1
|
Ho QV, Young MJ. Mineralocorticoid receptors, macrophages and new mechanisms for cardiovascular disease. Mol Cell Endocrinol 2024; 593:112340. [PMID: 39134137 DOI: 10.1016/j.mce.2024.112340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Affiliation(s)
- Quoc Viet Ho
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Australia
| | - Morag J Young
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Australia; Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Rajagopalan S, Dobre M, Dazard JE, Vergara-Martel A, Connelly K, Farkouh ME, Gaztanaga J, Conger H, Dever A, Razavi-Nematollahi L, Fares A, Pereira G, Edwards-Glenn J, Cameron M, Cameron C, Al-Kindi S, Brook RD, Pitt B, Weir M. Mineralocorticoid Receptor Antagonism Prevents Aortic Plaque Progression and Reduces Left Ventricular Mass and Fibrosis in Patients With Type 2 Diabetes and Chronic Kidney Disease: The MAGMA Trial. Circulation 2024; 150:663-676. [PMID: 39129649 PMCID: PMC11503525 DOI: 10.1161/circulationaha.123.067620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/12/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Persistent mineralocorticoid receptor activation is a pathologic response in type 2 diabetes and chronic kidney disease. Whereas mineralocorticoid receptor antagonists are beneficial in reducing cardiovascular complications, direct mechanistic pathways for these effects in humans are lacking. METHODS The MAGMA trial (Mineralocorticoid Receptor Antagonism Clinical Evaluation in Atherosclerosis) was a randomized, double-blind, placebo-controlled trial in patients with high-risk type 2 diabetes with chronic kidney disease (not receiving dialysis) on maximum tolerated renin-angiotensin system blockade. The primary end point was change in thoracic aortic wall volume, expressed as absolute or percent value (ΔTWV or ΔPWV), using 3T magnetic resonance imaging at 12 months. Secondary end points were changes in left ventricle (LV) mass; LV fibrosis, measured as a change in myocardial native T1; and 24-hour ambulatory and central aortic blood pressures. Tertiary end points included plasma proteomic changes in 7596 plasma proteins using an aptamer-based assay. RESULTS A total of 79 patients were randomized to placebo (n=42) or 25 mg of spironolactone daily (n=37). After a modified intent-to-treat, including available baseline data of study end points, patients who completed the trial protocol were included in the final analyses. At the 12-month follow-up, the average change in PWV was 7.1±10.7% in the placebo group and 0.87±10.0% in the spironolactone group (P=0.028), and ΔTWV was 1.2±1.7 cm3 in the placebo group and 0.037±1.9 cm3 in the spironolactone group (P=0.022). Change in LV mass was 3.1±8.4 g in the placebo group and -5.8±8.4 g in the spironolactone group (P=0.001). Changes in LV T1 values were significantly different between the placebo and spironolactone groups (26.0±41.9 ms in the placebo group versus a decrease of -10.1±36.3 ms in the spironolactone group; P=6.33×10-4). Mediation analysis revealed that the spironolactone effect on thoracic aortic wall volume and myocardial mass remained significant after adjustment for ambulatory and central blood pressures. Proteomic analysis revealed a dominant effect of spironolactone on pathways involving oxidative stress, inflammation, and leukocyte activation. CONCLUSIONS Among patients with diabetes with moderate to severe chronic kidney disease at elevated cardiovascular risk, treatment with spironolactone prevented progression of aortic wall volume and resulted in regression of LV mass and favorable alterations in native T1, suggesting amelioration of left-ventricular fibrosis. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT02169089.
Collapse
Affiliation(s)
- Sanjay Rajagopalan
- University Hospitals, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Mirela Dobre
- University Hospitals, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Jean-Eudes Dazard
- University Hospitals, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Armando Vergara-Martel
- University Hospitals, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Kim Connelly
- St. Michael’s Hospital, University of Toronto, Toronto, CA
| | | | - Juan Gaztanaga
- New York University Langone Health School of Medicine, Winthrop, Mineola, NY
| | | | - Ann Dever
- University Hospitals, Cleveland, OH, USA
| | | | - Anas Fares
- University Hospitals, Cleveland, OH, USA
| | | | | | - Mark Cameron
- Case Western Reserve University, Cleveland, OH, USA
| | | | - Sadeer Al-Kindi
- Debakey Heart and Vascular Center Houston Methodist Hospital, Houston TX
| | - Robert D. Brook
- University of Michigan Frankel Cardiovascular Center, Detroit, MI
| | | | - Matthew Weir
- Division of Nephrology, University of Maryland Medical Center, Baltimore, MD
| |
Collapse
|
3
|
Abstract
Originally described as the renal aldosterone receptor that regulates sodium homeostasis, it is now clear that mineralocorticoid receptors (MRs) are widely expressed, including in vascular endothelial and smooth muscle cells. Ample data demonstrate that endothelial and smooth muscle cell MRs contribute to cardiovascular disease in response to risk factors (aging, obesity, hypertension, atherosclerosis) by inducing vasoconstriction, vascular remodeling, inflammation, and oxidative stress. Extrapolating from its role in disease, evidence supports beneficial roles of vascular MRs in the context of hypotension by promoting inflammation, wound healing, and vasoconstriction to enhance survival from bleeding or sepsis. Advances in understanding how vascular MRs become activated are also reviewed, describing transcriptional, ligand-dependent, and ligand-independent mechanisms. By synthesizing evidence describing how vascular MRs convert cardiovascular risk factors into disease (the vascular MR as a foe), we postulate that the teleological role of the MR is to coordinate responses to hypotension (the MR as a friend).
Collapse
Affiliation(s)
- Jaime Ibarrola
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA;
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA;
| |
Collapse
|
4
|
Cardiovascular Disease in Obstructive Sleep Apnea: Putative Contributions of Mineralocorticoid Receptors. Int J Mol Sci 2023; 24:ijms24032245. [PMID: 36768567 PMCID: PMC9916750 DOI: 10.3390/ijms24032245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic and highly prevalent condition that is associated with oxidative stress, inflammation, and fibrosis, leading to endothelial dysfunction, arterial stiffness, and vascular insulin resistance, resulting in increased cardiovascular disease and overall mortality rates. To date, OSA remains vastly underdiagnosed and undertreated, with conventional treatments yielding relatively discouraging results for improving cardiovascular outcomes in OSA patients. As such, a better mechanistic understanding of OSA-associated cardiovascular disease (CVD) and the development of novel adjuvant therapeutic targets are critically needed. It is well-established that inappropriate mineralocorticoid receptor (MR) activation in cardiovascular tissues plays a causal role in a multitude of CVD states. Clinical studies and experimental models of OSA lead to increased secretion of the MR ligand aldosterone and excessive MR activation. Furthermore, MR activation has been associated with worsened OSA prognosis. Despite these documented relationships, there have been no studies exploring the causal involvement of MR signaling in OSA-associated CVD. Further, scarce clinical studies have exclusively assessed the beneficial role of MR antagonists for the treatment of systemic hypertension commonly associated with OSA. Here, we provide a comprehensive overview of overlapping mechanistic pathways recruited in the context of MR activation- and OSA-induced CVD and propose MR-targeted therapy as a potential avenue to abrogate the deleterious cardiovascular consequences of OSA.
Collapse
|
5
|
Abstract
Besides the physiological regulation of water, sodium, and potassium homeostasis, aldosterone modulates several physiological and pathological processes in the cardiovascular system. At the vascular level, aldosterone excess stimulates endothelial dysfunction and infiltration of inflammatory cells, enhances the development of the atherosclerotic plaque, and favors plaque instability, arterial stiffness, and calcification. At the cardiac level, aldosterone increases cardiac inflammation, fibrosis, and myocardial hypertrophy. As a clinical consequence, high aldosterone levels are associated with enhanced risk of cardiovascular events and mortality, especially when aldosterone secretion is inappropriate for renin levels and sodium intake, as in primary aldosteronism. Several clinical trials showed that mineralocorticoid receptor antagonists reduce cardiovascular mortality in patients with heart failure and reduced ejection fraction, but inconclusive results were reported for other cardiovascular conditions, such as heart failure with preserved ejection fraction, myocardial infarction, and atrial fibrillation. In patients with primary aldosteronism, adrenalectomy or treatment with mineralocorticoid receptor antagonists significantly mitigate adverse aldosterone effects, reducing the risk of cardiovascular events, mortality, and incident atrial fibrillation. In this review, we will summarize the major preclinical and clinical studies investigating the cardiovascular damage mediated by aldosterone and the protective effect of mineralocorticoid receptor antagonists for the reduction of cardiovascular risk in patients with cardiovascular diseases and primary aldosteronism.
Collapse
Affiliation(s)
- Fabrizio Buffolo
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Italy
| | - Martina Tetti
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Italy
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Italy
| | - Silvia Monticone
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Italy
| |
Collapse
|
6
|
van der Heijden CDCC, Bode M, Riksen NP, Wenzel UO. The role of the mineralocorticoid receptor in immune cells in in cardiovascular disease. Br J Pharmacol 2021; 179:3135-3151. [PMID: 34935128 DOI: 10.1111/bph.15782] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/22/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
Chronic low-grade inflammation and immune cell activation are important mechanisms in the pathophysiology of cardiovascular disease (CVD). Therefore, targeted immunosuppression is a promising novel therapy to lower cardiovascular risk. In this review, we identify the mineralocorticoid receptor (MR) on immune cells as a potential target to modulate inflammation. The MR is present in almost all cells of the cardiovascular system, including immune cells. Activation of the MR in innate and adaptive immune cells induces inflammation which can contribute to CVD, by inducing endothelial dysfunction and hypertension. Moreover, it accelerates atherosclerotic plaque formation and destabilization and impairs tissue regeneration after ischemic events. Identifying the molecular targets for these non-renal actions of the MR provide promising novel cardiovascular drug targets for mineralocorticoid receptor antagonists (MRAs), which are currently mainly applied in hypertension and heart failure.
Collapse
Affiliation(s)
| | - Marlies Bode
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, GA, Nijmegen, The Netherlands.,Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, GA, The Netherlands
| | - Ulrich O Wenzel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Man JJ, Lu Q, Moss ME, Carvajal B, Baur W, Garza AE, Freeman R, Anastasiou M, Ngwenyama N, Adler GK, Alcaide P, Jaffe IZ. Myeloid Mineralocorticoid Receptor Transcriptionally Regulates P-Selectin Glycoprotein Ligand-1 and Promotes Monocyte Trafficking and Atherosclerosis. Arterioscler Thromb Vasc Biol 2021; 41:2740-2755. [PMID: 34615372 PMCID: PMC8601161 DOI: 10.1161/atvbaha.121.316929] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
Objective MR (mineralocorticoid receptor) activation associates with increased risk of cardiovascular ischemia while MR inhibition reduces cardiovascular-related mortality and plaque inflammation in mouse atherosclerosis. MR in myeloid cells (My-MR) promotes inflammatory cell infiltration into injured tissues and atherosclerotic plaque inflammation by unclear mechanisms. Here, we examined the role of My-MR in leukocyte trafficking and the impact of sex. Approach and Results We confirm in vivo that My-MR deletion (My-MR-KO) in ApoE-KO mice decreased plaque size. Flow cytometry revealed fewer plaque macrophages with My-MR-KO. By intravital microscopy, My-MR-KO significantly attenuated monocyte slow-rolling and adhesion to mesenteric vessels and decreased peritoneal infiltration of myeloid cells in response to inflammatory stimuli in male but not female mice. My-MR-KO mice had significantly less PSGL1 (P-selectin glycoprotein ligand 1) mRNA in peritoneal macrophages and surface PSGL1 protein on circulating monocytes in males. In vitro, MR activation with aldosterone significantly increased PSGL1 mRNA only in monocytes from MR-intact males. Similarly, aldosterone induced, and MR antagonist spironolactone inhibited, PSGL1 expression in human U937 monocytes. Mechanistically, aldosterone stimulated MR binding to a predicted MR response element in intron-1 of the PSGL1 gene by ChIP-qPCR. Reporter assays demonstrated that this PSGL1 MR response element is necessary and sufficient for aldosterone-activated, MR-dependent transcriptional activity. Conclusions These data identify PSGL1 as a My-MR target gene that drives leukocyte trafficking to enhance atherosclerotic plaque inflammation. These novel and sexually dimorphic findings provide insight into increased ischemia risk with MR activation, cardiovascular protection in women, and the role of MR in atherosclerosis and tissue inflammation.
