1
|
Yang H, Zhang Y, Lyu S, Mao Y, Yu F, Liu S, Fang Y, Deng S. Arabidopsis CIRP1 E3 ligase modulates drought and oxidative stress tolerance and reactive oxygen species homeostasis by directly degrading catalases. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1274-1289. [PMID: 39873956 DOI: 10.1111/jipb.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/29/2024] [Indexed: 01/30/2025]
Abstract
Reactive oxygen species (ROS) plays critical roles in modulating plant growth and stress response and its homeostasis is fine tuned using multiple peroxidases. H2O2, a major kind of ROS, is removed rapidly and directly using three catalases, CAT1, CAT2, and CAT3, in Arabidopsis. Although the activity regulations of catalases have been well studied, their degradation pathway is less clear. Here, we report that CAT2 and CAT3 protein abundance was partially controlled using the 26S proteasome. To further identify candidate proteins that modulate the stability of CAT2, we performed yeast-two-hybrid screening and recovered several clones encoding a protein with RING and vWA domains, CIRP1 ( CAT2 Interacting RING Protein 1). Drought and oxidative stress downregulated CIRP1 transcripts. CIRP1 harbored E3 ubiquitination activity and accelerated the degradation of CAT2 and CAT3 by direct interaction and ubiquitination. The cirp1 mutants exhibited stronger drought and oxidative stress tolerance, which was opposite to the cat2 and cat3 mutants. Genetic analysis revealed that CIRP1 acts upstream of CAT2 and CAT3 to negatively regulate drought and oxidative stress tolerance. The increased drought and oxidative stress tolerance of the cirp1 mutants was due to enhanced catalase (CAT) activities and alleviated ROS levels. Our data revealed that the CIRP1-CAT2/CAT3 module plays a vital role in alleviating ROS levels and balancing growth and stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Heng Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shanwu Lyu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yaping Mao
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- National Engineering Research Center of Navel Orange, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Fangqin Yu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sai Liu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujie Fang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- National Engineering Research Center of Navel Orange, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Shulin Deng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Engineering Research Center of Navel Orange, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| |
Collapse
|
2
|
Lin Z, Wang K, Feng J. Identification and analysis of VOCs released by Rhodococcus ruber GXMZU2400 to promote plant growth and inhibit pathogen growth. BMC PLANT BIOLOGY 2025; 25:559. [PMID: 40301703 PMCID: PMC12042462 DOI: 10.1186/s12870-025-06582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/18/2025] [Indexed: 05/01/2025]
Abstract
A strain of Rhodococcus ruber was isolated from the rhizosphere of Spartina alterniflora. The VOCs released by this strain effectively promote the growth of Arabidopsis thaliana and inhibit several plant pathogenic fungi, including Bipolaris sorokiniana, Cryphonectria parasitica, Fusarium oxysporum, Fusarium pseudograminearum, and Plectosphaerella cucumerina. SPME/GC-MS analysis revealed that the strain produces dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS), with DMDS being the predominant component of the volatile organic compounds (VOCs). It was observed that the growth of A. thaliana was enhanced under fumigation with DMDS and DMTS. Furthermore, these compounds effectively inhibited the aforementioned plant pathogenic fungi, with DMTS demonstrating a lethal effect on plant pathogenic fungi. Previous studies have confirmed that DMDS and DMTS promote the growth of A. thaliana. In this study, we found that DMTS could significantly enhance plant growth and inhibit plant pathogenic fungi even at low dosages. Transcriptome analysis indicated that the growth-related genes of A. thaliana were significantly upregulated in response to treatment with VOCs from R. ruber. Additionally, VOCs induced changes in multiple plant defense response genes and promoted the C4 pathway.
Collapse
Affiliation(s)
- Ziyan Lin
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, 530008, China
| | - Kun Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
- National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, China
| | - Jing Feng
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, 530008, China.
