1
|
Liu X, Zhang F, Xun Z, Shao J, Luo W, Jiang X, Wang J, Wang J, Li S, Lin Q, Ren Y, Zhao H, Cheng Z, Wan J. The OsNL1-OsTOPLESS2-OsMOC1/3 pathway regulates high-order tiller outgrowth in rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:900-910. [PMID: 39676575 PMCID: PMC11869174 DOI: 10.1111/pbi.14547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024]
Abstract
Tiller is an important factor in determining rice yield. Currently, researches mainly focus on the outgrowth of low-order tiller (LOT), while the regulation mechanism of high-order tiller (HOT) outgrowth has remained unknown. In this study, we detected one OsNL1 mutant, nl1, exhibiting HOT numbers increase, and found that OsNL1 interacts with OsTOPLESS2, which was mediated by the core motif of nine amino acids VDCTLSLGT within the HAN domain of OsNL1. The topless2 mutant exhibits similar HOT number increase as in the nl1. Through ChIP-seq analysis, we revealed that OsNL1 recruits OsTOPLESS2 to conduct histone deacetylation in the promoters of OsMOC1 and OsMOC3 to regulate HOT outgrowth. Moreover, we showed that the HAN domain is essential for OsNL1 function as a repressor. In summary, our study reveals partial mechanism of HOT outgrowth in rice and deciphers the molecular biology function of the HAN domain. This will contribute to the comprehensive understanding of tiller outgrowth and the role of HAN-domain-containing genes.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
- College of Life SciencesNorthwest A & F UniversityYanglingChina
| | - Feng Zhang
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Ziqi Xun
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Jiale Shao
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Wenfan Luo
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Xiaokang Jiang
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Jiachang Wang
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Jian Wang
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Shuai Li
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Qibing Lin
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Huixian Zhao
- College of Life SciencesNorthwest A & F UniversityYanglingChina
| | - Zhijun Cheng
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
- Nanfan Research InstituteCAASSanyaHainaChina
| | - Jianmin Wan
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
- Nanfan Research InstituteCAASSanyaHainaChina
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095P. R. China
| |
Collapse
|
2
|
Dong Z, Hu G, Chen Q, Shemyakina EA, Chau G, Whipple CJ, Fletcher JC, Chuck G. A regulatory network controlling developmental boundaries and meristem fates contributed to maize domestication. Nat Genet 2024; 56:2528-2537. [PMID: 39415035 DOI: 10.1038/s41588-024-01943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/09/2024] [Indexed: 10/18/2024]
Abstract
During domestication, early farmers selected different vegetative and reproductive traits, but identifying the causative loci has been hampered by their epistasis and functional redundancy. Using chromatin immunoprecipitation sequencing combined with genome-wide association analysis, we uncovered a developmental regulator that controls both types of trait while acting upstream of multiple domestication loci. tasselsheath4 (tsh4) is a new maize domestication gene that establishes developmental boundaries and specifies meristem fates despite not being expressed within them. TSH4 accomplishes this by using a double-negative feedback loop that targets and represses the very same microRNAs that negatively regulate it. TSH4 functions redundantly with a pair of homologs to positively regulate a suite of domestication loci while specifying the meristem that doubled seed yield in modern maize. TSH4 has a critical role in yield gain and helped generate ideal crop plant architecture, thus explaining why it was a major domestication target.
Collapse
Affiliation(s)
- Zhaobin Dong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China.
- University of California, Berkeley/Plant Gene Expression Center, Albany, CA, USA.
| | - Gaoyuan Hu
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Qiuyue Chen
- North Carolina State University, Raleigh, NC, USA
| | - Elena A Shemyakina
- University of California, Berkeley/Plant Gene Expression Center, Albany, CA, USA
| | - Geeyun Chau
- University of California, Berkeley/Plant Gene Expression Center, Albany, CA, USA
| | | | - Jennifer C Fletcher
- University of California, Berkeley/Plant Gene Expression Center, Albany, CA, USA
| | - George Chuck
- University of California, Berkeley/Plant Gene Expression Center, Albany, CA, USA.
| |
Collapse
|
3
|
Li J, Yao X, Lai H, Zhang X, Zhong J. The diversification of the shoot branching system: A quantitative and comparative perspective in meristem determinacy. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102574. [PMID: 38917775 DOI: 10.1016/j.pbi.2024.102574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
Reiterative shoot branching largely defines important yield components of crops and is essentially controlled by programs that direct the initiation, dormancy release, and differentiation of meristems in the axils of leaves. Here, we focus on meristem determinacy, defining the number of reiterations that shape the shoot architectures and exhibit enormous diversity in a wide range of species. The meristem determinacy per se is hierarchically complex and context-dependent for the successively emerged meristems, representing a crucial mechanism in shaping the complexity of the shoot branching. In addition, we have highlighted that two key components of axillary meristem developmental programs may have been co-opted in controlling flower/ear number of an axillary inflorescence in legumes/maize, hinting at the diversification of axillary-meristem-patterning programs in different lineages. This begs the question how axillary meristem patterning programs may have diversified during plant evolution and hence helped shape the rich variation in shoot branching systems.
Collapse
Affiliation(s)
- Jiajia Li
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xiani Yao
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Huan Lai
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xuelian Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jinshun Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Laboratory of the Developmental Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou 510642, Guangdong, China; South China Institute for Soybean Innovation Research, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
4
|
Feng Y, Li X, Qin Y, Li Y, Yang Z, Xiong X, Wan J, Qiu M, Hou Q, Zhang Z, Guo Z, Zhang X, Niu J, Zhou Q, Tang J, Fu Z. Identification of anther thermotolerance genes by the integration of linkage and association analysis in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1953-1966. [PMID: 38943629 DOI: 10.1111/tpj.16900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
Maize is one of the world's most important staple crops, yet its production is increasingly threatened by the rising frequency of high-temperature stress (HTS). To investigate the genetic basis of anther thermotolerance under field conditions, we performed linkage and association analysis to identify HTS response quantitative trait loci (QTL) using three recombinant inbred line (RIL) populations and an association panel containing 375 diverse maize inbred lines. These analyses resulted in the identification of 16 co-located large QTL intervals. Among the 37 candidate genes identified in these QTL intervals, five have rice or Arabidopsis homologs known to influence pollen and filament development. Notably, one of the candidate genes, ZmDUP707, has been subject to selection pressure during breeding. Its expression is suppressed by HTS, leading to pollen abortion and barren seeds. We also identified several additional candidate genes potentially underly QTL previously reported by other researchers. Taken together, our results provide a pool of valuable candidate genes that could be employed by future breeding programs aiming at enhancing maize HTS tolerance.
Collapse
Affiliation(s)
- Yijian Feng
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xinlong Li
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yongtian Qin
- Hebi Academy of Agricultural Sciences, Hebi, 458030, Henan, China
| | - Yibo Li
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zeyuan Yang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuehang Xiong
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jiong Wan
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Meng Qiu
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Qiuchan Hou
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhanyong Guo
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jishan Niu
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Qingqian Zhou
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy/The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
5
|
Manuela D, Xu M. AINTEGUMENTA and redundant AINTEGUMENTA-LIKE6 are required for bract outgrowth in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3920-3931. [PMID: 38547364 DOI: 10.1093/jxb/erae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/27/2024] [Indexed: 07/11/2024]
Abstract
Plants consist of fundamental units of growth called phytomers (leaf or bract, axillary bud, node, and internode), which are repeated and modified throughout shoot development to give plants plasticity for survival and adaptation. One phytomer modification is the suppression or outgrowth of bracts, the leaves subtending the flowers. The floral meristem identity regulator LEAFY (LFY) and the organ boundary genes BLADE-ON-PETIOLE1 (BOP1) and BOP2 have been shown to suppress bract development in Arabidopsis, as mutations in these genes result in bract outgrowth. However, much less is known about the mechanisms that promote bract outgrowth in Arabidopsis mutants such as these. Further understanding of this mechanism may provide a potential tool for modifying leaf development. Here, we showed that the MADS-box genes SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), FRUITFUL (FUL), and AGAMOUS-LIKE24 (AGL24) play more important roles than BOP1/2 and LFY in bract suppression, and that AINTEGUMENTA (ANT) and the partially redundant AINTEGUMENTA-LIKE6 (AIL6) are necessary for bract outgrowth in these mutant backgrounds. We also demonstrated that misexpression of AIL6 alone is sufficient for bract outgrowth. Our data reveal a mechanism for bract suppression and outgrowth and provide insight into phytomer plasticity.
Collapse
Affiliation(s)
- Darren Manuela
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Mingli Xu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
6
|
Galli M, Chen Z, Ghandour T, Chaudhry A, Gregory J, Li M, Zhang X, Dong Y, Song G, Walley JW, Chuck G, Whipple C, Kaeppler HF, Huang SSC, Gallavotti A. Transcription factor binding site divergence across maize inbred lines drives transcriptional and phenotypic variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596834. [PMID: 38895211 PMCID: PMC11185568 DOI: 10.1101/2024.05.31.596834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Regulatory elements are important constituents of plant genomes that have shaped ancient and modern crops. Their identification, function, and diversity in crop genomes however are poorly characterized, thus limiting our ability to harness their power for further agricultural advances using induced or natural variation. Here, we use DNA affinity purification-sequencing (DAP-seq) to map transcription factor (TF) binding events for 200 maize TFs belonging to 30 distinct families and heterodimer pairs in two distinct inbred lines historically used for maize hybrid plant production, providing empirical binding site annotation for 5.3% of the maize genome. TF binding site comparison in B73 and Mo17 inbreds reveals widespread differences, driven largely by structural variation, that correlate with gene expression changes. TF binding site presence-absence variation helps clarify complex QTL such as vgt1, an important determinant of maize flowering time, and DICE, a distal enhancer involved in herbivore resistance. Modification of TF binding regions via CRISPR-Cas9 mediated editing alters target gene expression and phenotype. Our functional catalog of maize TF binding events enables collective and comparative TF binding analysis, and highlights its value for agricultural improvement.
Collapse
Affiliation(s)
- Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Tara Ghandour
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Amina Chaudhry
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Jason Gregory
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Miaomiao Li
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Xuan Zhang
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Yinxin Dong
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Gaoyuan Song
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University; Ames, IA, 50011
| | - Justin W. Walley
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University; Ames, IA, 50011
| | - George Chuck
- Plant Gene Expression Center, Albany, CA 94710, USA
| | - Clinton Whipple
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
| | - Heidi F. Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, WI, USA
- Wisconsin Crop Innovation Center, University of Wisconsin, Middleton, WI, USA
| | - Shao-shan Carol Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
7
|
Wang Y, Luo Y, Guo X, Li Y, Yan J, Shao W, Wei W, Wei X, Yang T, Chen J, Chen L, Ding Q, Bai M, Zhuo L, Li L, Jackson D, Zhang Z, Xu X, Yan J, Liu H, Liu L, Yang N. A spatial transcriptome map of the developing maize ear. NATURE PLANTS 2024; 10:815-827. [PMID: 38745100 DOI: 10.1038/s41477-024-01683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
A comprehensive understanding of inflorescence development is crucial for crop genetic improvement, as inflorescence meristems give rise to reproductive organs and determine grain yield. However, dissecting inflorescence development at the cellular level has been challenging owing to a lack of specific marker genes to distinguish among cell types, particularly in different types of meristems that are vital for organ formation. In this study, we used spatial enhanced resolution omics-sequencing (Stereo-seq) to construct a precise spatial transcriptome map of the developing maize ear primordium, identifying 12 cell types, including 4 newly defined cell types found mainly in the inflorescence meristem. By extracting the meristem components for detailed clustering, we identified three subtypes of meristem and validated two MADS-box genes that were specifically expressed at the apex of determinate meristems and involved in stem cell determinacy. Furthermore, by integrating single-cell RNA transcriptomes, we identified a series of spatially specific networks and hub genes that may provide new insights into the formation of different tissues. In summary, this study provides a valuable resource for research on cereal inflorescence development, offering new clues for yield improvement.
