1
|
Sharma S, Hassan MY, Barbhuiya NH, Mansukhbhai RH, Shukla C, Singh D, Datta B. A Dataset Curated for the Assessment of G4s in the LncRNAs Dysregulated in Various Human Cancers. Sci Data 2025; 12:849. [PMID: 40410205 PMCID: PMC12102360 DOI: 10.1038/s41597-025-05176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 05/09/2025] [Indexed: 05/25/2025] Open
Abstract
Dysregulated expression of long non-coding RNAs (lncRNAs) in cancer contributes to various hallmarks of the disease, presenting novel opportunities for diagnosis and therapy. G-quadruplexes (G4s) within lncRNAs have gained attention recently; however, their systematic evaluation in cancer biology is yet to be performed. In this work, we have formulated a comprehensive dataset integrating experimentally-validated associations between lncRNAs and cancer, and detailed predictions of their G4-forming potential. The dataset categorizes predicted G4-motifs into anticipated G4 types (2 G, 3 G, and 4 G) and provides information about the subcellular localization of the corresponding lncRNAs. It describes lncRNA-RNA and lncRNA-protein interactions, together with the RNA G4-binding capabilities of these proteins. The dataset facilitates the investigation of G4-mediated lncRNA functions in diverse human cancers and provides distinctive leads about G4-mediated lncRNA-protein interactions.
Collapse
Affiliation(s)
- Shubham Sharma
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
| | - Muhammad Yusuf Hassan
- Department of Electrical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
- Department of Computer Science and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
| | - Noman Hanif Barbhuiya
- Department of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
| | - Ramolia Harshit Mansukhbhai
- Department of Electrical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
- Department of Computer Science and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
| | - Chinmayee Shukla
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
| | - Deepshikha Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
| | - Bhaskar Datta
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India.
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India.
| |
Collapse
|
2
|
Huang Y, Zhang Z, Zou Z, Zhang L, Chen Y, Wan J, Zhu Z, Yu S, Zuo H, Lin YCD, Huang HY, Huang HD. RegRNA 3.0: expanding regulatory RNA analysis with new features for motif, interaction, and annotation. Nucleic Acids Res 2025:gkaf405. [PMID: 40396374 DOI: 10.1093/nar/gkaf405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/17/2025] [Accepted: 05/19/2025] [Indexed: 05/22/2025] Open
Abstract
Functional RNA molecules are crucial for biological processes from gene regulation to protein synthesis, and analyzing functional motifs and elements is essential for understanding RNA regulation. Building on RegRNA 1.0 and 2.0, we present RegRNA 3.0, a sophisticated meta-workflow that integrates 26 computational tools and 28 databases for annotation, enabling one-step and customizable RNA motif predictions. RegRNA streamlines multi-step analysis and enhances result interpretation with interactive visualizations and comprehensive reporting tools. When provided with an RNA sequence, RegRNA 3.0 generates predictions for RNA functional motifs, RNA interaction motifs, and comprehensive RNA annotations. Specifically, RNA functional motifs include core promoter elements, RNA decay, G-quadruplex, and 14 previous types. RNA interaction motifs include newly added RNA-ligand interactions and RNA-binding protein predictions, along with three previous types. RNA annotation includes RNA family classification, blood exosomes RNA, subcellular localizations, A-to-I editing events, modifications, and 3D structures, along with four previously supported features. RegRNA 3.0 accelerates gene regulation and RNA biology discoveries by offering a user-friendly platform for identifying and analyzing RNA motifs and interactions. The web interface has been improved for intuitive visualizations of predicted motifs and structures, with flexible download options in multiple formats. It is available at http://awi.cuhk.edu.cn/∼RegRNA/.
Collapse
Affiliation(s)
- Yixian Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Zhiyong Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Zhengkai Zou
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Lingquan Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Yigang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Jingting Wan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Zihao Zhu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Sicong Yu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Huali Zuo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| |
Collapse
|
3
|
Snyder RJ, Shankar U, Delker D, Soerianto W, Burdick JT, Cheung VG, Watts JA. Guanine quadruplexes mediate mitochondrial RNA polymerase pausing. BMC Biol 2025; 23:129. [PMID: 40361112 PMCID: PMC12076976 DOI: 10.1186/s12915-025-02229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND The information content within nucleic acids extends beyond the primary sequence to include secondary structures with functional roles in transcription regulation. Guanine-rich sequences form structures called guanine quadruplexes that result from non-canonical base pairing between guanine residues. These stable guanine quadruplex structures are prevalent in gene promoters in nuclear DNA and are known to be associated with promoter proximal pausing of some genes. However, the transcriptional impact of guanine quadruplexes that form in nascent RNA is poorly understood. RESULTS We examined mitochondrial RNA polymerase (POLRMT) pausing patterns in primary human skin fibroblast cells using the precision nuclear run-on assay and uncovered over 400 pause sites on the mitochondrial genome. We identified that these pauses frequently occur following guanine-rich sequences where quadruplexes form. Using an in vitro primer extension assay, we show that quadruplexes formed in nascent RNA act as mediators of POLRMT pausing, and in cell-based assays their stabilization disrupts POLRMT transcription. Cells exposed to a guanine-quadruplex stabilizing agent (RHPS4) had diminished mitochondrial gene expression and significantly lowered cellular respiration within 24 h. The resulting ATP stress was sufficient to reduce active transport in renal epithelia. CONCLUSIONS Our findings connect RNA guanine quadruplex-mediated pausing with the regulation of POLRMT transcription and mitochondrial function. We demonstrate that tuning of quadruplex dynamics in nascent RNA, rather than template DNA upstream of the polymerase, is sufficient to regulate mitochondrial gene expression.
Collapse
Affiliation(s)
- Ryan J Snyder
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Uma Shankar
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Don Delker
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Winny Soerianto
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Joshua T Burdick
- Department of Pediatrics, Division of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Vivian G Cheung
- Department of Pediatrics, Division of Neurology, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Jason A Watts
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
- Department of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
4
|
Cucchiarini A, Dobrovolná M, Brázda V, Mergny JL. Analysis of quadruplex propensity of aptamer sequences. Nucleic Acids Res 2025; 53:gkaf424. [PMID: 40377215 DOI: 10.1093/nar/gkaf424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 04/11/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025] Open
Abstract
Aptamers are short DNA or RNA sequences that can fold into unique three-dimensional structures, enabling them to bind specifically to target molecules with high affinity, similar to antibodies. A distinctive feature of many aptamers is their ability to adopt a G-quadruplex (G4) fold, a four-stranded structure formed by guanine-rich sequences. While G4 formation has been proposed or demonstrated for some aptamers, we aimed to investigate how frequently quadruplex-prone motifs emerge from the SELEX process. To achieve this, we examined quadruplex candidate sequences from the UTexas Aptamer Database, which contains over 1400 aptamer sequences extracted from 400 publications spanning several decades. We analyzed the G4 and i-motif propensity of these sequences. While no likely i-motif forming candidates were found, nearly 1/4 of DNA aptamers and 1/6 of RNA aptamers were predicted to form G4 structures. Interestingly, many motifs capable of forming G4 structures were not previously reported or suspected. Out of 311 sequences containing a potential stable G4 motif, only 53 of them (17%) reported the word "quadruplex" in the corresponding article. We experimentally tested G4 formation for 30 aptamer sequences and were able to confirm G4 formation for all the sequences with a G4Hunter score of 1.31 or more. These observations suggest the need to reevaluate G4 propensity among aptamer sequences.
Collapse
Affiliation(s)
- Anne Cucchiarini
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Michaela Dobrovolná
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| | - Václav Brázda
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
| |
Collapse
|
5
|
Bose D, Panda S, Banerjee N, Chatterjee S. Dynamic G-Quadruplexes in the Rous Sarcoma Virus Genome: Scaffolds for Protein Interaction and Potential Anti-Viral Targets. Chembiochem 2025; 26:e202400941. [PMID: 39840707 DOI: 10.1002/cbic.202400941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 01/23/2025]
Abstract
Summarising the study, RSV is an important pathogen that causes oncogenic transformation in its host via the action of a protein kinase that it expresses. The RSV genome is reverse-transcribed into its complementary DNA, which then integrates into the host genome. This DNA thereafter serves as a template for transcription to manufacture viral proteins. The viral life cycle can, therefore, be inhibited if the functional elements of this DNA are altered. In this aspect, G4s may play an important role due to their involvement in hijacking the host machinery. Interestingly, the RSV-DNA contains multiple probable G4 forming elements, among which the sequences with the highest G4 forming propensity are located within the GAG and POL genes. Additionally, a sequence within the SRC oncogene also has G4 forming potential. In this study, we verified the G4 formation in these sequences via various biophysical assays. Further, the structural topology of these G4s has also been studied using computational and biophysical methods. We have established that GG4 forms a parallel G4 structure while PG4 and SG4 form highly dynamic G4s, switching between various structural forms. Such molecular switching behaviour may also aid in the functional properties of these G4s in vivo. However, further studies are required to elucidate the functional properties of these elements. We have also analysed the binding of these G4s to specific small-molecule ligands and the structural changes induced by the binding of Braco-19 on the G4s. Finally, we have observed that the G4 forming sequences in the RSV-DNA are recognised and bound by human nucleolin, which is highly similar in structure to the chicken nucleolin. This suggests that the G4s in the RSV-DNA may be implicated in various biological functions. These studies conclude that G4s are formed in the RSV-DNA at multiple locations, and these G4s show molecular switching properties under physiological conditions. Further, these G4s are also bound by small-molecule ligands and proteins, which induce structural changes. Thus, these G4s may be targetable sites for the control of RSV infection.
Collapse
Affiliation(s)
- Debopriya Bose
- Department of Biological Sciences, Bose Institute, Unified Academic Campus EN 80, Sector V, Bidhan Nagar, Kolkata, 700091, WB, India
| | - Suman Panda
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Nilanjan Banerjee
- Non-coding genome group, CEITEC, Kamenice 5, 62500, Brno, Czech Republic
| | - Subhrangsu Chatterjee
- Department of Biological Sciences, Bose Institute, Unified Academic Campus EN 80, Sector V, Bidhan Nagar, Kolkata, 700091, WB, India
| |
Collapse
|
6
|
D’Alfonso A, Egidi A, Proietti L, Camilloni G. The DNA Topoisomerase 1 Contributes to Stress Response in Saccharomyces cerevisiae, Regardless Its Catalytic Activity. BIOLOGY 2025; 14:499. [PMID: 40427688 PMCID: PMC12108810 DOI: 10.3390/biology14050499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/14/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025]
Abstract
In this study, we examined the activation of the ATG8, HSP12, KGD1, and POT1 genes in response to decreased glucose levels in the culture medium. Our results show that in top1Δ strains, gene activation is further enhanced compared to WT strains under low glucose conditions, indicating that Top1p represses these genes. This repression occurs independently of its catalytic function. We investigated Rpd3p as an interacting factor of Top1p and found that in rpd3Δ mutants, gene expression under low glucose conditions is even higher than in top1Δ strains, suggesting that Rpd3p also acts as a negative regulator. ChIP analysis revealed that while Top1p levels in regulatory regions remain constant, Rpd3 recruitment increases on promoters after glucose reduction in WT strains but significantly decreases in top1Δ strains. Overall, our findings suggest that Rpd3p is recruited by Top1p to regulate gene expression at controlled physiological levels, highlighting the role of Top1p in transcriptional regulation, controlling helical stress, and interacting with key regulatory factors in response to environmental changes.
Collapse
Affiliation(s)
| | | | | | - Giorgio Camilloni
- Dipartimento di Biologia e Biotecnologie, Università degli studi di Roma, Sapienza, 00185 Rome, Italy; (A.D.); (A.E.); (L.P.)
| |
Collapse
|
7
|
Stolc V, Preto O, Karhanek M, Freund F, Griko Y, Loftus DJ, Ohayon MM. RNA-DNA Differences: Mechanisms, Oxidative Stress, Transcriptional Fidelity, and Health Implications. Antioxidants (Basel) 2025; 14:544. [PMID: 40427426 PMCID: PMC12108522 DOI: 10.3390/antiox14050544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/29/2025] [Accepted: 04/05/2025] [Indexed: 05/29/2025] Open
Abstract
RNA-DNA differences (RDDs) challenge the traditional view of RNA as a faithful copy of DNA, arising through RNA editing, transcriptional errors, and oxidative damage. Reactive oxygen species (ROS) play a central role, inducing lesions like 8-oxo-guanine that compromise transcription and translation, leading to dysfunctional proteins. This review explores the biochemical basis of RDDs, their exacerbation under oxidative stress, and their dual roles in cellular adaptation and disease. RDDs contribute to genomic instability and are implicated in cancers, neurodegenerative disorders, and autoimmune diseases, while also driving phenotypic diversity. Drawing on terrestrial and spaceflight studies, we highlight the intersection of oxidative stress, RDD formation, and cellular dysfunction, proposing innovative mitigation approaches. Advancements in RDD detection and quantification, along with ROS management therapies, offer new avenues to restore cellular homeostasis and promote resilience. By positioning RDDs as a hallmark of genomic entropy, this review underscores the limits of biological adaptation. Furthermore, the prevalence of guanine-rich codons in antioxidant genes increases their susceptibility to ROS-induced oxidative lesions, linking redox stress, genomic instability, and constrained adaptation. These insights have profound implications for understanding aging, disease progression, and adaptive mechanisms in both terrestrial and space environments.
