1
|
Costa CE, Romaní A, Domingues L. Overview of resveratrol properties, applications, and advances in microbial precision fermentation. Crit Rev Biotechnol 2025; 45:788-804. [PMID: 39582165 DOI: 10.1080/07388551.2024.2424362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Accepted: 07/13/2024] [Indexed: 11/26/2024]
Abstract
Resveratrol is an antioxidant abundant in plants like grapes and peanuts and has garnered significant attention for its potential therapeutic applications. This review explores its chemical attributes, stability, and solubility, influencing its diverse applications and bioavailability. Resveratrol's multifaceted therapeutic roles encompass: antioxidant, cardioprotective, anti-inflammatory, neuroprotective, anti-aging, and anticancer properties. While traditionally studied in preclinical settings, a surge in clinical trials underscores resveratrol's promise for human health. Over 250 recent clinical trials investigate its effects alone and in combination with other compounds. Commercially utilized in food, cosmetics, supplements, and pharmaceuticals, the resveratrol market is expanding, driven by microbial fermentation. Microbes offer advantages over plant extraction and chemical synthesis, providing cost-effective, pure, and sustainable production. Microbial biosynthesis can be attained from carbon sources, such as glucose or xylose, among others, which can be obtained from renewable resources or agro-industrial wastes. While Saccharomyces cerevisiae has been the most used host, non-conventional yeasts like Yarrowia lipolytica and bacteria like Escherichia coli have also demonstrated potential. Genetic modifications such as increasing acetyl-CoA/malonyl-CoA pools, boosting the shikimate pathway, or multi-copy expression of pathway genes, allied to the optimization of fermentation strategies have been promising in increasing titers. Microbial biosynthesis of resveratrol aligns with the shift toward sustainable and renewable bio-based compounds, exemplifying a circular bioeconomy. Concluding, microbial fermentation presents a promising avenue for efficient resveratrol production, driven by genetic engineering, pathway optimization, and fermentation strategies. These advances hold the key to unlocking the potential of resveratrol for diverse therapeutic applications, contributing to a greener and sustainable future.
Collapse
Affiliation(s)
- Carlos E Costa
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Aloia Romaní
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), Ourense, Spain
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
2
|
Căpruciu R, Gheorghiu CN. Methods for Synthesis and Extraction of Resveratrol from Grapevine: Challenges and Advances in Compound Identification and Analysis. Foods 2025; 14:1091. [PMID: 40238202 PMCID: PMC11988528 DOI: 10.3390/foods14071091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Resveratrol is the most important biopotential phytoalexin of the stilbene group (natural polyphenolic secondary metabolites), synthesized naturally by the action of biotic and abiotic factors on the plant. The yield of individual bioactive compounds isolated from grapevine components, products and by-products is directly dependent on the conditions of the synthesis, extraction and identification techniques used. Modern methods of synthesis and extraction, as well as identification techniques, are centred on the use of non-toxic solvents that have the advantages of the realisation of rapid extractions, maintenance of optimal parameters, and low energy consumption; this is a challenge with promising results for various industrial applications. Actionable advances in identifying and analysing stilbenes consist of techniques for coupling synthesis/extraction/identification methods that have proven accurate, reproducible and efficient. The main challenge remains to keep resveratrol compositionally unaltered while increasing its microbiome solubility and stability as a nutraceutical in the food industry.
Collapse
Affiliation(s)
- Ramona Căpruciu
- Department of Horticulture and Food Science, Faculty of Horticulture, University of Craiova, 13 A.I. Cuza Street, 200585 Craiova, Romania;
| | | |
Collapse
|
3
|
Fu Q, Wang F, Tang T, Liu Z, Wang L, Wang Q, Shi X, Wang B. A Snapshot of Microbial Succession and Volatile Component Dynamics of Marselan Wine in Xinjiang During Spontaneous Fermentation. Foods 2025; 14:994. [PMID: 40232002 PMCID: PMC11941887 DOI: 10.3390/foods14060994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
Marselan wine is characterized by distinctive flavors of blackcurrant, cranberry, and spice, which are significantly influenced by environmental factors such as region and climate. In this study, we analyzed the dynamic changes in the microbial community, physicochemical indices, and flavor compounds during the spontaneous fermentation of Marselan wine in Xinjiang using high-throughput sequencing (HTS), high-performance liquid chromatography (HPLC), and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results indicated that the sugar content decreased from 259.12 g/L to 22.45 g/L, while the ethanol content increased to 13.63 ± 0.15% vol after 12 days of fermentation. The predominant aromatic components identified in Marselan grapes include isophorone, 2,3-pentanedione, 2-hexenal, and melonal. After fermentation, ethanol, phenethyl alcohol, isoamyl acetate, ethyl acetate, and ethyl hexanoate were produced, imparting rose, cream, and fruit flavors to wine. The key microorganisms involved in the spontaneous fermentation of Marselan wine include Saccharomyces, Starmerella, Pichia, Pseudomonas, Sphingomonas, and Aspergillus. These microorganisms contributed substantially to the main physicochemical indices and flavor profiles. Saccharomyces and Pichia enhanced the formation of most alcohols and esters, whereas Aspergillus, Acremonium, and Fusarium inhibited the synthesis of numerous volatile compounds. These findings provide valuable theoretical references for improving the quality of Marselan wines in Xinjiang.
Collapse
Affiliation(s)
- Qingquan Fu
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Fangfang Wang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Tiantian Tang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Zimen Liu
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Lilin Wang
- Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, College of Food Science and Engineering, Tarim University, Alar 843300, China;
| | - Qingling Wang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Xuewei Shi
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Bin Wang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
4
|
Lukacs M, Vitalis F, Bardos A, Tormási J, Bec KB, Grabska J, Gillay Z, Tömösközi-Farkas RA, Abrankó L, Albanese D, Malvano F, Huck CW, Kovacs Z. Comparison of Multiple NIR Instruments for the Quantitative Evaluation of Grape Seed and Other Polyphenolic Extracts with High Chemical Similarities. Foods 2024; 13:4164. [PMID: 39767106 PMCID: PMC11675291 DOI: 10.3390/foods13244164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Grape seed extract (GSE), one of the world's bestselling dietary supplements, is prone to frequent adulteration with chemically similar compounds. These frauds can go unnoticed within the supply chain due to the use of unspecific standard analytical methods for quality control. This research aims to develop a near-infrared spectroscopy (NIRS) method for the rapid and non-destructive quantitative evaluation of GSE powder in the presence of multiple additives. Samples were prepared by mixing GSE with pine bark extract (PBE) and green tea extract (GTE) on different levels between 0.5 and 13% in singular and dual combinations. Measurements were performed with a desktop and three different handheld devices for performance comparison. Following spectral pretreatment, partial least squares regression (PLSR) and support vector regression (SVR)-based quantitative models were built to predict extract concentrations and various chemical parameters. Cross- and external-validated models could reach a minimum R2p value of 0.99 and maximum RMSEP of 0.27% for the prediction of extract concentrations using benchtop data, while models based on handheld data could reach comparably good results, especially for GTE, caffeic acid and procyanidin content prediction. This research shows the potential applicability of NIRS coupled with chemometrics as an alternate, rapid and accurate quality evaluation tool for GSE-based supplement mixtures.
Collapse
Affiliation(s)
- Matyas Lukacs
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.L.); (F.V.); (A.B.); (Z.G.)
| | - Flora Vitalis
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.L.); (F.V.); (A.B.); (Z.G.)
| | - Adrienn Bardos
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.L.); (F.V.); (A.B.); (Z.G.)
| | - Judit Tormási
- Department of Food Chemistry and Analytics, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (J.T.); (R.A.T.-F.); (L.A.)
| | - Krzysztof B. Bec
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold Franzens University, Innrain 80/82, 6020 Innsbruck, Austria; (K.B.B.); (J.G.); (C.W.H.)
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold Franzens University, Innrain 80/82, 6020 Innsbruck, Austria; (K.B.B.); (J.G.); (C.W.H.)
| | - Zoltan Gillay
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.L.); (F.V.); (A.B.); (Z.G.)
| | - Rita A. Tömösközi-Farkas
- Department of Food Chemistry and Analytics, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (J.T.); (R.A.T.-F.); (L.A.)
| | - László Abrankó
- Department of Food Chemistry and Analytics, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (J.T.); (R.A.T.-F.); (L.A.)
| | - Donatella Albanese
- Department of Industrial Engineering, University of Salerno, 84084 Salerno, Italy; (D.A.); (F.M.)
| | - Francesca Malvano
- Department of Industrial Engineering, University of Salerno, 84084 Salerno, Italy; (D.A.); (F.M.)
| | - Christian W. Huck
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold Franzens University, Innrain 80/82, 6020 Innsbruck, Austria; (K.B.B.); (J.G.); (C.W.H.)
| | - Zoltan Kovacs
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.L.); (F.V.); (A.B.); (Z.G.)
| |
Collapse
|
5
|
Fratter A, Cignarella A, Ramaschi GE, Papetti A, Pellicorio V, Milanese C, Casettari L, Bolego C. A novel sodium caseinate lipid-based auto-emulsifying delivery system to increase resveratrol intestinal permeation: Characterization and in vitro assessment. Eur J Pharm Sci 2024; 203:106912. [PMID: 39303769 DOI: 10.1016/j.ejps.2024.106912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
In recent years, nutraceuticals have emerged as a promising strategy for maintaining health and represent a high-growth market in Italy and across Europe. However, the lack of strict regulations regarding formulation requirements and proof of efficacy raises serious concerns about their poor bioavailability and, consequently, their uncertain health benefits. An emblematic example is t-resveratrol (RES), a cardioprotective stilbene polyphenol that undergoes extensive metabolism in the intestine and liver, resulting in a bioavailability of <1 %. This manuscript describes a novel technological matrix developed with the primary goal of improving RES oral bioavailability. This technology can be classified as a lipid-based autoemulsifying drug delivery system (LIBADDS), in which RES is thoroughly solubilized in a hot liquid phase composed of lipids and surfactants, and the mixture is further adsorbed onto a powder composed of polysaccharides and sodium caseinate (NaC), along with inert excipients, and then compressed. In this study, NaC was used for the first time to trigger pancreatin-mediated hydrolysis of an enteric-coated tablet, allowing micellar delivery of RES to the small intestine. The RES-containing tablets were characterized via differential scanning calorimetry (DSC) and X-ray diffraction (PXRD). The digested formulation, with simulated gastric and enteric fluids, was dimensionally assessed via dynamic light scattering (DLS). Finally, calculations of the bioaccessible fraction, dissolution tests, and in vitro permeability experiments using Caco-2 cell monolayers were carried out to preliminarily define the overall efficiency and applicability of this new technology in improving RES intestinal permeability.