Collapse
Affiliation(s)
- Yuebin Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xing Guo
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
- BGI Research, Wuhan, China
| | - Yunfu Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jiali Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Wenwen Shao
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
- BGI Research, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjie Wei
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiaofeng Wei
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
- China National GeneBank, Shenzhen, China
| | - Tao Yang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
- China National GeneBank, Shenzhen, China
| | - Jing Chen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
- China National GeneBank, Shenzhen, China
| | - Lihua Chen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
| | - Qian Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Minji Bai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Lin Zhuo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Li Li
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
| | - David Jackson
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China.
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Shenzhen, China.
| | - Lei Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| | - Ning Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
8
|
Tsuji H, Sato M. The Function of Florigen in the Vegetative-to-Reproductive Phase Transition in and around the Shoot Apical Meristem. PLANT & CELL PHYSIOLOGY 2024; 65:322-337. [PMID: 38179836 PMCID: PMC11020210 DOI: 10.1093/pcp/pcae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/30/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Plants undergo a series of developmental phases throughout their life-cycle, each characterized by specific processes. Three critical features distinguish these phases: the arrangement of primordia (phyllotaxis), the timing of their differentiation (plastochron) and the characteristics of the lateral organs and axillary meristems. Identifying the unique molecular features of each phase, determining the molecular triggers that cause transitions and understanding the molecular mechanisms underlying these transitions are keys to gleaning a complete understanding of plant development. During the vegetative phase, the shoot apical meristem (SAM) facilitates continuous leaf and stem formation, with leaf development as the hallmark. The transition to the reproductive phase induces significant changes in these processes, driven mainly by the protein FT (FLOWERING LOCUS T) in Arabidopsis and proteins encoded by FT orthologs, which are specified as 'florigen'. These proteins are synthesized in leaves and transported to the SAM, and act as the primary flowering signal, although its impact varies among species. Within the SAM, florigen integrates with other signals, culminating in developmental changes. This review explores the central question of how florigen induces developmental phase transition in the SAM. Future research may combine phase transition studies, potentially revealing the florigen-induced developmental phase transition in the SAM.
Collapse
Affiliation(s)
- Hiroyuki Tsuji
- Bioscience and Biotechnology Center, Nagoya University, Furocho, Chikusa, Nagoya, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Moeko Sato
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
9
|
Khodaverdi M, Mullinger MD, Shafer HR, Preston JC. Melica as an emerging model system for comparative studies in temperate Pooideae grasses. ANNALS OF BOTANY 2023; 132:1175-1190. [PMID: 37696761 PMCID: PMC10902897 DOI: 10.1093/aob/mcad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/10/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND AND AIMS Pooideae grasses contain some of the world's most important crop and forage species. Although much work has been conducted on understanding the genetic basis of trait diversification within a few annual Pooideae, comparative studies at the subfamily level are limited by a lack of perennial models outside 'core' Pooideae. We argue for development of the perennial non-core genus Melica as an additional model for Pooideae, and provide foundational data regarding the group's biogeography and history of character evolution. METHODS Supplementing available ITS and ndhF sequence data, we built a preliminary Bayesian-based Melica phylogeny, and used it to understand how the genus has diversified in relation to geography, climate and trait variation surveyed from various floras. We also determine biomass accumulation under controlled conditions for Melica species collected across different latitudes and compare inflorescence development across two taxa for which whole genome data are forthcoming. KEY RESULTS Our phylogenetic analyses reveal three strongly supported geographically structured Melica clades that are distinct from previously hypothesized subtribes. Despite less geographical affinity between clades, the two sister 'Ciliata' and 'Imperfecta' clades segregate from the more phylogenetically distant 'Nutans' clade in thermal climate variables and precipitation seasonality, with the 'Imperfecta' clade showing the highest levels of trait variation. Growth rates across Melica are positively correlated with latitude of origin. Variation in inflorescence morphology appears to be explained largely through differences in secondary branch distance, phyllotaxy and number of spikelets per secondary branch. CONCLUSIONS The data presented here and in previous studies suggest that Melica possesses many of the necessary features to be developed as an additional model for Pooideae grasses, including a relatively fast generation time, perenniality, and interesting variation in physiology and morphology. The next step will be to generate a genome-based phylogeny and transformation tools for functional analyses.
Collapse
Affiliation(s)
- Masoumeh Khodaverdi
- Department of Plant Biology, The University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, USA
| | - Mark D Mullinger
- Department of Plant Biology, The University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, USA
| | - Hannah R Shafer
- Department of Plant Biology, The University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, USA
| | - Jill C Preston
- Department of Plant Biology, The University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, USA
| |
Collapse
|
10
|
Strable J, Unger-Wallace E, Aragón Raygoza A, Briggs S, Vollbrecht E. Interspecies transfer of RAMOSA1 orthologs and promoter cis sequences impacts maize inflorescence architecture. PLANT PHYSIOLOGY 2023; 191:1084-1101. [PMID: 36508348 PMCID: PMC9922432 DOI: 10.1093/plphys/kiac559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/26/2022] [Indexed: 06/18/2023]
Abstract
Grass inflorescences support floral structures that each bear a single grain, where variation in branch architecture directly impacts yield. The maize (Zea mays) RAMOSA1 (ZmRA1) transcription factor acts as a key regulator of inflorescence development by imposing branch meristem determinacy. Here, we show RA1 transcripts accumulate in boundary domains adjacent to spikelet meristems in sorghum (Sorghum bicolor, Sb) and green millet (Setaria viridis, Sv) inflorescences similar as in the developing maize tassel and ear. To evaluate the functional conservation of syntenic RA1 orthologs and promoter cis sequences in maize, sorghum, and setaria, we utilized interspecies gene transfer and assayed genetic complementation in a common inbred background by quantifying recovery of normal branching in highly ramified ra1-R mutants. A ZmRA1 transgene that includes endogenous upstream and downstream flanking sequences recovered normal tassel and ear branching in ra1-R. Interspecies expression of two transgene variants of the SbRA1 locus, modeled as the entire endogenous tandem duplication or just the nonframeshifted downstream copy, complemented ra1-R branching defects and induced unusual fasciation and branch patterns. The SvRA1 locus lacks conserved, upstream noncoding cis sequences found in maize and sorghum; interspecies expression of a SvRA1 transgene did not or only partially recovered normal inflorescence forms. Driving expression of the SvRA1 coding region by the ZmRA1 upstream region, however, recovered normal inflorescence morphology in ra1-R. These data leveraging interspecies gene transfer suggest that cis-encoded temporal regulation of RA1 expression is a key factor in modulating branch meristem determinacy that ultimately impacts grass inflorescence architecture.
Collapse
|
11
|
Han L, Zhong W, Qian J, Jin M, Tian P, Zhu W, Zhang H, Sun Y, Feng JW, Liu X, Chen G, Farid B, Li R, Xiong Z, Tian Z, Li J, Luo Z, Du D, Chen S, Jin Q, Li J, Li Z, Liang Y, Jin X, Peng Y, Zheng C, Ye X, Yin Y, Chen H, Li W, Chen LL, Li Q, Yan J, Yang F, Li L. A multi-omics integrative network map of maize. Nat Genet 2023; 55:144-153. [PMID: 36581701 DOI: 10.1038/s41588-022-01262-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/03/2022] [Indexed: 12/31/2022]
Abstract
Networks are powerful tools to uncover functional roles of genes in phenotypic variation at a system-wide scale. Here, we constructed a maize network map that contains the genomic, transcriptomic, translatomic and proteomic networks across maize development. This map comprises over 2.8 million edges in more than 1,400 functional subnetworks, demonstrating an extensive network divergence of duplicated genes. We applied this map to identify factors regulating flowering time and identified 2,651 genes enriched in eight subnetworks. We validated the functions of 20 genes, including 18 with previously unknown connections to flowering time in maize. Furthermore, we uncovered a flowering pathway involving histone modification. The multi-omics integrative network map illustrates the principles of how molecular networks connect different types of genes and potential pathways to map a genome-wide functional landscape in maize, which should be applicable in a wide range of species.
Collapse
Affiliation(s)
- Linqian Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Wanshun Zhong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Jia Qian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Minliang Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Peng Tian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Wanchao Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Hongwei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yonghao Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Jia-Wu Feng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiangguo Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Guo Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Babar Farid
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture Multan, Multan, Pakistan
| | - Ruonan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zimo Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhihui Tian
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Juan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Zi Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Dengxiang Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Sijia Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qixiao Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Jiaxin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Yan Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiaomeng Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yong Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chang Zheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xinnan Ye
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yuejia Yin
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Hong Chen
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Weifu Li
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China. .,Hubei Hongshan Laboratory, Wuhan, China.
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China. .,Hubei Hongshan Laboratory, Wuhan, China.
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China. .,Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
12
|
Cuellar-Garrido LF, Ruiz-Sanchez E, Vargas-Ponce O, Whipple CJ. Ontogeny and anatomy of Bouteloua (Poaceae: Chloridoideae) species display a basipetal branch formation and a novel modified leaf structure in grasses. ANNALS OF BOTANY 2022; 130:737-747. [PMID: 35961673 PMCID: PMC9670754 DOI: 10.1093/aob/mcac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Shoot ontogenesis in grasses follows a transition from a vegetative phase into a reproductive phase. Current studies provide insight into how branch and spikelet formation occur during the reproductive phase. However, these studies do not explain all the complex diversity of grass inflorescence forms and are mostly focused on model grasses. Moreover, truncated inflorescences of the non-model grass genus Urochloa (Panicoideae) with formation of primary branches have basipetal initiation of branches. Bouteloua species (Chloridoideae) are non-model grasses that form truncated inflorescences of primary branches with apical vestiges of uncertain homology at the tips of branching events and sterile florets above the lowermost fertile floret. Sterile florets are reduced to rudimentary lemmas composed of three large awns diverging from an awn column. Conflict about the awn column identity of this rudimentary lemma is often addressed in species descriptions of this genus. We test if Bouteloua species can display basipetal initiation of branches and explore the identity of vestiges and the awn column of rudimentary lemmas. METHODS We surveyed the inflorescence ontogeny and branch/awn anatomy of Bouteloua species and compared results with recent ontogenetic studies of chloridoids. KEY RESULTS Bouteloua arizonica has florets with basipetal maturation. Branches display basipetal branch initiation and maturation. Branch vestiges are formed laterally by meristems during early branching events. The spikelet meristem forms the awn column of rudimentary lemmas. Vestiges and sterile floret awns have anatomical similarities to C4 leaves. CONCLUSIONS Basipetal initiation of branches is a novel feature for Chloridoideae grasses. Branch vestiges are novel vegetative grass structures. Sterile floret awn columns are likely to be extensions of the rachilla.
Collapse
Affiliation(s)
- Luis Fernando Cuellar-Garrido
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas (BEMARENA), Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Zapopan, Jalisco 45200, México
- Laboratorio Nacional de Identificación y Caracterización Vegetal, Instituto de Botánica, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Zapopan, Jalisco 45200, México
| | - Eduardo Ruiz-Sanchez
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Zapopan, Jalisco 45200, México
- Laboratorio Nacional de Identificación y Caracterización Vegetal, Instituto de Botánica, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Zapopan, Jalisco 45200, México
| | - Ofelia Vargas-Ponce
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Zapopan, Jalisco 45200, México
- Laboratorio Nacional de Identificación y Caracterización Vegetal, Instituto de Botánica, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Zapopan, Jalisco 45200, México
| | - Clinton J Whipple
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
| |
Collapse
|
13
|
Best NB, Dilkes BP. Transcriptional responses to gibberellin in the maize tassel and control by DELLA domain proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:493-517. [PMID: 36050832 PMCID: PMC9826531 DOI: 10.1111/tpj.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The plant hormone gibberellin (GA) impacts plant growth and development differently depending on the developmental context. In the maize (Zea mays) tassel, application of GA alters floral development, resulting in the persistence of pistils. GA signaling is achieved by the GA-dependent turnover of DELLA domain transcription factors, encoded by dwarf8 (d8) and dwarf9 (d9) in maize. The D8-Mpl and D9-1 alleles disrupt GA signaling, resulting in short plants and normal tassel floret development in the presence of excess GA. However, D9-1 mutants are unable to block GA-induced pistil development. Gene expression in developing tassels of D8-Mpl and D9-1 mutants and their wild-type siblings was determined upon excess GA3 and mock treatments. Using GA-sensitive transcripts as reporters of GA signaling, we identified a weak loss of repression under mock conditions in both mutants, with the effect in D9-1 being greater. D9-1 was also less able to repress GA signaling in the presence of excess GA3 . We treated a diverse set of maize inbred lines with excess GA3 and measured the phenotypic consequences on multiple aspects of development (e.g., height and pistil persistence in tassel florets). Genotype affected all GA-regulated phenotypes but there was no correlation between any of the GA-affected phenotypes, indicating that the complexity of the relationship between GA and development extends beyond the two-gene epistasis previously demonstrated for GA and brassinosteroid biosynthetic mutants.
