1
|
Xu Y, Wang Z, Li S, Su J, Gao L, Ou J, Lin Z, Luo OJ, Xiao C, Chen G. An in-depth understanding of the role and mechanisms of T cells in immune organ aging and age-related diseases. SCIENCE CHINA. LIFE SCIENCES 2025; 68:328-353. [PMID: 39231902 DOI: 10.1007/s11427-024-2695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
T cells play a critical and irreplaceable role in maintaining overall health. However, their functions undergo alterations as individuals age. It is of utmost importance to comprehend the specific characteristics of T-cell aging, as this knowledge is crucial for gaining deeper insights into the pathogenesis of aging-related diseases and developing effective therapeutic strategies. In this review, we have thoroughly examined the existing studies on the characteristics of immune organ aging. Furthermore, we elucidated the changes and potential mechanisms that occur in T cells during the aging process. Additionally, we have discussed the latest research advancements pertaining to T-cell aging-related diseases. These findings provide a fresh perspective for the study of T cells in the context of aging.
Collapse
Affiliation(s)
- Yudai Xu
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zijian Wang
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shumin Li
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun Su
- First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Lijuan Gao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Junwen Ou
- Anti Aging Medical Center, Clifford Hospital, Guangzhou, 511495, China
| | - Zhanyi Lin
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chanchan Xiao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| |
Collapse
|
2
|
Ouyang X, Liu Z. Regulatory T cells and macrophages in atherosclerosis: from mechanisms to clinical significance. Front Immunol 2024; 15:1435021. [PMID: 39582868 PMCID: PMC11581946 DOI: 10.3389/fimmu.2024.1435021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024] Open
Abstract
Atherosclerosis is a complex pathological process, which causes diseases that threaten the health of an increasing number of people. Studies have found that the original view of lipid accumulation is not comprehensive because the use of lipid-lowering drugs alone cannot effectively treat atherosclerosis. As the study of the pathogenesis of atherosclerosis develops in-depth, the impact of immune-inflammatory response on atherosclerosis has garnered a great deal of attention. Some new advances have been made in the role of regulatory T cells (Tregs) and macrophages with unique immunomodulatory functions in atherosclerosis. Herein, the role of Tregs, macrophages, the mechanisms of Tregs-regulated macrophages, and the effects of potential factors on Tregs and macrophages in atherosclerosis are overviewed. Targeting Tregs and macrophages may provide new research strategies for the treatment of atherosclerosis in the clinic.
Collapse
Affiliation(s)
- Xin Ouyang
- Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhongyong Liu
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
3
|
Zhu L, Liu Z, Cui Q, Guan G, Hui R, Wang X, Wang J, Zhang Y, Zhu X. Epigenetic modification of CD4 + T cells into Tregs by 5-azacytidine as cellular therapeutic for atherosclerosis treatment. Cell Death Dis 2024; 15:689. [PMID: 39304654 PMCID: PMC11415506 DOI: 10.1038/s41419-024-07086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Recent research has explored the potential of the demethylating drug 5-azacytidine (Aza) as therapy for a range of diseases. However, the therapeutic efficacy of Aza for patients of atherosclerosis remains unclear. This study investigates the therapeutic application of Aza to atherosclerosis in order to elucidate the underlying mechanisms. We generated induced Tregs (iTregs) from CD4+ T cells by using Aza in vitro, and this was followed by the intravenous infusion of iTregs for the treatment of atherosclerosis. The adoptive transfer of Aza-iTreg significantly increased peripheral blood Treg cells, suppressed inflammation, and attenuated atherosclerosis in ApoE-/- mice. Furthermore, we observed a notable demethylation of the Forkhead box P3 (Foxp3)-regulatory T cell-specific demethylated region (TSDR) and an upregulation of Foxp3 expression in the CD4+ T cells in the spleen of the ApoE-/- mice following the transfer of Aza- iTregs. We also demonstrated that Aza converted naive CD4+ T cells into Tregs by DNA methyltransferase 1 (Dnmt1)-mediated Foxp3-TSDR demethylation and the upregulation of Foxp3 expression. Conversely, the overexpression of Dnmt1 in the CD4+ T cells attenuated the Aza-induced Foxp3-TSDR demethylation and upregulation of Foxp3 expression. Our results reveal that Aza converts naive CD4+ T cells into functional Tregs by inhibiting Dnmt1, and the transfer of Aza-iTregs suppresses atherosclerosis in mice.
Collapse
Affiliation(s)
- Ling Zhu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Department of Cardiology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Provincial Traditional Chinese Medicine Key Laboratory, Xi'an, Shaanxi, China
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Provincial Traditional Chinese Medicine Key Laboratory, Xi'an, Shaanxi, China
| | - Qianwei Cui
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Gongchang Guan
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Rutai Hui
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiqiang Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
- Department of Cardiology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Shaanxi Provincial Traditional Chinese Medicine Key Laboratory, Xi'an, Shaanxi, China.
| | - Junkui Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
- Shaanxi Provincial Traditional Chinese Medicine Key Laboratory, Xi'an, Shaanxi, China.
| | - Yong Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
- Shaanxi Provincial Traditional Chinese Medicine Key Laboratory, Xi'an, Shaanxi, China.
| | - Xu Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
| |
Collapse
|
4
|
Kumar V, Narisawa M, Cheng XW. Overview of multifunctional Tregs in cardiovascular disease: From insights into cellular functions to clinical implications. FASEB J 2024; 38:e23786. [PMID: 38979903 DOI: 10.1096/fj.202400839r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
Regulatory T cells (Tregs) are crucial in regulating T-cell-mediated immune responses. Numerous studies have shown that dysfunction or decreased numbers of Tregs may be involved in inflammatory cardiovascular diseases (CVDs) such as atherosclerosis, hypertension, myocardial infarction, myocarditis, cardiomyopathy, valvular heart diseases, heart failure, and abdominal aortic aneurysm. Tregs can help to ameliorate CVDs by suppressing excessive inflammation through various mechanisms, including inhibition of T cells and B cells, inhibition of macrophage-induced inflammation, inhibition of dendritic cells and foam cell formation, and induction of anti-inflammatory macrophages. Enhancing or restoring the immunosuppressive activity of Tregs may thus serve as a fundamental immunotherapy to treat hypertension and CVDs. However, the precise molecular mechanisms underlying the Tregs-induced protection against hypertension and CVDs remain to be investigated. This review focuses on recent advances in our understanding of Tregs subsets and function in CVDs. In addition, we discuss promising strategies for using Tregs through various pharmacological approaches to treat hypertension and CVDs.
Collapse
Affiliation(s)
- Vipin Kumar
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Abstract
ABSTRACT Inflammation is a major underlying mechanism in the progression of numerous cardiovascular diseases (CVDs). Regulatory T cells (Tregs) are typical immune regulatory cells with recognized immunosuppressive properties. Despite the immunosuppressive properties, researchers have acknowledged the significance of Tregs in maintaining tissue homeostasis and facilitating repair/regeneration. Previous studies unveiled the heterogeneity of Tregs in the heart and aorta, which expanded in CVDs with unique transcriptional phenotypes and reparative/regenerative function. This review briefly summarizes the functional principles of Tregs, also including the synergistic effect of Tregs and other immune cells in CVDs. We discriminate the roles and therapeutic potential of Tregs in CVDs such as atherosclerosis, hypertension, abdominal arterial aneurysm, pulmonary arterial hypertension, Kawasaki disease, myocarditis, myocardial infarction, and heart failure. Tregs not only exert anti-inflammatory effects but also actively promote myocardial regeneration and vascular repair, maintaining the stability of the local microenvironment. Given that the specific mechanism of Tregs functioning in CVDs remains unclear, we reviewed previous clinical and basic studies and the latest findings on the function and mechanism of Tregs in CVDs.
Collapse
Affiliation(s)
- Wangling Hu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jingyong Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
6
|
Wang YY, Tian Y, Li YZ, Liu YF, Zhao YY, Chen LH, Zhang C. The role of m5C methyltransferases in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1225014. [PMID: 37476573 PMCID: PMC10354557 DOI: 10.3389/fcvm.2023.1225014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
The global leading cause of death is cardiovascular disease (CVD). Although advances in prevention and treatment have been made, the role of RNA epigenetics in CVD is not fully understood. Studies have found that RNA modifications regulate gene expression in mammalian cells, and m5C (5-methylcytosine) is a recently discovered RNA modification that plays a role in gene regulation. As a result of these developments, there has been renewed interest in elucidating the nature and function of RNA "epitranscriptomic" modifications. Recent studies on m5C RNA methylomes, their functions, and the proteins that initiate, translate and manipulate this modification are discussed in this review. This review improves the understanding of m5C modifications and their properties, functions, and implications in cardiac pathologies, including cardiomyopathy, heart failure, and atherosclerosis.
Collapse
Affiliation(s)
- Yan-Yue Wang
- Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuan Tian
- Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Yong-Zhen Li
- Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Yi-Fan Liu
- ResearchLaboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Yu-Yan Zhao
- Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Lin-Hui Chen
- Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Chi Zhang
- Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
7
|
Meyer-Lindemann U, Moggio A, Dutsch A, Kessler T, Sager HB. The Impact of Exercise on Immunity, Metabolism, and Atherosclerosis. Int J Mol Sci 2023; 24:3394. [PMID: 36834808 PMCID: PMC9967592 DOI: 10.3390/ijms24043394] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Physical exercise represents an effective preventive and therapeutic strategy beneficially modifying the course of multiple diseases. The protective mechanisms of exercise are manifold; primarily, they are elicited by alterations in metabolic and inflammatory pathways. Exercise intensity and duration strongly influence the provoked response. This narrative review aims to provide comprehensive up-to-date insights into the beneficial effects of physical exercise by illustrating the impact of moderate and vigorous exercise on innate and adaptive immunity. Specifically, we describe qualitative and quantitative changes in different leukocyte subsets while distinguishing between acute and chronic exercise effects. Further, we elaborate on how exercise modifies the progression of atherosclerosis, the leading cause of death worldwide, representing a prime example of a disease triggered by metabolic and inflammatory pathways. Here, we describe how exercise counteracts causal contributors and thereby improves outcomes. In addition, we identify gaps that still need to be addressed in the future.
Collapse
Affiliation(s)
- Ulrike Meyer-Lindemann
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Aldo Moggio
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
| | - Alexander Dutsch
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
8
|
Wang X, Zhou H, Liu Q, Cheng P, Zhao T, Yang T, Zhao Y, Sha W, Zhao Y, Qu H. Targeting regulatory T cells for cardiovascular diseases. Front Immunol 2023; 14:1126761. [PMID: 36911741 PMCID: PMC9995594 DOI: 10.3389/fimmu.2023.1126761] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and disability worldwide. The CVDs are accompanied by inflammatory progression, resulting in innate and adaptive immune responses. Regulatory T cells (Tregs) have an immunosuppressive function and are one of the subsets of CD4+T cells that play a crucial role in inflammatory diseases. Whether using Tregs as a biomarker for CVDs or targeting Tregs to exert cardioprotective functions by regulating immune balance, suppressing inflammation, suppressing cardiac and vascular remodeling, mediating immune tolerance, and promoting cardiac regeneration in the treatment of CVDs has become an emerging research focus. However, Tregs have plasticity, and this plastic Tregs lose immunosuppressive function and produce toxic effects on target organs in some diseases. This review aims to provide an overview of Tregs' role and related mechanisms in CVDs, and reports on the research of plasticity Tregs in CVDs, to lay a foundation for further studies targeting Tregs in the prevention and treatment of CVDs.
