1
|
Edimeh P, Slim AH, Conrad JC. Dynamics of nanoparticle tracers in supercooled nanoparticle matrices. SOFT MATTER 2025; 21:389-398. [PMID: 39690901 DOI: 10.1039/d4sm01106f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
We investigate the dynamics of tracer nanoparticles in bulk supercooled nanoparticle matrices using confocal microscopy. We mix fluorescent (tracer) and undyed (matrix) charged-stabilized polystyrene nanoparticles with tracer-to-matrix particle size ratios δ = 0.34, 0.36, 0.45, 0.71 at various matrix volume fractions ϕ. Single-particle and collective dynamics were obtained from particle-tracking algorithms and differential dynamic microscopy (DDM), respectively. The long-time behavior of the tracer mean-square displacement (MSD) and the shape of the distributions of particle displacements depend on δ and ϕ. At sufficiently large ϕ, small tracers (δ ≤ 0.36) remain mobile and subdiffusive but large tracers (δ ≥ 0.45) are dynamically arrested. The relaxation times determined from the intermediate scattering function (ISF) increase with δ and ϕ. Anomalous logarithmic decays in the ISF are observed for tracers of size δ ≤ 0.36 over a length scale of four to ten matrix particle diameters. These results provide insight into how penetrant size affects the transport of nanoparticles in porous media with soft interparticle interactions.
Collapse
Affiliation(s)
- Peter Edimeh
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas, 77204-4004, USA.
| | - Ali H Slim
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas, 77204-4004, USA.
| | - Jacinta C Conrad
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas, 77204-4004, USA.
| |
Collapse
|
2
|
Keane DP, Constantine CJ, Mellor MD, Poling-Skutvik R. Nanoparticle transport in biomimetic polymer-linked emulsions. AIChE J 2024; 70:e18307. [PMID: 40017798 PMCID: PMC11867629 DOI: 10.1002/aic.18307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/31/2023] [Indexed: 03/01/2025]
Abstract
The ability of nanoparticles to penetrate and transport through soft tissues is essential to delivering therapeutics to treat diseases or signaling agents for advanced imaging and sensing. Nanoparticle transport in biological systems, however, is challenging to predict and control due to the physicochemical complexity of tissues and biological fluids. Here, we demonstrate that nanoparticles suspended in a novel class of soft matter-polymer-linked emulsions (PLEs)-exhibit characteristics essential for mimicking transport in biological systems, including subdiffusive dynamics, non-Gaussian displacement distributions, and decoupling of dynamics from material viscoelasticity. Using multiple particle tracking, we identify the physical mechanisms underlying this behavior, which we attribute to a coupling of nanoparticle dynamics to fluctuations in the local network of polymer-linked droplets. Our findings demonstrate the potential of PLEs to serve as fully synthetic mimics of biological transport.
Collapse
Affiliation(s)
- Daniel P Keane
- Department of Chemical Engineering, University of Rhode Island, Kingstown, Rhode Island, USA
| | - Colby J Constantine
- Department of Chemical Engineering, University of Rhode Island, Kingstown, Rhode Island, USA
| | - Matthew D Mellor
- Department of Chemical Engineering, University of Rhode Island, Kingstown, Rhode Island, USA
| | - Ryan Poling-Skutvik
- Department of Chemical Engineering, University of Rhode Island, Kingstown, Rhode Island, USA
| |
Collapse
|
3
|
Czajka T, Neuhaus C, Alfken J, Stammer M, Chushkin Y, Pontoni D, Hoffmann C, Milovanovic D, Salditt T. Lipid vesicle pools studied by passive X-ray microrheology. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:123. [PMID: 38060069 PMCID: PMC10703982 DOI: 10.1140/epje/s10189-023-00375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Vesicle pools can form by attractive interaction in a solution, mediated by proteins or divalent ions such as calcium. The pools, which are alternatively also denoted as vesicle clusters, form by liquid-liquid phase separation (LLPS) from an initially homogeneous solution. Due to the short range liquid-like order of vesicles in the pool or cluster, the vesicle-rich phase can also be regarded as a condensate, and one would like to better understand not only the structure of these systems, but also their dynamics. The diffusion of vesicles, in particular, is expected to change when vesicles are arrested in a pool. Here we investigate whether passive microrheology based on X-ray photon correlation spectroscopy (XPCS) is a suitable tool to study model systems of artificial lipid vesicles exhibiting LLPS, and more generally also other heterogeneous biomolecular fluids. We show that by adding highly scattering tracer particles to the solution, valuable information on the single vesicle as well as collective dynamics can be inferred. While the correlation functions reveal freely diffusing tracer particles in solutions at low CaCl[Formula: see text] concentrations, the relaxation rate [Formula: see text] shows a nonlinear dependence on [Formula: see text] at a higher concentration of around 8 mM CaCl[Formula: see text], characterised by two linear regimes with a broad cross-over. We explain this finding based on arrested diffusion in percolating vesicle clusters.
Collapse
Affiliation(s)
- Titus Czajka
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Charlotte Neuhaus
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Jette Alfken
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Moritz Stammer
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Yuriy Chushkin
- European Synchrotron Radiation Facility, 38043, Grenoble Cedex 9, France
| | - Diego Pontoni
- European Synchrotron Radiation Facility, 38043, Grenoble Cedex 9, France
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
4
|
Bin M, Reiser M, Filianina M, Berkowicz S, Das S, Timmermann S, Roseker W, Bauer R, Öström J, Karina A, Amann-Winkel K, Ladd-Parada M, Westermeier F, Sprung M, Möller J, Lehmkühler F, Gutt C, Perakis F. Coherent X-ray Scattering Reveals Nanoscale Fluctuations in Hydrated Proteins. J Phys Chem B 2023. [PMID: 37209106 DOI: 10.1021/acs.jpcb.3c02492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hydrated proteins undergo a transition in the deeply supercooled regime, which is attributed to rapid changes in hydration water and protein structural dynamics. Here, we investigate the nanoscale stress-relaxation in hydrated lysozyme proteins stimulated and probed by X-ray Photon Correlation Spectroscopy (XPCS). This approach allows us to access the nanoscale dynamics in the deeply supercooled regime (T = 180 K), which is typically not accessible through equilibrium methods. The observed stimulated dynamic response is attributed to collective stress-relaxation as the system transitions from a jammed granular state to an elastically driven regime. The relaxation time constants exhibit Arrhenius temperature dependence upon cooling with a minimum in the Kohlrausch-Williams-Watts exponent at T = 227 K. The observed minimum is attributed to an increase in dynamical heterogeneity, which coincides with enhanced fluctuations observed in the two-time correlation functions and a maximum in the dynamic susceptibility quantified by the normalized variance χT. The amplification of fluctuations is consistent with previous studies of hydrated proteins, which indicate the key role of density and enthalpy fluctuations in hydration water. Our study provides new insights into X-ray stimulated stress-relaxation and the underlying mechanisms behind spatiotemporal fluctuations in biological granular materials.
Collapse
Affiliation(s)
- Maddalena Bin
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Mario Reiser
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Mariia Filianina
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Sharon Berkowicz
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Sudipta Das
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Sonja Timmermann
- Department Physik, Universität Siegen, Walter-Flex-Strasse 3, 57072 Siegen, Germany
| | - Wojciech Roseker
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Robert Bauer
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
- Freiberg Water Research Center, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Jonatan Öström
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Aigerim Karina
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Katrin Amann-Winkel
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Physics, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Marjorie Ladd-Parada
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Johannes Möller
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, Walter-Flex-Strasse 3, 57072 Siegen, Germany
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Wu D, Narayanan S, Li R, Feng Y, Akcora P. The effect of dynamically heterogeneous interphases on the particle dynamics of polymer nanocomposites. SOFT MATTER 2023; 19:2764-2770. [PMID: 36988144 DOI: 10.1039/d2sm01617f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The entanglements of dynamically asymmetric polymer layers influence relaxations of nanoparticles in polymer nanocomposites. In this work, the dynamics of polymer-adsorbed and polymer-grafted nanoparticles in a poly(methyl acrylate) matrix polymer was investigated using X-ray photon correlation spectroscopy (XPCS) to understand the role of chain rigidity and chemical heterogeneities in particle dynamics. Locations of dynamic heterogeneities close to nanoparticles and away from particle surfaces were examined with the comparison of adsorbed and grafted nanoparticles. Our results show that the chemical heterogeneities around dispersed nanoparticles transitioned the particle dynamics from Brownian diffusion into hyperdiffusion, and moreover, the high rigidity of chains in the chemically heterogeneous interfacial layers slowed down the particle dynamics. The hyperdiffusion measured both in grafted particles and adsorbed particles was attributed to the dense interfacial mixing of dynamically heterogeneous chains.