Collapse
MESH Headings
- Adult
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Cell Adhesion/drug effects
- Disease Models, Animal
- Female
- HEK293 Cells
- Humans
- Hypoglycemia/drug therapy
- Hypoglycemia/genetics
- Hypoglycemia/metabolism
- Leukocyte Rolling/drug effects
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/pathology
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Middle Aged
- Mineralocorticoid Receptor Antagonists/therapeutic use
- Monocytes/drug effects
- Monocytes/metabolism
- Monocytes/pathology
- Randomized Controlled Trials as Topic
- Receptors, Mineralocorticoid/drug effects
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Sex Factors
- Signal Transduction
- Spironolactone/therapeutic use
- Transcription, Genetic
- Transendothelial and Transepithelial Migration
- Treatment Outcome
- U937 Cells
- Young Adult
- Mice
Collapse
Affiliation(s)
- Joshua J Man
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | - Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - M. Elizabeth Moss
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | - Brigett Carvajal
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Wendy Baur
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Amanda E Garza
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Marina Anastasiou
- Department of Immunology, Tufts University School of Medicine, Boston, MA
- Department of Internal Medicine, University of Crete Medical School, Crete, Greece
| | - Njabulo Ngwenyama
- Department of Immunology, Tufts University School of Medicine, Boston, MA
| | - Gail K Adler
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| |
Collapse
|
8
|
Young MJ, Kanki M, Fuller PJ, Yang J. Identifying new cellular mechanisms of mineralocorticoid receptor activation in the heart. J Hum Hypertens 2021; 35:124-130. [PMID: 32733061 DOI: 10.1038/s41371-020-0386-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 01/30/2023]
Abstract
Recent studies have expanded our understanding of the actions of the mineralocorticoid receptor (MR) to a diverse array of tissue types that differ substantially from the epithelial cells of the renal nephron. In these cell types the role of the MR has been largely, but not exclusively, defined in terms of pathogenic signalling pathways leading to tissue injury and remodelling. Macrophages and cardiomyocytes are two cell types in which the MR plays a central role in the cardiac tissue response to injury, renovascular hypertension and oxidative stress for example. Macrophages are critical for resolution of tissue injury and wound healing and their pleiotropic actions are central to the development of many forms of heart, renal and vascular disease. The MR in cardiomyocytes is not only essential for the chronotropic and ionotropic actions of mineralocorticoids in the short and longer term, but also for induction of hypertrophic and proinflammatory signalling programs. The present review discusses recent studies, presented at the Aldosterone and Hypertension Satellite of the 15th Asian-Pacific Congress of Hypertension, investigating new mechanisms for MR signalling in these cells and how their dysfunction contributes to the onset and progression of cardiovascular disease and heart failure.
Collapse
Affiliation(s)
- Morag J Young
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research and the Department of Molecular Translational Science, Monash University, Clayton, VIC, Australia. .,Baker Heart and Diabetes Institute, Melborne, VIC, Australia.
| | - Monica Kanki
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research and the Department of Molecular Translational Science, Monash University, Clayton, VIC, Australia.,Baker Heart and Diabetes Institute, Melborne, VIC, Australia
| | - Peter J Fuller
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research and the Department of Molecular Translational Science, Monash University, Clayton, VIC, Australia
| | - Jun Yang
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research and the Department of Molecular Translational Science, Monash University, Clayton, VIC, Australia
| |
Collapse
|
9
|
Zhu S, Wen C, Bai D, Gao M. Diagnostic efficacy of intravascular ultrasound combined with Gd 2O 3-EPL contrast agent for patients with atherosclerosis. Exp Ther Med 2020; 20:136. [PMID: 33082868 PMCID: PMC7557720 DOI: 10.3892/etm.2020.9265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 08/16/2019] [Indexed: 12/23/2022] Open
Abstract
Atherosclerosis is a cardiovascular disease that is pathologically associated with the growth of atherosclerotic plaques and vascular vulnerability. Intravascular ultrasound (IVUS) has been used to evaluate and treat cardiovascular diseases. Accumulating evidence has demonstrated that Gd2O3-doped nanoparticles contrast can be applied for the diagnosis of human diseases. In the present study, eplerenone (EPL), a mineralocorticoid receptor antagonist, was first doped with Gd2O3 nanoparticles (Gd2O3-EPL), following which its diagnostic efficacy for use in IVUS measurements (Gd2O3-EPL-IVUS) was evaluated for patients suspected with atherosclerosis. Gd2O3-EPL-IVUS presented with higher accuracy and sensitivity compared with IVUS in diagnosing 188 patients with suspected atherosclerosis. Gd2O3-EPL-IVUS exhibited stronger signals associated with plaque morphology compared with aloe IVUS for patients with atherosclerosis. In addition, Gd2O3-EPL-IVUS application resulted in clearer arterial plaque images compared with IVUS by binding mineralocorticoid receptors. Atherosclerosis was subsequently confirmed in all patients using computerized tomography-coronary angiography. Gd2O3-EPL-IVUS showed more accuracy in measuring vessel size, plaque burden and minimal lumen area compared with IVUS analysis alone. In conclusion, these outcomes suggest that Gd2O3-EPL-IVUS is a reliable tool for the evaluation of coronary lesions in patients with atherosclerosis.
Collapse
Affiliation(s)
- Shuangli Zhu
- Department of Ultrasonic Medicine, Beijing Royal Integrative Medicine Hospital, Beijing 102206, P.R. China
- Department of Ultrasonic Medicine, Peking University International Hospital, Beijing 102206, P.R. China
| | - Chaoyang Wen
- Department of Ultrasonic Medicine, Peking University International Hospital, Beijing 102206, P.R. China
| | - Dongxue Bai
- Department of Ultrasonic Medicine, Peking University International Hospital, Beijing 102206, P.R. China
| | - Meiying Gao
- Department of Ultrasonic Medicine, Peking University International Hospital, Beijing 102206, P.R. China
| |
Collapse
|
10
|
Feraco A, Marzolla V, Scuteri A, Armani A, Caprio M. Mineralocorticoid Receptors in Metabolic Syndrome: From Physiology to Disease. Trends Endocrinol Metab 2020; 31:205-217. [PMID: 31843490 DOI: 10.1016/j.tem.2019.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 01/28/2023]
Abstract
Over the past decade, several studies have shown that activity of extra-renal mineralocorticoid receptors (MR) regulates vascular tone, adipogenesis, adipose tissue function, and cardiomyocyte contraction. In mice, abnormal activation of MR in the vasculature and in adipose tissue favors the occurrence of several components of the metabolic syndrome (MetS), such as hypertension, obesity, and glucose intolerance. Accordingly, high levels of aldosterone are associated with obesity and MetS in humans, suggesting that altered activation of aldosterone-MR system in extra-renal tissues leads to profound metabolic dysfunctions. In this context, in addition to the classical indications for heart failure and hypertension, MR antagonists (MRAs) nowadays represent a promising approach to tackle cardiovascular and metabolic disorders occurring in the MetS.
Collapse
Affiliation(s)
- Alessandra Feraco
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Vincenzo Marzolla
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Angelo Scuteri
- Department of Medical, Surgical, and Experimental Science, University of Sassari, Sassari, Italy
| | - Andrea Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy; Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy.
| |
Collapse
|
11
|
Moss ME, Carvajal B, Jaffe IZ. The endothelial mineralocorticoid receptor: Contributions to sex differences in cardiovascular disease. Pharmacol Ther 2019; 203:107387. [PMID: 31271793 PMCID: PMC6848769 DOI: 10.1016/j.pharmthera.2019.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease remains the leading cause of death for both men and women. The observation that premenopausal women are protected from cardiovascular disease relative to age-matched men, and that this protection is lost with menopause, has led to extensive study of the role of sex steroid hormones in the pathogenesis of cardiovascular disease. However, the molecular basis for sex differences in cardiovascular disease is still not fully understood, limiting the ability to tailor therapies to male and female patients. Therefore, there is a growing need to investigate molecular pathways outside of traditional sex hormone signaling to fully understand sex differences in cardiovascular disease. Emerging evidence points to the mineralocorticoid receptor (MR), a steroid hormone receptor activated by the adrenal hormone aldosterone, as one such mediator of cardiovascular disease risk, potentially serving as a sex-dependent link between cardiovascular risk factors and disease. Enhanced activation of the MR by aldosterone is associated with increased risk of cardiovascular disease. Emerging evidence implicates the MR specifically within the endothelial cells lining the blood vessels in mediating some of the sex differences observed in cardiovascular pathology. This review summarizes the available clinical and preclinical literature concerning the role of the MR in the pathophysiology of endothelial dysfunction, hypertension, atherosclerosis, and heart failure, with a special emphasis on sex differences in the role of endothelial-specific MR in these pathologies. The available data regarding the molecular mechanisms by which endothelial-specific MR may contribute to sex differences in cardiovascular disease is also summarized. A paradigm emerges from synthesis of the literature in which endothelial-specific MR regulates vascular function in a sex-dependent manner in response to cardiovascular risk factors to contribute to disease. Limitations in this field include the relative paucity of women in clinical trials and, until recently, the nearly exclusive use of male animals in preclinical investigations. Enhanced understanding of the sex-specific roles of endothelial MR could lead to novel mechanistic insights underlying sex differences in cardiovascular disease incidence and outcomes and could identify additional therapeutic targets to effectively treat cardiovascular disease in men and women.
Collapse
Affiliation(s)
- M Elizabeth Moss
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America
| | - Brigett Carvajal
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America.
| |
Collapse
|
12
|
Chen ZW, Tsai CH, Pan CT, Chou CH, Liao CW, Hung CS, Wu VC, Lin YH. Endothelial Dysfunction in Primary Aldosteronism. Int J Mol Sci 2019; 20:ijms20205214. [PMID: 31640178 PMCID: PMC6829211 DOI: 10.3390/ijms20205214] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Primary aldosteronism (PA) is characterized by excess production of aldosterone from the adrenal glands and is the most common and treatable cause of secondary hypertension. Aldosterone is a mineralocorticoid hormone that participates in the regulation of electrolyte balance, blood pressure, and tissue remodeling. The excess of aldosterone caused by PA results in an increase in cardiovascular and cerebrovascular complications, including coronary artery disease, myocardial infarction, stroke, transient ischemic attack, and even arrhythmia and heart failure. Endothelial dysfunction is a well-established fundamental cause of cardiovascular diseases and also a predictor of worse clinical outcomes. Accumulating evidence indicates that aldosterone plays an important role in the initiation and progression of endothelial dysfunction. Several mechanisms have been shown to contribute to aldosterone-induced endothelial dysfunction, including aldosterone-mediated vascular tone dysfunction, aldosterone- and endothelium-mediated vascular inflammation, aldosterone-related atherosclerosis, and vascular remodeling. These mechanisms are activated by aldosterone through genomic and nongenomic pathways in mineralocorticoid receptor-dependent and independent manners. In addition, other cells have also been shown to participate in these mechanisms. The complex interactions among endothelium, inflammatory cells, vascular smooth muscle cells and fibroblasts are crucial for aldosterone-mediated endothelial dysregulation. In this review, we discuss the association between aldosterone and endothelial function and the complex mechanisms from a molecular aspect. Furthermore, we also review current clinical research of endothelial dysfunction in patients with PA.
Collapse
Affiliation(s)
- Zheng-Wei Chen
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
- Cardiovascular center, National Taiwan University Hospital, Taipei 10002, Taiwan.
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin 64041, Taiwan.
| | - Cheng-Hsuan Tsai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
- Cardiovascular center, National Taiwan University Hospital, Taipei 10002, Taiwan.
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City 20844, Taiwan.
| | - Chien-Ting Pan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
- Cardiovascular center, National Taiwan University Hospital, Taipei 10002, Taiwan.
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin 64041, Taiwan.
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10041, Taiwan.
| | - Che-Wei Liao
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 30059, Taiwan.
| | - Chi-Sheng Hung
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
- Cardiovascular center, National Taiwan University Hospital, Taipei 10002, Taiwan.
| | - Vin-Cent Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
| | - Yen-Hung Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
- Cardiovascular center, National Taiwan University Hospital, Taipei 10002, Taiwan.
| |
Collapse
|
13
|
van der Heijden CDCC, Deinum J, Joosten LAB, Netea MG, Riksen NP. The mineralocorticoid receptor as a modulator of innate immunity and atherosclerosis. Cardiovasc Res 2019; 114:944-953. [PMID: 29668907 DOI: 10.1093/cvr/cvy092] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/12/2018] [Indexed: 12/22/2022] Open
Abstract
The mineralocorticoid receptor (MR) is a member of the nuclear receptor steroid-binding family. The classical MR ligand aldosterone controls electrolyte and fluid homeostasis after binding in renal epithelial cells. However, more recent evidence suggests that activation of extrarenal MRs by aldosterone negatively impacts cardiovascular health independent of its effects on blood pressure: high levels of aldosterone associate with an increased cardiovascular event rate, where MR antagonists exert beneficial effects on cardiovascular mortality. The most important cause for cardiovascular events is atherosclerosis that is currently considered a low-grade inflammatory disorder of the arterial wall. In this inflammatory process, the innate immune system plays a deciding role, with the monocyte-derived macrophage being the most abundant cell in the atherosclerotic plaque. Intriguingly, both monocytes and macrophages express the MR, and a growing body of evidence shows that these cells are skewed into a pro-inflammatory and pro-atherosclerotic phenotype via MR stimulation. In this review, we detail the current perspective on the role of the monocyte and macrophage MR in atherosclerosis development and provide a comprehensive framework of the effects of MR activation of the innate immune system that might drive the pro-atherosclerotic outcome.