Collapse
Affiliation(s)
- Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingyao Zhao
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianshu Yang
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Zhao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanjing Sha
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyan Zhao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiyan Qu
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Malko D, Elmzzahi T, Beyer M. Implications of regulatory T cells in non-lymphoid tissue physiology and pathophysiology. Front Immunol 2022; 13:954798. [PMID: 35936011 PMCID: PMC9354719 DOI: 10.3389/fimmu.2022.954798] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Abstract
Treg cells have been initially described as gatekeepers for the control of autoimmunity, as they can actively suppress the activity of other immune cells. However, their role goes beyond this as Treg cells further control immune responses during infections and tumor development. Furthermore, Treg cells can acquire additional properties for e.g., the control of tissue homeostasis. This is instructed by a specific differentiation program and the acquisition of effector properties unique to Treg cells in non-lymphoid tissues. These tissue Treg cells can further adapt to their tissue environment and acquire distinct functional properties through specific transcription factors activated by a combination of tissue derived factors, including tissue-specific antigens and cytokines. In this review, we will focus on recent findings extending our current understanding of the role and differentiation of these tissue Treg cells. As such we will highlight the importance of tissue Treg cells for tissue maintenance, regeneration, and repair in adipose tissue, muscle, CNS, liver, kidney, reproductive organs, and the lung.
Collapse
Affiliation(s)
- Darya Malko
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Tarek Elmzzahi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Marc Beyer
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Platform foR SinglE Cell GenomIcS and Epigenomics (PRECISE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and University of Bonn, Bonn, Germany
| |
Collapse
|
10
|
Zhu L, Jia L, Liu N, Wu R, Guan G, Hui R, Xing Y, Zhang Y, Wang J. DNA Methyltransferase 3b Accelerates the Process of Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5249367. [PMID: 35422896 PMCID: PMC9005271 DOI: 10.1155/2022/5249367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/09/2022] [Indexed: 12/23/2022]
Abstract
Background DNA methylation plays a key role in establishing cell type-specific gene expression profiles and patterns in atherosclerosis. The underlying mechanism remains unclear. Previous studies have shown that DNA methyltransferase 3b (DNMT3b) may play an important role in atherosclerosis. This study aimed to establish the regulatory role of DNMT3b in the development of atherosclerosis. Methods We constructed a viral vector carrying Dnmt3b shRNA to transduce ApoE-/- mice. Meanwhile, healthy human peripheral blood Treg cells were treated with inhibitor of DNMT3b (AZA and EGCG) or transduced with DNMT3b shRNA. Results It showed that Dnmt3b silencing attenuated atherosclerosis, including decreased lesion size and macrophage content and increased collagen and smooth muscle cells content in ApoE-/- mice. To further investigate the possible mechanisms, combined with previous studies by our group, we showed that Foxp3-TSDR methylation level was significantly reduced Foxp3 expression and peripheral blood Treg levels were significantly increased by Dnmt3b shRNA vector transduction in animals committed to western diet for 12 and 18 weeks. Consistently, inhibition of DNMT3b (AZA and EGCG) decreased the expression levels of DNMT3b, which can increase the expression levels of FOXP3, and increase the levels of TGF-β and IL-10 and decrease the levels of IL-β and IFN-γ. After transduction with DNMT3b shRNA, the effect was more obvious. Conclusions DNMT3b accelerated atherosclerosis, and may be associated with FOXP3 hypermethylation status in regulatory T cells.
Collapse
Affiliation(s)
- Ling Zhu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, China
- Department of Cardiology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710000, China
| | - Lei Jia
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Na Liu
- Department of Pediatric Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, China
| | - Runmiao Wu
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, China
| | - Gongchang Guan
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, China
| | - Rutai Hui
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yujie Xing
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, China
| | - Yong Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, China
| | - Junkui Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710000, China
| |
Collapse
|
11
|
Liang ZY, Qian CW, Lan TH, Zeng QH, Lu WH, Jiang W. Regulatory T Cells: A New Target of Chinese Medicine in Treatment of Atherosclerosis. Chin J Integr Med 2021; 27:867-873. [PMID: 34532748 DOI: 10.1007/s11655-021-2877-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Inflammation and immune disorders are integral to the occurrence and progression of atherosclerosis (AS). With the role of regulatory T cells (Tregs) in immune regulation attracting attention, it has been widely accepted that Treg decrease and dysfunction are involved in AS pathogenesis. Chinese medicine (CM) has the advantages of being dual-directional, multi-targeted, and having minimal side effects in immune regulation. The anti-atherosclerosis effects of CM via Treg modulation have been revealed in clinical and animal studies. Therefore, this article reviews existing research on Tregs, the relationship between Tregs and AS, and the progress of CM for treating and prevention of atherosclerotic cardio-cerebrovascular diseases by regulating Tregs. Although the underlying mechanisms remain to be elucidated, CM treatment targeting Treg cells might provide a promising and novel future approach for prevention and treatment of AS.
Collapse
Affiliation(s)
- Zhao-Ying Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, China.,The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Cai-Wen Qian
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China
| | - Tao-Hua Lan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, China
| | - Qiao-Huang Zeng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China
| | - Wei-Hui Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China
| | - Wei Jiang
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, China. .,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China.
| |
Collapse
|
12
|
Lin B, Yang J, Song Y, Dang G, Feng J. Exosomes and Atherogenesis. Front Cardiovasc Med 2021; 8:738031. [PMID: 34513963 PMCID: PMC8427277 DOI: 10.3389/fcvm.2021.738031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/04/2021] [Indexed: 01/08/2023] Open
Abstract
Myocardial infarction and ischemic stroke are the leading causes of mortality worldwide. Atherosclerosis is their common pathological foundation. It is known that atherosclerosis is characterized by endothelial activation/injury, accumulation of inflammatory immune cells and lipid-rich foam cells, followed by the development of atherosclerotic plaque. Either from arterial vessel wall or blood circulation, endothelial cells, smooth muscle cells, macrophages, T-lymphocytes, B-lymphocytes, foam cells, and platelets have been considered to contribute to the pathogenesis of atherosclerosis. Exosomes, as natural nano-carriers and intercellular messengers, play a significant role in modulation of cell-to-cell communication. Under physiological or pathological conditions, exosomes can deliver their cargos including donor cell-specific proteins, lipids, and nucleic acids to target cells, which in turn affect the function of the target cells. In this review, we will describe the pathophysiological significance of various exosomes derived from different cell types associated with atherosclerosis, and the potential applications of exosome in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Bingbing Lin
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Juan Yang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuwei Song
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guohui Dang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Juan Feng
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
13
|
Handke J, Kummer L, Weigand MA, Larmann J. Modulation of Peripheral CD4 +CD25 +Foxp3 + Regulatory T Cells Ameliorates Surgical Stress-Induced Atherosclerotic Plaque Progression in ApoE-Deficient Mice. Front Cardiovasc Med 2021; 8:682458. [PMID: 34485396 PMCID: PMC8416168 DOI: 10.3389/fcvm.2021.682458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
Systemic inflammation associated with major surgery rapidly accelerates atherosclerotic plaque progression in mice. Regulatory T cells (Tregs) have emerged as important modulators of atherogenesis. In coronary artery disease patients, low frequency of Tregs constitutes an independent risk factor for cardiovascular complications after non-cardiac surgery. In this exploratory analysis, we investigate whether preoperative Treg levels affect surgery-induced atherosclerotic lesion destabilization in a murine model of perioperative stress. After 9 weeks of high-cholesterol diet, atherosclerotic apolipoprotein E-deficient mice with modulated Treg levels were subjected to a 30-minute surgical procedure consisting of general isoflurane anesthesia, laparotomy and moderate blood loss. Controls underwent general anesthesia only. Brachiocephalic arteries were harvested 3 days after the intervention for histomorphological analyses of atherosclerotic plaques. Tregs were depleted by a single dose of anti-CD25 monoclonal antibody (mAb) administered 6 days prior to the intervention. Expansion of Tregs was induced by daily injections of IL-2/anti-IL-2 complex (IL-2C) on three consecutive days starting 3 days before surgery. Isotype-matched antibodies and PBS served as controls. Antibody-mediated modulation was Treg-specific. IL-2C treatment resulted in an eight-fold elevation of peripheral CD4+CD25+Foxp3+ Tregs compared to mice administered with anti-CD25 mAb. In mice treated with PBS and anti-CD25 mAb, surgical stress response caused a significant increase of atherosclerotic plaque necrosis (PBS: p < 0.001; anti-CD25 mAb: p = 0.037). Preoperative Treg expansion abrogated perioperative necrotic core formation (p = 0.556) and significantly enhanced postoperative atherosclerotic plaque stability compared to PBS-treated mice (p = 0.036). Postoperative plaque volume (p = 0.960), stenosis (p = 0.693), lesional collagen (p = 0.258), as well as the relative macrophage (p = 0.625) and smooth muscle cell content (p = 0.178) remained largely unaffected by preoperative Treg levels. In atherosclerotic mice, therapeutic expansion of Tregs prior to major surgery mitigates rapid effects on perioperative stress-driven atherosclerotic plaque destabilization. Future studies will show, whether short-term interventions modulating perioperative inflammation qualify for prevention of cardiovascular events associated with major non-cardiac surgery.
Collapse
Affiliation(s)
- Jessica Handke
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Laura Kummer
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jan Larmann
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
14
|
Ait-Oufella H, Lavillegrand JR, Tedgui A. Regulatory T Cell-Enhancing Therapies to Treat Atherosclerosis. Cells 2021; 10:cells10040723. [PMID: 33805071 PMCID: PMC8064079 DOI: 10.3390/cells10040723] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Experimental studies have provided strong evidence that chronic inflammation triggered by the sub-endothelial accumulation of cholesterol-rich lipoproteins in arteries is essential in the initiation and progression of atherosclerosis. Recent clinical trials highlighting the efficacy of anti-inflammatory therapies in coronary patients have confirmed that this is also true in humans Monocytes/macrophages are central cells in the atherosclerotic process, but adaptive immunity, through B and T lymphocytes, as well as dendritic cells, also modulates the progression of the disease. Analysis of the role of different T cell subpopulations in murine models of atherosclerosis identified effector Th1 cells as proatherogenic, whereas regulatory T cells (Tregs) have been shown to protect against atherosclerosis. For these reasons, better understanding of how Tregs influence the atherosclerotic process is believed to provide novel Treg-targeted therapies to combat atherosclerosis. This review article summarizes current knowledge about the role of Tregs in atherosclerosis and discusses ways to enhance their function as novel immunomodulatory therapeutic approaches against cardiovascular disease.
Collapse
Affiliation(s)
- Hafid Ait-Oufella
- Paris Cardiovascular Research Center—PARCC, Université de Paris, INSERM UMR-S 970, 75012 Paris, France; (J.-R.L.); (A.T.)
- AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Saint-Antoine, Sorbonne Université, 75012 Paris, France
- Correspondence: ; Tel.: +33-1-5398-8006; Fax: +33-1-5398-8052
| | - Jean-Rémi Lavillegrand
- Paris Cardiovascular Research Center—PARCC, Université de Paris, INSERM UMR-S 970, 75012 Paris, France; (J.-R.L.); (A.T.)
| | - Alain Tedgui
- Paris Cardiovascular Research Center—PARCC, Université de Paris, INSERM UMR-S 970, 75012 Paris, France; (J.-R.L.); (A.T.)
| |
Collapse
|
15
|
Preliminary analysis of immunoregulatory mechanism of hyperhomocysteinemia-induced brain injury in Wistar-Kyoto rats. Exp Ther Med 2021; 21:483. [PMID: 33790992 PMCID: PMC8005698 DOI: 10.3892/etm.2021.9914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) can be used as an independent risk factor for predicting cardiovascular disease, stroke and vitamin B12 deficiency. Patients with HHcy have elevated plasma homocysteine (Hcy) concentrations. Enhancing cerebrovascular permeability of substances such as Hcy and brain damage will synergistically increase the symptoms of hypertension, but the specific immune regulation mechanism is still not clear. The purpose of the present study was to preliminarily explore the immunomodulatory mechanism of brain damage caused by HHcy in Wistar-Kyoto (WKY) rats. A total of 60 WKYs were randomly divided into three groups: WKY control group (WKY-C group), WKY methionine group (WKY-M group) and WKY treatment group (WKY-T group; vitamin B6, B12 and folic acid were used as treatment), with 20 rats in each group. Physical examination of body weight, systolic blood pressure (SBP) and plasma Hcy content was performed routinely. The concentration of cytokines, including IL-6, IL-10, IL-17A and TGF-β, associated with T helper cell 17 (Th17) and regulatory T (Treg) cells and key regulator genes, including retinoic acid-related orphan receptor γ t (RORγt) and forkhead box P3 (FoxP3), were detected by ELISA, reverse transcription-quantitative PCR and western blotting. Th17/Treg lymphocytes were determined by flow cytometry. MRI scan was preliminarily used to detect the changes characteristic of the ischemic stroke. The results revealed that high methionine diets might have a significant effect on the body weight and SBP. The inflammatory response effect of Treg cells was significantly inhibited in the WKY-M group, and that of Th17 cells was upregulated when compared to the WKY-T group. Compared with the WKY-T group, the expression levels of IL-17A and RORγt in the WKY-M group were significantly upregulated, while the mRNA levels of FoxP3 in the WKY-M group were significantly downregulated. The diet intervention (including vitamins B6 and B12 and folic acid) could reduce the level of Hcy in the blood, but also reduce the inflammatory response and rectify the Treg/Th17 immune imbalance to ameliorate the brain tissue damage. In conclusion, the present study indicated that HHcy can promote inflammation by triggering Treg/Th17 immune imbalance to ameliorate the brain tissue damage.
Collapse
|
16
|
Kaur L, Puri M, Pal Sachdeva M, Mishra J, Nava Saraswathy K. Maternal one carbon metabolism and interleukin-10 &-17 synergistically influence the mode of delivery in women with Early Onset Pre-Eclampsia. Pregnancy Hypertens 2021; 24:79-89. [PMID: 33765603 DOI: 10.1016/j.preghy.2021.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Studies on One Carbon Metabolism (OCM), Interleukins-10 &-17 (IL-10/-17) & βhCG in pre-eclampsia and its delivery outcome (preterm birth) reveal contradictory results, attributed to clinical heterogeneity (early/late onset pre-eclampsia) or preterm/term birth. Disturbed OCM also influences IL-10 &-17 during pregnancy. We sought to investigate the synergism between OCM and IL-10/-17 mediated immune-regulation through βhCG in Early onset pre-eclampsia (EO-PE) patients, delivering preterm, among North Indian women. STUDY DESIGN Case-control study with a total of 399 pregnant women (EO-PE delivering preterm = 199; Normotensives delivering at term = 200). Maternal genotypes & biochemical estimations along with fetal genotypes on subset (n = 72) pertaining to OCM and IL-10/-17 regulation were assessed. MAIN OUTCOME MEASURES Association of 1) maternal plasma levels with EO-PE 2) maternal and fetal genotypes with EO-PE. 3) Effect of Hyper-homocysteinemia (surrogate of disturbed OCM) on differential immune regulation (IL10,-17, βhCG) in EO-PE and mode of delivery. RESULTS Hyper-homocysteinemia posed an increased risk of three folds for EO-PE. Both, folate and B12 deficiencies were associated with elevated homocysteine in EO-PE. Further, MTHFR 677TT homozygotes was present only in EO-PE indicating its detrimental role. However, maternal IL17-197AA genotype showed decreased risk for EO-PE. Furthermore, elevated maternal plasma IL-17 along with elevated IL-10 & βhCG were observed in EO-PE. Taken together, altered homocysteine metabolism was associated with high IL10 in EO-PE; and was more pronounced in spontaneous vaginal deliveries as compared to induced/caesarean section deliveries. CONCLUSIONS We report homocysteine mediated IL-10 &17 dysregulation and its influence on mode of delivery in EO-PE, possibly through initiation of cervical ripening. Further, these could serve potential biomarkers of EO-PE & its delivery outcome among vulnerable populations with similar nutritional & genetic predispositions.
Collapse
Affiliation(s)
- Lovejeet Kaur
- Translational Health Science and Technology Institute, Faridabad, Haryana, India.
| | - Manju Puri
- Department of Obstetrics and Gynecology, Lady Hardinge Medical College, Delhi, India
| | | | - Jyoti Mishra
- Department of Anthropology, University of Delhi, Delhi, India
| | | |
Collapse
|
17
|
Guanxinshutong Alleviates Atherosclerosis by Suppressing Oxidative Stress and Proinflammation in ApoE -/- Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1219371. [PMID: 33014098 PMCID: PMC7519182 DOI: 10.1155/2020/1219371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/20/2020] [Accepted: 09/08/2020] [Indexed: 01/01/2023]
Abstract
Atherosclerosis (AS) is a chronic progressive disease related to dyslipidemia, inflammation, and oxidative stress. Guanxinshutong capsule (GXST), a traditional Chinese medicine, has been widely used in treating coronary atherosclerotic heart disease, while its mechanism actions on AS are still not to be well addressed. Our present study is aimed to examine the effect of GXST on AS and elucidate the multitarget mechanisms of GXST on AS. Network pharmacology analysis was employed to screen the multitarget mechanisms of GXST on AS. ApoE−/− mice were used to validate these effects. Circulating lipid profile and oxidative stress-related factors were measured by the Elisa kit. Furthermore, the aortic trunk and aortic root were excised for oil red O staining, histopathological and immunohistochemical analysis. We first discovered that GXST was clued to exert synergistically antiatherosclerosis properties including lipid-lowering, anti-inflammation, and antioxidation through the computational prediction based on a network pharmacology simulation. Next, the validation experiments in atherosclerosis mice provided evidence that GXST significantly reduced atherosclerotic lesions, increased collagen deposition, and attenuated LV remodeling to some extent. Mechanistically, GXST modulated lipid profile, downregulated the level of inflammatory cytokines and NF-κBp65. GXST also reduced the activity of oxidative parameter MDA and upregulated the activities of antioxidant enzymes (SOD and GSH) compared with the AS model group. In conclusion, GXST intervention might attenuate atherosclerosis by mechanisms involving reducing lipid deposition, modulating oxidative stress and inflammatory responses, but a larger controlled trial is necessary for confirmation.
Collapse
|
18
|
Abstract
Psoriasis is caused by a complex interplay among the immune system, genetic background, autoantigens, and environmental factors. Recent studies have demonstrated that patients with psoriasis have a significantly higher serum homocysteine (Hcy) level and a higher prevalence of hyperhomocysteinaemia (HHcy). Insufficiency of folic acid and vitamin B12 can be a cause of HHcy in psoriasis. Hcy may promote the immuno-inflammatory process in the pathogenesis of psoriasis by activating Th1 and Th17 cells and neutrophils, while suppressing regulatory T cells. Moreover, Hcy can drive the immuno-inflammatory process by enhancing the production of the pro-inflammatory cytokines in related to psoriasis. Hcy can induce nuclear factor kappa B activation, which is critical in the immunopathogenesis of psoriasis. There may be a link between the oxidative stress state in psoriasis and the effect of HHcy. Hydrogen sulfide (H2S) may play a protective role in the pathogenesis of psoriasis and the deficiency of H2S in psoriasis may be caused by HHcy. As the role of Hcy in the pathogenesis of psoriasis is most likely established, Hcy can be a potential therapeutic target for the treatment of psoriasis. Systemic folinate calcium, a folic acid derivative, and topical vitamin B12 have found to be effective in treating psoriasis.
Collapse
|
19
|
Liu H, Liu X, Zhuang H, Fan H, Zhu D, Xu Y, He P, Liu J, Feng D. Mitochondrial Contact Sites in Inflammation-Induced Cardiovascular Disease. Front Cell Dev Biol 2020; 8:692. [PMID: 32903766 PMCID: PMC7438832 DOI: 10.3389/fcell.2020.00692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
The mitochondrion, the ATP-producing center, is both physically and functionally associated with almost all other organelles in the cell. Mitochondrial-associated membranes (MAMs) are involved in a variety of biological processes, such as lipid exchange, protein transport, mitochondrial fission, mitophagy, and inflammation. Several inflammation-related diseases in the cardiovascular system involve several intracellular events including mitochondrial dysfunction as well as disruption of MAMs. Therefore, an in-depth exploration of the function of MAMs will be of great significance for us to understand the initiation, progression, and clinical complications of cardiovascular disease (CVD). In this review, we summarize the recent advances in our knowledge of MAM regulation and function in CVD-related cells. We discuss the potential roles of MAMs in activating inflammation to influence the development of CVD.
Collapse
Affiliation(s)
- Hao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Haixia Zhuang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hualin Fan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Guangdong Provincial People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Diseases, The Second Affiliated Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yiming Xu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Pengcheng He
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Du Feng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Wang H, Wei G, Cheng S, Wang D, Ma J, Xin S. Circulatory CD4-Positive T-Lymphocyte Imbalance Mediated by Homocysteine-Induced AIM2 and NLRP1 Inflammasome Upregulation and Activation Is Associated with Human Abdominal Aortic Aneurysm. J Vasc Res 2020; 57:276-290. [DOI: 10.1159/000508077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/17/2020] [Indexed: 11/19/2022] Open
|
21
|
Lü SL, Dang GH, Deng JC, Liu HY, Liu B, Yang J, Ma XL, Miao YT, Jiang CT, Xu QB, Wang X, Feng J. Shikonin attenuates hyperhomocysteinemia-induced CD4 + T cell inflammatory activation and atherosclerosis in ApoE -/- mice by metabolic suppression. Acta Pharmacol Sin 2020; 41:47-55. [PMID: 31607752 PMCID: PMC7468273 DOI: 10.1038/s41401-019-0308-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/06/2019] [Indexed: 12/27/2022]
Abstract
T cell metabolic activation plays a crucial role in inflammation of atherosclerosis. Shikonin (SKN), a natural naphthoquinone with anti-inflammatory activity, has shown to exert cardioprotective effects, but the effect of SKN on atherosclerosis is unclear. In addition, SKN was found to inhibit glycolysis via targeting pyruvate kinase muscle isozyme 2 (PKM2). In the present study, we investigated the effects of SKN on hyperhomocysteinemia (HHcy)-accelerated atherosclerosis and T cell inflammatory activation in ApoE-/- mice and the metabolic mechanisms in this process. Drinking water supplemented with Hcy (1.8 g/L) was administered to ApoE-/- mice for 2 weeks and the mice were injected with SKN (1.2 mg/kg, i.p.) or vehicle every 3 days. We showed that SKN treatment markedly attenuated HHcy-accelerated atherosclerosis in ApoE-/- mice and significantly decreased inflammatory activated CD4+ T cells and proinflammatory macrophages in plaques. In splenic CD4+ T cells isolated from HHcy-ApoE-/- mice, SKN treatment significantly inhibited HHcy-stimulated PKM2 activity, interferon-γ secretion and the capacity of these T cells to promote macrophage proinflammatory polarization. SKN treatment significantly inhibited HHcy-stimulated CD4+ T cell glycolysis and oxidative phosphorylation. Metabolic profiling analysis of CD4+ T cells revealed that Hcy administration significantly increased various glucose metabolites as well as lipids and acetyl-CoA carboxylase 1, which were reversed by SKN treatment. In conclusion, our results suggest that SKN is effective to ameliorate atherosclerosis in HHcy-ApoE-/- mice and this is at least partly associated with the inhibition of SKN on CD4+ T cell inflammatory activation via PKM2-dependent metabolic suppression.