Collapse
Affiliation(s)
- Andrea Fratter
- Department of Pharmaceutical and Pharmacological Sciences (DSFarm), University of Padova, Italy; Italian Society of Nutraceutical Formulators (SIFNut), Italy.
| | - Andrea Cignarella
- Department of Medicine, University of Padova, Italy; Italian Society of Nutraceutical Formulators (SIFNut), Italy
| | | | - Adele Papetti
- Department of Drug Sciences, University of Pavia, Italy; Italian Society of Nutraceutical Formulators (SIFNut), Italy
| | | | - Chiara Milanese
- Department of Chemistry, Physical Chemistry Section, University of Pavia and C.S.G.I., Italy
| | - Luca Casettari
- Department of Biomolecular Sciences (DISB), School of Pharmacy, University of Urbino, Italy; Italian Society of Nutraceutical Formulators (SIFNut), Italy
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences (DSFarm), University of Padova, Italy
| |
Collapse
|
6
|
Otun S, Achilonu I, Odero-Marah V. Unveiling the potential of Muscadine grape Skin extract as an innovative therapeutic intervention in cancer treatment. J Funct Foods 2024; 116:106146. [PMID: 38817632 PMCID: PMC11139022 DOI: 10.1016/j.jff.2024.106146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
The use of muscadine grape extracts (MGSE). in cancer treatment has gained attention due to its distinctive composition of polyphenols and antioxidants. This review analyses the reported anti-cancer properties of MGSE. The study commences by reviewing the phytochemical composition of MGSE, highlighting the presence of resveratrol and ellagic acid. Furthermore, the review underscores the mechanism of action of these active compounds in MGSE in combating cancer cells. The anti-cancer potential of MGSE compared to other plant extracts is also discussed. In addition, it highlights MGSE's superiority and distinct phytochemical composition in preventing cancer growth by comparing its anti-cancer compounds with those of other anti-cancer medicinal plants. Lastly, the combinatory approaches of MGSE with traditional cancer therapies, its safety, and its possible side effects were highlighted. This work provides an understanding of the anti-cancer properties of MGSE, positioning it as a valuable and unique challenge within the field of cancer therapy.
Collapse
Affiliation(s)
- Sarah Otun
- School of Molecular and Cell Biology, Faculty of Science, Protein Structure-Function and Research Unit, University of the Witwatersrand, Braamfontein, Johannesburg, South Africa
| | - Ikechukwu Achilonu
- School of Molecular and Cell Biology, Faculty of Science, Protein Structure-Function and Research Unit, University of the Witwatersrand, Braamfontein, Johannesburg, South Africa
| | - Valerie Odero-Marah
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore MD 21251, United States
| |
Collapse
|
7
|
Ding W, Yang X, Lai K, Jiang Y, Liu Y. The potential of therapeutic strategies targeting mitochondrial biogenesis for the treatment of insulin resistance and type 2 diabetes mellitus. Arch Pharm Res 2024; 47:219-248. [PMID: 38485900 DOI: 10.1007/s12272-024-01490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/07/2024] [Indexed: 04/07/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a persistent metabolic disorder marked by deficiencies in insulin secretion and/or function, affecting various tissues and organs and leading to numerous complications. Mitochondrial biogenesis, the process by which cells generate new mitochondria utilizing existing ones plays a crucial role in energy homeostasis, glucose metabolism, and lipid handling. Recent evidence suggests that promoting mitochondrial biogenesis can alleviate insulin resistance in the liver, adipose tissue, and skeletal muscle while improving pancreatic β-cell function. Moreover, enhanced mitochondrial biogenesis has been shown to ameliorate T2DM symptoms and may contribute to therapeutic effects for the treatment of diabetic nephropathy, cardiomyopathy, retinopathy, and neuropathy. This review summarizes the intricate connection between mitochondrial biogenesis and T2DM, highlighting the potential of novel therapeutic strategies targeting mitochondrial biogenesis for T2DM treatment and its associated complications. It also discusses several natural products that exhibit beneficial effects on T2DM by promoting mitochondrial biogenesis.
Collapse
Affiliation(s)
- Wenwen Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoxue Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Kaiyi Lai
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
8
|
Alhusaini AM, Alshehri SM, Sarawi WS, Alghibiwi HK, Alturaif SA, Al khbiah RA, Alali SM, Alsaif SM, Alsultan EN, Hasan IH. Implication of MAPK, Lipocalin-2, and Fas in the protective action of liposomal resveratrol against isoproterenol-induced kidney injury. Saudi Pharm J 2024; 32:101907. [PMID: 38178854 PMCID: PMC10764257 DOI: 10.1016/j.jsps.2023.101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Background and Objective Isoproterenol (ISO) is a non-selective β-adrenergic receptor agonist. It can be used to treat bradycardia and cardiogenic shock. Despite its usefulness, the overstimulation of β-receptors by ISO can cause "cardiorenal syndrome," a term used to describe heart and kidney damage. Resveratrol (RES), a natural polyphenol, has marked anti-inflammatory and antioxidant activities. The present work was designed to study the protective efficacy of liposomal resveratrol (L-RES) against ISO-induced kidney injury. Materials and Methods The kidney injury was induced in rats by administering ISO (50 mg/kg, s.c.) twice a week for 2 weeks. RES and L-RES were administered at a dose (20 mg/kg/ day, p.o.) along with ISO for 2 weeks. Inflammatory and apoptotic biomarkers were analyzed, which were validated using histochemical analysis. Results ISO caused renal dysfunction, which manifested as elevated urea, creatinine and uric acid, besides cystatin c and MAPK protein overexpression. In addition, ISO induced gene expression of Fas and lipocalin-2 and provoked genomic DNA fragmentation in renal tissues as compared with the control group. Histological examination confirmed morphological alterations of the kidney tissues obtained from the ISO group. Concurrent treatment of either RES or L-RES with ISO significantly ameliorated kidney damage as demonstrated by the improvement of all measured parameters with the best results for L-RES. The histopathological findings were correlated with the above biochemical parameters. Conclusion L-RES could be a promising approach for the prevention of kidney injury induced by ISO, most likely via the downregulation of MAPK, cystatin c, Fas, and lipocalin-2.
Collapse
Affiliation(s)
- Ahlam M. Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Samiyah M. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Wedad S. Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Hanan K. Alghibiwi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Sumayya A. Alturaif
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Reema A. Al khbiah
- Pharm D Program, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Shog M. Alali
- Pharm D Program, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Shaikha M. Alsaif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Ebtesam N. Alsultan
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Iman H. Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
9
|
Abstract
Unlike genetic changes, epigenetics modulates gene expression without stable modification of the genome. Even though all cells, including sperm and egg, have an epigenome pattern, most of these modifications occur during lifetime and interestingly, some of them, are reversible. Lifestyle and especially nutrients as well as diet regimens are presently gaining importance due to their ability to affect the epigenome. On the other hand, since the epigenome profoundly affects gene expression profile it can be speculated that the epigenome could modulate individual response to nutrients. Recent years have thus seen growing interest on nutrients, macronutrients ratio and diet regimens capable to affect the epigenetic pattern. In fact, while genetic alterations are mostly detrimental at the individual level, reshaping the epigenome may be a feasible strategy to positively counteract the detrimental effect of aging. Here, I review nutrient consumption and diet regimens as a possible strategy to counteract aging-driven epigenome derangement.
Collapse
Affiliation(s)
- Mario G Mirisola
- STeBiCeF Department, Università di Palermo, Building 16, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
10
|
Wang Y, Sui Z, Wang M, Liu P. Natural products in attenuating renal inflammation via inhibiting the NLRP3 inflammasome in diabetic kidney disease. Front Immunol 2023; 14:1196016. [PMID: 37215100 PMCID: PMC10196020 DOI: 10.3389/fimmu.2023.1196016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent and severe complications of diabetes and serves as the primary cause of end-stage kidney disease (ESKD) globally. Increasing evidence indicates that renal inflammation is critical in the pathogenesis of DKD. The nucleotide - binding oligomerization domain (NOD) - like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most extensively researched inflammasome complex and is considered a crucial regulator in the pathogenesis of DKD. The activation of NLRP3 inflammasome is regulated by various signaling pathways, including NF- κB, thioredoxin-interacting protein (TXNIP), and non-coding RNAs (ncRNA), among others. Natural products are chemicals extracted from living organisms in nature, and they typically possess pharmacological and biological activities. They are invaluable sources for drug design and development. Research has demonstrated that many natural products can alleviate DKD by targeting the NLRP3 inflammasome. In this review, we highlight the role of the NLRP3 inflammasome in DKD, and the pathways by which natural products fight against DKD via inhibiting the NLRP3 inflammasome activation, so as to provide novel insights for the treatment of DKD.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Zhun Sui
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Mi Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Peng Liu
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| |
Collapse
|
11
|
El-Baky NA, Amara AAAF, Redwan EM. Nutraceutical and therapeutic importance of clots and their metabolites. NUTRACEUTICALS 2023:241-268. [DOI: 10.1016/b978-0-443-19193-0.00009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
12
|
Leng X, Miao W, Li J, Liu Y, Zhao W, Mu Q, Li Q. Physicochemical characteristics and biological activities of grape polysaccharides collected from different cultivars. Food Res Int 2023; 163:112161. [PMID: 36596110 DOI: 10.1016/j.foodres.2022.112161] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/29/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
In this study, four wine grape polysaccharides were extracted and optimized by using an efficient ultrasound-assisted extraction. A three-level, three-factor Box Behnken Design (BBD) combining with response surface methodology (RSM) was employed to optimize the extraction conditions including ultrasonic power, ultrasonic time and liquid-to-solid ratio. Furthermore, their physicochemical structures, antioxidant and liver protective activity were investigated and compared. Results revealed that the functional groups and monosaccharide compositions of these grape polysaccharides collected from different varieties were similar. Nevertheless, their molecular weights, molar ratios of monosaccharide compositions and surface morphological features were different. And the antioxidant activities of these polysaccharides were screened by free radical scavenging test. 'Beichun' (BC) and 'Benni fuji' (BF) polysaccharides possessed better antioxidant function. Further, the in vivo evaluation indicated that the polysaccharides of BC and BF have a protective effect against myocardial I/R injury in mice by inhibiting myocardial necroptosis mediated by mitochondrial ROS generation. Therefore, BC and BF grapes have potential applications in the medical and food industries.
Collapse
Affiliation(s)
- Xiangpeng Leng
- Institute of Grape Science and Engineering, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), MARA, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenjun Miao
- College of Chemical and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jizhen Li
- Institute of Grape Science and Engineering, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), MARA, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuanxia Liu
- Institute of Grape Science and Engineering, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenwen Zhao
- School of Basic Medical Sciences, Qingdao University, 308 Ningxiafrr Road, Qingdao, Shandong 266021, China
| | - Qian Mu
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250110, China
| | - Qiu Li
- College of Chemical and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
13
|
The modulation of sirtuins by natural compounds in the management of cisplatin-induced nephrotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 396:693-703. [PMID: 36454257 DOI: 10.1007/s00210-022-02353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022]
Abstract
Cisplatin is a highly effective antitumor agent. However, its use is limited due to severe adverse effects, particularly nephrotoxicity, which occurs in approximately 30% of patients. There is a need for novel renoprotective compounds. Sirtuins play a vital role in various physiological and pathological processes such as oxidative stress, apoptosis, inflammation, and mitochondrial bioenergetics. It has been shown that sirtuins can exert a protective effect on cisplatin-induced acute kidney injury by targeting multiple signaling pathways. Besides, sirtuins not only did not reduce the anticancer effect of cisplatin but also increased it. Several natural compounds have been reported to inhibit cisplatin-mediated nephrotoxicity through sirtuin stimulation. These compounds exert their therapeutic effects on cisplatin-induced renal injury by targeting various signaling pathways including Sirt1/p53, Sirt1/NF-κb/p56, AMPK/Sirt1, Sirt1/PGC-1α, and/or by enhancing mitochondrial function.