Collapse
Affiliation(s)
- Norman B. Best
- USDAAgriculture Research Service, Plant Genetics Research UnitColumbiaMissouri65211USA
| | - Brian P. Dilkes
- Department of BiochemistryPurdue University; West LafayetteIndiana47907USA
- Center for Plant BiologyPurdue UniversityWest LafayetteIndiana47907USA
| |
Collapse
|
14
|
Miao Y, Xun Q, Taji T, Tanaka K, Yasuno N, Ding C, Kyozuka J. ABERRANT PANICLE ORGANIZATION2 controls multiple steps in panicle formation through common direct-target genes. PLANT PHYSIOLOGY 2022; 189:2210-2226. [PMID: 35556145 PMCID: PMC9342985 DOI: 10.1093/plphys/kiac216] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/18/2022] [Indexed: 05/15/2023]
Abstract
At the transition from vegetative to reproductive growth in rice (Oryza sativa), a developmental program change occurs, resulting in panicle (rice inflorescence) formation. The initial event of the transition is the change of the shoot apical meristem to an inflorescence meristem (IM), accompanied by a rapid increase in the meristem size. Suppression of leaf growth also occurs, resulting in the formation of bracts. The IM generates branch meristems (BMs), indeterminate meristems that reiteratively generate next-order meristems. All meristems eventually acquire a determinate spikelet meristem identity and terminate after producing a floret. ABERRANT PANICLE ORGANIZATION2 (APO2) is the rice ortholog of Arabidopsis (Arabidopsis thaliana) LEAFY (LFY), a plant-specific transcription factor (TF). APO2 is a positive regulator of panicle branch formation. Here, we show that APO2 is also required to increase the meristem size of the IM and suppress bract outgrowth. We identified genes directly and indirectly regulated by APO2 and identified APO2-binding sites. These analyses showed that APO2 directly controls known regulators of panicle development, including SQUAMOSA PROMOTER BINDING PROTEIN LIKE14 and NECK LEAF1. Furthermore, we revealed that a set of genes act as downstream regulators of APO2 in controlling meristem cell proliferation during reproductive transition, bract suppression, and panicle branch formation. Our findings indicate that APO2 acts as a master regulator of rice panicle development by regulating multiple steps in the reproductive transition through directly controlling a set of genes.
Collapse
Affiliation(s)
- Yiling Miao
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Qian Xun
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Naoko Yasuno
- Graduate School of Life Sciences, University of Tokyo, Tokyo 113-8654, Japan
| | | | | |
Collapse
|
15
|
Liang J, Wu Z, Xu T, Li X, Jiang F, Wang H. Overexpression of HANABA TARANU in cultivated strawberry delays flowering and leads to defective flower and fruit development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111307. [PMID: 35696907 DOI: 10.1016/j.plantsci.2022.111307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/14/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Cultivated strawberry is one of the most important horticultural crops in the world, and the fruit yields and economic benefits are largely dependent on the quality of floral initiation and floral organ development. However, the underlying regulatory mechanisms controlling these processes in strawberry are largely unknown. In this study, the function of a GATA transcription factor gene, HANABA TARANU (HAN), in floral initiation and floral organ development was characterized in strawberry. FaHAN is expressed in four whorls of the floral organs. Overexpression (OE) of FaHAN in the strawberry cultivar 'Benihoppe' delayed flowering by at least one week by affecting key genes, such as TERMINAL FLOWER 1, APETALA 1…and increased the number of runners. FaHAN-OE plants also showed malformed floral organs, especially the deformed stigmas with disordered arrangement. Several key genes for pistil apical development such as STYLISH, YUCCA 1, and auxin-related genes such as GH3.5, PIN-FORMED 1, which play important roles in pistil primordium development in many plant species, were all down-regulated in FaHAN-OE plants. Further observations showed that the fruit deformity rate was nearly 4-fold higher than in control plants. Together, this study provides a new approach for exploring floral initiation and floral organ development in strawberry.
Collapse
Affiliation(s)
- Jiahui Liang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Ze Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tengfei Xu
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Xiaofeng Li
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Feng Jiang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Hongqing Wang
- College of Horticulture, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
16
|
Kellogg EA. Genetic control of branching patterns in grass inflorescences. THE PLANT CELL 2022; 34:2518-2533. [PMID: 35258600 PMCID: PMC9252490 DOI: 10.1093/plcell/koac080] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/02/2022] [Indexed: 05/13/2023]
Abstract
Inflorescence branching in the grasses controls the number of florets and hence the number of seeds. Recent data on the underlying genetics come primarily from rice and maize, although new data are accumulating in other systems as well. This review focuses on a window in developmental time from the production of primary branches by the inflorescence meristem through to the production of glumes, which indicate the transition to producing a spikelet. Several major developmental regulatory modules appear to be conserved among most or all grasses. Placement and development of primary branches are controlled by conserved auxin regulatory genes. Subtending bracts are repressed by a network including TASSELSHEATH4, and axillary branch meristems are regulated largely by signaling centers that are adjacent to but not within the meristems themselves. Gradients of SQUAMOSA-PROMOTER BINDING-like and APETALA2-like proteins and their microRNA regulators extend along the inflorescence axis and the branches, governing the transition from production of branches to production of spikelets. The relative speed of this transition determines the extent of secondary and higher order branching. This inflorescence regulatory network is modified within individual species, particularly as regards formation of secondary branches. Differences between species are caused both by modifications of gene expression and regulators and by presence or absence of critical genes. The unified networks described here may provide tools for investigating orphan crops and grasses other than the well-studied maize and rice.
Collapse
|
17
|
Backhaus AE, Lister A, Tomkins M, Adamski NM, Simmonds J, Macaulay I, Morris RJ, Haerty W, Uauy C. High expression of the MADS-box gene VRT2 increases the number of rudimentary basal spikelets in wheat. PLANT PHYSIOLOGY 2022; 189:1536-1552. [PMID: 35377414 PMCID: PMC9237664 DOI: 10.1093/plphys/kiac156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/13/2022] [Indexed: 05/03/2023]
Abstract
Spikelets are the fundamental building blocks of Poaceae inflorescences, and their development and branching patterns determine the various inflorescence architectures and grain yield of grasses. In wheat (Triticum aestivum), the central spikelets produce the most and largest grains, while spikelet size gradually decreases acropetally and basipetally, giving rise to the characteristic lanceolate shape of wheat spikes. The acropetal gradient corresponds with the developmental age of spikelets; however, the basal spikelets are developed first, and the cause of their small size and rudimentary development is unclear. Here, we adapted G&T-seq, a low-input transcriptomics approach, to characterize gene expression profiles within spatial sections of individual spikes before and after the establishment of the lanceolate shape. We observed larger differences in gene expression profiles between the apical, central, and basal sections of a single spike than between any section belonging to consecutive developmental time points. We found that SHORT VEGETATIVE PHASE MADS-box transcription factors, including VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT-A2), are expressed highest in the basal section of the wheat spike and display the opposite expression gradient to flowering E-class SEPALLATA1 genes. Based on multi-year field trials and transgenic lines, we show that higher expression of VRT-A2 in the basal sections of the spike is associated with increased numbers of rudimentary basal spikelets. Our results, supported by computational modeling, suggest that the delayed transition of basal spikelets from vegetative to floral developmental programs results in the lanceolate shape of wheat spikes. This study highlights the value of spatially resolved transcriptomics to gain insights into developmental genetics pathways of grass inflorescences.
Collapse
Affiliation(s)
- Anna E Backhaus
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ashleigh Lister
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Melissa Tomkins
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - James Simmonds
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Iain Macaulay
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | | | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | | |
Collapse
|
18
|
Xiao Y, Guo J, Dong Z, Richardson A, Patterson E, Mangrum S, Bybee S, Bertolini E, Bartlett M, Chuck G, Eveland AL, Scanlon MJ, Whipple C. Boundary domain genes were recruited to suppress bract growth and promote branching in maize. SCIENCE ADVANCES 2022; 8:eabm6835. [PMID: 35704576 PMCID: PMC9200273 DOI: 10.1126/sciadv.abm6835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Grass inflorescence development is diverse and complex and involves sophisticated but poorly understood interactions of genes regulating branch determinacy and leaf growth. Here, we use a combination of transcript profiling and genetic and phylogenetic analyses to investigate tasselsheath1 (tsh1) and tsh4, two maize genes that simultaneously suppress inflorescence leaf growth and promote branching. We identify a regulatory network of inflorescence leaf suppression that involves the phase change gene tsh4 upstream of tsh1 and the ligule identity gene liguleless2 (lg2). We also find that a series of duplications in the tsh1 gene lineage facilitated its shift from boundary domain in nongrasses to suppressed inflorescence leaves of grasses. Collectively, these results suggest that the boundary domain genes tsh1 and lg2 were recruited to inflorescence leaves where they suppress growth and regulate a nonautonomous signaling center that promotes inflorescence branching, an important component of yield in cereal grasses.
Collapse
Affiliation(s)
- Yuguo Xiao
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Jinyan Guo
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
| | - Zhaobin Dong
- Plant Gene Expression Center, Albany, CA 94710, USA
| | - Annis Richardson
- Plant Gene Expression Center, Albany, CA 94710, USA
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, Scotland, UK
| | - Erin Patterson
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sidney Mangrum
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
| | - Seth Bybee
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
| | | | - Madelaine Bartlett
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - George Chuck
- Plant Gene Expression Center, Albany, CA 94710, USA
| | | | - Michael J. Scanlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Clinton Whipple
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
- Corresponding author.
| |
Collapse
|
19
|
Zhu C, Box MS, Thiruppathi D, Hu H, Yu Y, Martin C, Doust AN, McSteen P, Kellogg EA. Pleiotropic and nonredundant effects of an auxin importer in Setaria and maize. PLANT PHYSIOLOGY 2022; 189:715-734. [PMID: 35285930 DOI: 10.1101/2021.10.14.464408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/16/2022] [Indexed: 05/26/2023]
Abstract
Directional transport of auxin is critical for inflorescence and floral development in flowering plants, but the role of auxin influx carriers (AUX1 proteins) has been largely overlooked. Taking advantage of available AUX1 mutants in green millet (Setaria viridis) and maize (Zea mays), we uncover previously unreported aspects of plant development that are affected by auxin influx, including higher order branches in the inflorescence, stigma branch number, glume (floral bract) development, and plant fertility. However, disruption of auxin flux does not affect all parts of the plant, with little obvious effect on inflorescence meristem size, time to flowering, and anther morphology. In double mutant studies in maize, disruptions of ZmAUX1 also affect vegetative development. A green fluorescent protein (GFP)-tagged construct of the Setaria AUX1 protein Sparse Panicle1 (SPP1) under its native promoter showed that SPP1 localizes to the plasma membrane of outer tissue layers in both roots and inflorescences, and accumulates specifically in inflorescence branch meristems, consistent with the mutant phenotype and expected auxin maxima. RNA-seq analysis indicated that most gene expression modules are conserved between mutant and wild-type plants, with only a few hundred genes differentially expressed in spp1 inflorescences. Using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology, we disrupted SPP1 and the other four AUX1 homologs in S. viridis. SPP1 has a larger effect on inflorescence development than the others, although all contribute to plant height, tiller formation, and leaf and root development. The AUX1 importers are thus not fully redundant in S. viridis. Our detailed phenotypic characterization plus a stable GFP-tagged line offer tools for future dissection of the function of auxin influx proteins.
