1
|
Gao YJ, Zhang YL, Wang WH, Latif A, Wang YT, Tang WQ, Pu CX, Sun Y. Protein phosphatase 2A B'α and B'β promote pollen wall construction partially through BRASSINAZOLE-RESISTANT 1-activated cysteine protease gene CEP1 in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1735-1751. [PMID: 39798077 DOI: 10.1093/jxb/eraf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/09/2025] [Indexed: 01/13/2025]
Abstract
A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of the tapetum. Our results demonstrated an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grain harboured sticky remnants and tectum breakages, resulting in failed release. B'α and B'β functioned partially through dephosphorylating and activating BRASSINAZOLE-RESISTANT 1 (BZR1). The bzr1 bes1 double and higher-order mutants of this BZR1/BES1 family displayed similar defects in the pollen wall, while bzr1-1D, having an active form of the BRZ1 protein, exhibited fertile pollen grains in a B'α and B'β dependent manner. Correspondingly, the level of phospho-BZR1 was increased and dephospho-BZR1 was decreased in b'aβ and bzr1-1D/b'aβ at anther stages 8-9 as compared with Col-0 and bzr1-1D, respectively. A cysteine protease gene CEP1 was identified as a BZR1 target, whose transcriptional activation necessitates brassinosteroid (BR)-responsive elements in the promoter region and the BZR1 DNA binding domain. The mRNA level of CEP1 at stages 8-9 was extremely low in bzr1 and bzr1 bes1, but higher in Col-0 and bzr1-1D depending on B'α and B'β. Furthermore, cep1 mutants displayed similar defects in the pollen wall. In brief, this study uncovered a PP2A-BZR1-CEP1 regulatory module, providing a new insight into pollen maturation mechanisms.
Collapse
Affiliation(s)
- Ying-Jie Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yu-Lan Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Wen-Hui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ammara Latif
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yue-Tian Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Wen-Qiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Cui-Xia Pu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ying Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
2
|
Xie Z, Yang L, Fan M, Xuan S, Jia X, Zhang Z, Li N, Liu M, Zhao J, Li J. Genome-wide identification, characterization and expression analysis of the chalcone synthase gene family in Chinese cabbage. BMC Genomics 2025; 26:168. [PMID: 39979840 PMCID: PMC11841018 DOI: 10.1186/s12864-025-11334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Chalcone synthase (CHS) is a key rate-limiting enzyme in the flavonoid synthesis pathway. Flavonoids are crucial secondary metabolites that play significant roles in plant growth, development, and stress resistance. The CHS gene (BrCHS) family in Chinese cabbage has not yet been studied. RESULTS We identified 10 BrCHS genes distributed across 7 chromosomes in the Chinese cabbage genome. Their encoded proteins all contain the Chal_Sti_Synt_C (PF02797) and Chal_Sti_Synt_N (PF00195) domains and can be classified into two groups based on systematic evolution analysis. These BrCHS genes contain 2-4 exons and numerous cis-acting elements responsive to light, hormones, stress, growth and development in the BrCHS gene promoters. We also revealed that the expression of BrCHS2 and BrCHS8 increased under treatment with methyl jasmonate, salt, or drought stress. Virus-induced gene silencing (VIGS) of BrCHS4 inhibited the expression of BrCHS4 and reduced the flavonoid and anthocyanin contents in leaves. CONCLUSIONS Ten BrCHS family genes are present in the genome of Chinese cabbage. These BrCHS genes seemingly maintained similar characteristics and functionalities during evolution. Our results demonstrated that BrCHS4 is involved in flavonoid and anthocyanin accumulation in Chinese cabbage and identified candidate genes for purple Chinese cabbage breeding.
Collapse
Affiliation(s)
- Ziwei Xie
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Lei Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Mi Fan
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Shuxin Xuan
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Xin Jia
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Ziyi Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Na Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Mengyang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China.
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China.
| | - Jingrui Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
3
|
Ma CK, Wang SH, Shi QS, Guo MD, Yang YM, Fu J, Chen X, Mao YC, Huang XH, Zhu J, Yang ZN. ATP-CITRATE LYASEB1 supplies materials for sporopollenin biosynthesis and microspore development in Arabidopsis. PLANT PHYSIOLOGY 2025; 197:kiaf044. [PMID: 39888351 DOI: 10.1093/plphys/kiaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/05/2024] [Accepted: 12/15/2024] [Indexed: 02/01/2025]
Abstract
Acetyl-CoA is the main substrate of lipid metabolism and functions as an energy source for plant development. In the cytoplasm, acetyl-CoA is mainly produced by ATP-citrate lyase (ACL), which is composed of ACLA and ACLB subunits. In this study, we isolated the restorer-4 (res4) of the thermo-sensitive genic male sterile mutant reversible male sterile-2 (rvms-2) in Arabidopsis (Arabidopsis thaliana). RES4 encodes ACLB1, and res4 harbors a point mutation (Gly584 to Arg) in the citryl-CoA lyase domain. Both the ACLA and ACLB subunits are expressed in the tapetal layer of anthers. RES4 is regulated by MS188, and the res4 point mutation leads to pollen with a defective exine structure. In res4, lipid accumulation was significantly reduced within the tapetum and locules. These results indicate that acetyl-CoA synthesized by ACL is used for sporopollenin biosynthesis in the tapetum. Microspore diameter was significantly smaller in res4 than in wild type, indicating that acetyl-CoA from the tapetum supplies microspore development. Previous studies have shown that delayed degradation of the tetrad wall in res2 and res3 provides additional protection for rvms-2 microspores. The reduced volume of res4 microspores may lessen the requirement for cell wall protection to restore rvms-2 fertility. This study reveals the function of ACL in anther development and the mechanisms of fertility restoration in photoperiod- and thermo-sensitive genic male sterile lines.
Collapse
Affiliation(s)
- Chang-Kai Ma
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Sheng-Hong Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qiang-Sheng Shi
- College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, Jiangxi 332005, China
| | - Meng-Die Guo
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yan-Ming Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jia Fu
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiao Chen
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yi-Chen Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xue-Hui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhong-Nan Yang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
4
|
Wang YC, Liu XL, Zhang Z, Zhou L, Zhang YF, Zhu BS, Yang YM, Zhong X, Su ZX, Ma PY, Huang XH, Yang ZN, Zhu J. The Residual Activity of Fatty Acyl-CoA Reductase Underlies Thermo-Sensitive Genic Male Sterility in Rice. PLANT, CELL & ENVIRONMENT 2025; 48:1273-1285. [PMID: 39440542 DOI: 10.1111/pce.15230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Photoperiod/thermo-sensitive genic male sterility (P/TGMS) is critical for rice two-line hybrid system. Previous studies showed that slow development of pollen is a general mechanism for sterility-to-fertility conversion of TGMS in Arabidopsis. However, whether this mechanism still exists in rice is unknown. Here, we identified a novel rice TGMS line, ostms16, which exhibits abnormal pollen exine under high temperature and fertility restoration under low temperature. In mutant, a single base mutation of OsTMS16, a fatty acyl-CoA reductase (FAR), reduced its enzyme activity, leading to defective pollen wall. Under high temperature, the mOsTMS16M549I couldn't provide sufficient protection for the microspores. Under low temperature, the enzyme activity of mOsTMS16M549I is closer to that of OsTMS16, so that the imperfect exine could still protect microspore development. These results indicated whether the residual enzyme activity in mutant could meet the requirement in different temperature is a determinant factor for fertility conversion of P/TGMS lines. Additionally, we previously found that res2, the mutant of a polygalacturonase for tetrad pectin wall degradation, restored multiple TGMS lines in Arabidopsis. In this study, we proved that the osres2 in rice restored the fertility of ostms16, indicating the slow development is also suitable for the fertility restoration in rice.
Collapse
Affiliation(s)
- Yi-Chen Wang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xing-Lu Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zheng Zhang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Lei Zhou
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yan-Fei Zhang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ben-Shun Zhu
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yan-Ming Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiang Zhong
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhen-Xin Su
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Pei-Yang Ma
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xue-Hui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhong-Nan Yang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
5
|
Liu X, Gao S, Cheng A, Lou H. Characterization and functional analysis of type III polyketide synthases in Selaginella moellendorffii. PLANTA 2025; 261:28. [PMID: 39786623 DOI: 10.1007/s00425-024-04602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025]
Abstract
MAIN CONCLUSION The evolutionary conservation of type III polyketide synthases (PKS) in Selaginella has been elucidated, and the critical amino acid residues of the anther-specific chalcone synthase-like enzyme (SmASCL) have been identified. Selaginella species are the oldest known vascular plants and a valuable resource for the study of metabolic evolution in land plants. Polyketides, especially flavonoids and sporopollenin precursors, are essential prerequisites for plant land colonization. Although type III polyketide synthases (PKS) are widely studied in seed plants, the related enzymes in Selaginella remain poorly characterized. Here, eight type III PKSs were identified in the Selaginella moellendorffii genome and classified into three clusters. Two PKSs were selected for further research based on their phylogenetic relationships and protein sequence similarity. Functional studies revealed that they were chalcone synthase (SmCHS) and anther-specific CHS-like enzyme (SmASCL). These enzymes are involved in the biosynthesis of flavonoids and sporopollenin, respectively. Their sequence information and enzymatic activity are similar to the orthologs in other plants. Phylogenetic analysis revealed that the ASCL and CHS enzymes were separated into two clades from the Bryophyta. These results suggest that CHS and ASCL emerged in the first land plants and then remained conserved during plant evolution. To study the structural basis of the enzymatic function of SmASCL, a series of mutants were constructed. The number of condensation reactions catalyzed by the P210L/Y211D and I200V/G201T double mutants exceeds that of the wild-type enzyme. Our study provides insight into the characteristics and functions of type III PKSs in S. moellendorffii. It also offers clues for a deeper understanding of the relationship between active sites and the enzymatic function of ASCLs.
Collapse
Affiliation(s)
- Xinyan Liu
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Shuai Gao
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Aixia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| | - Hongxiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Jinan, 250012, Shandong, China.
| |
Collapse
|
6
|
Wang N, Li X, Zhu J, Yang ZN. Molecular and cellular mechanisms of photoperiod- and thermo-sensitive genic male sterility in plants. MOLECULAR PLANT 2025; 18:26-41. [PMID: 39702966 DOI: 10.1016/j.molp.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Photoperiod- and thermo-sensitive genic male sterile (P/TGMS) lines display male sterility under high-temperature/long-day light conditions and male fertility under low-temperature/short-day light conditions. P/TGMS lines are the fundamental basis for the two-line hybrid breeding, which has notably increased the yield potential and grain quality of rice cultivars. In this review, we focus on the research progress on photoperiod- and thermo-sensitive genic male sterility in plants. The essence of P/TGMS line is their ability to produce viable pollen under varying conditions. We overview the processes involved in anther and pollen development, as well as the molecular, cellular, and genetic mechanisms underlying P/TGMS in Arabidopsis, rice, and other crops. Slow development has been identified as a common mechanism of P/TGMS fertility restoration in both Arabidopsis and rice, while reactive oxygen species homeostasis has been implicated in rice P/TGMS. Furthermore, we discuss the prospective applications of P/TGMS and potential solutions to the challenges in this field. This review deepens the understanding of the mechanisms underlying P/TGMS and its utilization in two-line hybrid breeding across diverse crops.