Collapse
|
22
|
Yang J, Dang G, Lü S, Liu H, Ma X, Han L, Deng J, Miao Y, Li X, Shao F, Jiang C, Xu Q, Wang X, Feng J. T-cell-derived extracellular vesicles regulate B-cell IgG production via pyruvate kinase muscle isozyme 2. FASEB J 2019; 33:12780-12799. [PMID: 31480861 DOI: 10.1096/fj.201900863r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intercellular communication between lymphocytes plays a fundamental role in numerous immune responses. Previously, we demonstrated that hyperhomocysteinemia (HHcy) induced T cell intracellular glycolytic-lipogenic reprogramming and IFN-γ secretion via pyruvate kinase muscle isozyme 2 (PKM2) to accelerate atherosclerosis. Usually, B cells partially obtain help from T cells in antibody responses. However, whether PKM2 activation in T cells regulates B cell antibody production is unknown. Extracellular vesicles (EVs) are important cellular communication vehicles. Here, we found that PKM2 activator TEPP46-stimulated T-cell-derived EVs promoted B-cell IgG secretion. Conversely, EVs secreted from PKM2-null T cells were internalized into B cells and markedly inhibited B-cell mitochondrial programming, activation, and IgG production. Mechanistically, lipidomics analyses showed that increased ceramides in PKM2-activated T-cell EVs were mainly responsible for enhanced B cell IgG secretion induced by these EVs. Finally, quantum dots (QDs) were packaged with PKM2-null T cell EVs and anti-CD19 antibody to exert B-cell targeting and inhibit IgG production, eventually ameliorating HHcy-accelerated atherosclerosis in vivo. Thus, PKM2-mediated EV ceramides in T cells may be an important cargo for T-cell-regulated B cell IgG production, and QD-CD19-PKM2-null T cell EVs hold high potential to treat B cell overactivation-related diseases.-Yang, J., Dang, G., Lü, S., Liu, H., Ma, X., Han, L., Deng, J., Miao, Y., Li, X., Shao, F., Jiang, C., Xu, Q., Wang, X., Feng, J. T-cell-derived extracellular vesicles regulate B-cell IgG production via pyruvate kinase muscle isozyme 2.
Collapse
Affiliation(s)
- Juan Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Guohui Dang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Silin Lü
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Huiying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Xiaolong Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Lulu Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jiacheng Deng
- Cardiovascular Division, British Heart Foundation (BHF) Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Yutong Miao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Xiaopeng Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Fangyu Shao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Qingbo Xu
- Cardiovascular Division, British Heart Foundation (BHF) Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Juan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
23
|
Wei Y, Wu Y, Zhao R, Zhang K, Midgley AC, Kong D, Li Z, Zhao Q. MSC-derived sEVs enhance patency and inhibit calcification of synthetic vascular grafts by immunomodulation in a rat model of hyperlipidemia. Biomaterials 2019; 204:13-24. [PMID: 30875515 DOI: 10.1016/j.biomaterials.2019.01.049] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/03/2019] [Accepted: 01/20/2019] [Indexed: 02/07/2023]
Abstract
Vascular grafts often exhibit low patency rates in clinical settings due to the pathological environment within the patients requiring the surgery. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have attracted increasing attention. These sEVs contain many potent signaling molecules that play important roles in tissue regeneration, such as microRNA and cytokines. In this study, a sEVs-functionalized vascular graft was developed, and in vivo performance was systematically evaluated in a rat model of hyperlipidemia. Electrospun poly (ε-caprolactone) (PCL) vascular grafts were first modified with heparin, to enhance the anti-thrombogenicity. MSC-derived sEVs were loaded onto the heparinized PCL grafts to obtain functional vascular grafts. As-prepared vascular grafts were implanted to replace a segment of rat abdominal artery (1 cm) for up to 3 months. Results showed that the incorporation of MSC-derived sEVs effectively inhibited thrombosis and calcification, thus enhancing the patency of vascular grafts. Furthermore, regeneration of the endothelium and vascular smooth muscle was markedly enhanced, as attributed to the bioactive molecules within the sEVs, including vascular endothelial growth factor (VEGF), miRNA126, and miRNA145. More importantly, MSC-derived sEVs demonstrated a robust immunomodulatory effect, that is, they induced the transition of macrophages from a pro-inflammatory and atherogenic (M1) phenotype to an anti-inflammatory and anti-osteogenic (M2c) phenotype. This phenotypic switch was confirmed in both in vitro and in vivo analyses. Taken together, these results suggest that fabrication of vascular grafts with immunomodulatory function can provide an effective approach to improve vascular performance and functionality, with translational implication in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yifan Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Runxia Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Kaiyue Zhang
- Nankai University School of Medicine, Tianjin 300071, PR China
| | - Adam C Midgley
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin 300071, PR China.
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
24
|
Kaur L, Garg PR, Ghosh PK, Saraswathy KN. Impaired Homocysteine Metabolism Associated with High Plasma Interleukin-17A Levels, a Pro-Atherogenic Marker, in an Endogamous Population of North India. Ethn Dis 2018; 28:525-530. [PMID: 30405296 PMCID: PMC6200300 DOI: 10.18865/ed.28.4.525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Impaired homocysteine metabolism (IHM; hyperhomocysteinemia) has been linked with many complex disorders like cardiovascular diseases and immunological disturbances. However, studies understanding IHM in light of pro- and anti- atherogeneic markers like Interleukin-17A & -10 (IL-17A & IL-10) and Forkhead box p3 (Foxp3, a master transcription factor) are scarce. Aim In our present study, we aimed to understand the relation of IHM with plasma IL-17A and IL-10 levels and Foxp3 mRNA expression in peripheral blood mononuclear cells (PBMCs) from an endogamous population (Jats of Haryana, North India) with high prevalence of IHM without the concurrence of significant adverse cardiovascular outcomes. Methods Forty (40) clinically healthy individuals, unrelated up to first cousins, were recruited and were subjected to demographic, physiological and anthropometric profiling, followed by intravenous blood sample collection (fasting) and lipid profiling. Plasma homocysteine levels were estimated and individuals with homocysteine levels ≥ 15umol/L and <15umol/L were categorized as the impaired homocysteine metabolism group (IHM, n=30) and normal homocysteine metabolism group (NHM, n=10) respectively. Plasma folate and vitamin B12 and MTHFR C677T (methylenetetrahydrofolate reductase) polymorphism were detected. Relative mRNA expression of Foxp3 in PBMCs (normalized to 18S) was quantitated using SyBR green technology. Plasma IL-10 & 17 levels were estimated by ELISA assays. Results and Conclusions None of the physiological, anthropometric and lipid variables were different between the two groups. Foxp3 mRNA expression levels were relatively lower, and plasma IL-10 levels were found to be comparable among IHM and NHM group. However, significantly higher IL-17A levels and relatively high LDL cholesterol levels were present in the IHM group as compared with NHM. Our findings suggest that the Jats of Haryana, North India, exhibiting high levels of homocysteine, might also carry the high IL-17A -pro-atherogenic marker, suggesting an increasing burden of pre-morbid condition. This apparently does not reach to significant mortality/morbidity attributed to the counter action or balancing act of IL-10 (an anti-atherogenic marker). This further suggests environment-influenced epigenetic control mechanisms of the targeted genes in the present population.
Collapse
Affiliation(s)
- Lovejeet Kaur
- Department of Anthropology, University of Delhi, India
- Genomic Research on Complex Diseases (GRC) Group, CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, Telangana-500007, India
| | - Priyanka Rani Garg
- Department of Anthropology, University of Delhi, India
- Public Health Foundation of India, New Delhi, Delhi, India
| | | | | |
Collapse
|
25
|
Zhu Z, Zhang Y, Ye J, Wang X, Fu X, Yin Y, Wen J, Wu X, Xia Z. IL-35 promoted STAT3 phosphorylation and IL-10 production in B cells, but its production was reduced in patients with coronary artery diseases. Hum Immunol 2018; 79:869-875. [PMID: 30316971 DOI: 10.1016/j.humimm.2018.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/01/2022]
Abstract
Interleukin (IL)-35 is a heterodimeric cytokine composed of the IL-12A subunit and the Epstein-Barr virus induced gene 3 (EBI3) subunit. Binding of IL-35 with IL-12 receptor subunit beta 2 (IL-12RB2) and IL-6 signal transducer (IL-6ST) occupies the binding sites of IL-6, IL-12, and IL-27 and prevents their signal transduction. IL-35 is also shown to promote the development of regulatory T cells (Tregs) and regulatory B cells (Bregs). In this study, we investigated B cell-mediated IL-35 production in patients with coronary artery disease (CAD). The expression levels of IL-35 subunits and IL-10 were significantly lower in B cells from CAD patients than in B cells from healthy control individuals. Exogenous IL-35 could effectively increase the IL-10 production by B cells in a concentration-dependent manner. IL-35 promoted the phosphorylation of STAT1 and STAT3 in B cells, and the inhibition of STAT3 phosphorylation suppressed IL-10 production. Raising the IL-35 concentration in cell culture eliminated the difference in IL-10 expression between CAD B cells and healthy B cells. We also demonstrated that B cells from CAD patients presented lower capacity to suppress interferon gamma (IFNG) and tumor necrosis factor (TNF) expression by T cells than B cells from healthy controls. Exogenous IL-35 could significantly improve the suppressive capacity of B cells in both healthy controls and CAD patients. Together, these results demonstrated that a reduction in IL-35 production was associated with Breg defects in CAD patients. IL-35 and IL-35 targets may serve as therapeutic candidates in the treatment of CAD and related diseases.