Collapse
Affiliation(s)
- Chuanmei Zhu
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Mathew S Box
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | | | - Hao Hu
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Oklahoma 74078, USA
| | - Yunqing Yu
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Callista Martin
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Andrew N Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Oklahoma 74078, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
20
|
Zhu C, Box MS, Thiruppathi D, Hu H, Yu Y, Martin C, Doust AN, McSteen P, Kellogg EA. Pleiotropic and nonredundant effects of an auxin importer in Setaria and maize. PLANT PHYSIOLOGY 2022; 189:715-734. [PMID: 35285930 PMCID: PMC9157071 DOI: 10.1093/plphys/kiac115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Directional transport of auxin is critical for inflorescence and floral development in flowering plants, but the role of auxin influx carriers (AUX1 proteins) has been largely overlooked. Taking advantage of available AUX1 mutants in green millet (Setaria viridis) and maize (Zea mays), we uncover previously unreported aspects of plant development that are affected by auxin influx, including higher order branches in the inflorescence, stigma branch number, glume (floral bract) development, and plant fertility. However, disruption of auxin flux does not affect all parts of the plant, with little obvious effect on inflorescence meristem size, time to flowering, and anther morphology. In double mutant studies in maize, disruptions of ZmAUX1 also affect vegetative development. A green fluorescent protein (GFP)-tagged construct of the Setaria AUX1 protein Sparse Panicle1 (SPP1) under its native promoter showed that SPP1 localizes to the plasma membrane of outer tissue layers in both roots and inflorescences, and accumulates specifically in inflorescence branch meristems, consistent with the mutant phenotype and expected auxin maxima. RNA-seq analysis indicated that most gene expression modules are conserved between mutant and wild-type plants, with only a few hundred genes differentially expressed in spp1 inflorescences. Using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology, we disrupted SPP1 and the other four AUX1 homologs in S. viridis. SPP1 has a larger effect on inflorescence development than the others, although all contribute to plant height, tiller formation, and leaf and root development. The AUX1 importers are thus not fully redundant in S. viridis. Our detailed phenotypic characterization plus a stable GFP-tagged line offer tools for future dissection of the function of auxin influx proteins.
Collapse
Affiliation(s)
- Chuanmei Zhu
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Mathew S Box
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | | | - Hao Hu
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Oklahoma 74078, USA
| | - Yunqing Yu
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Callista Martin
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Andrew N Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Oklahoma 74078, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
21
|
Liang J, Wu Z, Zheng J, Koskela EA, Fan L, Fan G, Gao D, Dong Z, Hou S, Feng Z, Wang F, Hytönen T, Wang H. The GATA factor HANABA TARANU promotes runner formation by regulating axillary bud initiation and outgrowth in cultivated strawberry. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1237-1254. [PMID: 35384101 DOI: 10.1111/tpj.15759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
A runner, as an elongated branch, develops from the axillary bud (AXB) in the leaf axil and is crucial for the clonal propagation of cultivated strawberry (Fragaria × ananassa Duch.). Runner formation occurs in at least two steps: AXB initiation and AXB outgrowth. HANABA TARANU (HAN ) encodes a GATA transcription factor that affects AXB initiation in Arabidopsis and promotes branching in grass species, but the underlying mechanism is largely unknown. Here, the function of a strawberry HAN homolog FaHAN in runner formation was characterized. FaHAN transcripts can be detected in the leaf axils. Overexpression (OE) of FaHAN increased the number of runners, mainly by enhancing AXB outgrowth, in strawberry. The expression of the strawberry homolog of BRANCHED1 , a key inhibitor of AXB outgrowth in many plant species, was significantly downregulated in the AXBs of FaHAN -OE lines, whereas the expression of the strawberry homolog of SHOOT MERISTEMLESS, a marker gene for AXB initiation in Arabidopsis, was upregulated. Moreover, several genes of gibberellin biosynthesis and cytokinin signaling pathways were activated, whereas the auxin response pathway genes were repressed. Further assays indicated that FaHAN could be directly activated by FaNAC2, the overexpression of which in strawberry also increased the number of runners. The silencing of FaNAC2 or FaHAN inhibited AXB initiation and led to a higher proportion of dormant AXBs, confirming their roles in the control of runner formation. Taken together, our results revealed a FaNAC2-FaHAN pathway in the control of runner formation and have provided a means to enhance the vegetative propagation of cultivated strawberry.
Collapse
Affiliation(s)
- Jiahui Liang
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zheng
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Elli A Koskela
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | - Lingjiao Fan
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Guangxun Fan
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | - Dehang Gao
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenfei Dong
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shengfan Hou
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zekun Feng
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Feng Wang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
- NIAB EMR, Kent, ME19 6BJ, UK
| | - Hongqing Wang
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
22
|
Wang Y, Bao J, Wei X, Wu S, Fang C, Li Z, Qi Y, Gao Y, Dong Z, Wan X. Genetic Structure and Molecular Mechanisms Underlying the Formation of Tassel, Anther, and Pollen in the Male Inflorescence of Maize ( Zea mays L.). Cells 2022; 11:1753. [PMID: 35681448 PMCID: PMC9179574 DOI: 10.3390/cells11111753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023] Open
Abstract
Maize tassel is the male reproductive organ which is located at the plant's apex; both its morphological structure and fertility have a profound impact on maize grain yield. More than 40 functional genes regulating the complex tassel traits have been cloned up to now. However, the detailed molecular mechanisms underlying the whole process, from male inflorescence meristem initiation to tassel morphogenesis, are seldom discussed. Here, we summarize the male inflorescence developmental genes and construct a molecular regulatory network to further reveal the molecular mechanisms underlying tassel-trait formation in maize. Meanwhile, as one of the most frequently studied quantitative traits, hundreds of quantitative trait loci (QTLs) and thousands of quantitative trait nucleotides (QTNs) related to tassel morphology have been identified so far. To reveal the genetic structure of tassel traits, we constructed a consensus physical map for tassel traits by summarizing the genetic studies conducted over the past 20 years, and identified 97 hotspot intervals (HSIs) that can be repeatedly mapped in different labs, which will be helpful for marker-assisted selection (MAS) in improving maize yield as well as for providing theoretical guidance in the subsequent identification of the functional genes modulating tassel morphology. In addition, maize is one of the most successful crops in utilizing heterosis; mining of the genic male sterility (GMS) genes is crucial in developing biotechnology-based male-sterility (BMS) systems for seed production and hybrid breeding. In maize, more than 30 GMS genes have been isolated and characterized, and at least 15 GMS genes have been promptly validated by CRISPR/Cas9 mutagenesis within the past two years. We thus summarize the maize GMS genes and further update the molecular regulatory networks underlying male fertility in maize. Taken together, the identified HSIs, genes and molecular mechanisms underlying tassel morphological structure and male fertility are useful for guiding the subsequent cloning of functional genes and for molecular design breeding in maize. Finally, the strategies concerning efficient and rapid isolation of genes controlling tassel morphological structure and male fertility and their application in maize molecular breeding are also discussed.
Collapse
Affiliation(s)
- Yanbo Wang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
| | - Jianxi Bao
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
| | - Xun Wei
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China;
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China;
| | - Chaowei Fang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
| | - Ziwen Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China;
| | - Yuchen Qi
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
| | - Yuexin Gao
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
| | - Zhenying Dong
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China;
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China;
| |
Collapse
|
23
|
Schwechheimer C, Schröder PM, Blaby-Haas CE. Plant GATA Factors: Their Biology, Phylogeny, and Phylogenomics. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:123-148. [PMID: 35130446 DOI: 10.1146/annurev-arplant-072221-092913] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
GATA factors are evolutionarily conserved transcription factors that are found in animals, fungi, and plants. Compared to that of animals, the size of the plant GATA family is increased. In angiosperms, four main GATA classes and seven structural subfamilies can be defined. In recent years, knowledge about the biological role and regulation of plant GATAs has substantially improved. Individual family members have been implicated in the regulation of photomorphogenic growth, chlorophyll biosynthesis, chloroplast development, photosynthesis, and stomata formation, as well as root, leaf, and flower development. In this review, we summarize the current knowledge of plant GATA factors. Using phylogenomic analysis, we trace the evolutionary origin of the GATA classes in the green lineage and examine their relationship to animal and fungal GATAs. Finally, we speculate about a possible conservation of GATA-regulated functions across the animal, fungal, and plant kingdoms.
Collapse
Affiliation(s)
- Claus Schwechheimer
- School of Life Sciences, Plant Systems Biology, Technical University of Munich, Freising, Germany;
| | - Peter Michael Schröder
- School of Life Sciences, Plant Systems Biology, Technical University of Munich, Freising, Germany;
| | - Crysten E Blaby-Haas
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA;
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
24
|
Nie S, Wang B, Ding H, Lin H, Zhang L, Li Q, Wang Y, Zhang B, Liang A, Zheng Q, Wang H, Lv H, Zhu K, Jia M, Wang X, Du J, Zhao R, Jiang Z, Xia C, Qiao Z, Li X, Liu B, Zhu H, An R, Li Y, Jiang Q, Chen B, Zhang H, Wang D, Tang C, Yuan Y, Dai J, Zhan J, He W, Wang X, Shi J, Wang B, Gong M, He X, Li P, Huang L, Li H, Pan C, Huang H, Yuan G, Lan H, Nie Y, Li X, Zhao X, Zhang X, Pan G, Wu Q, Xu F, Zhang Z. Genome assembly of the Chinese maize elite inbred line RP125 and its EMS mutant collection provide new resources for maize genetics research and crop improvement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:40-54. [PMID: 34252236 DOI: 10.1111/tpj.15421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Maize is an important crop worldwide, as well as a valuable model with vast genetic diversity. Accurate genome and annotation information for a wide range of inbred lines would provide valuable resources for crop improvement and pan-genome characterization. In this study, we generated a high-quality de novo genome assembly (contig N50 of 15.43 Mb) of the Chinese elite inbred line RP125 using Nanopore long-read sequencing and Hi-C scaffolding, which yield highly contiguous, chromosome-length scaffolds. Global comparison of the RP125 genome with those of B73, W22, and Mo17 revealed a large number of structural variations. To create new germplasm for maize research and crop improvement, we carried out an EMS mutagenesis screen on RP125. In total, we obtained 5818 independent M2 families, with 946 mutants showing heritable phenotypes. Taking advantage of the high-quality RP125 genome, we successfully cloned 10 mutants from the EMS library, including the novel kernel mutant qk1 (quekou: "missing a small part" in Chinese), which exhibited partial loss of endosperm and a starch accumulation defect. QK1 encodes a predicted metal tolerance protein, which is specifically required for Fe transport. Increased accumulation of Fe and reactive oxygen species as well as ferroptosis-like cell death were detected in qk1 endosperm. Our study provides the community with a high-quality genome sequence and a large collection of mutant germplasm.
