
- Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Nhung T Nguyen
- Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - HuyTram N Nguyen
- Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Thomas J Lai
- Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Sichen Li
- Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Fei Liu
- Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Harley I Kornblum
- Department of Pediatrics, Psychiatry and Biobehavioral Sciences, Pediatric Neurology, Semel Institute for Neuroscience and Human Behavior, Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Phioanh L Nghiemphu
- Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Timothy F Cloughesy
- Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Albert Lai
- Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
23
|
Fonseca W, Lukacs NW, Ptaschinski C. Factors Affecting the Immunity to Respiratory Syncytial Virus: From Epigenetics to Microbiome. Front Immunol 2018. [PMID: 29515570 PMCID: PMC5825926 DOI: 10.3389/fimmu.2018.00226] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common pathogen that infects virtually all children by 2 years of age and is the leading cause of hospitalization of infants worldwide. While most children experience mild symptoms, some children progress to severe lower respiratory tract infection. Those children with severe disease have a much higher risk of developing childhood wheezing later in life. Many risk factors are known to result in exacerbated disease, including premature birth and early age of RSV infection, when the immune system is relatively immature. The development of the immune system before and after birth may be altered by several extrinsic and intrinsic factors that could lead to severe disease predisposition in children who do not exhibit any currently known risk factors. Recently, the role of the microbiome and the resulting metabolite profile has been an area of intense study in the development of lung disease, including viral infection and asthma. This review explores both known risk factors that can lead to severe RSV-induced disease as well as emerging topics in the development of immunity to RSV and the long-term consequences of severe infection.
Collapse
Affiliation(s)
- Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States.,University of Michigan, Mary H. Weiser Food Allergy Center, Ann Arbor, MI, United States
| | - Catherine Ptaschinski
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States.,University of Michigan, Mary H. Weiser Food Allergy Center, Ann Arbor, MI, United States
| |
Collapse
|
24
|
Glaesener S, Jaenke C, Habener A, Geffers R, Hagendorff P, Witzlau K, Imelmann E, Krueger A, Meyer-Bahlburg A. Decreased production of class-switched antibodies in neonatal B cells is associated with increased expression of miR-181b. PLoS One 2018; 13:e0192230. [PMID: 29389970 PMCID: PMC5794184 DOI: 10.1371/journal.pone.0192230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/18/2018] [Indexed: 01/11/2023] Open
Abstract
The increased susceptibility to infections of neonates is caused by an immaturity of the immune system as a result of both qualitative and quantitative differences between neonatal and adult immune cells. With respect to B cells, neonatal antibody responses are known to be decreased. Accountable for this is an altered composition of the neonatal B cell compartment towards more immature B cells. However, it remains unclear whether the functionality of individual neonatal B cell subsets is altered as well. In the current study we therefore compared phenotypical and functional characteristics of corresponding neonatal and adult B cell subpopulations. No phenotypic differences could be identified with the exception of higher IgM expression in neonatal B cells. Functional analysis revealed differences in proliferation, survival, and B cell receptor signaling. Most importantly, neonatal B cells showed severely impaired class-switch recombination (CSR) to IgG and IgA. This was associated with increased expression of miR-181b in neonatal B cells. Deficiency of miR-181b resulted in increased CSR. With this, our results highlight intrinsic differences that contribute to weaker B cell antibody responses in newborns.
Collapse
Affiliation(s)
- Stephanie Glaesener
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Christine Jaenke
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anika Habener
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Hagendorff
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Katrin Witzlau
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Esther Imelmann
- Institute for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Andreas Krueger
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Almut Meyer-Bahlburg
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- * E-mail:
| |
Collapse
|
25
|
Hromadnikova I, Kotlabova K, Ivankova K, Krofta L. Expression profile of C19MC microRNAs in placental tissue of patients with preterm prelabor rupture of membranes and spontaneous preterm birth. Mol Med Rep 2017; 16:3849-3862. [PMID: 28731129 PMCID: PMC5646962 DOI: 10.3892/mmr.2017.7067] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 07/03/2017] [Indexed: 12/18/2022] Open
Abstract
The aim of the study was to demonstrate that preterm birth (PTB) is associated with altered C19MC microRNA expression profile in placental tissues. Gene expression of 15 placental specific microRNAs (miR-512-5p, miR-515-5p, miR-516-5p, miR-517-5p, miR-518b, miR-518f-5p, miR-519a, miR-519d, miR-519e-5p, miR-520a-5p, miR-520h, miR-524-5p, miR-525-5p, miR-526a and miR-526b-5p) was compared between groups: 34 spontaneous PTB, 108 preterm prelabor rupture of membranes (PPROM) and 20 term in labor pregnancies. Correlation between variables including relative microRNA quantification in placental tissues and the gestational age at delivery, white blood cell (WBC) count at admission and serum levels of C-reactive protein at admission in patients with PPROM and PTB was determined. Expression profile of microRNAs was different between PPROM and term in labor pregnancies, PTB and term in labor pregnancies, and between gestational age-matched PPROM and PTB groups. When compared with term in labor pregnancies, while C19MC microRNAs showed a downregulation in PPROM pregnancies (miR-525-5p), in PTB pregnancies C19MC microRNAs were upregulated (miR-515-5p, miR-516-5p, miR-518b, miR-518f-5p, miR-519a, miR-519e-5p, miR-520a-5p, miR-520h, and miR-526b-5p) or showed a trend to upregulation (miR-519d and miR-526a). In comparison to PTB pregnancies, the PPROM group demonstrated a significant portion of downregulated C19MC microRNAs (miR-516-5p, miR-517-5p, miR-518b, miR-518f-5p, miR-519a, miR-519d, miR-519e-5p, miR-520a-5p, miR-520h, miR-525-5p, miR-526a and miR-526b-5p). In the group of PPROM pregnancies, a weak negative correlation between the gestational age at delivery and microRNA gene expression in placental tissue for all examined C19MC microRNAs was observed. PTB pregnancies showed a positive correlation (miR-512-5p, miR-515-5p, miR-519e-5p) or a trend to positive correlation (miR-516-5p, miR-518b, miR-520h) between particular C19MC microRNAs and maternal WBC count at admission. Our study demonstrates that upregulation of C19MC microRNAs is a characteristic phenomenon of PTB. PPROM pregnancies have a tendency to produce lower levels of miR-525-5p. All examined C19MC microRNAs displayed decreased expression with advancing gestational age in PPROM group.