Collapse
Affiliation(s)
- Viktor Stolc
- NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Ondrej Preto
- Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Miloslav Karhanek
- Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | | | - Yuri Griko
- NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | | |
Collapse
|
8
|
Bartas M, Petrovič M, Brázda V, Trenz O, Ďurčanský A, Šťastný J. CpX Hunter web tool allows high-throughput identification of CpG, CpA, CpT, and CpC islands: A case study in Drosophila genome. J Biol Chem 2025; 301:108537. [PMID: 40286849 DOI: 10.1016/j.jbc.2025.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/06/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
With continuous advances in DNA sequencing methods, accessibility to high-quality genomic information for all living organisms is ever-increasing. However, to interpret this information effectively and formulate hypotheses, users often require higher level programming skills. Therefore, the generation of web-based tools is becoming increasingly popular. CpG island regions in genomes are often found in gene promoters and are prone to DNA methylation, with their methylation status determining if a gene is expressed. Notably, understanding the biological impact of CpX modifications on genomic regulation is becoming increasingly important as these modifications have been associated with diseases such as cancer and neurodegeneration. However, there is currently no easy-to-use, scalable tool to detect and quantify CpX islands in full genomes. We have developed a Java-based web server for CpX island analyses that benefits from the DNA Analyzer Web server environment and overcomes several limitations. For a pilot demonstration study, we selected a well-described model organism Drosophila melanogaster. Subsequent analysis of the obtained CpX islands revealed several interesting and previously undescribed phenomena. One of them is the fact, that nearly half of long CpG islands were located on chromosome X, and that long CpA and CpT islands were significantly overrepresented at the subcentromeric regions of autosomes (chr2 and chr3) and also on chromosome Y. Wide genome overlays of predicted CpX islands revealed their co-occurrence with various (epi)genomics features comprising cytosine methylations, accessible chromatin, transposable elements, or binding of transcription factors and other proteins. CpX Hunter is freely available as a web tool at: https://bioinformatics.ibp.cz/#/analyse/cpg.
Collapse
Affiliation(s)
- Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Michal Petrovič
- Department of Informatics, Mendel University in Brno, Brno, Czech Republic
| | - Václav Brázda
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Oldřich Trenz
- Department of Informatics, Mendel University in Brno, Brno, Czech Republic
| | - Aleš Ďurčanský
- Department of Informatics, Mendel University in Brno, Brno, Czech Republic
| | - Jiří Šťastný
- Department of Informatics, Mendel University in Brno, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic.
| |
Collapse
|
9
|
Kratochvilová L, Dinová A, Valková N, Dobrovolná M, Sánchez-Murcia PA, Brázda V. Chromatin Immunoprecipitation Reveals p53 Binding to G-Quadruplex DNA Sequences in Myeloid Leukemia Cell Lines. ACS BIO & MED CHEM AU 2025; 5:283-298. [PMID: 40255281 PMCID: PMC12006861 DOI: 10.1021/acsbiomedchemau.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 04/22/2025]
Abstract
Clarifying functions of the p53 protein is a crucial aspect of cancer research. We analyzed the binding sites of p53 wild-type (WT) protein and its oncologically significant mutants and evaluated their transactivation properties using a functional yeast assay. Unlike the binding sites as determined in myeloid leukemia cell lines by chromatin immunoprecipitation of p53-R175H, p53-Y220C, p53-M237I, p53-R248Q, and p53-R273H mutants, the target sites of p53-WT and p53-R282W were significantly associated with putative G-quadruplex sequences (PQSs). Guanine-quadruplex (G-quadruplex or G4) formation in these sequences was evaluated by using a set of biophysical methods. G4s can modulate gene expression induced by p53. At low p53 expression level, PQS upstream of the p53-response element (RE) leads to greater gene expression induced by p53-R282W compared to that for the RE without PQS. Meanwhile, p53-WT protein expression is decreased by the PQS presence. At a high p53 expression level, the presence of PQS leads to a decreased expression of the reporter regardless of the distance and localization of the G4 from the RE.
Collapse
Affiliation(s)
- Libuše Kratochvilová
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic
- Department
of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, Brno 612 00, Czech Republic
| | - Alessandra Dinová
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic
| | - Natália Valková
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic
| | - Michaela Dobrovolná
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic
- Department
of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, Brno 612 00, Czech Republic
| | - Pedro A. Sánchez-Murcia
- Laboratory
of Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto-Loewi Research Center, Neue Stiftingtalstr. 6/III, Graz A-8010, Austria
- BioTechMed-Graz, Mozartgasse 12/II, Graz A-8010, Austria
| | - Václav Brázda
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic
- Department
of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, Brno 612 00, Czech Republic
| |
Collapse
|
10
|
Smeds L, Kamali K, Kejnovská I, Kejnovský E, Chiaromonte F, Makova KD. Non-canonical DNA in human and other ape telomere-to-telomere genomes. Nucleic Acids Res 2025; 53:gkaf298. [PMID: 40226919 PMCID: PMC11995269 DOI: 10.1093/nar/gkaf298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/28/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025] Open
Abstract
Non-canonical (non-B) DNA structures-e.g. bent DNA, hairpins, G-quadruplexes (G4s), Z-DNA, etc.-which form at certain sequence motifs (e.g. A-phased repeats, inverted repeats, etc.), have emerged as important regulators of cellular processes and drivers of genome evolution. Yet, they have been understudied due to their repetitive nature and potentially inaccurate sequences generated with short-read technologies. Here we comprehensively characterize such motifs in the long-read telomere-to-telomere (T2T) genomes of human, bonobo, chimpanzee, gorilla, Bornean orangutan, Sumatran orangutan, and siamang. Non-B DNA motifs are enriched at the genomic regions added to T2T assemblies and occupy 9%-15%, 9%-11%, and 12%-38% of autosomes and chromosomes X and Y, respectively. G4s and Z-DNA are enriched at promoters and enhancers, as well as at origins of replication. Repetitive sequences harbor more non-B DNA motifs than non-repetitive sequences, especially in the short arms of acrocentric chromosomes. Most centromeres and/or their flanking regions are enriched in at least one non-B DNA motif type, consistent with a potential role of non-B structures in determining centromeres. Our results highlight the uneven distribution of predicted non-B DNA structures across ape genomes and suggest their novel functions in previously inaccessible genomic regions.
Collapse
Affiliation(s)
- Linnéa Smeds
- Department of Biology, Penn State University, University Park, PA 16802, United States
| | - Kaivan Kamali
- Department of Biology, Penn State University, University Park, PA 16802, United States
| | - Iva Kejnovská
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Eduard Kejnovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Francesca Chiaromonte
- Department of Statistics, Penn State University, University Park, PA 16802, United States
- Center for Medical Genomics, Penn State University, University Park, PA 16802, United States
- L’EMbeDS, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Kateryna D Makova
- Department of Biology, Penn State University, University Park, PA 16802, United States
- Center for Medical Genomics, Penn State University, University Park, PA 16802, United States
| |
Collapse
|
11
|
Singh A, Majee P, Mishra L, Prajapat SK, Sharma TK, Kalia M, Kumar A. Role of RNA G-Quadruplexes in the Japanese Encephalitis Virus Genome and Their Recognition as Prospective Antiviral Targets. ACS Infect Dis 2025; 11:558-572. [PMID: 39436355 DOI: 10.1021/acsinfecdis.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
G-quadruplexes (GQs) have been primarily studied in the context of cancer and neurodegenerative pathologies. However, recent research has shifted focus to their existence and functional roles in viral genomes, revealing GQ-regulated key pathways in various human pathogenic viruses. While GQ structures have been reported in the genomes of emerging and re-emerging viruses, RNA viruses have been understudied compared to DNA viruses, including notable examples such as human immunodeficiency virus-1, hepatitis C virus, Ebola virus, Nipah virus, Zika virus, and SARS-CoV-2. The flavivirus family, comprising the Japanese encephalitis virus (JEV), poses a significant global threat due to recurring outbreaks yet lacks approved antivirals. In this study, we identified and characterized eight putative G-quadruplex-forming motifs within essential genes involved in genome replication, assembly, and internalization in the host cell, conserved across different JEV isolates. The formation and stability of these motifs were validated through a multitude of biophysical and cell-based assays. The interaction and binding affinity of these motifs with the known GQ-binding ligand BRACO-19 were supported by biophysical assays, confirming the capability of these motifs to form GQ structures. Notably, BRACO-19 also exerted antiviral properties through reduction of viral replication and infectious virus titers as well as inhibition of viral protein expression, as evaluated by the cell-based assays. This comprehensive molecular characterization of G-quadruplex structures within the JEV genome highlights their potential as promising antiviral targets for intervention strategies against JEV infection through GQ-specific ligands.
Collapse
Affiliation(s)
- Aakriti Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol 453552, India
| | - Prativa Majee
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol 453552, India
| | - Laxmi Mishra
- Virology Research Group, Regional Centre for Biotechnology, Faridabad 121001, India
| | | | - Tarun Kumar Sharma
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar 382355, India
| | - Manjula Kalia
- Virology Research Group, Regional Centre for Biotechnology, Faridabad 121001, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol 453552, India
| |
Collapse
|
12
|
Smeds L, Kamali K, Kejnovská I, Kejnovský E, Chiaromonte F, Makova KD. Non-canonical DNA in human and other ape telomere-to-telomere genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.02.610891. [PMID: 39713403 PMCID: PMC11661062 DOI: 10.1101/2024.09.02.610891] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Non-canonical (non-B) DNA structures-e.g., bent DNA, hairpins, G-quadruplexes (G4s), Z-DNA, etc.-which form at certain sequence motifs (e.g., A-phased repeats, inverted repeats, etc.), have emerged as important regulators of cellular processes and drivers of genome evolution. Yet, they have been understudied due to their repetitive nature and potentially inaccurate sequences generated with short-read technologies. Here we comprehensively characterize such motifs in the long-read telomere-to-telomere (T2T) genomes of human, bonobo, chimpanzee, gorilla, Bornean orangutan, Sumatran orangutan, and siamang. Non-B DNA motifs are enriched at the genomic regions added to T2T assemblies, and occupy 9-15%, 9-11%, and 12-38% of autosomes, and chromosomes X and Y, respectively. G4s and Z-DNA are enriched at promoters and enhancers, as well as at origins of replication. Repetitive sequences harbor more non-B DNA motifs than non-repetitive sequences, especially in the short arms of acrocentric chromosomes. Most centromeres and/or their flanking regions are enriched in at least one non-B DNA motif type, consistent with a potential role of non-B structures in determining centromeres. Our results highlight the uneven distribution of predicted non-B DNA structures across ape genomes and suggest their novel functions in previously inaccessible genomic regions.
Collapse
Affiliation(s)
- Linnéa Smeds
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Kaivan Kamali
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Iva Kejnovská
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Eduard Kejnovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Francesca Chiaromonte
- Department of Statistics, Penn State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park, PA 16802 USA
- L'EMbeDS, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Kateryna D Makova
- Department of Biology, Penn State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park, PA 16802 USA
| |
Collapse
|
13
|
Song D, Luo J, Duan X, Jin F, Lu YJ. Identification of G-quadruplex nucleic acid structures by high-throughput sequencing: A review. Int J Biol Macromol 2025; 297:139896. [PMID: 39818384 DOI: 10.1016/j.ijbiomac.2025.139896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acid secondary structures formed by guanine-rich DNA or RNA sequences. These structures play pivotal roles in cellular processes, including DNA replication, transcription, RNA splicing, and protein translation. High-throughput sequencing has significantly advanced the study of G4s by enabling genome-wide mapping and detailed characterization. This review provides a comprehensive overview of current methods for G4 identification using high-throughput sequencing, focusing on key techniques such as G4-seq, G4-ChIP-seq, G4-CUT&Tag, LiveG4ID-seq, G4assess, HepG4-seq, rG4-seq, RT-stop profiling with DMS-m7G footprinting, G4RP-seq, Keth-seq, and SHALIPE-seq. We discuss the principles, advantages, limitations, and applications of these methods, highlighting their contribution to our understanding of G4 biology. The review also emphasizes the need for improved tools to explore the dynamic behavior of G4s, particularly in living organisms.