Collapse
Affiliation(s)
- Zhendong Zhu
- Department of Cardiology, The Third People's Hospital of Yunnan Province, The Second Affiliated Hospital of Dali University, Kunming, Yunnan, China.
| | - Yunmei Zhang
- Department of Cardiology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jiyun Ye
- Pathogenic Organisms Department of Experimental Center, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Xuechang Wang
- Department of Pharmacy, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Xuemei Fu
- Department of Geriatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yan Yin
- Central Lab, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jin Wen
- Department of Pharmacy, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Xinran Wu
- Central Lab, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhonghua Xia
- Faculty of Clinical Medicine, Dali University, Kunming, Yunnan, China
| |
Collapse
|
26
|
Ding JW, Zhou T, Zheng XX, Wang XA, Tong XH, Luo CY, Zhang ZQ, Yu B. The Effects of High Mobility Group Box-1 Protein on Peripheral Treg/Th17 Balance in Patients with Atherosclerosis. ACTA CARDIOLOGICA SINICA 2018; 34:399-408. [PMID: 30271090 PMCID: PMC6160517 DOI: 10.6515/acs.201809_34(5).20180419a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 04/19/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Atherosclerosis (AS) is defined as chronic inflammation of the vessel wall. The major objective of the this study was to explore the mechanism of Treg/Th17 imbalance and the role of high mobility group box-1 protein (HMGB1) on the balance in AS. METHODS We detected the apoptotic ratios of Treg and Th17 cells in peripheral blood mononuclear cells (PBMCs) from subjects with AS and normal coronary arteries (NCA) by flow cytometry. The effects of recombinant HMGB1 (rHMGB1) on the proportion, apoptosis and differentiation of Treg and Th17 cells were analyzed using flow cytometry, qRT-PCR and ELISA. RESULTS The frequencies of apoptotic Treg cells in the PBMCs from the subjects with AS were significantly higher than in those with NCA (p < 0.01). Stimulation of rHMGB1 obviously increased the level of Th17 cells and acid- related orphan receptor C (RORC) mRNA, and markedly decreased Treg cell frequency and the mRNA expression of factor forkhead family protein 3 (Foxp3) in the PBMCs. rHMGB1 played an obvious role in elevating Treg cell apoptosis ratio (p < 0.01). rHMGB1 treatment significantly decreased Treg cell ratio and IL-10 level, and increased Th17 cell ratio and IL-17A level induced from naïve CD4+ T cells. CONCLUSIONS HMGB1 may modulate Treg/Th17 balance in patients with AS through inducing Treg cell apoptosis and promoting cell differentiation of Th17.
Collapse
Affiliation(s)
- Jia-Wang Ding
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Tian Zhou
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Xia-Xia Zheng
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Xin-An Wang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Xiao-Hong Tong
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Cai-Yun Luo
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Zai-Qiang Zhang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Bin Yu
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| |
Collapse
|
27
|
Baptista D, Mach F, Brandt KJ. Follicular regulatory T cell in atherosclerosis. J Leukoc Biol 2018; 104:925-930. [PMID: 30134501 DOI: 10.1002/jlb.mr1117-469r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease involving the infiltration of immune cells, such as monocytes/macrophages, neutrophils, T cells, and B cells, into the inner layer of vessel walls. T and B cell functions in the process of atherogenesis, as well as their mutual regulation, have been investigated but several aspects remain to be clarified. In the present review, we give a brief overview of the functions of follicular regulatory T cell (Tfr) on follicular T (Tfh) and B cell regulation related to atherosclerosis pathogenesis, including their influence on lymphangiogenesis and lipoprotein metabolism. We will also discuss their potential therapeutics properties in the resolution of established atherosclerotic lesions.
Collapse
Affiliation(s)
- Daniela Baptista
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - François Mach
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karim J Brandt
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
28
|
Cueto R, Zhang L, Shan HM, Huang X, Li X, Li YF, Lopez J, Yang WY, Lavallee M, Yu C, Ji Y, Yang X, Wang H. Identification of homocysteine-suppressive mitochondrial ETC complex genes and tissue expression profile - Novel hypothesis establishment. Redox Biol 2018; 17:70-88. [PMID: 29679893 PMCID: PMC6006524 DOI: 10.1016/j.redox.2018.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 12/13/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular disease (CVD) which has been implicated in matochondrial (Mt) function impairment. In this study, we characterized Hcy metabolism in mouse tissues by using LC-ESI-MS/MS analysis, established tissue expression profiles for 84 nuclear-encoded Mt electron transport chain complex (nMt-ETC-Com) genes in 20 human and 19 mouse tissues by database mining, and modeled the effect of HHcy on Mt-ETC function. Hcy levels were high in mouse kidney/lung/spleen/liver (24-14 nmol/g tissue) but low in brain/heart (~5 nmol/g). S-adenosylhomocysteine (SAH) levels were high in the liver/kidney (59-33 nmol/g), moderate in lung/heart/brain (7-4 nmol/g) and low in spleen (1 nmol/g). S-adenosylmethionine (SAM) was comparable in all tissues (42-18 nmol/g). SAM/SAH ratio was as high as 25.6 in the spleen but much lower in the heart/lung/brain/kidney/liver (7-0.6). The nMt-ETC-Com genes were highly expressed in muscle/pituitary gland/heart/BM in humans and in lymph node/heart/pancreas/brain in mice. We identified 15 Hcy-suppressive nMt-ETC-Com genes whose mRNA levels were negatively correlated with tissue Hcy levels, including 11 complex-I, one complex-IV and two complex-V genes. Among the 11 Hcy-suppressive complex-I genes, 4 are complex-I core subunits. Based on the pattern of tissue expression of these genes, we classified tissues into three tiers (high/mid/low-Hcy responsive), and defined heart/eye/pancreas/brain/kidney/liver/testis/embryonic tissues as tier 1 (high-Hcy responsive) tissues in both human and mice. Furthermore, through extensive literature mining, we found that most of the Hcy-suppressive nMt-ETC-Com genes were suppressed in HHcy conditions and related with Mt complex assembly/activity impairment in human disease and experimental models. We hypothesize that HHcy inhibits Mt complex I gene expression leading to Mt dysfunction.
Collapse
Affiliation(s)
- Ramon Cueto
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Lixiao Zhang
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Hui Min Shan
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Xiao Huang
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Xinyuan Li
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Ya-Feng Li
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Jahaira Lopez
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - William Y Yang
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Muriel Lavallee
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Catherine Yu
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA; The Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, China.
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA; Department of Pharmacology, Temple University - Lewis Katz School of Medicine, Philadelphia, PA, USA; Thrombosis Research Center, Temple University - Lewis Katz School of Medicine, Philadelphia, PA, USA; Cardiovascular Research Center, Temple University - Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA; Department of Pharmacology, Temple University - Lewis Katz School of Medicine, Philadelphia, PA, USA; Thrombosis Research Center, Temple University - Lewis Katz School of Medicine, Philadelphia, PA, USA; Cardiovascular Research Center, Temple University - Lewis Katz School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
29
|
PKM2-dependent metabolic reprogramming in CD4 + T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis. J Mol Med (Berl) 2018; 96:585-600. [PMID: 29732501 DOI: 10.1007/s00109-018-1645-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 04/10/2018] [Accepted: 04/29/2018] [Indexed: 12/17/2022]
Abstract
Inflammation mediated by activated T cells plays an important role in the initiation and progression of hyperhomocysteinemia (HHcy)-accelerated atherosclerosis in ApoE-/- mice. Homocysteine (Hcy) activates T cells to secrete proinflammatory cytokines, especially interferon (IFN)-γ; however, the precise mechanisms remain unclear. Metabolic reprogramming is critical for T cell inflammatory activation and effector functions. Our previous study demonstrated that Hcy regulates T cell mitochondrial reprogramming by enhancing endoplasmic reticulum (ER)-mitochondria coupling. In this study, we further explored the important role of glycolysis-mediated metabolic reprogramming in Hcy-activated CD4+ T cells. Mechanistically, Hcy-activated CD4+ T cell increased the protein expression and activity of pyruvate kinase muscle isozyme 2 (PKM2), the final rate-limiting enzyme in glycolysis, via the phosphatidylinositol 3-kinase/AKT/mechanistic target of rapamycin signaling pathway. Knockdown of PKM2 by small interfering RNA reduced Hcy-induced CD4+ T cell IFN-γ secretion. Furthermore, we generated T cell-specific PKM2 knockout mice by crossing LckCre transgenic mice with PKM2fl/fl mice and observed that Hcy-induced glycolysis and oxidative phosphorylation were both diminished in PKM2-deficient CD4+ T cells with reduced glucose and lipid metabolites, and subsequently reduced IFN-γ secretion. T cell-depleted apolipoprotein E-deficient (ApoE-/-) mice adoptively transferred with PKM2-deficient CD4+ T cells, compared to mice transferred with control cells, showed significantly decreased HHcy-accelerated early atherosclerotic lesion formation. In conclusion, this work indicates that the PKM2-dependent glycolytic-lipogenic axis, a novel mechanism of metabolic regulation, is crucial for HHcy-induced CD4+ T cell activation to accelerate early atherosclerosis in ApoE-/- mice. KEY MESSAGES Metabolic reprogramming is crucial for Hcy-induced CD4+ T cell inflammatory activation. Hcy activates the glycolytic-lipogenic pathway in CD4+ T cells via PKM2. Targeting PKM2 attenuated HHcy-accelerated early atherosclerosis in ApoE-/- mice in vivo.
Collapse
|
30
|
Zhu Z, Ye J, Ma Y, Hua P, Huang Y, Fu X, Li D, Yuan M, Xia Z. Function of T regulatory type 1 cells is down-regulated and is associated with the clinical presentation of coronary artery disease. Hum Immunol 2018; 79:564-570. [PMID: 29729899 DOI: 10.1016/j.humimm.2018.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/24/2018] [Accepted: 05/01/2018] [Indexed: 11/29/2022]
Abstract
T regulatory type 1 (Tr1) cells can promote tolerance and suppress inflammation. Atherosclerosis may be induced by the proinflammatory activation of cells in the vasculature and the immune system. Hence, we wondered whether defects in Tr1 function were a contributing factor to coronary artery disease (CAD). Data showed that the frequency of IL-10+ Tr1 cells was significantly lower in CAD patients than in controls. Compared to healthy controls, Tr1 cells from CAD patients presented lower CTLA-4 but higher PD-1 expression, in addition to lower IL-10 secretion. When co-incubated with Tconv cells, the CD4+CD49b+LAG-3+CD45RO+ Tr1 cells presented IL-10-dependent inhibitory effects, and those from CAD patients presented significantly lower suppression capacity than those from healthy controls. Interestingly, the characteristics of Tr1 cells were associated with clinical features of CAD patients. The frequency of Tr1 cells and the IL-10 and LAG-3 expression by Tr1 cells were negatively correlated with the BMI of the CAD patients. In addition, the Tr1 frequency and the LAG-3 and CTLA-4 expression on Tr1 cells were lower in CAD patients with higher numbers of narrowed vessels. Together, these results suggest that in CAD, Tr1 cells present multiple defects, which are associated with the clinical presentation of the disease.
