1
|
Khalid E, Chang JP. Receptor-proximal effectors mediating GnRH actions in the goldfish pituitary: Involvement of G protein subunits and GRKs. Gen Comp Endocrinol 2022; 319:113991. [PMID: 35157923 DOI: 10.1016/j.ygcen.2022.113991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 11/21/2022]
Abstract
In goldfish (Carassius auratus), two endogenous isoforms of gonadotropin-releasing hormone (GnRH) stimulate luteinizing hormone (LH) and growth hormone (GH) secretion. These isoforms, GnRH2 and GnRH3, act on a shared population of cell-surface GnRH receptors (GnRHRs) expressed on both gonadotrophs and somatotrophs, and can signal through unique, yet partially overlapping, suites of intracellular effectors, in a phenomenon known as functional selectivity or biased signalling. In this study, G-protein alpha (Gα) subunits were targeted with two inhibitors, YM-254890 and BIM-46187, to ascertain the contribution of specific G-protein subunits in GnRH signalling. Results with the Gαq/11-specific inhibitor YM-254890 on primary cultures of goldfish pituitary cells revealed the use of these subunits in GnRH control of both LH and GH release, as well as GnRH-induced elevations in phospho-ERK levels. Results with the pan-Gα inhibitor BIM-46187 matched those using YM-254890 in LH release but GH responses differed, indicating additional, non-Gαq/11 subunits may be involved in somatotrophs. BIM-46187 also elevated unstimulated LH and GH release suggesting that Gα subunits regulate basal hormone secretion. Furthermore, G-protein-coupled receptor kinase (GRK2/3) inhibition reduced LH responses to GnRH2 and GnRH3, and selectively enhanced GnRH2-stimulated GH release, indicating differential use of GRK2/3 in GnRH actions on gonadotrophs and somatotrophs. These findings in a primary untransformed system provide the first direct evidence to establish Gαq/11 as an obligate driver of GnRH signalling in goldfish pituitary cells, and additionally describe the differential agonist- and cell type-selective involvement of GRK2/3 in this system.
Collapse
Affiliation(s)
- Enezi Khalid
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - John P Chang
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada.
| |
Collapse
|
2
|
Kim JW, Park M, Kim S, Lim SC, Kim HS, Kang KW. Anti-metastatic effect of GV1001 on prostate cancer cells; roles of GnRHR-mediated Gαs-cAMP pathway and AR-YAP1 axis. Cell Biosci 2021. [PMID: 34743733 DOI: 10.1186/s13578-021-00704-3.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gonadotropin-releasing hormone receptor (GnRHR) transmits its signal via two major Gα-proteins, primarily Gαq and Gαi. However, the precise mechanism underlying the functions of Gαs signal in prostate cancer cells is still unclear. We have previously identified that GV1001, a fragment of the human telomerase reverse transcriptase, functions as a biased GnRHR ligand to selectively stimulate the Gαs/cAMP pathway. Here, we tried to reveal the potential mechanisms of which GV1001-stimulated Gαs-cAMP signaling pathway reduces the migration and metastasis of prostate cancer (PCa) cells. METHODS The expression of epithelial-mesenchymal transition (EMT)-related genes was measured by western-blotting and spheroid formation on ultra-low attachment plate was detected after GV1001 treatment. In vivo Spleen-liver metastasis mouse model was used to explore the inhibitory effect of GV1001 on metastatic ability of PCa and the transwell migration assay was performed to identify whether GV1001 had a suppressive effect on cell migration in vitro. In order to demonstrate the interaction between androgen receptor (AR) and YAP1, co-immunoprecipitation (co-IP), immunofluorescence (IF) staining, chromatin immunoprecipitation (ChIP) were performed in LNCaP cells with and without GV1001 treatment. RESULTS GV1001 inhibited expression of EMT-related genes and spheroid formation. GV1001 also suppressed in vivo spleen-liver metastasis of LNCaP cells as well as cell migration in vitro. GV1001 enhanced the phosphorylation of AR and transcription activity of androgen response element reporter gene through cAMP/protein kinase A pathway. Moreover, GV1001 increased Ser-127 phosphorylation of YAP1 and its ubiquitination, and subsequently decreased the levels of AR-YAP1 binding in the promoter region of the CTGF gene. In contrast, both protein and mRNA levels of NKX3.1 known for tumor suppressor gene and AR-coregulator were upregulated by GV1001 in LNCaP cells. YAP1 knockout using CRISPR/Cas9 significantly suppressed the migration ability of LNCaP cells, and GV1001 did not affect the cell migration of YAP1-deficient LNCaP cells. On the contrary, cell migration was more potentiated in LNCaP cells overexpressing YAP5SA, a constitutively active form of YAP1, which was not changed by GV1001 treatment. CONCLUSIONS Overall, this study reveals an essential role of AR-YAP1 in the regulation of PCa cell migration, and provides evidence that GV1001 could be a novel GnRHR ligand to inhibit metastasis of PCa via the Gαs/cAMP pathway.
Collapse
Affiliation(s)
- Ji Won Kim
- Division of Hematology and Medical Oncology, University of California, San Francisco, CA, 94143, USA
| | - Miso Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suntae Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Chul Lim
- Department of Pathology, College of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Hyung Shik Kim
- College of Pharmacy, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Kim JW, Park M, Kim S, Lim SC, Kim HS, Kang KW. Anti-metastatic effect of GV1001 on prostate cancer cells; roles of GnRHR-mediated Gαs-cAMP pathway and AR-YAP1 axis. Cell Biosci 2021; 11:191. [PMID: 34743733 PMCID: PMC8574053 DOI: 10.1186/s13578-021-00704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Background Gonadotropin-releasing hormone receptor (GnRHR) transmits its signal via two major Gα-proteins, primarily Gαq and Gαi. However, the precise mechanism underlying the functions of Gαs signal in prostate cancer cells is still unclear. We have previously identified that GV1001, a fragment of the human telomerase reverse transcriptase, functions as a biased GnRHR ligand to selectively stimulate the Gαs/cAMP pathway. Here, we tried to reveal the potential mechanisms of which GV1001-stimulated Gαs-cAMP signaling pathway reduces the migration and metastasis of prostate cancer (PCa) cells. Methods The expression of epithelial-mesenchymal transition (EMT)-related genes was measured by western-blotting and spheroid formation on ultra-low attachment plate was detected after GV1001 treatment. In vivo Spleen-liver metastasis mouse model was used to explore the inhibitory effect of GV1001 on metastatic ability of PCa and the transwell migration assay was performed to identify whether GV1001 had a suppressive effect on cell migration in vitro. In order to demonstrate the interaction between androgen receptor (AR) and YAP1, co-immunoprecipitation (co-IP), immunofluorescence (IF) staining, chromatin immunoprecipitation (ChIP) were performed in LNCaP cells with and without GV1001 treatment. Results GV1001 inhibited expression of EMT-related genes and spheroid formation. GV1001 also suppressed in vivo spleen-liver metastasis of LNCaP cells as well as cell migration in vitro. GV1001 enhanced the phosphorylation of AR and transcription activity of androgen response element reporter gene through cAMP/protein kinase A pathway. Moreover, GV1001 increased Ser-127 phosphorylation of YAP1 and its ubiquitination, and subsequently decreased the levels of AR-YAP1 binding in the promoter region of the CTGF gene. In contrast, both protein and mRNA levels of NKX3.1 known for tumor suppressor gene and AR-coregulator were upregulated by GV1001 in LNCaP cells. YAP1 knockout using CRISPR/Cas9 significantly suppressed the migration ability of LNCaP cells, and GV1001 did not affect the cell migration of YAP1-deficient LNCaP cells. On the contrary, cell migration was more potentiated in LNCaP cells overexpressing YAP5SA, a constitutively active form of YAP1, which was not changed by GV1001 treatment. Conclusions Overall, this study reveals an essential role of AR-YAP1 in the regulation of PCa cell migration, and provides evidence that GV1001 could be a novel GnRHR ligand to inhibit metastasis of PCa via the Gαs/cAMP pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00704-3.
Collapse
Affiliation(s)
- Ji Won Kim
- Division of Hematology and Medical Oncology, University of California, San Francisco, CA, 94143, USA
| | - Miso Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suntae Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Chul Lim
- Department of Pathology, College of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Hyung Shik Kim
- College of Pharmacy, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Wu HM, Chang HM, Leung PCK. Gonadotropin-releasing hormone analogs: Mechanisms of action and clinical applications in female reproduction. Front Neuroendocrinol 2021; 60:100876. [PMID: 33045257 DOI: 10.1016/j.yfrne.2020.100876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/23/2020] [Accepted: 10/04/2020] [Indexed: 12/15/2022]
Abstract
Extra-hypothalamic GnRH and extra-pituitary GnRH receptors exist in multiple human reproductive tissues, including the ovary, endometrium and myometrium. Recently, new analogs (agonists and antagonists) and modes of GnRH have been developed for clinical application during controlled ovarian hyperstimulation for assisted reproductive technology (ART). Additionally, the analogs and upstream regulators of GnRH suppress gonadotropin secretion and regulate the functions of the reproductive axis. GnRH signaling is primarily involved in the direct control of female reproduction. The cellular mechanisms and action of the GnRH/GnRH receptor system have been clinically applied for the treatment of reproductive disorders and have widely been introduced in ART. New GnRH analogs, such as long-acting GnRH analogs and oral nonpeptide GnRH antagonists, are being continuously developed for clinical application. The identification of the upstream regulators of GnRH, such as kisspeptin and neurokinin B, provides promising potential to develop these upstream regulator-related analogs to control the hypothalamus-pituitary-ovarian axis.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan, ROC
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V5, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V5, Canada.
| |
Collapse
|
5
|
Effects of Post-translational Modifications on Membrane Localization and Signaling of Prostanoid GPCR-G Protein Complexes and the Role of Hypoxia. J Membr Biol 2019; 252:509-526. [PMID: 31485700 DOI: 10.1007/s00232-019-00091-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/17/2019] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) play a pivotal role in the adaptive responses to cellular stresses such as hypoxia. In addition to influencing cellular gene expression profiles, hypoxic microenvironments can perturb membrane protein localization, altering GPCR effector scaffolding and altering downstream signaling. Studies using proteomics approaches have revealed significant regulation of GPCR and G proteins by their state of post-translational modification. The aim of this review is to examine the effects of post-translational modifications on membrane localization and signaling of GPCR-G protein complexes, with an emphasis on vascular prostanoid receptors, and to highlight what is known about the effect of cellular hypoxia on these mechanisms. Understanding post-translational modifications of protein targets will help to define GPCR targets in treatment of disease, and to inform research into mechanisms of hypoxic cellular responses.