Collapse
Affiliation(s)
- Delong Song
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Junren Luo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuan Duan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Fujun Jin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
14
|
Alves A, Miranda A, Zanin I, Richter SN, Mergny JL, Cruz C. I-motif formation in the promoter region of the B-MYB proto-oncogene. Int J Biol Macromol 2025; 296:139582. [PMID: 39798757 DOI: 10.1016/j.ijbiomac.2025.139582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Understanding the mechanisms of carcinogenesis is essential to combat cancer. The search for alternative targets for anticancer therapy has gained interest, particularly when focused on upstream pathways. This strategy is particularly relevant when the encoded target proteins are known - or believed - to be "undruggable", as has been reported for the B-MYB oncogene. This gene, which regulates survival and cell cycle regulation, is overexpressed in cancer and correlates with an unfavorable prognosis. In this study, we focused on the identification of the i-motif (iM) structures in the promoter region of B-MYB as a possible anticancer target, with a complete biophysical characterization and in cell formation assessment using iM-CUT&Tag. Additionally, the interaction of the iM structures with a library of small molecules was investigated.
Collapse
Affiliation(s)
- André Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - André Miranda
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; RISE-Health, Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Irene Zanin
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; Microbiology and Virology Unit, Padua University Hospital, 35121 Padua, Italy
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; RISE-Health, Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal; Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal.
| |
Collapse
|
15
|
Florez-Vargas O, Ho M, Hogshead MH, Papenberg BW, Lee CH, Forsythe K, Jones K, Luo W, Teshome K, Blauwendraat C, Billingsley KJ, Kolmogorov M, Meredith M, Paten B, Chari R, Zhang C, Schneekloth JS, Machiela MJ, Chanock SJ, Gadalla SM, Savage SA, Mbulaiteye SM, Prokunina-Olsson L. Genetic regulation of TERT splicing affects cancer risk by altering cellular longevity and replicative potential. Nat Commun 2025; 16:1676. [PMID: 39956830 PMCID: PMC11830802 DOI: 10.1038/s41467-025-56947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 02/06/2025] [Indexed: 02/18/2025] Open
Abstract
The chromosome 5p15.33 region, which encodes telomerase reverse transcriptase (TERT), harbors multiple germline variants identified by genome-wide association studies (GWAS) as risk for some cancers but protective for others. Here, we characterize a variable number tandem repeat within TERT intron 6, VNTR6-1 (38-bp repeat unit), and detect a strong link between VNTR6-1 alleles (Short: 24-27 repeats, Long: 40.5-66.5 repeats) and GWAS signals rs2242652 and rs10069690 within TERT intron 4. Bioinformatics analyses reveal that rs10069690-T allele increases intron 4 retention while VNTR6-1-Long allele expands a polymorphic G-quadruplex (G4, 35-113 copies) within intron 6, with both variants contributing to variable TERT expression through alternative splicing and nonsense-mediated decay. In two cell lines, CRISPR/Cas9 deletion of VNTR6-1 increases the ratio of TERT-full-length (FL) to the alternative TERT-β isoform, promoting apoptosis and reducing cell proliferation. In contrast, treatment with G4-stabilizing ligands shifts splicing from TERT-FL to TERT-β isoform, implicating VNTR6-1 as a splicing switch. We associate the functional variants VNTR6-1, rs10069690, and their haplotypes with multi-cancer risk and age-related telomere shortening. By regulating TERT splicing, these variants may contribute to fine-tuning cellular longevity and replicative potential in the context of stress due to tissue-specific endogenous and exogenous exposures, thereby influencing the cancer risk conferred by this locus.
Collapse
Affiliation(s)
- Oscar Florez-Vargas
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Michelle Ho
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Maxwell H Hogshead
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Brenen W Papenberg
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Chia-Han Lee
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Kaitlin Forsythe
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wen Luo
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kedest Teshome
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institute of Aging and National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Kimberly J Billingsley
- Center for Alzheimer's and Related Dementias, National Institute of Aging and National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Mikhail Kolmogorov
- Cancer Data Science Laboratory, CCR, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Chi Zhang
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, CCR, National Cancer Institute, Frederick, MD, USA
| | - Mitchell J Machiela
- Integrative Tumor Epidemiology Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Stephen J Chanock
- Laboratory of Genetic Susceptibility, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Sharon A Savage
- Clinical Genetics Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Sam M Mbulaiteye
- Infections and Immunoepidemiology Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | | |
Collapse
|
16
|
Yoshihara R, Shimakura Y, Kitamura S, Satoh K, Sato M, Aono T, Akiyama Y, Hatakeyama S, Tanaka S. A mutation in DNA polymerase γ harbors a shortened lifespan and high sensitivity to mutagens in the filamentous fungus Neurospora crassa. Genetics 2025; 229:iyae201. [PMID: 39611774 DOI: 10.1093/genetics/iyae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024] Open
Abstract
Hyphal elongation is the vegetative growth of filamentous fungi, and many species continuously elongate their hyphal tips over long periods. The details of the mechanisms for maintaining continuous growth are not yet clear. A novel short lifespan mutant of N. crassa that ceases hyphal elongation early was screened and analyzed to better understand the mechanisms for maintaining hyphal elongation in filamentous fungi. The mutant strain also exhibited high sensitivity to mutagens such as hydroxyurea and ultraviolet radiation. Based on these observations, we named the novel mutant "mutagen sensitive and short lifespan 1 (ms1)." The mutation responsible for the short lifespan and mutagen sensitivity in the ms1 strain was identified in DNA polymerase γ (mip-1:NCU00276). This mutation changed the amino acid at position 814 in the polymerase domain from leucine to arginine (MIP-1 L814R). A dosage analysis by next-generation sequencing reads suggested that mitochondrial DNA (mtDNA) sequences are decreased nonuniformly throughout the genome of the ms1 strain. This observation was confirmed by quantitative PCR for 3 representative loci and restriction fragment length polymorphisms in purified mtDNA. Direct repeat-mediated deletions, which had been reported previously, were not detected in the mitochondrial genome by our whole-genome sequencing analysis. These results imply the presence of novel mechanisms to induce the nonuniform decrease in the mitochondrial genome by DNA polymerase γ mutation. Some potential reasons for the nonuniform distribution of the mitochondrial genome are discussed in relation to the molecular functions of DNA polymerase γ.
Collapse
Affiliation(s)
- Ryouhei Yoshihara
- Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan
| | - Yuzuki Shimakura
- Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan
| | - Satoshi Kitamura
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki 370-1292, Japan
| | - Katsuya Satoh
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki 370-1292, Japan
| | - Manami Sato
- Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan
| | - Taketo Aono
- Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan
| | - Yu Akiyama
- Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan
| | - Shin Hatakeyama
- Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan
| | - Shuuitsu Tanaka
- Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan
| |
Collapse
|
17
|
Sultan M, Razzaq M, Lee J, Das S, Kannappan S, Subramani VK, Yoo W, Kim T, Lee HR, Chaurasia AK, Kim KK. Targeting the G-quadruplex as a novel strategy for developing antibiotics against hypervirulent drug-resistant Staphylococcus aureus. J Biomed Sci 2025; 32:15. [PMID: 39905515 PMCID: PMC11796246 DOI: 10.1186/s12929-024-01109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/09/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND The rapid emergence of multiple drug-resistant (MDR) bacterial pathogens and the lack of a novel antibiotic pipeline pose a serious threat to global healthcare. The limited number of established targets further restricts the identification of novel antibiotics to treat life-threatening MDR infections caused by Staphylococcus aureus strains. Therefore, novel targets for developing antibiotics are urgently required. In this study, we hypothesized that the G-quadruplex (G4)-binding ligands can be used as novel antibiotics as their binding can possibly downregulate/block the expression of vital genes. METHODS To test this, first we screened the antibiotic properties of representative G4-binding ligands against hypervirulent and MDR S. aureus USA300 and determined the in vitro and in vivo antibacterial activity; and proposed the mechanism of action by applying various microbiological, infection, microscopic, and biophysicochemical techniques. RESULTS Herein, among screened G4-binding ligands, N-methyl mesoporphyrin IX (NMM) showed the highest antibacterial activity against S. aureus USA300. NMM exhibited a minimum inhibitory concentration (MIC) of 5 μM against S. aureus USA300, impacting cell division and the cell wall by repressing the expressions of genes in the division cell wall (dcw) gene cluster. Genome-wide bioinformatics analysis of G4 motifs and their mapping on S. aureus genome, identified the presence of G4-motif in the promoter of mraZ, a conserved master regulator of the dcw cluster regulating the coordinated cell division and cell wall synthesis. Physicochemical assessments using UV-visible, circular dichroism, and nuclear magnetic resonance spectroscopy confirmed that the G4-motif present in the mraZ promoter formed an intramolecular parallel G4 structure, interacting with NMM. In vivo reporter followed by coupled in vitro transcription/translation (IVT) assays confirmed the role of mraZ G4 as a target interacting NMM to impose extreme antibacterial activity against both the gram-positive and -negative bacteria. In-cell and in vivo validation of NMM using RAW264.7 cells and Galleria mellonella; respectively, demonstrated that NMM exhibited superior antibiotic activity compared to well-established antibiotics, with no observed cytotoxicity. CONCLUSIONS In summary, the current study identified NMM as a broad-spectrum potent antibacterial agent and elucidated its plausible mechanism of action primarily by targeting G4-motif in the mraZ promoter of the dcw gene cluster.
Collapse
Affiliation(s)
- Maria Sultan
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Maria Razzaq
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Joohyun Lee
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Shreyasi Das
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Shrute Kannappan
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Vinod Kumar Subramani
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Wanki Yoo
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Truc Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, 30019, Republic of Korea
| | - Akhilesh K Chaurasia
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
18
|
Wang Y, Xiao K, Tao T, Zhang R, Shu H, Sun X. Evaluating the Performance of Peak Calling Algorithms Available for Intracellular G-Quadruplex Sequencing. Int J Mol Sci 2025; 26:1268. [PMID: 39941033 PMCID: PMC11818603 DOI: 10.3390/ijms26031268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
DNA G-quadruplexes (G4) are non-canonical DNA structures that play key roles in various biological processes. Antibody-dependent sequencing is an important tool for identifying intracellularly formed DNA G4s, and peak calling is a crucial step in processing the sequencing data. As the applicability of existing peak calling algorithms to intracellular G4 data has not been previously assessed, we systematically compared and evaluated these algorithms to determine those best suited for G4 detection. We selected seven representative candidates from 43 published peak calling algorithms for detailed evaluation. The performance of each candidate on six published intracellular G4 sequencing datasets (GSE107690, GSE145090, GSE133379, GSE178668ChIP-seq, GSE178668CUT&Tag, GSE221437) were assessed by precision and recall against customized benchmarks integrating results from multiple algorithms, as well as consistency with known G4 information (pG4 predicted by pqsfinder, oG4 from GSE63874, and multi-cell-line conserved G4s) and epigenetic signals. We identified MACS2, PeakRanger, and GoPeaks as the most effective algorithms for analyzing intracellular G4 sequencing data, and attributed their superior performance partially to the distribution model of sequencing reads/fragments used in the hypothesis testing step of the peak calling procedures. These findings provide guidance and rationale for selecting peak callers appropriate for intracellular G4 data.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; (Y.W.); (K.X.); (T.T.); (R.Z.); (H.S.)
| |
Collapse
|
19
|
Lyu B, Niu K, Anderson D, Feng Q, Song Q. G-quadruplex structures in 16S rRNA regions correlate with thermal adaptation in prokaryotes. Nucleic Acids Res 2025; 53:gkaf042. [PMID: 39883013 PMCID: PMC11780868 DOI: 10.1093/nar/gkaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/05/2025] [Accepted: 01/16/2025] [Indexed: 01/31/2025] Open
Abstract
G-quadruplex (G4) structure is a nucleic acid secondary structure formed by guanine-rich sequences, playing essential roles in various biological processes such as gene regulation and environmental stress adaptation. Although prokaryotes growing at high temperatures have higher GC contents, the pattern of G4 structure associated with GC content variation in thermal adaptation remains elusive. This study analyzed 681 bacterial genomes to explore the role of G4 structures in thermal adaptation. Our findings revealed a strong positive correlation between G4 patterns in the region encoding 16S rRNA genes and optimal growth temperatures (Topt), whereas genomic GC content and G4 patterns did not show significant correlations with Topt. Evolutionary analysis showed distinctive differences in G4 stability between Thermotoga (Topt ≥ 80°C) and Pseudothermotoga (60°C ≤ Topt < 80°C) species, with Thermotoga species exhibiting higher G4 stability, indicating stronger selective pressure for G4 structures. In vitro spectroscopy analysis showed that base mutations at key sites resulted in the absence of G4 structural stability and integrity in Thermotoga compared to Pseudothermotoga. Collectively, this study suggests that the G4 structures in 16S rRNA regions emerged as key indicators of thermal adaptation in prokaryotes and contributes to our understanding of the molecular basis of evolutionary adaptation.