Collapse
Affiliation(s)
- Di Wu
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Ruhao Li
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| | - Yi Feng
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| | - Pinar Akcora
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| |
Collapse
|
6
|
Jhalaria M, Jimenez AM, Mathur R, Tekell MC, Huang Y, Narayanan S, Benicewicz BC, Kumar SK. Long-Term Aging in Miscible Polymer Nanocomposites. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mayank Jhalaria
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Andrew M. Jimenez
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Reha Mathur
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Marshall C. Tekell
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Yucheng Huang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Brian C. Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sanat K. Kumar
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
7
|
Chen Y, Xu H, Ma Y, Liu J, Zhang L. Diffusion of polymer-grafted nanoparticles with dynamical fluctuations in unentangled polymer melts. Phys Chem Chem Phys 2022; 24:11322-11335. [PMID: 35485911 DOI: 10.1039/d2cp00002d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dynamics of polymer-grafted nanoparticles (PGNPs) in melts of unentangled linear chains were investigated by means of coarse-grained molecular dynamics simulations. The results demonstrated that the graft monomers closer to the particle surface relax more slowly than those farther away due to the constraint of the grafted surface and the confinement of the neighboring chains. Such heterogeneous relaxations of the surrounding environment would perturb the particle motion, making them fluctuating around their centers before they can diffuse through the melt. During such intermediate-time stage, the dynamics is subdiffusive while the distribution of particle displacements is Gaussian, which can be described by the popular fractional Brownian motion model. For the long-time Fickian diffusion, we found that the diffusivity D decreases with increasing grafting density Σg, grafted chain length Ng, and matrix chain length Nm. This is due to the fact that the diffusivity is controlled by the viscous drag of an effective core, consisting of the NP and the non-draining layer of graft segments, and that of the free-draining graft layer outside the "core". With increasing Σg, the PGNPs become harder with greater effective size and thinner free draining layer, resulting in a reduction in D. At extremely high Σg, the diffusivity can even be estimated by the diameter-renormalized Stokes-Einstein (SE) relation. With increasing Ng, both the effective core size and the thickness of the free-draining layer increase, leading to a reduction in diffusivity by D ∼ N-γg with 0.5 < γ < 1. Increasing Nm would lead to the enlargement of the effective core size but meanwhile result in the reduction of the free-draining layer thickness due to autophobic dewetting. The counteraction between these two opposite effects leads to only a slight reduction in the diffusivity, significantly different from the typical SE behavior where D ∼ Nm-1. These findings bear significance in unraveling the fundamental physics of the anomalous dynamics of PGNPs in various polymers, including biological and synthetic.
Collapse
Affiliation(s)
- Yulong Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Haohao Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yangwei Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Senses E, Kitchens CL, Faraone A. Viscosity reduction in polymer nanocomposites: Insights from dynamic neutron and X‐ray scattering. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Erkan Senses
- Department of Chemical and Biological Engineering Koc University Istanbul Turkey
| | - Christopher L. Kitchens
- Department of Chemical and Biomolecular Engineering Clemson University Clemson South Carolina USA
| | - Antonio Faraone
- Center for Neutron Research National Institute of Standards and Technology Gaithersburg Maryland USA
| |
Collapse
|
9
|
Darvishi S, Nazeer MA, Tyagi M, Zhang Q, Narayanan S, Kizilel S, Senses E. Nonlinear Architectures Can Alter the Dynamics of Polymer–Nanoparticle Composites. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Saeid Darvishi
- Department of Chemical and Biological Engineering, Koc University, Sariyer, Istanbul 34450, Turkey
| | - Muhammad Anwaar Nazeer
- Department of Chemical and Biological Engineering, Koc University, Sariyer, Istanbul 34450, Turkey
- School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Madhusudan Tyagi
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8562, United States
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742-2115, United States
| | - Qingteng Zhang
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Seda Kizilel
- Department of Chemical and Biological Engineering, Koc University, Sariyer, Istanbul 34450, Turkey
| | - Erkan Senses
- Department of Chemical and Biological Engineering, Koc University, Sariyer, Istanbul 34450, Turkey
| |
Collapse
|
10
|
Cheng CH, Kamitani K, Masuda S, Uno K, Dechnarong N, Hoshino T, Kojio K, Takahara A. Dynamics of matrix-free nanocomposites consisting of block copolymer-grafted silica nanoparticles under elongation evaluated through X-ray photon correlation spectroscopy. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Mithra K, Jena SS. Surfactant head group and concentration influence on structure and dynamics of gellan gum hydrogels: Crossover from stretched to compressed exponential. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- K Mithra
- Department of Physics and Astronomy National Institute of Technology Rourkela Odisha India
| | - Sidhartha S Jena
- Department of Physics and Astronomy National Institute of Technology Rourkela Odisha India
| |
Collapse
|
12
|
From Femtoseconds to Hours—Measuring Dynamics over 18 Orders of Magnitude with Coherent X-rays. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11136179] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
X-ray photon correlation spectroscopy (XPCS) enables the study of sample dynamics between micrometer and atomic length scales. As a coherent scattering technique, it benefits from the increased brilliance of the next-generation synchrotron radiation and Free-Electron Laser (FEL) sources. In this article, we will introduce the XPCS concepts and review the latest developments of XPCS with special attention on the extension of accessible time scales to sub-μs and the application of XPCS at FELs. Furthermore, we will discuss future opportunities of XPCS and the related technique X-ray speckle visibility spectroscopy (XSVS) at new X-ray sources. Due to its particular signal-to-noise ratio, the time scales accessible by XPCS scale with the square of the coherent flux, allowing to dramatically extend its applications. This will soon enable studies over more than 18 orders of magnitude in time by XPCS and XSVS.
Collapse
|
13
|
Rolle K, Schilling T, Westermeier F, Das S, Breu J, Fytas G. Large T g Shift in Hybrid Bragg Stacks through Interfacial Slowdown. Macromolecules 2021; 54:2551-2560. [PMID: 33814616 PMCID: PMC8016143 DOI: 10.1021/acs.macromol.0c02818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/06/2021] [Indexed: 11/29/2022]
Abstract
Studies of glass transition under confinement frequently employ supported polymer thin films, which are known to exhibit different transition temperature T g close to and far from the interface. Various techniques can selectively probe interfaces, however, often at the expense of sample designs very specific to a single experiment. Here, we show how to translate results on confined thin film T g to a "nacre-mimetic" clay/polymer Bragg stack, where periodicity allows to limit and tune the number of polymer layers to either one or two. Exceptional lattice coherence multiplies signal manifold, allowing for interface studies with both standard T g and broadband dynamic measurements. For the monolayer, we not only observe a dramatic increase in T g (∼ 100 K) but also use X-ray photon correlation spectroscopy (XPCS) to probe platelet dynamics, originating from interfacial slowdown. This is confirmed from the bilayer, which comprises both "bulk-like" and clay/polymer interface contributions, as manifested in two distinct T g processes. Because the platelet dynamics of monolayers and bilayers are similar, while the segmental dynamics of the latter are found to be much faster, we conclude that XPCS is sensitive to the clay/polymer interface. Thus, large T g shifts can be engineered and studied once lattice spacing approaches interfacial layer dimensions.
Collapse
Affiliation(s)
- Konrad Rolle
- Max-Planck-Institute
of Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Theresa Schilling
- Department
of Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, Bayreuth 95440, Germany
| | - Fabian Westermeier
- Deutsches
Elektronen Synchrotron DESY, Notkestr. 85, Hamburg D-22607, Germany
| | - Sudatta Das
- Max-Planck-Institute
of Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Josef Breu
- Department
of Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, Bayreuth 95440, Germany
| | - George Fytas
- Max-Planck-Institute
of Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|
14
|
Begam N, Ragulskaya A, Girelli A, Rahmann H, Chandran S, Westermeier F, Reiser M, Sprung M, Zhang F, Gutt C, Schreiber F. Kinetics of Network Formation and Heterogeneous Dynamics of an Egg White Gel Revealed by Coherent X-Ray Scattering. PHYSICAL REVIEW LETTERS 2021; 126:098001. [PMID: 33750145 DOI: 10.1103/physrevlett.126.098001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/12/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The kinetics of heat-induced gelation and the microscopic dynamics of a hen egg white gel are probed using x-ray photon correlation spectroscopy along with ultrasmall-angle x-ray scattering. The kinetics of structural growth reveals a reaction-limited aggregation process with a gel fractal dimension of ≈2 and an average network mesh size of ca. 400 nm. The dynamics probed at these length scales reveals an exponential growth of the characteristic relaxation times followed by an intriguing steady state in combination with a compressed exponential correlation function and a temporal heterogeneity. The degree of heterogeneity increases with decreasing length scale. We discuss our results in the broader context of experiments and models describing attractive colloidal gels.