Collapse
|
6
|
Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther 2019; 200:148-178. [PMID: 31075355 DOI: 10.1016/j.pharmthera.2019.05.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Originally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein transducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral factors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated 'biased signaling'. In this regard, receptor sequence alignment and mutagenesis have helped to identify key receptor domains for receptor/transducer specificity. Furthermore, molecular structures of GPCRs bound to different ligands or transducers have provided detailed insights into mechanisms of coupling selectivity. However, receptor dimerization, compartmentalization, and trafficking, receptor-transducer-effector stoichiometry, and ligand residence and exposure times can each affect GPCR coupling. Extrinsic factors including cell type or assay conditions can also influence receptor signaling. Understanding these factors may lead to the development of improved biased ligands with the potential to enhance therapeutic benefit, while minimizing adverse effects. In this review, evidence for ligand-specific GPCR signaling toward different transducers or pathways is elaborated. Furthermore, molecular determinants of biased signaling toward these pathways and relevant examples of the potential clinical benefits and pitfalls of biased ligands are discussed.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran; Education Development Center, Bushehr University of Medical Sciences, Iran
| | | | - Paul R Albert
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada.
| |
Collapse
|
7
|
Son YL, Ubuka T, Tsutsui K. Molecular Mechanisms of Gonadotropin-Inhibitory Hormone (GnIH) Actions in Target Cells and Regulation of GnIH Expression. Front Endocrinol (Lausanne) 2019; 10:110. [PMID: 30858828 PMCID: PMC6397841 DOI: 10.3389/fendo.2019.00110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/06/2019] [Indexed: 11/13/2022] Open
Abstract
Since gonadotropin-inhibitory hormone (GnIH) was discovered in 2000 as the first hypothalamic neuropeptide that actively inhibits gonadotropin release, researches conducted for the last 18 years have demonstrated that GnIH acts as a pronounced negative regulator of reproduction. Inhibitory effect of GnIH on reproduction is mainly accomplished at hypothalamic-pituitary levels; gonadotropin-releasing hormone (GnRH) neurons and gonadotropes are major targets of GnIH action based on the morphological interaction with GnIH neuronal fibers and the distribution of GnIH receptor. Here, we review molecular studies mainly focusing on the signal transduction pathway of GnIH in target cells, GnRH neurons, and gonadotropes. The use of well-defined cellular model systems allows the mechanistic study of signaling pathway occurring in target cells by demonstrating the direct cause-and-effect relationship. The insights gained through studying molecular mechanism of GnIH action contribute to deeper understanding of the mechanism of how GnIH communicates with other neuronal signaling systems to control our reproductive function. Reproductive axis closely interacts with other endocrine systems, thus GnIH expression levels would be changed by adrenal and thyroid status. We also briefly review molecular studies investigating the regulatory mechanisms of GnIH expression to understand the role of GnIH as a mediator between adrenal, thyroid and gonadal axes.
Collapse
Affiliation(s)
- You Lee Son
- Laboratory of Photobiology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
- *Correspondence: You Lee Son
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| |
Collapse
|
8
|
Ma KY, Zhang SF, Wang SS, Qiu GF. Molecular cloning and characterization of a gonadotropin-releasing hormone receptor homolog in the Chinese mitten crab, Eriocheir sinensis. Gene 2018; 665:111-118. [PMID: 29730424 DOI: 10.1016/j.gene.2018.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023]
Abstract
As an essential mediator in the Gonadotropin-releasing hormone (GnRH) signaling pathway, GnRH receptor (GnRHR) coupled to GnRH, plays an important role in activating the downstream pathway after stimulating a series of cascades to regulate reproduction. To detect the existence of GnRHR and potential GnRH signaling pathway, we cloned and characterized GnRHR in the Chinese mitten crab, Eriocheir sinensis (named EsGnRHR). The full-length EsGnRHR cDNA is 2038 bp in length, including an open reading frame (ORF) of 1566 bp, a 57 bp 5'-untranslated region (5'-UTR) and a 415 bp 3'-UTR. Prediction of transmembrane domains in protein sequence revealed that the EsGnRHR protein contained seven hydrophobic transmembrane regions (TMs). Reverse transcription PCR revealed that EsGnRHR was mainly expressed in the thoracic nerve group and ovary, and weakly distributed in the testis and brain. In situ hybridization further demonstrated that EsGnRHR mRNA was localized at the protocerebrum and deutocerebrum. In the ovary and testis, the hybridization signal was dominantly at the earlier developmental stages. The signal was mainly localized in the cytoplasm cell in the ovary, and in the epithelium cell in the testis. During the different stages of gonadal development, EsGnRHR displayed increasing trends in both female and male when analyzed by quantitative real-time PCR, suggesting that EsGnRHR was involved in controlling gonadal development. Our study provides important information for further research on the molecular mechanisms underlying crab development.
Collapse
Affiliation(s)
- Ke-Yi Ma
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, China
| | - Shu-Fang Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, China
| | - Si-Si Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, China
| | - Gao-Feng Qiu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, China.
| |
Collapse
|
9
|
Chang JP, Pemberton JG. Comparative aspects of GnRH-Stimulated signal transduction in the vertebrate pituitary - Contributions from teleost model systems. Mol Cell Endocrinol 2018; 463:142-167. [PMID: 28587765 DOI: 10.1016/j.mce.2017.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is a major regulator of reproduction through actions on pituitary gonadotropin release and synthesis. Although it is often thought that pituitary cells are exposed to only one GnRH, multiple GnRH forms are delivered to the pituitary of teleost fishes; interestingly this can include the cGnRH-II form usually thought to be non-hypophysiotropic. GnRHs can regulate other pituitary cell-types, both directly as well as indirectly, and multiple GnRH receptors (GnRHRs) may also be expressed in the pituitary, and even within a single pituitary cell-type. Literature on the differential actions of native GnRH isoforms in primary pituitary cells is largely derived from teleost fishes. This review will outline the diversity and complexity of GnRH-GnRHR signal transduction found within vertebrate gonadotropes as well as extra-gonadotropic sites with special emphasis on comparative studies from fish models. The implications that GnRHR transduction mechanisms are GnRH isoform-, function-, and cell-specific are also discussed.
Collapse
Affiliation(s)
- John P Chang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Joshua G Pemberton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
10
|
Coss D. Regulation of reproduction via tight control of gonadotropin hormone levels. Mol Cell Endocrinol 2018; 463:116-130. [PMID: 28342855 PMCID: PMC6457911 DOI: 10.1016/j.mce.2017.03.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/04/2023]
Abstract
Mammalian reproduction is controlled by the hypothalamic-pituitary-gonadal axis. GnRH from the hypothalamus regulates synthesis and secretion of gonadotropins, LH and FSH, which then control steroidogenesis and gametogenesis. In females, serum LH and FSH levels exhibit rhythmic changes throughout the menstrual or estrous cycle that are correlated with pulse frequency of GnRH. Lack of gonadotropins leads to infertility or amenorrhea. Dysfunctions in the tightly controlled ratio due to levels slightly outside the normal range occur in a larger number of women and are correlated with polycystic ovaries and premature ovarian failure. Since the etiology of these disorders is largely unknown, studies in cell and mouse models may provide novel candidates for investigations in human population. Hence, understanding the mechanisms whereby GnRH regulates gonadotropin hormone levels will provide insight into the physiology and pathophysiology of the reproductive system. This review discusses recent advances in our understanding of GnRH regulation of gonadotropin synthesis.
Collapse
Affiliation(s)
- Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, United States.
| |
Collapse
|
11
|
Chen D, Yang W, Han S, Yang H, Cen X, Liu J, Zhang L, Zhang W. A Type IIb, but Not Type IIa, GnRH Receptor Mediates GnRH-Induced Release of Growth Hormone in the Ricefield Eel. Front Endocrinol (Lausanne) 2018; 9:721. [PMID: 30555419 PMCID: PMC6283897 DOI: 10.3389/fendo.2018.00721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022] Open
Abstract
Multiple gonadotropin-releasing hormone receptors (GnRHRs) are present in vertebrates, but their differential physiological relevances remain to be clarified. In the present study, we identified three GnRH ligands GnRH1 (pjGnRH), GnRH2 (cGnRH-II), and GnRH3 (sGnRH) from the brain, and two GnRH receptors GnRHR1 (GnRHR IIa) and GnRHR2 (GnRHR IIb) from the pituitary of the ricefield eel Monopterus albus. GnRH1 and GnRH3 but not GnRH2 immunoreactive neurons were detected in the pre-optic area, hypothalamus, and pituitary, suggesting that GnRH1 and GnRH3 may exert hypophysiotropic roles in ricefield eels. gnrhr1 mRNA was mainly detected in the pituitary, whereas gnrhr2 mRNA broadly in tissues of both females and males. In the pituitary, GnRHR1 and GnRHR2 immunoreactive cells were differentially distributed, with GnRHR1 immunoreactive cells mainly in peripheral areas of the adenohypophysis whereas GnRHR2 immunoreactive cells in the multicellular layers of adenohypophysis adjacent to the neurohypophysis. Dual-label fluorescent immunostaining showed that GnRHR2 but not GnRHR1 was localized to somatotropes, and all somatotropes are GnRHR2-positive cells and vice versa at all stages examined. GnRH1 and GnRH3 were shown to stimulate growth hormone (Gh) release from primary culture of pituitary cells, and to decrease Gh contents in the pituitary of ricefield eels 12 h post injection. GnRH1 and GnRH3 stimulated Gh release probably via PLC/IP3/PKC and Ca2+ pathways. These results, as a whole, suggested that GnRHs may bind to GnRHR2 but not GnRHR1 to trigger Gh release in ricefield eels, and provided novel information on differential roles of multiple GnRH receptors in vertebrates.