Collapse
Affiliation(s)
- Na Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiang Li
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jun Zhu
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
7
|
Xing M, Xu Y, Lu Y, Yan J, Zeng A. Analysis of Rfo-Mediated Network in Regulating Fertility Restoration in Brassica oleracea. Int J Mol Sci 2024; 25:12026. [PMID: 39596094 PMCID: PMC11593589 DOI: 10.3390/ijms252212026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Ogura cytoplasmic male sterility (CMS) lines play a crucial role in the utilization of heterosis. However, valuable traits, such as disease resistance genes from Ogura CMS hybrids, are challenging to incorporate for germplasm innovation, particularly in cabbage and broccoli. To date, the Rfo-mediated network regulating fertility restoration remains largely unexplored. In this study, we conducted a transcriptomic analysis of broccoli flower buds from Ogura CMS SFB45 and its Rfo-transgenic fertility restoration line, pRfo, at different stages of pollen development. Gene Ontology (GO) terms such as "pollen exine formation", "flavonoid metabolic and biosynthetic processes", and "pollen wall assembly", along with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways including "flavonoid biosynthesis", "MAPK signaling pathway-plant", and "ABC transporters", were significantly enriched. We identified five differentially expressed genes (DEGs) involved in tapetum-mediated callose metabolism, thirty-four DEGs related to tapetum-mediated pollen wall formation, three DEGs regulating tapetum programmed cell death (PCD), five MPKs encoding DEGs, and twelve DEGs associated with oxidative phosphorylation. Additionally, yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays demonstrated that RFO directly interacts with ORF138 at the protein level. These findings provide valuable insights into the fertility recovery mechanisms regulated by Rfo in broccoli and offer important clues for breeders aiming to enhance Ogura CMS hybrids in Brassica oleracea.
Collapse
Affiliation(s)
| | | | | | | | - Aisong Zeng
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China; (M.X.); (Y.X.); (Y.L.); (J.Y.)
| |
Collapse
|
8
|
Liu H, Li J, Xie L, Wu H, Han S, Hu L, Zhang F, Wang H. Quantitative proteomic analysis reveals hub proteins for high temperature-induced male sterility in bread wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1426832. [PMID: 39290742 PMCID: PMC11405254 DOI: 10.3389/fpls.2024.1426832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
High-temperature (HT) stress can induce male sterility in wheat; however, the underlying mechanisms remain poorly understood. This study examined proteomic alterations across three developmental stages between normal and HT-induced male-sterile (HT-ms) anthers in wheat. Utilizing tandem mass tags-based proteomics, we identified 2532 differentially abundant proteins (DAPs): 27 in the tetrad stage, 157 in the binuclear stage, and 2348 in the trinuclear stage. Analyses through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways indicated significant enrichment of these DAPs in seven pathways, namely phenylpropanoid biosynthesis, flavonoid biosynthesis, sphingolipid metabolism, MAPK signaling pathway, starch and sucrose metabolism, response to heat, and response to reactive oxygen species (ROS). Our results indicated the downregulation of DAPs associated with phenylpropanoid biosynthesis and starch and sucrose metabolism, which aligns with anther indehiscence and the lack of starch in HT-ms anthers. By contrast, DAPs in the ROS pathway were upregulated, which aligns with excessive ROS accumulation in HT-ms anthers. Additionally, we conducted protein-protein interaction analysis for the DAPs of these pathways, identifying 15 hub DAPs. The abundance of these hub proteins was confirmed through qRT-PCR, assessing mRNA expression levels of the corresponding transcripts. Collectively, these results offer insights into the molecular mechanisms underlying HT-induced male sterility in wheat at the proteomic level, providing a valuable resource for further research in plant sexual reproduction.
Collapse
Affiliation(s)
- Hongzhan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou Normal University, Zhoukou, Henan, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jinlei Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Liuyong Xie
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou Normal University, Zhoukou, Henan, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou Normal University, Zhoukou, Henan, China
| | - Huanhuan Wu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Shuying Han
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Lizong Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Fuli Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou Normal University, Zhoukou, Henan, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou Normal University, Zhoukou, Henan, China
| | - Hongxing Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou Normal University, Zhoukou, Henan, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou Normal University, Zhoukou, Henan, China
| |
Collapse
|
9
|
Chu W, Dong S, Zou J, Huang S, Feng H. Cloning and functional verification of the male sterile gene BrQRT3 in Chinese cabbage. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112154. [PMID: 38879178 DOI: 10.1016/j.plantsci.2024.112154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/18/2024]
Abstract
Chinese cabbage is a cross-pollinated crop with significant heterosis, and male sterile lines are an important way to produce hybrid seeds. In this study, a male sterile mutant msm0795 was identified in an EMS-mutagenized population of Chinese cabbage. Cytological observations revealed that the microspores failed to separate after the tetrad stage, and thus developed into abnormal pollen grains, resulting in anther abortion. MutMap combined with Kompetitive Allele Specific PCR genotyping showed that BraA01g011280.3.5 C was identified as the candidate gene, which encodes polygalacturonase QRT3 and plays a direct role in the degradation of pollen mother cell wall during microspore development, named BrQRT3. Subcellular localization and expression analyses demonstrated that BrQRT3 was localized in the cell membrane and was ubiquitously expressed in roots, stems, leaves, flower buds, and flowers, but the expression of BrQRT3 was gradually suppressed with the anther development. Ectopic expression confirmed that over-expression of BrQRT3 in qrt3 background Arabidopsis mutant can rescue the pollen defects caused by loss of AtQRT3 function. It is the first time to achieve a male sterile mutant caused by the mutation of BrQRT3 in Chinese cabbage. These findings contribute to elucidate the mechanism of BrQRT3 in regulating stamen development of Chinese cabbage.
Collapse
Affiliation(s)
- Wenlong Chu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Shiyao Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiaqi Zou
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Shengnan Huang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
10
|
Xu W, Peng X, Li Y, Zeng X, Yan W, Wang C, Wang CR, Chen S, Xu C, Tang X. OsSNDP4, a Sec14-nodulin Domain Protein, is Required for Pollen Development in Rice. RICE (NEW YORK, N.Y.) 2024; 17:54. [PMID: 39207611 PMCID: PMC11362464 DOI: 10.1186/s12284-024-00730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Pollen is encased in a robust wall that shields the male gametophyte from various stresses and aids in pollination. The pollen wall consists of gametophyte-derived intine and sporophyte-derived exine. The exine is mainly composed of sporopollenin, which is biopolymers of aliphatic lipids and phenolics. The process of exine formation has been the subject of extensive research, yet the underlying molecular mechanisms remain elusive. In this study, we identified a rice mutant of the OsSNDP4 gene that is impaired in pollen development. We demonstrated that OsSNDP4, a putative Sec14-nodulin domain protein, exhibits a preference for binding to phosphatidylinositol (3)-phosphate [PI(3)P], a lipid primarily found in endosomal and vacuolar membranes. The OsSNDP4 protein was detected in association with the endoplasmic reticulum (ER), vacuolar membranes, and the nucleus. OsSNDP4 expression was detected in all tested organs but was notably higher in anthers during exine development. Loss of OsSNDP4 function led to abnormal vacuole dynamics, inhibition in Ubisch body development, and premature degradation of cellular contents and organelles in the tapetal cells. Microspores from the ossndp4 mutant plant displayed abnormal exine formation, abnormal vacuole enlargement, and ultimately, pollen abortion. RNA-seq assay revealed that genes involved in the biosynthesis of fatty acid and secondary metabolites, the biosynthesis of lipid polymers, and exosome formation were enriched among the down-regulated genes in the mutant anthers, which correlated with the morphological defects observed in the mutant anthers. Base on these findings, we propose that OsSNDP4 regulates pollen development by binding to PI(3)P and influencing the dynamics of membrane systems. The involvement of membrane systems in the regulation of sporopollenin biosynthesis, Ubisch body formation, and exine formation provides a novel mechanism regulating pollen wall development.
Collapse
Affiliation(s)
- Weitao Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoqun Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xinhuang Zeng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Changjian Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Cheng Rui Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shunquan Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China.
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China.
| |
Collapse
|
11
|
Suh DY, Sraan DK, Ashton NW. Takakia possesses a key marker of embryophyte sporopollenin. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001165. [PMID: 39132052 PMCID: PMC11316218 DOI: 10.17912/micropub.biology.001165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/22/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
The enigmatic moss, Takakia lepidozioides , possesses a particular type III polyketide synthase, ASCL (Anther-Specific Chalcone synthase-Like), that is an identifying marker for genuine sporopollenin in the walls of embryophyte spores and pollen grains. By contrast, a survey of all algae with sequenced genomes confirms that they do not possess ASCL and, therefore, their spore walls are not composed of sporopollenin.
Collapse
Affiliation(s)
- Dae-Yeon Suh
- Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Damanpreet K Sraan
- Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Neil W Ashton
- Biology, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
12
|
Chen L, Hao J, Qiao K, Wang N, Ma L, Wang Z, Wang J, Pu X, Fan S, Ma Q. GhTKPR1_8 functions to inhibit anther dehiscence and reduce pollen viability in cotton. PHYSIOLOGIA PLANTARUM 2024; 176:e14331. [PMID: 38710477 DOI: 10.1111/ppl.14331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
Sporopollenin, as the main component of the pollen exine, is a highly resistant polymer that provides structural integrity under unfavourable environmental conditions. Tetraketone α-pyrone reductase 1 (TKPR1) is essential for sporopollenin formation, catalyzing the reduction of tetraketone carbonyl to hydroxylated α-pyrone. The functional role of TKPR1 in male sterility has been reported in flowering plants such as maize, rice, and Arabidopsis. However, the molecular cloning and functional characterization of TKPR1 in cotton remain unaddressed. In this study, we identified 68 TKPR1s from four cotton species, categorized into three clades. Transcriptomics and RT-qPCR demonstrated that GhTKPR1_8 exhibited typical expression patterns in the tetrad stage of the anther. GhTKPR1_8 was localized to the endoplasmic reticulum. Moreover, ABORTED MICROSPORES (GhAMS) transcriptionally activated GhTKPR1_8 as indicated by luciferase complementation tests. GhTKPR1_8-knockdown inhibited anther dehiscence and reduced pollen viability in cotton. Additionally, overexpression of GhTKPR1_8 in the attkpr1 mutant restored its male sterile phenotype. This study offers novel insights into the investigation of TKPR1 in cotton while providing genetic resources for studying male sterility.