Collapse
Affiliation(s)
- Shujun Nie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Bo Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | - Haiping Ding
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Haijian Lin
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Li Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Qigui Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Yujiao Wang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Bin Zhang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Anping Liang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Qi Zheng
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
- The Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Hui Wang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Huayang Lv
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Kun Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Minghui Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xiaotong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Jiyuan Du
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Runtai Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Zhenzhen Jiang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Caina Xia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Zhenghao Qiao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xiaohu Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Boyan Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Hongbo Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Rong An
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Yucui Li
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Qian Jiang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Benfang Chen
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Hongkai Zhang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Dening Wang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Changxiao Tang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Yang Yuan
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Jie Dai
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Jing Zhan
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Weiqiang He
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Xuebo Wang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Jian Shi
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Bin Wang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Min Gong
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Xiujing He
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Peng Li
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Li Huang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Hui Li
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Chao Pan
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Hong Huang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Guangsheng Yuan
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Hai Lan
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Yongxin Nie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xinzheng Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Guangtang Pan
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Qingyu Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fang Xu
- The Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhiming Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| |
Collapse
|
25
|
Gene duplication at the Fascicled ear1 locus controls the fate of inflorescence meristem cells in maize. Proc Natl Acad Sci U S A 2021; 118:2019218118. [PMID: 33579824 PMCID: PMC7896288 DOI: 10.1073/pnas.2019218118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The maize ear is unbranched and terminates in a single point. The ear and tassel inflorescences of Fascicled ear mutants fail to grow as a single point and instead are branched. This phenotype results from the misexpression of duplicated transcription factors, ZMM8 and DRL2. We hypothesize that these gene rearrangements create regulatory sequences that cause misexpression in early inflorescence meristems, thus activating a laminar program, ablating the meristem, and producing branches. This work demonstrates that zmm8 and drl2 must be restricted from the inflorescence meristem to maintain its terminal point, and conversely, a mechanism by which branching may be imposed. Manipulation of these genes can be used to alter plant architecture, potentially to improve agronomic traits. Plant meristems are self-renewing groups of pluripotent stem cells that produce lateral organs in a stereotypical pattern. Of interest is how the radially symmetrical meristem produces laminar lateral organs. Both the male and female inflorescence meristems of the dominant Fascicled ear (Fas1) mutant fail to grow as a single point and instead show deep branching. Positional cloning of two independent Fas1 alleles identified an ∼160 kb region containing two floral genes, the MADS-box gene, zmm8, and the YABBY gene, drooping leaf2 (drl2). Both genes are duplicated within the Fas1 locus and spatiotemporally misexpressed in the mutant inflorescence meristems. Increased zmm8 expression alone does not affect inflorescence development; however, combined misexpression of zmm8, drl2, and their syntenic paralogs zmm14 and drl1, perturbs meristem organization. We hypothesize that misexpression of the floral genes in the inflorescence and their potential interaction cause ectopic activation of a laminar program, thereby disrupting signaling necessary for maintenance of radially symmetrical inflorescence meristems. Consistent with this hypothesis, RNA sequencing and in situ analysis reveal altered expression patterns of genes that define distinct zones of the meristem and developing leaf. Our findings highlight the importance of strict spatiotemporal patterns of expression for both zmm8 and drl2 and provide an example of phenotypes arising from tandem gene duplications.
Collapse
|
26
|
Wang L, Ming L, Liao K, Xia C, Sun S, Chang Y, Wang H, Fu D, Xu C, Wang Z, Li X, Xie W, Ouyang Y, Zhang Q, Li X, Zhang Q, Xiao J, Zhang Q. Bract suppression regulated by the miR156/529-SPLs-NL1-PLA1 module is required for the transition from vegetative to reproductive branching in rice. MOLECULAR PLANT 2021; 14:1168-1184. [PMID: 33933648 DOI: 10.1016/j.molp.2021.04.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/06/2021] [Accepted: 04/27/2021] [Indexed: 05/04/2023]
Abstract
Reproductive transition of grasses is characterized by switching the pattern of lateral branches, featuring the suppression of outgrowth of the subtending leaves (bracts) and rapid formation of higher-order branches in the inflorescence (panicle). However, the molecular mechanisms underlying such changes remain largely unknown. Here, we show that bract suppression is required for the reproductive branching in rice. We identified a pathway involving the intrinsic time ruler microRNA156/529, their targets SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes, NECK LEAF1 (NL1), and PLASTOCHRON1 (PLA1), which regulates the bract outgrowth and thus affects the pattern switch between vegetative and reproductive branching. Suppression of the bract results in global reprogramming of transcriptome and chromatin accessibility following the reproductive transition, while these processes are largely dysregulated in the mutants of these genes. These discoveries contribute to our understanding of the dynamic plant architecture and provide novel insights for improving crop yields.
Collapse
Affiliation(s)
- Lei Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Luchang Ming
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Keyan Liao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunjiao Xia
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengyuan Sun
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Chang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongkai Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Debao Fu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Conghao Xu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengji Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
27
|
Thiel J, Koppolu R, Trautewig C, Hertig C, Kale SM, Erbe S, Mascher M, Himmelbach A, Rutten T, Esteban E, Pasha A, Kumlehn J, Provart NJ, Vanderauwera S, Frohberg C, Schnurbusch T. Transcriptional landscapes of floral meristems in barley. SCIENCE ADVANCES 2021; 7:eabf0832. [PMID: 33910893 PMCID: PMC8081368 DOI: 10.1126/sciadv.abf0832] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/26/2021] [Indexed: 05/02/2023]
Abstract
Organ development in plants predominantly occurs postembryonically through combinatorial activity of meristems; therefore, meristem and organ fate are intimately connected. Inflorescence morphogenesis in grasses (Poaceae) is complex and relies on a specialized floral meristem, called spikelet meristem, that gives rise to all other floral organs and ultimately the grain. The fate of the spikelet determines reproductive success and contributes toward yield-related traits in cereal crops. Here, we examined the transcriptional landscapes of floral meristems in the temperate crop barley (Hordeum vulgare L.) using RNA-seq of laser capture microdissected tissues from immature, developing floral structures. Our unbiased, high-resolution approach revealed fundamental regulatory networks, previously unknown pathways, and key regulators of barley floral fate and will equally be indispensable for comparative transcriptional studies of grass meristems.
Collapse
Affiliation(s)
- J Thiel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany.
| | - R Koppolu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany.
| | - C Trautewig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - C Hertig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - S M Kale
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - S Erbe
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - M Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - A Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - T Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - E Esteban
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | - A Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | - J Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - N J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | - S Vanderauwera
- BASF Belgium Coordination Center CommV, Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - C Frohberg
- BASF Belgium Coordination Center CommV, Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - T Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany.
- Martin Luther University Halle-Wittenberg, Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, 06120 Halle, Germany
| |
Collapse
|
28
|
Yang W, Zheng L, He Y, Zhu L, Chen X, Tao Y. Fine mapping and candidate gene prediction of a major quantitative trait locus for tassel branch number in maize. Gene 2020; 757:144928. [PMID: 32622989 DOI: 10.1016/j.gene.2020.144928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/16/2020] [Accepted: 06/27/2020] [Indexed: 11/16/2022]
Abstract
Tassel branch number (TBN) is the principal component of tassel inflorescence architecture in the maize plant. TBN is believed to be controlled by a set of quantitative trait loci (QTLs). However, it is necessary to identify and genetically evaluate these QTLs before the TBN can be improved upon using a molecular breeding approach. Therefore, in this study, we developed the chromosome segment introgression line (CSIL) TBN1 with the Zong31 (Z31) background and a higher TBN, and then we utilized the CSIL-TBN1-derived populations and identified a major QTL, qTBN6a, by linkage analysis. Fine mapping of the qTBN6a QTL was validated using a set of sub-CSILs and located in a 240-kb genomic region (Bin6.07) in B73RefGen_v4. One allele included in the introgression fragment had a positive effect, noticeably increasing the TBN and demonstrating the potential to improve the TBN of Z31. Afterward, in the qTBN6a interval, gene expression, sequence alignment, functional analysis, and the analysis of motifs in the 5' UTR suggested that candidate genes of qTBN6a are important functional genes at the early stage of immature infected tassel development. Among these candidate genes, a long W22::Mu-insertion/deletion in exon one and an 11-bp insertion/deletion in the promoter region may affect the variation of the qTBN6a QTL observed between Z31 and TBN1. In addition, the candidate genes of qTBN6a were found to encode a pentatricopeptide repeat (PPR)-containing protein and a histone deacetylase (HDA), which are known to be closely associated with RNA editing and stability and chromatin state activity for the transcription of gene expression, respectively. Finally, a model of qTBN6a based on the synergistic regulation of PPR and HDA for the maintenance of inflorescence meristem (IM) identity and its differentiation to the branch meristem (BM) in TBN1 was suggested. Collectively, our results provide an available locus for the molecular improvement of TBN and the isolation of functional genes underlying this QTL.
Collapse
Affiliation(s)
- Weifeng Yang
- Hebei Sub-center of Chinese National Maize Improvement Center, North China Key Laboratory for Crop Germplasm Resource of Education Ministry, College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, PR China
| | - Lizhen Zheng
- Hebei Sub-center of Chinese National Maize Improvement Center, North China Key Laboratory for Crop Germplasm Resource of Education Ministry, College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, PR China
| | - Yuan He
- Hebei Sub-center of Chinese National Maize Improvement Center, North China Key Laboratory for Crop Germplasm Resource of Education Ministry, College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, PR China
| | - Liying Zhu
- Hebei Sub-center of Chinese National Maize Improvement Center, North China Key Laboratory for Crop Germplasm Resource of Education Ministry, College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, PR China
| | - Xuqing Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Science, Beijing 100097, PR China.
| | - Yongsheng Tao
- Hebei Sub-center of Chinese National Maize Improvement Center, North China Key Laboratory for Crop Germplasm Resource of Education Ministry, College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, PR China.
| |
Collapse
|
29
|
Liu X, Zhu X, Wei X, Lu C, Shen F, Zhang X, Zhang Z. The wheat LLM-domain-containing transcription factor TaGATA1 positively modulates host immune response to Rhizoctonia cerealis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:344-355. [PMID: 31536614 PMCID: PMC6913698 DOI: 10.1093/jxb/erz409] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 09/03/2019] [Indexed: 05/26/2023]
Abstract
Wheat (Triticum aestivum) is essential for global food security. Rhizoctonia cerealis is the causal pathogen of sharp eyespot, an important disease of wheat. GATA proteins in model plants have been implicated in growth and development; however, little is known about their roles in immunity. Here, we report a defence role for a wheat LLM-domain-containing B-GATA transcription factor, TaGATA1, against R. cerealis infection and explore the underlying mechanism. Through transcriptomic analysis, TaGATA1 was identified to be more highly expressed in resistant wheat genotypes than in susceptible wheat genotypes. TaGATA1 was located on chromosome 3B and had two homoeologous genes on chromosomes 3A and 3D. TaGATA1 was found to be localized in the nucleus, possessed transcriptional activation activity, and bound to GATA-core cis-elements. TaGATA1 overexpression significantly enhanced resistance of transgenic wheat to R. cerealis, whereas silencing of TaGATA1 suppressed the resistance. Quantitative reverse transcription-PCR and ChIP-qPCR results indicated that TaGATA1 directly bound to and activated certain defence genes in host immune response to R. cerealis. Collectively, TaGATA1 positively regulates immune responses to R. cerealis through activating expression of defence genes in wheat. This study reveals a new function of plant GATAs in immunity and provides a candidate gene for improving crop resistance to R. cerealis.