| |
Collapse
|
3
|
Qiu CW, Shi M, Zhaxi Q, Feng X, Jia Y, Li C, Wu F. HvAIR12 confers aluminum tolerance in barley by H 2O 2-mediated activation of HvEXPA4 to facilitate aluminum detoxification and improve root growth. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138293. [PMID: 40239528 DOI: 10.1016/j.jhazmat.2025.138293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/29/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Aluminum (Al) toxicity is a major constraint on crop productivity in acid soils, with barley being particularly susceptible. In our previous transcriptomic analysis, we identified HvAIR12 (AUXIN INDUCED IN ROOT CULTURES), a novel gene that is specifically induced by Al in the roots of the Al-tolerant Tibetan wild barley accession XZ16. In this study, we performed comprehensive physiological, transgenic, and molecular analyses to explore the role of HvAIR12 in Al tolerance. HvAIR12 encodes a plasma membrane-bound protein and is predominantly expressed in the roots, with its expression being strongly upregulated by Al exposure. Knockdown of HvAIR12 resulted in significantly reduced root growth and increased Al accumulation, whereas overexpression of HvAIR12 elevated H2O2 levels in the apoplast and promoted root growth-effects that were reversible by H2O2 scavengers. RNA sequencing further revealed that overexpression of HvAIR12 led to the transcriptional activation of several expansin genes, including HvEXPA4 and HvEXPB2. Functional characterization of HvEXPA4 transgenic lines and gene silencing experiments in HvAIR12-overexpressing backgrounds confirmed that HvEXPA4 is an essential downstream target of HvAIR12, mitigating Al toxicity by modulating cell wall components. This study uncovers the novel role of HvAIR12 in regulating apoplastic H2O2 levels and its interaction with other Al tolerance-related genes. Our findings highlight that HvAIR12 promotes Al tolerance through H2O2-mediated activation of HvEXPA4, forming a regulatory pathway critical for Al exclusion and root elongation under Al stress. These results providing valuable molecular insights and promising target genes for breeding more resilient cereal crops for cultivation in acid soils.
Collapse
Affiliation(s)
- Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Min Shi
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Quncuo Zhaxi
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Agricultural Technology Extension and Service Center of Lhasa, Lhasa, China
| | - Xue Feng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yong Jia
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre/Future Food Innovation Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre/Future Food Innovation Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Chang Y, Shi M, Wang X, Cheng H, Zhang J, Liu H, Wu H, Ou X, Yu K, Zhang X, Day B, Miao C, Zhao Y, Jiang K. A CRY1-HY5-MYB signaling cascade fine-tunes guard cell reactive oxygen species levels and triggers stomatal opening. THE PLANT CELL 2025; 37:koaf064. [PMID: 40139914 PMCID: PMC11973966 DOI: 10.1093/plcell/koaf064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025]
Abstract
Stomatal opening facilitates CO2 uptake and causes water loss via transpiration. Compared with the considerable progress made toward understanding phototropin-mediated blue light (BL) signaling in guard cells, the significance of cryptochromes (CRYs) in stomatal opening and their downstream elements remain largely unknown. Here, we show that 3 homologous MYB transcription factor genes, namely MYB11, MYB12, and MYB111, are rapidly transactivated in guard cells during the dark-to-light transition in Arabidopsis (Arabidopsis thaliana). Genetic characterization of myb mutants demonstrates that these proteins specifically mediate light-induced stomatal opening by promoting local flavonol accumulation, thereby controlling reactive oxygen species homeostasis in guard cells. In response to light, activation of the plasma membrane H+-ATPase is inhibited in the myb11 myb12 myb111 triple mutant, compromising transmembrane K+ influx in the mutant guard cells. Furthermore, we demonstrate that MYB11/12/111 expression in guard cells upon illumination is induced by a CRY1-specific signaling cascade involving ELONGATED HYPOCOTYL 5 (HY5), a direct transcriptional activator of these MYBs. Overall, our work reveals a mechanism by which the CRY1-HY5-MYB module facilitates light-induced stomatal opening, providing evidence that flavonoid metabolism in guard cells is crucial for plant stress tolerance.