Collapse
Affiliation(s)
- Bo Lyu
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, United States
| | - Kangkang Niu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Deborah Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, United States
| | - Qili Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qisheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
20
|
Hasenauer F, Barreto H, Lotton C, Matic I. Genome-wide mapping of spontaneous DNA replication error-hotspots using mismatch repair proteins in rapidly proliferating Escherichia coli. Nucleic Acids Res 2025; 53:gkae1196. [PMID: 39660654 PMCID: PMC11754648 DOI: 10.1093/nar/gkae1196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Fidelity of DNA replication is crucial for the accurate transmission of genetic information across generations, yet errors still occur despite multiple control mechanisms. This study investigated the factors influencing spontaneous replication errors across the Escherichia coli genome. We detected errors using the MutS and MutL mismatch repair proteins in rapidly proliferating mutH-deficient cells, where errors can be detected but not corrected. Our findings reveal that replication error hotspots are non-randomly distributed along the chromosome and are enriched in sequences with distinct features: lower thermal stability facilitating DNA strand separation, mononucleotide repeats prone to DNA polymerase slippage and sequences prone to forming secondary structures like cruciforms and G4 structures, which increase likelihood of DNA polymerase stalling. These hotspots showed enrichment for binding sites of nucleoid-associated proteins, RpoB and GyrA, as well as highly expressed genes, and depletion of GATC sequence. Finally, the enrichment of single-stranded DNA stretches in the hotspot regions establishes a nexus between the formation of secondary structures, transcriptional activity and replication stress. In conclusion, this study provides a comprehensive genome-wide map of replication error hotspots, offering a holistic perspective on the intricate interplay between various mechanisms that can compromise the faithful transmission of genetic information.
Collapse
Affiliation(s)
- Flavia C Hasenauer
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| | - Hugo C Barreto
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| | - Chantal Lotton
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| | - Ivan Matic
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| |
Collapse
|
21
|
Kledus F, Dobrovolná M, Mergny JL, Brázda V. Asymmetric distribution of G-quadruplex forming sequences in genomes of retroviruses. Sci Rep 2025; 15:76. [PMID: 39747944 PMCID: PMC11696869 DOI: 10.1038/s41598-024-82613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Retroviruses are among the most extensively studied viral families, both historically and in contemporary research. They are primarily investigated in the fields of viral oncogenesis, reverse transcription mechanisms, and other infection-specific aspects. These include the integration of endogenous retroviruses (ERVs) into host genomes, a process widely utilized in genetic engineering, and the ongoing search for HIV/AIDS treatment. G-quadruplexes (G4) have emerged as potential therapeutic targets in antiviral therapy and have been identified in important regulatory regions of viral genomes. In this study, we examine the presence of potential G-quadruplex-forming sequences (PQS) across all currently available unique retroviral genomes. Given that these retroviral genomes typically consist of single-stranded RNA (ssRNA) molecules, we also investigated whether the localization of PQSs is strand-dependent. This is particularly relevant since antisense transcripts have been detected in HIV, and ERV integration into the host genome involves reverse transcription from genomic positive strand ssRNA to double-stranded DNA (dsDNA), implicating both strands in this process. We show that in most mammalian retroviruses, including human retroviruses, PQSs are significantly more prevalent on the negative (antisense) strand, with some notable exceptions such as HIV-1. In sharp contrast, avian retroviruses exhibit a higher prevalence of PQSs on the positive (sense) strand.
Collapse
Affiliation(s)
- Filip Kledus
- Institute of Biophysics , Czech Academy of Sciences , Královopolská 135, Brno, 612 65, Czech Republic
- Faculty of Science , National Centre for Biomolecular Research Masaryk University , Kamenice 5, Brno, 625 00, Czech Republic
| | - Michaela Dobrovolná
- Institute of Biophysics , Czech Academy of Sciences , Královopolská 135, Brno, 612 65, Czech Republic
- Faculty of Chemistry , Brno University of Technology , Purkyňova 118, Brno, 61200, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics , Czech Academy of Sciences , Královopolská 135, Brno, 612 65, Czech Republic
- Laboratoire d'Optique et Biosciences (LOB) , Ecole Polytechnique CNRS INSERM Institut Polytechnique de Paris , Palaiseau, 91120, France
| | - Václav Brázda
- Institute of Biophysics , Czech Academy of Sciences , Královopolská 135, Brno, 612 65, Czech Republic.
- Faculty of Chemistry , Brno University of Technology , Purkyňova 118, Brno, 61200, Czech Republic.
| |
Collapse
|
22
|
Zuurbier KR, Fonseca RS, Arneaud SLB, Wall JM, Kim J, Tatge L, Otuzoglu G, Bali S, Metang P, Douglas PM. Yin Yang 1 and guanine quadruplexes protect dopaminergic neurons from cellular stress via transmissive dormancy. Nat Commun 2024; 15:10592. [PMID: 39632864 PMCID: PMC11618784 DOI: 10.1038/s41467-024-54958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Neurons deploy diverse adaptive strategies to ensure survival and neurotransmission amid cellular stress. When these adaptive pathways are overwhelmed, functional impairment or neurodegeneration follows. Here we show that stressed neurons actively induce a state of transmissive dormancy as a protective measure. Extending observations of neurotrauma in C. elegans and mice, human dopaminergic neurons capable of surviving severe cellular challenges both decrease spontaneous activity and modulate dopamine homeostasis through the transcriptional regulator Yin Yang 1 (YY1). To bolster stress resilience and mitigate dopamine toxicity, YY1 increases expression of the vesicular monoamine transporter 2, vMAT2, while coordinately inhibiting dopamine synthesis through stabilization of a guanine quadruplex in intron 10 of tyrosine hydroxylase, TH. This dopaminergic stress response has the potential to cause circuit inactivation, yet safeguards neurons by minimizing the toxic accumulation of cytosolic dopamine and inducing a state of neuronal dormancy. In essence, neurons appear to actively prioritize viability over functionality.
Collapse
Affiliation(s)
- Kielen R Zuurbier
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rene Solano Fonseca
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sonja L B Arneaud
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jordan M Wall
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Juhee Kim
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lexus Tatge
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Gupse Otuzoglu
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sofia Bali
- O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Patrick Metang
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Peter M Douglas
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Hamon Center for Regenerative Science and Medicine; UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
23
|
Bellina A, Malfatti MC, Salgado G, Fleming AM, Antoniali G, Othman Z, Gualandi N, La Manna S, Marasco D, Dassi E, Burrows CJ, Tell G. Apurinic/Apyrimidinic Endodeoxyribonuclease 1 modulates RNA G-quadruplex folding of miR-92b and controls its expression in cancer cells. Proc Natl Acad Sci U S A 2024; 121:e2317861121. [PMID: 39495925 PMCID: PMC11572961 DOI: 10.1073/pnas.2317861121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/09/2024] [Indexed: 11/06/2024] Open
Abstract
In the last decade, several novel functions of the mammalian Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APE1) have been discovered, going far beyond its canonical function as DNA repair enzyme and unveiling its potential roles in cancer development. Indeed, it was shown to be involved in DNA G-quadruplex biology and RNA metabolism, most importantly in the miRNA maturation pathway and the decay of oxidized or abasic miRNAs during oxidative stress conditions. In recent years, several noncanonical pathways of miRNA biogenesis have emerged, with a specific focus on guanosine-rich precursors that can form RNA G-quadruplex (rG4) structures. Here, we show that several miRNA precursors, dysregulated upon APE1 depletion, contain an rG4 motif and that their corresponding target genes are up-regulated after APE1 depletion. We also demonstrate, both by in vitro assays and by using different cancer cell lines, that APE1 can modulate the folding of an rG4 structure contained in pre-miR-92b, with a mechanism strictly dependent on lysine residues present in its N-terminal disordered region. Furthermore, APE1 cellular depletion alters the maturation process of miR-92b, mainly affecting the shuttling between the nucleus and cytosol. Bioinformatic analysis of APE1-regulated rG4-containing miRNAs supports the relevance of our findings in cancer biology. Specifically, these miRNAs exhibit high prognostic significance in lung, cervical, and liver tumors, as suggested by their involvement in several cancer-related pathways.
Collapse
Affiliation(s)
- Alessia Bellina
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| | - Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
- Liver Cancer Unit, Fondazione Italiana Fegato—Organizzazione Non Lucrativa di Utilità Sociale, Basovizza34149, Italy
| | - Gilmar Salgado
- Department of Life Sciences and Technology for Health, ARNA laboratory, INSERM U1212, CNRS, UMR 5320, University of Bordeaux, BordeauxF-33076, France
| | - Aaron M. Fleming
- Department of Chemistry, University of Utah, Salt Lake City, UT84112-0850
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| | - Zahraa Othman
- Department of Life Sciences and Technology for Health, ARNA laboratory, INSERM U1212, CNRS, UMR 5320, University of Bordeaux, BordeauxF-33076, France
| | - Nicolò Gualandi
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| | - Sara La Manna
- STARS lab (Structure Activity Relationship Synthesis and Spectroscopy), Department of Pharmacy, University of Naples “Federico II”, Naples80131, Italy
| | - Daniela Marasco
- STARS lab (Structure Activity Relationship Synthesis and Spectroscopy), Department of Pharmacy, University of Naples “Federico II”, Naples80131, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento38123, Italy
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, Salt Lake City, UT84112-0850
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| |
Collapse
|
24
|
Florez-Vargas O, Ho M, Hogshead M, Lee CH, Papenberg BW, Forsythe K, Jones K, Luo W, Teshome K, Blauwendraat C, Billingsley KJ, Kolmogorov M, Meredith M, Paten B, Chari R, Zhang C, Schneekloth JS, Machiela MJ, Chanock SJ, Gadalla S, Savage SA, Mbulaiteye SM, Prokunina-Olsson L. Genetic regulation of TERT splicing contributes to reduced or elevated cancer risk by altering cellular longevity and replicative potential. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.04.24316722. [PMID: 39802763 PMCID: PMC11722454 DOI: 10.1101/2024.11.04.24316722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
The chromosome 5p15.33 region, which encodes telomerase reverse transcriptase (TERT), harbors multiple germline variants identified by genome-wide association studies (GWAS) as risk for some cancers but protective for others. We characterized a variable number tandem repeat within TERT intron 6 (VNTR6-1, 38-bp repeat unit) and observed a strong association between VNTR6-1 alleles (Short: 24-27 repeats, Long: 40.5-66.5 repeats) and GWAS signals within TERT intron 4. Specifically, VNTR6-1 fully explained the GWAS signals for rs2242652 and partially for rs10069690. VNTR6-1, rs10069690 and their haplotypes were associated with multi-cancer risk and age-related telomere shortening. Both variants reduce TERT expression through alternative splicing and nonsense-mediated decay: rs10069690-T increases intron 4 retention and VNTR6-1-Long expands a polymorphic G quadruplex (G4, 35-113 copies) within intron 6. Treatment with G4-stabilizing ligands decreased the fraction of the functional telomerase-encoding TERT full-length isoform, whereas CRISPR/Cas9 deletion of VNTR6-1 increased this fraction and apoptosis while reducing cell proliferation. Thus, VNTR6-1 and rs10069690 regulate the expression and splicing of TERT transcripts encoding both functional and nonfunctional telomerase. Altered TERT isoform ratios might modulate cellular longevity and replicative potential at homeostasis and in response to environmental factors, thus selectively contributing to the reduced or elevated cancer risk conferred by this locus.