Collapse
Affiliation(s)
- Charlotte D C C van der Heijden
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Jaap Deinum
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Carl-Troll-Straβe 31, 53115 Bonn, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
14
|
Ravarotto V, Simioni F, Sabbadin C, Pagnin E, Maiolino G, Armanini D, Calò LA. Proinflammatory/profibrotic effects of aldosterone in Gitelman's syndrome, a human model opposite to hypertension. J Endocrinol Invest 2019; 42:521-526. [PMID: 30136149 DOI: 10.1007/s40618-018-0942-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/09/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE Aldosterone proinflammatory/profibrotic effects are mediated by the induction of mononuclear leucocytes (MNL) to express oxidative stress (OxSt)-related proteins, such as p22phox, and by the activation of RhoA/Rho kinase pathway. Gitelman's syndrome (GS), an autosomal recessive tubulopathy, is an interesting opposite model to hypertension, being characterized by hypokalemia, activation of renin-angiotensin-aldosterone system yet normo/hypotension and lack of cardiovascular-renal remodeling. We aimed to evaluate the proinflammatory/profibrotic effect of aldosterone in MNL of 6 GS patients compared with 6 healthy subjects (HS). METHODS p22phox expression and MYPT-1 phosphorylation status, a marker of RhoA/Rho kinase pathway activation, were evaluated in MNL of GS patients and HS at baseline and after incubation with aldosterone (1 × 10-8 M) alone or with canrenone (1 × 10-6 M). RESULTS At basal condition, p22phox expression was significantly higher in HS than in GS patients (1.02 ± 0.05 densitometric unit (du) vs 0.40 ± 0.1 du, respectively). Aldosterone significantly increased p22phox expression in HS and this effect was reversed by coincubation with canrenone (1.4 ± 0.05 du and 1.09 ± 0.03 du, respectively). No significant change was reported in GS after incubation of MNL with aldosterone and/or canrenone compared with basaline. Even MYPT-1 phosphorylation was significantly higher in HS compared with GS patients at basal condition (1.16 ± 0.1 du vs 0.69 ± 0.07, respectively). Aldosterone significantly increased MYPT-1 phosphorylation only in HS (1.37 ± 0.1 du vs 0.83 ± 0.12 du in GS). CONCLUSIONS GS patients seem to be protected by the OxSt status induced by aldosterone and revealed in HS. This human model could provide additional clues to highlight the proinflammatory/cardiovascular remodeling effects of aldosterone.
Collapse
Affiliation(s)
- V Ravarotto
- Department of Medicine-Nephrology, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - F Simioni
- Department of Medicine-Nephrology, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - C Sabbadin
- Department of Medicine-Endocrinology, University of Padova, Padua, Italy
| | - E Pagnin
- Department of Medicine-Nephrology, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - G Maiolino
- Department of Medicine-Hypertension, University of Padova, Padua, Italy
| | - D Armanini
- Department of Medicine-Endocrinology, University of Padova, Padua, Italy
| | - L A Calò
- Department of Medicine-Nephrology, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy.
| |
Collapse
|
15
|
Allingham MJ, Tserentsoodol N, Saloupis P, Mettu PS, Cousins SW. Aldosterone Exposure Causes Increased Retinal Edema and Severe Retinopathy Following Laser-Induced Retinal Vein Occlusion in Mice. Invest Ophthalmol Vis Sci 2019; 59:3355-3365. [PMID: 30025072 DOI: 10.1167/iovs.17-23073] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine the effects of aldosterone exposure on retinal edema and retinopathy in a mouse model of retinal vein occlusion (RVO). Methods RVO was induced immediately following intravenous injection of Rose bengal (66 mg/kg) using a 532-nm wavelength laser to place three to seven applications at 80 mW and 50-μm spot size directed at the superior retinal vein one disc diameter away from the nerve. Negative control consisted of placing an equal number of laser spots without targeting the vein. Male and female C57BL/6J mice aged 7 to 9 months with confirmed absence of Crb1rd8 were used. Aldosterone pellets releasing a daily dose of 0.83 μg/day were implanted subcutaneously 4 weeks prior to RVO. Retinal imaging by optical coherence tomography (OCT) was performed using a Micron IV rodent imaging system. Retinas were analyzed by immunohistochemistry using standard techniques. Retinal imaging and tissue analysis were performed 2, 4, and 7 days following RVO. Comparisons were made using Student's t-test, ANOVA, and Pearson's χ2. Results RVO caused retinal edema in the form of cystic spaces and retinal thickening detectable by both OCT and histology. RVO also caused Müller glia (MG) dysfunction manifest as upregulated glial fibrillary acidic protein (GFAP) and altered localization of aquaporin 4 (AQP4) and Kir4.1. Treatment with aldosterone caused a significant increase in retinal edema and more severe retinopathy manifest as retinal whitening and extensive intraretinal hemorrhage. MG dysfunction was more severe and persistent in aldosterone-treated mice. Finally, aldosterone greatly increased the number of infiltrating mononuclear phagocytes following RVO. Conclusions Systemic aldosterone exposure causes a more severe RVO phenotype manifest as increased severity and duration of retinal edema and more severe retinopathy. The effects of aldosterone may be mediated by MG dysfunction and increased infiltration of mononuclear phagocytes. This suggests that small increases in aldosterone levels may be a risk factor for severe RVO.
Collapse
Affiliation(s)
- Michael J Allingham
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Nomingerel Tserentsoodol
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Peter Saloupis
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Priyatham S Mettu
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Scott W Cousins
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
16
|
Nowak KL, Gitomer B, Farmer-Bailey H, Wang W, Malaczewski M, Klawitter J, You Z, George D, Patel N, Jovanovich A, Chonchol M. Mineralocorticoid Antagonism and Vascular Function in Early Autosomal Dominant Polycystic Kidney Disease: A Randomized Controlled Trial. Am J Kidney Dis 2019; 74:213-223. [PMID: 30803706 DOI: 10.1053/j.ajkd.2018.12.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023]
Abstract
RATIONALE & OBJECTIVE Vascular dysfunction, characterized by impaired vascular endothelial function and increased large-elastic artery stiffness, is evident early in autosomal dominant polycystic kidney disease (ADPKD) and is an important predictor of cardiovascular events and mortality. Aldosterone excess has been implicated in the development of endothelial dysfunction and arterial stiffness, in part by causing increased oxidative stress and inflammation. We hypothesized that aldosterone antagonism would reduce vascular dysfunction in patients with early-stage ADPKD. STUDY DESIGN Prospective, randomized, controlled, double-blind, clinical trial. SETTING & PARTICIPANTS 61 adults aged 20 to 55 years with ADPKD, estimated glomerular filtration rate ≥ 60mL/min/1.73m2, and receiving a renin-angiotensin-aldosterone system inhibitor. INTERVENTION Spironolactone (maximum dose, 50mg/d) or placebo for 24 weeks. OUTCOMES Change in brachial artery flow-mediated dilation (FMDBA) was the primary end point and change in carotid-femoral pulse-wave velocity (CFPWV) was the secondary end point. RESULTS 60 participants completed the trial. Participants had a mean age of 34±10 (SD) years, 54% were women, and 84% were non-Hispanic white. Spironolactone did not change FMDBA (8.0% ± 5.5% and 7.8% ± 4.3% at baseline and 24 weeks, respectively, vs corresponding values in the placebo group of 8.4% ± 6.2% and 8.0% ± 4.6%; P=0.9for comparison of change between groups) or CFPWV (640±127 and 603±101cm/s at baseline and 24 weeks, respectively, vs corresponding values in the placebo group of 659±138 and 658±131cm/s; P=0.1). Brachial systolic blood pressure was reduced with spironolactone (median change, -6 [IQR, -15, 1] vs -2 [IQR, -7, 10] mm Hg in the placebo group; P=0.04). Spironolactone did not change the majority of circulating and/or endothelial cell markers of oxidative stress/inflammation and did not change vascular oxidative stress. LIMITATIONS Low level of baseline vascular dysfunction; lack of aldosterone measurements. CONCLUSIONS 24 weeks of aldosterone antagonism reduced systolic blood pressure without changing vascular function in patients with early-stage ADPKD. FUNDING NIDDK, NIH National Center for Advancing Translational Sciences, and the Zell Family Foundation. TRIAL REGISTRATION Registered at ClinicalTrials.gov with study number NCT01853553.
Collapse
Affiliation(s)
- Kristen L Nowak
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.
| | - Berenice Gitomer
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Heather Farmer-Bailey
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Wei Wang
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Mikaela Malaczewski
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jelena Klawitter
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Zhiying You
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Diana George
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Nayana Patel
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Anna Jovanovich
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; Renal Section, Medical Service, Veteran Affairs Eastern Colorado Health Care System, Denver, CO
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
17
|
Biwer LA, Wallingford MC, Jaffe IZ. Vascular Mineralocorticoid Receptor: Evolutionary Mediator of Wound Healing Turned Harmful by Our Modern Lifestyle. Am J Hypertens 2019; 32:123-134. [PMID: 30380007 DOI: 10.1093/ajh/hpy158] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/30/2018] [Indexed: 12/28/2022] Open
Abstract
The mineralocorticoid receptor (MR) is indispensable for survival through its critical role in maintaining blood pressure in response to sodium scarcity or bleeding. Activation of MR by aldosterone in the kidney controls water and electrolyte homeostasis. This review summarizes recent advances in our understanding of MR function, specifically in vascular endothelial and smooth muscle cells. The evolving roles for vascular MR are summarized in the areas of (i) vascular tone regulation, (ii) thrombosis, (iii) inflammation, and (iv) vascular remodeling/fibrosis. Synthesis of the data supports the concept that vascular MR does not contribute substantially to basal homeostasis but rather, MR is poised to be activated when the vasculature is damaged to coordinate blood pressure maintenance and wound healing. Specifically, MR activation in the vascular wall promotes vasoconstriction, inflammation, and exuberant vascular remodeling with fibrosis. A teleological model is proposed in which these functions of vascular MR may have provided a critical evolutionary survival advantage in the face of mechanical vascular injury with bleeding. However, modern lifestyle is characterized by physical inactivity and high fat/high sodium diet resulting in diffuse vascular damage. Under these modern conditions, diffuse, persistent and unregulated activation of vascular MR contributes to post-reproductive cardiovascular disease in growing populations with hypertension, obesity, and advanced age.
Collapse
MESH Headings
- Animals
- Cardiovascular Diseases/epidemiology
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Cardiovascular Diseases/physiopathology
- Diet, High-Fat
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Evolution, Molecular
- Hemodynamics
- Humans
- Life Style
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Receptors, Mineralocorticoid/metabolism
- Risk Factors
- Sedentary Behavior
- Signal Transduction
- Sodium, Dietary/adverse effects
- Vascular Remodeling
- Wound Healing
Collapse
Affiliation(s)
- Lauren A Biwer
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Mary C Wallingford
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Moss ME, DuPont JJ, Iyer SL, McGraw AP, Jaffe IZ. No Significant Role for Smooth Muscle Cell Mineralocorticoid Receptors in Atherosclerosis in the Apolipoprotein-E Knockout Mouse Model. Front Cardiovasc Med 2018; 5:81. [PMID: 30038907 PMCID: PMC6046374 DOI: 10.3389/fcvm.2018.00081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022] Open
Abstract
Objective: Elevated levels of the hormone aldosterone are associated with increased risk of myocardial infarction and stroke in humans and increased progression and inflammation of atherosclerotic plaques in animal models. Aldosterone acts through the mineralocorticoid receptor (MR) which is expressed in vascular smooth muscle cells (SMCs) where it promotes SMC calcification and chemokine secretion in vitro. The objective of this study is to explore the role of the MR specifically in SMCs in the progression of atherosclerosis and the associated vascular inflammation in vivo in the apolipoprotein E knockout (ApoE−/−) mouse model. Methods and Results: Male ApoE−/− mice were bred with mice in which MR could be deleted specifically from SMCs by tamoxifen injection. The resulting atheroprone SMC-MR-KO mice were compared to their MR-Intact littermates after high fat diet (HFD) feeding for 8 or 16 weeks or normal diet for 12 months. Body weight, tail cuff blood pressure, heart and spleen weight, and serum levels of glucose, cholesterol, and aldosterone were measured for all mice at the end of the treatment period. Serial histologic sections of the aortic root were stained with Oil Red O to assess plaque size, lipid content, and necrotic core area; with PicroSirius Red for quantification of collagen content; by immunofluorescent staining with anti-Mac2/Galectin-3 and anti-smooth muscle α-actin antibodies to assess inflammation and SMC marker expression; and with Von Kossa stain to detect plaque calcification. In the 16-week HFD study, these analyses were also performed in sections from the brachiocephalic artery. Flow cytometry of cell suspensions derived from the aortic arch was also performed to quantify vascular inflammation after 8 and 16 weeks of HFD. Deletion of the MR specifically from SMCs did not significantly change plaque size, lipid content, necrotic core, collagen content, inflammatory staining, actin staining, or calcification, nor were there differences in the extent of vascular inflammation between MR-Intact and SMC-MR-KO mice in the three experiments. Conclusion: SMC-MR does not directly contribute to the formation, progression, or inflammation of atherosclerotic plaques in the ApoE−/− mouse model of atherosclerosis. This indicates that the MR in non-SMCs mediates the pro-atherogenic effects of MR activation.