Collapse
Affiliation(s)
- Ilona Hromadnikova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 100 00 Prague 10, Czech Republic
| | - Katerina Kotlabova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 100 00 Prague 10, Czech Republic
| | - Katarina Ivankova
- Institute for The Care of Mother and Child, Third Faculty of Medicine, Charles University, 100 00 Prague 10, Czech Republic
| | - Ladislav Krofta
- Institute for The Care of Mother and Child, Third Faculty of Medicine, Charles University, 100 00 Prague 10, Czech Republic
| |
Collapse
|
26
|
Martiáñez Canales T, de Leeuw DC, Vermue E, Ossenkoppele GJ, Smit L. Specific Depletion of Leukemic Stem Cells: Can MicroRNAs Make the Difference? Cancers (Basel) 2017; 9:cancers9070074. [PMID: 28665351 PMCID: PMC5532610 DOI: 10.3390/cancers9070074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 01/22/2023] Open
Abstract
For over 40 years the standard treatment for acute myeloid leukemia (AML) patients has been a combination of chemotherapy consisting of cytarabine and an anthracycline such as daunorubicin. This standard treatment results in complete remission (CR) in the majority of AML patients. However, despite these high CR rates, only 30–40% (<60 years) and 10–20% (>60 years) of patients survive five years after diagnosis. The main cause of this treatment failure is insufficient eradication of a subpopulation of chemotherapy resistant leukemic cells with stem cell-like properties, often referred to as “leukemic stem cells” (LSCs). LSCs co-exist in the bone marrow of the AML patient with residual healthy hematopoietic stem cells (HSCs), which are needed to reconstitute the blood after therapy. To prevent relapse, development of additional therapies targeting LSCs, while sparing HSCs, is essential. As LSCs are rare, heterogeneous and dynamic, these cells are extremely difficult to target by single gene therapies. Modulation of miRNAs and consequently the regulation of hundreds of their targets may be the key to successful elimination of resistant LSCs, either by inducing apoptosis or by sensitizing them for chemotherapy. To address the need for specific targeting of LSCs, miRNA expression patterns in highly enriched HSCs, LSCs, and leukemic progenitors, all derived from the same patients’ bone marrow, were determined and differentially expressed miRNAs between LSCs and HSCs and between LSCs and leukemic progenitors were identified. Several of these miRNAs are specifically expressed in LSCs and/or HSCs and associated with AML prognosis and treatment outcome. In this review, we will focus on the expression and function of miRNAs expressed in normal and leukemic stem cells that are residing within the AML bone marrow. Moreover, we will review their possible prospective as specific targets for anti-LSC therapy.
Collapse
Affiliation(s)
- Tania Martiáñez Canales
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - David C de Leeuw
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Eline Vermue
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Gert J Ossenkoppele
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Linda Smit
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
27
|
A Macro View of MicroRNAs: The Discovery of MicroRNAs and Their Role in Hematopoiesis and Hematologic Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:99-175. [PMID: 28838543 DOI: 10.1016/bs.ircmb.2017.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MicroRNAs (MiRNAs) are a class of endogenously encoded ~22 nucleotide, noncoding, single-stranded RNAs that contribute to development, body planning, stem cell differentiation, and tissue identity through posttranscriptional regulation and degradation of transcripts. Given their importance, it is predictable that dysregulation of MiRNAs, which target a wide variety of transcripts, can result in malignant transformation. In this review, we explore the discovery of MiRNAs, their mechanism of action, and the tools that aid in their discovery and study. Strikingly, many of the studies that have expanded our understanding of the contributions of MiRNAs to normal physiology and in the development of diseases have come from studies in the hematopoietic system and hematologic malignancies, with some of the earliest identified functions for mammalian MiRNAs coming from observations made in leukemias. So, with a special focus on the hematologic system, we will discuss how MiRNAs contribute to differentiation of stem cells and how dysregulation of MiRNAs contributes to the development of malignancy, by providing examples of specific MiRNAs that function as oncogenes or tumor suppressors, as well as of defects in MiRNA processing. Finally, we will discuss the promise of MiRNA-based therapeutics and challenges for the future study of disease-causing MiRNAs.
Collapse
|
28
|
First trimester screening of circulating C19MC microRNAs and the evaluation of their potential to predict the onset of preeclampsia and IUGR. PLoS One 2017; 12:e0171756. [PMID: 28182660 PMCID: PMC5300267 DOI: 10.1371/journal.pone.0171756] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/25/2017] [Indexed: 12/17/2022] Open
Abstract
Objectives A nested case control study of a longitudinal cohort comparing pregnant women enrolled at 10 to 13 gestational weeks was carried out to evaluate risk assessment for preeclampsia and IUGR based on circulating placental specific C19MC microRNAs in early pregnancy. Methods The expression of placental specific C19MC microRNAs (miR-516b-5p, miR-517-5p, miR-518b, miR-520a-5p, miR-520h, and miR-525-5p) was determined in plasma samples from pregnancies that subsequently developed preeclampsia (n = 21), IUGR (n = 18), and 58 normal pregnancies using real-time PCR and comparative Ct method relative to synthetic Caenorhabditis elegans microRNA (cel-miR-39). Results Circulating C19MC microRNAs were up-regulated (miR-517-5p, p = 0.005; miR-518b, p = 0.013; miR-520h, p = 0.021) or showed a trend toward up-regulation in patients destined to develop preeclampsia (miR-520a-5p, p = 0.067; miR-525-5p, p = 0.073). MiR-517-5p had the best predictive performance for preeclampsia with a sensitivity of 42.9%, a specificity of 86.2%, a PPV of 52.9% and a NPV of 80.6%. The combination of all examined circulating C19MC microRNAs had no advantage over using only the miR-517-5p biomarker to predict the occurrence of preeclampsia (a sensitivity of 20.6%, a specificity of 90.8%, a PPV of 44.8%, and a NPV of 76.0%). Conclusions Up-regulation of miR-517-5p, miR-518b and miR-520h was associated with a risk of later development of preeclampsia. First trimester screening of extracellular miR-517-5p identified a proportion of women with subsequent preeclampsia. No circulating C19MC microRNA biomarkers were identified that could predict later occurrence of IUGR.