Collapse
Affiliation(s)
- Lingling Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Juxin Hao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Kaikai Qiao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Ningna Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Lina Ma
- Hebei Base of State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Hebei Agricultural University, Baoding, Hebei, China
| | - Zhe Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jin Wang
- Hebei Base of State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaoyan Pu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Shuli Fan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| |
Collapse
|
13
|
Lai Z, Wang J, Fu Y, Wang M, Ma H, Peng S, Chang F. Revealing the role of CCoAOMT1: fine-tuning bHLH transcription factors for optimal anther development. SCIENCE CHINA. LIFE SCIENCES 2024; 67:565-578. [PMID: 38097889 DOI: 10.1007/s11427-023-2461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/12/2023] [Indexed: 03/05/2024]
Abstract
The tapetum, a crucial innermost layer encompassing male reproductive cells within the anther wall, plays a pivotal role in normal pollen development. The transcription factors (TFs) bHLH010/089/091 redundantly facilitate the rapid nuclear accumulation of DYSFUNCTIONAL TAPETUM 1, a gatekeeper TF in the tapetum. Nevertheless, the regulatory mechanisms governing the activity of bHLH010/089/091 remain unknown. In this study, we reveal that caffeoyl coenzyme A O-methyltransferase 1 (CCoAOMT1) is a negative regulator affecting the nuclear localization and function of bHLH010 and bHLH089, probably through their K259 site. Our findings underscore that CCoAOMT1 promotes the nuclear export and degradation of bHLH010 and bHLH089. Intriguingly, elevated CCoAOMT1 expression resulted in defective pollen development, mirroring the phenotype observed in bhlh010 bhlh089 mutants. Moreover, our investigation revealed that the K259A mutation in the bHLH089 protein disrupted its translocation from the nucleus to the cytosol and impeded its degradation induced by CCoAOMT1. Importantly, transgenic plants with the probHLH089::bHLH089K259A construct failed to rescue proper pollen development or gene expression in bhlh010 bhlh089 mutants. Collectively, these findings emphasize the need to maintain balanced TF homeostasis for male fertility. They firmly establish CCoAOMT1 as a pivotal regulator that is instrumental in achieving equilibrium between the induction of the tapetum transcriptional network and ensuring appropriate anther development.
Collapse
Affiliation(s)
- Zesen Lai
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- School of Tropical Agriculture and Forestry, Agriculture-Rural Affairs and Rural Revitalization, Hainan University, Haikou, 570228, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jianzheng Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ying Fu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Menghan Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Shiqing Peng
- School of Tropical Agriculture and Forestry, Agriculture-Rural Affairs and Rural Revitalization, Hainan University, Haikou, 570228, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Fang Chang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
14
|
Wiese AJ, Torutaeva E, Honys D. The transcription factors and pathways underpinning male reproductive development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1354418. [PMID: 38390292 PMCID: PMC10882072 DOI: 10.3389/fpls.2024.1354418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
As Arabidopsis flowers mature, specialized cells within the anthers undergo meiosis, leading to the production of haploid microspores that differentiate into mature pollen grains, each containing two sperm cells for double fertilization. During pollination, the pollen grains are dispersed from the anthers to the stigma for subsequent fertilization. Transcriptomic studies have identified a large number of genes expressed over the course of male reproductive development and subsequent functional characterization of some have revealed their involvement in floral meristem establishment, floral organ growth, sporogenesis, meiosis, microsporogenesis, and pollen maturation. These genes encode a plethora of proteins, ranging from transcriptional regulators to enzymes. This review will focus on the regulatory networks that control male reproductive development, starting from flower development and ending with anther dehiscence, with a focus on transcription factors and some of their notable target genes.
Collapse
Affiliation(s)
- Anna Johanna Wiese
- Laboratory of Pollen Biology, Institute for Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Elnura Torutaeva
- Laboratory of Pollen Biology, Institute for Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - David Honys
- Laboratory of Pollen Biology, Institute for Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
15
|
Liu Y, Bai J, Yuan S, Gao S, Liu Z, Li Y, Zhang F, Zhao C, Zhang L. Characterization and expression analysis of chalcone synthase gene family members suggested their roles in the male sterility of a wheat temperature-sensitive genic male sterile (TGMS) line. Gene 2023; 888:147740. [PMID: 37661030 DOI: 10.1016/j.gene.2023.147740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Chalcone synthase (CHS), also known as the plants-specific type III polyketide synthases (PKSs), catalyzes the first key step in the biosynthesis of plant flavonoids. Flavonoids are one of the most important secondary metabolites which participate in flower pigmentation and pollen fertility. Recent reports have demonstrated the role of the CHS family in plant pollen exine formation. This study focused on the potential roles of CHS in the pollen exine formation of wheat. In the present study, a genome-wide investigation of the CHS family was carried out, and 87 CHS genes were identified in wheat. TaCHS3, TaCHS10, and TaCHS13 are wheat orthologs of Arabidopsis LESS ADHESIVE POLLEN (LAP5); TaCHS58, TaCHS64, and TaCHS67 are wheat orthologs of AtLAP6. TaCHS3, TaCHS10, and TaCHS67 showed anther-specific patterns. The expression of TaCHS3, TaCHS10, and TaCHS67 was positively co-expressed with sporopollenin biosynthetic genes, including TaCYP703A2, TaCYP704B1, TaDRL1, TaTKPR2, and TaMS2. Coincidently, the expression of TaCHS3, TaCHS10, and TaCHS67, together with those sporopollenin biosynthetic genes, were repressed at the tetrads and uninucleate stages in the temperature-sensitive genic male-sterile (TGMS) line BS366 under sterile conditions. Wheat anther-specific CHS genes might participate in the exine formation of BS366 through co-expressing with sporopollenin biosynthetic genes, which will undoubtedly provide knowledge of the roles of CHS in wheat pollen development.
Collapse
Affiliation(s)
- Yongjie Liu
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Jianfang Bai
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Shaohua Yuan
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Shiqing Gao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Zihan Liu
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Yanmei Li
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Fengting Zhang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Changping Zhao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China.
| | - Liping Zhang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China.
| |
Collapse
|
16
|
Cheng Y, Li Y, Yang J, He H, Zhang X, Liu J, Yang X. Multiplex CRISPR-Cas9 knockout of EIL3, EIL4, and EIN2L advances soybean flowering time and pod set. BMC PLANT BIOLOGY 2023; 23:519. [PMID: 37884905 PMCID: PMC10604859 DOI: 10.1186/s12870-023-04543-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Ethylene inhibitor treatment of soybean promotes flower bud differentiation and early flowering, suggested that there is a close relationship between ethylene signaling and soybean growth and development. The short-lived ETHYLENE INSENSITIVE2 (EIN2) and ETHYLENE INSENSITIVE3 (EIN3) proteins play central roles in plant development. The objective of this study was carried out gene editing of EIL family members in soybeans and to examine the effects on soybean yield and other markers of growth. METHODS AND RESULTS By editing key-node genes in the ethylene signaling pathway using a multi-sgRNA-in-one strategy, we obtained a series of gene edited lines with variable edit combinations among 15 target genes. EIL3, EIL4, and EIN2L were editable genes favored by the T0 soybean lines. Pot experiments also show that the early flowering stage R1 of the EIL3, EIL4, and EIN2L triple mutant was 7.05 d earlier than that of the wild-type control. The yield of the triple mutant was also increased, being 1.65-fold higher than that of the control. Comparative RNA-seq revealed that sucrose synthase, AUX28, MADS3, type-III polyketide synthase A/B, ABC transporter G family member 26, tetraketide alpha-pyrone reductase, and fatty acyl-CoA reductase 2 may be involved in regulating early flowering and high-yield phenotypes in triple mutant soybean plants. CONCLUSION Our results provide a scientific basis for genetic modification to promote the development of earlier-flowering and higher-yielding soybean cultivars.
Collapse
Affiliation(s)
- Yunqing Cheng
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Yujie Li
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Jing Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130024, China
| | - Hongli He
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Xingzheng Zhang
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Jianfeng Liu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China.
| | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130024, China.
| |
Collapse
|
17
|
Liu F, Yang H, Tang R, Wang W, Shen H, Xu M, Hao T, Hu Y, Zhang Y, Bao Y. OsTKPR1 proteins with a single amino acid substitution fail the synthesis of a specific sporopollenin precursor and cause abnormal exine and pollen development in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111792. [PMID: 37454819 DOI: 10.1016/j.plantsci.2023.111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Fatty acid derivatives are key components of rice pollen exine. The synthesis of aliphatic sporopollenin precursors are initiated in the plastids of the tapetal cells, followed by multiple-step reactions conducted in the endoplasmic reticulum (ER). However, the relative contribution of different precursors to the precise structure of sporopollenin remains largely elusive, let alone the underlying mechanism. Here, we report that two complete male sterile mutants ostkpr1-3 (Tetraketide α-pyrone reductase 1-3, with OsTKPR1P124S substitution) and ostkpr1-4 (with truncated OsTKPR1stop) are defective in pollen exine, Ubisch body and anther cuticle development where ostkpr1-4 display severer phenotypes. Remarkably, OsTKPR1 could produce reduced hydroxylated tetraketide α-pyrone and reduced tetraketide α-pyrone, whereas OsTKPR1P124S fails to produce the latter. Pairwise interaction assays show that mutated OsTKPR1P124S is able to integrate into a recently characterized metabolon, thus its altered catalytic activity is not due to dis-integrity of the metabolon. In short, we find that reduced tetraketide α-pyrone is a key sporopollenin precursor required for normal exine formation, and the conserved 124th proline of OsTKPR1 is essential for the reduction activity. Therefore, this study provided new insights into the sporopollenin precursor constitution critical for exine formation.
Collapse
Affiliation(s)
- Feng Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huiting Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Rong Tang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wang Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haodong Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mengxue Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tiancheng Hao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuanyuan Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yunhui Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
18
|
Zhang W, Qi X, Zhi H, Ren Y, Zhang L, Gao Y, Sui Y, Zhang H, Tang S, Jia G, Xie C, Wu C, Diao X. A straight-forward seed production technology system for foxtail millet (Setaria italica). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2023-2035. [PMID: 37154486 DOI: 10.1111/jipb.13503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
For autogamous crops, a precondition for using heterosis is to produce sufficient pure male-sterile female parents that can be used to produce hybrid seeds. To date, cytoplasmic male sterility (CMS) and environment-sensitive genic male sterility (EGMS) have been used commercially to exploit heterosis for autogamous species. However, neither CMS nor EGMS has been established for foxtail millet (Setaria italica). Here, we report on the establishment and application of a seed production technology (SPT) system for this crop. First, we established a DsRed-based SPT system, but found that it was unsuitable because it required the use of a fluorescent device for seed sorting. Instead, we constructed an SPT system with de novo betalain biosynthesis as the selection marker. This allowed us to distinguish transgenic seeds with the naked eye, thereby facilitating the identification of SPT maintainer line seeds. In this system, a seed sorter was not required to obtain sufficient seeds. The key point of the strategy is that the seed pool of the SPT maintainer line is propagated by artificial identification and harvesting of male-fertile individuals in the field, and the male-sterile line seed pool for hybrid production is produced and propagated by free pollination of male-sterile plants with the SPT maintainer line. In a field experiment, we obtained 423.96 kg male-sterile line seeds per acre, which is sufficient to plant 700.18 acres of farmland for hybrid seed production or male-sterile line reproduction. Our study therefore describes a powerful tool for hybrid seed production in foxtail millet, and demonstrates how the SPT system can be used for a small-grained crop with high reproduction efficiency.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiantao Qi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yushuang Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Linlin Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuanzhu Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haoshan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chuanxiao Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chuanyin Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
19
|
Nishiguchi M, Futamura N, Endo M, Mikami M, Toki S, Katahata SI, Ohmiya Y, Konagaya KI, Nanasato Y, Taniguchi T, Maruyama TE. CRISPR/Cas9-mediated disruption of CjACOS5 confers no-pollen formation on sugi trees (Cryptomeria japonica D. Don). Sci Rep 2023; 13:11779. [PMID: 37479866 PMCID: PMC10361980 DOI: 10.1038/s41598-023-38339-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023] Open
Abstract
Sugi (Cryptomeria japonica D. Don) is an economically important coniferous tree in Japan. However, abundant sugi pollen grains are dispersed and transported by the wind each spring and cause a severe pollen allergy syndrome (Japanese cedar pollinosis). The use of pollen-free sugi that cannot produce pollen has been thought as a countermeasure to Japanese cedar pollinosis. The sugi CjACOS5 gene is an ortholog of Arabidopsis ACOS5 and rice OsACOS12, which encode an acyl-CoA synthetase that is involved in the synthesis of sporopollenin in pollen walls. To generate pollen-free sugi, we mutated CjACOS5 using the CRISPR/Cas9 system. As a result of sugi transformation mediated by Agrobacterium tumefaciens harboring the CjACOS5-targeted CRISPR/Cas9 vector, 1 bp-deleted homo biallelic mutant lines were obtained. Chimeric mutant lines harboring both mutant and wild-type CjACOS5 genes were also generated. The homo biallelic mutant lines had no-pollen in male strobili, whereas chimeric mutant lines had male strobili with or without pollen grains. Our results suggest that CjACOS5 is essential for the production of pollen in sugi and that its disruption is useful for the generation of pollen-free sugi. In addition to conventional transgenic technology, genome editing technology, including CRISPR/Cas9, can confer new traits on sugi.