Collapse
Affiliation(s)
- Dong Chen
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wei Yang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shiying Han
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Huiyi Yang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xin Cen
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jiang Liu
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lihong Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Lihong Zhang
| | - Weimin Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- Weimin Zhang
| |
Collapse
|
12
|
Ubuka T, Parhar I. Dual Actions of Mammalian and Piscine Gonadotropin-Inhibitory Hormones, RFamide-Related Peptides and LPXRFamide Peptides, in the Hypothalamic-Pituitary-Gonadal Axis. Front Endocrinol (Lausanne) 2017; 8:377. [PMID: 29375482 PMCID: PMC5768612 DOI: 10.3389/fendo.2017.00377] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/22/2017] [Indexed: 01/04/2023] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that decreases gonadotropin synthesis and release by directly acting on the gonadotrope or by decreasing the activity of gonadotropin-releasing hormone (GnRH) neurons. GnIH is also called RFamide-related peptide in mammals or LPXRFamide peptide in fishes due to its characteristic C-terminal structure. The primary receptor for GnIH is GPR147 that inhibits cAMP production in target cells. Although most of the studies in mammals, birds, and fish have shown the inhibitory action of GnIH in the hypothalamic-pituitary-gonadal (HPG) axis, several in vivo studies in mammals and many in vivo and in vitro studies in fish have shown its stimulatory action. In mouse, although the firing rate of the majority of GnRH neurons is decreased, a small population of GnRH neurons is stimulated by GnIH. In hamsters, GnIH inhibits luteinizing hormone (LH) release in the breeding season when their endogenous LH level is high but stimulates LH release in non-breeding season when their LH level is basal. Besides different effects of GnIH on the HPG axis depending on the reproductive stages in fish, higher concentration or longer duration of GnIH administration can stimulate their HPG axis. These results suggest that GnIH action in the HPG axis is modulated by sex-steroid concentration, the action of neuroestrogen synthesized by the activity of aromatase stimulated by GnIH, estrogen membrane receptor, heteromerization and internalization of GnIH, GnRH, and estrogen membrane receptors. The inhibitory and stimulatory action of GnIH in the HPG axis may have a physiological role to maintain reproductive homeostasis according to developmental and reproductive stages.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Jeffrey Cheah School of Medicine and Health Sciences, Brain Research Institute Monash Sunway, Monash University Malaysia, Sunway, Malaysia
- *Correspondence: Takayoshi Ubuka,
| | - Ishwar Parhar
- Jeffrey Cheah School of Medicine and Health Sciences, Brain Research Institute Monash Sunway, Monash University Malaysia, Sunway, Malaysia
| |
Collapse
|
13
|
Ulloa-Aguirre A, Lira-Albarrán S. Clinical Applications of Gonadotropins in the Male. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:121-174. [PMID: 27697201 DOI: 10.1016/bs.pmbts.2016.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pituitary gonadotropins, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) play a pivotal role in reproduction. The synthesis and secretion of gonadotropins are regulated by complex interactions among several endocrine, paracrine, and autocrine factors of diverse chemical structure. In men, LH regulates the synthesis of androgens by the Leydig cells, whereas FSH promotes Sertoli cell function and thereby influences spermatogenesis. Gonadotropins are complex molecules composed of two subunits, the α- and β-subunit, that are noncovalently associated. Gonadotropins are decorated with glycans that regulate several functions of the protein including folding, heterodimerization, stability, transport, conformational maturation, efficiency of heterodimer secretion, metabolic fate, interaction with their cognate receptor, and selective activation of signaling pathways. A number of congenital and acquired abnormalities lead to gonadotropin deficiency and hypogonadotropic hypogonadism, a condition amenable to treatment with exogenous gonadotropins. Several natural and recombinant preparations of gonadotropins are currently available for therapeutic purposes. The difference between natural and the currently available recombinant preparations (which are massively produced in Chinese hamster ovary cells for commercial purposes) mainly lies in the abundance of some of the carbohydrates that conform the complex glycans attached to the protein core. Whereas administration of exogenous gonadotropins in patients with isolated congenital hypogonadotropic hypogonadism is a well recognized therapeutic approach, their role in treating men with normogonadotropic idiopathic infertility is still controversial. This chapter concentrates on the main structural and functional features of the gonadotropin hormones and how basic concepts have been translated into the clinical arena to guide therapy for gonadotropin deficit in males.
Collapse
Affiliation(s)
- A Ulloa-Aguirre
- Research Support Network, Universidad Nacional Autónoma de México (UNAM)-National Institutes of Health, Mexico City, Mexico.
| | - S Lira-Albarrán
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
14
|
GNRH agonists and antagonists in rescue for cyclophosphamide-induced ovarian damage: friend or foe? Arch Gynecol Obstet 2014; 291:1403-10. [DOI: 10.1007/s00404-014-3564-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
|
15
|
Wolfe A, Divall S, Wu S. The regulation of reproductive neuroendocrine function by insulin and insulin-like growth factor-1 (IGF-1). Front Neuroendocrinol 2014; 35:558-72. [PMID: 24929098 PMCID: PMC4175134 DOI: 10.1016/j.yfrne.2014.05.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/01/2014] [Accepted: 05/27/2014] [Indexed: 12/27/2022]
Abstract
The mammalian reproductive hormone axis regulates gonadal steroid hormone levels and gonadal function essential for reproduction. The neuroendocrine control of the axis integrates signals from a wide array of inputs. The regulatory pathways important for mediating these inputs have been the subject of numerous studies. One class of proteins that have been shown to mediate metabolic and growth signals to the CNS includes Insulin and IGF-1. These proteins are structurally related and can exert endocrine and growth factor like action via related receptor tyrosine kinases. The role that insulin and IGF-1 play in controlling the hypothalamus and pituitary and their role in regulating puberty and nutritional control of reproduction has been studied extensively. This review summarizes the in vitro and in vivo models that have been used to study these neuroendocrine structures and the influence of these growth factors on neuroendocrine control of reproduction.
Collapse
Affiliation(s)
- Andrew Wolfe
- Johns Hopkins University School of Medicine, Department of Pediatrics, Division of Endocrinology, Baltimore, MD 21287, United States.
| | - Sara Divall
- Johns Hopkins University School of Medicine, Department of Pediatrics, Division of Endocrinology, Baltimore, MD 21287, United States
| | - Sheng Wu
- Johns Hopkins University School of Medicine, Department of Pediatrics, Division of Endocrinology, Baltimore, MD 21287, United States
| |
Collapse
|
16
|
Meng Y, Guo Y, Qian Y, Guo X, Gao L, Sha J, Cui Y, Chian RC, Liu J. Effects of GnRH antagonist on endometrial protein profiles in the window of implantation. Proteomics 2014; 14:2350-9. [PMID: 25065715 DOI: 10.1002/pmic.201400145] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/24/2014] [Accepted: 07/23/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Yan Meng
- State key Laboratory of Reproductive Medicine; Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Yi Qian
- State key Laboratory of Reproductive Medicine; Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Li Gao
- State key Laboratory of Reproductive Medicine; Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine; Department of Histology and Embryology; Nanjing Medical University; Nanjing P. R. China
| | - Yugui Cui
- State key Laboratory of Reproductive Medicine; Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
| | - Ri-Cheng Chian
- State key Laboratory of Reproductive Medicine; Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
| | - Jiayin Liu
- State key Laboratory of Reproductive Medicine; Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University; Nanjing P. R. China
| |
Collapse
|
17
|
Thompson IR, Kaiser UB. GnRH pulse frequency-dependent differential regulation of LH and FSH gene expression. Mol Cell Endocrinol 2014; 385:28-35. [PMID: 24056171 PMCID: PMC3947649 DOI: 10.1016/j.mce.2013.09.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 12/14/2022]
Abstract
The pituitary gonadotropin hormones, FSH and LH, are essential for fertility. Containing an identical α-subunit (CGA), they are comprised of unique β-subunits, FSHβ and LHβ, respectively. These two hormones are regulated by the hypothalamic decapeptide, GnRH, which is released in a pulsatile manner from GnRH neurons located in the hypothalamus. Varying frequencies of pulsatile GnRH stimulate distinct signaling pathways and transcriptional machinery after binding to the receptor, GnRHR, on the cell surface of anterior pituitary gonadotropes. This ligand-receptor binding and activation orchestrates the synthesis and release of FSH and LH, in synergy with other effectors of gonadotropin production, such as activin, inhibin and steroids. Current research efforts aim to discover the mechanisms responsible for the decoding of the GnRH pulse signal by the gonadotrope. Modulating the response to GnRH has the potential to lead to new therapies for patients with altered gonadotropin secretion, such as those with hypothalamic amenorrhea or polycystic ovarian syndrome.
Collapse
Affiliation(s)
- Iain R Thompson
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
18
|
Perrett RM, McArdle CA. Molecular mechanisms of gonadotropin-releasing hormone signaling: integrating cyclic nucleotides into the network. Front Endocrinol (Lausanne) 2013; 4:180. [PMID: 24312080 PMCID: PMC3834291 DOI: 10.3389/fendo.2013.00180] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/06/2013] [Indexed: 01/21/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is the primary regulator of mammalian reproductive function in both males and females. It acts via G-protein coupled receptors on gonadotropes to stimulate synthesis and secretion of the gonadotropin hormones luteinizing hormone and follicle-stimulating hormone. These receptors couple primarily via G-proteins of the Gq/ll family, driving activation of phospholipases C and mediating GnRH effects on gonadotropin synthesis and secretion. There is also good evidence that GnRH causes activation of other heterotrimeric G-proteins (Gs and Gi) with consequent effects on cyclic AMP production, as well as for effects on the soluble and particulate guanylyl cyclases that generate cGMP. Here we provide an overview of these pathways. We emphasize mechanisms underpinning pulsatile hormone signaling and the possible interplay of GnRH and autocrine or paracrine regulatory mechanisms in control of cyclic nucleotide signaling.
Collapse
Affiliation(s)
- Rebecca M. Perrett
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Craig A. McArdle
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
- *Correspondence: Craig A. McArdle, Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, 1 Whitson Street, Bristol BS1 3NY, UK e-mail:
| |
Collapse
|
19
|
Abstract
G protein-coupled receptors (GPCRs) are the largest class of integral membrane protein receptors in the human genome. We examined here the reports whether the GnRH receptor (GnRHR) interacts with a single or multiple types of G proteins. It seems that the GnRHR, as other GPCRs, alternates between various conformations and is stabilized by its ligands, other modulators and intracellular partners in selective conformations culminating in coupling with a single type or multiple G proteins in a cell- and context-specific manner.
Collapse
Affiliation(s)
- Zvi Naor
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
20
|
Joseph NT, Aquilina-Beck A, MacDonald C, Decatur WA, Hall JA, Kavanaugh SI, Sower SA. Molecular cloning and pharmacological characterization of two novel GnRH receptors in the lamprey (Petromyzon marinus). Endocrinology 2012; 153:3345-56. [PMID: 22569788 PMCID: PMC3380312 DOI: 10.1210/en.2012-1217] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This paper reports the identification, expression, binding kinetics, and functional studies of two novel type III lamprey GnRH receptors (lGnRH-R-2 and lGnRH-R-3) in the sea lamprey, a basal vertebrate. These novel GnRH receptors share the structural features and amino acid motifs common to other known gnathostome GnRH receptors. The ligand specificity and activation of intracellular signaling studies showed ligands lGnRH-II and -III induced an inositol phosphate (IP) response at lGnRH-R-2 and lGnRH-R-3, whereas the ligand lGnRH-I did not stimulate an IP response. lGnRH-II was a more potent activator of lGnRH-R-3 than lGnRH-III. Stimulation of lGnRH-R-2 and lGnRH-R-3 testing all three lGnRH ligands did not elicit a cAMP response. lGnRH-R-2 has a higher binding affinity in response to lGnRH-III than lGnRH-II, whereas lGnRH-R-3 has a higher binding affinity in response to lGnRH-II than IGnRH-III. lGnRH-R-2 precursor transcript was detected in a wide variety of tissues including the pituitary whereas lGnRH-R-3 precursor transcript was not as widely expressed and primarily expressed in the brain and eye of male and female lampreys. From our phylogenetic analysis, we propose that lGnRH-R-1 evolved from a common ancestor of all vertebrate GnRH receptors and lGnRH-R-2 and lGnRH-R-3 likely occurred due to a gene duplication within the lamprey lineage. In summary, we propose from our findings of receptor subtypes in the sea lamprey that the evolutionary recruitment of specific pituitary GnRH receptor subtypes for particular physiological functions seen in later evolved vertebrates was an ancestral character that first arose in a basal vertebrate.