Collapse
|
29
|
Yu HR, Hsu TY, Huang HC, Kuo HC, Li SC, Yang KD, Hsieh KS. Comparison of the Functional microRNA Expression in Immune Cell Subsets of Neonates and Adults. Front Immunol 2016; 7:615. [PMID: 28066425 PMCID: PMC5165026 DOI: 10.3389/fimmu.2016.00615] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/05/2016] [Indexed: 02/06/2023] Open
Abstract
Diversity of biological molecules in newborn and adult immune cells contributes to differences in cell function and atopic properties. Micro RNAs (miRNAs) are reported to involve in the regulation of immune system. Therefore, determining the miRNA expression profile of leukocyte subpopulations is important for understanding immune system regulation. In order to explore the unique miRNA profiling that contribute to altered immune in neonates, we comprehensively analyzed the functional miRNA signatures of eight leukocyte subsets (polymorphonuclear cells, monocytes, CD4+ T cells, CD8+ T cells, natural killer cells, B cells, plasmacytoid dendritic cells, and myeloid dendritic cells) from both neonatal and adult umbilical cord and peripheral blood samples, respectively. We observed distinct miRNA profiles between adult and neonatal blood leukocyte subsets, including unique miRNA signatures for each cell lineage. Leukocyte miRNA signatures were altered after stimulation. Adult peripheral leukocytes had higher let-7b-5p expression levels compared to neonatal cord leukocytes across multiple subsets, irrespective of stimulation. Transfecting neonatal monocytes with a let-7b-5p mimic resulted in a reduction of LPS-induced interleukin (IL)-6 and TNF-α production, while transfection of a let-7b-5p inhibitor into adult monocytes enhanced IL-6 and TNF-α production. With this functional approach, we provide intact differential miRNA expression profiling of specific immune cell subsets between neonates and adults. These studies serve as a basis to further understand the altered immune response observed in neonates and advance the development of therapeutic strategies.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Te-Yao Hsu
- Department of Obstetrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Hsin-Chun Huang
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Kuender D Yang
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan; Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan
| | - Kai-Sheng Hsieh
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| |
Collapse
|
30
|
Floris I, Kraft JD, Altosaar I. Roles of MicroRNA across Prenatal and Postnatal Periods. Int J Mol Sci 2016; 17:ijms17121994. [PMID: 27916805 PMCID: PMC5187794 DOI: 10.3390/ijms17121994] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022] Open
Abstract
Communication between mother and offspring in mammals starts at implantation via the maternal-placental-fetal axis, and continues postpartum via milk targeted to the intestinal mucosa. MicroRNAs (miRNAs), short, noncoding single-stranded RNAs, of about 22 nucleotides in length, are actively involved in many developmental and physiological processes. Here we highlight the role of miRNA in the dynamic signaling that guides infant development, starting from implantation of conceptus and persisting through the prenatal and postnatal periods. miRNAs in body fluids, particularly in amniotic fluid, umbilical cord blood, and breast milk may offer new opportunities to investigate physiological and/or pathological molecular mechanisms that portend to open novel research avenues for the identification of noninvasive biomarkers.
Collapse
Affiliation(s)
- Ilaria Floris
- Biochemistry, Microbiology & Immunology Department, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H8M5, Canada.
| | - Jamie D Kraft
- Biochemistry, Microbiology & Immunology Department, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H8M5, Canada.
| | - Illimar Altosaar
- Biochemistry, Microbiology & Immunology Department, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H8M5, Canada.
| |
Collapse
|
31
|
Li Y, Deng X, Zeng X, Peng X. The Role of Mir-148a in Cancer. J Cancer 2016; 7:1233-41. [PMID: 27390598 PMCID: PMC4934031 DOI: 10.7150/jca.14616] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/07/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are highly conserved noncoding RNAs of about 19-25 nucleotides. Through specifically pairing with complementary sites in 3' untranslated regions (UTRs) of target mRNAs, they mediate post-transcriptional silencing. MicroRNAs have been implicated in many physiological processes including proliferation, differentiation, development, apoptosis, and metabolism. In recent years many studies have revealed that the aberrant expression of miRNA is closely related to oncogenesis and is now an intense field of study. Mir-148a is aberrantly expressed in various cancers and has been identified as an oncogenic or tumor suppressor with crucial roles in the molecular mechanisms of oncogenesis. In this review, we have summarized the role of mir-148a in the oncogenic pathways of gastric, liver, breast and urogenital cancers, and in neurogliocytoma oncogenesis. Studying the functional role of mir-148a is crucial in discovering novel tumor molecular markers and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Yue Li
- 1. Department of Pathology and Pathophysiology, Hunan Normal University Medical School, Changsha 410013, Hunan, China
| | - Xiyun Deng
- 1. Department of Pathology and Pathophysiology, Hunan Normal University Medical School, Changsha 410013, Hunan, China
| | - Xiaomin Zeng
- 2. Department of Statistics and Epidemiology, Public Health School, Central South University, Changsha 410078, Hunan, China
| | - Xiaoning Peng
- 1. Department of Pathology and Pathophysiology, Hunan Normal University Medical School, Changsha 410013, Hunan, China
| |
Collapse
|
32
|
Hong SH, Kim KS, Oh IH. Concise review: Exploring miRNAs--toward a better understanding of hematopoiesis. Stem Cells 2015; 33:1-7. [PMID: 25132287 DOI: 10.1002/stem.1810] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/14/2014] [Indexed: 12/12/2022]
Abstract
Hematopoiesis is governed by a multidimensional regulatory network involving both intrinsic and extrinsic factors that control self-renewal and differentiation of hematopoietic stem cells (HSCs) through the coordination of influences that affect cell fate. Increasing evidence indicates that microRNAs (miRNAs), short noncoding RNAs of approximately 22 nucleotides, play a central role in orchestrating these regulatory mechanisms to modulate the multiple entities of hematopoietic function in a cell-type specific manner, including self-renewal, lineage commitment, and survival of HSCs as well as their microenvironmental crosstalk. Here, we summarize the current understanding regarding the regulatory effects of miRNA on hematopoietic cells, thus enlightening their role in fine-tuning HSC function and hematopoietic homeostasis.
Collapse
Affiliation(s)
- Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Stem Cell Institute, Kangwon National University, Chuncheon, South Korea
| | | | | |
Collapse
|
33
|
Yang Y, Wang S, Miao Z, Ma W, Zhang Y, Su L, Hu M, Zou J, Yin Y, Luo J. miR-17 promotes expansion and adhesion of human cord blood CD34(+) cells in vitro. Stem Cell Res Ther 2015; 6:168. [PMID: 26345634 PMCID: PMC4562375 DOI: 10.1186/s13287-015-0159-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 07/14/2015] [Accepted: 08/17/2015] [Indexed: 01/11/2023] Open
Abstract
Introduction We have recently found that miR-17 is necessary in the cell-extrinsic control of cord blood (CB) CD34+ cell function. Here, we demonstrated that the proper level of miR-17 is also necessary in the cell-intrinsic control of the hematopoietic properties of CB CD34+ cells. Methods The miR-17 overexpression and knockdown models were created using primary CB CD34+ cells transfected by the indicated vectors. Long-term culture, colony forming, adhesion and trans-well migration assays were carried out to investigate the function of miR-17 on CB CD34+ cells in vitro. NOD prkdcscid Il2rgnull mice were used in a SCID repopulating cell assay to investigate the function of miR-17 on CB CD34+ cells in vivo. A two-tailed Student’s t-test was used for statistical comparisons. Results In vitro assays revealed that ectopic expression of miR-17 promoted long-term expansion, especially in the colony-forming of CB CD34+ cells and CD34+CD38− cells. Conversely, downregulation of miR-17 inhibited the expansion of CB CD34+ cells. However, the overexpression of miR-17 in vivo reduced the hematopoietic reconstitution potential of CB CD34+ cells compared to that of control cells. The increased expression of major adhesion molecules in miR-17 overexpressed CB CD34+ cells suggests that the adhesion between miR-17 overexpressed CB CD34+ cells and their niche in vivo is regulated abnormally, which may further lead to the reduced hematopoietic reconstitution capability of 17/OE cells in engrafted mice. Conclusion We conclude that the proper expression of miR-17 is required, at least partly, for normal hematopoietic stem cell–niche interaction and for the regulation of adult hematopoiesis. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0159-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuxia Yang
- Department of Medical & Research Technology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
| | - Saifeng Wang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Zhenchuan Miao
- Beijing Vitalstar Biotechnology Co., Ltd., Beijing, China.