Collapse
Affiliation(s)
- Oscar Florez-Vargas
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Michelle Ho
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Maxwell Hogshead
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Chia-Han Lee
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Brenen W Papenberg
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Kaitlin Forsythe
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Kristine Jones
- Cancer Genomic Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wen Luo
- Cancer Genomic Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kedest Teshome
- Cancer Genomic Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer’s and Related Dementias, National Institute of Aging and National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Kimberly J Billingsley
- Center for Alzheimer’s and Related Dementias, National Institute of Aging and National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Mikhail Kolmogorov
- Cancer Data Science Laboratory, CCR, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Chi Zhang
- Cancer Genomic Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John S. Schneekloth
- Chemical Biology Laboratory, CCR, National Cancer Institute, Frederick, MD, USA
| | - Mitchell J Machiela
- Integrative Tumor Epidemiology Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Stephen J Chanock
- Laboratory of Genetic Susceptibility, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Shahinaz Gadalla
- Clinical Genetics Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Sharon A Savage
- Clinical Genetics Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Sam M Mbulaiteye
- Infections and Immunoepidemiology Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | | |
Collapse
|
25
|
Agostini RB, Piga EJ, Bayón C, Binolfi A, Armas P, Campos-Bermudez VA, Rius SP. G-Quadruplex Structures as Epigenetic Regulatory Elements in Priming of Defense Genes upon Short-Term Trichoderma atroviride Inoculation in Maize. PLANTS (BASEL, SWITZERLAND) 2024; 13:2925. [PMID: 39458870 PMCID: PMC11510774 DOI: 10.3390/plants13202925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Symbiosis establishment between Trichoderma atroviride and plant roots triggers the priming of defense responses, among other effects. Currently, there is no clear evidence regarding the molecular mechanisms that allow the plant to remain alert to future stimulus, either by pathogen attack or any other abiotic stress. Epigenetic modifications have emerged as a strategy to explain the increased defense response of plants in a priming state conferred by Trichoderma. Recently, various non-canonical structures of nucleic acids, especially G-quadruplex structures (G-quadruplexes or G4s), have been identified as potential targets during the establishment or maintenance of plant signals. In the present study, we developed a screening test for the identification of putative G4-forming sequences (PQSs) in previously identified Z. mays priming genes. Bioinformatic analysis revealed the presence of PQSs in the promoter region of five essential genes playing a critical role in priming in maize. Biophysical and spectroscopy studies showed the formation of G4s by these PQSs in vitro, and ChIP assays demonstrate their formation in vivo. Therefore, G4 formation could play a role as an epigenetic regulatory mechanism involved in the long-lasting primed state in maize plants.
Collapse
Affiliation(s)
- Romina B. Agostini
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, Rosario 2000, Santa Fe, Argentina;
| | - Ernesto J. Piga
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario S200EZP, Santa Fe, Argentina; (E.J.P.); (C.B.); (A.B.); (P.A.)
| | - Candela Bayón
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario S200EZP, Santa Fe, Argentina; (E.J.P.); (C.B.); (A.B.); (P.A.)
| | - Andrés Binolfi
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario S200EZP, Santa Fe, Argentina; (E.J.P.); (C.B.); (A.B.); (P.A.)
- Plataforma Argentina de Biología Estructural y Metabolómica (PLABEM), Ocampo y Esmeralda, Rosario S200EZP, Santa Fe, Argentina
| | - Pablo Armas
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario S200EZP, Santa Fe, Argentina; (E.J.P.); (C.B.); (A.B.); (P.A.)
| | - Valeria A. Campos-Bermudez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, Rosario 2000, Santa Fe, Argentina;
| | - Sebastián P. Rius
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, Rosario 2000, Santa Fe, Argentina;
| |
Collapse
|
26
|
Tang GX, Li ML, Zhou C, Huang ZS, Chen SB, Chen XC, Tan JH. Mitochondrial RelA empowers mtDNA G-quadruplex formation for hypoxia adaptation in cancer cells. Cell Chem Biol 2024; 31:1800-1814.e7. [PMID: 38821064 DOI: 10.1016/j.chembiol.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/04/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Mitochondrial DNA (mtDNA) G-quadruplexes (G4s) have important regulatory roles in energy metabolism, yet their specific functions and underlying regulatory mechanisms have not been delineated. Using a chemical-genetic screening strategy, we demonstrated that the JAK/STAT3 pathway is the primary regulatory mechanism governing mtDNA G4 dynamics in hypoxic cancer cells. Further proteomic analysis showed that activation of the JAK/STAT3 pathway facilitates the translocation of RelA, a member of the NF-κB family, to the mitochondria, where RelA binds to mtDNA G4s and promotes their folding, resulting in increased mtDNA instability, inhibited mtDNA transcription, and subsequent mitochondrial dysfunction. This binding event disrupts the equilibrium of energy metabolism, catalyzing a metabolic shift favoring glycolysis. Collectively, the results provide insights into a strategy employed by cancer cells to adapt to hypoxia through metabolic reprogramming.
Collapse
Affiliation(s)
- Gui-Xue Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mao-Lin Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Cui Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Shu Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiu-Cai Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Jia-Heng Tan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
27
|
Obara P, Wolski P, Pańczyk T. Insights into the Molecular Structure, Stability, and Biological Significance of Non-Canonical DNA Forms, with a Focus on G-Quadruplexes and i-Motifs. Molecules 2024; 29:4683. [PMID: 39407611 PMCID: PMC11477922 DOI: 10.3390/molecules29194683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
This article provides a comprehensive examination of non-canonical DNA structures, particularly focusing on G-quadruplexes (G4s) and i-motifs. G-quadruplexes, four-stranded structures formed by guanine-rich sequences, are stabilized by Hoogsteen hydrogen bonds and monovalent cations like potassium. These structures exhibit diverse topologies and are implicated in critical genomic regions such as telomeres and promoter regions of oncogenes, playing significant roles in gene expression regulation, genome stability, and cellular aging. I-motifs, formed by cytosine-rich sequences under acidic conditions and stabilized by hemiprotonated cytosine-cytosine (C:C+) base pairs, also contribute to gene regulation despite being less prevalent than G4s. This review highlights the factors influencing the stability and dynamics of these structures, including sequence composition, ionic conditions, and environmental pH. Molecular dynamics simulations and high-resolution structural techniques have been pivotal in advancing our understanding of their folding and unfolding mechanisms. Additionally, the article discusses the therapeutic potential of small molecules designed to selectively bind and stabilize G4s and i-motifs, with promising implications for cancer treatment. Furthermore, the structural properties of these DNA forms are explored for applications in nanotechnology and molecular devices. Despite significant progress, challenges remain in observing these structures in vivo and fully elucidating their biological functions. The review underscores the importance of continued research to uncover new insights into the genomic roles of G4s and i-motifs and their potential applications in medicine and technology. This ongoing research promises exciting developments in both basic science and applied fields, emphasizing the relevance and future prospects of these intriguing DNA structures.
Collapse
Affiliation(s)
| | | | - Tomasz Pańczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland; (P.O.); (P.W.)
| |
Collapse
|
28
|
Eich T, O’Leary C, Moss W. Intronic RNA secondary structural information captured for the human MYC pre-mRNA. NAR Genom Bioinform 2024; 6:lqae143. [PMID: 39450312 PMCID: PMC11500451 DOI: 10.1093/nargab/lqae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
To address the lack of intronic reads in secondary structure probing data for the human MYC pre-mRNA, we developed a method that combines spliceosomal inhibition with RNA probing and sequencing. Here, the SIRP-seq method was applied to study the secondary structure of human MYC RNAs by chemically probing HeLa cells with dimethyl sulfate in the presence of the small molecule spliceosome inhibitor pladienolide B. Pladienolide B binds to the SF3B complex of the spliceosome to inhibit intron removal during splicing, resulting in retained intronic sequences. This method was used to increase the read coverage over intronic regions of MYC. The purpose for increasing coverage across introns was to generate complete reactivity profiles for intronic sequences via the DMS-MaPseq approach. Notably, depth was sufficient for analysis by the program DRACO, which was able to deduce distinct reactivity profiles and predict multiple secondary structural conformations as well as their suggested stoichiometric abundances. The results presented here provide a new method for intronic RNA secondary structural analyses, as well as specific structural insights relevant to MYC RNA splicing regulation and therapeutic targeting.
Collapse
Affiliation(s)
- Taylor O Eich
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Collin A O’Leary
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Current Address: Department of Biology and Chemistry, Cornell College, Mount Vernon, IA 52314, USA
| | - Walter N Moss
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
29
|
Refael T, Sudman M, Golan G, Pnueli L, Naik S, Preger-Ben Noon E, Henn A, Kaplan A, Melamed P. An i-motif-regulated enhancer, eRNA and adjacent lncRNA affect Lhb expression through distinct mechanisms in a sex-specific context. Cell Mol Life Sci 2024; 81:361. [PMID: 39158745 PMCID: PMC11335282 DOI: 10.1007/s00018-024-05398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Genome-wide studies have demonstrated regulatory roles for diverse non-coding elements, but their precise and interrelated functions have often remained enigmatic. Addressing the need for mechanistic insight, we studied their roles in expression of Lhb which encodes the pituitary gonadotropic hormone that controls reproduction. We identified a bi-directional enhancer in gonadotrope-specific open chromatin, whose functional eRNA (eRNA2) supports permissive chromatin at the Lhb locus. The central untranscribed region of the enhancer contains an iMotif (iM), and is bound by Hmgb2 which stabilizes the iM and directs transcription specifically towards the functional eRNA2. A distinct downstream lncRNA, associated with an inducible G-quadruplex (G4) and iM, also facilitates Lhb expression, following its splicing in situ. GnRH activates Lhb transcription and increased levels of all three RNAs, eRNA2 showing the highest response, while estradiol, which inhibits Lhb, repressed levels of eRNA2 and the lncRNA. The levels of these regulatory RNAs and Lhb mRNA correlate highly in female mice, though strikingly not in males, suggesting a female-specific function. Our findings, which shed new light on the workings of non-coding elements and non-canonical DNA structures, reveal novel mechanisms regulating transcription which have implications not only in the central control of reproduction but also for other inducible genes.
Collapse
Affiliation(s)
- Tal Refael
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Maya Sudman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Gil Golan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sujay Naik
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Ella Preger-Ben Noon
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Arnon Henn
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ariel Kaplan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
30
|
Cui X, Zhang C, Fu C, Hu J, Li T, Li L. YY1 is involved in homologous recombination inhibition at guanine quadruplex sites in human cells. Nucleic Acids Res 2024; 52:7401-7413. [PMID: 38869071 PMCID: PMC11260479 DOI: 10.1093/nar/gkae502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
Homologous recombination (HR) is a key process for repairing DNA double strand breaks and for promoting genetic diversity. However, HR occurs unevenly across the genome, and certain genomic features can influence its activity. One such feature is the presence of guanine quadruplexes (G4s), stable secondary structures widely distributed throughout the genome. These G4s play essential roles in gene transcription and genome stability regulation. Especially, elevated G4 levels in cells deficient in the Bloom syndrome helicase (BLM) significantly enhance HR at G4 sites, potentially threatening genome stability. Here, we investigated the role of G4-binding protein Yin Yang-1 (YY1) in modulating HR at G4 sites in human cells. Our results show that YY1's binding to G4 structures suppresses sister chromatid exchange after BLM knockdown, and YY1's chromatin occupancy negatively correlates with the overall HR rate observed across the genome. By limiting RAD51 homolog 1 (RAD51) access, YY1 preferentially binds to essential genomic regions, shielding them from excessive HR. Our findings unveil a novel role of YY1-G4 interaction, revealing novel insights into cellular mechanisms involved in HR regulation.
Collapse
Affiliation(s)
- Xinyu Cui
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengwen Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunqing Fu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinglei Hu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tengjiao Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
31
|
Ciaco S, Aronne R, Fiabane M, Mori M. The Rise of Bacterial G-Quadruplexes in Current Antimicrobial Discovery. ACS OMEGA 2024; 9:24163-24180. [PMID: 38882119 PMCID: PMC11170735 DOI: 10.1021/acsomega.4c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Antimicrobial resistance (AMR) is a silent critical issue that poses several challenges to health systems. While the discovery of novel antibiotics is currently stalled and prevalently focused on chemical variations of the scaffolds of available drugs, novel targets and innovative strategies are urgently needed to face this global threat. In this context, bacterial G-quadruplexes (G4s) are emerging as timely and profitable targets for the design and development of antimicrobial agents. Indeed, they are expressed in regulatory regions of bacterial genomes, and their modulation has been observed to provide antimicrobial effects with translational perspectives in the context of AMR. In this work, we review the current knowledge of bacterial G4s as well as their modulation by small molecules, including tools and techniques suitable for these investigations. Finally, we critically analyze the needs and future directions in the field, with a focus on the development of small molecules as bacterial G4s modulators endowed with remarkable drug-likeness.
Collapse
Affiliation(s)
- Stefano Ciaco
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Rossella Aronne
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Martina Fiabane
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
32
|
Bartas M, Brázda V, Pečinka P. Special Issue "Bioinformatics of Unusual DNA and RNA Structures". Int J Mol Sci 2024; 25:5226. [PMID: 38791265 PMCID: PMC11121459 DOI: 10.3390/ijms25105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Nucleic acids are not only static carriers of genetic information but also play vital roles in controlling cellular lifecycles through their fascinating structural diversity [...].