Collapse
Affiliation(s)
- Yuankai Chang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Mianmian Shi
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Xiao Wang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Hui Cheng
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Junli Zhang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Hongrui Liu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Huiruo Wu
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Xiaobin Ou
- Gansu Key laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province 745000, China
| | - Ke Yu
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Chen Miao
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Yi Zhao
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| |
Collapse
|
5
|
Yang X, Zhang L, Wei J, Liu L, Liu D, Yan X, Yuan M, Zhang L, Zhang N, Ren Y, Chen F. A TaSnRK1α-TaCAT2 model mediates resistance to Fusarium crown rot by scavenging ROS in common wheat. Nat Commun 2025; 16:2549. [PMID: 40089587 PMCID: PMC11910652 DOI: 10.1038/s41467-025-57936-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/28/2025] [Indexed: 03/17/2025] Open
Abstract
Fusarium crown rot (FCR) is a serious underlying disease to threaten wheat yield and quality recently. Here, we identify a catalase antioxidant enzyme (TaCAT2) through genome wide association study (GWAS) and whole-exome sequencing (WES) in two nested bi-parental populations. We verify the function of TaCAT2 regulating wheat FCR resistance by genetic transformation. Moreover, we screen a sucrose non-fermenting-1-related protein kinase alpha subunit (TaSnRK1α) interacting with TaCAT2, and subsequently find that TaSnRK1α phosphorylates TaCAT2. We next identify an FCR-resistance haplotype TaCAT2Ser214, and confirm that Ser214 of TaCAT2 is a key phosphorylation site for TaSnRK1α. We also find that TaSnRK1α results in higher protein accumulation in TaCAT2Ser214 than in TaCAT2Thr214, which possibly contribute to scavenging ROS (reactive oxygen species) in TaCAT2Ser214 wheat plants. Furthermore, the function of TaSnRK1α regulating FCR resistance is verified by genetic transformation. Taken together, we propose a TaSnRK1α-TaCAT2 model to mediate FCR resistance by scavenging the ROS in wheat plants.
Collapse
Affiliation(s)
- Xia Yang
- Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Leilei Zhang
- Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Jiajie Wei
- Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Lexin Liu
- Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Di Liu
- Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Xiangning Yan
- Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Minjie Yuan
- Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Lingran Zhang
- Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Ning Zhang
- Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Yan Ren
- Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Feng Chen
- Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
6
|
Wang L, Ju C, Han C, Yu Z, Bai MY, Wang C. The interaction of nutrient uptake with biotic and abiotic stresses in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:455-487. [PMID: 39783785 DOI: 10.1111/jipb.13827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/21/2024] [Indexed: 01/12/2025]
Abstract
Plants depend heavily on efficient nutrient uptake and utilization for optimal growth and development. However, plants are constantly subjected to a diverse array of biotic stresses, such as pathogen infections, insect pests, and herbivory, as well as abiotic stress like drought, salinity, extreme temperatures, and nutrient imbalances. These stresses significantly impact the plant's ability to take up nutrient and use it efficiency. Understanding how plants maintain nutrient uptake and use efficiency under biotic and abiotic stress conditions is crucial for improving crop resilience and sustainability. This review explores the recent advancements in elucidating the mechanisms underlying nutrient uptake and utilization efficiency in plants under such stress conditions. Our aim is to offer a comprehensive perspective that can guide the breeding of stress-tolerant and nutrition-efficient crop varieties, ultimately contributing to the advancement of sustainable agriculture.
Collapse
Affiliation(s)
- Lingyan Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chuanfeng Ju
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhenghao Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Cun Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
7
|
Zuo Y, Abbas A, Dauda SO, Chen C, Bose J, Donovan-Mak M, Wang Y, He J, Zhang P, Yan Z, Chen ZH. Function of key ion channels in abiotic stresses and stomatal dynamics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109574. [PMID: 39903947 DOI: 10.1016/j.plaphy.2025.109574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
Climate changes disrupt environmental and soil conditions that affect ionic balance in plants, presenting significant challenges to their survival and productivity. Membrane transporters are crucial for maintaining ionic homeostasis and regulating the movement of substances across plasma and organellar membranes, particularly under abiotic stresses. Among these abiotic stress-responsive mechanisms, stomata are critical for regulating water loss and carbon dioxide uptake, reflecting a plant's ability to respond and adapt to abiotic stresses effectively. This review highlights the role of ion transporters, including both anion and cation transporters in plant abiotic stress responses. It explores the interplay between different ion channels and regulatory components that enable plants to withstand key abiotic stresses such as drought, salinity, and heat. Moreover, we emphasized the contributions of three essential types of ion channels - potassium, anion, and calcium to abiotic stress-related stomatal regulation. These ion channels orchestrate complex signaling networks that allow plants to modulate stomatal behavior and maintain physiological balance under adverse conditions. This article provides valuable molecular and physiological insights into the mechanisms of ion transport and regulation for plants to adapt to environmental challenges. Thus, this review offers a useful foundation for developing innovative strategies to enhance crop resilience and performance in an era of increasingly unpredictable and harsh climates.