Collapse
|
14
|
NAUREEN ZAKIRA, MEDORI MARIACHIARA, DHULI KRISTJANA, DONATO KEVIN, CONNELLY STEPHENTHADDEUS, BELLINATO FRANCESCO, GISONDI PAOLO, BERTELLI MATTEO. Polyphenols and Lactobacillus reuteri in oral health. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E246-E254. [PMID: 36479495 PMCID: PMC9710395 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Oral health is one of the necessary preludes to the overall quality of life. Several medical procedures and therapies are available to treat oral diseases in general and periodontal diseases in particular, yet caries, periodontitis, oral cancer, and oral infections remain a global concern. Natural molecules, with their anti-oxidant, anti-inflammatory, and anti-microbic properties, are one of the main sources of oral health and dental health care, and should be supplemented to exploit their beneficial effects. A possible way to improve the intake of these molecules is adhering to a diet that is rich in fruits, vegetables, and probiotics, which has many beneficial properties and can improve overall health and wellbeing. The Mediterranean diet, in particular, provides several beneficial natural molecules, mainly because of the precious nutrients contained in its typical ingredients, mainly plant-based (olives, wine, citrus fruits, and many more). Its beneficial effects on several diseases and in increasing the overall wellbeing of the population are currently being studied by physicians. Among its nutrients, polyphenols (including, among other molecules, lignans, tannins, and flavonoids) seem to be of outmost importance: several studies showed their anticariogenic properties, as well as their effects in decreasing the incidence of non-communicable diseases. Therefore, plant-derived molecules - such as polyphenols - and probiotics - such as Lactobacillus reuteri - have shown a significant potential in treating and curing oral diseases, either alone or in combination, owing to their antioxidant and antimicrobial properties, respectively.
Collapse
Affiliation(s)
| | | | - KRISTJANA DHULI
- MAGI’S LAB, Rovereto (TN), Italy
- Correspondence: Kristjana Dhuli, MAGI’S LAB, Rovereto (TN), 38068, Italy; E-mail:
| | | | | | - FRANCESCO BELLINATO
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - PAOLO GISONDI
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - MATTEO BERTELLI
- MAGI Euregio, Bolzano, Italy
- MAGI’S LAB, Rovereto (TN), Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
15
|
Osakabe N, Fushimi T, Fujii Y. Hormetic response to B-type procyanidin ingestion involves stress-related neuromodulation via the gut-brain axis: Preclinical and clinical observations. Front Nutr 2022; 9:969823. [PMID: 36159457 PMCID: PMC9491694 DOI: 10.3389/fnut.2022.969823] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
B-type procyanidins, a series of catechin oligomers, are among the most ingested polyphenols in the human diet. Results of meta-analyses have suggested that intake of B-type procyanidins reduces cardiovascular disease risk. Another recent focus has been on the effects of B-type procyanidins on central nervous system (CNS) function. Although long-term B-type procyanidin ingestion is linked to health benefits, a single oral intake has been reported to cause physiological alterations in circulation, metabolism, and the CNS. Comprehensive analyses of previous reports indicate an optimal mid-range dose for the hemodynamic effects of B-type procyanidins, with null responses at lower or higher doses, suggesting hormesis. Indeed, polyphenols, including B-type procyanidins, elicit hormetic responses in vitro, but animal and clinical studies are limited. Hormesis of hemodynamic and metabolic responses to B-type procyanidins was recently confirmed in animal studies, however, and our work has linked these effects to the CNS. Here, we evaluate the hormetic response elicited by B-type procyanidins, recontextualizing the results of intervention trials. In addition, we discuss the possibility that this hormetic response to B-type procyanidins arises via CNS neurotransmitter receptors. We have verified the direction of future research for B-type procyanidins in this review.
Collapse
Affiliation(s)
- Naomi Osakabe
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
- Department of Bio-Science and Engineering, Shibaura Institute of Technology, Saitama, Japan
| | - Taiki Fushimi
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Yasuyuki Fujii
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| |
Collapse
|
16
|
Recent Developments in Surface-Enhanced Raman Spectroscopy and Its Application in Food Analysis: Alcoholic Beverages as an Example. Foods 2022; 11:foods11142165. [PMID: 35885407 PMCID: PMC9316878 DOI: 10.3390/foods11142165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) is an emerging technology that combines Raman spectroscopy and nanotechnology with great potential. This technology can accurately characterize molecular adsorption behavior and molecular structure. Moreover, it can provide rapid and sensitive detection of molecules and trace substances. In practical application, SERS has the advantages of portability, no need for sample pretreatment, rapid analysis, high sensitivity, and ‘fingerprint’ recognition. Thus, it has great potential in food safety detection. Alcoholic beverages have a long history of production in the world. Currently, a variety of popular products have been developed. With the continuous development of the alcoholic beverage industry, simple, on-site, and sensitive detection methods are necessary. In this paper, the basic principle, development history, and research progress of SERS are summarized. In view of the chemical composition, the beneficial and toxic components of alcoholic beverages and the practical application of SERS in alcoholic beverage analysis are reviewed. The feasibility and future development of SERS are also summarized and prospected. This review provides data and reference for the future development of SERS technology and its application in food analysis.
Collapse
|
17
|
Identification of Bioactive Pentacyclic Triterpenoids and Fatty Acid Derivatives from Cissus quadrangularis and C. rotundifolia Through Untargeted Metabolite Profiling. Appl Biochem Biotechnol 2022; 195:2235-2251. [PMID: 35511385 DOI: 10.1007/s12010-022-03940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/27/2022]
Abstract
Comparative metabolite profiling of crude extracts of leaf and stem of two medicinally important species of genus Cissus was performed. Gas Chromatography - Mass Spectrometry (GC-MS/MS) of methanoloic extracts of leaf and stem of Cissus rotundifolia revealed the presence of around 30 compounds, out of which 15 were identified through NIST14 library based on their mass spectral pattern. Some of the important metabolites included betulinaldehyde, methyl palmitate, β-amyrin acetate, 2-naphthol, 2-phenylethanol and myristic acid. Among these metabolites, betulinaldehyde was the most abundant compound with 36.44% relative abundance. In contrast, 36 compounds were detected in the aqueous and methanolic extracts of C. quadrangularis stem, out of which 21 compounds were identified through NIST14 library. Saturated fatty acids and ascorbic acid derivatives constitute the major fraction with 44.30% and 36.40% of the total peak area. In addition to these, coumaran, quinoline and trans-phytol were also identified in the extracts of C. quadrangularis. The comparative metabolite profiling showed higher percentage of betulinaldehyde (~ 36%) and lauric acid (19.42%) in C. rotundifolia while that of methyl palmitate (~ 0.76%) and coumaran (1.48%) in C. qudrangularis. Cissus species are medicinally known for their bone healing properties and the metabolic profiling of these herbs will further be utilised for identification and characterization of the novel bioactive compounds responsible for various medicinal properties.
Collapse
|
18
|
de Ligny W, Smits RM, Mackenzie-Proctor R, Jordan V, Fleischer K, de Bruin JP, Showell MG. Antioxidants for male subfertility. Cochrane Database Syst Rev 2022; 5:CD007411. [PMID: 35506389 PMCID: PMC9066298 DOI: 10.1002/14651858.cd007411.pub5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND The inability to have children affects 10% to 15% of couples worldwide. A male factor is estimated to account for up to half of the infertility cases with between 25% to 87% of male subfertility considered to be due to the effect of oxidative stress. Oral supplementation with antioxidants is thought to improve sperm quality by reducing oxidative damage. Antioxidants are widely available and inexpensive when compared to other fertility treatments, however most antioxidants are uncontrolled by regulation and the evidence for their effectiveness is uncertain. We compared the benefits and risks of different antioxidants used for male subfertility. OBJECTIVES To evaluate the effectiveness and safety of supplementary oral antioxidants in subfertile men. SEARCH METHODS The Cochrane Gynaecology and Fertility (CGF) Group trials register, CENTRAL, MEDLINE, Embase, PsycINFO, AMED, and two trial registers were searched on 15 February 2021, together with reference checking and contact with experts in the field to identify additional trials. SELECTION CRITERIA We included randomised controlled trials (RCTs) that compared any type, dose or combination of oral antioxidant supplement with placebo, no treatment, or treatment with another antioxidant, among subfertile men of a couple attending a reproductive clinic. We excluded studies comparing antioxidants with fertility drugs alone and studies that included men with idiopathic infertility and normal semen parameters or fertile men attending a fertility clinic because of female partner infertility. DATA COLLECTION AND ANALYSIS We used standard methodological procedures recommended by Cochrane. The primary review outcome was live birth. Clinical pregnancy, adverse events and sperm parameters were secondary outcomes. MAIN RESULTS We included 90 studies with a total population of 10,303 subfertile men, aged between 18 and 65 years, part of a couple who had been referred to a fertility clinic and some of whom were undergoing medically assisted reproduction (MAR). Investigators compared and combined 20 different oral antioxidants. The evidence was of 'low' to 'very low' certainty: the main limitation was that out of the 67 included studies in the meta-analysis only 20 studies reported clinical pregnancy, and of those 12 reported on live birth. The evidence is current up to February 2021. Live birth: antioxidants may lead to increased live birth rates (odds ratio (OR) 1.43, 95% confidence interval (CI) 1.07 to 1.91, P = 0.02, 12 RCTs, 1283 men, I2 = 44%, very low-certainty evidence). Results in the studies contributing to the analysis of live birth rate suggest that if the baseline chance of live birth following placebo or no treatment is assumed to be 16%, the chance following the use of antioxidants is estimated to be between 17% and 27%. However, this result was based on only 246 live births from 1283 couples in 12 small or medium-sized studies. When studies at high risk of bias were removed from the analysis, there was no evidence of increased live birth (Peto OR 1.22, 95% CI 0.85 to 1.75, 827 men, 8 RCTs, P = 0.27, I2 = 32%). Clinical pregnancy rate: antioxidants may lead to increased clinical pregnancy rates (OR 1.89, 95% CI 1.45 to 2.47, P < 0.00001, 20 RCTs, 1706 men, I2 = 3%, low-certainty evidence) compared with placebo or no treatment. This suggests that, in the studies contributing to the analysis of clinical pregnancy, if the baseline chance of clinical pregnancy following placebo or no treatment is assumed to be 15%, the chance following the use of antioxidants is estimated to be between 20% and 30%. This result was based on 327 clinical pregnancies from 1706 couples in 20 small studies. Adverse events Miscarriage: only six studies reported on this outcome and the event rate was very low. No evidence of a difference in miscarriage rate was found between the antioxidant and placebo or no treatment group (OR 1.46, 95% CI 0.75 to 2.83, P = 0.27, 6 RCTs, 664 men, I2 = 35%, very low-certainty evidence). The findings suggest that in a population of subfertile couples, with male factor infertility, with an expected miscarriage rate of 5%, the risk of miscarriage following the use of an antioxidant would be between 4% and 13%. Gastrointestinal: antioxidants may lead to an increase in mild gastrointestinal discomfort when compared with placebo or no treatment (OR 2.70, 95% CI 1.46 to 4.99, P = 0.002, 16 RCTs, 1355 men, I2 = 40%, low-certainty evidence). This suggests that if the chance of gastrointestinal discomfort following placebo or no treatment is assumed to be 2%, the chance following the use of antioxidants is estimated to be between 2% and 7%. However, this result was based on a low event rate of 46 out of 1355 men in 16 small or medium-sized studies, and the certainty of the evidence was rated low and heterogeneity was high. We were unable to draw conclusions from the antioxidant versus antioxidant comparison as insufficient studies compared the same interventions. AUTHORS' CONCLUSIONS In this review, there is very low-certainty evidence from 12 small or medium-sized randomised controlled trials suggesting that antioxidant supplementation in subfertile males may improve live birth rates for couples attending fertility clinics. Low-certainty evidence suggests that clinical pregnancy rates may increase. There is no evidence of increased risk of miscarriage, however antioxidants may give more mild gastrointestinal discomfort, based on very low-certainty evidence. Subfertile couples should be advised that overall, the current evidence is inconclusive based on serious risk of bias due to poor reporting of methods of randomisation, failure to report on the clinical outcomes live birth rate and clinical pregnancy, often unclear or even high attrition, and also imprecision due to often low event rates and small overall sample sizes. Further large well-designed randomised placebo-controlled trials studying infertile men and reporting on pregnancy and live births are still required to clarify the exact role of antioxidants.