Collapse
Affiliation(s)
- Nerine T Joseph
- Center for Molecular and Comparative Endocrinology and Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Son YL, Ubuka T, Millar RP, Kanasaki H, Tsutsui K. Gonadotropin-inhibitory hormone inhibits GnRH-induced gonadotropin subunit gene transcriptions by inhibiting AC/cAMP/PKA-dependent ERK pathway in LβT2 cells. Endocrinology 2012; 153:2332-43. [PMID: 22374973 DOI: 10.1210/en.2011-1904] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A neuropeptide that directly inhibits gonadotropin secretion from the pituitary was discovered in quail and named gonadotropin-inhibitory hormone (GnIH). The presence and functional roles of GnIH orthologs, RF-amide-related peptides (RFRP), that possess a common C-terminal LPXRF-amide (X = L or Q) motif have also been demonstrated in mammals. GnIH orthologs inhibit gonadotropin synthesis and release by acting on pituitary gonadotropes and GnRH neurons in the hypothalamus via its receptor (GnIH receptor). It is becoming increasingly clear that GnIH is an important hypothalamic neuropeptide controlling reproduction, but the detailed signaling pathway mediating the inhibitory effect of GnIH on target cells is still unknown. In the present study, we investigated the pathway of GnIH cell signaling and its possible interaction with GnRH signaling using a mouse gonadotrope cell line, LβT2. First, we demonstrated the expression of GnIH receptor mRNA in LβT2 cells by RT-PCR. We then examined the inhibitory effects of mouse GnIH orthologs [mouse RFRP (mRFRP)] on GnRH-induced cell signaling events. We showed that mRFRP effectively inhibited GnRH-induced cAMP signaling by using a cAMP-sensitive reporter system and measuring cAMP levels, indicating that mRFRP function as an inhibitor of adenylate cyclase. We further showed that mRFRP inhibited GnRH-stimulated ERK phosphorylation, and this effect was mediated by the inhibition of the protein kinase A pathway. Finally, we demonstrated that mRFRP inhibited GnRH-stimulated gonadotropin subunit gene transcriptions and also LH release. Taken together, the results indicate that mRFRP function as GnIH to inhibit GnRH-induced gonadotropin subunit gene transcriptions by inhibiting adenylate cyclase/cAMP/protein kinase A-dependent ERK activation in LβT2 cells.
Collapse
Affiliation(s)
- You Lee Son
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | | | |
Collapse
|
22
|
Sower SA, Decatur WA, Joseph NT, Freamat M. Evolution of vertebrate GnRH receptors from the perspective of a Basal vertebrate. Front Endocrinol (Lausanne) 2012. [PMID: 23181055 PMCID: PMC3500703 DOI: 10.3389/fendo.2012.00140] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This minireview provides the current status on gonadotropin-releasing hormone receptors (GnRH-R) in vertebrates, from the perspective of a basal vertebrate, the sea lamprey, and provides an evolutionary scheme based on the recent advance of whole genome sequencing. In addition, we provide a perspective on the functional divergence and evolution of the receptors. In this review we use the phylogenetic classification of vertebrate GnRH receptors that groups them into three clusters: type I (mammalian and non-mammalian), type II, and type III GnRH receptors. New findings show that the sea lamprey has two type III-like GnRH receptors and an ancestral type GnRH receptor that is more closely related to the type II-like receptors. These two novel GnRH receptors along with lGnRH-R-1 share similar structural features and amino acid motifs common to other known gnathostome type II/III receptors. Recent data analyses of the lamprey genome provide strong evidence that two whole rounds of genome duplication (2R) occurred prior to the gnathostome-agnathan split. Based on our current knowledge, it is proposed that lGnRH-R-1 evolved from an ancestor of the type II receptor following a vertebrate-shared genome duplication and that the two type III receptors resulted from a duplication within lamprey of a gene derived from a lineage shared by many vertebrates.
Collapse
Affiliation(s)
- Stacia A. Sower
- Department of Molecular, Cellular and Biomedical Sciences, Center for Molecular and Comparative Endocrinology, University of New HampshireDurham, NH, USA
- *Correspondence: Stacia A. Sower, Department of Molecular, Cellular and Biomedical Sciences, Center for Molecular and Comparative Endocrinology, University of New Hampshire, 46 College Road, Durham, NH 03824-3544, USA. e-mail:
| | - Wayne A. Decatur
- Department of Molecular, Cellular and Biomedical Sciences, Center for Molecular and Comparative Endocrinology, University of New HampshireDurham, NH, USA
| | - Nerine T. Joseph
- Department of Molecular, Cellular and Biomedical Sciences, Center for Molecular and Comparative Endocrinology, University of New HampshireDurham, NH, USA
| | - Mihael Freamat
- Department of Molecular, Cellular and Biomedical Sciences, Center for Molecular and Comparative Endocrinology, University of New HampshireDurham, NH, USA
| |
Collapse
|
23
|
Abstract
The classical view of heterotrimeric G protein signaling places G -proteins at the cytoplasmic surface of the cell's plasma membrane where they are activated by an appropriate G protein-coupled receptor. Once activated, the GTP-bound Gα and the free Gβγ are able to regulate plasma membrane-localized effectors, such as adenylyl cyclase, phospholipase C-β, RhoGEFs and ion channels. Hydrolysis of GTP by the Gα subunit returns the G protein to the inactive Gαβγ heterotrimer. Although all of these events in the G protein cycle can be restricted to the cytoplasmic surface of the plasma membrane, G protein localization is dynamic. Thus, it has become increasingly clear that G proteins are able to move to diverse subcellular locations where they perform non-canonical signaling functions. This chapter will highlight our current understanding of trafficking pathways that target newly synthesized G proteins to the plasma membrane, activation-induced and reversible translocation of G proteins from the plasma membrane to intracellular locations, and constitutive trafficking of G proteins.
Collapse
|
24
|
Beyer DA, Amari F, Thill M, Schultze-Mosgau A, Al-Hasani S, Diedrich K, Griesinger G. Emerging gonadotropin-releasing hormone agonists. Expert Opin Emerg Drugs 2011; 16:323-40. [PMID: 21244327 DOI: 10.1517/14728214.2010.547472] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Gonadotropin-releasing hormone agonist analogs (GnRHa) are peptides that mimic the action of gonadotropin-releasing hormone (GnRH) and are used to suppress subsequent sex steroid production. Although the analogs are a rather defined group of drugs, there have been developments in the past decades and there is still ample room for improvement. New therapeutic strategies in the use of GnRHs are discussed. AREAS COVERED Major points of discussion include: i) the use of concomitant treatment of early breast cancer in premenopausal estrogen-positive and -negative patients, ii) the use of GnRHa for fertility preservation in young female patients with malignant diseases and iii) the use of GnRH analogs in assisted reproduction. The manuscript provides a better understanding of GnRH agonists as well as an explanation of their major indications, biochemical pathways and concluding therapeutic strategies. Recent results from international meetings and debates are described to explain current controversies. EXPERT OPINION This paper highlights the need for more complex GnRH analogs. In the next few years, there will be longer acting GnRHas that may improve adherence. New therapeutic targets in oncological concepts may go beyond fertility preservation and focus on the antiproliferative effects of GnRH analogs.
Collapse
Affiliation(s)
- Daniel Alexander Beyer
- University of Schleswig Holstein, Department of Obstetrics and Gynaecology, Campus Lübeck, Ratzeburger Allee 160, D- 23538 Lübeck, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Kosugi T, Sower SA. A role of Histidine151 in the lamprey gonadotropin-releasing hormone receptor-1 (lGnRHR-1): Functional insight of diverse amino acid residues in the position of Tyr of the DRY motif in GnRHR from an ancestral type II receptor. Gen Comp Endocrinol 2010; 166:498-503. [PMID: 20005226 PMCID: PMC2856804 DOI: 10.1016/j.ygcen.2009.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 12/04/2009] [Indexed: 10/20/2022]
Abstract
The highly conserved DRY motif located at the end of the third transmembrane of G-protein-coupled receptors has been described as a key motif for several aspects of GPCR functions. However, in the case of the vertebrate gonadotropin-releasing hormone receptor (GnRHR), the amino acid in the third position in the DRY motif is variable. In the lamprey, a most basal vertebrate, the third amino acid of the "DRY" in lamprey (lGnRHR-1) is His, while it is most often His/Gln in the type II GnRHR. To investigate the functional significance of the substitution of DRY to DRH in the GnRHR-1, second messenger signaling, ligand binding and internalization of the wild-type and mutant lGnRH receptors were characterized with site-directed mutagenesis. Treatment of the DRE(151) and DRS(151) mutant receptors with lamprey GnRH-I significantly reduced inositol phosphate compared to wild-type (DRH(151)) and DRY(151) receptors. The LogIC(50) of wild-type receptor (-9.554+/-0.049) was similar to the LogIC(50) of DRE(151), DRS(151) and DRX(151) mutants, yet these same mutants were shown to significantly reduce cell-surface expression. However, the DRY(151) mutant compared to the wild-type receptor increased cell-surface expression, suggesting that the reduction of IP production was due to the level of the cell-surface expression of the mutant receptors. The rate of internalization of DRX(151) (35.60%) was reduced compared to wild-type and other mutant receptors. These results suggest that His(151) of the lamprey GnRH receptor-1 may play a critical role in the retention of a certain level of cell-surface expression for subsequent cellular second messenger events.
Collapse
Affiliation(s)
| | - Stacia A. Sower
- Corresponding author: Dr. Stacia A. Sower. Center for Molecular and Comparative Endocrinology, University of New Hampshire, 46 College Road Durham NH 3824 USA.
| |
Collapse
|
26
|
Wu HM, Wang HS, Huang HY, Soong YK, MacCalman CD, Leung PCK. GnRH signaling in intrauterine tissues. Reproduction 2009; 137:769-77. [PMID: 19208750 DOI: 10.1530/rep-08-0397] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Type I GnRH (GnRH-I, GNRH1) and type II GnRH (GnRH-II, GNRH2), each encoded by separate genes, have been identified in humans. The tissue distribution and functional regulation of GnRH-I and GnRH-II clearly differ despite their comparable cDNA and genomic structures. These hormones exert their effects by binding to cell surface transmembrane G protein coupled receptors and stimulating the Gq/11 subfamily of G proteins. The hypothalamus and pituitary are the main origin and target sites of GnRH, but numerous studies have demonstrated that extra-hypothalamic GnRH and extra-pituitary GnRH receptors exist in different reproductive tissues such as the ovary, endometrium, placenta, and endometrial cancer cells. In addition to endocrine regulation, GnRH is also known to act in an autocrine and paracrine manner to suppress cell proliferation and activate apoptosis in the endometrium and endometrial cancer cells through several mechanisms. Both GnRH-I and GnRH-II exhibit regulatory roles in tissue remodelling during embryo implantation and placentation, which suggests that these hormones may have important roles in embryo implantation and early pregnancy. The presence of varied GnRH and GnRH receptor systems demonstrate their different roles in distinct tissues using dissimilar mechanisms. These may result in the generation of new GnRH analogues used for several hormone-related diseases.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia V6H3V5, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Signaling by G-protein-coupled receptor (GPCR): studies on the GnRH receptor. Front Neuroendocrinol 2009; 30:10-29. [PMID: 18708085 DOI: 10.1016/j.yfrne.2008.07.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 04/28/2008] [Accepted: 07/21/2008] [Indexed: 01/22/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is the first key hormone of reproduction. GnRH analogs are extensively used in in vitro fertilization, and treatment of sex hormone-dependent cancers, due to their ability to bring about 'chemical castration'. The interaction of GnRH with its cognate type I receptor (GnRHR) in pituitary gonadotropes results in the activation of Gq/G(11), phospholipase Cbeta (PLCbetaI), PLA(2), and PLD. Sequential activation of the phospholipases generates the second messengers inositol 1, 4, 5-trisphosphate (IP(3)), diacylglycerol (DAG), and arachidonic acid (AA), which are required for Ca(2+) mobilization, the activation of various protein kinase C isoforms (PKCs), and the production of prostaglandin (PG) and other metabolites of AA, respectively. PKC isoforms are the major mediators of the downstream activation of a number of mitogen-activated protein kinase (MAPK) cascades by GnRH, namely: extracellular signal-regulated kinase (ERK), jun-N-terminal kinase (JNK), and p38MAPK. The activated MAPKs phosphorylate both cytosolic and nuclear proteins to initiate the transcriptional activation of the gonadotropin subunit genes and the GnRHR. While Ca(2+) mobilization has been found to initiate rapid gonadotropin secretion, Ca(2+), together with various PKC isoforms, MAPKs and AA metabolites also serve as key nodes, in the GnRH-stimulated signaling network that enables the gonadotropes to decode GnRH pulse frequencies and translating that into differential gonadotropin synthesis and release. Even though pulsatility of GnRH is recognized as a major determinant for differential gonadotropin subunit gene expression and gonadotropin secretion very little is yet known about the signaling circuits governing GnRH action at the 'Systems Biology' level. Direct apoptotic and metastatic effects of GnRH analogs in gonadal steroid-dependent cancers expressing the GnRHR also seem to be mediated by the activation of the PKC/MAPK pathways. However, the mechanisms dictating life (pituitary) vs. death (cancer) decisions made by the same GnRHR remain elusive. Understanding these molecular mechanisms triggered by the GnRHR through biochemical and 'Systems Biology' approaches would provide the basis for the construction of the dynamic connectivity maps, which operate in the various cell types (endocrine, cancer, and immune system) targeted by GnRH. The connectivity maps will open a new vista for exploring the direct effects of GnRH analogs in tumors and the design of novel combined therapies for fertility control, reproductive disorders and cancers.