Collapse
Affiliation(s)
- Yuanyuan Zuo
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Asad Abbas
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | | | - Chen Chen
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, PR China; The University of Sydney, School of Life and Environmental Sciences, Plant Breeding Institute, Cobbitty, NSW, 2570, Australia
| | - Jayakumar Bose
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Michelle Donovan-Mak
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Yuanyuan Wang
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jing He
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Peng Zhang
- The University of Sydney, School of Life and Environmental Sciences, Plant Breeding Institute, Cobbitty, NSW, 2570, Australia
| | - Zehong Yan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
8
|
Xiang Y, Liu W, Niu Y, Li Q, Zhao C, Pan Y, Li G, Bian X, Miao Y, Zhang A. The maize GSK3-like kinase ZmSK1 negatively regulates drought tolerance by phosphorylating the transcription factor ZmCPP2. THE PLANT CELL 2025; 37:koaf032. [PMID: 39928574 PMCID: PMC11841367 DOI: 10.1093/plcell/koaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/06/2024] [Accepted: 02/04/2025] [Indexed: 02/12/2025]
Abstract
Glycogen synthase kinase 3 (GSK3)-like kinases play important roles in stress responses in plants. However, the mechanism of GSK3-like kinases in drought-induced antioxidant defense is not clear. In this study, we discovered that the GSK3-like kinase SHAGGY-like kinase 1 (ZmSK1) negatively regulates drought tolerance by inhibiting antioxidant defense in maize (Zea mays). Then, we determined that cysteine-rich polycomb-like protein 2 (ZmCPP2) interacts with ZmSK1 and enhances maize drought tolerance by inducing antioxidant defense. ZmCPP2 is phosphorylated at Ser-250 by ZmSK1, which is dependent on ZmSK1 kinase activity and attenuates maize drought tolerance. Furthermore, ZmCPP2 directly binds to the promoter of the superoxide dismutase (SOD) gene ZmSOD4, encoding an antioxidant defense enzyme, and activates its expression. ZmSK1 phosphorylating ZmCPP2 at Ser-250 represses the binding of ZmCPP2 to the ZmSOD4 promoter. Taken together, our results indicate that the phosphorylation of ZmCPP2 by ZmSK1 results in decreased SOD activity and thus reduces drought tolerance in maize. These findings reveal a mechanism of GSK3-like kinases regulating antioxidant defense in the drought stress response.
Collapse
Affiliation(s)
- Yang Xiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Weijuan Liu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Yingxue Niu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qian Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chongyang Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yitian Pan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guangdong Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiangli Bian
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yadan Miao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, Hainan 572025, China
| |
Collapse
|
9
|
Gao B, Wang Y, Qu J, Miao M, Zhao Y, Liu S, Guan S, Ma Y. The overexpression of ascorbate peroxidase 2 ( APX2) gene improves drought tolerance in maize. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:27. [PMID: 39963376 PMCID: PMC11829862 DOI: 10.1007/s11032-025-01548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
Maize, a primary global food crop, is crucial for food security. In recent years, climatic and other abiotic stresses have led to frequent global droughts. Ascorbate peroxidase (APX) plays a vital role in the ascorbate-glutathione cycle. Under drought stress, APX effectively scavenges reactive oxygen species (ROS) produced by plants and maintains the normal growth and development of organisms. This study successfully amplified APX-related genes, and the ZmAPX2 gene was screened using expression analysis. pCAMBIA3301-ZmAPX2-Bar and pCXB053-ZmAPX2-Bar plant expression vectors were constructed and transformed into the maize inbred line H120. Drought tolerance of plants was analyzed by phenotypic characteristics, physiological and biochemical indices in T2 generation positive maize seedlings as well as agronomic traits at maturity. Results indicate that boosting APX2 gene expression enhances maize drought resistance by reducing ROS content. This research underpins the exploration of new drought-tolerant maize germplasm and resistance mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-025-01548-2.