Collapse
Affiliation(s)
- M Elizabeth Moss
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States.,Department of Developmental, Molecular, and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Jennifer J DuPont
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Surabhi L Iyer
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Adam P McGraw
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States.,Department of Developmental, Molecular, and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
19
|
Boehm M, Arnold N, Braithwaite A, Pickworth J, Lu C, Novoyatleva T, Kiely DG, Grimminger F, Ghofrani HA, Weissmann N, Seeger W, Lawrie A, Schermuly RT, Kojonazarov B. Eplerenone attenuates pathological pulmonary vascular rather than right ventricular remodeling in pulmonary arterial hypertension. BMC Pulm Med 2018; 18:41. [PMID: 29499691 PMCID: PMC5833097 DOI: 10.1186/s12890-018-0604-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 02/23/2018] [Indexed: 12/11/2022] Open
Abstract
Background Aldosterone is a mineralocorticoid hormone critically involved in arterial blood pressure regulation. Although pharmacological aldosterone antagonism reduces mortality and morbidity among patients with severe left-sided heart failure, the contribution of aldosterone to the pathobiology of pulmonary arterial hypertension (PAH) and right ventricular (RV) heart failure is not fully understood. Methods The effects of Eplerenone (0.1% Inspra® mixed in chow) on pulmonary vascular and RV remodeling were evaluated in mice with pulmonary hypertension (PH) caused by Sugen5416 injection with concomitant chronic hypoxia (SuHx) and in a second animal model with established RV dysfunction independent from lung remodeling through surgical pulmonary artery banding. Results Preventive Eplerenone administration attenuated the development of PH and pathological remodeling of pulmonary arterioles. Therapeutic aldosterone antagonism – starting when RV dysfunction was established - normalized mineralocorticoid receptor gene expression in the right ventricle without direct effects on either RV structure (Cardiomyocyte hypertrophy, Fibrosis) or function (assessed by non-invasive echocardiography along with intra-cardiac pressure volume measurements), but significantly lowered systemic blood pressure. Conclusions Our data indicate that aldosterone antagonism with Eplerenone attenuates pulmonary vascular rather than RV remodeling in PAH.
Collapse
Affiliation(s)
- Mario Boehm
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Aulweg 130, 35392, Giessen, Germany
| | - Nadine Arnold
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Adam Braithwaite
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Josephine Pickworth
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Changwu Lu
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Aulweg 130, 35392, Giessen, Germany
| | - Tatyana Novoyatleva
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Aulweg 130, 35392, Giessen, Germany
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | - Friedrich Grimminger
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Aulweg 130, 35392, Giessen, Germany
| | - Hossein A Ghofrani
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Aulweg 130, 35392, Giessen, Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Aulweg 130, 35392, Giessen, Germany
| | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Aulweg 130, 35392, Giessen, Germany
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ralph T Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Aulweg 130, 35392, Giessen, Germany.
| | - Baktybek Kojonazarov
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Aulweg 130, 35392, Giessen, Germany
| |
Collapse
|
20
|
Mui RK, Fernandes RN, Garver HG, Van Rooijen N, Galligan JJ. Macrophage-dependent impairment of α 2-adrenergic autoreceptor inhibition of Ca 2+ channels in sympathetic neurons from DOCA-salt but not high-fat diet-induced hypertensive rats. Am J Physiol Heart Circ Physiol 2018; 314:H863-H877. [PMID: 29351460 DOI: 10.1152/ajpheart.00536.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DOCA-salt and obesity-related hypertension are associated with inflammation and sympathetic nervous system hyperactivity. Prejunctional α2-adrenergic receptors (α2ARs) provide negative feedback to norepinephrine release from sympathetic nerves through inhibition of N-type Ca2+ channels. Increased neuronal norepinephrine release in DOCA-salt and obesity-related hypertension occurs through impaired α2AR signaling; however, the mechanisms involved are unclear. Mesenteric arteries are resistance arteries that receive sympathetic innervation from the superior mesenteric and celiac ganglia (SMCG). We tested the hypothesis that macrophages impair α2AR-mediated inhibition of Ca2+ channels in SMCG neurons from DOCA-salt and high-fat diet (HFD)-induced hypertensive rats. Whole cell patch-clamp methods were used to record Ca2+ currents from SMCG neurons maintained in primary culture. We found that DOCA-salt, but not HFD-induced, hypertension caused macrophage accumulation in mesenteric arteries, increased SMCG mRNA levels of monocyte chemoattractant protein-1 and tumor necrosis factor-α, and impaired α2AR-mediated inhibition of Ca2+ currents in SMCG neurons. α2AR dysfunction did not involve changes in α2AR expression, desensitization, or downstream signaling factors. Oxidative stress impaired α2AR-mediated inhibition of Ca2+ currents in SMCG neurons and resulted in receptor internalization in human embryonic kidney-293T cells. Systemic clodronate-induced macrophage depletion preserved α2AR function and lowered blood pressure in DOCA-salt rats. HFD caused hypertension without obesity in Sprague-Dawley rats and hypertension with obesity in Dahl salt-sensitive rats. HFD-induced hypertension was not associated with inflammation in SMCG and mesenteric arteries or α2AR dysfunction in SMCG neurons. These results suggest that macrophage-mediated α2AR dysfunction in the mesenteric circulation may only be relevant to mineralocorticoid-salt excess. NEW & NOTEWORTHY Here, we identify a contribution of macrophages to hypertension development through impaired α2-adrenergic receptor (α2AR)-mediated inhibition of sympathetic nerve terminal Ca2+ channels in DOCA-salt hypertensive rats. Impaired α2AR function may involve oxidative stress-induced receptor internalization. α2AR dysfunction may be unique to mineralocorticoid-salt excess, as it does not occur in obesity-related hypertension.
Collapse
Affiliation(s)
- Ryan K Mui
- Department of Physiology, Michigan State University , East Lansing, Michigan
| | - Roxanne N Fernandes
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Hannah G Garver
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Nico Van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit Medical Center , Amsterdam , The Netherlands
| | - James J Galligan
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan.,Neuroscience Program, Michigan State University , East Lansing, Michigan
| |
Collapse
|
21
|
Dutzmann J, Bauersachs J, Sedding DG. Evidence for the use of mineralocorticoid receptor antagonists in the treatment of coronary artery disease and post-angioplasty restenosis. Vascul Pharmacol 2017; 107:S1537-1891(17)30281-1. [PMID: 29274772 DOI: 10.1016/j.vph.2017.12.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/05/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
Mineralocorticoid receptor antagonists (MRAs), such as spironolactone and eplerenone have an established role in the treatment of heart failure. However, many experimental and clinical studies have shown that aldosterone also plays a pivotal role in a variety of other pathophysiological conditions within the cardiovascular system. Aldosterone has been suggested to promote inflammation, endothelial dysfunction and smooth muscle cell hyperplasia during the development of atherosclerosis, thereby promoting the development of coronary artery disease (CAD). Since CAD and subsequent ischemic cardiomyopathy are the major causes of heart failure, it is of major interest, whether pharmacological therapy with MRAs among heart failure patients will also affect the common underlying conditions, namely, atherosclerosis and subsequent coronary vessel narrowing/rarefication. Therefore, in this article, we reviewed and discussed the preclinical and clinical evidence of MRAs for the treatment of acute or chronic vascular remodeling processes, such as atherosclerosis and post-angioplasty restenosis, which determine the progression of CAD and subsequent ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Jochen Dutzmann
- Dept. of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Johann Bauersachs
- Dept. of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Daniel G Sedding
- Dept. of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
22
|
Long-term spironolactone treatment reduces coronary TRPC expression, vasoconstriction, and atherosclerosis in metabolic syndrome pigs. Basic Res Cardiol 2017; 112:54. [PMID: 28756533 PMCID: PMC5534204 DOI: 10.1007/s00395-017-0643-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022]
Abstract
Coronary transient receptor potential canonical (TRPC) channel expression is elevated in metabolic syndrome (MetS). However, differential contribution of TRPCs to coronary pathology in MetS is not fully elucidated. We investigated the roles of TRPC1 and TRPC6 isoforms in coronary arteries of MetS pigs and determined whether long-term treatment with a mineralocorticoid receptor inhibitor, spironolactone, attenuates coronary TRPC expression and associated dysfunctions. MetS coronary arteries exhibited significant atherosclerosis, endothelial dysfunction, and increased histamine-induced contractions. Immunohistochemical studies revealed that TRPC6 immunostaining was significantly greater in the medial layer of MetS pig coronary arteries compared to that in Lean pigs, whereas little TRPC6 immunostaining was found in atheromas. Conversely, TRPC1 immunostaining was weak in the medial layer but strong in MetS atheromas, where it was predominantly localized to macrophages. Spironolactone treatment significantly decreased coronary TRPC expression and dysfunctions in MetS pigs. In vivo targeted delivery of the dominant-negative (DN)-TRPC6 cDNA to the coronary wall reduced histamine-induced calcium transients in the MetS coronary artery medial layer, implying a role for TRPC6 in mediating calcium influx in MetS coronary smooth muscles. Monocyte adhesion was increased in Lean pig coronary arteries cultured in the presence of aldosterone; and spironolactone antagonized this effect, suggesting that coronary mineralocorticoid receptor activation may regulate macrophage infiltration. TRPC1 expression in atheroma macrophages was associated with advanced atherosclerosis, whereas medial TRPC6 upregulation correlated with increased histamine-induced calcium transients and coronary contractility. We propose that long-term spironolactone treatment may be a therapeutic strategy to decrease TRPC expression and coronary pathology associated with MetS.
Collapse
|
23
|
Nehme A, Zibara K. Efficiency and specificity of RAAS inhibitors in cardiovascular diseases: how to achieve better end-organ protection? Hypertens Res 2017; 40:903-909. [DOI: 10.1038/hr.2017.65] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/26/2017] [Accepted: 03/28/2017] [Indexed: 11/09/2022]
|
24
|
Marzolla V, Armani A, Mammi C, Moss ME, Pagliarini V, Pontecorvo L, Antelmi A, Fabbri A, Rosano G, Jaffe IZ, Caprio M. Essential role of ICAM-1 in aldosterone-induced atherosclerosis. Int J Cardiol 2017; 232:233-242. [PMID: 28089144 DOI: 10.1016/j.ijcard.2017.01.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/25/2016] [Accepted: 01/03/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Elevated aldosterone is associated with increased risk of atherosclerosis complications, whereas treatment with mineralocorticoid receptor (MR) antagonists decreases the rate of cardiovascular events. Here we test the hypothesis that aldosterone promotes early atherosclerosis by modulating intercellular adhesion molecule-1 (ICAM-1) expression and investigate the molecular mechanisms by which aldosterone regulates ICAM-1 expression. METHODS AND RESULTS Apolipoprotein-E (ApoE)-/- mice fed an atherogenic diet and treated with aldosterone for 4weeks showed increased vascular expression of ICAM-1, paralleled by enhanced atherosclerotic plaque size in the aortic root. Moreover, aldosterone treatment resulted in increased plaque lipid and inflammatory cell content, consistent with an unstable plaque phenotype. ApoE/ICAM-1 double knockout (ApoE-/-/ICAM-1-/-) littermates were protected from the aldosterone-induced increase in plaque size, lipid content and macrophage infiltration. Since aldosterone is known to regulate ICAM-1 transcription via MR in human endothelial cells, we explored MR regulation of the ICAM-1 promoter. Luciferase reporter assays performed in HUVECs using deletion constructs of the human ICAM-1 gene promoter showed that a region containing a predicted MR-responsive element (MRE) is required for MR-dependent transcriptional regulation of ICAM-1. CONCLUSIONS Pro-atherogenic effects of aldosterone are mediated by increased ICAM-1 expression, through transcriptional regulation by endothelial MR. These data enhance our understanding of the molecular mechanism by which MR activation promotes atherosclerosis complications.