Collapse
|
28
|
Yang H, Wan L, Song F, Wang M, Huang Y. Palmitoylation modification of Galpha(o) depresses its susceptibility to GAP-43 activation. Int J Biochem Cell Biol 2008; 41:1495-501. [PMID: 19146979 DOI: 10.1016/j.biocel.2008.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 12/09/2008] [Accepted: 12/16/2008] [Indexed: 11/26/2022]
Abstract
Interaction between GAP-43 (growth associated protein-43) and Galpha(o) (alpha subunit of Go protein) influences the signal transduction pathways leading to differentiation of neural cells. GAP-43 is known to increase guanine nucleotide exchange by Galpha(o), which is a major component of neuronal growth cone membranes. However, it is not clear whether GAP-43 stimulation is related to the Galpha(o) palmitoylation or the conversion of Galpha(o) from oligmers to monomers, which was shown to be a necessary regulatory factor in GDP/GTP exchange of Galpha(o). Here we expressed and purified GAP-43, GST-GAP-43 and Galpha(o) proteins, detected their stimulatory effect on [(35)S]-GTPgammaS binding of Galpha(o). It was found that the EC(50) of both GAP-43 and GST-GAP-43 activation were tenfold lower in case of depalmitoylated Galpha(o) than palmitoylated Galpha(o). Non-denaturing gel electrophoresis and p-PDM cross-linking analysis revealed that addition of GST-GAP-43 induced disassociation of depalmitoylated Galpha(o) from oligomers to monomers, but did not influence the oligomeric state of palmitoylated Galpha(o), which suggests that palmitoylation is a key regulatory factor in GAP-43 stimulation on Galpha(o). These results indicated the interaction of GAP-43 and Galpha(o) could accelerate conversion of depalmitoylated Galpha(o) but not palmitoylated Galpha(o) from oligomers to monomers, so as to increase the GTPgammaS binding activity of Galpha(o). Results here provide new evidence about how signaling protein palmitoylation is involved in the G-protein-coupled signal transduction cascade, and give a useful clue on the participation of GAP-43 in G-protein cycle by its preferential activation of depalmitoylated Galpha(o).
Collapse
Affiliation(s)
- Hui Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, China
| | | | | | | | | |
Collapse
|
29
|
White CD, Coetsee M, Morgan K, Flanagan CA, Millar RP, Lu ZL. A crucial role for Galphaq/11, but not Galphai/o or Galphas, in gonadotropin-releasing hormone receptor-mediated cell growth inhibition. Mol Endocrinol 2008; 22:2520-30. [PMID: 18801931 DOI: 10.1210/me.2008-0122] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
GnRH acts on its cognate receptor in pituitary gonadotropes to regulate the biosynthesis and secretion of gonadotropins. It may also have direct extrapituitary actions, including inhibition of cell growth in reproductive malignancies, in which GnRH activation of the MAPK cascades is thought to play a pivotal role. In extrapituitary tissues, GnRH receptor signaling has been postulated to involve coupling of the receptor to different G proteins. We examined the ability of the GnRH receptor to couple directly to Galpha(q/11), Galpha(i/o), and Galpha(s), their roles in the activation of the MAPK cascades, and the subsequent cellular effects. We show that in Galpha(q/11)-negative cells stably expressing the GnRH receptor, GnRH did not induce activation of ERK, jun-N-terminal kinase, or P38 MAPK. In contrast to Galpha(i) or chimeric Galpha(qi5), transfection of Galpha(q) cDNA enabled GnRH to induce phosphorylation of ERK, jun-N-terminal kinase, and P38. Furthermore, no GnRH-mediated cAMP response or inhibition of isoproterenol-induced cAMP accumulation was observed. In another cellular background, [35S]GTPgammaS binding assays confirmed that the GnRH receptor was unable to directly couple to Galpha(i) but could directly interact with Galpha(q/11). Interestingly, GnRH stimulated a marked reduction in cell growth only in cells expressing Galpha(q), and this inhibition could be significantly rescued by blocking ERK activation. We therefore provide direct evidence, in multiple cellular backgrounds, that coupling of the GnRH receptor to Galpha(q/11), but not to Galpha(i/o) or Galpha(s), and consequent activation of ERK plays a crucial role in GnRH-mediated cell death.
Collapse
Affiliation(s)
- Colin D White
- The Medical Research Council Human Reproductive Sciences Unit, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | | | | | | | | | | |
Collapse
|
30
|
Knollman PE, Conn PM. Multiple G proteins compete for binding with the human gonadotropin releasing hormone receptor. Arch Biochem Biophys 2008; 477:92-7. [PMID: 18541137 DOI: 10.1016/j.abb.2008.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 05/13/2008] [Accepted: 05/18/2008] [Indexed: 01/05/2023]
Abstract
The GnRH receptor is coupled to G proteins of the families G(q) and G(11). G(q) and G(11) coupling leads to intracellular signaling through the phospholipase C pathway. GnRHR coupling to other G proteins is controversial. This study provides evidence that G protein families G(s), G(i), G(q) and G(11) complete for binding with the GnRHR. We quantified interactions of over-expressed G proteins with GnRHR by a competitive binding approach, using measurements of second messengers, IP and cAMP. Transient co-transfection of HEK293 cells with human WT GnRHR and with stimulatory and inhibitory G proteins (G(q), G(11) and G(s), G(i)) led to either production or inhibition of total inositol phosphate (IP) production, depending on the G protein that was over-expressed. Studies were conducted in different human (COS7, HeLa) and rodent-derived (CHO-K1, GH(3)) cell lines in order to confirm that G protein promiscuity observed with the GnRHR was not limited to a particular cell type.
Collapse
Affiliation(s)
- Paul E Knollman
- Divisions of Neuroscience and Reproductive Biology, ONPRC/OHSU, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | | |
Collapse
|
31
|
Yang H, Qu L, Ni J, Wang M, Huang Y. Palmitoylation participates in G protein coupled signal transduction by affecting its oligomerization. Mol Membr Biol 2008; 25:58-71. [PMID: 18097954 DOI: 10.1080/09687680701528697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Much in vivo and in vitro evidence has shown that the alpha subunits of heterotrimeric GTP-binding proteins (G proteins) exist as oligomers in their base state and disaggregate when being activated. In this article, the influence of palmitoylation modification of Galpha(o) on its oligomerization was explored extensively. Galpha(o) protein was expressed and purified from Escherichia coli strain JM109 cotransformed with pQE60(Galpha(o)) and pBB131(N-myristoyltransferase). Non-denaturing gel electrophoresis analysis revealed that Galpha(o) existed to a small extent as monomers but mostly as oligomers including dimers, trimers, tetramers and pentamers which could disaggregate completely into monomers by GTPgammaS stimulation. Palmitoylated Galpha(o), on the other hand, only present as oligomers that were difficult to disaggregate into monomers. The effect of palmitoylation on oligomerization of Galpha(o) was further investigated by several other biochemical and biophysical methods including gel filtration chromatography, analytical ultracentrifugation and atomic force microscopy analysis. The results consistently demonstrated that palmitoylation facilitated oligomerization of the Galpha(o) protein. Autoradiography indicated that [(14)C]-palmitoylated Galpha(o) would in no case disaggregate into monomers after treatment with GTPgammaS. [(35)S]-GTPgammaS binding activity assay showed that palmitoylated Galpha(o) was saturated at only 7.8 nmol/mg compared to 21.8 nmol/mg for non-palmitoylated Galpha(o). Fluorescent quenching studies using BODIPY FL-GTPgammaS as a probe showed that the conformation of GTP-binding domain of Galpha(o) tended to become more compact after palmitoylation. These results implied that palmitoylation may regulate the GDP/GTP exchange of Galpha(o) by influencing the oligomerization state of Galpha(o) and thereby modulate the on-off switch of the G protein in G protein-coupled signal transduction.
Collapse
Affiliation(s)
- Hui Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | | | |
Collapse
|
32
|
Shafiee-Kermani F, Han SO, Miller WL. Chronic gonadotropin-releasing hormone inhibits activin induction of the ovine follicle-stimulating hormone beta-subunit: involvement of 3',5'-cyclic adenosine monophosphate response element binding protein and nitric oxide synthase type I. Endocrinology 2007; 148:3346-55. [PMID: 17446183 DOI: 10.1210/en.2006-1740] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
FSH is induced by activin, and this expression is modulated by GnRH through FSHB expression. This report focuses on the inhibitory effect of GnRH on activin-induced FSHB expression. Activin-treated primary murine pituitary cultures robustly express mutant ovine FSHBLuc-DeltaAP1, a luciferase transgene driven by 4.7 kb of ovine FSHB promoter. This promoter lacks two GnRH-inducible activator protein-1 sites, making it easier to observe GnRH-mediated inhibition. Luciferase expression from this transgene was decreased 94% by 100 nM GnRH with a half-time of approximately 4 h in pituitary cultures, and this inhibition was independent of follistatin. Activators of cAMP and protein kinase C like forskolin and phorbol 12-myristate 3-acetate (PMA), respectively, mimicked GnRH action. Kinetic studies of wild-type ovine FSHBLuc in LbetaT2 cells showed continuous induction by activin (4-fold) over 20 h. Most of this induction (78%) was blocked, beginning at 6 h. cAMP response element binding protein (CREB) was implicated in this inhibition because overexpression of its constitutively active mutant mimicked GnRH, and its inhibitor (inducible cAMP early repressor isoform II) reversed the inhibition caused by GnRH, forskolin, or PMA. In addition, GnRH, forskolin, or PMA increased the expression of a CREB-responsive reporter gene, 6xCRE-37PRL-Luc. Inhibition of nitric oxide type I (NOSI) by 7-nitroindazole also reversed GnRH-mediated inhibition by 60%. It is known that GnRH and CREB induce production of NOSI in gonadotropes and neuronal cells, respectively. These data support the concept that chronic GnRH inhibits activin-induced ovine FSHB expression by sequential activation of CREB and NOSI through the cAMP and/or protein kinase C pathways.