Collapse
Affiliation(s)
- Mitsuru Nishiguchi
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan.
| | - Norihiro Futamura
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Masaki Endo
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa, 236-0027, Japan
| | - Masafumi Mikami
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa, 236-0027, Japan
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Shin-Ichiro Katahata
- Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan
| | - Yasunori Ohmiya
- Extension and International Cooperation Department, Forest Tree Breeding Center, Forestry and Forest Products Research Institute (FFPRI), 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Ken-Ichi Konagaya
- Forest Bio-Research Center, Forestry and Forest Products Research Institute (FFPRI), 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Yoshihiko Nanasato
- Forest Bio-Research Center, Forestry and Forest Products Research Institute (FFPRI), 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Toru Taniguchi
- Forest Bio-Research Center, Forestry and Forest Products Research Institute (FFPRI), 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Tsuyoshi Emilio Maruyama
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| |
Collapse
|
20
|
Yadav BG, Aakanksha, Kumar R, Yadava SK, Kumar A, Ramchiary N. Understanding the Proteomes of Plant Development and Stress Responses in Brassica Crops. J Proteome Res 2023; 22:660-680. [PMID: 36786770 DOI: 10.1021/acs.jproteome.2c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Brassica crops have great economic value due to their rich nutritional content and are therefore grown worldwide as oilseeds, vegetables, and condiments. Deciphering the molecular mechanisms associated with the advantageous phenotype is the major objective of various Brassica improvement programs. As large technological advancements have been achieved in the past decade, the methods to understand molecular mechanisms underlying the traits of interest have also taken a sharp upturn in plant breeding practices. Proteomics has emerged as one of the preferred choices nowadays along with genomics and other molecular approaches, as proteins are the ultimate effector molecules responsible for phenotypic changes in living systems, and allow plants to resist variable environmental stresses. In the last two decades, rapid progress has been made in the field of proteomics research in Brassica crops, but a comprehensive review that collates the different studies is lacking. This review provides an inclusive summary of different proteomic studies undertaken in Brassica crops for cytoplasmic male sterility, oil content, and proteomics of floral organs and seeds, under different biotic and abiotic stresses including post-translational modifications of proteins. This comprehensive review will help in understanding the role of different proteins in controlling plant phenotypes, and provides information for initiating future studies on Brassica breeding and improvement programs.
Collapse
Affiliation(s)
- Bal Govind Yadav
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, Delhi, India
| | - Aakanksha
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, Delhi, India
| | - Rahul Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, Delhi, India
| | - Satish Kumar Yadava
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi 110021, Delhi, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671316, Kerala, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| |
Collapse
|
21
|
Wang H, Cheng Q, Zhai Z, Cui X, Li M, Ye R, Sun L, Shen H. Transcriptomic and Proteomic Analyses of Celery Cytoplasmic Male Sterile Line and Its Maintainer Line. Int J Mol Sci 2023; 24:ijms24044194. [PMID: 36835607 PMCID: PMC9967367 DOI: 10.3390/ijms24044194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 02/22/2023] Open
Abstract
Male sterility is a common phenomenon in the plant kingdom and based on the organelles harboring the male-sterility genes, it can be classified into the genic male sterility (GMS) and the cytoplasmic male sterility (CMS). In every generation, CMS can generate 100% male-sterile population, which is very important for the breeders to take advantage of the heterosis and for the seed producers to guarantee the seed purity. Celery is a cross-pollinated plant with the compound umbel type of inflorescence which carries hundreds of small flowers. These characteristics make CMS the only option to produce the commercial hybrid celery seeds. In this study, transcriptomic and proteomic analyses were performed to identify genes and proteins that are associated with celery CMS. A total of 1255 differentially expressed genes (DEGs) and 89 differentially expressed proteins (DEPs) were identified between the CMS and its maintainer line, then 25 genes were found to differentially expressed at both the transcript and protein levels. Ten DEGs involved in the fleece layer and outer pollen wall development were identified by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, most of which were down-regulated in the sterile line W99A. These DEGs and DEPs were mainly enriched in the pathways of "phenylpropanoid/sporopollenin synthesis/metabolism", "energy metabolism", "redox enzyme activity" and "redox processes". Results obtained in this study laid a foundation for the future investigation of mechanisms of pollen development as well as the reasons for the CMS in celery.
Collapse
Affiliation(s)
- Haoran Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Qing Cheng
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Ziqi Zhai
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Xiangyun Cui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Mingxuan Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Ruiquan Ye
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Liang Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
- Correspondence: (L.S.); (H.S.); Tel.: +86-10-6273-1014 (L.S.); +86-10-6273-2831 (H.S.)
| | - Huolin Shen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
- Correspondence: (L.S.); (H.S.); Tel.: +86-10-6273-1014 (L.S.); +86-10-6273-2831 (H.S.)
| |
Collapse
|
22
|
Comprehensive Insight into Tapetum-Mediated Pollen Development in Arabidopsis thaliana. Cells 2023; 12:cells12020247. [PMID: 36672181 PMCID: PMC9857336 DOI: 10.3390/cells12020247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
In flowering plants, pollen development is a key process that is essential for sexual reproduction and seed set. Molecular and genetic studies indicate that pollen development is coordinatedly regulated by both gametophytic and sporophytic factors. Tapetum, the somatic cell layer adjacent to the developing male meiocytes, plays an essential role during pollen development. In the early anther development stage, the tapetal cells secrete nutrients, proteins, lipids, and enzymes for microsporocytes and microspore development, while initiating programmed cell death to provide critical materials for pollen wall formation in the late stage. Therefore, disrupting tapetum specification, development, or function usually leads to serious defects in pollen development. In this review, we aim to summarize the current understanding of tapetum-mediated pollen development and illuminate the underlying molecular mechanism in Arabidopsis thaliana.
Collapse
|
23
|
Micol-Ponce R, García-Alcázar M, Lebrón R, Capel C, Pineda B, García-Sogo B, Alché JDD, Ortiz-Atienza A, Bretones S, Yuste-Lisbona FJ, Moreno V, Capel J, Lozano R. Tomato POLLEN DEFICIENT 2 encodes a G-type lectin receptor kinase required for viable pollen grain formation. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:178-193. [PMID: 36260406 PMCID: PMC9786849 DOI: 10.1093/jxb/erac419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/18/2022] [Indexed: 05/16/2023]
Abstract
Pollen development is a crucial biological process indispensable for seed set in flowering plants and for successful crop breeding. However, little is known about the molecular mechanisms regulating pollen development in crop species. This study reports a novel male-sterile tomato mutant, pollen deficient 2 (pod2), characterized by the production of non-viable pollen grains and resulting in the development of small parthenocarpic fruits. A combined strategy of mapping-by-sequencing and RNA interference-mediated gene silencing was used to prove that the pod2 phenotype is caused by the loss of Solanum lycopersicum G-type lectin receptor kinase II.9 (SlG-LecRK-II.9) activity. In situ hybridization of floral buds showed that POD2/SlG-LecRK-II.9 is specifically expressed in tapetal cells and microspores at the late tetrad stage. Accordingly, abnormalities in meiosis and tapetum programmed cell death in pod2 occurred during microsporogenesis, resulting in the formation of four dysfunctional microspores leading to an aberrant microgametogenesis process. RNA-seq analyses supported the existence of alterations at the final stage of microsporogenesis, since we found tomato deregulated genes whose counterparts in Arabidopsis are essential for the normal progression of male meiosis and cytokinesis. Collectively, our results revealed the essential role of POD2/SlG-LecRK-II.9 in regulating tomato pollen development.
Collapse
Affiliation(s)
| | | | - Ricardo Lebrón
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain
| | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46011 Valencia, Spain
| | - Begoña García-Sogo
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46011 Valencia, Spain
| | - Juan de Dios Alché
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín-CSIC, 18008 Granada, Spain
| | - Ana Ortiz-Atienza
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain
| | - Sandra Bretones
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain
| | - Fernando Juan Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46011 Valencia, Spain
| | - Juan Capel
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain
| | | |
Collapse
|
24
|
Zou J, Dong S, Fang B, Zhao Y, Song G, Xin Y, Huang S, Feng H. BrACOS5 mutations induced male sterility via impeding pollen exine formation in Chinese cabbage (Brassica rapa L. ssp. pekinensis). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:6. [PMID: 36656366 DOI: 10.1007/s00122-023-04291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
BrACOS5 mutations led to male sterility of Chinese cabbage verified in three allelic male-sterile mutants. Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the major vegetable crops in East Asia, and the utilization of male-sterile line is an important measure for its hybrid seed production. Herein, we isolated three allelic male-sterile mutants, msm1-1, msm1-2 and msm1-3, from an ethyl methane sulfonate (EMS) mutagenized population of Chinese cabbage double-haploid (DH) line 'FT', whose microspores were completely aborted with severely absent exine, and tapetums were abnormally developed. Genetic analyses indicated that the three male-sterile mutants belonged to allelic mutation and were triggered by the same recessive nuclear gene. MutMap-based gene mapping and kompetitive allele-specific PCR (KASP) analysis demonstrated that three different single-nucleotide polymorphisms (SNPs) of BraA09g012710.3C were responsible for the male sterility of msm1-1/2/3, respectively. BraA09g012710.3C is orthologous of Arabidopsis thaliana ACOS5 (AT1G62940), encoding an acyl-CoA synthetase in sporopollenin biosynthesis, and specifically expressed in anther, so we named BraA09g012710.3C as BrACOS5. BrACOS5 localizes to the endoplasmic reticulum (ER). Mutations of BrACOS5 resulted in decreased enzyme activities and altered fatty acid contents in msm1 anthers. As well as the transcript accumulations of putative orthologs involved in sporopollenin biosynthesis were significantly down-regulated excluding BrPKSA. These results provide strong evidence for the integral role of BrACOS5 in conserved sporopollenin biosynthesis pathway and also contribute to uncovering exine development pattern and underlying male sterility mechanism in Chinese cabbage.