Collapse
Affiliation(s)
- Bai Gao
- College of Agriculture, Jilin Agricultural University, Changchun, 130118 China
| | - Yiran Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118 China
| | - Jing Qu
- College of Agricultural Science and Technology, Jilin, 132109 China
| | - Ming Miao
- College of Agriculture, Jilin Agricultural University, Changchun, 130118 China
| | - Yang Zhao
- College of Agriculture, Jilin Agricultural University, Changchun, 130118 China
| | - Siyan Liu
- College of Agriculture, Jilin Agricultural University, Changchun, 130118 China
| | - Shuyan Guan
- College of Agriculture, Jilin Agricultural University, Changchun, 130118 China
- International Cooperation Joint Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| | - Yiyong Ma
- College of Agriculture, Jilin Agricultural University, Changchun, 130118 China
- International Cooperation Joint Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| |
Collapse
|
10
|
Liu X, Zhou J, Zeeshan Ul Haq M, Fu Z, Gu G, Yu J, Liu Y, Yang D, Yang H, Wu Y. Functional analysis of the PcCDPK5 gene in response to allelopathic substances on p-hydroxybenzoic acid (p-HBA) stress in patchouli. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117807. [PMID: 39884012 DOI: 10.1016/j.ecoenv.2025.117807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Calcium-dependent protein kinase (CDPK) is an important mediator for Ca2 + signal recognition and transduction, playing a crucial role in plant stress response. Previous studies have shown that PcCDPK5 may be involved in the response of patchouli to p-hydroxybenzoic acid (p-HBA) stress. In this study, we further found that the subcellular localization of PcCDPK5 protein is in the cytoplasm, and its gene expression is closely related to continuous cropping (CC) and p-HBA stress. Under p-HBA stress, silencing the PcCDPK5 homologous gene in Nicotiana tabacum leads to decreased antioxidant enzyme activity and increased malondialdehyde (MDA) content, significantly accumulating reactive oxygen species (ROS) and affecting normal plant growth. On the contrary, overexpression of PcCDPK5 can effectively alleviate the damage caused by p-HBA stress to plant bodies. Through this research, the function of PcCDPK5 in response to p-HBA stress has been preliminarily analyzed, laying a theoretical foundation for alleviating CC obstacles in patchouli.
Collapse
Affiliation(s)
- Xiaofeng Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Jingru Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Muhammad Zeeshan Ul Haq
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Zhineng Fu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Guangtao Gu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Jing Yu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Ya Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Dongmei Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Huageng Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Yougen Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China.
| |
Collapse
|
11
|
Bhardwaj S, Kapoor B, Kapoor D, Thakur U, Dolma Y, Raza A. Manifold roles of potassium in mediating drought tolerance in plants and its underlying mechanisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 351:112337. [PMID: 39603421 DOI: 10.1016/j.plantsci.2024.112337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
Drought stress (DS) is a major devastating factor affecting plant growth and development worldwide. Potassium (K) is considered a vigorous moiety and stress alleviator, which crop cultivars need for better yield. It is also helpful in alleviating the DS-induced negative consequences by regulating various morphological, physiological, biochemical, and molecular mechanisms in plants. Particularly, the K application improves plant tolerance against DS by improving plant growth parameters, photosynthetic pigments, cell turgor pressure, osmotic pressure, nutritional balance, compatible solutes, and the plant's antioxidant defense system. Apart from its role as a constituent of the plant structure, biochemical processes such as protein synthesis, carbohydrate metabolism, and enzyme activation are also regulated by K. However, the exact K-mediated molecular mechanisms of DS tolerance are still unclear and require more investigation. The present review aims to provide insight into the role of K in regulating various morphological and physico-chemical aspects under DS. It also emphasizes the crosstalk of K with other nutrients and phytohormones, as well as molecular mechanisms for K homeostasis under DS. We have also shed light on genomics analysis to discover K transporter's novel genes in different plant species.
Collapse
Affiliation(s)
- Savita Bhardwaj
- Department of Botany, MCM DAV College, Kangra, Himachal Pradesh 176001, India
| | - Bharat Kapoor
- Department of Hotel Management and Tourism, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Dhriti Kapoor
- School of Biological and Environmental Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India.
| | - Usha Thakur
- Department of Botany, MCM DAV College, Kangra, Himachal Pradesh 176001, India
| | - Yanchen Dolma
- Department of Zoology, MCM DAV College, Kangra, Himachal Pradesh 176001, India
| | - Ali Raza
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
12
|
Priya M, Farooq M, Siddique KHM. Enhancing Tolerance to Combined Heat and Drought Stress in Cool-Season Grain Legumes: Mechanisms, Genetic Insights, and Future Directions. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39829217 DOI: 10.1111/pce.15382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/20/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
The increasing frequency of concurrent heat and drought stress poses a significant challenge to agricultural productivity, particularly for cool-season grain legumes, including broad bean (Vicia Faba L.), lupin (Lupinus spp.), lentil (Lens culinaris Medik), chickpea (Cicer arietinum L.), grasspea (Lathyrus sativus L.), pea (Pisum sativum L.), and common vetch (Vicia sativa L.). These legumes play a vital role in sustainable agricultural systems due to their nitrogen-fixing ability and high nutritional value. This review synthesizes current knowledge of the impacts and tolerance mechanisms associated with combined heat and drought stresses in these crops. We evaluate physiological and biochemical responses to combined heat and drought stress, focusing on their detrimental effects on growth, development, and yield. Key genetic and molecular mechanisms, such as the roles of osmolytes, antioxidants, and stress-responsive genes, are explored. We also discuss the intricate interplay between heat and drought stress signaling pathways, including the involvement of Ca2+ ions, reactive oxygen species, transcription factor DREB2A, and the endoplasmic reticulum in mediating stress responses. This comprehensive analysis offers new insights into developing resilient legume varieties to enhance agricultural sustainability under climate change. Future research should prioritize integrating omics technologies to unravel plant responses to combined abiotic stresses.