Collapse
Affiliation(s)
- Xin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Hunan Agricultural University, Changsha, China
- College of Life Sciences, Northwest A & F University, Yangling, China
| | - Xiuliang Zhu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuening Wei
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chungui Lu
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, UK
| | - Fangdi Shen
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Ningbo Polytechnic, Ningbo, China
| | | | - Zengyan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
30
|
Chen Q, Yang CJ, York AM, Xue W, Daskalska LL, DeValk CA, Krueger KW, Lawton SB, Spiegelberg BG, Schnell JM, Neumeyer MA, Perry JS, Peterson AC, Kim B, Bergstrom L, Yang L, Barber IC, Tian F, Doebley JF. TeoNAM: A Nested Association Mapping Population for Domestication and Agronomic Trait Analysis in Maize. Genetics 2019; 213:1065-1078. [PMID: 31481533 PMCID: PMC6827374 DOI: 10.1534/genetics.119.302594] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/30/2019] [Indexed: 12/21/2022] Open
Abstract
Recombinant inbred lines (RILs) are an important resource for mapping genes controlling complex traits in many species. While RIL populations have been developed for maize, a maize RIL population with multiple teosinte inbred lines as parents has been lacking. Here, we report a teosinte nested association mapping (TeoNAM) population, derived from crossing five teosinte inbreds to the maize inbred line W22. The resulting 1257 BC1S4 RILs were genotyped with 51,544 SNPs, providing a high-density genetic map with a length of 1540 cM. On average, each RIL is 15% homozygous teosinte and 8% heterozygous. We performed joint linkage mapping (JLM) and a genome-wide association study (GWAS) for 22 domestication and agronomic traits. A total of 255 QTL from JLM were identified, with many of these mapping near known genes or novel candidate genes. TeoNAM is a useful resource for QTL mapping for the discovery of novel allelic variation from teosinte. TeoNAM provides the first report that PROSTRATE GROWTH1, a rice domestication gene, is also a QTL associated with tillering in teosinte and maize. We detected multiple QTL for flowering time and other traits for which the teosinte allele contributes to a more maize-like phenotype. Such QTL could be valuable in maize improvement.
Collapse
Affiliation(s)
- Qiuyue Chen
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chin Jian Yang
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Alessandra M York
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Wei Xue
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Lora L Daskalska
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Craig A DeValk
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Kyle W Krueger
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Samuel B Lawton
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | | | - Jack M Schnell
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Michael A Neumeyer
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Joseph S Perry
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Aria C Peterson
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Brandon Kim
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Laura Bergstrom
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Liyan Yang
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
- School of Life Science, Shanxi Normal University, Linfen, Shanxi 041004, China
| | - Isaac C Barber
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Feng Tian
- National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - John F Doebley
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| |
Collapse
|
31
|
Nikolov LA. Brassicaceae flowers: diversity amid uniformity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2623-2635. [PMID: 30824938 DOI: 10.1093/jxb/erz079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
The mustard family Brassicaceae, which includes the model plant Arabidopsis thaliana, exhibits morphological stasis and significant uniformity of floral plan. Nonetheless, there is untapped diversity in almost every aspect of floral morphology in the family that lends itself to comparative study, including organ number, shape, form, and color. Studies on the genetic basis of morphological diversity, enabled by extensive genetic tools and genomic resources and the close phylogenetic distance among mustards, have revealed a mosaic of conservation and divergence in numerous floral traits. Here I review the morphological diversity of the flowers of Brassicaceae and discuss studies addressing the underlying genetic and developmental mechanisms shaping floral diversity. To put flowers in the context of the floral display, I describe diversity in inflorescence morphology and the variation that exists in the structures preceding the floral organs. Reconstructing the floral morphospace in Brassicaceae coupled with next-generation sequencing data and unbiased approaches to interrogate gene function in species throughout the mustard phylogeny offers promising ways to understand how developmental mechanisms originate and diversify.
Collapse
Affiliation(s)
- Lachezar A Nikolov
- Department of Molecular, Cell and Developmental Biology, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
32
|
Ikeda T, Tanaka W, Toriba T, Suzuki C, Maeno A, Tsuda K, Shiroishi T, Kurata T, Sakamoto T, Murai M, Matsusaka H, Kumamaru T, Hirano HY. BELL1-like homeobox genes regulate inflorescence architecture and meristem maintenance in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:465-478. [PMID: 30657229 DOI: 10.1111/tpj.14230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Inflorescence architecture is diverse in angiosperms, and is mainly determined by the arrangement of the branches and flowers, known as phyllotaxy. In rice (Oryza sativa), the main inflorescence axis, called the rachis, generates primary branches in a spiral phyllotaxy, and flowers (spikelets) are formed on these branches. Here, we have studied a classical mutant, named verticillate rachis (ri), which produces branches in a partially whorled phyllotaxy. Gene isolation revealed that RI encodes a BELL1-type homeodomain transcription factor, similar to Arabidopsis PENNYWISE/BELLRINGER/REPLUMLESS, and is expressed in the specific regions within the inflorescence and branch meristems where their descendant meristems would soon initiate. Genetic combination of an ri homozygote and a mutant allele of RI-LIKE1 (RIL1) (designated ri ril1/+ plant), a close paralog of RI, enhanced the ri inflorescence phenotype, including the abnormalities in branch phyllotaxy and rachis internode patterning. During early inflorescence development, the timing and arrangement of primary branch meristem (pBM) initiation were disturbed in both ri and ri ril1/+ plants. These findings suggest that RI and RIL1 were involved in regulating the phyllotactic pattern of the pBMs to form normal inflorescences. In addition, both RI and RIL1 seem to be involved in meristem maintenance, because the ri ril1 double-mutant failed to establish or maintain the shoot apical meristem during embryogenesis.
Collapse
Affiliation(s)
- Takuyuki Ikeda
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Wakana Tanaka
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Taiyo Toriba
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Chie Suzuki
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Akiteru Maeno
- National Institute of Genetics, Mishima, 411-8540, Japan
| | | | | | - Tetsuya Kurata
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Tomoaki Sakamoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Masayuki Murai
- Faculty of Agriculture and Marine Science, Kochi University, Monobe, Nankoku, 783-8502, Japan
| | - Hiroaki Matsusaka
- Faculty of Agriculture, Kyushu University, Motooka, 744, Fukuoka, 819-0395, Japan
| | - Toshihiro Kumamaru
- Faculty of Agriculture, Kyushu University, Motooka, 744, Fukuoka, 819-0395, Japan
| | - Hiro-Yuki Hirano
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8654, Japan
| |
Collapse
|
33
|
Chongloi GL, Prakash S, Vijayraghavan U. Regulation of meristem maintenance and organ identity during rice reproductive development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1719-1736. [PMID: 30753578 DOI: 10.1093/jxb/erz046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Grasses have evolved complex inflorescences, where the primary unit is the specialized short branch called a spikelet. Detailed studies of the cumulative action of the genetic regulators that direct the progressive change in axillary meristem identity and their terminal differentiation are crucial to understanding the complexities of the inflorescence and the development of a determinate floret. Grass florets also pose interesting questions concerning the morphologies and functions of organs as compared to other monocots and eudicots. In this review, we summarize our current knowledge of the regulation of the transitions that occur in grass inflorescence meristems, and of the specification of floret meristems and their determinate development. We primarily use rice as a model, with appropriate comparisons to other crop models and to the extensively studied eudicot Arabidopsis. The role of MADS-domain transcription factors in floral organ patterning is well documented in many eudicots and in grasses. However, there is evidence to suggest that some of these rice floral regulators have evolved distinctive functions and that other grass species-specific factors and regulatory pathways occur - for example the LOFSEP 'E' class genes OsMADS1 and OsMAD34, and ramosa genes. A better understanding of these systems and the epigenetic regulators and hormone signaling pathways that interact with them will provide new insights into the rice inflorescence meristem and the differentiation of its floret organs, and should indicate genetic tools that can be used to control yield-related traits in both rice and other cereal crops.
Collapse
Affiliation(s)
- Grace L Chongloi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sandhan Prakash
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
34
|
Strable J, Vollbrecht E. Maize YABBY genes drooping leaf1 and drooping leaf2 regulate floret development and floral meristem determinacy. Development 2019; 146:dev.171181. [PMID: 30858227 DOI: 10.1242/dev.171181] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/18/2019] [Indexed: 12/30/2022]
Abstract
Floral morphology is shaped by factors that modulate floral meristem activity and size, and the identity, number and arrangement of the lateral organs they form. We report here that the maize CRABS CLAW co-orthologs drooping leaf1 (drl1) and drl2 are required for development of ear and tassel florets. Pistillate florets of drl1 ears are sterile with unfused carpels that fail to enclose an expanded nucellus-like structure. Staminate florets of drl1 tassels have extra stamens and fertile anthers. Natural variation and transposon alleles of drl2 enhance drl1 mutant phenotypes by reducing floral meristem (FM) determinacy. The drl paralogs are co-expressed in lateral floral primordia, but not within the FM. drl expression together with the more indeterminate mutant FMs suggest that the drl genes regulate FM activity and impose meristem determinacy non-cell-autonomously from differentiating cells in lateral floral organs. We used gene regulatory network inference, genetic interaction and expression analyses to suggest that DRL1 and ZAG1 target each other and a common set of downstream genes that function during floret development, thus defining a regulatory module that fine-tunes floret patterning and FM determinacy.
Collapse
Affiliation(s)
- Josh Strable
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA .,Interdepartmental Plant Biology, Iowa State University, Ames, IA 50011, USA
| | - Erik Vollbrecht
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA .,Interdepartmental Plant Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
35
|
Yao H, Skirpan A, Wardell B, Matthes MS, Best NB, McCubbin T, Durbak A, Smith T, Malcomber S, McSteen P. The barren stalk2 Gene Is Required for Axillary Meristem Development in Maize. MOLECULAR PLANT 2019; 12:374-389. [PMID: 30690173 DOI: 10.1016/j.molp.2018.12.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/08/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
The diversity of plant architecture is determined by axillary meristems (AMs). AMs are produced from small groups of stem cells in the axils of leaf primordia and generate vegetative branches and reproductive inflorescences. Previous studies identified genes critical for AM development that function in auxin biosynthesis, transport, and signaling. barren stalk1 (ba1), a basic helix-loop-helix transcription factor, acts downstream of auxin to control AM formation. Here, we report the cloning and characterization of barren stalk2 (ba2), a mutant that fails to produce ears and has fewer branches and spikelets in the tassel, indicating that ba2 functions in reproductive AM development. Furthermore, the ba2 mutation suppresses tiller growth in the teosinte branched1 mutant, indicating that ba2 also plays an essential role in vegetative AM development. The ba2 gene encodes a protein that co-localizes and heterodimerizes with BA1 in the nucleus. Characterization of the genetic interaction between ba2 and ba1 demonstrates that ba1 shows a gene dosage effect in ba2 mutants, providing further evidence that BA1 and BA2 act together in the same pathway. Characterization of the molecular and genetic interaction between ba2 and additional genes required for the regulation of ba1 further supports this finding. The ba1 and ba2 genes are orthologs of rice genes, LAX PANICLE1 (LAX1) and LAX2, respectively, hence providing insights into pathways controlling AMs development in grasses.
Collapse
Affiliation(s)
- Hong Yao
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Andrea Skirpan
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Brian Wardell
- Department of Biological Sciences, California State University, Long Beach, CA 90840, USA
| | - Michaela S Matthes
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Norman B Best
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Tyler McCubbin
- Division of Biological Sciences, Interdisciplinary Plant Group, Columbia, MO 65211, USA
| | - Amanda Durbak
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Taylor Smith
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Simon Malcomber
- Department of Biological Sciences, California State University, Long Beach, CA 90840, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
36
|
Zhu C, Yang J, Box MS, Kellogg EA, Eveland AL. A Dynamic Co-expression Map of Early Inflorescence Development in Setaria viridis Provides a Resource for Gene Discovery and Comparative Genomics. FRONTIERS IN PLANT SCIENCE 2018; 9:1309. [PMID: 30258452 PMCID: PMC6143762 DOI: 10.3389/fpls.2018.01309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/20/2018] [Indexed: 05/29/2023]
Abstract
The morphological and functional diversity of plant form is governed by dynamic gene regulatory networks. In cereal crops, grain and/or pollen-bearing inflorescences exhibit vast architectural diversity and developmental complexity, yet the underlying genetic framework is only partly known. Setaria viridis is a small, rapidly growing grass species in the subfamily Panicoideae, a group that includes economically important cereal crops such as maize and sorghum. The S. viridis inflorescence displays complex branching patterns, but its early development is similar to that of other panicoid grasses, and thus is an ideal model for studying inflorescence architecture. Here we report a detailed transcriptional resource that captures dynamic transitions across six sequential stages of S. viridis inflorescence development, from reproductive onset to floral organ differentiation. Co-expression analyses identified stage-specific signatures of development, which include homologs of previously known developmental genes from maize and rice, suites of transcription factors and gene family members, and genes of unknown function. This spatiotemporal co-expression map and associated analyses provide a foundation for gene discovery in S. viridis inflorescence development, and a comparative model for exploring related architectural features in agronomically important cereals.