Collapse
Affiliation(s)
- Vincenzo Marzolla
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Andrea Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Caterina Mammi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Mary E Moss
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Vittoria Pagliarini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Laura Pontecorvo
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Antonella Antelmi
- Interinstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Andrea Fabbri
- Department of Systems Medicine, Endocrinology Unit, S. Eugenio & CTO A. Alesini Hospitals-ASL RM2, University Tor Vergata, Rome, Italy
| | - Giuseppe Rosano
- Cardiovascular & Cell Science Institute, St George's Hospital NHS Trust, University of London, London, United Kingdom; Department of Medical Sciences, IRCCS San Raffaele, Rome, Italy
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00166 Rome, Italy; Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy.
| |
Collapse
|
25
|
Shen ZX, Chen XQ, Sun XN, Sun JY, Zhang WC, Zheng XJ, Zhang YY, Shi HJ, Zhang JW, Li C, Wang J, Liu X, Duan SZ. Mineralocorticoid Receptor Deficiency in Macrophages Inhibits Atherosclerosis by Affecting Foam Cell Formation and Efferocytosis. J Biol Chem 2016; 292:925-935. [PMID: 27881672 DOI: 10.1074/jbc.m116.739243] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/15/2016] [Indexed: 12/12/2022] Open
Abstract
Mineralocorticoid receptor (MR) has been considered as a potential target for treating atherosclerosis. However, the cellular and molecular mechanisms are not completely understood. We aim to explore the functions and mechanisms of macrophage MR in atherosclerosis. Atherosclerosis-susceptible LDLRKO chimeric mice with bone marrow cells from floxed control mice or from myeloid MR knock-out (MRKO) mice were generated and fed with high cholesterol diet. Oil red O staining showed that MRKO decreased atherosclerotic lesion area in LDLRKO mice. In another mouse model of atherosclerosis, MRKO/APOEKO mice and floxed control/APOEKO mice were generated and treated with angiotensin II. Similarly, MRKO inhibited the atherosclerotic lesion area in APOEKO mice. Histological analysis showed that MRKO increased collagen coverage and decreased necrosis and macrophage accumulation in the lesions. In vitro results demonstrated that MRKO suppressed macrophage foam cell formation and up-regulated the expression of genes involved in cholesterol efflux. Furthermore, MRKO decreased accumulation of apoptotic cells and increased effective efferocytosis in atherosclerotic lesions. In vitro study further revealed that MRKO increased the phagocytic index of macrophages without affecting their apoptosis. In conclusion, MRKO reduces high cholesterol- or angiotensin II-induced atherosclerosis and favorably changes plaque composition, likely improving plaque stability. Mechanistically, MR deficiency suppresses macrophage foam cell formation and up-regulates expression of genes related to cholesterol efflux, as well as increases effective efferocytosis and phagocytic capacity of macrophages.
Collapse
Affiliation(s)
- Zhu-Xia Shen
- From the Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,the Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Huashan Hospital Jing'an Branch, Fudan University, Shanghai 200040, China.,the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Xiao-Qing Chen
- the Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xue-Nan Sun
- From the Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Jian-Yong Sun
- the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Wu-Chang Zhang
- From the Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiao-Jun Zheng
- From the Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Yu-Yao Zhang
- From the Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Huan-Jing Shi
- the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Jia-Wei Zhang
- the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Chao Li
- From the Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Jun Wang
- the Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Huashan Hospital Jing'an Branch, Fudan University, Shanghai 200040, China
| | - Xu Liu
- the Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Sheng-Zhong Duan
- From the Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China,
| |
Collapse
|
26
|
Shieh FK, Kotlyar E, Sam F. Aldosterone and cardiovascular remodelling: focus on myocardial failure. J Renin Angiotensin Aldosterone Syst 2016; 5:3-13. [PMID: 15136967 DOI: 10.3317/jraas.2004.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Heart failure is a clinical syndrome that may result from different disease states or conditions that injure the myocardium. The activation of circulating neurohormones, particularly aldosterone, may play a pivotal role in left ventricular (LV) remodelling. The Randomized Aldactone Evaluation Study and Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival trial have emphasised the clinical importance of aldosterone. This review addresses some of the proposed mechanisms of LV remodelling in heart failure.
Collapse
Affiliation(s)
- Frederick K Shieh
- Boston University Medical School, Boston University Medical Center, Boston, Massechussetts, USA
| | | | | |
Collapse
|
27
|
Hohl M, Linz D, Fries P, Müller A, Stroeder J, Urban D, Speer T, Geisel J, Hummel B, Laufs U, Schirmer SH, Böhm M, Mahfoud F. Modulation of the sympathetic nervous system by renal denervation prevents reduction of aortic distensibility in atherosclerosis prone ApoE-deficient rats. J Transl Med 2016; 14:167. [PMID: 27277003 PMCID: PMC4898354 DOI: 10.1186/s12967-016-0914-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/18/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Apolipoprotein E-deficient (ApoE(-/-)) rodents spontaneously develop severe hypercholesterolemia and increased aortic stiffness, both accepted risk factors for cardiovascular morbidity and mortality in humans. In patients with resistant hypertension renal denervation (RDN) may improve arterial stiffness, however the underlying mechanisms are incompletely understood. This study investigates the impact of RDN on aortic compliance in a novel atherosclerosis prone ApoE(-/-)-rat model. METHODS Normotensive, 8 weeks old ApoE(-/-) and Sprague-Dawley (SD) rats were subjected to bilateral surgical RDN (n = 6 per group) or sham operation (n = 5 per group) and fed with normal chow for 8 weeks. Compliance of the ascending aorta was assessed by magnetic resonance imaging. Vasomotor function was measured by aortic ring tension recordings. Aortic collagen content was quantified histologically and plasma aldosterone levels were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS After 8 weeks, ApoE(-/-)-sham demonstrated a 58 % decrease in aortic distensibility when compared with SD-sham (0.0051 ± 0.0011 vs. 0.0126 ± 0.0023 1/mmHg; p = 0.02). This was accompanied by an impaired endothelium-dependent relaxation of aortic rings and an increase in aortic medial fibrosis (17.87 ± 1.4 vs. 12.27 ± 1.1 %; p = 0.006). In ApoE(-/-)-rats, RDN prevented the reduction of aortic distensibility (0.0128 ± 0.002 vs. 0.0051 ± 0.0011 1/mmHg; p = 0.01), attenuated endothelial dysfunction, and decreased aortic medial collagen content (12.71 ± 1.3 vs. 17.87 ± 1.4 %; p = 0.01) as well as plasma aldosterone levels (136.33 ± 6.6 vs. 75.52 ± 8.4 pg/ml; p = 0.0003). Cardiac function and metabolic parameters such as hypercholesterolemia were not influenced by RDN. CONCLUSION ApoE(-/-)-rats spontaneously develop impaired vascular compliance. RDN improves aortic distensibility and attenuated endothelial dysfunction in ApoE(-/-)-rats. This was associated with a reduction in aortic fibrosis formation, and plasma aldosterone levels.
Collapse
Affiliation(s)
- Mathias Hohl
- />Klinik für Innere Medizin III, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| | - Dominik Linz
- />Klinik für Innere Medizin III, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| | - Peter Fries
- />Klinik für Diagnostische und Interventionelle Radiologie, Universität des Saarlandes, Homburg/Saar, Germany
| | - Andreas Müller
- />Klinik für Diagnostische und Interventionelle Radiologie, Universität des Saarlandes, Homburg/Saar, Germany
| | - Jonas Stroeder
- />Klinik für Diagnostische und Interventionelle Radiologie, Universität des Saarlandes, Homburg/Saar, Germany
| | - Daniel Urban
- />Klinik für Innere Medizin III, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| | - Thimoteus Speer
- />Klinik für Innere Medizin IV, Universität des Saarlandes, Homburg/Saar, Germany
| | - Jürgen Geisel
- />Zentrallabor, Klinische Chemie und Laboratorium Medizin, Universität des Saarlandes, Homburg/Saar, Germany
| | - Björn Hummel
- />Institut für Klinische Hämostaseologie und Transfusionsmedizin, Universität des Saarlandes, Homburg/Saar, Germany
| | - Ulrich Laufs
- />Klinik für Innere Medizin III, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| | - Stephan H. Schirmer
- />Klinik für Innere Medizin III, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| | - Michael Böhm
- />Klinik für Innere Medizin III, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| | - Felix Mahfoud
- />Klinik für Innere Medizin III, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| |
Collapse
|
28
|
Samson R, Lee A, Lawless S, Hsu R, Sander G. Novel Pathophysiological Mechanisms in Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 956:21-35. [PMID: 27981434 DOI: 10.1007/5584_2016_96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hypertension is the most common disease affecting humans and imparts a significant cardiovascular and renal risk to patients. Extensive research over the past few decades has enhanced our understanding of the underlying mechanisms in hypertension. However, in most instances, the cause of hypertension in a given patient continues to remain elusive. Nevertheless, achieving aggressive blood pressure goals significantly reduces cardiovascular morbidity and mortality, as demonstrated in the recently concluded SPRINT trial. Since a large proportion of patients still fail to achieve blood pressure goals, knowledge of novel pathophysiologic mechanisms and mechanism based treatment strategies is crucial. The following chapter will review the novel pathophysiological mechanisms in hypertension, with a focus on role of immunity, inflammation and vascular endothelial homeostasis. The therapeutic implications of these mechanisms will be discussed where applicable.
Collapse
Affiliation(s)
- Rohan Samson
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA.
| | - Andrew Lee
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Sean Lawless
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Robert Hsu
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Gary Sander
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| |
Collapse
|
29
|
Hwang MH, Yoo JK, Luttrell M, Meade TH, English M, Christou DD. Effect of Selective Mineralocorticoid Receptor Blockade on Flow-Mediated Dilation and Insulin Resistance in Older Adults with Metabolic Syndrome. Metab Syndr Relat Disord 2015; 13:356-61. [PMID: 26302093 DOI: 10.1089/met.2015.0044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The prevalence of metabolic syndrome is especially high in older adults. Metabolic syndrome is associated with impaired vascular endothelial function, insulin resistance, and increased risk for cardiovascular disease but the underlying mechanisms are not fully elucidated. Plasma aldosterone is independently associated with metabolic syndrome and is linked to endothelial dysfunction and insulin resistance. Thus, we hypothesized that mineralocorticoid receptor (MR) blockade would improve flow-mediated dilation and insulin resistance in older adults with metabolic syndrome. METHODS To test this hypothesis, we conducted a balanced, randomized, double-blind, placebo-controlled, crossover study using selective MR blockade (eplerenone; 100 mg/day) for 1 month with 1 month washout in older adults with metabolic syndrome (62.6 ± 3.2 yrs; mean ± standard error). We evaluated brachial artery flow-mediated dilation (ultrasonography), oxidative stress (oxidized low-density lipoproteins and F2-isoprostanes) and insulin resistance (homeostatic model assessment). RESULTS In response to MR blockade, flow-mediated dilation (5.37 ± 0.85 vs. 5.98 ± 1.29%; placebo vs. eplerenone; P = 0.4), oxidized low-density lipoproteins (51.6 ± 11.5 vs. 56.1 ± 10.9 U/L; P = 0.6), and F2-isoprostanes (0.07 ± 0.02 vs. 0.06 ± 0.01 pg/mL; P = 0.3) did not improve. Insulin resistance also did not change following MR blockade (1.04 ± 0.26 vs. 1.38 ± 0.50; P = 0.6). However, MR blockade resulted in a large reduction (10 mmHg) in systolic blood pressure (140 ± 6 vs. 130 ± 6 mmHg; P = 0.02), with no significant change in diastolic blood pressure (81 ± 3 vs. 75 ± 2 mmHg; P = 0.2). CONCLUSIONS Our data do not support a contributing role for MRs in endothelial dysfunction and insulin resistance in older adults with metabolic syndrome. However, our findings suggest MR activation is an important contributor to systolic hypertension in this patient group.