| | - Wei Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| | - Yanju Zhang
- Tianjin Central Hospital for Obstetrics and Gynecology, Tianjin, China.
| | - Li Su
- Center of Medical and Health Analysis, Peking University, Beijing, China.
| | - Mengyu Hu
- Department of Medical & Research Technology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
| | - Junhua Zou
- Department of Medical & Research Technology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Jianyuan Luo
- Department of Medical & Research Technology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA. .,Department of Medical & Research Technology, Department of Pathology, School of Medicine, University of Maryland, College Park, USA.
| |
Collapse
|
34
|
Pulecio J, Nivet E, Sancho-Martinez I, Vitaloni M, Guenechea G, Xia Y, Kurian L, Dubova I, Bueren J, Laricchia-Robbio L, Belmonte JCI. Conversion of human fibroblasts into monocyte-like progenitor cells. Stem Cells 2015; 32:2923-2938. [PMID: 25175072 DOI: 10.1002/stem.1800] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/12/2014] [Accepted: 06/19/2014] [Indexed: 01/02/2023]
Abstract
Reprogramming technologies have emerged as a promising approach for future regenerative medicine. Here, we report on the establishment of a novel methodology allowing for the conversion of human fibroblasts into hematopoietic progenitor-like cells with macrophage differentiation potential. SOX2 overexpression in human fibroblasts, a gene found to be upregulated during hematopoietic reconstitution in mice, induced the rapid appearance of CD34+ cells with a concomitant upregulation of mesoderm-related markers. Profiling of cord blood hematopoietic progenitor cell populations identified miR-125b as a factor facilitating commitment of SOX2-generated CD34+ cells to immature hematopoietic-like progenitor cells with grafting potential. Further differentiation toward the monocytic lineage resulted in the appearance of CD14+ cells with functional phagocytic capacity. In vivo transplantation of SOX2/miR-125b-generated CD34+ cells facilitated the maturation of the engrafted cells toward CD45+ cells and ultimately the monocytic/macrophage lineage. Altogether, our results indicate that strategies combining lineage conversion and further lineage specification by in vivo or in vitro approaches could help to circumvent long-standing obstacles for the reprogramming of human cells into hematopoietic cells with clinical potential.
Collapse
Affiliation(s)
- Julian Pulecio
- Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona
| | - Emmanuel Nivet
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Ignacio Sancho-Martinez
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Marianna Vitaloni
- Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona
| | - Guillermo Guenechea
- Hematopoiesis and Gene Therapy Division. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER). Madrid, Spain
| | - Yun Xia
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Leo Kurian
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Ilir Dubova
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Juan Bueren
- Hematopoiesis and Gene Therapy Division. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER). Madrid, Spain
| | | | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| |
Collapse
|
35
|
Fuentes E, Palomo I, Alarcón M. Platelet miRNAs and cardiovascular diseases. Life Sci 2015; 133:29-44. [PMID: 26003375 DOI: 10.1016/j.lfs.2015.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/25/2015] [Accepted: 04/21/2015] [Indexed: 01/04/2023]
Abstract
Activated platelets play a critical role in the acute complications of atherosclerosis that cause life-threatening ischemic events at late stages of the disease. The miRNAs are a novel class of small, non-coding RNAs that play a significant role in both inflammatory and cardiovascular diseases. The miRNAs are known to be present in platelets and exert important regulatory functions. Here we systematically examine the genes that are regulated by platelet miRNAs (miRNA-223,miRNA-126,miRNA-21, miRNA-24 and miRNA-197) and the association with cardiovascular disease risks. Platelet-secreted miRNAs could be novel biomarkers associated with cardiovascular diseases.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R09I2001, Chile
| | - Iván Palomo
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R09I2001, Chile.
| | - Marcelo Alarcón
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R09I2001, Chile.
| |
Collapse
|
36
|
Transgene-derived overexpression of miR-17-92 in CD8+ T-cells confers enhanced cytotoxic activity. Biochem Biophys Res Commun 2015; 458:549-554. [PMID: 25677619 DOI: 10.1016/j.bbrc.2015.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/02/2015] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRs) play important roles in regulation of a variety of cell functions, including immune responses. We have previously demonstrated that miR-17-92 expression in T-cells enhances Th1 phenotype and provides a long-term protection against glioblastoma when co-expressed as a transgene in T-cells along with a chimeric antigen receptor. To further elucidate the function of miR-17-92 in tumor antigen-specific CD8(+) T-cells, we generated transgenic (Tg) mice in which CD8(+) T-cells overexpress transgene-derived miR-17-92 under the lck promoter as well as T-cell receptor specific for human gp10025-33 (Pmel-1) (miR-17-92/Pmel-Tg). CD8(+) T-cells from miR-17-92/Pmel-Tg mice demonstrated enhanced interferon (IFN)-γ production and cytotoxicity in response to the cognate antigen compared with those from control Pmel-Tg mice without the transgene for miR-17-92. In addition, miR-17-92/Pmel-Tg mouse-derived CD8(+)CD44(+) T-cells demonstrated increased frequencies of cells with memory phenotypes and IFN-γ production. We also found that miR-17-92/Pmel-Tg-derived CD8(+) T-cells expressed decreased levels of transforming growth factor (TGF)-β type II receptor (TGFBR2) on their surface, thereby resisting against suppressive effects of TGF-β1. Our findings suggest that engineering of tumor antigen-specific CD8(+) T-cells to express miR-17-92 may improve the potency of cancer immunotherapy.