Collapse
Affiliation(s)
- Wiep de Ligny
- Department of Gynaecology and Obstetrics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Roos M Smits
- Department of Gynaecology and Obstetrics, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Vanessa Jordan
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Kathrin Fleischer
- Department of Gynaecology and Obstetrics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jan Peter de Bruin
- Department of Obstetrics and Gynaecology, Jeroen Bosch Hospital, 's-Hertogenbosch, Netherlands
| | - Marian G Showell
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
The Effect of Irrigation-Initiation Timing on the Phenolic Composition and Overall Quality of Cabernet Sauvignon Wines Grown in a Semi-Arid Climate. Foods 2022; 11:foods11050770. [PMID: 35267402 PMCID: PMC8908997 DOI: 10.3390/foods11050770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
In semi-arid areas, vineyards grown for winemaking are usually mildly irrigated by drip irrigation systems in a manner maintaining drought stress. This practice ensures the proper development of vegetative and reproductive organs on the one hand, and on the other, the development of high-quality grapes which can be hampered by overly abundant water application. In previous work, we have developed and demonstrated an irrigation model suitable for high-quality grape production in semi-arid areas. Here, we tackle the question of proper irrigation initiation dates—should one wait for vines to develop drought stress before the initiation of irrigation, or rather commence irrigation earlier? Our results show that vines which undergo initial irrigation late in the growing season tend to develop a lower midday stem water potential even after irrigation initiation. In addition, these vines tend to produce a lower number of bunches per vine and smaller berry size, leading to lower yields. The wine produced from the late-irrigated treatments had a higher phenolic content, primarily due to higher levels of catechin and epicatechin. Their levels increased as irrigation initiation dates were delayed, while caffeic acid levels showed an opposite trend. Late irrigation also led to higher color intensities compared to those of irrigation at earlier stages, due to higher levels of most anthocyanins. Finally, we show that the overall wine sensory score, representing its overall quality, was approximately five points higher for wines made from delayed irrigation treatments compared to wines made from early season irrigation treatments.
Collapse
|
20
|
Fujii Y, Sakata J, Sato F, Onishi K, Yamato Y, Sakata K, Taira S, Sato H, Osakabe N. Impact of short-term oral dose of cinnamtannin A2, an (-)-epicatechin tetramer, on spatial memory and adult hippocampal neurogenesis in mouse. Biochem Biophys Res Commun 2021; 585:1-7. [PMID: 34781055 DOI: 10.1016/j.bbrc.2021.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Recent epidemiological and intervention studies have suggested that polyphenol-rich plant food consumption reduced the risk of cognitive decline. However, the findings were tentative and by no means definitive. In the present study, we examined the impact of short-term oral administration of cinnamtannin A2 (A2), an (-)-epicatechin tetramer, on adult hippocampal neurogenesis and cognitive function in mice. Mice received supplementation with vehicle (20% glycerol) or 100 μg/kg A2 for 10 days. Then, we conducted the open field test, the object location test, and the novel object test. In the open field test, the A2-treated group tended to spend more time in the center of the arena, compared to the vehicle-treated group. The A2-treated group spent significantly more time exploring objects placed in different locations, compared to the vehicle-treated group. There were no significant differences between groups in the object preference index or in the novel object test. In addition, A2 administration significantly increased the number of hippocampal bromodeoxyuridine-labeled cells in the dentate gyrus, but not in the CA1 or CA3 regions. These results suggested that short-term administration of A2 may impact spatial memory by enhancing neurogenesis in the dentate gyrus of adult mice.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Jun Sakata
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Fumitaka Sato
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Kurumi Onishi
- Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Yuki Yamato
- Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Kazuki Sakata
- Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Shu Taira
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, 960-1248, Japan
| | - Hiroki Sato
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan; Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Naomi Osakabe
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan; Department of Bio-science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan.
| |
Collapse
|
21
|
Repeated Oral Administration of Flavan-3-ols Induces Browning in Mice Adipose Tissues through Sympathetic Nerve Activation. Nutrients 2021; 13:nu13124214. [PMID: 34959764 PMCID: PMC8707158 DOI: 10.3390/nu13124214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
We previously found increases in uncoupling protein (Ucp)-1 transcription in brown adipose tissue (BAT) of mice following a single oral dose of flavan 3-ol (FL)s, a fraction of catechins and procyanidins. It was confirmed that these changes were totally reduced by co-treatment of adrenaline blockers. According to these previous results, FLs possibly activate sympathetic nervous system (SNS). In this study, we confirmed the marked increase in urinary catecholamine (CA) s projecting SNS activity following a single dose of 50 mg/kg FLs. In addition, we examined the impact of the repeated administration of 50 mg/kg FLs for 14 days on adipose tissues in mice. In BAT, FLs tended to increase the level of Ucp-1 along with significant increase of thermogenic transcriptome factors expressions, such as peroxisome proliferator-activated receptor γ coactivator (PGC)-1α and PR domain-containing (PRDM)1. Expression of browning markers, CD137 and transmembrane protein (TMEM) 26, in addition to PGC-1α were increased in epididymal adipose (eWAT) by FLs. A multilocular morphology with cell size reduction was shown in the inguinal adipose (iWAT), together with increasing the level of Ucp-1 by FLs. These results exert that FLs induce browning in adipose, and this change is possibly produced by the activation of the SNS.
Collapse
|
22
|
Sarkaki A, Rashidi M, Ranjbaran M, Asareh Zadegan Dezfuli A, Shabaninejad Z, Behzad E, Adelipour M. Therapeutic Effects of Resveratrol on Ischemia-Reperfusion Injury in the Nervous System. Neurochem Res 2021; 46:3085-3102. [PMID: 34365594 DOI: 10.1007/s11064-021-03412-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 01/07/2023]
Abstract
Resveratrol is a phenol compound produced by some plants in response to pathogens, infection, or physical injury. It is well-known that resveratrol has antioxidant and protective roles in damages potentially caused by cancer or other serious disorders. Thus, it is considered as a candidate agent for the prevention and treatment of human diseases. Evidence has confirmed other bioactive impacts of resveratrol, including cardioprotective, anti-tumorigenic, anti-inflammatory, phytoestrogenic, and neuroprotective effects. Ischemia-reperfusion (IR) can result in various disorders, comprising myocardial infarction, stroke, and peripheral vascular disease, which may continue to induce debilitating conditions and even mortality. In virtue of chronic ischemia or hypoxia, cells switch to anaerobic metabolism, giving rise to some dysfunctions in mitochondria. As the result of lactate accumulation, adenosine triphosphate levels and pH decline in cells. This condition leads cells to apoptosis, necrosis, and autophagy. However, restoring oxygen level upon reperfusion after ischemia by producing reactive oxygen species is an outcome of mitochondrial dysfunction. Considering the neuroprotective effect of resveratrol and neuronal injury that comes from IR, we focused on the mechanism(s) involved in IR injury in the nervous system and also on the functions of resveratrol in the protection, inhibition, and treatment of this injury.
Collapse
Affiliation(s)
- Alireza Sarkaki
- Department of Physiology, School of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rashidi
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mina Ranjbaran
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aram Asareh Zadegan Dezfuli
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Shabaninejad
- Department of Nanotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ebrahim Behzad
- Neurology Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Adelipour
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
23
|
Volumetric and Acoustic Properties of Trans-Resveratrol in Ethanol. J SOLUTION CHEM 2021. [DOI: 10.1007/s10953-021-01103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Mahendran R, Lim SK, Ong KC, Chua KH, Chai HC. Natural-derived compounds and their mechanisms in potential autosomal dominant polycystic kidney disease (ADPKD) treatment. Clin Exp Nephrol 2021; 25:1163-1172. [PMID: 34254206 DOI: 10.1007/s10157-021-02111-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/06/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic kidney disorder that impairs renal functions progressively leading to kidney failure. The disease affects between 1:400 and 1:1000 ratio of the people worldwide. It is caused by the mutated PKD1 and PKD2 genes which encode for the defective polycystins. Polycystins mimic the receptor protein or protein channel and mediate aberrant cell signaling that causes cystic development in the renal parenchyma. The cystic development is driven by the increased cyclic AMP stimulating fluid secretion and infinite cell growth. In recent years, natural product-derived small molecules or drugs targeting specific signaling pathways have caught attention in the drug discovery discipline. The advantages of natural products over synthetic drugs enthusiast researchers to utilize the medicinal benefits in various diseases including ADPKD. CONCLUSION Overall, this review discusses some of the previously studied and reported natural products and their mechanisms of action which may potentially be redirected into ADPKD.
Collapse
Affiliation(s)
- Rhubaniya Mahendran
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Soo Kun Lim
- Renal Division, Department of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hwa Chia Chai
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
25
|
Menezes-Rodrigues FS, Errante PR, Araújo EA, Fernandes MPP, Silva MMD, Pires-Oliveira M, Scorza CA, Scorza FA, Taha MO, Caricati-Neto A. Cardioprotection stimulated by resveratrol and grape products prevents lethal cardiac arrhythmias in an animal model of ischemia and reperfusion. Acta Cir Bras 2021; 36:e360306. [PMID: 33978062 PMCID: PMC8112107 DOI: 10.1590/acb360306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/07/2021] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To evaluate the preventive cardioprotective effects of resveratrol and grape products, such as grape juice and red wine, in animal model of cardiac ischemia and reperfusion. METHODS Male Wistar rats orally pretreated for 21-days with resveratrol and grape products were anesthetized and placed on mechanical ventilation to surgically induce cardiac ischemia and reperfusion by obstruction (ischemia) followed by liberation (reperfusion) of blood circulation in left descending coronary artery. These rats were submitted to the electrocardiogram (ECG) analysis to evaluate the effects of pretreatment with resveratrol and grape products on the incidence of ventricular arrhythmias (VA), atrioventricular block (AVB) and lethality (LET) resulting from cardiac ischemia and reperfusion. RESULTS It was observed that the incidence of AVB was significantly lower in rats pretreated with resveratrol (25%), grape juice (37.5%) or red wine (12.5%) than in rats treated with saline solution (80%) or ethanol (80%). Similarly, incidence of LET was also significantly lower in rats pretreated with resveratrol (25%), grape juice (25%) or red wine (0%) than in rats treated with saline solution (62.5%) or ethanol (75%). CONCLUSIONS These results indicate that the cardioprotective response stimulated by resveratrol and grape products prevents the lethal cardiac arrhythmias in animal model of ischemia and reperfusion, supporting the idea that this treatment can be beneficial for prevention of severe cardiac arrhythmias in patients with ischemic heart disease.