Collapse
Affiliation(s)
- Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | | | - Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Hendrik Rahmann
- Department Physik, Universität Siegen, 57072 Siegen, Germany
| | - Sivasurender Chandran
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Mario Reiser
- Department Physik, Universität Siegen, 57072 Siegen, Germany
- European X-ray Free-Electron Laser GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, 57072 Siegen, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
15
|
Torres Arango MA, Zhang Y, Li R, Doerk G, Fluerasu A, Wiegart L. In-Operando Study of Shape Retention and Microstructure Development in a Hydrolyzing Sol-Gel Ink during 3D-Printing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51044-51056. [PMID: 33138355 DOI: 10.1021/acsami.0c14743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
3D printing of amorphous and crystalline ceramics is of paramount importance for the fabrication of a wide range of devices with applications across different technology fields. Printed ceramics are remarkably enabled by the sol-gel synthesis method in conjunction with continuous filament direct ink writing. During printing, multiple processes contribute to the evolution of inks including shape retention, chemical conversion, solidification, and microstructure formation. Traditionally, depending on the ink composition and printing environment, several mechanisms have been associated with the shape retention and solidification of 3D printed structures: gelation, rapid solvent evaporation, energy-driven phase transformation, and chemical-driven phase transformation. Understanding the fundamental differences between these mechanisms becomes key since they strongly influence the spatiotemporal evolution of the materials, as the out-of-equilibrium processes inherent to the extrusion, relaxation, and solidification of printed materials have significant effects on the materials properties. In this work, we investigate the shape retention mechanism and the hydrolysis-induced material conversion and microstructure formation during the 3D printing of a water reactive sol-gel ink that transforms into titanium dioxide-based ceramic. This study aims at identifying characteristic mechanisms associated with the material transformation, establishing connections between the microstructure development and the timescales associated with solidification under operando 3D-printing conditions. The investigation of this material's out-of-equilibrium pathways under processing conditions is enabled by time-resolved coherent X-ray scattering, providing simultaneous access to temporospatially resolved microstructural and dynamics information. Furthermore, we explore X-ray speckle tracking as a tool to resolve deformations of the microstructure in a printed filament associated with the deposition of consecutive filaments. Through this work, we aim at providing a fundamental understanding of the relationships behind these transformative processes in 3D printing and their timescales as the basis for achieving unprecedented control over printed materials microstructure.
Collapse
Affiliation(s)
- Maria A Torres Arango
- National Synchrotron Light Source II, Brookhaven National Laboratory, 744 Brookhaven Avenue, Upton, New York 11973, United States
| | - Yugang Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, 735 Brookhaven Avenue, Upton, New York 11973, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, 744 Brookhaven Avenue, Upton, New York 11973, United States
| | - Gregory Doerk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, 735 Brookhaven Avenue, Upton, New York 11973, United States
| | - Andrei Fluerasu
- National Synchrotron Light Source II, Brookhaven National Laboratory, 744 Brookhaven Avenue, Upton, New York 11973, United States
| | - Lutz Wiegart
- National Synchrotron Light Source II, Brookhaven National Laboratory, 744 Brookhaven Avenue, Upton, New York 11973, United States
| |
Collapse
|
16
|
Wang L, Ma J, Hong W, Zhang H, Lin J. Nanoscale Diffusion of Polymer-Grafted Nanoparticles in Entangled Polymer Melts. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jun Ma
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Hong
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haojing Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
17
|
Amadei F, Thoma J, Czajor J, Kimmle E, Yamamoto A, Abuillan W, Konovalov OV, Chushkin Y, Tanaka M. Ion-Mediated Cross-linking of Biopolymers Confined at Liquid/Liquid Interfaces Probed by In Situ High-Energy Grazing Incidence X-ray Photon Correlation Spectroscopy. J Phys Chem B 2020; 124:8937-8942. [PMID: 32876453 DOI: 10.1021/acs.jpcb.0c07056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As manifested in biological cell membranes, the confinement of chemical reactions at the 2D interfaces significantly improves the reaction efficacy. The interface between two liquid phases is used in various key processes in industries, such as in food emulsification and floatation. However, monitoring the changes in the mechanics and dynamics of molecules confined at the liquid/liquid interfaces still remains a scientific challenge because it is nontrivial to access the interface buried under a liquid phase. Herein, we report the in situ monitoring of the cross-linking of polyalginate mediated by Ca2+ ions at the oil/water interface by grazing incidence X-ray photon correlation spectroscopy (GIXPCS). We first optimized the reaction conditions with the aid of interfacial shear rheology and then performed GIXPCS using a high-energy synchrotron X-ray beam (22 keV) that guarantees sufficiently high transmittance through the oil phase. The intensity autocorrelation functions implied that the formation of a percolated network of polyalginate is accompanied by increasing relaxation time. Moreover, the relaxation rate scales linearly with the momentum transfer parallel to the interface, suggesting that the process is driven by hyperdiffusive propagation but not by Brownian diffusion. Our data indicated that high-energy GIXPCS has potential for in situ monitoring of changes in the dynamics of polymers confined between two liquid phases.
Collapse
Affiliation(s)
- Federico Amadei
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Judith Thoma
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Julian Czajor
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Esther Kimmle
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Akihisa Yamamoto
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Wasim Abuillan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Oleg V Konovalov
- European Synchrotron Radiation Facility, CS 40220, Grenoble 38043, France
| | - Yuriy Chushkin
- European Synchrotron Radiation Facility, CS 40220, Grenoble 38043, France
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany.,Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
18
|
Ruta B, Hechler S, Neuber N, Orsi D, Cristofolini L, Gross O, Bochtler B, Frey M, Kuball A, Riegler SS, Stolpe M, Evenson Z, Gutt C, Westermeier F, Busch R, Gallino I. Wave-Vector Dependence of the Dynamics in Supercooled Metallic Liquids. PHYSICAL REVIEW LETTERS 2020; 125:055701. [PMID: 32794848 DOI: 10.1103/physrevlett.125.055701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
We present a detailed investigation of the wave-vector dependence of collective atomic motion in Au_{49}Cu_{26.9}Si_{16.3}Ag_{5.5}Pd_{2.3} and Pd_{42.5}Cu_{27}Ni_{9.5}P_{21} supercooled liquids close to the glass transition temperature. Using x-ray photon correlation spectroscopy in a previously uncovered spatial range of only a few interatomic distances, we show that the microscopic structural relaxation process mimics the structure and presents a marked slowing down at the main average interparticle distance. This behavior is accompanied by dramatic changes in the shape of the intermediate scattering functions, which suggest the presence of large dynamical heterogeneities at length scales corresponding to a few particle diameters. A ballisticlike mechanism of particle motion seems to govern the structural relaxation of the two systems in the highly viscous phase, likely associated with hopping of caged particles in agreement with theoretical studies.