Collapse
|
37
|
Zheng Z, Ge Y, Zhang J, Xue M, Li Q, Lin D, Ma W. PUFA diets alter the microRNA expression profiles in an inflammation rat model. Mol Med Rep 2015; 11:4149-57. [PMID: 25672643 PMCID: PMC4394972 DOI: 10.3892/mmr.2015.3318] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/06/2014] [Indexed: 12/30/2022] Open
Abstract
Omega-3 and -6 polyunsaturated fatty acids (PUFAs) can directly or indirectly regulate immune homeostasis via inflammatory pathways, and components of these pathways are crucial targets of microRNAs (miRNAs). However, no study has examined the changes in the miRNA transcriptome during PUFA-regulated inflammatory processes. Here, we established PUFA diet-induced autoimmune-prone (AP) and autoimmune-averse (AA) rat models, and studied their physical characteristics and immune status. Additionally, miRNA expression patterns in the rat models were compared using microarray assays and bioinformatic methods. A total of 54 miRNAs were differentially expressed in common between the AP and the AA rats, and the changes in rno-miR-19b-3p, -146b-5p and -183-5p expression were validated using stem-loop reverse transcription-quantitative polymerase chain reaction. To better understand the mechanisms underlying PUFA-regulated miRNA changes during inflammation, computational algorithms and biological databases were used to identify the target genes of the three validated miRNAs. Furthermore, Gene Ontology (GO) term annotation and KEGG pathway analyses of the miRNA targets further allowed to explore the potential implication of the miRNAs in inflammatory pathways. The predicted PUFA-regulated inflammatory pathways included the Toll-like receptor (TLR), T cell receptor (TCR), NOD-like receptor (NLR), RIG-I-like receptor (RLR), mitogen-activated protein kinase (MAPK) and the transforming growth factor-β (TGF-β) pathway. This study is the first report, to the best of our knowledge, on in vivo comparative profiling of miRNA transcriptomes in PUFA diet-induced inflammatory rat models using a microarray approach. The results provide a useful resource for future investigation of the role of PUFA-regulated miRNAs in immune homeostasis.
Collapse
Affiliation(s)
- Zheng Zheng
- Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Yinlin Ge
- Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Jinyu Zhang
- Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Meilan Xue
- Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Quan Li
- Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Dongliang Lin
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Wenhui Ma
- Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| |
Collapse
|
38
|
Testa U, Pelosi E. MicroRNAs expressed in hematopoietic stem/progenitor cells are deregulated in acute myeloid leukemias. Leuk Lymphoma 2015; 56:1466-74. [PMID: 25242094 DOI: 10.3109/10428194.2014.955019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MicroRNAs are key regulators of hematopoiesis, specifically involved in regulating the maintenance of stemness of primitive hematopoietic progenitor cells (HPCs) and the early and late stages of hematopoietic differentiation. Some microRNAs have been found to be expressed in hematopoietic stem cells (HSCs) and primitive HPCs, and play a relevant role in regulation of the early steps of hematopoietic cell differentiation. Notable examples of these microRNAs are given by miR-22, miR-29, miR-125 and miR-126. These HSC/HPC-regulating microRNAs are often deregulated in some subsets of acute myeloid leukemia (AML), with pathogenic, diagnostic and prognostic implications. Therefore, elucidation of the pattern of microRNA expression at the level of the early stages of hematopoietic cell differentiation has essential implications, not only for elucidation of the molecular bases of the early stages of hematopoietic differentiation, but also for a better understanding of the pathogenic mechanisms underlying AML.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità , Rome , Italy
| | | |
Collapse
|
39
|
Kim M, Tan YS, Cheng WC, Kingsbury TJ, Heimfeld S, Civin CI. MIR144 and MIR451 regulate human erythropoiesis via RAB14. Br J Haematol 2014; 168:583-97. [PMID: 25312678 DOI: 10.1111/bjh.13164] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/15/2014] [Indexed: 12/11/2022]
Abstract
Expression levels of MIR144 and MIR451 increase during erythropoiesis, a pattern that is conserved from zebrafish to humans. As these two miRs are expressed from the same polycistronic transcript, we manipulated MIR144 and MIR451 in human erythroid cells individually and together to investigate their effects on human erythropoiesis. Inhibition of endogenous human MIR451 resulted in decreased numbers of erythroid (CD71(hi) CD235a(hi) CD34(-) ) cells, consistent with prior studies in zebrafish and mice. In addition, inhibition of MIR144 impaired human erythroid differentiation, unlike in zebrafish and mouse studies where the functional effect of MIR144 on erythropoiesis was minimal. In this study, we found RAB14 is a direct target of both MIR144 and MIR451. As MIR144 and MIR451 expression increased during human erythropoiesis, RAB14 protein expression decreased. Enforced RAB14 expression phenocopied the effect of MIR144 and/or MIR451 depletion, whereas shRNA-mediated RAB14 knockdown protected cells from MIR144 and/or MIR451 depletion-mediated erythropoietic inhibition. RAB14 knockdown increased the frequency and number of erythroid cells, increased β-haemoglobin expression, and decreased CBFA2T3 expression during human erythropoiesis. In summary, we utilized MIR144 and MIR451 to identify RAB14 as a novel physiological inhibitor of human erythropoiesis.
Collapse
Affiliation(s)
- MinJung Kim
- Departments of Physiology and Pediatrics, Center for Stem Cell Biology & Regenerative Medicine, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
40
|
Ma J, Yao Y, Wang P, Liu Y, Zhao L, Li Z, Li Z, Xue Y. MiR-152 functions as a tumor suppressor in glioblastoma stem cells by targeting Krüppel-like factor 4. Cancer Lett 2014; 355:85-95. [PMID: 25218589 DOI: 10.1016/j.canlet.2014.09.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 01/04/2023]
Abstract
Glioblastoma (GBM) is the most common central nervous system tumor and the molecular mechanism driving its development is still largely unknown, limiting the treatment of this disease. In the present study, we explored the potential role of miR-152 in glioblastoma stem cells (GSCs) as well as the possible molecular mechanisms. Our results proved that miR-152 was down-regulated in human GSCs. Restoring the expression of miR-152 dramatically reduced the cell proliferation, cell migration and invasion as well as inducing apoptosis. Mechanistic investigations defined Krüppel-like factor 4 (KLF4) as a direct and functional downstream target of miR-152, which was involved in the miR-152-mediated tumor-suppressive effects in GSCs. Meanwhile, this process was coincided with the down-regulated LGALS3 that could be bound and promoted by KLF4, leading to attenuate the activation of MEK1/2 and PI3K signal pathways. Moreover, the in vivo study showed that miR-152 over-expression and KLF4 knockdown produced the smallest tumor volume and the longest survival in nude mice. Taken together, these results elucidated the function of miR-152 in GSCs progression and suggested a promising application of it in glioma treatment.