Collapse
|
26
|
Bostancıeri N, Elbe H, Eşrefoğlu M, Vardı N. Cardioprotective potential of melatonin, quercetin and resveratrol in an experimental model of diabetes. Biotech Histochem 2021; 97:152-157. [PMID: 33906539 DOI: 10.1080/10520295.2021.1918766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Oxygen radicals participate in the pathogenesis of heart damage. Diabetes accelerates the formation of reactive oxygen species (ROS). We investigated the effects of the antioxidants, melatonin, quercetin and resveratrol, on cardiomyopathy and apoptosis in rats with streptozotocin (STZ) induced diabetes mellitus (DM). Rats were divided into five groups of seven: control, DM, DM + melatonin, DM + quercetin and DM + resveratrol. All treatments were begun with a single dose of STZ to induce diabetes and experimental treatments were continued daily for 30 days. Morphologic and apoptotic changes were analyzed by histological assessment. The heart tissue of the control group exhibited normal histology, whereas the heart tissue of the DM group exhibited vacuolization, necrosis, congestion, infiltration and myofibril loss. The DM group exhibited significantly increased apoptosis compared to the control group. Differences in anti-apoptotic effects were statistically significant for all three antioxidant treatment groups; the anti-apoptotic effects of quercetin and resveratrol were similar. Melatonin, resveratrol and quercetin exhibited protective effects against diabetic heart damage.
Collapse
Affiliation(s)
- N Bostancıeri
- Department of Histology and Embryology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - H Elbe
- Department of Histology and Embryology, Faculty of Medicine, Sıtkı Koçman University, Muğla, Turkey
| | - M Eşrefoğlu
- Department of Histology and Embryology, Faculty of Medicine, Bezmiâlem University, İstanbul, Turkey
| | - N Vardı
- Department of Histology and Embryology, Faculty of Medicine, Inönü University, Malatya, Turkey
| |
Collapse
|
27
|
Carresi C, Scicchitano M, Scarano F, Macrì R, Bosco F, Nucera S, Ruga S, Zito MC, Mollace R, Guarnieri L, Coppoletta AR, Gliozzi M, Musolino V, Maiuolo J, Palma E, Mollace V. The Potential Properties of Natural Compounds in Cardiac Stem Cell Activation: Their Role in Myocardial Regeneration. Nutrients 2021; 13:275. [PMID: 33477916 PMCID: PMC7833367 DOI: 10.3390/nu13010275] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs), which include congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, and many other cardiac disorders, cause about 30% of deaths globally; representing one of the main health problems worldwide. Among CVDs, ischemic heart diseases (IHDs) are one of the major causes of morbidity and mortality in the world. The onset of IHDs is essentially due to an unbalance between the metabolic demands of the myocardium and its supply of oxygen and nutrients, coupled with a low regenerative capacity of the heart, which leads to great cardiomyocyte (CM) loss; promoting heart failure (HF) and myocardial infarction (MI). To date, the first strategy recommended to avoid IHDs is prevention in order to reduce the underlying risk factors. In the management of IHDs, traditional therapeutic options are widely used to improve symptoms, attenuate adverse cardiac remodeling, and reduce early mortality rate. However, there are no available treatments that aim to improve cardiac performance by replacing the irreversible damaged cardiomyocytes (CMs). Currently, heart transplantation is the only treatment being carried out for irreversibly damaged CMs. Hence, the discovery of new therapeutic options seems to be necessary. Interestingly, recent experimental evidence suggests that regenerative stem cell medicine could be a useful therapeutic approach to counteract cardiac damage and promote tissue regeneration. To this end, researchers are tasked with answering one main question: how can myocardial regeneration be stimulated? In this regard, natural compounds from plant extracts seem to play a particularly promising role. The present review will summarize the recent advances in our knowledge of stem cell therapy in the management of CVDs; focusing on the main properties and potential mechanisms of natural compounds in stimulating and activating stem cells for myocardial regeneration.
Collapse
Affiliation(s)
- Cristina Carresi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Federica Scarano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Roberta Macrì
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Francesca Bosco
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Saverio Nucera
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Stefano Ruga
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Rocco Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Anna Rita Coppoletta
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Ernesto Palma
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| |
Collapse
|
28
|
Delpino FM, Figueiredo LM, Caputo EL, Mintem GC, Gigante DP. What is the effect of resveratrol on obesity? A systematic review and meta-analysis. Clin Nutr ESPEN 2020; 41:59-67. [PMID: 33487308 DOI: 10.1016/j.clnesp.2020.11.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/21/2020] [Accepted: 11/28/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Obesity is increasing worldwide. Resveratrol appears as a substance capable of helping with weight loss. This study aimed to investigate the resveratrol effect in the treatment of obesity in general population. METHODS An online search was conducted in the following databases: Pubmed, LILACS, Scielo, Scopus and Web of Science. Experimental studies that investigated the effects between resveratrol supplementation for weight loss treatment, as well as its relationship with overweight and obesity were included. Observational and non-human studies were excluded. The Cochrane scale was used to assess the quality of the studies. RESULTS Nineteen studies were included, of which only three demonstrated some type of positive effect. In the meta-analysis, there was no significant effect on weight loss [SMD: 0.03; CI95%: -0,44, 0,49; p = 0,01; I2 = 82%], and body mass index (BMI) [SMD: 0.01; CI95%: -0,39, 0,41; p = 0,01; I2 = 72%]. A small effect was found on the waist circumference [SMD: -1.04; CI95%: -1,86, -0,27; p = 0,01; I2 = 87%]. CONCLUSION This systematic review with meta-analysis demonstrated that supplementation with resveratrol does not have an anti-obesity effect.
Collapse
Affiliation(s)
- Felipe Mendes Delpino
- Department of Nursing in Public Health, Federal University of Pelotas, Rio Grande do Sul, Brazil.
| | | | - Eduardo L Caputo
- Postgraduate Program in Physical Education, Federal University of Pelotas. Pelotas, Brazil
| | - Gicele Costa Mintem
- Postgraduate Program in Nutrition and Food, Faculty of Nutrition, Federal University of Pelotas. Pelotas, Brazil
| | - Denise Petrucci Gigante
- Postgraduate Program in Nutrition and Food, Faculty of Nutrition, Federal University of Pelotas. Pelotas, Brazil
| |
Collapse
|
29
|
Manessis G, Kalogianni AI, Lazou T, Moschovas M, Bossis I, Gelasakis AI. Plant-Derived Natural Antioxidants in Meat and Meat Products. Antioxidants (Basel) 2020; 9:E1215. [PMID: 33276503 PMCID: PMC7761563 DOI: 10.3390/antiox9121215] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/21/2020] [Accepted: 11/29/2020] [Indexed: 01/19/2023] Open
Abstract
The global meat industry is constantly evolving due to changes in consumer preferences, concerns and lifestyles, as well as monetary, geographical, political, cultural and religious factors. Part of this evolution is the introduction of synthetic antioxidants to increase meat and meat products' shelf-life, and reduce meat spoilage due to lipid and protein oxidation. The public perception that natural compounds are safer and healthier per se has motivated the meat industry to replace synthetic antioxidants with plant-derived ones in meat systems. Despite several promising results from in vitro and in situ studies, the effectiveness of plant-derived antioxidants against lipid and protein oxidation has not been fully documented. Moreover, the utility, usability, marketability and potential health benefits of natural antioxidants are not yet fully proven. The present review aims to (i) describe the major chemical groups of plant-derived antioxidants and their courses of action; (ii) present the application of spices, herbs and fruits as antioxidants in meat systems; and (iii) discuss the legislative framework, future trends, challenges and limitations that are expected to shape their acceptance and mass exploitation by the meat industry.
Collapse
Affiliation(s)
- Georgios Manessis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece; (G.M.); (A.I.K.); (M.M.)
| | - Aphrodite I. Kalogianni
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece; (G.M.); (A.I.K.); (M.M.)
| | - Thomai Lazou
- Laboratory of Hygiene of Foods of Animal Origin-Veterinary Public Health, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Marios Moschovas
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece; (G.M.); (A.I.K.); (M.M.)
| | - Ioannis Bossis
- Laboratory of Animal Husbandry, Department of Animal Production, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece; (G.M.); (A.I.K.); (M.M.)
| |
Collapse
|
30
|
Oktyabrsky ON, Bezmaternykh KV, Smirnova GV, Tyulenev AV. Effect of resveratrol and quercetin on the susceptibility of Escherichia coli to antibiotics. World J Microbiol Biotechnol 2020; 36:167. [PMID: 33025172 DOI: 10.1007/s11274-020-02934-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/15/2020] [Indexed: 11/25/2022]
Abstract
Activities of plant polyphenols (PPs), resveratrol and quercetin, alone or in combination with four conventional antibiotics against Escherichia coli have been investigated. In medium without antibiotics, both polyphenols caused a dose-dependent growth inhibition. However, pretreatment with resveratrol (40 and 100 μg ml-1) and quercetin (40 μg ml-1) reduced the bacteriostatic effect of kanamycin, streptomycin, cefotaxime and partially of ciprofloxacin. With few exceptions, both PPs also reduced the bactericidal effect of tested antibiotics. Paradoxically, low doses of PPs enhanced the bactericidal effect of kanamycin and partially ciprofloxacin. Compared to quercetin, resveratrol showed a weaker effect on the induction of antioxidant genes and the resistance of E. coli to the oxidative stress generated by hydrogen peroxide treatment. Both polyphenols at high doses reduced membrane potential. Altogether, these findings suggest that the decrease in the bactericidal effect of antibiotics by high doses of polyphenols is mostly due to bacteriostatic action of the latter. In the case of quercetin, the contribution of its antioxidant activity for antibiotic protection may be significant. There is a growing interest in the use of plant-derived compounds to enhance the toxicity of traditional antibiotics. This and other studies show that, under certain conditions, the use of polyphenols as adjuvants may not exert the expected therapeutic effect, but rather to decrease antimicrobial activity of antibiotics.
Collapse
Affiliation(s)
- Oleg N Oktyabrsky
- Laboratory of Physiology and Genetics of Microorganisms, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Golev 13, 614081, Perm, Russia.
| | - Ksenia V Bezmaternykh
- Laboratory of Physiology and Genetics of Microorganisms, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Golev 13, 614081, Perm, Russia
| | - Galina V Smirnova
- Laboratory of Physiology and Genetics of Microorganisms, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Golev 13, 614081, Perm, Russia
| | - Alexey V Tyulenev
- Laboratory of Physiology and Genetics of Microorganisms, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Golev 13, 614081, Perm, Russia
| |
Collapse
|
31
|
Manca ML, Casula E, Marongiu F, Bacchetta G, Sarais G, Zaru M, Escribano-Ferrer E, Peris JE, Usach I, Fais S, Scano A, Orrù G, Maroun RG, Fadda AM, Manconi M. From waste to health: sustainable exploitation of grape pomace seed extract to manufacture antioxidant, regenerative and prebiotic nanovesicles within circular economy. Sci Rep 2020; 10:14184. [PMID: 32843707 PMCID: PMC7447760 DOI: 10.1038/s41598-020-71191-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023] Open
Abstract
Pomace seed extract loaded vesicles were prepared as promising technological and green solution to exploit agri-food wastes and by-products, and develop high value-added products for human health. An antioxidant extract rich in bioactive compounds (epicatechins, catechin, gallic acid, quercetin and procynidins) was obtained from the seeds isolated from the pomace of Cannonau red grape cultivar. The extract was incorporated into phospholipid vesicles ad hoc formulated for intestinal delivery, by combining them, for the first time, whit a maltodextrin (Glucidex). Glucidex-transfersomes, glucidex-hyalurosomes and glucidex-hyalutransferomes were prepared, characterized and tested. Glucidex-liposomes were used as reference. All vesicles were small in size (~ 150 nm), homogeneously dispersed and negatively charged. Glucidex-transfersomes and especially glucidex-hyalutransfersomes disclosed an unexpected resistance to acidic pH and high ionic strength, as they maintained their physico-chemical properties (size and size distribution) after dilution at pH 1.2 simulating the harsh gastric conditions. Vesicles were highly biocompatible and able to counteract the oxidative damages induced in Caco-2 cells by using hydrogen peroxide. Moreover, they promoted the formation of Lactobacillus reuteri biofilm acting as prebiotic formulation. Overall results suggest the potential of glucidex-hyalutransfersomes as food supplements for the treatment of intestinal disorders.