Collapse
Affiliation(s)
- Farideh Shafiee-Kermani
- Department of Molecular and Structural Biochemistry, Box 7622, North Carolina State University, Raleigh, North Carolina 27695-7622, USA
| | | | | |
Collapse
|
33
|
Winters SJ, Ghooray D, Fujii Y, Moore JP, Nevitt JR, Kakar SS. Transcriptional regulation of follistatin expression by GnRH in mouse gonadotroph cell lines: evidence for a role for cAMP signaling. Mol Cell Endocrinol 2007; 271:45-54. [PMID: 17482756 DOI: 10.1016/j.mce.2007.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 03/29/2007] [Accepted: 03/29/2007] [Indexed: 01/08/2023]
Abstract
GnRH applied continuously or in pulses of high frequency increases follistatin, and thereby differentially regulates FSH and LH. This study was conducted in alphaT3-1 and LbetaT2 gonadotroph cells to begin to understand the signaling pathways through which GnRH stimulates follistatin synthesis. GnRH increased follistatin expression and stimulated a follistatin-LUC reporter in LbetaT2 cells, but was inactive in alphaT3-1 cells. GnRH also increased cAMP levels and stimulated a cAMP-responsive promoter only in LbetaT2 cells. Forskolin stimulated follistatin in both cell lines. GnRH activation of follistatin was blocked by the PKA inhibitor H89 and by over-expression of a dominant-negative inhibitor of CREB (A-CREB). Activation was also suppressed by PKC depletion, and was reduced by the PKC inhibitor bisindolylmaleimide. The MEK inhibitor PD98059 blocked activation by GnRH or forskolin implying that MAPK contributes to cAMP/PKA-mediated activation of follistatin. When LbetaT2 cells were transfected with follistatin-LUC together with A-CREB, and perifused with GnRH, activation was blocked during continuous GnRH, but stimulation by hourly GnRH pulses was unaffected. These experiments provide evidence that GnRH stimulates follistatin through multiple signaling pathways, and that cAMP-CREB activation is obligatory when GnRH is applied continuously. The finding that follistatin transcription was CREB-dependent with continuous but not pulsatile GnRH implies that the mode of ligand activation of GnRH receptors modifies the transcriptional response by changing the signaling network. These results provide a mechanism linking GnRH pulsatility to the differential control of FSH-beta and LH-beta gene expression through follistatin.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology & Metabolism, University of Louisville, Louisville, KY 40202, United States.
| | | | | | | | | | | |
Collapse
|
34
|
Mönkkönen KS, Aflatoonian R, Lee KF, Yeung WSB, Tsao SW, Laitinen JT, Tuckerman EM, Li TC, Fazeli A. Localization and variable expression of G alpha(i2) in human endometrium and Fallopian tubes. Hum Reprod 2007; 22:1224-30. [PMID: 17347170 DOI: 10.1093/humrep/dem022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Heterotrimeric G proteins take part in membrane-mediated cell signalling and have a role in hormonal regulation. This study clarifies the expression and localization of the G protein subunit G alpha(i2) in the human endometrium and Fallopian tube and changes in G alpha(i2) expression in human endometrium during the menstrual cycle. METHODS The expression of G alpha(i2) was identified by Polymerase chain reaction (PCR), and localization confirmed by immunostaining. Cyclic changes in G alpha(i2) expression during the menstrual cycle were evaluated by quantitative real-time PCR. RESULTS We found G alpha(i2) to be expressed in human endometrium, Fallopian tube tissue and in primary cultures of Fallopian tube epithelial cells. Our studies revealed enriched localization of G alpha(i2) in Fallopian tube cilia and in endometrial glands. We showed that G alpha(i2) expression in human endometrium changes significantly during the menstrual cycle, with a higher level in the secretory versus proliferative and menstrual phases (P < 0.05). CONCLUSIONS G alpha(i2) is specifically localized in human Fallopian tube epithelial cells, particularly in the cilia, and is likely to have a cilia-specific role in reproduction. Significantly variable expression of G alpha(i2) during the menstrual cycle suggests G alpha(i2) might be under hormonal regulation in the female reproductive tract in vivo.
Collapse
Affiliation(s)
- Kati S Mönkkönen
- Department of Pharmacology and Toxicology, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hu L, Wada K, Mores N, Krsmanovic LZ, Catt KJ. Essential role of G protein-gated inwardly rectifying potassium channels in gonadotropin-induced regulation of GnRH neuronal firing and pulsatile neurosecretion. J Biol Chem 2006; 281:25231-40. [PMID: 16825187 DOI: 10.1074/jbc.m603768200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the luteinizing hormone/human chorionic gonadotropin (LH/hCG) receptor (LHR) in cultured hypothalamic cells and immortalized GnRH (gonadotropin-releasing hormone) neurons (GT1-7 cells) transiently stimulates and subsequently inhibits cAMP production and pulsatile GnRH release. The marked and delayed impairment of cAMP signaling and episodic GnRH release in GT1-7 cells is prevented by pertussis toxin (PTX). This, and the LH-induced release of membrane-bound Galpha(s) and Galpha(i3) subunits, are indicative of differential G protein coupling to the LHR. Action potential (AP) firing in identified GnRH neurons also initially increased and then progressively decreased during LH treatment. The inhibitory action of LH on AP firing was also prevented by PTX. Reverse transcriptase-PCR analysis of GT1-7 neurons revealed the expression of G protein-gated inwardly rectifying potassium (GIRK) channels in these cells. The LH-induced currents were inhibited by PTX and were identified as GIRK currents. These responses indicate that agonist stimulation of endogenous LHR expressed in GnRH neurons activates GIRK channels, leading to suppression of membrane excitability and inhibition of AP firing. These findings demonstrate that regulation of GIRK channel function is a dominant factor in gonadotropin-induced abolition of pulsatile GnRH release. Furthermore, this mechanism could contribute to the suppression of pituitary function during pregnancy.
Collapse
Affiliation(s)
- Lian Hu
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | | | |
Collapse
|
36
|
Kraus S, Naor Z, Seger R. Gonadotropin-releasing hormone in apoptosis of prostate cancer cells. Cancer Lett 2006; 234:109-23. [PMID: 16546667 DOI: 10.1016/j.canlet.2005.02.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
GnRH and its analogs (GnRH-a) are used extensively for the treatment of prostate cancer and other hormone-dependent diseases via the desensitization of pituitary gonadotropes, which consequently leads to the inhibition of gonadotropins, gonadal steroids and tumor growth. The actions of GnRH-a are mediated by the GnRH receptor (GnRHR) that is expressed in both the pituitary and extrapituitary sites, including normal tissues and tumors. Several studies have provided evidence that besides its pituitary effects, GnRH-a may exert direct anti-proliferative and apoptotic effects in tumor cells. These effects are mediated by the GnRHRs via signal transduction mechanisms that are distinct from the classical pituitary mechanisms. Here we describe the direct effects of GnRH-a on prostate cancer and other types of cancer. Interestingly, androgen ablation by GnRH-a is the main treatment for hormone-dependent prostate cancer. However, most of these tumors become eventually hormone-refractory, and are no longer sensitive to the GnRH-a-mediated reduction in androgen levels. Hence, the ability of GnRH-a to induce direct effects such as apoptosis may have large implications regarding the clinical use of GnRH-a. Therefore, an understanding of the cellular mechanisms involved in GnRH-a action may lead to better therapeutic modalities for the treatment of advanced prostate cancer and other malignancies.
Collapse
Affiliation(s)
- Sarah Kraus
- Department of Microbiology and Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
37
|
Cao Y, Huang Y. Palmitoylation regulates GDP/GTP exchange of G protein by affecting the GTP-binding activity of Goalpha. Int J Biochem Cell Biol 2005; 37:637-44. [PMID: 15618020 DOI: 10.1016/j.biocel.2004.04.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 04/09/2004] [Accepted: 04/24/2004] [Indexed: 11/20/2022]
Abstract
The effect of palmitoylation on the GTP-binding activity and conformation of Goalpha protein in hydrophobic and hydrophilic environments was studied. The binding assay was performed with an isotope labeled analog of GTP, GTP-gamma-35S, and its fluorescent analog, BODIPY FL-GTPgammaS was used to detect conformational change in the GTP-binding domain of Goalpha. Investigation of the GTP-gamma-35S binding activity of Goalpha shows that in a hydrophobic environment, mimicked by the presence of detergent, the apparent dissociation constant for palmitoylated Goalpha (K(D)=25.5x10(-9)+/-1.7x10(-9)M) increased threefold compared with that of non-palmitoylated Goalpha (K(D)=9.9x10(-9)+/-0.8x10(-9)M), while in an aqueous environment without detergent there is no significant difference between palmitoylated (K(D)=50.1 x 10(-9)+/-5.2x10(-9)M) and non-palmitoylated (K(D)=65.5x10(-9)+/-7.6x10(-9)M) Go(. This indicates that in a membrane environment palmitoylation may weaken the GTPgammaS binding ability of Go(. Fluorescent quenching studies using BODIPY FL-GTPgammaS as a probe showed that the conformation of the GTP-binding domain of Go( tends to become more compact after palmitoylation. These results imply that palmitoylation may regulate the GTP/GDP exchange of Goalpha by influencing the GTP-binding activity of Goalpha and facilitating the on-off switch function of the G protein in G protein-coupled signal transduction.
Collapse
Affiliation(s)
- Yu Cao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China
| | | |
Collapse
|
38
|
Cheng CK, Leung PCK. Molecular biology of gonadotropin-releasing hormone (GnRH)-I, GnRH-II, and their receptors in humans. Endocr Rev 2005; 26:283-306. [PMID: 15561800 DOI: 10.1210/er.2003-0039] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In human beings, two forms of GnRH, termed GnRH-I and GnRH-II, encoded by separate genes have been identified. Although these hormones share comparable cDNA and genomic structures, their tissue distribution and regulation of gene expression are significantly dissimilar. The actions of GnRH are mediated by the GnRH receptor, which belongs to a member of the rhodopsin-like G protein-coupled receptor superfamily. However, to date, only one conventional GnRH receptor subtype (type I GnRH receptor) uniquely lacking a carboxyl-terminal tail has been found in the human body. Studies on the transcriptional regulation of the human GnRH receptor gene have indicated that tissue-specific gene expression is mediated by differential promoter usage in various cell types. Functionally, there is growing evidence showing that both GnRH-I and GnRH-II are potentially important autocrine and/or paracrine regulators in some extrapituitary compartments. Recent cloning of a second GnRH receptor subtype (type II GnRH receptor) in nonhuman primates revealed that it is structurally and functionally distinct from the mammalian type I receptor. However, the human type II receptor gene homolog carries a frameshift and a premature stop codon, suggesting that a full-length type II receptor does not exist in humans.