Collapse
Affiliation(s)
- Moon-Hyon Hwang
- 1 Department of Applied Physiology and Kinesiology, University of Florida , Gainesville, Florida.,2 Division of Health and Exercise Science, Incheon National University , Incheon, Korea
| | - Jeung-Ki Yoo
- 1 Department of Applied Physiology and Kinesiology, University of Florida , Gainesville, Florida
| | - Meredith Luttrell
- 3 Department of Human Physiology, University of Oregon , Eugene, Oregon
| | - Thomas H Meade
- 4 Department of Cardiology, Baylor Scott and White Health, Texas A&M University , College Station, Texas
| | - Mark English
- 5 Department of Family and Community Medicine, Baylor Scott and White Health, Texas A&M University , College Station, Texas
| | - Demetra D Christou
- 1 Department of Applied Physiology and Kinesiology, University of Florida , Gainesville, Florida
| |
Collapse
|
30
|
Wang H, Wang J, Guo C, Luo W, Kleiman K, Eitzman DT. Renal denervation attenuates progression of atherosclerosis in apolipoprotein E-deficient mice independent of blood pressure lowering. Hypertension 2015; 65:758-65. [PMID: 25646301 DOI: 10.1161/hypertensionaha.114.04648] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The renal autonomic nervous system may contribute to hypertension and vascular disease. Although the effects of renal artery denervation on blood pressure lowering are controversial, there may be other beneficial vascular effects independent of blood pressure lowering. Bilateral renal denervation (RDN) or sham operation (SO) was performed in 14-week-old male apolipoprotein E-deficient mice on a Western diet starting at 10 weeks of age. Efficacy of RDN was confirmed by reduction of renal norepinephrine levels (SO: 3.8±0.1 versus RDN: 1.7±0.3 ng/mL; P<0.01) at 6 weeks after procedure. Compared with SO, RDN had no effect on blood pressure (SO: 101.0±2.4 versus RDN: 97.5±1.6 mm Hg; P=0.25), total cholesterol (SO: 536.7±28.5 versus RDN: 535.7±62.9 mg/dL; P=0.99), or triglycerides (SO: 83.7±3.5 versus RDN: 86.9±10.2 mg/dL; P=0.78). Quantification of atherosclerosis at 20 weeks of age demonstrated reduced atherosclerosis in mice receiving RDN compared with SO (arterial tree oil-red-O surface staining RDN: 4.2±0.5% versus SO: 6.3±0.7%; P<0.05). Reduced atherosclerosis was associated with increased smooth muscle cell content in atherosclerotic plaques (RDN: 13.3±2.1 versus SO: 8.1±0.6%; P<0.05). Serum levels of aldosterone, monocyte chemoattractant protein-1, and 8-isoprostane were lower in mice that received RDN compared with sham-operated mice (aldosterone; RDN: 206.8±33.2 versus SO: 405.5±59.4 pg/mL, P<0.05; monocyte chemoattractant protein-1; RDN: 51.7±7.9 versus SO: 91.71±4.6 pg/mL, P<0.05; 8-isoprostane; RDN: 331.9±38.2 versus SO: 468.5±42.0 pg/mL, P<0.05). RDN reduces progression of atherosclerosis in apolipoprotein E-deficient mice. These changes are associated with reduced aldosterone levels, monocyte chemoattractant protein-1, and markers of oxidative stress.
Collapse
Affiliation(s)
- Hui Wang
- From the Cardiovascular Research Center, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Jintao Wang
- From the Cardiovascular Research Center, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Chiao Guo
- From the Cardiovascular Research Center, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Wei Luo
- From the Cardiovascular Research Center, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Kyle Kleiman
- From the Cardiovascular Research Center, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Daniel T Eitzman
- From the Cardiovascular Research Center, Department of Internal Medicine, University of Michigan, Ann Arbor.
| |
Collapse
|
31
|
Ferrario CM, Schiffrin EL. Role of mineralocorticoid receptor antagonists in cardiovascular disease. Circ Res 2015; 116:206-13. [PMID: 25552697 PMCID: PMC4283558 DOI: 10.1161/circresaha.116.302706] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/08/2014] [Indexed: 12/23/2022]
Abstract
Aldosterone exerts its best known sodium homeostasis actions by controlling sodium excretion at the level of the distal tubules via activation of the apical epithelial sodium channel and the basolateral Na(+)/K(+)ATPase pump. Recently, this mineralocorticoid hormone has been demonstrated to act on the heart and blood vessels. Excess release of aldosterone in relation to the salt status induces both genomic and nongenomic effects that by promoting endothelial dysfunction, and vascular and cardiorenal adverse remodeling, contribute to the target organ damage found in hypertension, heart failure, myocardial infarction, and chronic renal failure. Mineralocorticoid receptor blockers have been shown to be highly effective in resistant hypertension and to slow down heart failure progression, and in experimental animals, the development of atherosclerosis. Blockade of the action of aldosterone and potentially other mineralocorticoid steroids has been increasingly demonstrated to be an extremely beneficial therapy in different forms of cardiovascular disease. This review provides a summary of the knowledge that exists on aldosterone actions in the cardiovascular system and, in providing the translational impact of this knowledge to the clinical arena, illustrates how much more needs to be achieved in exploring the use of mineralocorticoid receptor blockers in less advanced stages of heart, renal, and vascular disease.
Collapse
Affiliation(s)
- Carlos M Ferrario
- From the Hypertension Translational Research Laboratory, Departments of Surgery, Internal Medicine-Nephrology, and Physiology-Pharmacology, Wake Forest University Health Science Center, Winston Salem, NC (C.M.F.); and Department of Medicine and Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, Montreal, PQ, Canada (E.L.S.).
| | - Ernesto L Schiffrin
- From the Hypertension Translational Research Laboratory, Departments of Surgery, Internal Medicine-Nephrology, and Physiology-Pharmacology, Wake Forest University Health Science Center, Winston Salem, NC (C.M.F.); and Department of Medicine and Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, Montreal, PQ, Canada (E.L.S.)
| |
Collapse
|
32
|
Moss ME, Jaffe IZ. Mineralocorticoid Receptors in the Pathophysiology of Vascular Inflammation and Atherosclerosis. Front Endocrinol (Lausanne) 2015; 6:153. [PMID: 26441842 PMCID: PMC4585008 DOI: 10.3389/fendo.2015.00153] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/14/2015] [Indexed: 01/25/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the vasculature that causes significant morbidity and mortality from myocardial infarction, stroke, and peripheral vascular disease. Landmark clinical trials revealed that mineralocorticoid receptor (MR) antagonists improve outcomes in cardiovascular patients. Conversely, enhanced MR activation by the hormone aldosterone is associated with increased risk of MI, stroke, and cardiovascular death. This review summarizes recent advances in our understanding of the role of aldosterone and the MR in the pathogenesis of vascular inflammation and atherosclerosis as it proceeds from risk factor-induced endothelial dysfunction and inflammation to plaque formation, progression, and ultimately rupture with thrombosis, the cause of acute ischemia. The role of the MR in converting cardiac risk factors into endothelial dysfunction, in enhancing leukocyte adhesion and infiltration into the vasculature, in promoting systemic inflammation and vascular oxidative stress, and in plaque destabilization and thrombosis are discussed. A greater understanding of the mechanisms by which the MR promotes atherosclerosis has substantial potential to identify novel treatment targets to improve cardiovascular health and decrease mortality.
Collapse
Affiliation(s)
- Mary E. Moss
- Tufts Medical Center, Molecular Cardiology Research Institute, Boston, MA, USA
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Iris Z. Jaffe
- Tufts Medical Center, Molecular Cardiology Research Institute, Boston, MA, USA
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- *Correspondence: Iris Z. Jaffe, Tufts Medical Center, Molecular Cardiology Research Institute, 800 Washington Street, Box 80, Boston, MA 02111, USA,
| |
Collapse
|
33
|
Bene NC, Alcaide P, Wortis HH, Jaffe IZ. Mineralocorticoid receptors in immune cells: emerging role in cardiovascular disease. Steroids 2014; 91:38-45. [PMID: 24769248 PMCID: PMC4205205 DOI: 10.1016/j.steroids.2014.04.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/24/2014] [Accepted: 04/09/2014] [Indexed: 12/14/2022]
Abstract
Mineralocorticoid receptors (MRs) contribute to the pathophysiology of hypertension and cardiovascular disease in humans. As such, MR antagonists improve cardiovascular outcomes but the molecular mechanisms remain unclear. The actions of the MR in the kidney to increase blood pressure are well known, but the recent identification of MRs in immune cells has led to novel discoveries in the pathogenesis of cardiovascular disease that are reviewed here. MR regulates macrophage activation to the pro-inflammatory M1 phenotype and this process contributes to the pathogenesis of cardiovascular fibrosis in response to hypertension and to outcomes in mouse models of stroke. T lymphocytes have recently been implicated in the development of hypertension and cardiovascular fibrosis in mouse models. MR activation in vivo promotes T lymphocyte differentiation to the pro-inflammatory Th1 and Th17 subsets while decreasing the number of anti-inflammatory T regulatory lymphocytes. The mechanism likely involves activation of MR in antigen presenting dendritic cells that subsequently regulate Th1/Th17 polarization by production of cytokines. Alteration of the balance between T helper and T regulatory lymphocytes contributes to the pathogenesis of hypertension and atherosclerosis and the associated complications. B lymphocytes also express the MR and specific B lymphocyte-derived antibodies modulate the progression of atherosclerosis. However, the role of MR in B lymphocyte function remains to be explored. Overall, recent studies of MR in immune cells have identified new mechanisms by which MR activation may contribute to the pathogenesis of organ damage in patients with cardiovascular risk factors. Conversely, inhibition of leukocyte MR may contribute to the protective effects of MR antagonist drugs in cardiovascular patients. Further understanding of the role of MR in leukocyte function could yield novel drug targets for cardiovascular disease.
Collapse
Affiliation(s)
| | - Pilar Alcaide
- Tufts University School of Medicine, Boston, MA, USA; Sackler School of Graduate Biomedical Sciences, Boston, MA, USA; Tufts Medical Center, Molecular Cardiology Research Institute, Boston, MA, USA
| | - Henry H Wortis
- Tufts University School of Medicine, Boston, MA, USA; Sackler School of Graduate Biomedical Sciences, Boston, MA, USA
| | - Iris Z Jaffe
- Tufts University School of Medicine, Boston, MA, USA; Sackler School of Graduate Biomedical Sciences, Boston, MA, USA; Tufts Medical Center, Molecular Cardiology Research Institute, Boston, MA, USA.
| |
Collapse
|
34
|
Myeloid mineralocorticoid receptor deficiency inhibits aortic constriction-induced cardiac hypertrophy in mice. PLoS One 2014; 9:e110950. [PMID: 25354087 PMCID: PMC4212990 DOI: 10.1371/journal.pone.0110950] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 09/17/2014] [Indexed: 02/08/2023] Open
Abstract
Mineralocorticoid receptor (MR) blockade has been shown to suppress cardiac hypertrophy and remodeling in animal models of pressure overload (POL). This study aims to determine whether MR deficiency in myeloid cells modulates aortic constriction-induced cardiovascular injuries. Myeloid MR knockout (MMRKO) mice and littermate control mice were subjected to abdominal aortic constriction (AAC) or sham operation. We found that AAC-induced cardiac hypertrophy and fibrosis were significantly attenuated in MMRKO mice. Expression of genes important in generating reactive oxygen species was decreased in MMRKO mice, while that of manganese superoxide dismutase increased. Furthermore, expression of genes important in cardiac metabolism was increased in MMRKO hearts. Macrophage infiltration in the heart was inhibited and expression of inflammatory genes was decreased in MMRKO mice. In addition, aortic fibrosis and inflammation were attenuated in MMRKO mice. Taken together, our data indicated that MR deficiency in myeloid cells effectively attenuated aortic constriction-induced cardiac hypertrophy and fibrosis, as well as aortic fibrosis and inflammation.
Collapse
|
35
|
Mineralocorticoid receptor: a critical player in vascular remodeling. SCIENCE CHINA-LIFE SCIENCES 2014; 57:809-17. [PMID: 25104454 DOI: 10.1007/s11427-014-4691-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/06/2014] [Indexed: 01/10/2023]
Abstract
Vascular remodeling is a pathological condition with structural changes of blood vessels. Both inside-out and outside-in hypothesis have been put forward to describe mechanisms of vascular remodeling. An integrated model of these two hypotheses emphasizes the importance of immune cells such as monocytes/macrophages, T cells, and dendritic cells. These immune cells are at the center stage to orchestrate cellular proliferation, migration, and interactions of themselves and other vascular cells including endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and fibroblasts. These changes on vascular wall lead to inflammation and oxidative stress that are largely responsible for vascular remodeling. Mineralocorticoid receptor (MR) is a classic nuclear receptor. MR agonist promotes inflammation and oxidative stress and therefore exacerbates vascular remodeling. Conversely, MR antagonists have the opposite effects. MR has direct roles on vascular cells through non-genomic or genomic actions to modulate inflammation and oxidative stress. Recent studies using genetic mouse models have revealed that MR in myeloid cells, VSMCs and ECs all contribute to vascular remodeling. In conclusion, data in the past years have demonstrated that MR is a critical control point in modulating vascular remodeling. Studies will continue to provide evidence with more detailed mechanisms to support this notion.