Collapse
Affiliation(s)
- Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, China
| | - Yilong Yao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lini Zhao
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, China
| | - Zhiqing Li
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, China.
| |
Collapse
|
41
|
Traver S, Assou S, Scalici E, Haouzi D, Al-Edani T, Belloc S, Hamamah S. Cell-free nucleic acids as non-invasive biomarkers of gynecological cancers, ovarian, endometrial and obstetric disorders and fetal aneuploidy. Hum Reprod Update 2014; 20:905-23. [PMID: 24973359 DOI: 10.1093/humupd/dmu031] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Proper folliculogenesis is fundamental to obtain a competent oocyte that, once fertilized, can support the acquisition of embryo developmental competence and pregnancy. MicroRNAs (miRNAs) are crucial regulators of folliculogenesis, which are expressed in the cumulus-oocyte complex and in granulosa cells and some can also be found in the bloodstream. These circulating miRNAs are intensively studied and used as diagnostic/prognostic markers of many diseases, including gynecological and pregnancy disorders. In addition, serum contains small amounts of cell-free DNA (cfDNA), presumably resulting from the release of genetic material from apoptotic/necrotic cells. The quantification of nucleic acids in serum samples could be used as a diagnostic tool for female infertility. METHODS An overview of the published literature on miRNAs, and particularly on the use of circulating miRNAs and cfDNA as non-invasive biomarkers of gynecological diseases, was performed (up to January 2014). RESULTS In the past decade, cell-free nucleic acids have been studied for potential use as biomarkers in many diseases, particularly in gynecological cancers, ovarian and endometrial disorders, as well as in pregnancy-related pathologies and fetal aneuploidy. The data strongly suggest that the concentration of cell-free nucleic acids in serum from IVF patients or in embryo culture medium could be related to the ovarian hormone status and embryo quality, respectively, and be used as a non-invasive biomarker of IVF outcome. CONCLUSIONS The profiling of circulating nucleic acids, such as miRNAs and cfDNA, opens new perspectives for the diagnosis/prognosis of ovarian disorders and for the prediction of IVF outcomes, namely (embryo quality and pregnancy).
Collapse
Affiliation(s)
- S Traver
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, INSERM U1040, Montpellier, France
| | - S Assou
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, INSERM U1040, Montpellier, France Université Montpellier 1, UFR de Médecine, Montpellier, France
| | - E Scalici
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, INSERM U1040, Montpellier, France Université Montpellier 1, UFR de Médecine, Montpellier, France
| | - D Haouzi
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, INSERM U1040, Montpellier, France
| | - T Al-Edani
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, INSERM U1040, Montpellier, France Université Montpellier 1, UFR de Médecine, Montpellier, France
| | - S Belloc
- Eylau-Unilabs Laboratory, Paris, France
| | - S Hamamah
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, INSERM U1040, Montpellier, France Université Montpellier 1, UFR de Médecine, Montpellier, France ART-PGD Department, Hôpital Arnaud de Villeneuve, CHU Montpellier, Montpellier, France
| |
Collapse
|
42
|
Moreira FC, Assumpção M, Hamoy IG, Darnet S, Burbano R, Khayat A, Gonçalves AN, Alencar DO, Cruz A, Magalhães L, Araújo Jr. W, Silva A, Santos S, Demachki S, Assumpção P, Ribeiro-dos-Santos Â. MiRNA expression profile for the human gastric antrum region using ultra-deep sequencing. PLoS One 2014; 9:e92300. [PMID: 24647245 PMCID: PMC3960242 DOI: 10.1371/journal.pone.0092300] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/20/2014] [Indexed: 12/25/2022] Open
Abstract
Background MicroRNAs are small non-coding nucleotide sequences that regulate gene expression. These structures are fundamental to several biological processes, including cell proliferation, development, differentiation and apoptosis. Identifying the expression profile of microRNAs in healthy human gastric antrum mucosa may help elucidate the miRNA regulatory mechanisms of the human stomach. Methodology/Principal Findings A small RNA library of stomach antrum tissue was sequenced using high-throughput SOLiD sequencing technology. The total read count for the gastric mucosa antrum region was greater than 618,000. After filtering and aligning using with MirBase, 148 mature miRNAs were identified in the gastric antrum tissue, totaling 3,181 quality reads; 63.5% (2,021) of the reads were concentrated in the eight most highly expressed miRNAs (hsa-mir-145, hsa-mir-29a, hsa-mir-29c, hsa-mir-21, hsa-mir-451a, hsa-mir-192, hsa-mir-191 and hsa-mir-148a). RT-PCR validated the expression profiles of seven of these highly expressed miRNAs and confirmed the sequencing results obtained using the SOLiD platform. Conclusions/Significance In comparison with other tissues, the antrum’s expression profile was unique with respect to the most highly expressed miRNAs, suggesting that this expression profile is specific to stomach antrum tissue. The current study provides a starting point for a more comprehensive understanding of the role of miRNAs in the regulation of the molecular processes of the human stomach.
Collapse
Affiliation(s)
| | - Monica Assumpção
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
- Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brasil
| | - Igor G. Hamoy
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
- Universidade Federal Rural da Amazônia, Capanema, PA, Brasil
| | - Sylvain Darnet
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - Rommel Burbano
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, PA, Brasil
| | - André Khayat
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, PA, Brasil
| | | | - Dayse O. Alencar
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - Aline Cruz
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
- Secretaria Estadual de Saúde do Estado do Pará, Belém, PA, Brasil
| | - Leandro Magalhães
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - Wilson Araújo Jr.
- Centro Regional de Hemoterapia, Faculdade Medicina Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Artur Silva
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - Sidney Santos
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, PA, Brasil
| | - Samia Demachki
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, PA, Brasil
- Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, PA, Brasil
| | - Paulo Assumpção
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
- Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brasil
| | - Ândrea Ribeiro-dos-Santos
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, PA, Brasil
- * E-mail:
| |
Collapse
|
43
|
Lv YH, Ma KJ, Zhang H, He M, Zhang P, Shen YW, Jiang N, Ma D, Chen L. A time course study demonstrating mRNA, microRNA, 18S rRNA, and U6 snRNA changes to estimate PMI in deceased rat's spleen. J Forensic Sci 2014; 59:1286-94. [PMID: 24611529 DOI: 10.1111/1556-4029.12447] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 05/26/2013] [Accepted: 06/13/2013] [Indexed: 11/28/2022]
Abstract
Determining the postmortem interval (PMI) is important in criminal, civil, and forensic cases. We examined the feasibility of using the transcript abundances of mRNAs, 18S rRNA, U6 snRNA, and microRNAs as a means to estimate the PMI. We removed spleen tissues from rats at different PMIs under 4°C or 25°C and examined gene transcript abundances in these samples by RT-qPCR. Using the algorithm geNorm, we found that microRNAs to be appropriate control markers because they were less affected by PMI and temperature. We also characterized relationships between observed PMI and the transcript levels of the above-mentioned RNAs. GAPDH1 and ACTB1 fluctuated slightly like cubic curves, while GAPDH2 and ACTB2 decreased rapidly. 18S rRNA transcript level exhibited a parabolic-like trend at 25°C and exponential growth at 4°C, while U6 transcript level exhibited exponential decay at 25°C and a parabolic-like trend at 4°C. Following validation, we conclude that GAPDH2, ACTB2, and 18S rRNA are suitable makers in the accurate determination of PMI.