Collapse
Affiliation(s)
- B Ruta
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
- ESRF-The European Synchrotron, CS40220, 38043 Grenoble, France
| | - S Hechler
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
- Chair of Metallic Materials, Department of Materials Science and Engineering, Saarland University, Campus C6.3, 66123 Saarbrücken, Germany
| | - N Neuber
- Chair of Metallic Materials, Department of Materials Science and Engineering, Saarland University, Campus C6.3, 66123 Saarbrücken, Germany
| | - D Orsi
- Dipartimento di Scienze Matematiche Fisiche ed Informatiche, Università degli Studi di Parma, Parma, Italy
| | - L Cristofolini
- Dipartimento di Scienze Matematiche Fisiche ed Informatiche, Università degli Studi di Parma, Parma, Italy
| | - O Gross
- Chair of Metallic Materials, Department of Materials Science and Engineering, Saarland University, Campus C6.3, 66123 Saarbrücken, Germany
| | - B Bochtler
- Chair of Metallic Materials, Department of Materials Science and Engineering, Saarland University, Campus C6.3, 66123 Saarbrücken, Germany
| | - M Frey
- Chair of Metallic Materials, Department of Materials Science and Engineering, Saarland University, Campus C6.3, 66123 Saarbrücken, Germany
| | - A Kuball
- Chair of Metallic Materials, Department of Materials Science and Engineering, Saarland University, Campus C6.3, 66123 Saarbrücken, Germany
| | - S S Riegler
- Chair of Metallic Materials, Department of Materials Science and Engineering, Saarland University, Campus C6.3, 66123 Saarbrücken, Germany
| | - M Stolpe
- Chair of Metallic Materials, Department of Materials Science and Engineering, Saarland University, Campus C6.3, 66123 Saarbrücken, Germany
| | - Z Evenson
- Heinz Maier-Leibnitz Zentrum (MLZ) and Physik Department, Technische Universität München, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - C Gutt
- Department Physik, Universität Siegen, D-57072 Siegen, Germany
| | - F Westermeier
- Deutsches Elektronen Synchrotron DESY, D-22607 Hamburg, Germany
| | - R Busch
- Chair of Metallic Materials, Department of Materials Science and Engineering, Saarland University, Campus C6.3, 66123 Saarbrücken, Germany
| | - I Gallino
- Chair of Metallic Materials, Department of Materials Science and Engineering, Saarland University, Campus C6.3, 66123 Saarbrücken, Germany
| |
Collapse
|
19
|
Bailey EJ, Winey KI. Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: A review. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101242] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Jain A, Schulz F, Lokteva I, Frenzel L, Grübel G, Lehmkühler F. Anisotropic and heterogeneous dynamics in an aging colloidal gel. SOFT MATTER 2020; 16:2864-2872. [PMID: 32108204 DOI: 10.1039/c9sm02230a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We investigate the out-of-equilibrium dynamics of a colloidal gel obtained by quenching a suspension of soft polymer-coated gold nanoparticles close to and below its gelation point using X-ray Photon Correlation Spectroscopy (XPCS). A faster relaxation process emergent from the localized motions of the nanoparticles reveals a dynamically-arrested network at the nanoscale as a key signature of the gelation process. We find that the slower network dynamics is hyperdiffusive with a compressed exponential form, consistent with stress-driven relaxation processes. Specifically, we use direction-dependent correlation functions to characterize the anisotropy in dynamics. We show that the anisotropy is greater for the gel close to its gelation point than at lower temperatures, and the anisotropy decreases as the gel ages. We quantify the anisotropic dynamical heterogeneities emergent in such a stress-driven dynamical system using higher order intensity correlations, and demonstrate that the aging phenomenon contributes significantly to the properties evaluated by the fluctuations in the intensity correlations. Our results provide important insights into the structural origin of the emergent anisotropic and cooperative heterogeneous dynamics, and we discuss analogies with previous work on other soft disordered systems.
Collapse
Affiliation(s)
- Avni Jain
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Hoshino T, Fujinami S, Nakatani T, Kohmura Y. Dynamical Heterogeneity near Glass Transition Temperature under Shear Conditions. PHYSICAL REVIEW LETTERS 2020; 124:118004. [PMID: 32242701 DOI: 10.1103/physrevlett.124.118004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
We experimentally studied the shear effect on dynamical heterogeneity near glass transition temperature. X-ray photon correlation spectroscopy was utilized to study the dynamics of polyvinyl acetate with tracer particles near its glass transition temperature, to determine the local shear rate from the anisotropic behavior of the time autocorrelation function and to calculate the dynamical heterogeneity using higher-order correlation function. The obtained results show a decrease in the dynamical heterogeneity and faster dynamics with increasing shear rate. This is the first experimental result that proved the predictions of previous molecular dynamics simulations.
Collapse
Affiliation(s)
- Taiki Hoshino
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - So Fujinami
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tomotaka Nakatani
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshiki Kohmura
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
22
|
Dallari F, Martinelli A, Caporaletti F, Sprung M, Grübel G, Monaco G. Microscopic pathways for stress relaxation in repulsive colloidal glasses. SCIENCE ADVANCES 2020; 6:eaaz2982. [PMID: 32219168 PMCID: PMC7083620 DOI: 10.1126/sciadv.aaz2982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/12/2019] [Indexed: 05/27/2023]
Abstract
Residual stresses are well-known companions of all glassy materials. They affect and, in many cases, even strongly modify important material properties like the mechanical response and the optical transparency. The mechanisms through which stresses affect such properties are, in many cases, still under study, and their full understanding can pave the way to a full exploitation of stress as a primary control parameter. It is, for example, known that stresses promote particle mobility at small length scales, e.g., in colloidal glasses, gels, and metallic glasses, but this connection still remains essentially qualitative. Exploiting a preparation protocol that leads to colloidal glasses with an exceptionally directional built-in stress field, we characterize the stress-induced dynamics and show that it can be visualized as a collection of "flickering," mobile regions with linear sizes of the order of ≈20 particle diameters (≈2 μm here) that move cooperatively, displaying an overall stationary but locally ballistic dynamics.
Collapse
Affiliation(s)
- F. Dallari
- Dipartimento di Fisica, Università di Trento, I-38123 Povo (Trento), Italy
| | - A. Martinelli
- Dipartimento di Fisica, Università di Trento, I-38123 Povo (Trento), Italy
| | - F. Caporaletti
- Dipartimento di Fisica, Università di Trento, I-38123 Povo (Trento), Italy
| | - M. Sprung
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - G. Grübel
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - G. Monaco
- Dipartimento di Fisica, Università di Trento, I-38123 Povo (Trento), Italy
| |
Collapse
|
23
|
Mansel BW, Chen CY, Lin JM, Huang YS, Lin YC, Chen HL. Hierarchical Structure and Dynamics of a Polymer/Nanoparticle Hybrid Displaying Attractive Polymer–Particle Interaction. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bradley W. Mansel
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Yu Chen
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Jhih-Min Lin
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yu-Shan Huang
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yu-Chiao Lin
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu 31057, Taiwan
| | - Hsin-Lung Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
24
|
Chen XM, Farmer B, Woods JS, Dhuey S, Hu W, Mazzoli C, Wilkins SB, Chopdekar RV, Scholl A, Robinson IK, De Long LE, Roy S, Hastings JT. Spontaneous Magnetic Superdomain Wall Fluctuations in an Artificial Antiferromagnet. PHYSICAL REVIEW LETTERS 2019; 123:197202. [PMID: 31765174 DOI: 10.1103/physrevlett.123.197202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Collective dynamics often play an important role in determining the stability of ground states for both naturally occurring materials and metamaterials. We studied the temperature dependent dynamics of antiferromagnetically ordered superdomains in a square artificial spin lattice using soft x-ray photon correlation spectroscopy. We observed an exponential slowing down of superdomain wall motion below the antiferromagnetic onset temperature, similar to the behavior of typical bulk antiferromagnets. Using a continuous time random walk model we show that these superdomain walls undergo low-temperature ballistic and high-temperature diffusive motions.
Collapse
Affiliation(s)
- X M Chen
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - B Farmer
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
| | - J S Woods
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - S Dhuey
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - W Hu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Mazzoli
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - S B Wilkins
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - R V Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - A Scholl
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - I K Robinson
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- London Centre for Nanotechnology, University College, Gower Street, London WC1E 6BT, United Kingdom
| | - L E De Long
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
| | - S Roy
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - J T Hastings
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| |
Collapse
|
25
|
Frenzel L, Lehmkühler F, Lokteva I, Narayanan S, Sprung M, Grübel G. Anomalous Dynamics of Concentrated Silica-PNIPAm Nanogels. J Phys Chem Lett 2019; 10:5231-5236. [PMID: 31433650 DOI: 10.1021/acs.jpclett.9b01690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present the structure and dynamics of highly concentrated core-shell nanoparticles composed of a silica core and a poly(N-isoproylacrylamide) (PNIPAm) shell suspended in water. With X-ray photon correlation spectroscopy, we are able to follow dynamical changes over the volume phase transition of PNIPAm at LCST = 32 °C. On raising the temperature beyond LCST, the structural relaxation times continue to decrease. The effect is accompanied by a transition from stretched to compressed exponential shape of the intensity autocorrelation function. Upon further heating, we find a sudden slowing down for the particles in their collapsed state. The q dependence of the relaxation time shows an anomalous change from τc ∝ q-3 to τc ∝ q-1. Small angle X-ray scattering data evidence a temperature-induced transition from repulsive to attractive forces. Our results indicate a temperature-induced phase transition from a colloidal liquid with polymer-driven dynamics toward a colloidal gel.
Collapse
Affiliation(s)
- Lara Frenzel
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Irina Lokteva
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
26
|
Senses E, Narayanan S, Faraone A. Nanoscale Particle Motion Reveals Polymer Mobility Gradient in Nanocomposites. ACS Macro Lett 2019; 8:558-562. [PMID: 35619363 PMCID: PMC11132598 DOI: 10.1021/acsmacrolett.9b00176] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polymer mobility near nanoparticle surfaces has been extensively discussed; however, direct experimental observation in the nanocomposite melts has been a difficult task. Here, by taking advantage of large dynamical asymmetry between the miscible matrix and surface-bound polymers, we highlighted their interphases and studied the resulting effect on the nanoparticle relaxation using X-ray photon correlation spectroscopy. The local mobility gradient is signified by an unprecedented increase in the relaxation time at length scales on the order of polymer radius of gyration. The effect is accompanied by a transition from simple diffusive to subdiffusive behavior in accord with viscous and entangled dynamics of polymers in the matrix and in the interphase, respectively. Our results demonstrate that the nanoparticle-induced polymer mobility changes in the interphases of nanocomposite melts can be extracted from the length-scale-dependent slow particle motion.