Collapse
Affiliation(s)
- Maria Letizia Manca
- Section of Pharmaceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy.
| | - Eleonora Casula
- Section of Pharmaceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Francesca Marongiu
- Section of Pharmaceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Gianluigi Bacchetta
- Section of Pharmaceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Giorgia Sarais
- Section of Pharmaceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Marco Zaru
- Icnoderm Srl, Sardegna Ricerche Ed. 5, Pula, 09010, Cagliari, Italy
| | - Elvira Escribano-Ferrer
- Biopharmaceutics and Pharmacokinetics Unit, Institute for Nanoscience and Nanotechnology, University of Barcelona, Barcelona, Spain
| | - José Esteban Peris
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - Iris Usach
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - Sara Fais
- Department of Surgical Science, Molecular Biology Service Lab (MBS), University of Cagliari, Via Ospedale 40, 09124, Cagliari, Italy
| | - Alessandra Scano
- Department of Surgical Science, Molecular Biology Service Lab (MBS), University of Cagliari, Via Ospedale 40, 09124, Cagliari, Italy
| | - Germano Orrù
- Department of Surgical Science, Molecular Biology Service Lab (MBS), University of Cagliari, Via Ospedale 40, 09124, Cagliari, Italy
| | - Richard G Maroun
- Centre d'Analyses et de Recherche, UR GPF, Laboratoire CTA, Faculté Des Sciences, Université Saint-Joseph, B.P. 11-514 Riad El Solh, Beirut, 1107 2050, Lebanon
| | - Anna Maria Fadda
- Section of Pharmaceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Maria Manconi
- Section of Pharmaceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| |
Collapse
|
32
|
Bozcaarmutlu A, Sapmaz C, Bozdoğan Ö, Kükner A, Kılınç L, Kaya ST, Özarslan OT, Ekşioğlu D. The effect of co-administration of berberine, resveratrol, and glibenclamide on xenobiotic metabolizing enzyme activities in diabetic rat liver. Drug Chem Toxicol 2020; 45:990-998. [PMID: 32762264 DOI: 10.1080/01480545.2020.1802475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It is possible to use plant-derived antioxidant molecules in the form of dietary supplements. However, dietary supplement-drug interaction pattern has not been well defined for most of these products. The aim of this study was to determine the effects of berberine, resveratrol, and glibenclamide on xenobiotic metabolizing enzyme activities in diabetic rats. Streptozotocin was administered to create experimental diabetes. Resveratrol (5 mg/kg) (R), glibenclamide (5 mg/kg) (G), and berberine (10 mg/kg) (B) were administered individually or in combinations in DMSO by intraperitoneal administration route to the diabetic rats. DMSO was also given to non-diabetic control (C) and diabetic control (D) groups. Livers of rats were taken under anesthesia at the end of the treatment period (12 days). Ethoxyresorufin O-deethylase (EROD), pentoxyresorufin O-depentylase (PROD), aniline 4-hydroxylase (A4H), erythromycin N-demethylase (ERND), glutathione S-transferase (GST), catalase (CAT), and glutathione reductase (GR) activities were measured in microsomes and cytosols. In addition, histomorphological studies were also performed in the liver tissues. EROD activity of D+R was significantly higher than C and D+R+B. PROD activity of D+R was significantly higher than C, D, D+R+G, D+R+B, and D+R+B+ G. PROD activity of D+B was significantly higher than C and D+R+B. ERND activity of D+R was significantly higher than D+R+G and D+R+B. GST activity of D+R was significantly higher than D+R+G. CAT activity of D+B was significantly lower than C. It is clear that co-administration of resveratrol, berberine, and glibenclamide modifies some of the important xenobiotic metabolizing enzyme activities. Resveratrol and berberine have the potential to cause dietary supplement-drug interaction.
Collapse
Affiliation(s)
- Azra Bozcaarmutlu
- Department of Chemistry, Faculty of Arts and Science, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Canan Sapmaz
- Department of Chemistry, Faculty of Arts and Science, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Ömer Bozdoğan
- Department of Biology, Faculty of Arts and Science, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Aysel Kükner
- Department of Histology and Embryology, Faculty of Medicine, Near East University, Nicosia, North Cyprus
| | - Leyla Kılınç
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Salih Tunç Kaya
- Department of Biology, Faculty of Arts and Science, Düzce University, Düzce, Turkey
| | - Oğulcan Talat Özarslan
- Department of Biology, Faculty of Arts and Science, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Didem Ekşioğlu
- Department of Biology, Faculty of Arts and Science, Bolu Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
33
|
Kazemirad H, Kazerani HR. Cardioprotective effects of resveratrol following myocardial ischemia and reperfusion. Mol Biol Rep 2020; 47:5843-5850. [PMID: 32712855 DOI: 10.1007/s11033-020-05653-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/08/2020] [Indexed: 01/24/2023]
Abstract
Resveratrol (RSV), a plant origin polyphenol, has shown beneficial cardiovascular effects. In this study, isolated hearts from male Wistar rats were studied using the Langendorff technique. Following 30 min stabilization, the hearts underwent 30 min global ischemia and 120 min reperfusion. The perfusion solution in the test group contained RSV (10 μM). Hemodynamics of the hearts, the markers of myocardial damage including creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and troponin I were studied during the study. Furthermore, the infarct size and the markers of oxidative stress including catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GPX) were assayed in the homogenates of the hearts. The release of nitrite from the hearts and the occurrence of ventricular arrhythmias were also monitored throughout the experiment. Resveratrol caused a significant improvement in the restoration of the mechanical performance of the hearts following myocardial ischemia and reperfusion (MIR). Besides, the infarct size, CK-MB, LDH, and troponin I declined in the test group. Besides, the cardiac release of nitrite increased, and the redox status of the heart was improved as indicated by the levels of CAT, SOD, GPX, and MDA. Finally, the treatment caused significant decreases in the occurrences of single and salvo arrhythmias, ventricular tachycardia, and ventricular fibrillation. The current study suggests strong cardioprotective and antiarrhythmic effects for RSV following MIR.
Collapse
Affiliation(s)
- Hamideh Kazemirad
- Department of Physiology, The School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, PO Box: 91775 1793, Iran
| | - Hamid Reza Kazerani
- Department of Physiology, The School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, PO Box: 91775 1793, Iran.
| |
Collapse
|
34
|
Forouzanfar F, Mousavi SH. Targeting Autophagic Pathways by Plant Natural Compounds in Cancer Treatment. Curr Drug Targets 2020; 21:1237-1249. [PMID: 32364070 DOI: 10.2174/1389450121666200504072635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/26/2020] [Accepted: 03/19/2020] [Indexed: 12/29/2022]
Abstract
Nowadays, natural compounds of plant origin with anticancer effects have gained more attention because of their clinical safety and broad efficacy profiles. Autophagy is a multistep lysosomal degradation pathway that may have a unique potential for clinical benefit in the setting of cancer treatment. To retrieve articles related to the study, the databases of Google Scholar, Web of sciences, Medline and Scopus, using the following keywords: Autophagic pathways; herbal medicine, oncogenic autophagic pathways, tumor-suppressive autophagic pathways, and cancer were searched. Although natural plant compounds such as resveratrol, curcumin, oridonin, gossypol, and paclitaxel have proven anticancer potential via autophagic signaling pathways, there is still a great need to find new natural compounds and investigate the underlying mechanisms, to facilitate their clinical use as potential anticancer agents through autophagic induction.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Schutte R, Papageorgiou M, Najlah M, Huisman HW, Ricci C, Zhang J, Milner N, Schutte AE. Drink types unmask the health risks associated with alcohol intake - Prospective evidence from the general population. Clin Nutr 2020; 39:3168-3174. [PMID: 32111522 DOI: 10.1016/j.clnu.2020.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIMS Uncertainty still exists on the impact of low to moderate consumption of different drink types on population health. We therefore investigated the associations of different drink types in the form of beer/cider, champagne/white wine, red wine and spirits with various health outcomes. METHODS Over 500,000 participants were recruited to the UK Biobank cohort. Alcohol consumption was self-reported as pints beer/cider, glasses champagne/white wine, glasses of red wine, and measures of spirits per week. We followed health outcomes for a median of 7.02 years and reported all-cause mortality, cardiovascular events, ischemic heart disease, cerebrovascular events, and cancer. RESULTS In continuous analysis after excluding non-drinkers, beer/cider and spirits intake associated with an increased risk for all-cause mortality (beer/cider: hazard ratio, 1.56; 95% confidence interval, 1.45-1.68; spirits: 1.47; 1.35-1.60), cardiovascular events (beer/cider: 1.25; 1.17-1.33; spirits: 1.25; 1.16-1.36), ischemic heart disease (beer/cider:1.12; 0.99-1.26 [P = 0.056]; spirits: 1.17; 1.02-1.35), cerebrovascular disease (beer/cider: 1.63; 1.32-2.02; spirits: 1.59; 1.25-2.02) and cancer (beer/cider: 1.14; 1.05-1.24; spirits: 1.14; 1.03-1.26), while both champagne/white wine and red wine associated with a decreased risk for ischemic heart disease only (champagne/white wine: 0.84; 0.72-0.98; red wine: 0.88; 0.77-0.99). CONCLUSIONS Our findings do not support the notion that alcohol from any drink type is beneficial to health. Consuming low levels of beer/cider and spirits already associated with an increased risk for all health outcomes, while wine showed opposite protective relationships only with ischemic heart disease.