Collapse
Affiliation(s)
- Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic;
| | - Václav Brázda
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic;
| | - Petr Pečinka
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic;
| |
Collapse
|
33
|
Cathcart B, Cheedipudi SM, Rouhi L, Zhao Z, Gurha P, Marian AJ. DNA double-stranded breaks, a hallmark of aging, defined at the nucleotide resolution, are increased and associated with transcription in the cardiac myocytes in LMNA-cardiomyopathy. Cardiovasc Res 2024:cvae063. [PMID: 38577741 DOI: 10.1093/cvr/cvae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
AIMS An intrinsic feature of gene transcription is the formation of DNA superhelices near the transcription bubble, which are resolved upon induction of transient double-stranded breaks (DSBs) by topoisomerases. Unrepaired DSBs are pathogenic as they lead to cell cycle arrest, senescence, inflammation, and organ dysfunction. We posit that DSBs would be more prevalent at the genomic sites that are associated with gene expression. The objectives were to identify and characterize genome-wide DSBs at the nucleotide resolution and determine the association of DSBs with transcription in cardiac myocytes. METHODS AND RESULTS We identified the genome-wide DSBs in ∼1 million cardiac myocytes per heart in three wild-type and three myocyte-specific LMNA-deficient (Myh6-Cre:LmnaF/F) mice by END-Sequencing. The prevalence of DSBs was 0.8% and 2.2% in the wild-type and Myh6-Cre:LmnaF/F myocytes, respectively. The END-Seq signals were enriched for 8 and 6764 DSBs in the wild-type and Myh6-Cre:LmnaF/F myocytes, respectively (q < 0.05). The DSBs were preferentially localized to the gene regions, transcription initiation sites, cardiac transcription factor motifs, and the G quadruplex forming structures. Because LMNA regulates transcription through the lamin-associated domains (LADs), we defined the LADs in cardiac myocytes by a Cleavage Under Targets & Release Using Nuclease (CUT&RUN) assay (N = 5). On average there were 818 LADs per myocyte. Constitutive LADs (cLADs), defined as LADs that were shared by at least three genomes (N = 2572), comprised about a third of the mouse cardiac myocyte genomes. Transcript levels of the protein-coding genes located at the cLADs (N = 3975) were ∼16-fold lower than those at the non-LAD regions (N = ∼17 778). The prevalence of DSBs was higher in the non-LAD as compared to the cLAD regions. Likewise, DSBs were more common in the loss-of-LAD regions, defined as the genomic regions in the Myh6-Cre:LmnaF/F that were juxtaposed to the LAD regions in the wild-type myocytes. CONCLUSION To our knowledge, this is the first identification of the DSBs, at the nucleotide resolution in the cardiovascular system. The prevalence of DSBs was higher in the genomic regions associated with transcription. Because transcription is pervasive, DSBs are expected to be common and pathogenic in various states and aging.
Collapse
Affiliation(s)
- Benjamin Cathcart
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Science Center, 6770 Bertner Street, Suite C900A, Houston, TX 77030, USA
| | - Sirisha M Cheedipudi
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Science Center, 6770 Bertner Street, Suite C900A, Houston, TX 77030, USA
| | - Leila Rouhi
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Science Center, 6770 Bertner Street, Suite C900A, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Science Center, 6770 Bertner Street, Suite C900A, Houston, TX 77030, USA
- Center for Precision Health, School of Biomedical Informatics and School of Public Health, UTHealth, Houston, TX 77030, USA
| | - Priyatansh Gurha
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Science Center, 6770 Bertner Street, Suite C900A, Houston, TX 77030, USA
| | - Ali J Marian
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, The University of Texas Health Science Center, 6770 Bertner Street, Suite C900A, Houston, TX 77030, USA
| |
Collapse
|
34
|
Luige J, Armaos A, Tartaglia GG, Ørom UAV. Predicting nuclear G-quadruplex RNA-binding proteins with roles in transcription and phase separation. Nat Commun 2024; 15:2585. [PMID: 38519458 PMCID: PMC10959947 DOI: 10.1038/s41467-024-46731-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
RNA-binding proteins are central for many biological processes and their characterization has demonstrated a broad range of functions as well as a wide spectrum of target structures. RNA G-quadruplexes are important regulatory elements occurring in both coding and non-coding transcripts, yet our knowledge of their structure-based interactions is at present limited. Here, using theoretical predictions and experimental approaches, we show that many chromatin-binding proteins bind to RNA G-quadruplexes, and we classify them based on their RNA G-quadruplex-binding potential. Combining experimental identification of nuclear RNA G-quadruplex-binding proteins with computational approaches, we build a prediction tool that assigns probability score for a nuclear protein to bind RNA G-quadruplexes. We show that predicted G-quadruplex RNA-binding proteins exhibit a high degree of protein disorder and hydrophilicity and suggest involvement in both transcription and phase-separation into membrane-less organelles. Finally, we present the G4-Folded/UNfolded Nuclear Interaction Explorer System (G4-FUNNIES) for estimating RNA G4-binding propensities at http://service.tartaglialab.com/new_submission/G4FUNNIES .
Collapse
Affiliation(s)
- Johanna Luige
- RNA Biology and Innovation, Institute of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Alexandros Armaos
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152, Genova, Italy
| | - Gian Gaetano Tartaglia
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152, Genova, Italy.
- Catalan Institution for Research and Advanced Studies ICREA Passeig Lluis Companys, 23 08010, Barcelona, Spain.
| | - Ulf Andersson Vang Ørom
- RNA Biology and Innovation, Institute of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
35
|
Lyu B, Song Q. The intricate relationship of G-Quadruplexes and bacterial pathogenicity islands. eLife 2024; 12:RP91985. [PMID: 38391174 PMCID: PMC10942614 DOI: 10.7554/elife.91985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
The dynamic interplay between guanine-quadruplex (G4) structures and pathogenicity islands (PAIs) represents a captivating area of research with implications for understanding the molecular mechanisms underlying pathogenicity. This study conducted a comprehensive analysis of a large-scale dataset from reported 89 pathogenic strains of bacteria to investigate the potential interactions between G4 structures and PAIs. G4 structures exhibited an uneven and non-random distribution within the PAIs and were consistently conserved within the same pathogenic strains. Additionally, this investigation identified positive correlations between the number and frequency of G4 structures and the GC content across different genomic features, including the genome, promoters, genes, tRNA, and rRNA regions, indicating a potential relationship between G4 structures and the GC-associated regions of the genome. The observed differences in GC content between PAIs and the core genome further highlight the unique nature of PAIs and underlying factors, such as DNA topology. High-confidence G4 structures within regulatory regions of Escherichia coli were identified, modulating the efficiency or specificity of DNA integration events within PAIs. Collectively, these findings pave the way for future research to unravel the intricate molecular mechanisms and functional implications of G4-PAI interactions, thereby advancing our understanding of bacterial pathogenicity and the role of G4 structures in pathogenic diseases.
Collapse
Affiliation(s)
- Bo Lyu
- Division of Plant Science and Technology, University of MissouriColumbiaUnited States
| | - Qisheng Song
- Division of Plant Science and Technology, University of MissouriColumbiaUnited States
| |
Collapse
|
36
|
Gajarsky M, Stadlbauer P, Sponer J, Cucchiarini A, Dobrovolna M, Brazda V, Mergny JL, Trantirek L, Lenarcic Zivkovic M. DNA Quadruplex Structure with a Unique Cation Dependency. Angew Chem Int Ed Engl 2024; 63:e202313226. [PMID: 38143239 DOI: 10.1002/anie.202313226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 12/26/2023]
Abstract
DNA quadruplex structures provide an additional layer of regulatory control in genome maintenance and gene expression and are widely used in nanotechnology. We report the discovery of an unprecedented tetrastranded structure formed from a native G-rich DNA sequence originating from the telomeric region of Caenorhabditis elegans. The structure is defined by multiple properties that distinguish it from all other known DNA quadruplexes. Most notably, the formation of a stable so-called KNa-quadruplex (KNaQ) requires concurrent coordination of K+ and Na+ ions at two distinct binding sites. This structure provides novel insight into G-rich DNA folding under ionic conditions relevant to eukaryotic cell physiology and the structural evolution of telomeric DNA. It highlights the differences between the structural organization of human and nematode telomeric DNA, which should be considered when using C. elegans as a model in telomere biology, particularly in drug screening applications. Additionally, the absence/presence of KNaQ motifs in the host/parasite introduces an intriguing possibility of exploiting the KNaQ fold as a plausible antiparasitic drug target. The structure's unique shape and ion dependency and the possibility of controlling its folding by using low-molecular-weight ligands can be used for the design or discovery of novel recognition DNA elements and sensors.
Collapse
Affiliation(s)
- Martin Gajarsky
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
- Current address: Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Petr Stadlbauer
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Jiri Sponer
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Anne Cucchiarini
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Michaela Dobrovolna
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
- Faculty of Chemistry, Brno University of Technology, Purkynova 464, 61200, Brno, Czech Republic
| | - Vaclav Brazda
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
- Faculty of Chemistry, Brno University of Technology, Purkynova 464, 61200, Brno, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Lukas Trantirek
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Martina Lenarcic Zivkovic
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| |
Collapse
|
37
|
Mota APZ, Koutsovoulos GD, Perfus-Barbeoch L, Despot-Slade E, Labadie K, Aury JM, Robbe-Sermesant K, Bailly-Bechet M, Belser C, Péré A, Rancurel C, Kozlowski DK, Hassanaly-Goulamhoussen R, Da Rocha M, Noel B, Meštrović N, Wincker P, Danchin EGJ. Unzipped genome assemblies of polyploid root-knot nematodes reveal unusual and clade-specific telomeric repeats. Nat Commun 2024; 15:773. [PMID: 38316773 PMCID: PMC10844300 DOI: 10.1038/s41467-024-44914-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Using long-read sequencing, we assembled and unzipped the polyploid genomes of Meloidogyne incognita, M. javanica and M. arenaria, three of the most devastating plant-parasitic nematodes. We found the canonical nematode telomeric repeat to be missing in these and other Meloidogyne genomes. In addition, we find no evidence for the enzyme telomerase or for orthologs of C. elegans telomere-associated proteins, suggesting alternative lengthening of telomeres. Instead, analyzing our assembled genomes, we identify species-specific composite repeats enriched mostly at one extremity of contigs. These repeats are G-rich, oriented, and transcribed, similarly to canonical telomeric repeats. We confirm them as telomeric using fluorescent in situ hybridization. These repeats are mostly found at one single end of chromosomes in these species. The discovery of unusual and specific complex telomeric repeats opens a plethora of perspectives and highlights the evolutionary diversity of telomeres despite their central roles in senescence, aging, and chromosome integrity.
Collapse
Affiliation(s)
- Ana Paula Zotta Mota
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France.
| | - Georgios D Koutsovoulos
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Laetitia Perfus-Barbeoch
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Evelin Despot-Slade
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Karine Robbe-Sermesant
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Marc Bailly-Bechet
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Arthur Péré
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Corinne Rancurel
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Djampa K Kozlowski
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
- Université Côte d'Azur, Center of Modeling, Simulation, and Interactions, 28 Avenue Valrose, 06000, Nice, France
| | - Rahim Hassanaly-Goulamhoussen
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Martine Da Rocha
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Nevenka Meštrović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France.
| |
Collapse
|
38
|
Alcalá S, Villarino L, Ruiz-Cañas L, Couceiro JR, Martínez-Calvo M, Palencia-Campos A, Navarro D, Cabezas-Sainz P, Rodriguez-Arabaolaza I, Cordero-Barreal A, Trilla-Fuertes L, Rubiolo JA, Batres-Ramos S, Vallespinos M, González-Páramos C, Rodríguez J, Gámez-Pozo A, Vara JÁF, Fernández SF, Berlinches AB, Moreno-Mata N, Redondo AMT, Carrato A, Hermann PC, Sánchez L, Torrente S, Fernández-Moreno MÁ, Mascareñas JL, Sainz B. Targeting cancer stem cell OXPHOS with tailored ruthenium complexes as a new anti-cancer strategy. J Exp Clin Cancer Res 2024; 43:33. [PMID: 38281027 PMCID: PMC10821268 DOI: 10.1186/s13046-023-02931-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/11/2023] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Previous studies by our group have shown that oxidative phosphorylation (OXPHOS) is the main pathway by which pancreatic cancer stem cells (CSCs) meet their energetic requirements; therefore, OXPHOS represents an Achille's heel of these highly tumorigenic cells. Unfortunately, therapies that target OXPHOS in CSCs are lacking. METHODS The safety and anti-CSC activity of a ruthenium complex featuring bipyridine and terpyridine ligands and one coordination labile position (Ru1) were evaluated across primary pancreatic cancer cultures and in vivo, using 8 patient-derived xenografts (PDXs). RNAseq analysis followed by mitochondria-specific molecular assays were used to determine the mechanism of action. RESULTS We show that Ru1 is capable of inhibiting CSC OXPHOS function in vitro, and more importantly, it presents excellent anti-cancer activity, with low toxicity, across a large panel of human pancreatic PDXs, as well as in colorectal cancer and osteosarcoma PDXs. Mechanistic studies suggest that this activity stems from Ru1 binding to the D-loop region of the mitochondrial DNA of CSCs, inhibiting OXPHOS complex-associated transcription, leading to reduced mitochondrial oxygen consumption, membrane potential, and ATP production, all of which are necessary for CSCs, which heavily depend on mitochondrial respiration. CONCLUSIONS Overall, the coordination complex Ru1 represents not only an exciting new anti-cancer agent, but also a molecular tool to dissect the role of OXPHOS in CSCs. Results indicating that the compound is safe, non-toxic and highly effective in vivo are extremely exciting, and have allowed us to uncover unprecedented mechanistic possibilities to fight different cancer types based on targeting CSC OXPHOS.