Collapse
|
37
|
|
38
|
Grass inflorescence architecture and meristem determinacy. Semin Cell Dev Biol 2017; 79:37-47. [PMID: 29020602 DOI: 10.1016/j.semcdb.2017.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 11/22/2022]
Abstract
The grass inflorescence is striking not only for its beauty and diversity, but also for its developmental complexity. While models of inflorescence architecture have been proposed in both eudicots and grasses, these are inadequate to fully explain the complex branching events that occur during the development of the grass inflorescence. Key to understanding grass inflorescence architecture is the meristem determinacy/indeterminacy decision, which regulates the number of branching events that occur. Here we review what has been learned about meristem determinacy from grass mutants with defects in inflorescence development. A picture is emerging of a complex network of signaling molecules and meristem identity factors that interact to regulate inflorescence meristem activity, many of which have been modified during crop domestication directly affecting yield traits.
Collapse
|
39
|
Whipple CJ. Grass inflorescence architecture and evolution: the origin of novel signaling centers. THE NEW PHYTOLOGIST 2017; 216:367-372. [PMID: 28375574 DOI: 10.1111/nph.14538] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/10/2017] [Indexed: 05/18/2023]
Abstract
Contents 367 I. 367 II. 368 III. 370 IV. 371 371 References 371 SUMMARY: A central goal of evo-devo is to understand how morphological diversity arises from existing developmental mechanisms, requiring a clear, predictive explanatory framework of the underlying developmental mechanisms. Despite an ever-increasing literature on genes regulating grass inflorescence development, an effective model of inflorescence patterning is lacking. I argue that the existing framework for grass inflorescence development, which invokes homeotic shifts in multiple distinct meristem identities, obscures a recurring theme emerging from developmental genetic studies in grass models, that is that inflorescence branching is regulated by novel localized signaling centers. Understanding the origin and function of these novel signaling centers will be key to future evo-devo work on the grass inflorescence.
Collapse
Affiliation(s)
- Clinton J Whipple
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT, 84602, USA
| |
Collapse
|
40
|
Tanaka W, Toriba T, Hirano HY. Three TOB1-related YABBY genes are required to maintain proper function of the spikelet and branch meristems in rice. THE NEW PHYTOLOGIST 2017; 215:825-839. [PMID: 28556940 DOI: 10.1111/nph.14617] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/19/2017] [Indexed: 05/06/2023]
Abstract
YABBY genes play important roles in the development of lateral organs such as leaves and floral organs in Angiosperms. However, the function of YABBY genes is poorly understood in monocots. We focused on three rice (Oryza sativa) YABBY genes, TONGARI-BOUSHI (TOB1, TOB2, TOB3), which are closely related to Arabidopsis (Arabidopsis thaliana) FILAMENTOUS FLOWER (FIL). To elucidate the function of these YABBY genes, we employed a reverse genetic approach. TOB genes were expressed in bract and lateral organ primordia, but not in meristems. RNAi knockdown of TOB2 or TOB3 in the tob1 mutant caused abnormal spikelet development. Furthermore, simultaneous knockdown of both TOB2 and TOB3 in tob1 affected not only spikelet, but also inflorescence development. In severe cases, the inflorescences comprised naked branches without spikelets. Analysis of inflorescence development at an early stage showed that the observed phenotypic defects were closely associated with a failure to initiate and maintain reproductive meristems. These results indicate that the TOB genes regulate the maintenance and fate of all reproductive meristems. It is likely that the function of FIL/TOB clade YABBY genes has been conserved between Arabidopsis and rice to maintain the proper function of meristems, even though these genes are expressed in lateral organ primordia.
Collapse
Affiliation(s)
- Wakana Tanaka
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Taiyo Toriba
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Hiro-Yuki Hirano
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8654, Japan
| |
Collapse
|
41
|
Jost M, Taketa S, Mascher M, Himmelbach A, Yuo T, Shahinnia F, Rutten T, Druka A, Schmutzer T, Steuernagel B, Beier S, Taudien S, Scholz U, Morgante M, Waugh R, Stein N. A Homolog of Blade-On-Petiole 1 and 2 (BOP1/2) Controls Internode Length and Homeotic Changes of the Barley Inflorescence. PLANT PHYSIOLOGY 2016; 171:1113-27. [PMID: 27208226 PMCID: PMC4902598 DOI: 10.1104/pp.16.00124] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/08/2016] [Indexed: 05/17/2023]
Abstract
Inflorescence architecture in small-grain cereals has a direct effect on yield and is an important selection target in breeding for yield improvement. We analyzed the recessive mutation laxatum-a (lax-a) in barley (Hordeum vulgare), which causes pleiotropic changes in spike development, resulting in (1) extended rachis internodes conferring a more relaxed inflorescence, (2) broadened base of the lemma awns, (3) thinner grains that are largely exposed due to reduced marginal growth of the palea and lemma, and (4) and homeotic conversion of lodicules into two stamenoid structures. Map-based cloning enforced by mapping-by-sequencing of the mutant lax-a locus enabled the identification of a homolog of BLADE-ON-PETIOLE1 (BOP1) and BOP2 as the causal gene. Interestingly, the recently identified barley uniculme4 gene also is a BOP1/2 homolog and has been shown to regulate tillering and leaf sheath development. While the Arabidopsis (Arabidopsis thaliana) BOP1 and BOP2 genes act redundantly, the barley genes contribute independent effects in specifying the developmental growth of vegetative and reproductive organs, respectively. Analysis of natural genetic diversity revealed strikingly different haplotype diversity for the two paralogous barley genes, likely affected by the respective genomic environments, since no indication for an active selection process was detected.
Collapse
Affiliation(s)
- Matthias Jost
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Shin Taketa
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Takahisa Yuo
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Fahimeh Shahinnia
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Arnis Druka
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Thomas Schmutzer
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Burkhard Steuernagel
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Sebastian Beier
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Stefan Taudien
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Michele Morgante
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Robbie Waugh
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466 Stadt Seeland, Germany (M.J., Ma.M., A.H., F.S., T.R., T.S., B.S., S.B., U.S., N.S.);Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan (Sh.T., T.Y.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.);Leibniz Institute on Aging and Fritz-Lipmann Institute, 07745 Jena, Germany (St.T.);Applied Genomics Institute, University of Udine, 33100 Udine, Italy (Mi.M.); andDivision of Plant Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom (R.W.)
| |
Collapse
|
42
|
Ranftl QL, Bastakis E, Klermund C, Schwechheimer C. LLM-Domain Containing B-GATA Factors Control Different Aspects of Cytokinin-Regulated Development in Arabidopsis thaliana. PLANT PHYSIOLOGY 2016; 170:2295-311. [PMID: 26829982 PMCID: PMC4825128 DOI: 10.1104/pp.15.01556] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/29/2016] [Indexed: 05/17/2023]
Abstract
Leu-Leu-Met (LLM)-domain B-GATAs are a subfamily of the 30-membered GATA transcription factor family from Arabidopsis. Only two of the six Arabidopsis LLM-domain B-GATAs, i.e. GATA, NITRATE-INDUCIBLE, CARBON METABOLISM-INVOLVED (GNC) and its paralog GNC-LIKE/CYTOKININ-RESPONSIVE GATA FACTOR1 (GNL), have already been analyzed with regard to their biological function. Together, GNC and GNL control germination, greening, flowering time, and senescence downstream from auxin, cytokinin (CK), gibberellin (GA), and light signaling. Whereas overexpression and complementation analyses suggest a redundant biochemical function between GNC and GNL, nothing is known about the biological role of the four other LLM-domain B-GATAs, GATA15, GATA16, GATA17, and GATA17L (GATA17-LIKE), based on loss-of-function mutant phenotypes. Here, we examine insertion mutants of the six Arabidopsis B-GATA genes and reveal the role of these genes in the control of greening, hypocotyl elongation, phyllotaxy, floral organ initiation, accessory meristem formation, flowering time, and senescence. Several of these phenotypes had previously not been described for the gnc and gnl mutants or were enhanced in the more complex mutants when compared to gnc gnl mutants. Some of the respective responses may be mediated by CK signaling, which activates the expression of all six GATA genes. CK-induced gene expression is partially compromised in LLM-domain B-GATA mutants, suggesting that B-GATA genes play a role in CK responses. We furthermore provide evidence for a transcriptional cross regulation between these GATAs that may, in at least some cases, be at the basis of their apparent functional redundancy.
Collapse
Affiliation(s)
- Quirin L Ranftl
- Plant Systems Biology, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Strasse 8, 85354 Freising, Germany (Q.L.R., E.B., C.K., C.S.)
| | - Emmanouil Bastakis
- Plant Systems Biology, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Strasse 8, 85354 Freising, Germany (Q.L.R., E.B., C.K., C.S.)
| | - Carina Klermund
- Plant Systems Biology, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Strasse 8, 85354 Freising, Germany (Q.L.R., E.B., C.K., C.S.)
| | - Claus Schwechheimer
- Plant Systems Biology, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Strasse 8, 85354 Freising, Germany (Q.L.R., E.B., C.K., C.S.)
| |
Collapse
|
43
|
Yang M, Jiao Y. Regulation of Axillary Meristem Initiation by Transcription Factors and Plant Hormones. FRONTIERS IN PLANT SCIENCE 2016; 7:183. [PMID: 26925087 PMCID: PMC4757702 DOI: 10.3389/fpls.2016.00183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/03/2016] [Indexed: 05/22/2023]
Abstract
One distinctive feature of plant post-embryonic development is that plants can undergo reiterative growth and continuous organogenesis throughout their lifetimes. Axillary meristems (AMs) in leaf axils play a central role in this growth and differences in meristem initiation and development produce the diversity of plant architecture. Studies in the past 15 years have shown that several transcription factors (TFs) and phytohormones affect AM initiation. In this review, we highlight recent research using systems biology approaches to examine the regulatory hierarchies underlying AM initiation and the role of auxins and cytokinins in AM initiation and development. This research revealed a developmental mechanism in which phytohormone signals act with a gene regulatory network containing multiple TFs to contribute to the initiation of AMs.
Collapse
|
44
|
Ding L, Yan S, Jiang L, Liu M, Zhang J, Zhao J, Zhao W, Han YY, Wang Q, Zhang X. HANABA TARANU regulates the shoot apical meristem and leaf development in cucumber (Cucumis sativus L.). JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7075-87. [PMID: 26320238 PMCID: PMC4765787 DOI: 10.1093/jxb/erv409] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The shoot apical meristem (SAM) is essential for continuous organogenesis in higher plants, while the leaf is the primary source organ and the leaf shape directly affects the efficiency of photosynthesis. HANABA TARANU (HAN) encodes a GATA3-type transcription factor that functions in floral organ development, SAM organization, and embryo development in Arabidopsis, but is involved in suppressing bract outgrowth and promoting branching in grass species. Here the function of the HAN homologue CsHAN1 was characterized in cucumber, an important vegetable with great agricultural and economic value. CsHAN1 is predominantly expressed at the junction of the SAM and the stem, and can partially rescue the han-2 floral organ phenotype in Arabidopsis. Overexpression and RNAi of CsHAN1 transgenic cucumber resulted in retarded growth early after embryogenesis and produced highly lobed leaves. Further, it was found that CsHAN1 may regulate SAM development through regulating the WUSCHEL (WUS) and SHOOT MERISTEMLESS (STM) pathways, and mediate leaf development through a complicated gene regulatory network in cucumber.