Collapse
Affiliation(s)
- Zhendong Zhu
- Department of Cardiology, The Third People's Hospital of Yunnan Province, The Second Affiliated Hospital of Dali University, Kunming, Yunnan, China.
| | - Jiyun Ye
- Pathogenic Organisms Department of Experimental Center, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Yumei Ma
- Department of Geriatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Peng Hua
- Department of Pharmacy, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yu Huang
- Department of Pharmacy, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Xuemei Fu
- Department of Geriatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Dexuan Li
- Department of Lab Testing, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Maogen Yuan
- Department of Research and Education, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhonghua Xia
- Faculty of Clinical Medicine, Dali University, Kunming, Yunnan, China
| |
Collapse
|
31
|
Li J, Zhang Y, Zhang Y, Lü S, Miao Y, Yang J, Huang S, Ma X, Han L, Deng J, Fan F, Liu B, Huo Y, Xu Q, Chen C, Wang X, Feng J. GSNOR modulates hyperhomocysteinemia-induced T cell activation and atherosclerosis by switching Akt S-nitrosylation to phosphorylation. Redox Biol 2018; 17:386-399. [PMID: 29860106 PMCID: PMC6007174 DOI: 10.1016/j.redox.2018.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/24/2018] [Accepted: 04/28/2018] [Indexed: 01/25/2023] Open
Abstract
The adaptive immune system plays a critical role in hyperhomocysteinemia (HHcy)-accelerated atherosclerosis. Recent studies suggest that HHcy aggravates atherosclerosis with elevated oxidative stress and reduced S-nitrosylation level of redox-sensitive protein residues in the vasculature. However, whether and how S-nitrosylation contributes to T-cell-driven atherosclerosis remain unclear. In the present study, we report that HHcy reduced the level of protein S-nitrosylation in T cells by inducing S-nitrosoglutathione reductase (GSNOR), the key denitrosylase that catalyzes S-nitrosoglutathione (GSNO), which is the main restored form of nitric oxide in vivo. Consequently, secretion of inflammatory cytokines [interferon-γ (IFN-γ) and interleukin-2] and proliferation of T cells were increased. GSNOR knockout or GSNO stimulation rectified HHcy-induced inflammatory cytokine secretion and T-cell proliferation. Site-directed mutagenesis of Akt at Cys224 revealed that S-nitrosylation at this site was pivotal for the reduced phosphorylation at Akt Ser473, which led to impaired Akt signaling. Furthermore, on HHcy challenge, as compared with GSNOR+/+ApoE-/- littermate controls, GSNOR-/-ApoE-/- double knockout mice showed reduced T-cell activation with concurrent reduction of atherosclerosis. Adoptive transfer of GSNOR-/- T cells to ApoE-/- mice fed homocysteine (Hcy) decreased atherosclerosis, with fewer infiltrated T cells and macrophages in plaques. In patients with HHcy and coronary artery disease, the level of plasma Hcy was positively correlated with Gsnor expression in peripheral blood mononuclear cells and IFN-γ+ T cells but inversely correlated with the S-nitrosylation level in T cells. These data reveal that T cells are activated, in part via GSNOR-dependent Akt denitrosylation during HHcy-induced atherosclerosis. Thus, suppression of GSNOR in T cells may reduce the risk of atherosclerosis.
Collapse
Affiliation(s)
- Jing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 38 Xueyuan Road, Beijing 100191, China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing 100034, China
| | - Yuying Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Silin Lü
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 38 Xueyuan Road, Beijing 100191, China
| | - Yutong Miao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 38 Xueyuan Road, Beijing 100191, China
| | - Juan Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 38 Xueyuan Road, Beijing 100191, China
| | - Shenming Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 38 Xueyuan Road, Beijing 100191, China
| | - Xiaolong Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 38 Xueyuan Road, Beijing 100191, China
| | - Lulu Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 38 Xueyuan Road, Beijing 100191, China
| | - Jiacheng Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 38 Xueyuan Road, Beijing 100191, China
| | - Fangfang Fan
- Department of Cardiology, Peking University First Hospital, Beijing 100034, China
| | - Bo Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 38 Xueyuan Road, Beijing 100191, China
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing 100034, China
| | - Qingbo Xu
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, UK
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 38 Xueyuan Road, Beijing 100191, China.
| | - Juan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
32
|
Wang N, Tang H, Wang X, Wang W, Feng J. Homocysteine upregulates interleukin-17A expression via NSun2-mediated RNA methylation in T lymphocytes. Biochem Biophys Res Commun 2017; 493:94-99. [DOI: 10.1016/j.bbrc.2017.09.069] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/13/2017] [Indexed: 01/02/2023]
|
33
|
Fu Y, Wang X, Kong W. Hyperhomocysteinaemia and vascular injury: advances in mechanisms and drug targets. Br J Pharmacol 2017; 175:1173-1189. [PMID: 28836260 DOI: 10.1111/bph.13988] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/27/2017] [Accepted: 08/12/2017] [Indexed: 12/14/2022] Open
Abstract
Homocysteine is a sulphur-containing non-proteinogenic amino acid. Hyperhomocysteinaemia (HHcy), the pathogenic elevation of plasma homocysteine as a result of an imbalance of its metabolism, is an independent risk factor for various vascular diseases, such as atherosclerosis, hypertension, vascular calcification and aneurysm. Treatments aimed at lowering plasma homocysteine via dietary supplementation with folic acids and vitamin B are more effective in preventing vascular disease where the population has a normally low folate consumption than in areas with higher dietary folate. To date, the mechanisms of HHcy-induced vascular injury are not fully understood. HHcy increases oxidative stress and its downstream signalling pathways, resulting in vascular inflammation. HHcy also causes vascular injury via endoplasmic reticulum stress. Moreover, HHcy up-regulates pathogenic genes and down-regulates protective genes via DNA demethylation and methylation respectively. Homocysteinylation of proteins induced by homocysteine also contributes to vascular injury by modulating intracellular redox state and altering protein function. Furthermore, HHcy-induced vascular injury leads to neuronal damage and disease. Also, an HHcy-activated sympathetic system and HHcy-injured adipose tissue also cause vascular injury, thus demonstrating the interactions between the organs injured by HHcy. Here, we have summarized the recent developments in the mechanisms of HHcy-induced vascular injury, which are further considered as potential therapeutic targets in this condition. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
34
|
Familtseva A, Jeremic N, Kunkel GH, Tyagi SC. Toll-like receptor 4 mediates vascular remodeling in hyperhomocysteinemia. Mol Cell Biochem 2017; 433:177-194. [PMID: 28386844 DOI: 10.1007/s11010-017-3026-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/01/2017] [Indexed: 01/12/2023]
Abstract
Although hyperhomocysteinemia (HHcy) is known to promote downstream pro-inflammatory cytokine elevation, the precise mechanism is still unknown. One of the possible receptors that could have significant attention in the field of hypertension is toll-like receptor 4 (TLR-4). TLR-4 is a cellular membrane protein that is ubiquitously expressed in all cell types of the vasculature. Its mutation can attenuate the effects of HHcy-mediated vascular inflammation and mitochondria- dependent cell death that suppresses hypertension. In this review, we observed that HHcy induces vascular remodeling through immunological adaptation, promoting inflammatory cytokine up-regulation (IL-1β, IL-6, TNF-α) and initiation of mitochondrial dysfunction leading to cell death and chronic vascular inflammation. The literature suggests that HHcy promotes TLR-4-driven chronic vascular inflammation and mitochondria-mediated cell death inducing peripheral vascular remodeling. In the previous studies, we have characterized the role of TLR-4 mutation in attenuating vascular remodeling in hyperhomocysteinemia. This review includes, but is not limited to, the physiological synergistic aspects of the downstream elevation of cytokines found within the vascular inflammatory cascade. These events subsequently induce mitochondrial dysfunction defined by excessive mitochondrial fission and mitochondrial apoptosis contributing to vascular remodeling followed by hypertension.
Collapse
Affiliation(s)
- Anastasia Familtseva
- Department of Physiology, School of Medicine, Health Sciences Centre, University of Louisville, A-1215, 500, South Preston Street, Louisville, KY, 40202, USA
| | - Nevena Jeremic
- Department of Physiology, School of Medicine, Health Sciences Centre, University of Louisville, A-1215, 500, South Preston Street, Louisville, KY, 40202, USA.
| | - George H Kunkel
- Department of Physiology, School of Medicine, Health Sciences Centre, University of Louisville, A-1215, 500, South Preston Street, Louisville, KY, 40202, USA
| | - Suresh C Tyagi
- Department of Physiology, School of Medicine, Health Sciences Centre, University of Louisville, A-1215, 500, South Preston Street, Louisville, KY, 40202, USA
| |
Collapse
|
35
|
Folate status, regulatory T cells and MTHFR C677T polymorphism study in allergic children. Adv Med Sci 2016; 61:300-305. [PMID: 27149557 DOI: 10.1016/j.advms.2016.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 03/01/2016] [Accepted: 03/30/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE This study aimed to investigate early-life folate serum concentrations in children with food, inhalant or mixed type allergy. The influence of folate levels on the FoxP3 expression in Treg (regulatory T) cells in the studied children, taking into account the MTHFR (5,10-methylenetetrahydrofolate reductase) genotypes was also analyzed. MATERIAL AND METHODS The study was performed in 83 allergic children (study group) and 49 healthy children (control group), aged 2-72 months. Medical history of each child was obtained and laboratory tests (serum folic acid concentrations and MTHFR C677T polymorphism) were carried out. The percentage of Treg cells was evaluated in almost a half of the examined subjects (48.5%). RESULTS Significantly higher serum folate levels in the group of children with food allergy than in those with inhalant allergy was confirmed (P=0.037). In the study group the TT homozygotes were characterized by significantly lower folate concentrations than CC homozygotes (P=0.045). A negative correlation was demonstrated between the FoxP3 expression in CD4+CD25highFoxP3+ peripheral blood lymphocytes and serum folic acid concentrations. The correlation was more pronounced in the group of allergic children and it was statistically significant (r=-0.339, P<0.05). CONCLUSIONS The results of the study indicate a possibility of some effects of folate status on Treg cells, thus suggesting their potential role in the development and course of allergy in children.
Collapse
|
36
|
Immune-inflammatory responses in atherosclerosis: Role of an adaptive immunity mainly driven by T and B cells. Immunobiology 2016; 221:1014-33. [PMID: 27262513 DOI: 10.1016/j.imbio.2016.05.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/06/2016] [Accepted: 05/23/2016] [Indexed: 01/22/2023]
Abstract
Adaptive immune response plays an important role in atherogenesis. In atherosclerosis, the proinflammatory immune response driven by Th1 is predominant but the anti-inflammatory response mediated mainly by regulatory T cells is also present. The role of Th2 and Th17 cells in atherogenesis is still debated. In the plaque, other T helper cells can be observed such as Th9 and Th22 but is little is known about their impact in atherosclerosis. Heterogeneity of CD4(+) T cell subsets presented in the plaque may suggest for plasticity of T cell that can switch the phenotype dependening on the local microenvironment and activating/blocking stimuli. Effector T cells are able to recognize self-antigens released by necrotic and apoptotic vascular cells and induce a humoral immune reaction. Tth cells resided in the germinal centers help B cells to switch the antibody class to the production of high-affinity antibodies. Humoral immunity is mediated by B cells that release antigen-specific antibodies. A variety of B cell subsets were found in human and murine atherosclerotic plaques. In mice, B1 cells could spontaneously produce atheroprotective natural IgM antibodies. Conventional B2 lymphocytes secrete either proatherogenic IgG, IgA, and IgE or atheroprotective IgG and IgM antibodies reactive with oxidation-specific epitopes on atherosclerosis-associated antigens. A small population of innate response activator (IRA) B cells, which is phenotypically intermediate between B1 and B2 cells, produces IgM but possesses proatherosclerotic properties. Finally, there is a minor subset of splenic regulatory B cells (Bregs) that protect against atherosclerotic inflammation through support of generation of Tregs and production of anti-inflammatory cytokines IL-10 and TGF-β and proapoptotic molecules.