Collapse
Affiliation(s)
- Chi Keung Cheng
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada V6H 3V5
| | | |
Collapse
|
39
|
Washington TM, Blum JJ, Reed MC, Conn PM. A mathematical model for LH release in response to continuous and pulsatile exposure of gonadotrophs to GnRH. Theor Biol Med Model 2004; 1:9. [PMID: 15447787 PMCID: PMC524191 DOI: 10.1186/1742-4682-1-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 09/24/2004] [Indexed: 11/25/2022] Open
Abstract
In a previous study, a model was developed to investigate the release of luteinizing hormone (LH) from pituitary cells in response to a short pulse of gonadotropin-releasing hormone (GnRH). The model included: binding of GnRH to its receptor (R), dimerization and internalization of the hormone receptor complex, interaction with a G protein, production of inositol 1,4,5-trisphosphate (IP3), release of calcium from the endoplasmic reticulum (ER), entrance of calcium into the cytosol via voltage gated membrane channels, pumping of calcium out of the cytosol via membrane and ER pumps, and release of LH. The extended model, presented in this paper, also includes the following physiologically important phenomena: desensitization of calcium channels; internalization of the dimerized receptors and recycling of some of the internalized receptors; an increase in Gq concentration near the plasma membrane in response to receptor dimerization; and basal rates of synthesis and degradation of the receptors. With suitable choices of the parameters, good agreement with a variety of experimental data of the LH release pattern in response to pulses of various durations, repetition rates, and concentrations of GnRH were obtained. The mathematical model allows us to assess the effects of internalization and desensitization on the shapes and time courses of LH response curves.
Collapse
Affiliation(s)
| | - J Joseph Blum
- Department of Cell Biology, Duke University, Durham, USA
| | | | - P Michael Conn
- Oregon National Primate Research Center, Oregon Health & Science University, Beaver-ton, USA
| |
Collapse
|
40
|
Jeong KH, Chin WW, Kaiser UB. Essential role of the homeodomain for pituitary homeobox 1 activation of mouse gonadotropin-releasing hormone receptor gene expression through interactions with c-Jun and DNA. Mol Cell Biol 2004; 24:6127-39. [PMID: 15226417 PMCID: PMC434250 DOI: 10.1128/mcb.24.14.6127-6139.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 10/21/2003] [Accepted: 02/23/2004] [Indexed: 11/20/2022] Open
Abstract
The gonadotropin-releasing hormone receptor (GnRHR) is expressed primarily in the gonadotropes of the anterior pituitary. Pituitary homeobox 1 (Pitx-1) has been shown to activate pituitary-specific gene expression by direct DNA binding and/or protein-protein interaction with other transcription factors. We hypothesized that Pitx-1 might also dictate tissue-specific expression of the mouse GnRHR (mGnRHR) gene in a similar manner. Pitx-1 activated the mGnRHR gene promoter, and transactivation was localized to sequences between -308 and -264. Pitx-1 bound to this region only with low affinity. This region includes an activating protein 1 (AP-1) site, which was previously shown to be important for mGnRHR gene expression. Further characterization indicated that an intact AP-1 site was required for full Pitx-1 responsiveness. Furthermore, Pitx-1 and AP-1 were synergistic in the activation of the mGnRHR gene promoter. A Pitx-1 homeodomain (HD) point mutation, which eliminated DNA binding ability, caused only a partial reduction of transactivation, whereas deletion of the HD completely prevented transactivation. Pitx-1 interacted directly with c-Jun, and the HD was sufficient for this interaction. While the point mutation in the Pitx-1 HD did not affect interaction with c-Jun, deletion of the HD eliminated the interaction. Taken together, our studies indicate that Pitx-1 can direct transactivation of the mGnRHR gene, in part by DNA binding and in part by an action of Pitx-1 as a cofactor for AP-1, augmenting AP-1 activity through a novel protein-protein interaction between c-Jun and the HD of Pitx-1.
Collapse
Affiliation(s)
- Kyeong-Hoon Jeong
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
41
|
Abstract
GnRH and its analogs are used extensively for the treatment of hormone-dependent diseases and assisted reproductive techniques. They also have potential as novel contraceptives in men and women. A thorough delineation of the molecular mechanisms involved in ligand binding, receptor activation, and intracellular signal transduction is kernel to understanding disease processes and the development of specific interventions. Twenty-three structural variants of GnRH have been identified in protochordates and vertebrates. In many vertebrates, three GnRHs and three cognate receptors have been identified with distinct distributions and functions. In man, the hypothalamic GnRH regulates gonadotropin secretion through the pituitary GnRH type I receptor via activation of G(q). In-depth studies have identified amino acid residues in both the ligand and receptor involved in binding, receptor activation, and translation into intracellular signal transduction. Although the predominant coupling of the type I GnRH receptor in the gonadotrope is through productive G(q) stimulation, signal transduction can occur via other G proteins and potentially by G protein-independent means. The eventual selection of intracellular signaling may be specifically directed by variations in ligand structure. A second form of GnRH, GnRH II, conserved in all higher vertebrates, including man, is present in extrahypothalamic brain and many reproductive tissues. Its cognate receptor has been cloned from various vertebrate species, including New and Old World primates. The human gene homolog of this receptor, however, has a frame-shift and stop codon, and it appears that GnRH II signaling occurs through the type I GnRH receptor. There has been considerable plasticity in the use of different GnRHs, receptors, and signaling pathways for diverse functions. Delineation of the structural elements in GnRH and the receptor, which facilitate differential signaling, will contribute to the development of novel interventive GnRH analogs.
Collapse
Affiliation(s)
- Robert P Millar
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, United Kingdom.
| | | | | | | | | | | |
Collapse
|
42
|
Romanelli RG, Barni T, Maggi M, Luconi M, Failli P, Pezzatini A, Pelo E, Torricelli F, Crescioli C, Ferruzzi P, Salerno R, Marini M, Rotella CM, Vannelli GB. Expression and function of gonadotropin-releasing hormone (GnRH) receptor in human olfactory GnRH-secreting neurons: an autocrine GnRH loop underlies neuronal migration. J Biol Chem 2003; 279:117-26. [PMID: 14565958 DOI: 10.1074/jbc.m307955200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Olfactory neurons and gonadotropin-releasing hormone (GnRH) neurons share a common origin during organogenesis. Kallmann's syndrome, clinically characterized by anosmia and hypogonadotropic hypogonadism, is due to an abnormality in the migration of olfactory and GnRH neurons. We recently characterized the human FNC-B4 cell line, which retains properties present in vivo in both olfactory and GnRH neurons. In this study, we found that FNC-B4 neurons expressed GnRH receptor and responded to GnRH with time- and dose-dependent increases in GnRH gene expression and protein release (up to 5-fold). In addition, GnRH and its analogs stimulated cAMP production and calcium mobilization, although at different biological thresholds (nanomolar for cAMP and micromolar concentrations for calcium). We also observed that GnRH triggered axon growth, actin cytoskeleton remodeling, and a dose-dependent increase in migration (up to 3-4-fold), whereas it down-regulated nestin expression. All these effects were blocked by a specific GnRH receptor antagonist, cetrorelix. We suggest that GnRH, secreted by olfactory neuroblasts, acts in an autocrine pattern to promote differentiation and migration of those cells that diverge from the olfactory sensory lineage and are committed to becoming GnRH neurons.
Collapse
Affiliation(s)
- Roberto Giulio Romanelli
- Department of Internal Medicine, University of Florence, School of Medicine, Florence I-50134, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Oh DY, Wang L, Ahn RS, Park JY, Seong JY, Kwon HB. Differential G protein coupling preference of mammalian and nonmammalian gonadotropin-releasing hormone receptors. Mol Cell Endocrinol 2003; 205:89-98. [PMID: 12890570 DOI: 10.1016/s0303-7207(03)00204-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recently, we have identified three distinct types of gonadotropin-releasing hormone receptor (GnRHR) in the bullfrog (designated bfGnRHR-1, bfGnRHR-2, and bfGnRHR-3). In the present study, we compared G protein coupling preference of mammalian and nonmammalian GnRHRs. In a transient expression system, stimulation of either bfGnRHRs or rat GnRHR by GnRH significantly increased both inositol phosphates (IP) and cAMP productions, but ratios of IP to cAMP induction levels were quite different among the receptors, indicating differential G protein coupling preference. Using cAMP-dependent protein kinase A (PKA)-specific (CRE-luc) or protein kinase C (PKC)-specific reporter (c-fos-luc) systems, we further examined G(s) and G(q/11) coupling preference of these GnRHRs. Since activities of CRE-luc and c-fos-luc were highly dependent on cell types, GnRH-induced CRE-luc or c-fos-luc activity was normalized by forskolin-induced CRE-luc or 12-O-tetradecanoylphenol-13-acetate (TPA)-induced c-fos-luc activity, respectively. This normalized result indicated that bfGnRHR-2 couples to G(s) more actively than G(q/11), while bfGnRHR-1 and -3 couple to G(s) and G(q/11) with similar strength. However, the rat GnRHR appeared to couple to G(q/11) more efficiently than G(s). This study was further confirmed by an experiment in which GnRH augmented CRE-driven luciferase activity in alphaT3-1 cells when CRE-luc was cotransfected with bfGnRHRs but not with vehicle or rat GnRHR. Collectively, these results indicate that mammalian and nonmammalian GnRHRs may induce diverse cellular and physiological responses through differential activation of PKA and PKC signaling pathways.
Collapse
Affiliation(s)
- Da Young Oh
- Hormone Research Center, Chonnam National University, 500-757 Gwangju, South Korea
| | | | | | | | | | | |
Collapse
|
44
|
Ruf F, Fink MY, Sealfon SC. Structure of the GnRH receptor-stimulated signaling network: insights from genomics. Front Neuroendocrinol 2003; 24:181-99. [PMID: 14596811 DOI: 10.1016/s0091-3022(03)00027-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The GnRH receptor influences gene expression in the gonadotrope through activating signaling cascades that modulate transcription factor expression and activity. A longstanding question in neuroendocrinology is how instructions received at the membrane in the form of the pattern of receptor stimulation are processed into specific biosynthetic changes at each gonadotropin promoter. Signal transduction from the membrane to preformed transcription factors relies on recognition of altered conformations. Signal transduction through the layers of the gene network also requires the biosynthesis of new transcription factors. The signal processing of this system depends on its molecular connectivity map and its feedback and feed-forward loops. Review of signal transduction, gene control, and genomic studies provide evidence of key loops that cross between cellular and nuclear compartments. Genomic studies suggest that the signal transduction and gene network form a continuum. We propose that information transfer in the gonadotrope depends on robust signaling modules that serve to integrate events at different time scales across cytoplasmic and nuclear compartments.