Collapse
|
36
|
|
37
|
Iqbal J, Fay R, Adlam D, Squire I, Parviz Y, Gunn J, Pitt B, Zannad F. Effect of eplerenone in percutaneous coronary intervention-treated post-myocardial infarction patients with left ventricular systolic dysfunction: a subanalysis of the EPHESUS trial. Eur J Heart Fail 2014; 16:685-91. [DOI: 10.1002/ejhf.88] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/14/2014] [Accepted: 02/21/2014] [Indexed: 11/07/2022] Open
Affiliation(s)
- Javaid Iqbal
- Department of Cardiovascular Science at the University of Sheffield, and Cardiology Department at Sheffield Teaching Hospitals NHS Trust; Sheffield UK
| | - Renaud Fay
- INSERM, Centre d'Investigation Clinique and Centre Hospitalier Universitaire, and the Department of Cardiology; Nancy University, Université de Lorraine; Nancy France
| | - David Adlam
- Department of Cardiology, and NIHR Cardiovascular Biomedical Research Unit; Glenfield Hospital; Leicester UK
| | - Iain Squire
- Department of Cardiology, and NIHR Cardiovascular Biomedical Research Unit; Glenfield Hospital; Leicester UK
| | - Yasir Parviz
- Department of Cardiovascular Science at the University of Sheffield, and Cardiology Department at Sheffield Teaching Hospitals NHS Trust; Sheffield UK
| | - Julian Gunn
- Department of Cardiovascular Science at the University of Sheffield, and Cardiology Department at Sheffield Teaching Hospitals NHS Trust; Sheffield UK
| | - Bertram Pitt
- Cardiovascular Centre; University of Michigan; Ann Arbor MI USA
| | - Faiez Zannad
- INSERM, Centre d'Investigation Clinique and Centre Hospitalier Universitaire, and the Department of Cardiology; Nancy University, Université de Lorraine; Nancy France
| |
Collapse
|
38
|
McGraw AP, McCurley A, Preston IR, Jaffe IZ. Mineralocorticoid receptors in vascular disease: connecting molecular pathways to clinical implications. Curr Atheroscler Rep 2014; 15:340. [PMID: 23719923 DOI: 10.1007/s11883-013-0340-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mineralocorticoid receptor (MR), a steroid-hormone-activated transcription factor, plays a substantial role in cardiovascular diseases. MR antagonists (MRAs) have long been appreciated as effective treatments for heart failure and hypertension; however, recent research suggests that additional patient populations may also benefit from MRA therapy. Experimental evidence demonstrates that in addition to its classic role in the regulating sodium handling in the kidney, functional MR is expressed in the blood vessels and contributes to hypertension, vascular inflammation and remodeling, and atherogenesis. MR activation drives pathological phenotypes in smooth muscle cells, endothelial cells, and inflammatory cells, whereas MRAs inhibit these effects. Collectively, these studies demonstrate a new role for extrarenal MR in cardiovascular disease. This review summarizes these new lines of evidence and how they contribute to the mechanisms of atherosclerosis, pulmonary and systemic hypertension, and vein graft failure, and describes new patient populations that may benefit from MRA therapy.
Collapse
Affiliation(s)
- Adam P McGraw
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA, USA.
| | | | | | | |
Collapse
|
39
|
Pruthi D, McCurley A, Aronovitz M, Galayda C, Karumanchi SA, Jaffe IZ. Aldosterone promotes vascular remodeling by direct effects on smooth muscle cell mineralocorticoid receptors. Arterioscler Thromb Vasc Biol 2013; 34:355-64. [PMID: 24311380 DOI: 10.1161/atvbaha.113.302854] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Vascular remodeling occurs after endothelial injury, resulting in smooth muscle cell (SMC) proliferation and vascular fibrosis. We previously demonstrated that the blood pressure-regulating hormone aldosterone enhances vascular remodeling in mice at sites of endothelial injury in a placental growth factor-dependent manner. We now test the hypothesis that SMC mineralocorticoid receptors (MRs) directly mediate the remodeling effects of aldosterone and further explore the mechanism. APPROACH AND RESULTS A wire-induced carotid injury model was performed in wild-type mice and mice with inducible SMC-specific deletion of the MR. Aldosterone did not affect re-endothelialization after injury in wild-type mice. Deletion of SMC-MR prevented the 79% increase in SMC proliferation induced by aldosterone after injury in MR-Intact littermates. Moreover, both injury-induced and aldosterone-enhanced vascular fibrosis were attenuated in SMC-specific MR knockout mice. Further exploration of the mechanism revealed that aldosterone-induced vascular remodeling is prevented by in vivo blockade of the placental growth factor-specific receptor, type 1 vascular endothelial growth factor receptor (VEGFR1), the receptor for placental growth factor. Immunohistochemistry of carotid vessels shows that the induction of VEGFR1 expression in SMC after vascular injury is attenuated by 72% in SMC-specific MR knockout mice. Moreover, aldosterone induction of vascular placental growth factor mRNA expression and protein release are also prevented in vessels lacking SMC-MR. CONCLUSIONS These studies reveal that SMC-MR is necessary for aldosterone-induced vascular remodeling independent of renal effects on blood pressure. SMC-MR contributes to induction of SMC VEGFR1 in the area of vascular injury and to aldosterone-enhanced vascular placental growth factor expression and hence the detrimental effects of aldosterone are prevented by VEGFR1 blockade. This study supports exploring MR antagonists and VEGFR1 blockade to prevent pathological vascular remodeling induced by aldosterone.
Collapse
Affiliation(s)
- Dafina Pruthi
- From the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (D.P., A.M., M.A., C.G., I.Z.J.); and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA (S.A.K.)
| | | | | | | | | | | |
Collapse
|
40
|
van den Berg TNA, Rongen GA, Fröhlich GM, Deinum J, Hausenloy DJ, Riksen NP. The cardioprotective effects of mineralocorticoid receptor antagonists. Pharmacol Ther 2013; 142:72-87. [PMID: 24275323 DOI: 10.1016/j.pharmthera.2013.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/04/2013] [Indexed: 01/14/2023]
Abstract
Despite state-of-the-art reperfusion therapy, morbidity and mortality remain significant in patients with an acute myocardial infarction. Therefore, novel strategies to limit myocardial ischemia-reperfusion injury are urgently needed. Mineralocorticoid receptor (MR) antagonists are attractive candidates for this purpose, since several clinical trials in patients with heart failure have reported a survival benefit with MR antagonist treatment. MRs are expressed by several cells of the cardiovascular system, including cardiomyocytes, cardiac fibroblasts, vascular smooth muscle cells, and endothelial cells. Experiments in animal models of myocardial infarction have demonstrated that acute administration of MR antagonists, either before ischemia or immediately at the moment of coronary reperfusion, limits infarct size. This action appears to be independent of the presence of aldosterone and cortisol, which are the endogenous ligands for the MR. The cardioprotective effect is mediated by a nongenomic intracellular signaling pathway, including adenosine receptor stimulation, and activation of several components of the Reperfusion Injury Salvage Kinase (RISK) pathway. In addition to limiting infarct size, MR antagonists can improve scar healing when administered shortly after reperfusion and can reduce cardiac remodeling post myocardial infarction. Clinical trials are currently being performed studying whether early administration of MR antagonists can indeed improve prognosis in patients with an acute myocardial infarction, independent of the presence of heart failure.
Collapse
Affiliation(s)
- T N A van den Berg
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of General Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of General Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Georg M Fröhlich
- The Hatter Cardiovascular Institute, University College London, United Kingdom
| | - Jaap Deinum
- Department of General Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, United Kingdom
| | - Niels P Riksen
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of General Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands.
| |
Collapse
|
41
|
Eplerenone reduced lesion size in early but not advanced atherosclerosis in apolipoprotein E-deficient mice. J Cardiovasc Pharmacol 2013; 60:508-12. [PMID: 23232789 DOI: 10.1097/fjc.0b013e31826f5535] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The beneficial effects of eplerenone, a specific mineralocorticoid receptor blocker, were previously demonstrated in early atherosclerosis (ATS). The aim of the present study was to evaluate the effect of eplerenone in advanced versus early ATS. Apolipoprotein E knockout mice aged 16 or 32 weeks were randomly divided into eplerenone (100 mg·kg·d) or vehicle treatment for 14 weeks. Eplerenone reduced atherosclerotic lesion size by 51% only in early ATS. In peritoneal macrophages obtained from these mice, eplerenone reduced messenger RNA expression of pro-inflammatory markers, interleukin 6, tumor necrosis factor α, monocyte chemotactic protein 1, and increased anti-inflammatory marker arginase 1 to a greater extent in early compared with advanced ATS. These changes correspond to macrophage polarization toward alternative inflammatory phenotype. Messenger RNA expression of the mineralocorticoid receptor and aldosterone synthase were also reduced by eplerenone to a greater extent in early ATS, and these might increase the sensitivity of macrophages to mineralocorticoid blockade in early ATS. The results of the present study point to the benefits of early initiation of treatment with eplerenone in reducing experimental ATS.
Collapse
|
42
|
Smooth muscle cell mineralocorticoid receptors: role in vascular function and contribution to cardiovascular disease. Pflugers Arch 2013; 465:1661-70. [PMID: 23636772 DOI: 10.1007/s00424-013-1282-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 04/11/2013] [Indexed: 02/07/2023]
Abstract
The mineralocorticoid receptor (MR), a member of the steroid receptor family, regulates blood pressure by mediating the effects of the hormone aldosterone on renal sodium handling. In recent years, it has become clear that MR is expressed in vascular smooth muscle cells (SMCs), and interest has grown in understanding the direct role of SMC MR in regulating vascular function. This interest stems from multiple clinical studies where MR inhibitor treatment reduced the incidence of cardiovascular events and mortality. This review summarizes the most recent advances in our understanding of SMC MR in regulating normal vascular function and in promoting vascular disease. Many new studies suggest a role for SMC MR activation in stimulating vascular contraction and contributing to vessel inflammation, fibrosis, and remodeling. These detrimental vascular effects of MR activation appear to be independent of changes in blood pressure and are synergistic with the presence of endothelial dysfunction or damage. Thus, in humans with underlying cardiovascular disease or cardiovascular risk factors, SMC MR activation may promote hypertension, atherosclerosis, and vascular aging. Further exploration of the molecular mechanisms for the effects of SMC MR activation has the potential to identify novel therapeutic targets to prevent or treat common cardiovascular disorders.
Collapse
|
43
|
Zwadlo C, Bauersachs J. Mineralocorticoid receptor antagonists for therapy of coronary artery disease and related complications. Curr Opin Pharmacol 2013; 13:280-6. [DOI: 10.1016/j.coph.2012.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/09/2012] [Accepted: 12/28/2012] [Indexed: 01/05/2023]
|
44
|
McGraw AP, Bagley J, Chen WS, Galayda C, Nickerson H, Armani A, Caprio M, Carmeliet P, Jaffe IZ. Aldosterone increases early atherosclerosis and promotes plaque inflammation through a placental growth factor-dependent mechanism. J Am Heart Assoc 2013; 2:e000018. [PMID: 23525413 PMCID: PMC3603255 DOI: 10.1161/jaha.112.000018] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Aldosterone levels correlate with the incidence of myocardial infarction and mortality in cardiovascular patients. Aldosterone promotes atherosclerosis in animal models, but the mechanisms are poorly understood. Methods and Results Aldosterone was infused to achieve pathologically relevant levels that did not increase blood pressure in the atherosclerosis‐prone apolipoprotein E–knockout mouse (ApoE−/−). Aldosterone increased atherosclerosis in the aortic root 1.8±0.1‐fold after 4 weeks and in the aortic arch 3.7±0.2‐fold after 8 weeks, without significantly affecting plaque size in the abdominal aorta or traditional cardiac risk factors. Aldosterone treatment increased lipid content of plaques (2.1±0.2‐fold) and inflammatory cell content (2.2±0.3‐fold), induced early T‐cell (2.9±0.3‐fold) and monocyte (2.3±0.3‐fold) infiltration into atherosclerosis‐prone vascular regions, and enhanced systemic inflammation with increased spleen weight (1.52±0.06‐fold) and the circulating cytokine RANTES (regulated and normal T cell secreted; 1.6±0.1‐fold). To explore the mechanism, 7 genes were examined for aldosterone regulation in the ApoE−/− aorta. Further studies focused on the proinflammatory placental growth factor (PlGF), which was released from aldosterone‐treated ApoE−/− vessels. Activation of the mineralocorticoid receptor by aldosterone in human coronary artery smooth muscle cells (SMCs) caused the release of factors that promote monocyte chemotaxis, which was inhibited by blocking monocyte PlGF receptors. Furthermore, PlGF‐deficient ApoE−/− mice were resistant to early aldosterone‐induced increases in plaque burden and inflammation. Conclusions Aldosterone increases early atherosclerosis in regions of turbulent blood flow and promotes an inflammatory plaque phenotype that is associated with rupture in humans. The mechanism may involve SMC release of soluble factors that recruit activated leukocytes to the vessel wall via PlGF signaling. These findings identify a novel mechanism and potential treatment target for aldosterone‐induced ischemia in humans.