Collapse
Affiliation(s)
- Rudolph Schutte
- Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Chelmsford, UK.
| | - Maria Papageorgiou
- Academic Diabetes, Endocrinology and Metabolism, Brocklehurst Building, Hull Royal Infirmary, Hull, UK; Department of Physical Medicine, Rehabilitation and Occupational Therapy, Medical University of Vienna, Vienna, Austria
| | - Mohammad Najlah
- Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Chelmsford, UK
| | - Hugo W Huisman
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa; South African Medical Research Council: Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Cristian Ricci
- Center of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Jufen Zhang
- Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Chelmsford, UK
| | - Nicky Milner
- Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Chelmsford, UK
| | - Aletta E Schutte
- Faculty of Medicine, University of New South Wales, The George Institute for Global Health, Sydney, Australia
| |
Collapse
|
36
|
Basta M, Dief AE, Ghareeb DA, Saleh SR, Elshorbagy A, El Eter E. Resveratrol ameliorates long-term structural, functional and metabolic perturbations in a rat model of donor nephrectomy: Implication of SIRT1. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
37
|
Resveratrol ameliorates long-term structural, functional and metabolic perturbations in a rat model of donor nephrectomy: Implication of SIRT1. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.043\] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
38
|
Development and Validation of a GC-MS/MS Method for cis- and trans-Resveratrol Determination: Application to Portuguese Wines. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01482-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Smits RM, Mackenzie‐Proctor R, Yazdani A, Stankiewicz MT, Jordan V, Showell MG, Cochrane Gynaecology and Fertility Group. Antioxidants for male subfertility. Cochrane Database Syst Rev 2019; 3:CD007411. [PMID: 30866036 PMCID: PMC6416049 DOI: 10.1002/14651858.cd007411.pub4] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND The inability to have children affects 10% to 15% of couples worldwide. A male factor is estimated to account for up to half of the infertility cases with between 25% to 87% of male subfertility considered to be due to the effect of oxidative stress. Oral supplementation with antioxidants is thought to improve sperm quality by reducing oxidative damage. Antioxidants are widely available and inexpensive when compared to other fertility treatments, however most antioxidants are uncontrolled by regulation and the evidence for their effectiveness is uncertain. We compared the benefits and risks of different antioxidants used for male subfertility. This review did not examine the use of antioxidants in normospermic men. OBJECTIVES To evaluate the effectiveness and safety of supplementary oral antioxidants in subfertile men. SEARCH METHODS The Cochrane Gynaecology and Fertility (CGF) Group trials register, CENTRAL, MEDLINE, Embase, PsycINFO, CINAHL, and two trials registers were searched on 1 February 2018, together with reference checking and contact with study authors and experts in the field to identify additional trials. SELECTION CRITERIA We included randomised controlled trials (RCTs) that compared any type, dose or combination of oral antioxidant supplement with placebo, no treatment or treatment with another antioxidant, among subfertile men of a couple attending a reproductive clinic. We excluded studies comparing antioxidants with fertility drugs alone and studies that included fertile men attending a fertility clinic because of female partner infertility. DATA COLLECTION AND ANALYSIS We used standard methodological procedures recommended by Cochrane. The primary review outcome was live birth. Clinical pregnancy, adverse events and sperm parameters were secondary outcomes. MAIN RESULTS We included 61 studies with a total population of 6264 subfertile men, aged between 18 and 65 years, part of a couple who had been referred to a fertility clinic and some of whom were undergoing assisted reproductive techniques (ART). Investigators compared and combined 18 different oral antioxidants. The evidence was of 'low' to 'very low' quality: the main limitation was that out of the 44 included studies in the meta-analysis only 12 studies reported on live birth or clinical pregnancy. The evidence is current up to February 2018.Live birth: antioxidants may lead to increased live birth rates (OR 1.79, 95% CI 1.20 to 2.67, P = 0.005, 7 RCTs, 750 men, I2 = 40%, low-quality evidence). Results suggest that if in the studies contributing to the analysis of live birth rate, the baseline chance of live birth following placebo or no treatment is assumed to be 12%, the chance following the use of antioxidants is estimated to be between 14% and 26%. However, this result was based on only 124 live births from 750 couples in seven relatively small studies. When studies at high risk of bias were removed from the analysis, there was no evidence of increased live birth (Peto OR 1.38, 95% CI 0.89 to 2.16; participants = 540 men, 5 RCTs, P = 0.15, I2 = 0%).Clinical pregnancy rate: antioxidants may lead to increased clinical pregnancy rates (OR 2.97, 95% CI 1.91 to 4.63, P < 0.0001, 11 RCTs, 786 men, I2 = 0%, low-quality evidence) compared to placebo or no treatment. This suggests that if in the studies contributing to the analysis of clinical pregnancy, the baseline chance of clinical pregnancy following placebo or no treatment is assumed to be 7%, the chance following the use of antioxidants is estimated to be between 12% and 26%. This result was based on 105 clinical pregnancies from 786 couples in 11 small studies.Adverse eventsMiscarriage: only three studies reported on this outcome and the event rate was very low. There was no difference in miscarriage rate between the antioxidant and placebo or no treatment group (OR 1.74, 95% CI 0.40 to 7.60, P = 0.46, 3 RCTs, 247 men, I2 = 0%, very low-quality evidence). The findings suggest that in a population of subfertile men with an expected miscarriage rate of 2%, the chance following the use of an antioxidant would result in the risk of a miscarriage between 1% and 13%.Gastrointestinal: antioxidants may lead to an increase in mild gastrointestinal upsets when compared to placebo or no treatment (OR 2.51, 95% CI 1.25 to 5.03, P = 0.010, 11 RCTs, 948 men, I2 = 50%, very low-quality evidence). This suggests that if the chance of gastrointestinal upsets following placebo or no treatment is assumed to be 2%, the chance following the use of antioxidants is estimated to be between 2% and 9%. However, this result was based on a low event rate of 35 out of 948 men in 10 small or medium-sized studies, and the quality of the evidence was rated very low and was high in heterogeneity.We were unable to draw any conclusions from the antioxidant versus antioxidant comparison as insufficient studies compared the same interventions. AUTHORS' CONCLUSIONS In this review, there is low-quality evidence from seven small randomised controlled trials suggesting that antioxidant supplementation in subfertile males may improve live birth rates for couples attending fertility clinics. Low-quality evidence suggests that clinical pregnancy rates may also increase. Overall, there is no evidence of increased risk of miscarriage, however antioxidants may give more mild gastrointestinal upsets but the evidence is of very low quality. Subfertilte couples should be advised that overall, the current evidence is inconclusive based on serious risk of bias due to poor reporting of methods of randomisation, failure to report on the clinical outcomes live birth rate and clinical pregnancy, often unclear or even high attrition, and also imprecision due to often low event rates and small overall sample sizes. Further large well-designed randomised placebo-controlled trials reporting on pregnancy and live births are still required to clarify the exact role of antioxidants.
Collapse
Affiliation(s)
- Roos M Smits
- Radboud University Medical CenterDepartment of Gynaecology and ObstetricsNijmegenNetherlands
| | | | - Anusch Yazdani
- Queensland Fertility Group Research Foundation55 Little Edward St, Level 2 Boundary CourtSpring HillBrisbaneQueenslandAustralia4000
| | - Marcin T Stankiewicz
- Ashford Specialist Centre Suite 2257‐59 Anzac Highway AshfordAdelaideSAAustralia
| | - Vanessa Jordan
- University of AucklandDepartment of Obstetrics and GynaecologyPrivate Bag 92019AucklandNew Zealand1003
| | - Marian G Showell
- University of AucklandDepartment of Obstetrics and GynaecologyPrivate Bag 92019AucklandNew Zealand1003
| | | |
Collapse
|
40
|
Autophagy-associated signal pathways of functional foods for chronic diseases. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Thellung S, Corsaro A, Nizzari M, Barbieri F, Florio T. Autophagy Activator Drugs: A New Opportunity in Neuroprotection from Misfolded Protein Toxicity. Int J Mol Sci 2019; 20:ijms20040901. [PMID: 30791416 PMCID: PMC6412775 DOI: 10.3390/ijms20040901] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of this review is to critically analyze promises and limitations of pharmacological inducers of autophagy against protein misfolding-associated neurodegeneration. Effective therapies against neurodegenerative disorders can be developed by regulating the “self-defense” equipment of neurons, such as autophagy. Through the degradation and recycling of the intracellular content, autophagy promotes neuron survival in conditions of trophic factor deprivation, oxidative stress, mitochondrial and lysosomal damage, or accumulation of misfolded proteins. Autophagy involves the activation of self-digestive pathways, which is different for dynamics (macro, micro and chaperone-mediated autophagy), or degraded material (mitophagy, lysophagy, aggrephagy). All neurodegenerative disorders share common pathogenic mechanisms, including the impairment of autophagic flux, which causes the inability to remove the neurotoxic oligomers of misfolded proteins. Pharmacological activation of autophagy is typically achieved by blocking the kinase activity of mammalian target of rapamycin (mTOR) enzymatic complex 1 (mTORC1), removing its autophagy suppressor activity observed under physiological conditions; acting in this way, rapamycin provided the first proof of principle that pharmacological autophagy enhancement can induce neuroprotection through the facilitation of oligomers’ clearance. The demand for effective disease-modifying strategies against neurodegenerative disorders is currently stimulating the development of a wide number of novel molecules, as well as the re-evaluation of old drugs for their pro-autophagic potential.
Collapse
Affiliation(s)
- Stefano Thellung
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy.
| | - Alessandro Corsaro
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy.
| | - Mario Nizzari
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy.
| | - Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy.
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy.
| |
Collapse
|
42
|
Kim TH, Park JH, Woo JS. Resveratrol induces cell death through ROS‑dependent downregulation of Notch1/PTEN/Akt signaling in ovarian cancer cells. Mol Med Rep 2019; 19:3353-3360. [PMID: 30816513 DOI: 10.3892/mmr.2019.9962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/12/2019] [Indexed: 11/06/2022] Open
Abstract
Resveratrol, a natural polyphenol compound, has been reported to exert anticancer activity in various cancer cells. The present study investigated the effect and underlying mechanisms of resveratrol in the human ovarian cancer cell lines, A2780 and SKOV3. Treatment with resveratrol induced apoptotic cell death in dose‑ and time‑dependent manners, as well as a transient increase of reactive oxygen species (ROS) generation. Resveratrol‑induced cell death was attenuated by the antioxidant, N‑acetylcysteine (NAC), suggesting that ROS were involved in the observed cell death. Treatment with resveratrol resulted in a ROS‑dependent decrease of Notch1 signaling. When cells were transfected to overexpress Notch1 using EF.hlCN1.CMV.GFP, resveratrol‑induced cell death was blocked. Western blot analysis demonstrated that resveratrol also upregulated phospho‑phosphatase and tensin homolog (p‑PTEN) and downregulated phospho‑Akt (p‑Akt). Overexpression of p‑Akt by transfection with a constitutively active form (caAkt), and the p‑PTEN inhibitor SF1670 prevented resveratrol‑induced cell death. The caspase‑3 inhibitor z‑DEVD‑FMK significantly attenuated the resveratrol‑induced caspase‑3 cleavage. Taken together, the results of the present study suggest that resveratrol induces caspase‑dependent cell death through suppression of Notch1 and PTEN/Akt signaling and it is mediated by increased ROS generation in human ovarian cancer cells.
Collapse
Affiliation(s)
- Thae Hyun Kim
- Department of Physiology, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Ji Hye Park
- Department of Physiology, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Jae Suk Woo
- Department of Physiology, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| |
Collapse
|
43
|
Sarkar P, Thirumurugan K. Modulatory functions of bioactive fruits, vegetables and spices in adipogenesis and angiogenesis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
44
|
Dual Anticoagulant/Antiplatelet Activity of Polyphenolic Grape Seeds Extract. Nutrients 2019; 11:nu11010093. [PMID: 30621248 PMCID: PMC6356405 DOI: 10.3390/nu11010093] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/20/2018] [Accepted: 12/29/2018] [Indexed: 12/15/2022] Open
Abstract
Because of the side-effects of commonly used anti-platelet and anticoagulant drugs, investigations into plant substances with similar activities are very common. Based on our own studies in recent years, we estimate that it is possible to use natural compounds to both inhibit coagulation pathway enzymes and to reduce blood platelets’ activation. As such, in our current study we wanted to verify the anti-platelet and anticoagulant properties of grape seed extract (GSE) using in vitro models. During our analysis, the following parameters were analyzed: Coagulation times, thromboelastometry assays (coagulation time, clot formation time and maximum clot firmness), aggregation of platelets and phosphorylation of vasodilator-stimulated phosphoprotein (VASP). Adenosine diphosphate (ADP)-induced aggregation was lower in GSE 7.5 µg/mL as well as in GSE 15.0 µg/mL. A similar dependence was observed in VASP assays for GSE 7.5 µg/mL and GSE 15 µg/mL. The effect on plasma coagulation tests was distinct only with GSE 15 µg/mL. All of the thromboelastometry variables were statistically significant with 15.0 µg/mL GSE concentration. Our results show, for the first time, the multi-potential effect of grape seed extract on coagulation systems, and clearly suggest that grape seed extract could be considered a promising nutraceutical in the prevention of cardiovascular thrombotic events caused by different mechanisms.