Collapse
Affiliation(s)
- Jiaqi Zou
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Shiyao Dong
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Bing Fang
- Department of Foreign Language Teaching, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Ying Zhao
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Gengxing Song
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Yue Xin
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Shengnan Huang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
25
|
Sun Y, Zhang D, Dong H, Wang Z, Wang J, Lv H, Guo Y, Hu S. Comparative transcriptome analysis provides insight into the important pathways and key genes related to the pollen abortion in the thermo-sensitive genic male sterile line 373S in Brassica napus L. Funct Integr Genomics 2022; 23:26. [PMID: 36576592 DOI: 10.1007/s10142-022-00943-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022]
Abstract
The thermo-sensitive genic male sterility (TGMS) system plays a key role in the production of two-line hybrids in rapeseed (Brassica napus). To uncover key cellular events and genetic regulation associated with TGMS, a combined study using cytological methods and RNA-sequencing analysis was conducted for the rapeseed TGMS line 373S. Cytological studies showed that microspore cytoplasm of 373S plants was condensed, the microspore nucleus was degraded at an early stage, the exine was irregular, and the tapetum developed abnormally, eventually leading to male sterility. RNA-sequencing analysis identified 430 differentially expressed genes (298 upregulated and 132 downregulated) between the fertile and sterile samples. Gene ontology analysis demonstrated that the most highly represented biological processes included sporopollenin biosynthetic process, pollen exine formation, and extracellular matrix assembly. Kyoto encyclopedia of genes and genomes analysis indicated that the enriched pathways included amino acid metabolism, carbohydrate metabolism, and lipid metabolism. Moreover, 26 transcript factors were identified, which may be associated with abnormal tapetum degeneration and exine formation. Subsequently, 19 key genes were selected, which are considered to regulate pollen development and even participate in pollen exine formation. Our results will provide important insight into the molecular mechanisms underlying TGMS in rapeseed.
Collapse
Affiliation(s)
- Yanyan Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Dongsuo Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Dong
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhenzhen Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huijie Lv
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuan Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shengwu Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
26
|
Liu X, Jiang Y, Wu S, Wang J, Fang C, Zhang S, Xie R, Zhao L, An X, Wan X. The ZmMYB84-ZmPKSB regulatory module controls male fertility through modulating anther cuticle-pollen exine trade-off in maize anthers. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2342-2356. [PMID: 36070225 PMCID: PMC9674315 DOI: 10.1111/pbi.13911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 08/12/2022] [Indexed: 05/31/2023]
Abstract
Anther cuticle and pollen exine are two crucial lipid layers that ensure normal pollen development and pollen-stigma interaction for successful fertilization and seed production in plants. Their formation processes share certain common pathways of lipid biosynthesis and transport across four anther wall layers. However, molecular mechanism underlying a trade-off of lipid-metabolic products to promote the proper formation of the two lipid layers remains elusive. Here, we identified and characterized a maize male-sterility mutant pksb, which displayed denser anther cuticle but thinner pollen exine as well as delayed tapetal degeneration compared with its wild type. Based on map-based cloning and CRISPR/Cas9 mutagenesis, we found that the causal gene (ZmPKSB) of pksb mutant encoded an endoplasmic reticulum (ER)-localized polyketide synthase (PKS) with catalytic activities to malonyl-CoA and midchain-fatty acyl-CoA to generate triketide and tetraketide α-pyrone. A conserved catalytic triad (C171, H320 and N353) was essential for its enzymatic activity. ZmPKSB was specifically expressed in maize anthers from stages S8b to S9-10 with its peak at S9 and was directly activated by a transcription factor ZmMYB84. Moreover, loss function of ZmMYB84 resulted in denser anther cuticle but thinner pollen exine similar to the pksb mutant. The ZmMYB84-ZmPKSB regulatory module controlled a trade-off between anther cuticle and pollen exine formation by altering expression of a series of genes related to biosynthesis and transport of sporopollenin, cutin and wax. These findings provide new insights into the fine-tuning regulation of lipid-metabolic balance to precisely promote anther cuticle and pollen exine formation in plants.
Collapse
Affiliation(s)
- Xinze Liu
- Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
| | - Yilin Jiang
- Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
| | - Suowei Wu
- Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech Breeding, Beijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Jing Wang
- Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
| | - Chaowei Fang
- Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
| | - Shaowei Zhang
- Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
| | - Rongrong Xie
- Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
| | - Lina Zhao
- Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
| | - Xueli An
- Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech Breeding, Beijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Xiangyuan Wan
- Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
- Zhongzhi International Institute of Agricultural BiosciencesBeijingChina
- Beijing Engineering Laboratory of Main Crop Bio‐Tech BreedingBeijing International Science and Technology Cooperation Base of Bio‐Tech Breeding, Beijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| |
Collapse
|
27
|
Suh DY, Ashton NW. A sporopollenin definition for the genomics age. THE NEW PHYTOLOGIST 2022; 236:2009-2013. [PMID: 36098674 DOI: 10.1111/nph.18484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Dae-Yeon Suh
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Neil W Ashton
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, S4S 0A2, Canada
| |
Collapse
|
28
|
Truskina J, Boeuf S, Renard J, Andersen TG, Geldner N, Ingram G. Anther development in Arabidopsis thaliana involves symplastic isolation and apoplastic gating of the tapetum-middle layer interface. Development 2022; 149:281769. [PMID: 36305487 PMCID: PMC10114112 DOI: 10.1242/dev.200596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
During flowering plant reproduction, anthers produce pollen grains, the development of which is supported by the tapetum, a nourishing maternal tissue that also contributes non-cell-autonomously to the pollen wall, the resistant external layer on the pollen surface. How the anther restricts movement of the tapetum-derived pollen wall components, while allowing metabolites such as sugars and amino acids to reach the developing pollen, remains unknown. Here, we show experimentally that in arabidopsis thaliana the tapetum and developing pollen are symplastically isolated from each other, and from other sporophytic tissues, from meiosis onwards. We show that the peritapetal strip, an apoplastic structure, separates the tapetum and the pollen grains from other anther cell layers and can prevent the apoplastic diffusion of fluorescent proteins, again from meiosis onwards. The formation and selective barrier functions of the peritapetal strip require two NADPH oxidases, RBOHE and RBOHC, which play a key role in pollen formation. Our results suggest that, together with symplastic isolation, gating of the apoplast around the tapetum may help generate metabolically distinct anther compartments.
Collapse
Affiliation(s)
- Jekaterina Truskina
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCBL, F-69342 Lyon, France.,Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Sophy Boeuf
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCBL, F-69342 Lyon, France
| | - Joan Renard
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCBL, F-69342 Lyon, France.,Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia 46022, Spain
| | - Tonni Grube Andersen
- Department for Plant-microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCBL, F-69342 Lyon, France
| |
Collapse
|
29
|
bHLH010/089 Transcription Factors Control Pollen Wall Development via Specific Transcriptional and Metabolic Networks in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms231911683. [PMID: 36232985 PMCID: PMC9570398 DOI: 10.3390/ijms231911683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
The pollen wall is a specialized extracellular cell wall that protects male gametophytes from various environmental stresses and facilitates pollination. Here, we reported that bHLH010 and bHLH089 together are required for the development of the pollen wall by regulating their specific downstream transcriptional and metabolic networks. Both the exine and intine structures of bhlh010 bhlh089 pollen grains were severely defective. Further untargeted metabolomic and transcriptomic analyses revealed that the accumulation of pollen wall morphogenesis-related metabolites, including polysaccharides, glyceryl derivatives, and flavonols, were significantly changed, and the expression of such metabolic enzyme-encoding genes and transporter-encoding genes related to pollen wall morphogenesis was downregulated in bhlh010 bhlh089 mutants. Among these downstream target genes, CSLB03 is a novel target with no biological function being reported yet. We found that bHLH010 interacted with the two E-box sequences at the promoter of CSLB03 and directly activated the expression of CSLB03. The cslb03 mutant alleles showed bhlh010 bhlh089–like pollen developmental defects, with most of the pollen grains exhibiting defective pollen wall structures.
Collapse
|
30
|
Zhu L, Pietiäinen M, Kontturi J, Turkkelin A, Elomaa P, Teeri TH. Polyketide reductases in defense-related parasorboside biosynthesis in Gerbera hybrida share processing strategies with microbial polyketide synthase systems. THE NEW PHYTOLOGIST 2022; 236:296-308. [PMID: 35719102 PMCID: PMC9541798 DOI: 10.1111/nph.18328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/13/2022] [Indexed: 05/14/2023]
Abstract
Plant polyketides are well-known for their crucial functions in plants and their importance in the context of human health. They are synthesized by type III polyketide synthases (PKSs) and their final functional diversity is determined by post-PKS tailoring enzymes. Gerbera hybrida is rich in two defense-related polyketides: gerberin and parasorboside. Their synthesis is known to be initiated by GERBERA 2-PYRONE SYNTHASE 1 (G2PS1), but the polyketide reductases (PKRs) that determine their final structure have not yet been identified. We identified two PKR candidates in the pathway, GERBERA REDUCTASE 1 (GRED1) and GRED2. Gene expression and metabolite analysis of different gerbera tissues, cultivars, and transgenic gerbera plants, and in vitro enzyme assays, were performed for functional characterization of the enzymes. GRED1 and GRED2 catalyze the second reduction step in parasorboside biosynthesis. They reduce the proximal keto domain of the linear CoA bound intermediate before lactonization. We identified a crucial tailoring step in an important gerbera PKS pathway and show that plant polyketide biosynthesis shares processing strategies with fungi and bacteria. The two tailoring enzymes are recruited from the ancient sporopollenin biosynthetic pathway to a defense-related PKS pathway in gerbera. Our data provide an example of how plants recruit conserved genes to new functions in secondary metabolism that are important for environmental adaptation.
Collapse
Affiliation(s)
- Lingping Zhu
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| | - Milla Pietiäinen
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| | - Juha Kontturi
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| | - Anna Turkkelin
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| | - Paula Elomaa
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| | - Teemu H. Teeri
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| |
Collapse
|
31
|
Ma H, Wu Y, Lv R, Chi H, Zhao Y, Li Y, Liu H, Ma Y, Zhu L, Guo X, Kong J, Wu J, Xing C, Zhang X, Min L. Cytochrome P450 mono-oxygenase CYP703A2 plays a central role in sporopollenin formation and ms5ms6 fertility in cotton. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2009-2025. [PMID: 35929662 DOI: 10.1111/jipb.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The double-recessive genic male-sterile (ms) line ms5 ms6 has been used to develop cotton (Gossypium hirsutum) hybrids for many years, but its molecular-genetic basis has remained unclear. Here, we identified the Ms5 and Ms6 loci through map-based cloning and confirmed their function in male sterility through CRISPR/Cas9 gene editing. Ms5 and Ms6 are highly expressed in stages 7-9 anthers and encode the cytochrome P450 mono-oxygenases CYP703A2-A and CYP703A2-D. The ms5 mutant carries a single-nucleotide C-to-T nonsense mutation leading to premature chain termination at amino acid 312 (GhCYP703A2-A312aa ), and ms6 carries three nonsynonymous substitutions (D98E, E168K, and G198R) and a synonymous mutation (L11L). Enzyme assays showed that GhCYP703A2 proteins hydroxylate fatty acids, and the ms5 (GhCYP703A2-A312aa ) and ms6 (GhCYP703A2-DD98E,E168K,G198R ) mutant proteins have decreased enzyme activities. Biochemical and lipidomic analyses showed that in ms5 ms6 plants, C12-C18 free fatty acid and phospholipid levels are significantly elevated in stages 7-9 anthers, while stages 8-10 anthers lack sporopollenin fluorescence around the pollen, causing microspore degradation and male sterility. Overall, our characterization uncovered functions of GhCYP703A2 in sporopollenin formation and fertility, providing guidance for creating male-sterile lines to facilitate hybrid cotton production and therefore exploit heterosis for improvement of cotton.