Collapse
Affiliation(s)
- Lian Ding
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Shuangshuang Yan
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Li Jiang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Meiling Liu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Juan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Jianyu Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Wensheng Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Ying-Yan Han
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Qian Wang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| |
Collapse
|
45
|
Bartlett ME, Williams SK, Taylor Z, DeBlasio S, Goldshmidt A, Hall DH, Schmidt RJ, Jackson DP, Whipple CJ. The Maize PI/GLO Ortholog Zmm16/sterile tassel silky ear1 Interacts with the Zygomorphy and Sex Determination Pathways in Flower Development. THE PLANT CELL 2015; 27:3081-98. [PMID: 26518212 PMCID: PMC4682306 DOI: 10.1105/tpc.15.00679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/03/2015] [Indexed: 05/07/2023]
Abstract
In monocots and eudicots, B class function specifies second and third whorl floral organ identity as described in the classic ABCE model. Grass B class APETALA3/DEFICIENS orthologs have been functionally characterized; here, we describe the positional cloning and characterization of a maize (Zea mays) PISTILLATA/GLOBOSA ortholog Zea mays mads16 (Zmm16)/sterile tassel silky ear1 (sts1). We show that, similar to many eudicots, all the maize B class proteins bind DNA as obligate heterodimers and positively regulate their own expression. However, sts1 mutants have novel phenotypes that provide insight into two derived aspects of maize flower development: carpel abortion and floral asymmetry. Specifically, we show that carpel abortion acts downstream of organ identity and requires the growth-promoting factor grassy tillers1 and that the maize B class genes are expressed asymmetrically, likely in response to zygomorphy of grass floral primordia. Further investigation reveals that floral phyllotactic patterning is also zygomorphic, suggesting significant mechanistic differences with the well-characterized models of floral polarity. These unexpected results show that despite extensive study of B class gene functions in diverse flowering plants, novel insights can be gained from careful investigation of homeotic mutants outside the core eudicot model species.
Collapse
Affiliation(s)
| | | | - Zac Taylor
- Department of Biology, Brigham Young University, Provo, Utah 84602
| | - Stacy DeBlasio
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | | | - Darren H Hall
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116
| | - Robert J Schmidt
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116
| | - David P Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | | |
Collapse
|
46
|
Auxin signaling modules regulate maize inflorescence architecture. Proc Natl Acad Sci U S A 2015; 112:13372-7. [PMID: 26464512 DOI: 10.1073/pnas.1516473112] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In plants, small groups of pluripotent stem cells called axillary meristems are required for the formation of the branches and flowers that eventually establish shoot architecture and drive reproductive success. To ensure the proper formation of new axillary meristems, the specification of boundary regions is required for coordinating their development. We have identified two maize genes, BARREN INFLORESCENCE1 and BARREN INFLORESCENCE4 (BIF1 and BIF4), that regulate the early steps required for inflorescence formation. BIF1 and BIF4 encode AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins, which are key components of the auxin hormone signaling pathway that is essential for organogenesis. Here we show that BIF1 and BIF4 are integral to auxin signaling modules that dynamically regulate the expression of BARREN STALK1 (BA1), a basic helix-loop-helix (bHLH) transcriptional regulator necessary for axillary meristem formation that shows a striking boundary expression pattern. These findings suggest that auxin signaling directly controls boundary domains during axillary meristem formation and define a fundamental mechanism that regulates inflorescence architecture in one of the most widely grown crop species.
Collapse
|
47
|
Sokoloff DD, Remizowa MV, Barrett MD, Conran JG, Rudall PJ. Morphological diversity and evolution of Centrolepidaceae (Poales), a species-poor clade with diverse body plans and developmental patterns. AMERICAN JOURNAL OF BOTANY 2015; 102:1219-49. [PMID: 26290547 PMCID: PMC7159468 DOI: 10.3732/ajb.1400434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 06/30/2015] [Indexed: 05/12/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY The small primarily Australian commelinid monocot family Centrolepidaceae displays remarkably high structural diversity that has been hitherto relatively poorly explored. Data on Centrolepidaceae are important for comparison with other Poales, including grasses and sedges.• METHODS We examined vegetative and reproductive morphology in a global survey of Centrolepidaceae based on light and scanning electron microscopy of 18 species, representing all three genera. We used these data to perform a cladistic analysis to assess character evolution.• KEY RESULTS Each of the three genera is monophyletic; Centrolepis is sister to Aphelia. Some Centrolepidaceae show a change from spiral to distichous phyllotaxy on inflorescence transition. In Aphelia and most species of Centrolepis, several morphologically distinct leaf types develop along the primary shoot axis and flowers are confined to dorsiventral lateral spikelets. Centrolepis racemosa displays secondary unification of programs of leaf development, absence of the leaf hyperphyll and loss of shoot dimorphism. Presence or absence of a leaf ligule and features of inflorescence and flower morphology are useful as phylogenetic characters in Centrolepidaceae.• CONCLUSIONS Ontogenetic changes in phyllotaxy differ fundamentally between some Centrolepidaceae and many grasses. Inferred evolutionary transformations of phyllotaxy in Centrolepidaceae inflorescences also differ from those in grasses. In contrast with grasses, some Centrolepidaceae possess ligulate leaves where the ligule represents the boundary between the bifacial hypophyll and unifacial hyperphyll. All the highly unusual features of the morphological-misfit species Centrolepis racemosa could result from the same saltational event. Centrolepidaceae offer good perspectives for studies of evolutionary developmental biology.
Collapse
Affiliation(s)
- Dmitry D. Sokoloff
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Margarita V. Remizowa
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Matthew D. Barrett
- Botanic Gardens & Parks Authority, West Perth 6005, Western Australia
- School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, Crawley, 6009, Western Australia
- Western Australian Herbarium, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, 6983, Western Australia
| | - John G. Conran
- ACEBB & SGC, School of Biological Sciences, Benham Bldg DX 650 312, The University of Adelaide, SA 5005 Australia
| | | |
Collapse
|
48
|
Šiukšta R, Vaitkūnienė V, Kaselytė G, Okockytė V, Žukauskaitė J, Žvingila D, Rančelis V. Inherited phenotype instability of inflorescence and floral organ development in homeotic barley double mutants and its specific modification by auxin inhibitors and 2,4-D. ANNALS OF BOTANY 2015; 115:651-63. [PMID: 25660346 PMCID: PMC4343296 DOI: 10.1093/aob/mcu263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Barley (Hordeum vulgare) double mutants Hv-Hd/tw2, formed by hybridization, are characterized by inherited phenotypic instability and by several new features, such as bract/leaf-like structures, long naked gaps in the spike, and a wide spectrum of variations in the basic and ectopic flowers, which are absent in single mutants. Several of these features resemble those of mutations in auxin distribution, and thus the aim of this study was to determine whether auxin imbalances are related to phenotypic variations and instability. The effects of auxin inhibitors and 2,4-D (2,4-dichlorophenoxyacetic acid) on variation in basic and ectopic flowers were therefore examined, together with the effects of 2,4-D on spike structure. METHODS The character of phenotypic instability and the effects of auxin inhibitors and 2,4-D were compared in callus cultures and intact plants of single homeotic Hv-tw2 and Hv-Hooded/Kap (in the BKn3 gene) mutants and alternative double mutant lines: offspring from individual plants in distal hybrid generations (F9-F10) that all had the same BKn3 allele as determined by DNA sequencing. For intact plants, two auxin inhibitors, 9-hydroxyfluorene-9-carboxylic acid (HFCA) and p-chlorophenoxyisobutyric acid (PCIB), were used. KEY RESULTS Callus growth and flower/spike structures of the Hv-tw2 mutant differed in their responses to HFCA and PCIB. An increase in normal basic flowers after exposure to auxin inhibitors and a decrease in their frequencies caused by 2,4-D were observed, and there were also modifications in the spectra of ectopic flowers, especially those with sexual organs, but the effects depended on the genotype. Exposure to 2,4-D decreased the frequency of short gaps and lodicule transformations in Hv-tw2 and of long naked gaps in double mutants. CONCLUSIONS The effects of auxin inhibitors and 2,4-D suggest that ectopic auxin maxima or deficiencies arise in various regions of the inflorescence/flower primordia. Based on the phenotypic instability observed, definite trends in the development of ectopic flower structures may be detected, from insignificant outgrowths on awns to flowers with sterile organs. Phenotypically unstable barley double mutants provide a highly promising genetic system for the investigation of gene expression modules and trend orders.
Collapse
Affiliation(s)
- Raimondas Šiukšta
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Virginija Vaitkūnienė
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Greta Kaselytė
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Vaiva Okockytė
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Justina Žukauskaitė
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Donatas Žvingila
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Vytautas Rančelis
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| |
Collapse
|
49
|
Behringer C, Schwechheimer C. B-GATA transcription factors - insights into their structure, regulation, and role in plant development. FRONTIERS IN PLANT SCIENCE 2015; 6:90. [PMID: 25755661 PMCID: PMC4337238 DOI: 10.3389/fpls.2015.00090] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/03/2015] [Indexed: 05/17/2023]
Abstract
GATA transcription factors are evolutionarily conserved transcriptional regulators that recognize promoter elements with a G-A-T-A core sequence. In comparison to animal genomes, the GATA transcription factor family in plants is comparatively large with approximately 30 members. Here, we review the current knowledge on B-GATAs, one of four GATA factor subfamilies from Arabidopsis thaliana. We show that B-GATAs can be subdivided based on structural features and their biological function into family members with a C-terminal LLM- (leucine-leucine-methionine) domain or an N-terminal HAN- (HANABA TARANU) domain. The paralogous GNC (GATA, NITRATE-INDUCIBLE, CARBON-METABOLISM INVOLVED) and CGA1/GNL (CYTOKININ-INDUCED GATA1/GNC-LIKE) are introduced as LLM-domain containing B-GATAs from Arabidopsis that control germination, greening, senescence, and flowering time downstream from several growth regulatory signals. Arabidopsis HAN and its monocot-specific paralogs from rice (NECK LEAF1), maize (TASSEL SHEATH1), and barley (THIRD OUTER GLUME) are HAN-domain-containing B-GATAs with a predominant role in embryo development and floral development. We also review GATA23, a regulator of lateral root initiation from Arabidopsis that is closely related to GNC and GNL but has a degenerate LLM-domain that is seemingly specific for the Brassicaceae family. The Brassicaceae-specific GATA23 and the monocot-specific HAN-domain GATAs provide evidence that neofunctionalization of B-GATAs was used during plant evolution to expand the functional repertoire of these transcription factors.
Collapse
Affiliation(s)
| | - Claus Schwechheimer
- *Correspondence: Claus Schwechheimer, Department of Plant Systems Biology, Technische Universität München, Emil-Ramann-Straße 4, 85354 Freising, Germany e-mail:
| |
Collapse
|
50
|
Gallavotti A, Whipple CJ. Positional cloning in maize (Zea mays subsp. mays, Poaceae). APPLICATIONS IN PLANT SCIENCES 2015; 3:apps1400092. [PMID: 25606355 PMCID: PMC4298233 DOI: 10.3732/apps.1400092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/11/2014] [Indexed: 05/20/2023]
Abstract
PREMISE OF THE STUDY Positional (or map-based) cloning is a common approach to identify the molecular lesions causing mutant phenotypes. Despite its large and complex genome, positional cloning has been recently shown to be feasible in maize, opening up a diverse collection of mutants to molecular characterization. • METHODS AND RESULTS Here we outline a general protocol for positional cloning in maize. While the general strategy is similar to that used in other plant species, we focus on the unique resources and approaches that should be considered when applied to maize mutants. • CONCLUSIONS Positional cloning approaches are appropriate for maize mutants and quantitative traits, opening up to molecular characterization the large array of genetic diversity in this agronomically important species. The cloning approach described should be broadly applicable to other species as more plant genomes become available.
Collapse
Affiliation(s)
- Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey 08854-8020 USA
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey 08901 USA
| | - Clinton J. Whipple
- Department of Biology, Brigham Young University, Provo, Utah 84602 USA
- Author for correspondence:
| |
Collapse
|