Collapse
Affiliation(s)
- Erkan Senses
- Department of Chemical and Biological Engineering, Koç University, Istanbul 34450, Turkey
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Antonio Faraone
- NIST Center for Neutron Research, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
27
|
Ehrburger-Dolle F, Morfin I, Bley F, Livet F, Heinrich G, Chushkin Y, Sutton M. Anisotropic and heterogeneous dynamics in stretched elastomer nanocomposites. SOFT MATTER 2019; 15:3796-3806. [PMID: 30990483 DOI: 10.1039/c8sm02289e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We use X-ray photon correlation spectroscopy (XPCS) to investigate the dynamics of a stretched elastomer by means of probe particles. The particles dispersed in the elastomer were carbon black or silica aggregates classically used for elastomer reinforcement but their volume fraction is very low (φ < 10-2). We show that their dynamics is slower in the direction of the tensile strain than in the perpendicular one. For hydroxylated silica which is poorly wetted by the elastomer, there is no anisotropy. Two-time correlation functions confirm anisotropic dynamics and suggest dynamical heterogeneity already expected from the q-1 behavior of the relaxation times. The height χ* of the peak of the dynamical susceptibility, determined by the normalized variance of the instantaneous correlation function, is larger in the direction parallel to the strain than in the perpendicular one. It also appears that its q dependence changes with the morphology of the probe particle. Therefore, the heterogeneous dynamic probed by the particles is not related only to that of the strained elastomer matrix. In fact, it results from modification of the dynamics of the polymer chains near the surface of the particles and within the aggregate porosity (bound polymer). It is concluded that XPCS is a powerful method for investigating the dynamics, at a given strain, of the bound polymer-particle units which are responsible, at large volume fractions, for the reinforcement.
Collapse
|
28
|
Song JJ, Bhattacharya R, Kim H, Chang J, Tang TY, Guo H, Ghosh SK, Yang Y, Jiang Z, Kim H, Russell TP, Arya G, Narayanan S, Sinha SK. One-Dimensional Anomalous Diffusion of Gold Nanoparticles in a Polymer Melt. PHYSICAL REVIEW LETTERS 2019; 122:107802. [PMID: 30932658 DOI: 10.1103/physrevlett.122.107802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Indexed: 06/09/2023]
Abstract
We investigated the dynamics of polymer-grafted gold nanoparticles loaded into polymer melts using x-ray photon correlation spectroscopy. For low molecular weight host matrix polymer chains, normal isotropic diffusion of the gold nanoparticles is observed. For larger molecular weights, anomalous diffusion of the nanoparticles is observed that can be described by ballistic motion and generalized Lévy walks, similar to those often used to discuss the dynamics of jammed systems. Under certain annealing conditions, the diffusion is one-dimensional and related to the direction of heat flow during annealing and is associated with an dynamic alignment of the host polymer chains. Molecular dynamics simulations of a single gold nanoparticle diffusing in a partially aligned polymer network semiquantitatively reproduce the experimental results to a remarkable degree. The results help to showcase how nanoparticles can under certain circumstances move rapidly in polymer networks.
Collapse
Affiliation(s)
- Jing-Jin Song
- Department of Materials Science & Engineering, University of California San Diego, 9500 Gilman Dr. La Jolla, California 92093, USA
| | - Rupak Bhattacharya
- Department of Physics, University of California San Diego, 9500 Gilman Dr. La Jolla, California 92093, USA
| | - Hyunki Kim
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst Massachusetts 01003, USA
| | - Jooyoung Chang
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst Massachusetts 01003, USA
| | - Tsung-Yeh Tang
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr. La Jolla, California 92093, USA
| | - Hongyu Guo
- National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, Maryland 20899-6102, USA
| | - Sajal K Ghosh
- Department of Physics, University of California San Diego, 9500 Gilman Dr. La Jolla, California 92093, USA
| | - Yi Yang
- Department of Physics, University of California San Diego, 9500 Gilman Dr. La Jolla, California 92093, USA
| | - Zhang Jiang
- Advanced Photon Source, Argonne National Laboratory, 9700 Cass Ave, Lemont, Illinois 60439, USA
| | - Hyeyoung Kim
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst Massachusetts 01003, USA
| | - Thomas P Russell
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst Massachusetts 01003, USA
| | - Gaurav Arya
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr. La Jolla, California 92093, USA
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, 9700 Cass Ave, Lemont, Illinois 60439, USA
| | - Sunil K Sinha
- Department of Physics, University of California San Diego, 9500 Gilman Dr. La Jolla, California 92093, USA
| |
Collapse
|
29
|
Li Q, Peng X, McKenna GB. Physical aging and compressed exponential behaviors in a model soft colloidal system. SOFT MATTER 2019; 15:2336-2347. [PMID: 30758036 DOI: 10.1039/c8sm02042f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Diffusing wave spectroscopy (DWS)-based micro-rheology has been used in different optical geometries (backscattering and transmission) as well as different sample thicknesses in order to probe system dynamics at different length scales [D. J. Pine, D. A. Weitz, J. X. Zhu, E. Herbolzheimer. J. Phys., 1990, 51(18), 2101-2127]. Previous study from this lab [Q. Li, X. Peng, G. B. McKenna. Soft Matter, 2017, 13(7), 1396-1404] indicates the DWS-based micro-rheology observes the system non-equilibrium behaviors differently from macro-rheology. The object of the present work was to further explore the non-equilibrium dynamics and to address the range of utility of DWS as a micro-rheological method. A thermo-sensitive core-shell colloidal system was investigated both during aging and subsequent to aging into a metastable equilibrium state using temperature-jump induced volume fraction-jump experiments. We find that in the non-equilibrium state, significant differences in the measured dynamics are observed for the different geometries and length scales. Compressed exponential relaxations for the autocorrelation function g2(t) were observed for large length scales. However, upon converting the g2(t) data to the mean square displacement (MSD), such differences with length scale diminished and the long-time MSD behavior was consistent with diffusive behavior. These observations in the non-equilibrium behaviors for different length scales leads to questioning of some interpretations in the current field of light scattering-based micro-rheology and provides a possibility to interrogate the aging mechanisms in colloidal glasses from a broader perspective than normally considered in measurements of g2(t) using DWS-based micro-rheology.
Collapse
Affiliation(s)
- Qi Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | | | | |
Collapse
|
30
|
Ge T, Rubinstein M. Mobility of Polymer-Tethered Nanoparticles in Unentangled Polymer Melts. Macromolecules 2019; 52:1536-1545. [PMID: 30956355 PMCID: PMC6449055 DOI: 10.1021/acs.macromol.8b02138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A scaling theory is developed for the motion of a polymer-tethered nanoparticle (NP) in an unentangled polymer melt. We identify two types of scaling regimes depending on the NP diameter d and the size of a grafted polymer chain (tail) R tail . In one type of regimes, the tethered NP motion is dominated by the bare NP, as the friction coefficient of the tails is lower than that of the less mobile particle. The time dependence of the mean square displacement (MSD) of the tethered NP ⟨Δr 2(t)⟩ in the particle-dominated regime can be approximated by ⟨Δr 2(t)⟩ bare for the bare NP. In the other type of regimes, the tethered NP motion is dominated by the tails when the friction coefficient of the tails surpasses that of the particle at times longer than the crossover time τ ∗. In a tail-dominated regime, the MSD ⟨Δr 2(t)⟩ ≈ ⟨Δr 2(t)⟩ bare only for t < τ ∗. ⟨Δr 2(t)⟩ of a single-tail NP for t > τ ∗ is approximated as the MSD ⟨Δr 2(t)⟩ tail of monomers in a free tail, whereas ⟨Δr 2(t)⟩ of a multi-tail NP for t > τ ∗ is approximated as the MSD ⟨Δr 2(t)⟩ star of the branch point of a star polymer. The time dependence of ⟨Δr 2(t)⟩ in a tail-dominated regime exhibits two qualitatively different sub-diffusive regimes. The first sub-diffusive regime for t < τ ∗ arises from the dynamical coupling between the particle and the melt chains. The second sub-diffusive regime for t > τ ∗ occurs as the particle participates in the dynamics of the tails. For NPs with loosely grafted chains, there is a Gaussian brush region surrounding the NP, where the chain strands in Gaussian conformations undergo Rouse dynamics with no hydrodynamic coupling. The crossover time τ ∗ for loosely grafted multi-tail NPs in a tail-dominated regime decreases as the number of tails increases. For NPs with densely grafted chains, the tails are hydrodynamically coupled to each other. The hydrodynamic radii for the diffusion of densely grafted multi-tail NPs are approximated by the sum of the particle and tail sizes.