Collapse
Affiliation(s)
- Huanhuan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanlong Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruiling Lv
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
| | - Huabin Chi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunlong Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanlong Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoping Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Xinjiang, 830091, China
| | - Jianyong Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Chaozhu Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
32
|
Guo D, Wang H, Zhang S, Lan T. The type III polyketide synthase supergene family in plants: complex evolutionary history and functional divergence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:414-428. [PMID: 36004534 DOI: 10.1111/tpj.15953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Type III polyketide synthases (PKSs) are key enzymes involved in the biosynthesis of a variety of plant specialized metabolites, including flavonoids, stilbenes, and sporopollenin, to name a few. These enzymes likely played vital roles in plant adaptation during their transition from aquatic to terrestrial habitats and their colonization of specific ecological environments. Members of this supergene family have diverse functions, but how type III PKSs and their functions have evolved remains poorly understood. Here, we conducted comprehensive phylogenomics analysis of the type III PKS supergene family in 60 species representing the major plant lineages and elucidated the classification, origin, and evolutionary history of each class. Molecular evolutionary analysis of the typical chalcone synthase and stilbene synthase types revealed evidence for strong positive natural selection in both the Pinaceae and Fabaceae lineages. The positively selected sites of these proteins include residues at the catalytic tunnel entrance and homodimer interface, which might have driven the functional divergence between the two types. Our results also suggest that convergent evolution of enzymes involved in plant flavonoid biosynthesis is quite common. The results of this study provide new insights into the origin, evolution, and functional diversity of plant type III PKSs. In addition, they serve as a guide for the enzymatic engineering of plant polyketides.
Collapse
Affiliation(s)
- Dongmei Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, Sichuan, China
| | - Hanyan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, Sichuan, China
| | - Shumin Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, Sichuan, China
| | - Ting Lan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
33
|
Sporopollenin-inspired design and synthesis of robust polymeric materials. Commun Chem 2022; 5:110. [PMID: 36697794 PMCID: PMC9814627 DOI: 10.1038/s42004-022-00729-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/01/2022] [Indexed: 01/28/2023] Open
Abstract
Sporopollenin is a mechanically robust and chemically inert biopolymer that constitutes the outer protective exine layer of plant spores and pollen grains. Recent investigation of the molecular structure of pine sporopollenin revealed unique monomeric units and inter-unit linkages distinct from other previously known biopolymers, which could be harnessed for new material design. Herein, we report the bioinspired synthesis of a series of sporopollenin analogues. This exercise confirms large portions of our previously proposed pine sporopollenin structural model, while the measured chemical, thermal, and mechanical properties of the synthetic sporopollenins constitute favorable attributes of a new kind of robust material. This study explores a new design framework of robust materials inspired by natural sporopollenins, and provides insights and reagents for future elucidation and engineering of sporopollenin biosynthesis in plants.
Collapse
|
34
|
Lu GH, Xu JL, Zhong MX, Li DL, Chen M, Li KT, Wang YQ. Cytochemical and comparative transcriptome analyses elucidate the formation and ecological adaptation of three types of pollen coat in Zingiberaceae. BMC PLANT BIOLOGY 2022; 22:407. [PMID: 35987603 PMCID: PMC9392269 DOI: 10.1186/s12870-022-03796-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The pollen ornate surface of flowering plants has long fascinated and puzzled evolutionary biologists for their variety. Each pollen grain is contained within a pollen wall consisting of intine and exine, over which the lipoid pollen coat lies. The cytology and molecular biology of the development of the intine and exine components of the pollen wall are relatively well characterised. However, little is known about the pollen coat, which confers species specificity. We demonstrate three types of pollen coat in Zingiberaceae, a mucilage-like pollen coat and a gum-like pollen coat, along with a pollen coat more typical of angiosperms. The morphological differences between the three types of pollen coat and the related molecular mechanisms of their formation were studied using an integrative approach of cytology, RNA-seq and positive selection analysis. RESULTS Contrary to the 'typical' pollen coat, in ginger species with a mucilage-like (Caulokaempferia coenobialis, Cco) or gum-like (Hornstedtia hainanensis, Hhn) pollen coat, anther locular fluid was still present at the bicellular pollen (BCP) stage of development. Nevertheless, there were marked differences between these species: there were much lower levels of anther locular fluid in Hhn at the BCP stage and it contained less polysaccharide, but more lipid, than the locular fluid of Cco. The set of specific highly-expressed (SHE) genes in Cco was enriched in the 'polysaccharide metabolic process' annotation term, while 'fatty acid degradation' and 'metabolism of terpenoids and polyketides' were significantly enriched in SHE-Hhn. CONCLUSIONS Our cytological and comparative transcriptome analysis showed that different types of pollen coat depend on the residual amount and composition of anther locular fluid at the BCP stage. The genes involved in 'polysaccharide metabolism' and 'transport' in the development of a mucilage-like pollen coat and in 'lipid metabolism' and 'transport' in the development of a gum-like pollen coat probably evolved under positive selection in both cases. We suggest that the shift from a typical pollen coat to a gum-like or mucilage-like pollen coat in flowering plants is an adaptation to habitats with high humidity and scarcity of pollinators.
Collapse
Affiliation(s)
- Guo-Hui Lu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jia-Ling Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Man-Xiang Zhong
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Dong-Li Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Min Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Ke-Ting Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Ying-Qiang Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
35
|
Kong L, Zhuo Y, Xu J, Meng X, Wang Y, Zhao W, Lai H, Chen J, Wang J. Identification of long non-coding RNAs and microRNAs involved in anther development in the tropical Camellia oleifera. BMC Genomics 2022; 23:596. [PMID: 35974339 PMCID: PMC9380326 DOI: 10.1186/s12864-022-08836-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Explored the molecular science of anther development is important for improving productivity and overall yield of crops. Although the role of regulatory RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), in regulating anther development has been established, their identities and functions in Camellia oleifera, an important industrial crop, have yet not been clearly explored. Here, we report the identification and characterization of genes, lncRNAs and miRNAs during three stages of the tropical C. oleifera anther development by single-molecule real-time sequencing, RNA sequencing and small RNA sequencing, respectively. RESULTS These stages, viz. the pollen mother cells stage, tetrad stage and uninucleate pollen stage, were identified by analyzing paraffin sections of floral buds during rapid expansion periods. A total of 18,393 transcripts, 414 putative lncRNAs and 372 miRNAs were identified, of which 5,324 genes, 115 lncRNAs, and 44 miRNAs were differentially accumulated across three developmental stages. Of these, 44 and 92 genes were predicted be regulated by 37 and 30 differentially accumulated lncRNAs and miRNAs, respectively. Additionally, 42 differentially accumulated lncRNAs were predicted as targets of 27 miRNAs. Gene ontology enrichment indicated that potential target genes of lncRNAs were enriched in photosystem II, regulation of autophagy and carbohydrate phosphatase activity, which are essential for anther development. Functional annotation of genes targeted by miRNAs indicated that they are relevant to transcription and metabolic processes that play important roles in microspore development. An interaction network was built with 2 lncRNAs, 6 miRNAs and 10 mRNAs. Among these, miR396 and miR156 family were up-regulated, while their targets, genes (GROWTH REGULATING FACTORS and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes) and lncRNAs, were down-regulated. Further, the trans-regulated targets of these lncRNAs, like wall-associated kinase2 and phosphomannose isomerase1, are involved in pollen wall formation during anther development. CONCLUSIONS This study unravels lncRNAs, miRNAs and miRNA-lncRNA-mRNA networks involved in development of anthers of the tropical C. oleifera lays a theoretical foundation for further elucidation of regulatory roles of lncRNAs and miRNAs in anther development.
Collapse
Affiliation(s)
- Lingshan Kong
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, P. R. China.,Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, 570228, Haikou, P. R. China.,School of Horticulture, Hainan University, 570228, Haikou, P. R. China
| | - Yanjing Zhuo
- School of Public Administration, Hainan University, 570228, Haikou, P. R. China
| | - Jieru Xu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, P. R. China.,Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, 570228, Haikou, P. R. China
| | - Xiangxu Meng
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, P. R. China.,Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, 570228, Haikou, P. R. China
| | - Yue Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, P. R. China.,Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, 570228, Haikou, P. R. China
| | - Wenxiu Zhao
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, P. R. China.,Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, 570228, Haikou, P. R. China
| | - Hanggui Lai
- School of Tropical Crops, Hainan University, 570228, Haikou, P. R. China
| | - Jinhui Chen
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, P. R. China. .,Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, 570228, Haikou, P. R. China.
| | - Jian Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, P. R. China. .,School of Horticulture, Hainan University, 570228, Haikou, P. R. China.
| |
Collapse
|
36
|
Scott S, Cahoon EB, Busta L. Variation on a theme: the structures and biosynthesis of specialized fatty acid natural products in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:954-965. [PMID: 35749584 PMCID: PMC9546235 DOI: 10.1111/tpj.15878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Plants are able to construct lineage-specific natural products from a wide array of their core metabolic pathways. Considerable progress has been made toward documenting and understanding, for example, phenylpropanoid natural products derived from phosphoenolpyruvate via the shikimate pathway, terpenoid compounds built using isopentyl pyrophosphate, and alkaloids generated by the extensive modification of amino acids. By comparison, natural products derived from fatty acids have received little attention, except for unusual fatty acids in seed oils and jasmonate-like oxylipins. However, scattered but numerous reports show that plants are able to generate many structurally diverse compounds from fatty acids, including some with highly elaborate and unique structural features that have novel bioproduct functionalities. Furthermore, although recent work has shed light on multiple new fatty acid natural product biosynthesis pathways and products in diverse plant species, these discoveries have not been reviewed. The aims of this work, therefore, are to (i) review and systematize our current knowledge of the structures and biosynthesis of fatty acid-derived natural products that are not seed oils or jasmonate-type oxylipins, specifically, polyacetylenic, very-long-chain, and aromatic fatty acid-derived natural products, and (ii) suggest priorities for future investigative steps that will bring our knowledge of fatty acid-derived natural products closer to the levels of knowledge that we have attained for other phytochemical classes.
Collapse
Affiliation(s)
- Samuel Scott
- Department of Chemistry and BiochemistryUniversity of Minnesota DuluthDuluth55812MNUSA
| | - Edgar B. Cahoon
- Department of BiochemistryUniversity of Nebraska LincolnLincoln68588NEUSA
- Center for Plant Science InnovationUniversity of Nebraska LincolnLincoln68588NEUSA
| | - Lucas Busta
- Department of Chemistry and BiochemistryUniversity of Minnesota DuluthDuluth55812MNUSA
| |
Collapse
|
37
|
Zhou D, Zou T, Zhang K, Xiong P, Zhou F, Chen H, Li G, Zheng K, Han Y, Peng K, Zhang X, Yang S, Deng Q, Wang S, Zhu J, Liang Y, Sun C, Yu X, Liu H, Wang L, Li P, Li S. DEAP1 encodes a fasciclin-like arabinogalactan protein required for male fertility in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1430-1447. [PMID: 35485235 DOI: 10.1111/jipb.13271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Arabinogalactan proteins (AGPs) are widely distributed in plant cells. Fasciclin-like AGPs (FLAs) belong to a subclass of AGPs that play important roles in plant growth and development. However, little is known about the biological functions of rice FLA. Herein, we report the identification of a male-sterile mutant of DEFECTIVE EXINE AND APERTURE PATTERNING1 (DEAP1) in rice. The deap1 mutant anthers produced aberrant pollen grains with defective exine formation and a flattened aperture annulus and exhibited slightly delayed tapetum degradation. DEAP1 encodes a plasma membrane-associated member of group III plant FLAs and is specifically and temporally expressed in reproductive cells and the tapetum layer during male development. Gene expression studies revealed reduced transcript accumulation of genes related to exine formation, aperture patterning, and tapetum development in deap1 mutants. Moreover, DEAP1 may interact with two rice D6 PROTEIN KINASE-LIKE3s (OsD6PKL3s), homologs of a known Arabidopsis aperture protein, to affect rice pollen aperture development. Our findings suggested that DEAP1 is involved in male reproductive development and may affect exine formation and aperture patterning, thereby providing new insights into the molecular functions of plant FLAs in male fertility.