Collapse
Affiliation(s)
- Sonia Alcalá
- Department of Biochemistry, Autónoma University of Madrid, School of Medicine and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Lara Villarino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Laura Ruiz-Cañas
- Department of Biochemistry, Autónoma University of Madrid, School of Medicine and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - José R Couceiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Miguel Martínez-Calvo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Adrián Palencia-Campos
- Department of Biochemistry, Autónoma University of Madrid, School of Medicine and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Diego Navarro
- Department of Biochemistry, Autónoma University of Madrid, School of Medicine and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Pablo Cabezas-Sainz
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, USC, Lugo, Spain
| | - Iker Rodriguez-Arabaolaza
- Department of Biochemistry, Autónoma University of Madrid, School of Medicine and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain
- Facultad de Ciencia y Técnología, Universidad del País Vasco, 48940, Leioa (Bizkaia), Spain
| | - Alfonso Cordero-Barreal
- Department of Biochemistry, Autónoma University of Madrid, School of Medicine and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Lucia Trilla-Fuertes
- Molecular Oncology and Pathology Lab, Instituto de Genética Médica y Molecular-INGEMM, Instituto de Investigación Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
- Biomedica Molecular Medicine SL, Madrid, Spain
| | - Juan A Rubiolo
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, USC, Lugo, Spain
| | - Sandra Batres-Ramos
- Department of Biochemistry, Autónoma University of Madrid, School of Medicine and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Mireia Vallespinos
- Department of Biochemistry, Autónoma University of Madrid, School of Medicine and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Cristina González-Páramos
- Department of Biochemistry, Autónoma University of Madrid, School of Medicine and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Jéssica Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Angelo Gámez-Pozo
- Molecular Oncology and Pathology Lab, Instituto de Genética Médica y Molecular-INGEMM, Instituto de Investigación Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
- Biomedica Molecular Medicine SL, Madrid, Spain
| | - Juan Ángel Fresno Vara
- Molecular Oncology and Pathology Lab, Instituto de Genética Médica y Molecular-INGEMM, Instituto de Investigación Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Red, Área Cáncer, CIBERONC, ISCIII, Madrid, Spain
| | - Sara Fra Fernández
- Servicio de Cirugía Torácica, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Amparo Benito Berlinches
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Servicio de Anatomía Patológica, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Nicolás Moreno-Mata
- Servicio de Cirugía Torácica, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Alfredo Carrato
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red, Área Cáncer, CIBERONC, ISCIII, Madrid, Spain
- Pancreatic Cancer Europe (PCE) Chairperson, Brussels, Belgium
| | | | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, USC, Lugo, Spain
| | - Susana Torrente
- Valuation, Transfer and Entrepreneurship Area, USC, Santiago de Compostela, Spain
| | - Miguel Ángel Fernández-Moreno
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Biochemistry, Autónoma University of Madrid, School of Medicine and Department of Rare Diseases, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain.
| | - Bruno Sainz
- Department of Biochemistry, Autónoma University of Madrid, School of Medicine and Department of Cancer, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale (CSIC-UAM), Madrid, Spain.
- Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
- Centro de Investigación Biomédica en Red, Área Cáncer, CIBERONC, ISCIII, Madrid, Spain.
| |
Collapse
|
39
|
Fukute J, Maki K, Adachi T. The nucleolar shell provides anchoring sites for DNA untwisting. Commun Biol 2024; 7:83. [PMID: 38263258 PMCID: PMC10805735 DOI: 10.1038/s42003-023-05750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/28/2023] [Indexed: 01/25/2024] Open
Abstract
DNA underwinding (untwisting) is a crucial step in transcriptional activation. DNA underwinding occurs between the site where torque is generated by RNA polymerase (RNAP) and the site where the axial rotation of DNA is constrained. However, what constrains DNA axial rotation in the nucleus is yet unknown. Here, we show that the anchorage to the nuclear protein condensates constrains DNA axial rotation for DNA underwinding in the nucleolus. In situ super-resolution imaging of underwound DNA reveal that underwound DNA accumulates in the nucleolus, a nuclear condensate with a core-shell structure. Specifically, underwound DNA is distributed in the nucleolar core owing to RNA polymerase I (RNAPI) activities. Furthermore, underwound DNA in the core decreases when nucleolar shell components are prevented from binding to their recognition structure, G-quadruplex (G4). Taken together, these results suggest that the nucleolar shell provides anchoring sites that constrain DNA axial rotation for RNAPI-driven DNA underwinding in the core. Our findings will contribute to understanding how nuclear protein condensates make up constraints for the site-specific regulation of DNA underwinding and transcription.
Collapse
Affiliation(s)
- Jumpei Fukute
- Laboratory of Cellular and Molecular Biomechanics, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto, Japan
| | - Koichiro Maki
- Laboratory of Cellular and Molecular Biomechanics, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan.
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto, Japan.
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Sakyo, Kyoto, Japan.
- Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan.
| | - Taiji Adachi
- Laboratory of Cellular and Molecular Biomechanics, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto, Japan
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Sakyo, Kyoto, Japan
- Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| |
Collapse
|
40
|
Brázda V, Valková N, Dobrovolná M, Mergny JL. Abundance of G-Quadruplex Forming Sequences in the Hepatitis Delta Virus Genomes. ACS OMEGA 2024; 9:4096-4101. [PMID: 38284014 PMCID: PMC10809645 DOI: 10.1021/acsomega.3c09288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024]
Abstract
Hepatitis delta virus (HDV) is a highly unusual RNA satellite virus that depends on the presence of hepatitis B virus (HBV) to be infectious. Its compact and variable single-stranded RNA genome consists of eight major genotypes distributed unevenly across different continents. The significance of noncanonical secondary structures such as G-quadruplexes (G4s) is increasingly recognized at the DNA and RNA levels, particularly for transcription, replication, and translation. G4s are formed from guanine-rich sequences and have been identified in the vast majority of viral, eukaryotic, and prokaryotic genomes. In this study, we analyzed the G4 propensity of HDV genomes by using G4Hunter. Unlike HBV, which has a G4 density similar to that of the human genome, HDV displays a significantly higher number of potential quadruplex-forming sequences (PQS), with a density more than four times greater than that of the human genome. This finding suggests a critical role for G4s in HDV, especially given that the PQS regions are conserved across HDV genotypes. Furthermore, the prevalence of G4-forming sequences may represent a promising target for therapeutic interventions to control HDV replication.
Collapse
Affiliation(s)
- Václav Brázda
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 621 00, Czech Republic
- Faculty
of Chemistry, Brno University of Technology, Purkyňova 118, Brno 61200, Czech Republic
| | - Natália Valková
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 621 00, Czech Republic
| | - Michaela Dobrovolná
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 621 00, Czech Republic
- Faculty
of Chemistry, Brno University of Technology, Purkyňova 118, Brno 61200, Czech Republic
| | - Jean-Louis Mergny
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 621 00, Czech Republic
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau 91120, France
| |
Collapse
|
41
|
Sahayasheela VJ, Sugiyama H. RNA G-quadruplex in functional regulation of noncoding RNA: Challenges and emerging opportunities. Cell Chem Biol 2024; 31:53-70. [PMID: 37909035 DOI: 10.1016/j.chembiol.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 11/02/2023]
Abstract
G-quadruplexes (G4s) are stable, noncanonical structures formed in guanine (G)-rich sequences of DNA/RNA. G4 structures are reported to play a regulatory role in various cellular processes and, recently, a considerable number of studies have attributed new biological functions to these structures, especially in RNA. Noncoding RNA (ncRNA), which does not translate into a functional protein, is widely expressed and has been shown to play a key role in shaping cellular activity. There has been growing evidence of G4 formation in several ncRNA classes, and it has been identified as a key part for diverse biological functions and physio-pathological contexts in neurodegenerative diseases and cancer. This review discusses RNA G4s (rG4s) in ncRNA, focusing on the molecular mechanism underlying its function. This review also aims to highlight potential and emerging opportunities to identify and target the rG4s in ncRNA to understand its function and, ultimately, treat many diseases.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan.
| |
Collapse
|
42
|
De Magis A, Schult P, Schönleber A, Linke R, Ludwig KU, Kümmerer BM, Paeschke K. TMPRSS2 isoform 1 downregulation by G-quadruplex stabilization induces SARS-CoV-2 replication arrest. BMC Biol 2024; 22:5. [PMID: 38185627 PMCID: PMC10773119 DOI: 10.1186/s12915-023-01805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND SARS-CoV-2 infection depends on the host cell factors angiotensin-converting enzyme 2, ACE2, and the transmembrane serinprotease 2, TMPRSS2. Potential inhibitors of these proteins would be ideal targets against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection. Our data opens the possibility that changes within TMPRSS2 can modulate the outcome during a SARS-CoV-2 infection. RESULTS We reveal that TMPRSS2 acts not only during viral entry but has also an important role during viral replication. In addition to previous functions for TMPRSS2 during viral entry, we determined by specific downregulation of distinct isoforms that only isoform 1 controls and supports viral replication. G-quadruplex (G4) stabilization by chemical compounds impacts TMPRSS2 gene expression. Here we extend and in-depth characterize these observations and identify that a specific G4 in the first exon of the TMPRSS2 isoform 1 is particular targeted by the G4 ligand and affects viral replication. Analysis of potential single nucleotide polymorphisms (SNPs) reveals that a reported SNP at this G4 in isoform 1 destroys the G4 motif and makes TMPRSS2 ineffective towards G4 treatment. CONCLUSION These findings uncover a novel mechanism in which G4 stabilization impacts SARS-CoV-2 replication by changing TMPRSS2 isoform 1 gene expression.
Collapse
Affiliation(s)
- Alessio De Magis
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- Department of Oncology, Haematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Philipp Schult
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Oncology, Haematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Antonia Schönleber
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Rebecca Linke
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Oncology, Haematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Kerstin U Ludwig
- Institute of Human Genetics, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Beate M Kümmerer
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127, Bonn, Germany
| | - Katrin Paeschke
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- Department of Oncology, Haematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
43
|
Kratochvilová L, Vojsovič M, Valková N, Šislerová L, El Rashed Z, Inga A, Monti P, Brázda V. The presence of a G-quadruplex prone sequence upstream of a minimal promoter increases transcriptional activity in the yeast Saccharomyces cerevisiae. Biosci Rep 2023; 43:BSR20231348. [PMID: 38112096 PMCID: PMC10730334 DOI: 10.1042/bsr20231348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023] Open
Abstract
Non-canonical secondary structures in DNA are increasingly being revealed as critical players in DNA metabolism, including modulating the accessibility and activity of promoters. These structures comprise the so-called G-quadruplexes (G4s) that are formed from sequences rich in guanine bases. Using a well-defined transcriptional reporter system, we sought to systematically investigate the impact of the presence of G4 structures on transcription in yeast Saccharomyces cerevisiae. To this aim, different G4 prone sequences were modeled to vary the chance of intramolecular G4 formation, analyzed in vitro by Thioflavin T binding test and circular dichroism and then placed at the yeast ADE2 locus on chromosome XV, downstream and adjacent to a P53 response element (RE) and upstream from a minimal CYC1 promoter and Luciferase 1 (LUC1) reporter gene in isogenic strains. While the minimal CYC1 promoter provides basal reporter activity, the P53 RE enables LUC1 transactivation under the control of P53 family proteins expressed under the inducible GAL1 promoter. Thus, the impact of the different G4 prone sequences on both basal and P53 family protein-dependent expression was measured after shifting cells onto galactose containing medium. The results showed that the presence of G4 prone sequences upstream of a yeast minimal promoter increased its basal activity proportionally to their potential to form intramolecular G4 structures; consequently, this feature, when present near the target binding site of P53 family transcription factors, can be exploited to regulate the transcriptional activity of P53, P63 and P73 proteins.