Collapse
Affiliation(s)
- Ting Ge
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Michael Rubinstein
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
31
|
Stretched and compressed exponentials in the relaxation dynamics of a metallic glass-forming melt. Nat Commun 2018; 9:5334. [PMID: 30559382 PMCID: PMC6297352 DOI: 10.1038/s41467-018-07759-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/26/2018] [Indexed: 11/17/2022] Open
Abstract
The dynamics of glass-forming systems shows a multitude of features that are absent in normal liquids, such as non-exponential relaxation and a strong temperature-dependence of the relaxation time. Connecting these dynamic properties to the microscopic structure of the system is challenging because of the presence of the structural disorder. Here we use computer simulations of a metallic glass-former to establish such a connection. By probing the temperature and wave-vector dependence of the intermediate scattering function we find that the relaxation dynamics of the glassy melt is directly related to the local arrangement of icosahedral structures: Isolated icosahedra give rise to a liquid-like stretched exponential relaxation whereas clusters of icosahedra lead to a compressed exponential relaxation that is reminiscent to the one found in a solid. Our results show that in metallic glass-formers these two types of relaxation processes can coexist and give rise to a dynamics that is surprisingly complex. Glasses show peculiar relaxation dynamics below glass transition temperature, yet a deeper understanding of this phenomenon is still lacking. Wu et al. show the coexistence of stretched and compressed relaxation in a metallic glass system and attribute their origins to different local cluster structures.
Collapse
|
32
|
Pal A, Zinn T, Kamal MA, Narayanan T, Schurtenberger P. Anomalous Dynamics of Magnetic Anisotropic Colloids Studied by XPCS. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802233. [PMID: 30102453 DOI: 10.1002/smll.201802233] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/12/2018] [Indexed: 05/25/2023]
Abstract
The influence of an applied magnetic field on the collective dynamics of novel anisotropic colloidal particles whose shape resembles peanuts is reported. Being made up of hematite cores and silica shells, these micrometer-sized particles align in a direction perpendicular to the applied external magnetic field, and assemble into chains along the field direction. The anisotropic dynamics of these particles is investigated using multispeckle ultrasmall-angle X-ray photon correlation spectroscopy (USA-XPCS). The results indicate that along the direction of the magnetic field, the particle dynamics strongly depends on the length scale probed. Here, the relaxation of the intermediate scattering function follows a compressed exponential behavior at large distances, while it appears diffusive at distances comparable or smaller than the particle size. Perpendicular to the applied field (and along the direction of gravity), the experimental data can be quantitatively reproduced by a combination of an advective term originating from sedimentation and a purely diffusive one that describes the thermal diffusion of the assembled chains and individual particles.
Collapse
Affiliation(s)
- Antara Pal
- Division of Physical Chemistry, Department of Chemistry, Lund University, SE-221 00, Lund, Sweden
| | - Thomas Zinn
- ESRF-The European Synchrotron, 38043, Grenoble, France
| | - Mohammad Arif Kamal
- Division of Physical Chemistry, Department of Chemistry, Lund University, SE-221 00, Lund, Sweden
| | | | - Peter Schurtenberger
- Division of Physical Chemistry, Department of Chemistry, Lund University, SE-221 00, Lund, Sweden
| |
Collapse
|
33
|
Yang S, Liu S, Narayanan S, Zhang C, Akcora P. Chemical heterogeneity in interfacial layers of polymer nanocomposites. SOFT MATTER 2018; 14:4784-4791. [PMID: 29808217 DOI: 10.1039/c8sm00663f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is well-known that particle-polymer interactions strongly control the adsorption and conformations of adsorbed chains. Interfacial layers around nanoparticles consisting of adsorbed and free matrix chains have been extensively studied to reveal their rheological contribution to the behavior of nanocomposites. This work focuses on how chemical heterogeneity of the interfacial layers around the particles governs the microscopic mechanical properties of polymer nanocomposites. Low glass-transition temperature composites consisting of poly(vinyl acetate) coated silica nanoparticles in poly(ethylene oxide) and poly(methyl acrylate) matrices, and of poly(methyl methacrylate) silica nanoparticles in a poly(methyl acrylate) matrix are examined using rheology and X-ray photon correlation spectroscopy. We demonstrate that miscibility between the adsorbed and matrix chains in the interfacial layers led to the observed unusual reinforcement. We suggest that packing of chains in the interfacial regions may also contribute to the reinforcement in the polymer nanocomposites. These features may be used in designing mechanically adaptive composites operating at varying temperature.
Collapse
Affiliation(s)
- Siyang Yang
- Department of Chemical Engineering & Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | | | | | | | | |
Collapse
|
34
|
Oparaji O, Narayanan S, Sandy A, Ramakrishnan S, Hallinan D. Structural Dynamics of Strongly Segregated Block Copolymer Electrolytes. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b01803] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Onyekachi Oparaji
- FAMU-FSU College of Engineering, Florida A&M University−Florida State University, Tallahassee, Florida 32310, United States
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32303, United States
| | - Suresh Narayanan
- Argonne National
Laboratory, Argonne, Illinois 60439, United States
| | - Alec Sandy
- Argonne National
Laboratory, Argonne, Illinois 60439, United States
| | - Subramanian Ramakrishnan
- FAMU-FSU College of Engineering, Florida A&M University−Florida State University, Tallahassee, Florida 32310, United States
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32303, United States
| | - Daniel Hallinan
- FAMU-FSU College of Engineering, Florida A&M University−Florida State University, Tallahassee, Florida 32310, United States
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32303, United States
| |
Collapse
|
35
|
Balitska V, Shpotyuk O, Brunner M, Hadzaman I. Stretched-to-compressed-exponential crossover observed in the electrical degradation kinetics of some spinel-metallic screen-printed structures. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2017.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Nath P, Mangal R, Kohle F, Choudhury S, Narayanan S, Wiesner U, Archer LA. Dynamics of Nanoparticles in Entangled Polymer Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:241-249. [PMID: 29192503 DOI: 10.1021/acs.langmuir.7b03418] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The mean square displacement ⟨r2⟩ of nanoparticle probes dispersed in simple isotropic liquids and in polymer solutions is interrogated using fluorescence correlation spectroscopy and single-particle tracking (SPT) experiments. Probe dynamics in different regimes of particle diameter (d), relative to characteristic polymer length scales, including the correlation length (ξ), the entanglement mesh size (a), and the radius of gyration (Rg), are investigated. In simple fluids and for polymer solutions in which d ≫ Rg, long-time particle dynamics obey random-walk statistics ⟨r2⟩:t, with the bulk zero-shear viscosity of the polymer solution determining the frictional resistance to particle motion. In contrast, in polymer solutions with d < Rg, polymer molecules in solution exert noncontinuum resistances to particle motion and nanoparticle probes appear to interact hydrodynamically only with a local fluid medium with effective drag comparable to that of a solution of polymer chain segments with sizes similar to those of the nanoparticle probes. Under these conditions, the nanoparticles exhibit orders of magnitude faster dynamics than those expected from continuum predictions based on the Stokes-Einstein relation. SPT measurements further show that when d > a, nanoparticle dynamics transition from diffusive to subdiffusive on long timescales, reminiscent of particle transport in a field with obstructions. This last finding is in stark contrast to the nanoparticle dynamics observed in entangled polymer melts, where X-ray photon correlation spectroscopy measurements reveal faster but hyperdiffusive dynamics. We analyze these results with the help of the hopping model for particle dynamics in polymers proposed by Cai et al. and, on that basis, discuss the physical origins of the local drag experienced by the nanoparticles in entangled polymer solutions.
Collapse
Affiliation(s)
| | - Rahul Mangal
- Department of Chemical Engineering, Indian Institute of Technology Kanpur , Kanpur, Uttar Pradesh 208016, India
| | | | | | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60349, United States
| | | | | |
Collapse
|
37
|
Li SJ, Qian HJ, Lu ZY. Translational and rotational dynamics of an ultra-thin nanorod probe particle in linear polymer melts. Phys Chem Chem Phys 2018; 20:20996-21007. [DOI: 10.1039/c8cp03653e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Translational and rotational dynamics of a single rigid ultra-thin nanorod probe particle in linear polymer melts are investigated using coarse-grained molecular dynamics (CG-MD) simulations.