Collapse
Affiliation(s)
- Dan Zhou
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Zou
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kaixuan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pingping Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fuxing Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gongwen Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kaiyou Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuhao Han
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kun Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shangyu Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yueyang Liang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiumei Yu
- College of Resource, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huainian Liu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lingxia Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuangcheng Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
38
|
Transcriptome Profiling Identifies Candidate Genes Contributing to Male and Female Gamete Development in Synthetic Brassica Allohexaploids. PLANTS 2022; 11:plants11121556. [PMID: 35736707 PMCID: PMC9228180 DOI: 10.3390/plants11121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Polyploidy plays a crucial role in plant evolution and speciation. The development of male and female gametes is essential to the reproductive capacity of polyploids, but their gene expression pattern has not been fully explored in newly established polyploids. The present study aimed to reveal a detailed atlas of gene expression for gamete development in newly synthetic Brassica allohexaploids that are not naturally existing species. Comparative transcriptome profiling between developing anthers (staged from meiosis to mature pollen) and ovules (staged from meiosis to mature embryo sac) was performed using RNA-Seq analysis. A total of 8676, 9775 and 4553 upregulated differentially expressed genes (DEGs) were identified for the development of both gametes, for male-only, and for female-only gamete development, respectively, in the synthetic Brassica allohexaploids. By combining gene ontology (GO) biological process analysis and data from the published literature, we identified 37 candidate genes for DNA double-strand break formation, synapsis and the crossover of homologous recombination during male and female meiosis and 51 candidate genes for tapetum development, sporopollenin biosynthesis and pollen wall development in male gamete development. Furthermore, 23 candidate genes for mitotic progression, nuclear positioning and cell specification and development were enriched in female gamete development. This study lays a good foundation for revealing the molecular regulation of genes related to male and female gamete development in Brassica allohexaploids and provides more resourceful genetic information on the reproductive biology of Brassica polyploid breeding.
Collapse
|
39
|
Wu Y, Li X, Li Y, Ma H, Chi H, Ma Y, Yang J, Xie S, Zhang R, Liu L, Su X, Lv R, Khan AH, Kong J, Guo X, Lindsey K, Min L, Zhang X. Degradation of de-esterified pctin/homogalacturonan by the polygalacturonase GhNSP is necessary for pollen exine formation and male fertility in cotton. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1054-1068. [PMID: 35114063 PMCID: PMC9129075 DOI: 10.1111/pbi.13785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/29/2021] [Accepted: 01/22/2022] [Indexed: 05/28/2023]
Abstract
The pollen wall exine provides a protective layer for the male gametophyte and is largely composed of sporopollenin, which comprises fatty acid derivatives and phenolics. However, the biochemical nature of the external exine is poorly understood. Here, we show that the male sterile line 1355A of cotton mutated in NO SPINE POLLEN (GhNSP) leads to defective exine formation. The GhNSP locus was identified through map-based cloning and confirmed by genetic analysis (co-segregation test and allele prediction using the CRISPR/Cas9 system). In situ hybridization showed that GhNSP is highly expressed in tapetum. GhNSP encodes a polygalacturonase protein homologous to AtQRT3, which suggests a function for polygalacturonase in pollen exine formation. These results indicate that GhNSP is functionally different from AtQRT3, the latter has the function of microspore separation. Biochemical analysis showed that the percentage of de-esterified pectin was significantly increased in the 1355A anthers at developmental stage 8. Furthermore, immunofluorescence studies using antibodies to the de-esterified and esterified homogalacturonan (JIM5 and JIM7) showed that the Ghnsp mutant exhibits abundant of de-esterified homogalacturonan in the tapetum and exine, coupled with defective exine formation. The characterization of GhNSP provides new understanding of the role of polygalacturonase and de-esterified homogalacturonan in pollen exine formation.
Collapse
Affiliation(s)
- Yuanlong Wu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xiao Li
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yanlong Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Huanhuan Ma
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Huabin Chi
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yizan Ma
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jing Yang
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Sai Xie
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Rui Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Linying Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xiaojun Su
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Rongjie Lv
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Aamir Hamid Khan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jie Kong
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Xiaoping Guo
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | | | - Ling Min
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
40
|
Li T, Yang Y, Liu H, Dossou SSK, Zhou F, Zhou T, Zhao Y. Overexpression of sesame polyketide synthase A leads to abnormal pollen development in Arabidopsis. BMC PLANT BIOLOGY 2022; 22:165. [PMID: 35366814 PMCID: PMC8976376 DOI: 10.1186/s12870-022-03551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sesame is a great reservoir of bioactive constituents and unique antioxidant components. It is widely used for its nutritional and medicinal value. The expanding demand for sesame seeds is putting pressure on sesame breeders to develop high-yielding varieties. A hybrid breeding strategy based on male sterility is one of the most effective ways to increase the crop yield. To date, little is known about the genes and mechanism underlying sesame male fertility. Therefore, studies are being conducted to identify and functionally characterize key candidate genes involved in sesame pollen development. Polyketide synthases (PKSs) are critical enzymes involved in the biosynthesis of sporopollenin, the primary component of pollen exine. Their in planta functions are being investigated for applications in crop breeding. RESULTS In this study, we cloned the sesame POLYKETIDE SYNTHASE A (SiPKSA) and examined its function in male sterility. SiPKSA was specifically expressed in sesame flower buds, and its expression was significantly higher in sterile sesame anthers than in fertile anthers during the tetrad and microspore development stages. Furthermore, overexpression of SiPKSA in Arabidopsis caused male sterility in transgenic plants. Ultrastructural observation showed that the pollen grains of SiPKSA-overexpressing plants contained few cytoplasmic inclusions and exhibited an abnormal pollen wall structure, with a thicker exine layer compared to the wild type. In agreement with this, the expression of a set of sporopollenin biosynthesis-related genes and the contents of their fatty acids and phenolics were significantly altered in anthers of SiPKSA-overexpressing plants compared with wild type during anther development. CONCLUSION These findings highlighted that overexpression of SiPKSA in Arabidopsis might cause male sterility through defective pollen wall formation. Moreover, they suggested that SiPKSA modulates vibrant pollen development via sporopollenin biosynthesis, and a defect in its regulation may induce male sterility. Therefore, genetic manipulation of SiPKSA might promote hybrid breeding in sesame and other crop species.
Collapse
Affiliation(s)
- Tianyu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yuanxiao Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Hongyan Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Fang Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Ting Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Yingzhong Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
41
|
Arakawa S, Kanaseki T, Wagner R, Goodenough U. Ultrastructure of the foliose lichen Myelochroa leucotyliza and its solo fungal and algal (Trebouxia sp.) partners. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
42
|
Ma K, Yang Z, Yang B, Liu YG, Zhu Q, Chen L. Bioinformatic and functional analyses reveal the expansion base of the rice polyketide synthase III superfamily and the synergistic roles of OsPKS1 and OsPKS2 in male reproduction. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
43
|
Hao M, Yang W, Li T, Shoaib M, Sun J, Liu D, Li X, Nie Y, Tian X, Zhang A. Combined Transcriptome and Proteome Analysis of Anthers of AL-type Cytoplasmic Male Sterile Line and Its Maintainer Line Reveals New Insights into Mechanism of Male Sterility in Common Wheat. Front Genet 2022; 12:762332. [PMID: 34976010 PMCID: PMC8718765 DOI: 10.3389/fgene.2021.762332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Cytoplasmic male sterility (CMS) plays an essential role in hybrid seeds production. In wheat, orf279 was reported as a CMS gene of AL-type male sterile line (AL18A), but its sterility mechanism is still unclear. Therefore, transcriptomic and proteomic analyses of the anthers of AL18A and its maintainer line (AL18B) were performed to interpret the sterility mechanism. Results showed that the electron transport chain and ROS scavenging enzyme expression levels changed in the early stages of the anther development. Biological processes, i.e., fatty acid synthesis, lipid transport, and polysaccharide metabolism, were abnormal, resulting in pollen abortion in AL18A. In addition, we identified several critical regulatory genes related to anther development through combined analysis of transcriptome and proteome. Most of the genes were enzymes or transcription factors, and 63 were partially homologous to the reported genic male sterile (GMS) genes. This study provides a new perspective of the sterility mechanism of AL18A and lays a foundation to study the functional genes of anther development.
Collapse
Affiliation(s)
- Miaomiao Hao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tingdong Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Shoaib
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yingbin Nie
- Institute of Crop Research, Xinjiang Academy of Agri-Reclamation Sciences, Shihezi, China
| | - Xiaoming Tian
- Institute of Crop Research, Xinjiang Academy of Agri-Reclamation Sciences, Shihezi, China
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Zhou T, Yang Y, Li T, Liu H, Zhou F, Zhao Y. Sesame β-ketoacyl-acyl carrier protein synthase I regulates pollen development by interacting with an adenosine triphosphate-binding cassette transporter in transgenic Arabidopsis. PHYSIOLOGIA PLANTARUM 2021; 173:1048-1062. [PMID: 34270100 DOI: 10.1111/ppl.13501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Male gametogenesis is an important biological process critical for seed formation and successful breeding. Understanding the molecular mechanisms of male fertility might facilitate hybrid breeding and increase crop yields. Sesame anther development is largely unknown. Here, a sesame β-ketoacyl-[acyl carrier protein] synthase I (SiKASI) was cloned and characterized as being involved in pollen and pollen wall development. Immunohistochemical analysis showed that the spatiotemporal expression of SiKASI protein was altered in sterile sesame anthers compared with fertile anthers. In addition, SiKASI overexpression in Arabidopsis caused male sterility. Cytological observations revealed defective microspore and pollen wall development in SiKASI-overexpressing plants. Aberrant lipid droplets were detected in the tapetal cells of SiKASI-overexpressing plants, and most of the microspores of transgenic plants contained few cytoplasmic inclusions, with irregular pollen wall components embedded on their surfaces. Moreover, the fatty acid metabolism and the expression of a sporopollenin biosynthesis-related gene set were altered in the anthers of SiKASI-overexpressing plants. Additionally, SiKASI interacted with an adenosine triphosphate (ATP)-binding cassette (ABC) transporter. Taken together, our findings suggested that SiKASI was crucial for fatty acid metabolism and might interact with ABCG18 for normal pollen fertility in Arabidopsis.