Collapse
|
37
|
Veeranki S, Gandhapudi SK, Tyagi SC. Interactions of hyperhomocysteinemia and T cell immunity in causation of hypertension. Can J Physiol Pharmacol 2016; 95:239-246. [PMID: 27398734 DOI: 10.1139/cjpp-2015-0568] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular diseases (CVD), there is a debate on whether HHcy is a risk factor or just a biomarker. Interestingly, homocysteine lowering strategies in humans had very little effect on reducing the cardiovascular risk, as compared with animals; this may suggest heterogeneity in human population and epigenetic alterations. Moreover, there are only few studies that suggest the idea that HHcy contributes to CVD in the presence of other risk factors such as inflammation, a known risk factor for CVD. Elevated levels of homocysteine have been shown to contribute to inflammation. Here, we highlight possible relationships between homocysteine, T cell immunity, and hypertension, and summarize the evidence that suggested these factors act together in increasing the risk for CVD. In light of this new evidence, we further propose that there is a need for evaluation of the causes of HHcy, defective remethylation or defective transsulfuration, which may differentially modulate hypertension progression, not just the homocysteine levels.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Department of Physiology and Biophysics, Health Sciences Centre, A-1216, School of Medicine, University of Louisville, 500 South Pres Street, Louisville, KY, 40202, USA.,Department of Physiology and Biophysics, Health Sciences Centre, A-1216, School of Medicine, University of Louisville, 500 South Pres Street, Louisville, KY, 40202, USA
| | - Siva K Gandhapudi
- Department of Physiology and Biophysics, Health Sciences Centre, A-1216, School of Medicine, University of Louisville, 500 South Pres Street, Louisville, KY, 40202, USA.,Department of Physiology and Biophysics, Health Sciences Centre, A-1216, School of Medicine, University of Louisville, 500 South Pres Street, Louisville, KY, 40202, USA
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, Health Sciences Centre, A-1216, School of Medicine, University of Louisville, 500 South Pres Street, Louisville, KY, 40202, USA.,Department of Physiology and Biophysics, Health Sciences Centre, A-1216, School of Medicine, University of Louisville, 500 South Pres Street, Louisville, KY, 40202, USA
| |
Collapse
|
38
|
Abstract
Inflammation is essential in the initial development and progression of many cardiovascular diseases involving innate and adaptive immune responses. The role of CD4(+)CD25(+)FOXP3(+) regulatory T (TREG) cells in the modulation of inflammation and immunity has received increasing attention. Given the important role of TREG cells in the induction and maintenance of immune homeostasis and tolerance, dysregulation in the generation or function of TREG cells can trigger abnormal immune responses and lead to pathology. A wealth of evidence from experimental and clinical studies has indicated that TREG cells might have an important role in protecting against cardiovascular disease, in particular atherosclerosis and abdominal aortic aneurysm. In this Review, we provide an overview of the roles of TREG cells in the pathogenesis of a number of cardiovascular diseases, including atherosclerosis, hypertension, ischaemic stroke, abdominal aortic aneurysm, Kawasaki disease, pulmonary arterial hypertension, myocardial infarction and remodelling, postischaemic neovascularization, myocarditis and dilated cardiomyopathy, and heart failure. Although the exact molecular mechanisms underlying the cardioprotective effects of TREG cells are still to be elucidated, targeted therapies with TREG cells might provide a promising and novel future approach to the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiao Meng
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan, Shandong 250012, China
| | - Jianmin Yang
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan, Shandong 250012, China
| | - Mei Dong
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan, Shandong 250012, China
| | - Kai Zhang
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan, Shandong 250012, China
| | - Eric Tu
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Qi Gao
- Department of Clinical Laboratory, Shandong Provincial Hospital affiliated to Shandong University, 324 Jingwu Weiqi Road, Jinan 250021, China
| | - Wanjun Chen
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan, Shandong 250012, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan, Shandong 250012, China
| |
Collapse
|
39
|
Feng J, Lü S, Ding Y, Zheng M, Wang X. Homocysteine activates T cells by enhancing endoplasmic reticulum-mitochondria coupling and increasing mitochondrial respiration. Protein Cell 2016; 7:391-402. [PMID: 26856873 PMCID: PMC4887324 DOI: 10.1007/s13238-016-0245-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 01/30/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) accelerates atherosclerosis by increasing proliferation and stimulating cytokine secretion in T cells. However, whether homocysteine (Hcy)-mediated T cell activation is associated with metabolic reprogramming is unclear. Here, our in vivo and in vitro studies showed that Hcy-stimulated splenic T-cell activation in mice was accompanied by increased levels of mitochondrial reactive oxygen species (ROS) and calcium, mitochondrial mass and respiration. Inhibiting mitochondrial ROS production and calcium signals or blocking mitochondrial respiration largely blunted Hcy-induced T-cell interferon γ (IFN-γ) secretion and proliferation. Hcy also enhanced endoplasmic reticulum (ER) stress in T cells, and inhibition of ER stress with 4-phenylbutyric acid blocked Hcy-induced T-cell activation. Mechanistically, Hcy increased ER-mitochondria coupling, and uncoupling ER-mitochondria by the microtubule inhibitor nocodazole attenuated Hcy-stimulated mitochondrial reprogramming, IFN-γ secretion and proliferation in T cells, suggesting that juxtaposition of ER and mitochondria is required for Hcy-promoted mitochondrial function and T-cell activation. In conclusion, Hcy promotes T-cell activation by increasing ER-mitochondria coupling and regulating metabolic reprogramming.
Collapse
Affiliation(s)
- Juan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Silin Lü
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Yanhong Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Ming Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China.
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
40
|
Wang ZX, Wang CQ, Li XY, Ding Y, Feng GK, Jiang XJ. Changes of Naturally Occurring CD4 +CD25 + FOXP3 + Regulatory T Cells in Patients With Acute Coronary Syndrome and the Beneficial Effects of Atorvastatin Treatment. Int Heart J 2015; 56:163-9. [DOI: 10.1536/ihj.14-245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Zhi Xiao Wang
- Department of Cardiology, Renmin Hospital of Wuhan University
| | - Chong Quan Wang
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine
| | - Xiao Yan Li
- Department of Cardiology, Renmin Hospital of Wuhan University
| | - Yan Ding
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine
| | - Gao Ke Feng
- Department of Cardiology, Renmin Hospital of Wuhan University
| | - Xue Jun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University
| |
Collapse
|
41
|
Yu K, Dong Q, Mao X, Meng K, Zhao X, Ji Q, Wu B, Zhong Y, Zhu Z, Liu Y, Zhang W, Tony H, Shi H, Zeng Q. Disruption of the TSLP-TSLPR-LAP signaling between epithelial and dendritic cells through hyperlipidemia contributes to regulatory T-Cell defects in atherosclerotic mice. Atherosclerosis 2014; 238:278-88. [PMID: 25544178 DOI: 10.1016/j.atherosclerosis.2014.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/09/2014] [Accepted: 12/09/2014] [Indexed: 01/08/2023]
Abstract
Regulatory T-Cells (Tregs) play a protective role against the development of atherosclerosis. Moreover, thymic stromal lymphopoietin (TSLP)/thymic stromal lymphopoietin receptor (TSLPR) signaling in myeloid dendritic cells (DCs) promote Treg differentiation. Here, we examined the potential role of TSLP/TSLPR on Treg homeostasis in atherosclerosis. The frequencies of both latency-associated peptide (LAP)(+) and Foxp3(+) Tregs were reduced in the thymus and spleen of ApoE(-/-) mice compared with C57BL/6 mice, and this effect was associated with decreased thymic output. The tolerogenic function of DCs obtained from ApoE(-/-) mice was compromised compared with those from C57BL/6 mice. The expression of TSLP and TSLPR was also inhibited in ApoE(-/-) mice. In addition, we found that ox-LDL attenuated TSLP expression in cultured thymic epithelial cells (TECs) through the activation of retinoid X receptor alpha (RXRA) and IL-1β and decreased LAP and PD-L1 expression in oxLDL-activated DCs while both were up-regulated in TSLP-activated DCs. We also observed that the TSLP-DCs mediated differentiation of Tregs was abrogated through LAP neutralization. Furthermore, TSLP injection rescued Treg defects in ApoE(-/-) mice. These findings suggest that Treg defects in ApoE(-/-) mice might partially be attributed to the disruption of TSLP-TSLPR-LAP signaling in epithelial cells (ECs) and DCs.
Collapse
Affiliation(s)
- Kunwu Yu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Dong
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Mao
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Meng
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqi Zhao
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qingwei Ji
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Bangwei Wu
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yucheng Zhong
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengfeng Zhu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuzhou Liu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hasahya Tony
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Huairui Shi
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qiutang Zeng
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
42
|
The application of a chemical determination of N-homocysteinylation levels in developing mouse embryos: implication for folate responsive birth defects. J Nutr Biochem 2014; 26:312-8. [PMID: 25620692 DOI: 10.1016/j.jnutbio.2014.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/24/2014] [Accepted: 10/07/2014] [Indexed: 12/19/2022]
Abstract
Elevated homocysteine levels have long been associated with various disease states, including cardiovascular disease and birth defects, including neural tube defects (NTDs). One hypothesis regarding the strong correlation between these various disorders and high levels of homocysteine is that a reactive form of this small molecule can attach to mammalian proteins in a phenomenon known as homocysteinylation. These posttranslational modifications may become antigenic or may even directly disrupt certain protein function. It remains to be determined whether dietary influences that can cause globally increased levels of circulating homocysteine confer negative effects maternally, or may otherwise negatively and materially impact the metabolic balance in developing embryos. Herein we present the application of a chemical method of determination of N-homocysteinylation to a set of neural tube closure stage mouse embryos and their mothers. We explore the uses of this newly described technique to investigate levels of maternal and embryonic N-homocysteinylation using dietary manipulations of one-carbon metabolism with two known folate-responsive NTD mouse models. The data presented reveal that although diet appeared to have significant effects on the maternal metabolic status, those effects did not directly correlate to the embryonic folate or N-homocysteinylation status. Our studies indicate that maternal diet and embryonic genotype most significantly affected the embryonic developmental outcome.
Collapse
|
43
|
Abstract
Adaptive immunity is involved in the pathogenesis of atherosclerosis, but the recruitment of T and B lymphocytes to atherosclerotic lesions is not as well studied as that of monocytes. In this review, we summarize the current understanding of the role of lymphocyte subsets in the pathogenesis of atherosclerosis and discuss chemokines and chemokine receptors involved in lymphocyte homing to atherosclerotic lesions. We review evidence for involvement of the chemokines CCL5, CCL19, CCL21, CXCL10, and CXCL16 and macrophage migration inhibitory factor in lymphocyte homing in atherosclerosis. Also, we review the role of their receptors CCR5, CCR6, CCR7, CXCR3, CXCR6, and CXCR2/CXCR4 and the role of the L-selectin in mouse models of atherosclerosis.