Collapse
Affiliation(s)
- Shu-Jia Li
- State Key Laboratory of Supramolecular Structure and Materials
- Laboratory of Theoretical and Computational Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Institute of Theoretical Chemistry
- Jilin University
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular Structure and Materials
- Laboratory of Theoretical and Computational Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Institute of Theoretical Chemistry
- Jilin University
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials
- Laboratory of Theoretical and Computational Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Institute of Theoretical Chemistry
- Jilin University
| |
Collapse
|
38
|
Ruta B, Pineda E, Evenson Z. Relaxation processes and physical aging in metallic glasses. JOURNAL OF PHYSICS: CONDENSED MATTER 2017; 29:503002. [PMID: 0 DOI: 10.1088/1361-648x/aa9964] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
39
|
Senses E, Narayanan S, Mao Y, Faraone A. Nanoscale Particle Motion in Attractive Polymer Nanocomposites. PHYSICAL REVIEW LETTERS 2017; 119:237801. [PMID: 29286700 DOI: 10.1103/physrevlett.119.237801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Indexed: 05/26/2023]
Abstract
Using x-ray photon correlation spectroscopy, we examined the slow nanoscale motion of silica nanoparticles individually dispersed in an entangled poly (ethylene oxide) melt at particle volume fractions up to 42%. The nanoparticles, therefore, serve as both fillers for the resulting attractive polymer nanocomposites and probes for the network dynamics therein. The results show that the particle relaxation closely follows the mechanical reinforcement in the nanocomposites only at the intermediate concentrations below the critical value for the chain confinement. Quite unexpectedly, the relaxation time of the particles does not further slow down at higher volume fractions-when all chains are practically on the nanoparticle interface-and decouples from the elastic modulus of the nanocomposites that further increases orders of magnitude.
Collapse
Affiliation(s)
- Erkan Senses
- NIST Center for Neutron Research, National Institute of Standards and Technology Gaithersburg, Maryland 20899-8562 USA
- Department of Materials Science and Engineering, University of Maryland College Park, Maryland 20742-2115 USA
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Yimin Mao
- NIST Center for Neutron Research, National Institute of Standards and Technology Gaithersburg, Maryland 20899-8562 USA
- Department of Materials Science and Engineering, University of Maryland College Park, Maryland 20742-2115 USA
| | - Antonio Faraone
- NIST Center for Neutron Research, National Institute of Standards and Technology Gaithersburg, Maryland 20899-8562 USA
| |
Collapse
|
40
|
Senses E, Tyagi M, Natarajan B, Narayanan S, Faraone A. Chain dynamics and nanoparticle motion in attractive polymer nanocomposites subjected to large deformations. SOFT MATTER 2017; 13:7922-7929. [PMID: 29034930 DOI: 10.1039/c7sm01009e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effect of large deformation on the chain dynamics in attractive polymer nanocomposites was investigated using neutron scattering techniques. Quasi-elastic neutron backscattering measurements reveal a substantial reduction of polymer mobility in the presence of attractive, well-dispersed nanoparticles. In addition, large deformations are observed to cause a further slowing down of the Rouse rates at high particle loadings, where the interparticle spacings are slightly smaller than the chain dimensions, i.e. in the strongly confined state. No noticeable change, however, was observed for a lightly confined system. The reptation tube diameter, measured by neutron spin echo, remained unchanged after shear, suggesting that the level of chain-chain entanglements is not significantly affected. The shear-induced changes in the interparticle bridging reflect the slow nanoparticle motion measured by X-ray photon correlation spectroscopy. These results provide a first step for understanding how large shear can significantly affect the segmental motion in nanocomposites and open up new opportunities for designing mechanically responsive soft materials.
Collapse
Affiliation(s)
- Erkan Senses
- NIST Center for Neutron Research, National Institute of Standards and Technology Gaithersburg, MD 20899-8562, USA.
| | | | | | | | | |
Collapse
|
41
|
Johnson KJ, Glynos E, Maroulas SD, Narayanan S, Sakellariou G, Green PF. Confinement Effects on Host Chain Dynamics in Polymer Nanocomposite Thin Films. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Kyle J. Johnson
- Department
of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Emmanouil Glynos
- Department
of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Suresh Narayanan
- Advanced
Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Georgios Sakellariou
- Department
of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece
| | - Peter F. Green
- Department
of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- National
Renewable
Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
42
|
Chaudhuri P, Berthier L. Ultra-long-range dynamic correlations in a microscopic model for aging gels. Phys Rev E 2017; 95:060601. [PMID: 28709225 DOI: 10.1103/physreve.95.060601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Indexed: 06/07/2023]
Abstract
We use large-scale computer simulations to explore the nonequilibrium aging dynamics in a microscopic model for colloidal gels. We find that gelation resulting from a kinetically arrested phase separation is accompanied by "anomalous" particle dynamics revealed by superdiffusive particle motion and compressed exponential relaxation of time correlation functions. Spatiotemporal analysis of the dynamics reveals intermittent heterogeneities producing spatial correlations over extremely large length scales. Our study is a microscopically resolved model reproducing all features of the spontaneous aging dynamics observed experimentally in soft materials.
Collapse
Affiliation(s)
- Pinaki Chaudhuri
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600 113, India
| | - Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221, Université Montpellier and CNRS, 34095 Montpellier, France
| |
Collapse
|
43
|
Senses E, Ansar SM, Kitchens CL, Mao Y, Narayanan S, Natarajan B, Faraone A. Small Particle Driven Chain Disentanglements in Polymer Nanocomposites. PHYSICAL REVIEW LETTERS 2017; 118:147801. [PMID: 28430517 DOI: 10.1103/physrevlett.118.147801] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Indexed: 06/07/2023]
Abstract
Using neutron spin-echo spectroscopy, x-ray photon correlation spectroscopy, and bulk rheology, we studied the effect of particle size on the single-chain dynamics, particle mobility, and bulk viscosity in athermal polyethylene oxide-gold nanoparticle composites. The results reveal a ≈25% increase in the reptation tube diameter with the addition of nanoparticles smaller than the entanglement mesh size (≈5 nm), at a volume fraction of 20%. The tube diameter remains unchanged in the composite with larger (20 nm) nanoparticles at the same loading. In both cases, the Rouse dynamics is insensitive to particle size. These results provide a direct experimental observation of particle-size-driven disentanglements that can cause non-Einstein-like viscosity trends often observed in polymer nanocomposites.
Collapse
Affiliation(s)
- Erkan Senses
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8562, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742-2115, USA
| | - Siyam M Ansar
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, USA
| | - Christopher L Kitchens
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, USA
| | - Yimin Mao
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8562, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742-2115, USA
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Bharath Natarajan
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Antonio Faraone
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8562, USA
| |
Collapse
|
44
|
Zhang F, Allen AJ, Levine LE, Tsai DH, Ilavsky J. Structure and Dynamics of Bimodal Colloidal Dispersions in a Low-Molecular-Weight Polymer Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2817-2828. [PMID: 28233496 PMCID: PMC5527685 DOI: 10.1021/acs.langmuir.7b00090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We present an experimental study of the structural and dynamical properties of bimodal, micrometer-sized colloidal dispersions (size ratio ≈ 2) in an aqueous solution of low-molecular-weight polymer (polyethylene glycol 2000) using synchrotron ultra-small angle X-ray scattering (USAXS) and USAXS-based X-ray photon correlation spectroscopy. We fixed the volume fraction of the large particles at 5% and systematically increased the volume fraction of the small particles from 0 to 5% to evaluate their effects on the structure and dynamics. The bimodal dispersions were homogenous through the investigated parameter space. We found that the partial structure factors can be satisfactorily retrieved for the bimodal colloidal dispersions using a Percus-Yevick hard-sphere potential when the size distributions of the particles were taken into account. We also found that the partial structure factor between the large particles did not exhibit a significant variation with increasing volume fraction of the small particles, whereas the isothermal compressibility of the binary mixture was found to decrease with increasing volume fraction of the small particles. The dynamics of single-component large-particle dispersion obey the principles of de Gennes narrowing, where the wave vector dependence of the interparticle diffusion coefficient is inversely proportional to the interparticle structure factor. The dynamics of the bimodal dispersions demonstrate a strong dependence on the fraction of small particles. We also made a comparison between the experimental effective dynamic viscosity of the bimodal dispersion with the theoretical predictions, which suggest that the complex mutual interactions between the large and small particles have a strong effect on the dynamic behaviors of bimodal dispersions.