Collapse
Affiliation(s)
- Ting Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuanxiao Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Tianyu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hongyan Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Fang Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yingzhong Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
45
|
Zhu L, Zhang T, Teeri TH. Tetraketide α-pyrone reductases in sporopollenin synthesis pathway in Gerbera hybrida: diversification of the minor function. HORTICULTURE RESEARCH 2021; 8:207. [PMID: 34593769 PMCID: PMC8484347 DOI: 10.1038/s41438-021-00642-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/04/2021] [Accepted: 06/26/2021] [Indexed: 05/06/2023]
Abstract
The structurally robust biopolymer sporopollenin is the major constituent of the exine layer of pollen wall and plays a vital role in plant reproductive success. The sporopollenin precursors are synthesized through an ancient polyketide biosynthetic pathway consisting of a series of anther-specific enzymes that are widely present in all land plant lineages. Tetraketide α-pyrone reductase 1 (TKPR1) and TKPR2 are two reductases catalyzing the final reduction of the carbonyl group of the polyketide synthase-synthesized tetraketide intermediates to hydroxylated α-pyrone compounds, important precursors of sporopollenin. In contrast to the functional conservation of many sporopollenin biosynthesis associated genes confirmed in diverse plant species, TKPR2's role has been addressed only in Arabidopsis, where it plays a minor role in sporopollenin biosynthesis. We identified in gerbera two non-anther-specific orthologues of AtTKPR2, Gerbera reductase 1 (GRED1) and GRED2. Their dramatically expanded expression pattern implies involvement in pathways outside of the sporopollenin pathway. In this study, we show that GRED1 and GRED2 are still involved in sporopollenin biosynthesis with a similar secondary role as AtTKPR2 in Arabidopsis. We further show that this secondary role does not relate to the promoter of the gene, AtTKPR2 cannot rescue pollen development in Arabidopsis even when controlled by the AtTKPR1 promoter. We also identified the gerbera orthologue of AtTKPR1, GTKPR1, and characterized its crucial role in gerbera pollen development. GTKPR1 is the predominant TKPR in gerbera pollen wall formation, in contrast to the minor roles GRED1 and GRED2. GTKPR1 is in fact an excellent target for engineering male-sterile gerbera cultivars in horticultural plant breeding.
Collapse
Affiliation(s)
- Lingping Zhu
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 UH, Helsinki, Finland
| | - Teng Zhang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 UH, Helsinki, Finland
| | - Teemu H Teeri
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 UH, Helsinki, Finland.
| |
Collapse
|
46
|
Wang R, Dobritsa AA. Loss of THIN EXINE2 disrupts multiple processes in the mechanism of pollen exine formation. PLANT PHYSIOLOGY 2021; 187:133-157. [PMID: 34618131 PMCID: PMC8418410 DOI: 10.1093/plphys/kiab244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/30/2021] [Indexed: 05/25/2023]
Abstract
Exine, the sporopollenin-based outer layer of the pollen wall, forms through an unusual mechanism involving interactions between two anther cell types: developing pollen and tapetum. How sporopollenin precursors and other components required for exine formation are delivered from tapetum to pollen and assemble on the pollen surface is still largely unclear. Here, we characterized an Arabidopsis (Arabidopsis thaliana) mutant, thin exine2 (tex2), which develops pollen with abnormally thin exine. The TEX2 gene (also known as REPRESSOR OF CYTOKININ DEFICIENCY1 (ROCK1)) encodes a putative nucleotide-sugar transporter localized to the endoplasmic reticulum. Tapetal expression of TEX2 is sufficient for proper exine development. Loss of TEX2 leads to the formation of abnormal primexine, lack of primary exine elements, and subsequent failure of sporopollenin to correctly assemble into exine structures. Using immunohistochemistry, we investigated the carbohydrate composition of the tex2 primexine and found it accumulates increased amounts of arabinogalactans. Tapetum in tex2 accumulates prominent metabolic inclusions which depend on the sporopollenin polyketide biosynthesis and transport and likely correspond to a sporopollenin-like material. Even though such inclusions have not been previously reported, we show mutations in one of the known sporopollenin biosynthesis genes, LAP5/PKSB, but not in its paralog LAP6/PKSA, also lead to accumulation of similar inclusions, suggesting separate roles for the two paralogs. Finally, we show tex2 tapetal inclusions, as well as synthetic lethality in the double mutants of TEX2 and other exine genes, could be used as reporters when investigating genetic relationships between genes involved in exine formation.
Collapse
Affiliation(s)
- Rui Wang
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, Ohio 43210
| | - Anna A. Dobritsa
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
47
|
Grienenberger E, Quilichini TD. The Toughest Material in the Plant Kingdom: An Update on Sporopollenin. FRONTIERS IN PLANT SCIENCE 2021; 12:703864. [PMID: 34539697 PMCID: PMC8446667 DOI: 10.3389/fpls.2021.703864] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 05/16/2023]
Abstract
The extreme chemical and physical recalcitrance of sporopollenin deems this biopolymer among the most resilient organic materials on Earth. As the primary material fortifying spore and pollen cell walls, sporopollenin is touted as a critical innovation in the progression of plant life to a terrestrial setting. Although crucial for its protective role in plant reproduction, the inert nature of sporopollenin has challenged efforts to determine its composition for decades. Revised structural, chemical, and genetic experimentation efforts have produced dramatic advances in elucidating the molecular structure of this biopolymer and the mechanisms of its synthesis. Bypassing many of the challenges with material fragmentation and solubilization, insights from functional characterizations of sporopollenin biogenesis in planta, and in vitro, through a gene-targeted approach suggest a backbone of polyhydroxylated polyketide-based subunits and remarkable conservation of biochemical pathways for sporopollenin biosynthesis across the plant kingdom. Recent optimization of solid-state NMR and targeted degradation methods for sporopollenin analysis confirms polyhydroxylated α-pyrone subunits, as well as hydroxylated aliphatic units, and unique cross-linkage heterogeneity. We examine the cross-disciplinary efforts to solve the sporopollenin composition puzzle and illustrate a working model of sporopollenin's molecular structure and biosynthesis. Emerging controversies and remaining knowledge gaps are discussed, including the degree of aromaticity, cross-linkage profiles, and extent of chemical conservation of sporopollenin among land plants. The recent developments in sporopollenin research present diverse opportunities for harnessing the extraordinary properties of this abundant and stable biomaterial for sustainable microcapsule applications and synthetic material designs.
Collapse
Affiliation(s)
- Etienne Grienenberger
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Teagen D. Quilichini
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Saskatoon, SK, Canada
| |
Collapse
|
48
|
Ma X, Wu Y, Ming H, Liu H, Liu Z, Li H, Zhang G. AtENO2 functions in the development of male gametophytes in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2021; 263:153417. [PMID: 34102568 DOI: 10.1016/j.jplph.2021.153417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Pollen fertility is an important factor affecting the seed setting rate and seed yield of plants. The Arabidopsis thaliana enolase gene ENO2 (AtENO2) can affect the pollen morphology, germination, and pollen tube growth. AtENO2 encodes two proteins AtENO2 and AtMBP-1. To examine the effect of AtENO2 protein on pollen development, the 2nd ATG of the AtENO2 coding sequence for AtMBP-1 was mutated by site-directed mutagenesis, and transgenic plants expressing only AtENO2 but not AtMBP-1 were obtained. Phenotypic analysis indicated that AtENO2 was essential in the pollen development. The mechanisms of AtENO2 on pollen development were analyzed. AtENO2 can affect development of the pollen intine, and the mechanism may be that AtENO2 regulated the methyl esterification of pectin in pollen intine through ARF3 and AtPMEI-pi. The -734 ∼ -573 sequence of AtENO2 promoter is the main transcriptional regulatory region of AtENO2 affecting pollen development. The functional cis-acting element may be GTGANTG10(GTGA), and the trans-acting factors may be KAN, AS2 and ARF3/ETT. Moreover, the deletion of AtENO2 can cause significant difference in the expression of multiple genes related to pollen exine development. These results are useful for further studying the function of AtENO2 and exploring the mechanism of plant pollen development.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Beijing Key Laboratory of Gene Resource and Molecular Development/College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yu Wu
- Beijing Key Laboratory of Gene Resource and Molecular Development/College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hainan Ming
- Beijing Key Laboratory of Gene Resource and Molecular Development/College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Huimin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development/College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zijin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development/College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hongjie Li
- The National Engineering Laboratory of Crop Molecular Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Genfa Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development/College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
49
|
Zhang M, Wei H, Liu J, Bian Y, Ma Q, Mao G, Wang H, Wu A, Zhang J, Chen P, Ma L, Fu X, Yu S. Non-functional GoFLA19s are responsible for the male sterility caused by hybrid breakdown in cotton (Gossypium spp.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1198-1212. [PMID: 34160096 DOI: 10.1111/tpj.15378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Hybrid breakdown (HB) functions as a common reproductive barrier and reduces hybrid fitness in many species, including cotton. However, the related genes and the underlying genetic mechanisms of HB in cotton remain unknown. Here, we found that the photosensitive genetic male sterile line CCRI9106 was a hybrid progeny of Gossypium hirsutum and Gossypium barbadense and probably a product of HB. Fine mapping with F2 s (CCRI9106 × G. hirsutum/G. barbadense lines) identified a pair of male sterility genes GoFLA19s (encoding fasciclin-like arabinogalactan family protein) located on chromosomes A12 and D12. Crucial variations occurring in the fasciclin-like domain and the arabinogalactan protein domain were predicted to cause the non-functionalization of GbFLA19-D and GhFLA19-A. CRISPR/Cas9-mediated knockout assay confirmed the effects of GhFLA19s on male sterility. Sequence alignment analyses showed that variations in GbFLA19-D and GhFLA19-A likely occurred after the formation of allotetraploid cotton species. GoFLA19s are specifically expressed in anthers and contribute to tapetal development, exine assembly, intine formation, and pollen grain maturation. RNA-sequencing and quantitative reverse transcriptase-polymerase chain reaction analyses illustrated that genes related to these biological processes were significantly downregulated in the mutant. Our research on male sterility genes, GoFLA19s, improves the understanding of the molecular characteristics and evolutionary significance of HB in interspecific hybrid breeding.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Yingjie Bian
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Qiang Ma
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Guangzhi Mao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Jingjing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Pengyun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Xiaokang Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| |
Collapse
|
50
|
Full-length transcriptome analysis provides new insights into the early bolting occurrence in medicinal Angelica sinensis. Sci Rep 2021; 11:13000. [PMID: 34155325 PMCID: PMC8217430 DOI: 10.1038/s41598-021-92494-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
Angelica sinensis (Oliv.) Diels root part is an integral component of traditional Chinese medicine, widely prescribed to improve blood circulation and blood stasis. However, early bolting of A. sinensis compromises the quality of the roots and hence is a major limitation for yield of medicinal materials. To date, little information about the molecular mechanisms underlying bolting is available for this important medicinal plant. To identify genes putatively involved in early bolting, we have conducted the transcriptome analysis of the shoot tips of the early-bolting plants and non-bolting (normal) plants of A. sinensis, respectively, using a combination of third-generation sequencing and next-generation sequencing. A total of 43,438 non-redundant transcripts were collected and 475 unique differentially expressed genes (DEGs) were identified. Gene annotation and functional analyses revealed that DEGs were highly involved in plant hormone signaling and biosynthesis pathways, three main flowering pathways, pollen formation, and very-long-chain fatty acids biosynthesis pathways. The levels of endogenous hormones were also changed significantly in the early bolting stage of A. sinensis. This study provided new insights into the transcriptomic control of early bolting in A. sinensis, which could be further applied to enhance the yield of medicinally important raw materials.
Collapse
|