Collapse
Affiliation(s)
- Adam P McGraw
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Raz-Pasteur A, Gamliel-Lazarovich A, Gantman A, Coleman R, Keidar S. Mineralocorticoid receptor blockade inhibits accelerated atherosclerosis induced by a low sodium diet in apolipoprotein E-deficient mice. J Renin Angiotensin Aldosterone Syst 2012; 15:228-35. [DOI: 10.1177/1470320312467558] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Ayelet Raz-Pasteur
- Lipid Research Laboratory, Technion - Israel Institute of Technology, Haifa, Israel
- Rambam Medical Center, Haifa, Israel
| | | | - Anna Gantman
- Lipid Research Laboratory, Technion - Israel Institute of Technology, Haifa, Israel
| | - Raymond Coleman
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shlomo Keidar
- Lipid Research Laboratory, Technion - Israel Institute of Technology, Haifa, Israel
- Rambam Medical Center, Haifa, Israel
| |
Collapse
|
46
|
Iqbal J, Macdonald LJ, Low L, Seckl JR, Yau CW, Walker BR, Hadoke PWF. Contribution of endogenous glucocorticoids and their intravascular metabolism by 11β-HSDs to postangioplasty neointimal proliferation in mice. Endocrinology 2012; 153:5896-905. [PMID: 23125311 PMCID: PMC3977041 DOI: 10.1210/en.2012-1481] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exogenous glucocorticoids inhibit neointimal proliferation in animals. We aimed to test the hypothesis that endogenous glucocorticoids influence neointimal proliferation; this may be mediated by effects on systemic risk factors or locally in vessels and modulated by either adrenal secretion or enzymes expressed in vessels that mediate local inactivation [11β-hydroxysteroid dehydrogenase type II (11β-HSD2) in endothelium] or regeneration [11β-hydroxysteroid dehydrogenase type I (11β-HSD1) in smooth muscle] of glucocorticoids. Femoral artery wire angioplasty was conducted in C57BL/6J, Apo-E(-/-), 11β-HSD1(-/-), Apo-E, 11β-HSD1(-/-) (double knockout), and 11β-HSD2(-/-) mice after glucocorticoid administration, adrenalectomy, glucocorticoid or mineralocorticoid receptor antagonism, or selective 11β-HSD1 inhibition. In C57BL/6J mice, neointimal proliferation was reduced by systemic or local glucocorticoid administration, unaffected by adrenalectomy, reduced by the mineralocorticoid receptor antagonist eplerenone, and increased by the glucocorticoid receptor antagonist RU38486. 11β-HSD2 deletion had no effect on neointimal proliferation, with or without eplerenone. 11β-HSD1 inhibition or deletion had no effect in chow-fed C57BL/6J mice but reduced neointimal proliferation in Apo-E(-/-) mice on Western diet. Reductions in neointimal size were accompanied by reduced macrophage and increased collagen content. We conclude that pharmacological administration of glucocorticoid receptor agonists or of mineralocorticoid receptor antagonists may be useful in reducing neointimal proliferation. Endogenous corticosteroids induce beneficial glucocorticoid receptor activation and adverse mineralocorticoid receptor activation. However, manipulation of glucocorticoid metabolism has beneficial effects only in mice with exaggerated systemic risk factors, suggesting effects mediated primarily in liver and adipose rather than intravascular glucocorticoid signaling. Reducing glucocorticoid action with 11β-HSD1 inhibitors that are being developed for type 2 diabetes appears not to risk enhanced neointimal proliferation.
Collapse
Affiliation(s)
- Javaid Iqbal
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, U.K
| | - Linsay J Macdonald
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, U.K
| | - Lucinda Low
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, U.K
| | - Jonathan R. Seckl
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, U.K
| | - Christopher W Yau
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, U.K
| | - Brian R Walker
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, U.K
| | - Patrick WF Hadoke
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, U.K
| |
Collapse
|
47
|
Markowitz M, Messineo F, Coplan NL. Aldosterone receptor antagonists in cardiovascular disease: a review of the recent literature and insight into potential future indications. Clin Cardiol 2012; 35:605-9. [PMID: 22778046 DOI: 10.1002/clc.22025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 05/01/2012] [Indexed: 01/01/2023] Open
Abstract
Randomized controlled trials demonstrate the efficacy of aldosterone receptor antagonists (spironolactone and eplerenone) as a useful pharmacologic intervention specifically in patients with New York Heart Association (NYHA) class III and IV heart failure, in patients with an ejection fraction <40% after myocardial infarction, and most recently in patients with mildly symptomatic heart failure. However, aldosterone receptor antagonists may be beneficial in a broader patient population. Aldosterone receptor antagonists can potentially serve as an antiarrhythmic pharmacologic agent for atrial and ventricular arrhythmias, an anti-ischemic medication in coronary artery disease through prevention of myocardial fibrosis and vascular damage, and as an agent in people with asymptomatic and mild heart failure (NYHA classes I and II) and diastolic heart failure. However, many clinicians remain reluctant to prescribe this highly efficacious pharmacologic therapy for a variety of reasons, including concerns about polypharmacy and hyperkalemia. Recent observational analysis demonstrates that less than one-third of eligible patients hospitalized with heart failure actually received aldosterone antagonist therapy. This article will review the current and potential future uses of aldosterone receptor antagonists across the entire spectrum of cardiovascular disease. The authors have no funding, financial relationships, or conflicts of interest to disclose.
Collapse
Affiliation(s)
- Mindy Markowitz
- Division of Clinical Cardiology, Department of Cardiovascular Medicine, Lenox Hill Hospital, New York, New York, USA.
| | | | | |
Collapse
|
48
|
Bienvenu LA, Morgan J, Rickard AJ, Tesch GH, Cranston GA, Fletcher EK, Delbridge LMD, Young MJ. Macrophage mineralocorticoid receptor signaling plays a key role in aldosterone-independent cardiac fibrosis. Endocrinology 2012; 153:3416-25. [PMID: 22653557 DOI: 10.1210/en.2011-2098] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mineralocorticoid receptor (MR) activation promotes the development of cardiac fibrosis and heart failure. Clinical evidence demonstrates that MR antagonism is protective even when plasma aldosterone levels are not increased. We hypothesize that MR activation in macrophages drives the profibrotic phenotype in the heart even when aldosterone levels are not elevated. The aim of the present study was to establish the role of macrophage MR signaling in mediating cardiac tissue remodeling caused by nitric oxide (NO) deficiency, a mineralocorticoid-independent insult. Male wild-type (MRflox/flox) and macrophage MR-knockout (MRflox/flox/LysMCre/+; mac-MRKO) mice were uninephrectomized, maintained on 0.9% NaCl drinking solution, with either vehicle (control) or the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (L-NAME; 150 mg/kg/d) for 8 wk. NO deficiency increased systolic blood pressure at 4 wk in wild-type L-NAME/salt-treated mice compared with all other groups. At 8 wk, systolic blood pressure was increased above control in both L-NAME/salt treated wild-type and mac-MRKO mice by approximately 28 mm Hg by L-NAME/salt. Recruitment of macrophages was increased 2- to 3-fold in both L-NAME/salt treated wild-type and mac-MRKO. Inducible NOS positive macrophage infiltration and TNFα mRNA expression was greater in wild-type L-NAME/salt-treated mice compared with mac-MRKO, demonstrating that loss of MR reduces M1 phenotype. mRNA levels for markers of vascular inflammation and oxidative stress (NADPH oxidase 2, p22phox, intercellular adhesion molecule-1, G protein-coupled chemokine receptor 5) were similar in treated wild-type and mac-MRKO mice compared with control groups. In contrast, L-NAME/salt treatment increased interstitial collagen deposition in wild-type by about 33% but not in mac-MRKO mice. mRNA levels for connective tissue growth factor and collagen III were also increased above control treatment in wild-type (1.931 ± 0.215 vs. 1 ± 0.073) but not mac-MRKO mice (1.403 ± 0.150 vs. 1.286 ± 0.255). These data demonstrate that macrophage MR are necessary for the translation of inflammation and oxidative stress into interstitial and perivascular fibrosis after NO deficiency, even when plasma aldosterone is not elevated.
Collapse
|
49
|
Hillaert MA, Lentjes EG, Kemperman H, van der Graaf Y, Nathoe HM, Beygui F, Montalescot G, Doevendans PA, Wassink AM, van Belle E. Aldosterone, atherosclerosis and vascular events in patients with stable coronary artery disease. Int J Cardiol 2012; 167:1929-35. [PMID: 22727970 DOI: 10.1016/j.ijcard.2012.05.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 03/31/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND AIMS Plasma aldosterone has been associated with all-cause and cardiovascular mortality in high-risk cardiovascular populations, including patients with heart failure, myocardial infarction and high-risk coronary artery disease (CAD) patients. In the present study, we evaluated the association of plasma aldosterone levels with vascular events in a large prospective cohort of stable CAD patients recruited in an outpatient setting. Moreover, we investigated the relationship between aldosterone and atherosclerotic burden. METHODS AND RESULTS Baseline plasma aldosterone levels were measured in 2699 subjects with CAD (mean age 60 ± 10 years, 82% male). During a median follow-up of 4.7 years, 308 (11%) patients died, of which 203 were from a vascular cause. Vascular endpoints of myocardial infarction, ischemic stroke or vascular death occurred in 355 (13%) patients. Multivariable Cox regression analysis was performed, adjusting for multiple confounders. Aldosterone (median 96 pg/mL, interquartile range 70-138 pg/mL, normal range 58-362 pg/mL) was independently associated with major vascular events (hazard ratio (HR) 1.56, 95% confidence interval (CI) 1.13-2.15) and vascular mortality (HR 1.95, 95% CI 1.27-3.00). By multivariable regression analysis, aldosterone was also associated with the presence of atherosclerosis in additional vascular territories (cerebrovascular disease and/or peripheral artery disease) (p=0.026). CONCLUSIONS In patients with stable coronary artery disease, plasma aldosterone is independently associated with the risk of major vascular events and vascular mortality and with atherosclerotic burden.
Collapse
Affiliation(s)
- Marieke A Hillaert
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
de Rita O, Hackam DG, Spence JD. Effects of aldosterone on human atherosclerosis: plasma aldosterone and progression of carotid plaque. Can J Cardiol 2012; 28:706-11. [PMID: 22717248 DOI: 10.1016/j.cjca.2012.04.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 02/08/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In animal models, aldosterone has adverse cardiac and vascular effects independent of blood pressure, and these are ameliorated by spironolactone or eplerenone (mineralocorticoid receptor antagonists). Both agents reduce mortality in human systolic heart failure. We studied the effect of plasma aldosterone on human carotid atherosclerosis. METHODS The effect of plasma aldosterone on progression of carotid total plaque area (TPA) was studied using multiple linear regression, with variables that have previously been shown to maximally explain TPA variation (age, sex, total cholesterol, systolic blood pressure, diabetes, smoking, and medication for cholesterol and systolic blood pressure). RESULTS Complete data were available in 848 patients with progression of plaque from baseline to the following year and in 571 for progression in the second year. In stepwise linear regression, plasma aldosterone was the only independent predictor of plaque progression in the first year (P = 0.005) and in the second year (P = 0.001). CONCLUSIONS Plasma aldosterone is associated with progression of atherosclerosis. We are now planning to test the effects of mineralocorticoid receptor antagonism on plaque progression.
Collapse
Affiliation(s)
- Omar de Rita
- Schulich School of Medicine and Dentistry, University of Western Ontario, 1400 Western Road, London, ON, Canada
| | | | | |
Collapse
|