Collapse
Affiliation(s)
- Jie Li
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA
| | - Klaus Ley
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA.
| |
Collapse
|
44
|
Ait-Oufella H, Sage AP, Mallat Z, Tedgui A. Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis. Circ Res 2014; 114:1640-60. [PMID: 24812352 DOI: 10.1161/circresaha.114.302761] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic inflammation in response to lipoprotein accumulation in the arterial wall is central in the development of atherosclerosis. Both innate and adaptive immunity are involved in this process. Adaptive immune responses develop against an array of potential antigens presented to effector T lymphocytes by antigen-presenting cells, especially dendritic cells. Functional analysis of the role of different T-cell subsets identified the Th1 responses as proatherogenic, whereas regulatory T-cell responses exert antiatherogenic activities. The effect of Th2 and Th17 responses is still debated. Atherosclerosis is also associated with B-cell activation. Recent evidence established that conventional B-2 cells promote atherosclerosis. In contrast, innate B-1 B cells offer protection through secretion of natural IgM antibodies. This review discusses the recent development in our understanding of the role of T- and B-cell subsets in atherosclerosis and addresses the role of dendritic cell subpopulations in the control of adaptive immunity.
Collapse
Affiliation(s)
- Hafid Ait-Oufella
- From INSERM UMR-S 970, Paris Cardiovascular Research Center (PARCC), Université Paris Descartes, Sorbonne Paris Cité, Paris, France (H.A.-O., Z.M., A.T.); Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Paris, France (H.A.-O.); and Department of Medicine, University of Cambridge, Cambridge, United Kingdom (A.P.S., Z.M.)
| | | | | | | |
Collapse
|
45
|
Guanxinkang Decoction Exerts Its Antiatherosclerotic Effect Partly through Inhibiting the Endoplasmic Reticulum Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:465640. [PMID: 24955103 PMCID: PMC4052183 DOI: 10.1155/2014/465640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 12/05/2022]
Abstract
Purpose. To investigate the antiatherosclerotic effect of Guanxinkang (GXK) decoction on the apoptosis, mitochondrial membrane potential (MMP), and endoplasmic reticulum stress (ERS) of human umbilical vein endothelial cells (HUVEC) pretreated with homocysteinemia (HCY). Materials and Methods. HUVEC were randomly divided into 5 groups: (1) blank control group (control), (2) model control group (model), (3) GXK low dose group, (4) GXK medium dose group, and (5) GXK high dose group. For the three GXK groups, HCY was given to reach the concentration of 3.0 mmol/L after HUVEC had been incubated with rabbit serum containing GXK for two hours. At 3, 6, 12, and 24 h after HCY had been incubated with the cells, the HUVEC were collected for test of the apoptosis rate, MMP, and GRP78 protein (reflecting ERS). Results. In the model control group, the apoptosis rate and GRP 78 protein expression of HUVEC significantly increased (P < 0.05), while MMP significantly decreased (P < 0.05) compared with the blank control group. After GXK treatment of medium and high doses, the apoptosis rate and the GRP 78 protein expression significantly (P < 0.05) decreased, while MMP significantly increased (P < 0.05) in a time-dependent manner compared with the model control group. Conclusion. GXK can antagonize the injury of HUVEC caused by HCY and the antagonism effect increases with the concentration and treatment duration of GXK, with the possible mechanism of GXK antagonism being through inhibiting ERS caused by HCY.
Collapse
|
46
|
Homocysteine level and risk of abdominal aortic aneurysm: a meta-analysis. PLoS One 2014; 9:e85831. [PMID: 24465733 PMCID: PMC3897527 DOI: 10.1371/journal.pone.0085831] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/27/2013] [Indexed: 11/19/2022] Open
Abstract
Objectives Previous studies have reported inconsistent findings regarding the association between elevated plasma homocysteine (Hcy) levels and abdominal aortic aneurysm (AAA). We investigated this association between Hcy levels in patients with AAA and unaffected controls by conducting a meta-analysis and systematic review. Methods We conducted a systematic literature search (up to August 2013) of the PubMed database and Embase. We selected observational studies that evaluated Hcy levels in subjects with AAA compared to unaffected controls. Criteria for inclusion were the assessment of baseline Hcy and risk of AAA as an outcome. The results were presented as odd ratio (OR) and corresponding 95% confidence intervals (CI) comparing AAA patients to the control subjects. Results 7 studies with 6,445 participants were identified and analyzed. Overall, elevated plasma Hcy was associated with an increased risk of AAA (3.29; 95% CI 1.66–6.51). The pooled adjusted OR from a random effect model of only men participants in the AAA compared with the control group was 2.36 (95% CI 0.63–8.82). Conclusion This meta-analysis and systematic review suggested that Hcy significantly increased the risk of AAA.
Collapse
|
47
|
Wong YY, Golledge J, Flicker L, McCaul KA, Hankey GJ, van Bockxmeer FM, Yeap BB, Norman PE. Plasma total homocysteine is associated with abdominal aortic aneurysm and aortic diameter in older men. J Vasc Surg 2013; 58:364-70. [DOI: 10.1016/j.jvs.2013.01.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 12/30/2022]
|
48
|
Jia L, Zhu L, Wang JZ, Wang XJ, Chen JZ, Song L, Wu YJ, Sun K, Yuan ZY, Hui R. Methylation of FOXP3 in regulatory T cells is related to the severity of coronary artery disease. Atherosclerosis 2013; 228:346-52. [PMID: 23566804 DOI: 10.1016/j.atherosclerosis.2013.01.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 01/16/2013] [Accepted: 01/17/2013] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Regulatory T (Treg) cells have been shown to play a protective role in experimental atherosclerosis. However, it is unclear whether Tregs can protect from rupture of vulnerable plaque in patients with atherosclerosis. Demethylation of the DNA encoding the transcription factor forkhead box P3 (FOXP3) was found to be essential for the stable maintenance of the suppressive properties of Tregs. We aimed to evaluate Treg levels in patients with acute coronary syndrome (ACS) using a method based on Treg-specific DNA demethylation within the FOXP3 gene. METHODS AND RESULTS Peripheral blood was collected to determine Treg levels by PCR-based DNA methylation analysis. We found that Treg levels were decreased in patients with ACS compared with normal coronary controls. The decrease in Tregs was associated with the severity of the ACS. Furthermore, up-regulation of DNA-methyltransferases was detected in CD4(+)CD25(+) Tregs obtained from ACS patients as compared to those from normal coronary controls. A dose-dependent increase in the methylation of the Treg-specific demethylated region in FOXP3 was observed in cultures of PBMCs with ox-LDL. Moreover, the ox-LDL-induced Treg effects could be restored by loading (-)-epigallocatechin-3-gallate, a methyltransferase inhibitor. Treatment of CD4(+)CD25(+) Tregs with ox-LDL resulted in a 41% increase in the methylation of FOXP3, a 66% of reduction in FOXP3 mRNA expression, and an increase in the expression of DNA methyltransferase 3a as well as 3b. CONCLUSIONS Our data demonstrate that reduction in Treg cells is associated with ACS in atherosclerotic patients. Epigenetic suppression of FOXP3 might lead to down-regulation of Treg cells, and in turn increase the risk of ACS.
Collapse
Affiliation(s)
- Lei Jia
- Sino-German Laboratory for Molecular Medicine, State Key Laboratory of Translational Cardiovascular Medicine, Fuwai Hospital & Cardiovascular Institute, Chinese Academy of Medical Sciences, Peking Union Medical College, 167 Beilishilu, Beijing 100037, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ma K, Lv S, Liu B, Liu Z, Luo Y, Kong W, Xu Q, Feng J, Wang X. CTLA4-IgG ameliorates homocysteine-accelerated atherosclerosis by inhibiting T-cell overactivation in apoE(-/-) mice. Cardiovasc Res 2012; 97:349-59. [PMID: 23118130 DOI: 10.1093/cvr/cvs330] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Cytotoxic T lymphocyte antigen 4 (CTLA4) exerts inhibitory effects on T-cell activation by competition with CD28. In this study, we investigated the effect of CTLA4-IgG on homocysteine (Hcy)-induced T-cell activation and potential signal pathways involved in atherosclerotic formation. METHODS AND RESULTS The CD28 signal was significantly amplified by Hcy treatment in splenic T cells and hyperhomocysteinaemia (HHcy)-accelerated plaques in apolipoprotein E-deficient (apoE(-/-)) mice. As a major competitor of CD28, CTLA4-IgG (abatacept) pretreatment, 100 μg/week, in apoE(-/-) mice could reverse 2- and 4-week HHcy-accelerated atherosclerosis. Furthermore, the membrane level of CTLA4 was decreased and the endocytosis level was increased by HHcy. Endocytosed CTLA4 molecules by Hcy were in large vesicles, colocalized with lysosomes and endosomes. Hcy-increased CTLA4 endocytosis and secretion of inflammatory cytokines in T cells were blocked by CTLA4-IgG and the PI3K inhibitor LY294002. Blocking the CD28 signal pathway in T cells significantly decreased Hcy-promoted macrophage migration. CONCLUSION These results illustrate a novel mechanism of CD28-dependent T-cell costimulation involved in HHcy-accelerated atherosclerosis, which extends the pharmacological application of CTLA4-IgG for atherosclerosis.
Collapse
Affiliation(s)
- Kongyang Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Beijing 100191, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jiang Y, Zhang H, Sun T, Wang J, Sun W, Gong H, Yang B, Shi Y, Wei J. The comprehensive effects of hyperlipidemia and hyperhomocysteinemia on pathogenesis of atherosclerosis and DNA hypomethylation in ApoE-/- mice. Acta Biochim Biophys Sin (Shanghai) 2012; 44:866-75. [PMID: 23017835 DOI: 10.1093/abbs/gms075] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis (AS) is a disease induced by multiple factors, including genetic and environmental elements. The aim of the present study is to investigate the comprehensive effects of high cholesterol, high methionine diet, and apolipoprotein E deficiency (ApoE(-/-)) on the pathogenesis of AS. ApoE(-/-) mice were fed with high cholesterol and methionine diet for 15 weeks to induce hyperlipidemia and hyperhomocysteinemia. The methylation levels of genomic DNA (gDNA) and B1 repetitive elements in aortic tissues were measured by both methylation-dependent restriction analysis and nested methylation-specific polymerase chain reaction (PCR). Methylation sequence-bias pattern was assayed by DNA methyl-accepting capacity with restriction endonuclease digestion. The mRNA expression of DNA methyltransferase-1, 3 (DNMT1, 3) was detected by real-time PCR. The concentrations of S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) were determined by high-performance liquid chromatography. The results showed hypomethylation of gDNA and B1 repetitive elements. The mRNA expression of DNMT1 was reduced. The levels of SAM, SAH, and SAM/SAH ratio were increased. The atherosclerotic lesion areas strongly correlated with the risk factors. The distribution of DNA demethylation was preferred to non-CpG islands, which may suggest the major impact of hypomethylation on DNA integrity and genomic instability. Overall, our data unequivocally showed that the comprehensive role of high cholesterol, high methionine diet, and ApoE(-/-) is not uniformly consistent with the role of a single risk factor. The DNA methylation pattern in AS is quite complex and depends on genetic background and many involved risk factors.
Collapse
Affiliation(s)
- Yideng Jiang
- Postdoctoral Workstation, General Hospital of Ningxia Medical University, Yinchuan, China
| | | | | | | | | | | | | | | | | |
Collapse
|