Collapse
Affiliation(s)
- Libuše Kratochvilová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| | - Matúš Vojsovič
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| | - Natália Valková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
| | - Lucie Šislerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| | - Zeinab El Rashed
- Gene Expression Regulation SSD, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Paola Monti
- Mutagenesis and Cancer Prevention UO, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| |
Collapse
|
44
|
Lorenzatti A, Piga EJ, Gismondi M, Binolfi A, Margarit E, Calcaterra N, Armas P. Genetic variations in G-quadruplex forming sequences affect the transcription of human disease-related genes. Nucleic Acids Res 2023; 51:12124-12139. [PMID: 37930868 PMCID: PMC10711447 DOI: 10.1093/nar/gkad948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023] Open
Abstract
Guanine-rich DNA strands can fold into non-canonical four-stranded secondary structures named G-quadruplexes (G4s). G4s folded in proximal promoter regions (PPR) are associated either with positive or negative transcriptional regulation. Given that single nucleotide variants (SNVs) affecting G4 folding (G4-Vars) may alter gene transcription, and that SNVs are associated with the human diseases' onset, we undertook a novel comprehensive study of the G4-Vars genome-wide (G4-variome) to find disease-associated G4-Vars located into PPRs. We developed a bioinformatics strategy to find disease-related SNVs located into PPRs simultaneously overlapping with putative G4-forming sequences (PQSs). We studied five G4-Vars disturbing in vitro the folding and stability of the G4s located into PPRs, which had been formerly associated with sporadic Alzheimer's disease (GRIN2B), a severe familiar coagulopathy (F7), atopic dermatitis (CSF2), myocardial infarction (SIRT1) and deafness (LHFPL5). Results obtained in cultured cells for these five G4-Vars suggest that the changes in the G4s affect the transcription, potentially contributing to the development of the mentioned diseases. Collectively, data reinforce the general idea that G4-Vars may impact on the different susceptibilities to human genetic diseases' onset, and could be novel targets for diagnosis and drug design in precision medicine.
Collapse
Affiliation(s)
- Agustín Lorenzatti
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario S2000EZP, Santa Fe, Argentina
| | - Ernesto J Piga
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario S2000EZP, Santa Fe, Argentina
| | - Mauro Gismondi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, Rosario, Santa Fe, Argentina
| | - Andrés Binolfi
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario S2000EZP, Santa Fe, Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica (PLABEM), Ocampo y Esmeralda, Rosario S200EZP, Santa Fe, Argentina
| | - Ezequiel Margarit
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, Rosario, Santa Fe, Argentina
| | - Nora B Calcaterra
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario S2000EZP, Santa Fe, Argentina
| | - Pablo Armas
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario S2000EZP, Santa Fe, Argentina
| |
Collapse
|
45
|
Le Sénéchal R, Keruzoré M, Quillévéré A, Loaëc N, Dinh VT, Reznichenko O, Guixens-Gallardo P, Corcos L, Teulade-Fichou MP, Granzhan A, Blondel M. Alternative splicing of BCL-x is controlled by RBM25 binding to a G-quadruplex in BCL-x pre-mRNA. Nucleic Acids Res 2023; 51:11239-11257. [PMID: 37811881 PMCID: PMC10639069 DOI: 10.1093/nar/gkad772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/05/2023] [Accepted: 09/09/2023] [Indexed: 10/10/2023] Open
Abstract
BCL-x is a master regulator of apoptosis whose pre-mRNA is alternatively spliced into either a long (canonical) anti-apoptotic Bcl-xL isoform, or a short (alternative) pro-apoptotic Bcl-xS isoform. The balance between these two antagonistic isoforms is tightly regulated and overexpression of Bcl-xL has been linked to resistance to chemotherapy in several cancers, whereas overexpression of Bcl-xS is associated to some forms of diabetes and cardiac disorders. The splicing factor RBM25 controls alternative splicing of BCL-x: its overexpression favours the production of Bcl-xS, whereas its downregulation has the opposite effect. Here we show that RBM25 directly and specifically binds to GQ-2, an RNA G-quadruplex (rG4) of BCL-x pre-mRNA that forms at the vicinity of the alternative 5' splice site leading to the alternative Bcl-xS isoform. This RBM25/rG4 interaction is crucial for the production of Bcl-xS and depends on the RE (arginine-glutamate-rich) motif of RBM25, thus defining a new type of rG4-interacting domain. PhenDC3, a benchmark G4 ligand, enhances the binding of RBM25 to the GQ-2 rG4 of BCL-x pre-mRNA, thereby promoting the alternative pro-apoptotic Bcl-xS isoform and triggering apoptosis. Furthermore, the screening of a combinatorial library of 90 putative G4 ligands led to the identification of two original compounds, PhenDH8 and PhenDH9, superior to PhenDC3 in promoting the Bcl-xS isoform and apoptosis. Thus, favouring the interaction between RBM25 and the GQ-2 rG4 of BCL-x pre-mRNA represents a relevant intervention point to re-sensitize cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Ronan Le Sénéchal
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Marc Keruzoré
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Alicia Quillévéré
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Nadège Loaëc
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Van-Trang Dinh
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Oksana Reznichenko
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Pedro Guixens-Gallardo
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Laurent Corcos
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Marie-Paule Teulade-Fichou
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Anton Granzhan
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Marc Blondel
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| |
Collapse
|
46
|
Ji D, Feng H, Liew SW, Kwok CK. Modified nucleic acid aptamers: development, characterization, and biological applications. Trends Biotechnol 2023; 41:1360-1384. [PMID: 37302912 DOI: 10.1016/j.tibtech.2023.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/30/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Aptamers are single-stranded oligonucleotides that bind to their targets via specific structural interactions. To improve the properties and performance of aptamers, modified nucleotides are incorporated during or after a selection process such as systematic evolution of ligands by exponential enrichment (SELEX). We summarize the latest modified nucleotides and strategies used in modified (mod)-SELEX and post-SELEX to develop modified aptamers, highlight the methods used to characterize aptamer-target interactions, and present recent progress in modified aptamers that recognize different targets. We discuss the challenges and perspectives in further advancing the methodologies and toolsets to accelerate the discovery of modified aptamers, improve the throughput of aptamer-target characterization, and expand the functional diversity and complexity of modified aptamers.
Collapse
Affiliation(s)
- Danyang Ji
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China
| | - Hengxin Feng
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China
| | - Shiau Wei Liew
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
47
|
Li H, Song K, Li B, Zhang X, Wang D, Dong S, Yang L. CRISPR/Cas9 Editing Sites Identification and Multi-Elements Association Analysis in Camellia sinensis. Int J Mol Sci 2023; 24:15317. [PMID: 37894996 PMCID: PMC10607008 DOI: 10.3390/ijms242015317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
CRISPR/Cas9 is an efficient genome-editing tool, and the identification of editing sites and potential influences in the Camellia sinensis genome have not been investigated. In this study, bioinformatics methods were used to characterise the Camellia sinensis genome including editing sites, simple sequence repeats (SSRs), G-quadruplexes (GQ), gene density, and their relationships. A total of 248,134,838 potential editing sites were identified in the genome, and five PAM types, AGG, TGG, CGG, GGG, and NGG, were observed, of which 66,665,912 were found to be specific, and they were present in all structural elements of the genes. The characteristic region of high GC content, GQ density, and PAM density in contrast to low gene density and SSR density was identified in the chromosomes in the joint analysis, and it was associated with secondary metabolites and amino acid biosynthesis pathways. CRISPR/Cas9, as a technology to drive crop improvement, with the identified editing sites and effector elements, provides valuable tools for functional studies and molecular breeding in Camellia sinensis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
48
|
Elimelech-Zohar K, Orenstein Y. An overview on nucleic-acid G-quadruplex prediction: from rule-based methods to deep neural networks. Brief Bioinform 2023:bbad252. [PMID: 37438149 DOI: 10.1093/bib/bbad252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/11/2023] [Accepted: 06/18/2023] [Indexed: 07/14/2023] Open
Abstract
Nucleic-acid G-quadruplexes (G4s) play vital roles in many cellular processes. Due to their importance, researchers have developed experimental assays to measure nucleic-acid G4s in high throughput. The generated high-throughput datasets gave rise to unique opportunities to develop machine-learning-based methods, and in particular deep neural networks, to predict G4s in any given nucleic-acid sequence and any species. In this paper, we review the success stories of deep-neural-network applications for G4 prediction. We first cover the experimental technologies that generated the most comprehensive nucleic-acid G4 high-throughput datasets in recent years. We then review classic rule-based methods for G4 prediction. We proceed by reviewing the major machine-learning and deep-neural-network applications to nucleic-acid G4 datasets and report a novel comparison between them. Next, we present the interpretability techniques used on the trained neural networks to learn key molecular principles underlying nucleic-acid G4 folding. As a new result, we calculate the overlap between measured DNA and RNA G4s and compare the performance of DNA- and RNA-G4 predictors on RNA- and DNA-G4 datasets, respectively, to demonstrate the potential of transfer learning from DNA G4s to RNA G4s. Last, we conclude with open questions in the field of nucleic-acid G4 prediction and computational modeling.
Collapse
Affiliation(s)
| | - Yaron Orenstein
- Department of Computer Science, Bar-Ilan University, Ramat Gan, 5290002, Israel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| |
Collapse
|
49
|
Ferret L, Alvarez-Valadez K, Rivière J, Muller A, Bohálová N, Yu L, Guittat L, Brázda V, Kroemer G, Mergny JL, Djavaheri-Mergny M. G-quadruplex ligands as potent regulators of lysosomes. Autophagy 2023; 19:1901-1915. [PMID: 36740766 PMCID: PMC10283436 DOI: 10.1080/15548627.2023.2170071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 02/07/2023] Open
Abstract
Guanine-quadruplex structures (G4) are unusual nucleic acid conformations formed by guanine-rich DNA and RNA sequences and known to control gene expression mechanisms, from transcription to protein synthesis. So far, a number of molecules that recognize G4 have been developed for potential therapeutic applications in human pathologies, including cancer and infectious diseases. These molecules are called G4 ligands. When the biological effects of G4 ligands are studied, the analysis is often limited to nucleic acid targets. However, recent evidence indicates that G4 ligands may target other cellular components and compartments such as lysosomes and mitochondria. Here, we summarize our current knowledge of the regulation of lysosome by G4 ligands, underlying their potential functional impact on lysosome biology and autophagic flux, as well as on the transcriptional regulation of lysosomal genes. We outline the consequences of these effects on cell fate decisions and we systematically analyzed G4-prone sequences within the promoter of 435 lysosome-related genes. Finally, we propose some hypotheses about the mechanisms involved in the regulation of lysosomes by G4 ligands.
Collapse
Affiliation(s)
- Lucille Ferret
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe labellisée par la Ligue contre le Cancer, Institut universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Karla Alvarez-Valadez
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe labellisée par la Ligue contre le Cancer, Institut universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Jennifer Rivière
- Department of Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Alexandra Muller
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe labellisée par la Ligue contre le Cancer, Institut universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Natalia Bohálová
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
| | - Luo Yu
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128Palaiseau, France
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, Orsay, France
| | - Lionel Guittat
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128Palaiseau, France
- UFR SMBH, Université Sorbonne Paris Nord, Bobigny, France
| | - Vaclav Brázda
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe labellisée par la Ligue contre le Cancer, Institut universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Jean-Louis Mergny
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128Palaiseau, France
| | - Mojgan Djavaheri-Mergny
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe labellisée par la Ligue contre le Cancer, Institut universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
50
|
Balaratnam S, Torrey ZR, Calabrese DR, Banco MT, Yazdani K, Liang X, Fullenkamp CR, Seshadri S, Holewinski RJ, Andresson T, Ferré-D'Amaré AR, Incarnato D, Schneekloth JS. Investigating the NRAS 5' UTR as a target for small molecules. Cell Chem Biol 2023; 30:643-657.e8. [PMID: 37257453 PMCID: PMC11623308 DOI: 10.1016/j.chembiol.2023.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/24/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023]
Abstract
Neuroblastoma RAS (NRAS) is an oncogene that is deregulated and highly mutated in cancers including melanomas and acute myeloid leukemias. The 5' untranslated region (UTR) (5' UTR) of the NRAS mRNA contains a G-quadruplex (G4) that regulates translation. Here we report a novel class of small molecule that binds to the G4 structure located in the 5' UTR of the NRAS mRNA. We used a small molecule microarray screen to identify molecules that selectively bind to the NRAS-G4 with submicromolar affinity. One compound inhibits the translation of NRAS in vitro but showed only moderate effects on the NRAS levels in cellulo. Rapid Amplification of cDNA Ends and RT-PCR analysis revealed that the predominant NRAS transcript does not possess the G4 structure. Thus, although NRAS transcripts lack a G4 in many cell lines the concept of targeting folded regions within 5' UTRs to control translation remains a highly attractive strategy.
Collapse
Affiliation(s)
- Sumirtha Balaratnam
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Zachary R Torrey
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - David R Calabrese
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Michael T Banco
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Kamyar Yazdani
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Xiao Liang
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | | | - Srinath Seshadri
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ronald J Holewinski
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD 21702, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD 21702, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|