Collapse
Affiliation(s)
- Ye-hui Lv
- Department of Forensic Medicine, Shanghai Medical School of Fudan University, 200032, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Báez A, Martín-Antonio B, Piruat JI, Barbado MV, Prats C, Álvarez-Laderas I, Carmona M, Pérez-Simón JA, Urbano-Ispizua Á. Gene and miRNA expression profiles of hematopoietic progenitor cells vary depending on their origin. Biol Blood Marrow Transplant 2014; 20:630-9. [PMID: 24462744 DOI: 10.1016/j.bbmt.2014.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 01/21/2014] [Indexed: 01/28/2023]
Abstract
Hematopoietic progenitor cells (HPCs) from granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood (G-PB), bone marrow (BM), or umbilical cord blood (CB) have differing biological properties and differing kinetics of engraftment post-transplantation, which might be explained, at least in part, by differing gene and miRNA expression patterns. To assess the differences in gene and miRNA expression, we analyzed whole genome expression profiles as well as the expression of 384 miRNAs in CD34(+) cells isolated from 18 healthy individuals (6 individuals per subtype of HPC source). We identified 43 genes and 36 miRNAs differentially expressed in the various CD34(+) cell sources. We observed that CD34(+) cells from CB and BM showed similar gene and miRNA expression profiles, whereas CD34(+) cells from G-PB had a very different expression pattern. Remarkably, 20 of the differentially expressed genes are targets of the differentially expressed miRNAs. Of note, the majority of genes differentially expressed in CD34(+) cells from G-PB are involved in cell cycle regulation, promoting the process of proliferation, survival, hematopoiesis, and cell signaling, and are targets of overexpressed and underexpressed miRNAs in CD34(+) cells from the same source. These data suggest significant differences in gene and miRNA expression among the various HPC sources used in transplantation. We hypothesize that the differentially expressed genes and miRNAs involved in cell cycle and proliferation might explain the differing kinetics of engraftment observed after transplantation of hematopoietic stem cells obtained from these different sources.
Collapse
Affiliation(s)
- Alicia Báez
- Department of Hematology, University Hospital Virgen del Rocio/Institute of Biomedicine of Seville (IBIS)/CSIC/University of Seville.
| | - Beatriz Martín-Antonio
- Department of Hematology/Hospital Clinic/IDIBAPS and Institute of Research Josep Carreras/University of Barcelona
| | - José I Piruat
- Department of Hematology, University Hospital Virgen del Rocio/Institute of Biomedicine of Seville (IBIS)/CSIC/University of Seville
| | - Maria Victoria Barbado
- Department of Hematology, University Hospital Virgen del Rocio/Institute of Biomedicine of Seville (IBIS)/CSIC/University of Seville
| | - Concepción Prats
- Department of Hematology, University Hospital Virgen del Rocio/Institute of Biomedicine of Seville (IBIS)/CSIC/University of Seville
| | - Isabel Álvarez-Laderas
- Department of Hematology, University Hospital Virgen del Rocio/Institute of Biomedicine of Seville (IBIS)/CSIC/University of Seville
| | - Magdalena Carmona
- Department of Hematology, University Hospital Virgen del Rocio/Institute of Biomedicine of Seville (IBIS)/CSIC/University of Seville
| | - José Antonio Pérez-Simón
- Department of Hematology, University Hospital Virgen del Rocio/Institute of Biomedicine of Seville (IBIS)/CSIC/University of Seville
| | - Álvaro Urbano-Ispizua
- Department of Hematology/Hospital Clinic/IDIBAPS and Institute of Research Josep Carreras/University of Barcelona
| |
Collapse
|
45
|
Vitaloni M, Pulecio J, Bilic J, Kuebler B, Laricchia-Robbio L, Izpisua Belmonte JC. MicroRNAs contribute to induced pluripotent stem cell somatic donor memory. J Biol Chem 2013; 289:2084-98. [PMID: 24311783 DOI: 10.1074/jbc.m113.538702] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) maintain during the first few culture passages a set of epigenetic marks and metabolites characteristic of their somatic cell of origin, a concept defined as epigenetic donor memory. These residual somatic features are lost over time after extensive culture passaging. Therefore, epigenetic donor memory may be responsible for the higher differentiation efficiency toward the tissue of origin observed in low passage iPSCs versus high passage iPSC or iPSCs derived from a different tissue source. Remarkably, there are no studies on the relevance of microRNA (miRNA) memory following reprogramming, despite the established role of these molecules in the context of pluripotency and differentiation. Using hematopoietic progenitors cells as a model, we demonstrated that miRNAs play a central role in somatic memory retention in iPSCs. Moreover, the comparison of the miRNA expression profiles among iPSCs from different sources allowed for the detection of a set of candidate miRNAs responsible for the higher differentiation efficiency rates toward blood progenitors observed in low passage iPSCs. Combining bioinformatic predictive algorithms with biological target validation, we identified miR-155 as a key player for the in vitro differentiation of iPSC toward hematopoietic progenitors. In summary, this study reveals that during the initial passages following reprogramming, iPSCs maintained the expression of a miRNA set exclusive to the original somatic population. Hence the use of these miRNAs might hold a direct application toward our understanding of the differentiation process of iPSCs toward hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Marianna Vitaloni
- From the Center for Regenerative Medicine in Barcelona, 08003 Barcelona, Spain and
| | | | | | | | | | | |
Collapse
|
46
|
Atarod S, Dickinson AM. MicroRNAs: The Missing Link in the Biology of Graft-Versus-Host Disease? Front Immunol 2013; 4:420. [PMID: 24348483 PMCID: PMC3845018 DOI: 10.3389/fimmu.2013.00420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/18/2013] [Indexed: 01/22/2023] Open
Abstract
Graft-versus-host disease (GVHD) is still the major complication of allogeneic hematopoietic stem cell transplantation. Despite extensive studies in understanding the pathophysiology of GVHD, its pathogenesis remains unclear. Recently, important functions of microRNAs have been demonstrated in various autoimmune diseases and cancers such as psoriasis and lymphoma. This review highlights the need to investigate the role of microRNAs in GVHD and hypothesizes that microRNAs may be one of the missing links in our understanding of GVHD, with the potential for novel therapeutics.