Collapse
|
45
|
Zhang R, Li Q, Zhang T, Qin X, Zhang J, Zhao J. Dietary grape pomace mediates jejunum epithelial apoptosis through antioxidative activity in ram lambs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1615850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ruixin Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Qian Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Ting Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - XuZe Qin
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Jianxin Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Junxing Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
46
|
Zhu J, Guo Y, Su K, Liu Z, Ren Z, Li K, Guo X. Construction of a highly saturated Genetic Map for Vitis by Next-generation Restriction Site-associated DNA Sequencing. BMC PLANT BIOLOGY 2018; 18:347. [PMID: 30541441 PMCID: PMC6291968 DOI: 10.1186/s12870-018-1575-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/26/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND High-saturate molecular linkage maps are an important tool in studies on plant molecular biology and assisted breeding. Development of a large set of single nucleotide polymorphisms (SNPs) via next-generation sequencing (NGS)-based methods, restriction-site associated DNA sequencing (RAD-seq), and the generation of a highly saturated genetic map help improve fine mapping of quantitative trait loci (QTL). RESULTS We generated a highly saturated genetic map to identify significant traits in two elite grape cultivars and 176 F1 plants. In total, 1,426,967 high-quality restriction site-associated DNA tags were detected; 51,365, 23,683, and 70,061 markers were assessed in 19 linkage groups (LGs) for the maternal, paternal, and integrated maps, respectively. Our map was highly saturated in terms of marker density and average "Gap ≤ 5 cM" percentage. CONCLUSIONS In this study, RAD-seq of 176 F1 plants and their parents yielded 8,481,484 SNPs and 1,646,131 InDel markers, of which 65,229 and 4832, respectively, were used to construct a highly saturated genetic map for grapevine. This map is expected to facilitate genetic studies on grapevine, including an evaluation of grapevine and deciphering the genetic basis of economically and agronomically important traits. Our findings provide basic essential genetic data the grapevine genetic research community, which will lead to improvements in grapevine breeding.
Collapse
Affiliation(s)
- Junchi Zhu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
- Ministry of Education Key Laboratory of Protected Horticulture, Shenyang, 110866 People’s Republic of China
| | - Kai Su
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Zhendong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Zhihua Ren
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Kun Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Xiuwu Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| |
Collapse
|
47
|
Wu Z, Wu A, Dong J, Sigears A, Lu B. Grape skin extract improves muscle function and extends lifespan of a Drosophila model of Parkinson's disease through activation of mitophagy. Exp Gerontol 2018; 113:10-17. [PMID: 30248358 DOI: 10.1016/j.exger.2018.09.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022]
Abstract
Recent studies suggest that moderate red wine consumption may confer several health benefits, including protection against heart disease, certain cancers and multiple age-related neurological diseases such as Alzheimer's disease. These health benefits are assumed to come from a compound from grape skin called resveratrol, which has been proposed to be a pro-longevity agent. Whether resveratrol accounts for all the health benefits of grape-derived nutrients and the molecular and cellular mechanisms underlying the beneficial effects of such nutrients are not well understood. Here we investigated the effect of supplementing grape skin extract (GSE) left from red wine-production process to the daily food intake of a Drosophila melanogaster model of Parkinson's disease (PD) associated with PTEN-induced kinase 1 (PINK1) loss-of-function. Consumption of GSE resulted in rescue of mitochondrial morphological defects, improvement of indirect flight muscle function and health-span, and prolonged lifespan of the PINK1 mutant flies. Further biochemical and genetic studies revealed a link between activation of mitophagy and the beneficial effects of GSE. Our results indicate that GSE can promote autophagy activation, preserve mitochondria function, and protect against PD pathogenesis, and that the beneficial effect of GSE in mitophagy activation is not accounted for by resveratrol alone.
Collapse
Affiliation(s)
- Zhihao Wu
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94303, United States of America.
| | - Alan Wu
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94303, United States of America; Crystal Springs Uplands School, Hillsborough, CA 94010, United States of America
| | - Jason Dong
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94303, United States of America
| | - Andy Sigears
- Crystal Springs Uplands School, Hillsborough, CA 94010, United States of America
| | - Bingwei Lu
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94303, United States of America.
| |
Collapse
|
48
|
Wang Y, Feng F, Liu M, Xue J, Huang H. Resveratrol ameliorates sepsis-induced acute kidney injury in a pediatric rat model via Nrf2 signaling pathway. Exp Ther Med 2018; 16:3233-3240. [PMID: 30214546 DOI: 10.3892/etm.2018.6533] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 06/05/2017] [Indexed: 01/07/2023] Open
Abstract
Acute kidney injury (AKI) is a hyper-inflammation-induced abrupt loss of kidney function and has become a major public health problem. The cecal ligation and puncture (CLP) model of peritonitis in rat pups mimics the development of sepsis-induced pediatric AKI is pre-renal without morphological changes of the kidneys and high lethality. Resveratrol, a natural polyphenolic compound with low toxicity, has obvious anti-oxidant and anti-inflammatory properties. The present study aimed to determine whether resveratrol alleviates pediatric AKI and investigated the potential mechanism. Thus, a CLP model of 17-18 day-old rat pups was used to mimic the development of sepsis-induced AKI in children. In the group treated with resveratrol, renal injury induced by CLP was alleviated with downregulation of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and kidney injury molecule (KIM)-1 expression. Nuclear factor-erythroid-2-related factor 2 (Nrf2) signaling is known to effectively inhibit inflammation, the present study found that resveratrol reduced the lipopolysaccharide-induced inflammatory response in kidney cells in vitro and induced the activation of Nrf2 signaling, including accumulation of nuclear Nrf2 and increase of the expression of Nrf2 target genes heme oxygenase (HO)-1 and NAD(P)H dehydrogenase (quinone) 1 (NQO1); this was confirmed by the induction of the expression of HO-1 and NQO1 by treatment of resveratrol in vitro and in vivo. Of note, knockdown of Nrf2 effectively abrogated the downregulation of TNF-α, IL-1β and KIM-1 expression induced by resveratrol in vitro. These results suggested that resveratrol ameliorates sepsis-induced acute kidney injury in a pediatric model of AKI via the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pediatrics, Ninth Hospital of Xi'an, Xi'an, Shaanxi 710054, P.R. China
| | - Fenling Feng
- Department of Pediatrics, Qikang Hospital of Chinese Traditional and Western Medicine, Xi'an, Shaanxi 710000, P.R. China
| | - Minna Liu
- Department of Pediatrics, Northwest Women and Children's Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Jiahong Xue
- Department of Pediatrics, The Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710000, P.R. China
| | - Huimei Huang
- Department of Pediatrics, Xi'an Children's Hospital, Xi'an, Shaanxi 710000, P.R. China
| |
Collapse
|
49
|
Marhuenda J, Medina S, Martínez-Hernández P, Arina S, Zafrilla P, Mulero J, Oger C, Galano JM, Durand T, Ferreres F, Gil-Izquierdo A. Melatonin and hydroxytyrosol protect against oxidative stress related to the central nervous system after the ingestion of three types of wine by healthy volunteers. Food Funct 2018; 8:64-74. [PMID: 27929185 DOI: 10.1039/c6fo01328g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Adrenic acid (AdA) and docosahexaenoic acid (DHA) peroxidation produces F2-dihomo-IsoPs and neuroprostanes, which have been related to oxidative damage in the central nervous system. Besides polyphenols, melatonin (MEL) and hydroxytyrosol (OHTyr) could be partly responsible for the antioxidant benefits of red wine (excluding colon derivatives). In order to elucidate whether these compounds are responsible for the protective antioxidant effects of red wine, a double-blind, crossover, placebo-controlled in vivo study - involving the intake of red wines and their native musts by healthy volunteers - was performed. The urinary metabolites decreased after the administration of red wines, to a greater extent than after the intake of their corresponding musts or ethanol. Melatonin is the most effective compound that protects adrenic acid from oxidative attack, judged by the reduction in the formation of F2-dihomo-isoprostanes. Similarly, hydroxytyrosol, being the most effective bioactive compound in reducing the formation of F3-neuroprostanes n-6 DPA and F4-neuroprostanes, protected docosahexaenoic and eicosapentaenoic acids from oxidative attack.
Collapse
Affiliation(s)
- Javier Marhuenda
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain. and Department of Food Technology and Nutrition, Catholic University of San Antonio, Murcia 30107, Spain
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain.
| | - Pedro Martínez-Hernández
- Lab of Clinical Analysis, University Hospital Virgen de la Arrixaca, Murcia, Spain and Bodegas Baigorri S.A.U., Ctra. Vitoria-Logroño Km. 53, 01307 Samaniego, Álava, Spain
| | - Simón Arina
- Bodegas Baigorri S.A.U., Ctra. Vitoria-Logroño Km. 53, 01307 Samaniego, Álava, Spain
| | - Pilar Zafrilla
- Department of Food Technology and Nutrition, Catholic University of San Antonio, Murcia 30107, Spain
| | - Juana Mulero
- Department of Food Technology and Nutrition, Catholic University of San Antonio, Murcia 30107, Spain
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS - University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS - University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS - University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain.
| | - Angel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain.
| |
Collapse
|
50
|
Marhuenda J, Medina S, Martínez-Hernández P, Arina S, Zafrilla P, Mulero J, Oger C, Galano JM, Durand T, Solana A, Ferreres F, López-García JJ, Gil-Izquierdo A. Effect of the dietary intake of melatonin- and hydroxytyrosol-rich wines by healthy female volunteers on the systemic lipidomic-related oxylipins. Food Funct 2018; 8:3745-3757. [PMID: 28956582 DOI: 10.1039/c7fo01081h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxylipins are lipid mediators involved in the physiopathology of all organs. Moreover, isoprostanes have been established as general and reliable in vivo oxidative stress biomarkers. Red wine has proved to exert several benefits through the maintenance of the oxidative balance of the organism. Antiradical scavenging capacity has been mainly attributed to polyphenols. However, melatonin and hydroxytyrosol should be taken into account as potent antiradical agents. The present research aimed to clarify the situation of enzymatic and oxidative injury and eicosanoid urinary excretion related to the intake of three kinds of red wines and their primary musts. Judging by the reduction in the excretion of isoprostanes, red wine consumption exhibited the highest antioxidant protection against oxidative stress, attributed to its OHTyr content (p < 0.05), and to a lesser extent to its MEL content. Similarly, the intake of red wine leads to the cardioprotective effect due to the reduction in the urinary excretion of the pro-inflammatory prostaglandin 2,3-dinor-11-β-PGF2α, besides the increase in the vasodilator prostaglandin PGE1, mediated by the melatonin (p < 0.05) and hydroxytyrosol (p < 0.05) contents. In conclusion, red wine (especially non-aged wine) exerts a higher in vivo antioxidant capacity than must or alcohol.
Collapse
Affiliation(s)
- Javier Marhuenda
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|