Collapse
Affiliation(s)
- Fan Zhang
- Material Measurement Laboratory, National Institute of Standards and Technology Gaithersburg, MD 20899, USA
| | - Andrew J. Allen
- Material Measurement Laboratory, National Institute of Standards and Technology Gaithersburg, MD 20899, USA
| | - Lyle E. Levine
- Material Measurement Laboratory, National Institute of Standards and Technology Gaithersburg, MD 20899, USA
| | - De-Hao Tsai
- Department of Chemical Engineering, National Tsing Hua University Hsinchu, Taiwan, Republic of China
| | - Jan Ilavsky
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory Argonne, IL 60439, USA
| |
Collapse
|
45
|
Lee J, Grein-Iankovski A, Narayanan S, Leheny RL. Nanorod Mobility within Entangled Wormlike Micelle Solutions. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02091] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jonghun Lee
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Aline Grein-Iankovski
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Department of Chemistry, Federal University of Parana, Curitiba, PR, Brazil
| | - Suresh Narayanan
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Robert L. Leheny
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
46
|
Shpotyuk O, Brunner M, Hadzaman I, Balitska V, Klym H. Analytical Description of Degradation-Relaxation Transformations in Nanoinhomogeneous Spinel Ceramics. NANOSCALE RESEARCH LETTERS 2016; 11:499. [PMID: 27844462 PMCID: PMC5108734 DOI: 10.1186/s11671-016-1722-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
Mathematical models of degradation-relaxation kinetics are considered for jammed thick-film systems composed of screen-printed spinel Cu0.1Ni0.1Co1.6Mn1.2O4 and conductive Ag or Ag-Pd alloys. Structurally intrinsic nanoinhomogeneous ceramics due to Ag and Ag-Pd diffusing agents embedded in a spinel phase environment are shown to define governing kinetics of thermally induced degradation under 170 °C obeying an obvious non-exponential behavior in a negative relative resistance drift. The characteristic stretched-to-compressed exponential crossover is detected for degradation-relaxation kinetics in thick-film systems with conductive contacts made of Ag-Pd and Ag alloys. Under essential migration of a conductive phase, Ag penetrates thick-film spinel ceramics via a considerable two-step diffusing process.
Collapse
Affiliation(s)
- O Shpotyuk
- Jan Dlugosz University in Czestochowa, 13/15, Armii Krajowej str., 42200, Czestochowa, Poland.
- Vlokh Institute of Physical Optics, 23, Dragomanov str., Lviv, 79005, Ukraine.
| | - M Brunner
- Technische Hochschule Köln/University of Technology, Arts, Sciences, 2, Betzdorfer Strasse, Köln, 50679, Germany
| | - I Hadzaman
- Drohobych Ivan Franko State Pedagogical University, 24, I. Franko str., Drohobych, 82100, Ukraine
| | - V Balitska
- Lviv State University of Life Safety, 35, Kleparivska str., Lviv, 79007, Ukraine
| | - H Klym
- Lviv Polytechnic National University, 12, Bandera str., Lviv, 79013, Ukraine
| |
Collapse
|
47
|
Grein-Iankovski A, Riegel-Vidotti IC, Simas-Tosin FF, Narayanan S, Leheny RL, Sandy AR. Exploring the relationship between nanoscale dynamics and macroscopic rheology in natural polymer gums. SOFT MATTER 2016; 12:9321-9329. [PMID: 27805235 DOI: 10.1039/c6sm01492e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report a study connecting the nanoscale and macroscale structure and dynamics of Acacia mearnsii gum as probed by small-angle X-ray scattering (SAXS), X-ray photon correlation spectroscopy (XPCS) and rheology. Acacia gum, in general, is a complex polysaccharide used extensively in industry. Over the analyzed concentration range (15 to 30 wt%) the A. mearnsii gum is found to have a gel-like linear rheology and to exhibit shear thinning flow behavior under steady shear. The gum solutions exhibited a steadily increasing elastic modulus with increasing time after they were prepared and also the emergence of shear thickening events within the shear thinning behavior, characteristic of associative polymers. XPCS measurements using gold nanoparticles as tracers were used to explore the microscopic dynamics within the biopolymer gels and revealed a two-step relaxation process with a partial decay at inaccessibly short times, suggesting caged motion of the nanoparticles, followed by a slow decay at later delay times. Non-diffusive motion evidenced by a compressed exponential line shape and an inverse relationship between relaxation time and wave vector characterizes the slow dynamics of A. mearnsii gum gels. Surprisingly, we have determined that the nanometer-scale mean square displacement of the nanoparticles showed a close relationship to the values predicted from the macroscopic elastic properties of the material, obtained through the rheology experiments. Our results demonstrate the potential applicability of the XPCS technique in the natural polymers field to connect their macroscale properties with their nanoscale structure and dynamics.
Collapse
Affiliation(s)
- Aline Grein-Iankovski
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA. and Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19081, CEP 81531-980, Curitiba, PR, Brazil
| | - Izabel C Riegel-Vidotti
- Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19081, CEP 81531-980, Curitiba, PR, Brazil
| | - Fernanda F Simas-Tosin
- Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19081, CEP 81531-980, Curitiba, PR, Brazil and Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Suresh Narayanan
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alec R Sandy
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA.
| |
Collapse
|
48
|
Lungova M, Krutyeva M, Pyckhout-Hintzen W, Wischnewski A, Monkenbusch M, Allgaier J, Ohl M, Sharp M, Richter D. Nanoscale Motion of Soft Nanoparticles in Unentangled and Entangled Polymer Matrices. PHYSICAL REVIEW LETTERS 2016; 117:147803. [PMID: 27740797 DOI: 10.1103/physrevlett.117.147803] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Indexed: 06/06/2023]
Abstract
We have studied the motion of polyhedral oligomeric silsesquioxane (POSS) nanoparticles modified with poly(ethylene glycol) (PEG) arms immersed in PEG matrices of different molecular weight. Employing neutron spin echo spectroscopy in combination with pulsed field gradient (PFG) NMR we found the following. (i) For entangled matrices the center of mass mean square displacement (MSD) of the PEG-POSS particles is subdiffusive following a t^{0.56} power law. (ii) The diffusion coefficient as well as the crossover to Fickian diffusion is independent of the matrix molecular weight and takes place as soon as the center of mass has moved a distance corresponding to the particle radius-this holds also for unentangled hosts. (iii) For the entangled matrices Rubinstein's scaling theory is validated; however, the numbers indicate that beyond Rouse friction the entanglement constraints appear to strongly increase the effective friction even on the nanoparticle length scale imposing a caveat on the interpretation of microrheological experiments. (iv) The oligomer decorated PEG-POSS particles exhibit the dynamics of a Gaussian star with an internal viscosity that rises with an increase of the host molecular weight.
Collapse
Affiliation(s)
- M Lungova
- Jülich Centre for Neutron Science (JCNS) & Institute for Complex Systems (ICS), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - M Krutyeva
- Jülich Centre for Neutron Science (JCNS) & Institute for Complex Systems (ICS), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - W Pyckhout-Hintzen
- Jülich Centre for Neutron Science (JCNS) & Institute for Complex Systems (ICS), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - A Wischnewski
- Jülich Centre for Neutron Science (JCNS) & Institute for Complex Systems (ICS), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - M Monkenbusch
- Jülich Centre for Neutron Science (JCNS) & Institute for Complex Systems (ICS), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - J Allgaier
- Jülich Centre for Neutron Science (JCNS) & Institute for Complex Systems (ICS), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - M Ohl
- Jülich Centre for Neutron Science (JCNS) & Institute for Complex Systems (ICS), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - M Sharp
- Institute Laue Langevin (ILL), 38000 Grenoble, France and European Spallation Source (ESS), 22363 Lund, Sweden
| | - D Richter
- Jülich Centre for Neutron Science (JCNS) & Institute for Complex Systems (ICS), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
49
|
Applications and limitations of electron correlation microscopy to study relaxation dynamics in supercooled liquids. Ultramicroscopy 2016; 178:125-130. [PMID: 27638332 DOI: 10.1016/j.ultramic.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/31/2016] [Accepted: 09/06/2016] [Indexed: 11/21/2022]
Abstract
Electron correlation microscopy (ECM) is a way to measure structural relaxation times, τ, of liquids with nanometer-scale spatial resolution using coherent electron scattering equivalent of photon correlation spectroscopy. We have applied ECM with a 3.5nm diameter probe to Pt57.5Cu14.7Ni5.3P22.5 amorphous nanorods and Pd40Ni40P20 bulk metallic glass (BMG) heated inside the STEM into the supercooled liquid region. These data demonstrate that the ECM technique is limited by the characteristics of the time series, which must be at least 40τ to obtain a well-converged correlation function g2(t), and the time per frame, which must be less than 0.1τ to obtain sufficient sampling. A high-speed direct electron camera enables fast acquisition and affords reliable g2(t) data even with low signal per frame.
Collapse
|
50
|
|