Collapse
Affiliation(s)
- Sadaf Atarod
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Anne Mary Dickinson
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| |
Collapse
|
47
|
Gailhouste L, Gomez-Santos L, Hagiwara K, Hatada I, Kitagawa N, Kawaharada K, Thirion M, Kosaka N, Takahashi RU, Shibata T, Miyajima A, Ochiya T. miR-148a plays a pivotal role in the liver by promoting the hepatospecific phenotype and suppressing the invasiveness of transformed cells. Hepatology 2013; 58:1153-65. [PMID: 23532995 DOI: 10.1002/hep.26422] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/18/2013] [Indexed: 12/13/2022]
Abstract
UNLABELLED MicroRNAs (miRNAs) are evolutionary conserved small RNAs that post-transcriptionally regulate the expression of target genes. To date, the role of miRNAs in liver development is not fully understood. By using an experimental model that allows the induced and controlled differentiation of mouse fetal hepatoblasts (MFHs) into mature hepatocytes, we identified miR-148a as a hepatospecific miRNA highly expressed in adult liver. The main finding of this study revealed that miR-148a was critical for hepatic differentiation through the direct targeting of DNA methyltransferase (DNMT) 1, a major enzyme responsible for epigenetic silencing, thereby allowing the promotion of the "adult liver" phenotype. It was also confirmed that the reduction of DNMT1 by RNA interference significantly promoted the expression of the major hepatic biomarkers. In addition to the essential role of miR-148a in hepatocyte maturation, we identified its beneficial effect through the repression of hepatocellular carcinoma (HCC) cell malignancy. miR-148a expression was frequently down-regulated in biopsies of HCC patients as well as in mouse and human HCC cell lines. Overexpressing miR-148a led to an enhancement of albumin production and a drastic inhibition of the invasive properties of HCC cells, whereas miR-148a silencing had the opposite consequences. Finally, we showed that miR-148a exerted its tumor-suppressive effect by regulating the c-Met oncogene, regardless of the DNMT1 expression level. CONCLUSION miR-148a is essential for the physiology of the liver because it promotes the hepatospecific phenotype and acts as a tumor suppressor. Most important, this report is the first to demonstrate a functional role for a specific miRNA in liver development through regulation of the DNMT1 enzyme.
Collapse
Affiliation(s)
- Luc Gailhouste
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yang Y, Ma W, Wu D, Huang Y, Li H, Zou J, Zhang Y, Feng M, Luo J. MiR-17 partly promotes hematopoietic cell expansion through augmenting HIF-1α in osteoblasts. PLoS One 2013; 8:e70232. [PMID: 23936170 PMCID: PMC3723828 DOI: 10.1371/journal.pone.0070232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/17/2013] [Indexed: 12/21/2022] Open
Abstract
Background Hematopoietic stem cell (HSC) regulation is highly dependent on interactions with the marrow microenvironment, of which osteogenic cells play a crucial role. While evidence is accumulating for an important role of intrinsic miR-17 in regulating HSCs and HPCs, whether miR-17 signaling pathways are also necessary in the cell-extrinsic control of hematopoiesis hereto remains poorly understood. Methodology/Principal Findings Using the immortalized clone with the characteristics of osteoblasts, FBMOB-hTERT, in vitro expansion, long-term culture initiating cell (LTC-IC) and non-obese diabetic/severe combined immunodeficient disease (NOD/SCID) mice repopulating cell (SRC) assay revealed that the ectopic expression of miR-17 partly promoted the ability of FBMOB-hTERT to support human cord blood (CB) CD34+ cell expansion and maintain their multipotency. It also seemed that osteoblastic miR-17 was prone to cause a specific expansion of the erythroid lineage. Conversely, deficient expression of miR-17 partly inhibited the hematopoietic supporting ability of FBMOB-hTERT. We further identified that HIF-1α is responsible for, at least in part, the promoted hematopoietic supporting ability of FBMOB-hTERT caused by miR-17. HIF-1α expression is markedly enhanced in miR-17 overexpressed FBMOB-hTERT upon interaction with CB CD34+ cells compared to other niche associated factors. More interestingly, the specific erythroid lineage expansion of CB CD34+ cells caused by osteoblastic miR-17 was abrogated by HIF-1α knock down. Conclusion/Significance Our data demonstrated that CB CD34+ cell expansion can be partly promoted by osteoblastic miR-17, and in particular, ectopic miR-17 can cause a specific expansion of the erythroid lineage through augmenting HIF-1α in osteoblasts.
Collapse
Affiliation(s)
- Yuxia Yang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chen Y, Song YX, Wang ZN. The microRNA-148/152 family: multi-faceted players. Mol Cancer 2013; 12:43. [PMID: 23683438 PMCID: PMC3671164 DOI: 10.1186/1476-4598-12-43] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/14/2013] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs(miRNA) are noncoding RNAs of about 19–23 nucleotides that are crucial for many biological processes. Members of the microRNA-148/152(miR-148/152) family, which include microRNA-148a(miR-148a), microRNA-148b(miR-148b), and microRNA-152(miR-152), are expressed differently in tumor and nontumor tissues and are involved in the genesis and development of disease. Furthermore, members of the miR-148/152 family are important in the growth and development of normal tissues. Members of the miR-148/152 family regulate target genes and are regulated by methylation of CPG islands. In this review, we report recent studies on the expression of members of the miR-148/152 family, methylation of CPG islands, and their target genes in different diseases, as well as in normal tissues.
Collapse
Affiliation(s)
- Yue Chen
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China
| | | | | |
Collapse
|
50
|
Calloni R, Cordero EAA, Henriques JAP, Bonatto D. Reviewing and updating the major molecular markers for stem cells. Stem Cells Dev 2013; 22:1455-76. [PMID: 23336433 PMCID: PMC3629778 DOI: 10.1089/scd.2012.0637] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Stem cells (SC) are able to self-renew and to differentiate into many types of committed cells, making SCs interesting for cellular therapy. However, the pool of SCs in vivo and in vitro consists of a mix of cells at several stages of differentiation, making it difficult to obtain a homogeneous population of SCs for research. Therefore, it is important to isolate and characterize unambiguous molecular markers that can be applied to SCs. Here, we review classical and new candidate molecular markers that have been established to show a molecular profile for human embryonic stem cells (hESCs), mesenchymal stem cells (MSCs), and hematopoietic stem cells (HSCs). The commonly cited markers for embryonic ESCs are Nanog, Oct-4, Sox-2, Rex-1, Dnmt3b, Lin-28, Tdgf1, FoxD3, Tert, Utf-1, Gal, Cx43, Gdf3, Gtcm1, Terf1, Terf2, Lefty A, and Lefty B. MSCs are primarily identified by the expression of CD13, CD29, CD44, CD49e, CD54, CD71, CD73, CD90, CD105, CD106, CD166, and HLA-ABC and lack CD14, CD31, CD34, CD45, CD62E, CD62L, CD62P, and HLA-DR expression. HSCs are mainly isolated based on the expression of CD34, but the combination of this marker with CD133 and CD90, together with a lack of CD38 and other lineage markers, provides the most homogeneous pool of SCs. Here, we present new and alternative markers for SCs, along with microRNA profiles, for these cells.
Collapse
Affiliation(s)
- Raquel Calloni
- Departamento de Biologia Molecular e Biotecnologia, Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | | | | |
Collapse
|