Collapse
Affiliation(s)
- Frederique Ruf
- Department of Neurology, Box 1137, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
45
|
Hermans E. Biochemical and pharmacological control of the multiplicity of coupling at G-protein-coupled receptors. Pharmacol Ther 2003; 99:25-44. [PMID: 12804697 DOI: 10.1016/s0163-7258(03)00051-2] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
For decades, it has been generally proposed that a given receptor always interacts with a particular GTP-binding protein (G-protein) or with multiple G-proteins within one family. However, for several G-protein-coupled receptors (GPCR), it now becomes generally accepted that simultaneous functional coupling with distinct unrelated G-proteins can be observed, leading to the activation of multiple intracellular effectors with distinct efficacies and/or potencies. Multiplicity in G-protein coupling is frequently observed in artificial expression systems where high densities of receptors are obtained, raising the question of whether such complex signalling reveals artefactual promiscuous coupling or is a genuine property of GPCRs. Multiple biochemical and pharmacological evidence in favour of an intrinsic property of GPCRs were obtained in recent studies. Thus, there are now many examples showing that the coupling to multiple signalling pathways is dependent on the agonist used (agonist trafficking of receptor signals). In addition, the different couplings were demonstrated to involve distinct molecular determinants of the receptor and to show distinct desensitisation kinetics. Such multiplicity of signalling at the level of G-protein coupling leads to a further complexity in the functional response to agonist stimulation of one of the most elaborate cellular transmission systems. Indeed, the physiological relevance of such versatility in signalling associated with a single receptor requires the existence of critical mechanisms of dynamic regulation of the expression, the compartmentalisation, and the activity of the signalling partners. This review aims at summarising the different studies that support the concept of multiplicity of G-protein coupling. The physiological and pharmacological relevance of this coupling promiscuity will be discussed.
Collapse
Affiliation(s)
- Emmanuel Hermans
- Laboratoire de Pharmacologie Expérimentale, Université Catholique de Louvain, FARL 54.10, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| |
Collapse
|
46
|
Castro-Fernández C, Brothers SP, Michael Conn P. A Galphas mutation (D229S) differentially effects gonadotropin-releasing hormone receptor regulation by RGS10, RGS3 and RGS3T. Mol Cell Endocrinol 2003; 200:119-26. [PMID: 12644305 DOI: 10.1016/s0303-7207(02)00378-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Regulators of G protein signaling (RGS) act as GTPase-activating proteins for Galpha(i) and for Galpha(q/11). There is recent evidence for interaction of RGS proteins with Galpha(s), and substitution of Ser for Asp(229) in RGS proteins enhances interactions with G proteins. Site-directed mutagenesis of Asp(229) was used to assess the effect of this site on the gonadotropin-releasing hormone receptor (GnRHR)-Galpha(s) mediated signaling in the absence or presence of over-expressed RGS3, RGS10 or a truncated form of RGS3 (RGS3T). We observed increased cAMP release with the mutant Galpha(s)(D(229)S) compared to wt Galpha(s) when GGH(3) cells (GH(3) cells stably expressing the GnRH receptor) were stimulated with a GnRH agonist. In the presence of RGS3, we did not observe any difference in cAMP release with wt Galpha(s) or with Galpha(s)(D(229)S) compared to control values; in the presence of RGS3T there was an increase of cAMP release with wt Galpha(s) compared to the control but there was no difference between the Galpha(s)(D(229)S) and the control values. When cells co-expressed wt Galpha(s) and RGS10, there was a significant increase of cAMP release compared with cells co-expressing wt Galpha(s) and Lac Z. Cells co-expressing Galpha(s)(D(229)S) and RGS10 showed a significant increase of cAMP release compared to control cells. These results indicate differential regulation of the GnRHR-Galpha(s) mediated signaling by a single mutation in Galpha(s) in the presence of RGS10 and RGS3T, but not with RGS3. This is the first report of an effect of the Galpha(s)(D(229)S) mutation on G protein-coupled receptor-mediated activation.
Collapse
|
47
|
Qanbar R, Bouvier M. Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol Ther 2003; 97:1-33. [PMID: 12493533 DOI: 10.1016/s0163-7258(02)00300-5] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G-protein-coupled receptors (GPCRs) constitute one of the largest protein families in the human genome. They are subject to numerous post-translational modifications, including palmitoylation. This review highlights the dynamic nature of palmitoylation and its role in GPCR expression and function. The palmitoylation of other proteins involved in GPCR signaling, such as G-proteins, regulators of G-protein signaling, and G-protein-coupled receptor kinases, is also discussed.
Collapse
Affiliation(s)
- Riad Qanbar
- Département de Biochimie, Université de Montréal, C.P. 6128 Succursale Centre-Ville, 2900 Edouard Montpetit, Montreál, Quebec, Canada H3C 3J7
| | | |
Collapse
|
48
|
Liu F, Usui I, Evans LG, Austin DA, Mellon PL, Olefsky JM, Webster NJG. Involvement of both G(q/11) and G(s) proteins in gonadotropin-releasing hormone receptor-mediated signaling in L beta T2 cells. J Biol Chem 2002; 277:32099-108. [PMID: 12050161 PMCID: PMC2930616 DOI: 10.1074/jbc.m203639200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The hypothalamic hormone gonadotropin-releasing hormone (GnRH) stimulates the synthesis and release of the pituitary gonadotropins. GnRH acts through a plasma membrane receptor that is a member of the G protein-coupled receptor (GPCR) family. These receptors interact with heterotrimeric G proteins to initiate downstream signaling. In this study, we have investigated which G proteins are involved in GnRH receptor-mediated signaling in L beta T2 pituitary gonadotrope cells. We have shown previously that GnRH activates ERK and induces the c-fos and LH beta genes in these cells. Signaling via the G(i) subfamily of G proteins was excluded, as neither ERK activation nor c-Fos and LH beta induction was impaired by treatment with pertussis toxin or a cell-permeable peptide that sequesters G beta gamma-subunits. GnRH signaling was partially mimicked by adenoviral expression of a constitutively active mutant of G alpha(q) (Q209L) and was blocked by a cell-permeable peptide that uncouples G alpha(q) from GPCRs. Furthermore, chronic activation of G alpha(q) signaling induced a state of GnRH resistance. A cell-permeable peptide that uncouples G alpha(s) from receptors was also able to inhibit ERK, c-Fos, and LH beta, indicating that both G(q/11) and G(s) proteins are involved in signaling. Consistent with this, GnRH caused GTP loading on G(s) and G(q/11) and increased intracellular cAMP. Artificial elevation of cAMP with forskolin activated ERK and caused a partial induction of c-Fos. Finally, treatment of G alpha(q) (Q209L)-infected cells with forskolin enhanced the induction of c-Fos showing that the two pathways are independent and additive. Taken together, these results indicate that the GnRH receptor activates both G(q) and G(s) signaling to regulate gene expression in L beta T2 cells.
Collapse
Affiliation(s)
- Fujun Liu
- Department of Medicine, University of California, San Diego, California 92093
| | - Isao Usui
- Department of Medicine, University of California, San Diego, California 92093
| | - Lui Guojing Evans
- Medical Research Service and San Diego Veterans Healthcare System, San Diego, California 92161
| | - Darrell A. Austin
- Medical Research Service and San Diego Veterans Healthcare System, San Diego, California 92161
| | - Pamela L. Mellon
- Department of Reproductive Medicine, University of California, San Diego, California 92093
- UCSD Cancer Center, University of California, San Diego, California 92093
| | - Jerrold M. Olefsky
- Department of Medicine, University of California, San Diego, California 92093
| | - Nicholas J. G. Webster
- Department of Medicine, University of California, San Diego, California 92093
- UCSD Cancer Center, University of California, San Diego, California 92093
- Medical Research Service and San Diego Veterans Healthcare System, San Diego, California 92161
- To whom correspondence should be addressed: Dept. of Medicine 0673, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0673.
| |
Collapse
|
49
|
Wang L, Oh DY, Bogerd J, Choi HS, Ahn RS, Seong JY, Kwon HB. Inhibitory activity of alternative splice variants of the bullfrog GnRH receptor-3 on wild-type receptor signaling. Endocrinology 2001; 142:4015-25. [PMID: 11517181 DOI: 10.1210/endo.142.9.8383] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently we characterized three distinct GnRH receptors in the bullfrog (bfGnRHR-1, bfGnRHR-2, and bfGnRHR-3). In the present study, we further investigated the expression and function of splice variants, generated from the primary bfGnRHR-3 transcript by exon skipping (splice variant 1), intron retention (splice variants 2 and 3), and/or transcriptional slippage (splice variant 4), apart from the constitutively spliced form (wild-type). Cellular expression and function of the splice variants were examined using a transient expression system. Immunoblot analysis revealed that the wild-type receptor and all splice variant proteins were expressed in transfected HeLa cells with no significant differences in expression levels. These splice variants showed a very low binding affinity to ligand and did not induce signal transduction in response to GnRH treatment. Interestingly, cotransfection of the wild-type with splice variants 2--4, but not with splice variant 1, significantly inhibited wild-type receptor-mediated signaling. Subcellular localization analysis of green fluorescent protein-tagged wild-type and splice variant proteins revealed that the wild-type receptor protein was mainly localized in the cell membrane, whereas the splice variant 1 protein was exclusively detected in the cytoplasm. The splice variant 2--4 proteins, however, were found in both the cell membrane and cytoplasm. The inhibition of wild-type receptor signaling by splice variants 2--4 and the subcellular localization of splice variants 2-4 suggest a possible physical interaction of splice variants 2--4 with the wild-type receptor protein. In addition, the ratio of mRNA levels of the wild-type to splice variants 2--4 significantly varied from hibernation (wild-type < splice variants 2--4) to the prebreeding season (wild-type > splice variants 2--4). Collectively, these results suggest that alternative splicing of the bfGnRHR-3 primary transcript plays a role in fine-tuning GnRH receptor function in amphibians.
Collapse
Affiliation(s)
- L Wang
- Hormone Research Center and Department of Biology, Chonnam National University, Kwangju, 500-757, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Maya-Núñez G, Conn PM. Cyclic adenosine 3',5'-monophosphate (cAMP) and cAMP responsive element-binding protein are involved in the transcriptional regulation of gonadotropin-releasing hormone (GnRH) receptor by GnRH and mitogen-activated protein kinase signal transduction pathway in GGH(3) cells. Biol Reprod 2001; 65:561-7. [PMID: 11466226 DOI: 10.1095/biolreprod65.2.561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Stimulation of mouse GnRH receptor promoter by a GnRH agonist (Buserelin), or by a cAMP analogue, significantly increased reporter (luciferase) activity. Overexpression of Raf-1, ERK1, or ERK2 partially blocked Buserelin-stimulated luciferase activity. In contrast, treatment with a mitogen-activated protein kinase (MAPK) kinase inhibitor (PD 98059) activated basal and Buserelin-stimulated luciferase activity in a dose-dependent manner. Transient transfection of the deleted cAMP response element expression vector followed by pretreatment with PD98059 prior to Buserelin stimulation showed that the transcriptional response was decreased compared to wild-type promoter. A gel-mobility shift assay using a probe containing the cAMP response element showed the presence of two specific protein-DNA complexes that contain one or more members of the cAMP responsive element-binding (CREB) protein family. These results suggest that cAMP and CREB participate in the GnRH activation of GnRH receptor promoter activity and that the MAPK cascade is involved in the negative regulation of basal and GnRH-stimulated GnRH receptor transcriptional activity.
Collapse
Affiliation(s)
- G Maya-Núñez
- Oregon Regional Primate Research Center and Department of Physiology and Pharmacology, Oregon Health and Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|