Collapse
Affiliation(s)
- Manu Priya
- Cranberry Research Station, University of Massachusetts, East Wareham, Massachusetts, USA
| | - Muhammad Farooq
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Oman
| | - Kadambot H M Siddique
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Oman
| |
Collapse
|
13
|
Ciacka K, Tyminski M, Gniazdowska A, Krasuska U. Stratification of apple seeds in the context of ROS metabolism. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154407. [PMID: 39706007 DOI: 10.1016/j.jplph.2024.154407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Apple (Malus domestica Borkh.) seeds exhibit deep embryonic dormancy. Uniform germination of isolated apple embryos is observed after 40-day-long cold stratification of the seeds. Stratification treatment modifies the level of reactive oxygen species (ROS), which are regarded as key regulators of seed dormancy. In this study, axes of embryos isolated from seeds stratified for 7, 14, 21, and 40 days differing in dormancy depth were used. After one week of stratification, the increased polyamine oxidase activity enables ROS generation, which is followed by an upregulation of the NADPH oxidase gene expression. Catalase activity increased after 14 days of stratification, suggesting the requirement to maintain ROS concentrations at an optimal level already in the early phase of dormancy removal. When cold stratification was prolonged, accompanied by a significant increase in ROS level, ROS scavenging by catalase was supported by elevated phenolic compounds content. Then, peroxidase activity was also the highest. As ROS-induced phenylalanine (Phe) oxidation leads to the formation of meta-tyrosine (m-Tyr) - a potentially toxic component, the levels of these amino acids were examined. The fluctuation in m-Tyr content indicates the existence of mechanisms in the tissue for the disposal of this compound. Finally, its presence may be mitigated by an increase in Phe levels. Maintaining oxidised RNA at elevated levels from the 14th day of stratification may be crucial for seed dormancy removal, ensuring translation regulation as metabolism resumes. We concluded that dormancy removal of apple seeds by stratification requires a time-dependent sequence of biochemical events reflecting ROS metabolism alterations.
Collapse
Affiliation(s)
- Katarzyna Ciacka
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Marcin Tyminski
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Agnieszka Gniazdowska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Urszula Krasuska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
14
|
Zhuang Y, Zhang Y, Shi H, Pang Y, Feng X, Fan W, Chang D, Lin H, Zhou H. CALMODULIN-BINDING RECEPTOR-LIKE CYTOPLASMIC KINASE 3 regulates salt tolerance through CATALASE 2 in Arabidopsis. PLANT PHYSIOLOGY 2024; 197:kiae669. [PMID: 39704286 DOI: 10.1093/plphys/kiae669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/22/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
Soil salinization threatens global crop production. Here, we report that a receptor-like cytoplasmic kinase, CALMODULIN-BINDING RECEPTOR-LIKE CYTOPLASMIC KINASE 3 (CRCK3), plays an essential role in plant salt tolerance via CATALASE 2 (CAT2), a hydrogen peroxide (H2O2)-scavenging enzyme in Arabidopsis (Arabidopsis thaliana). CRCK3 was induced by salt stress, and its knockout mutant displayed a salt-sensitive phenotype compared with wild-type plants. CRCK3 was activated by salt stress in a calcium-dependent manner, and its kinase activity was required for plant salt tolerance. CRCK3 physically interacted with CAT2, and CRCK3-mediated salt tolerance depended on CAT2. Salt treatment significantly induced CAT2 phosphorylation via the action of CRCK3, and this phosphorylation was required for CAT2-mediated H2O2 scavenging to reduce reactive oxygen species (ROS) content and oxidative damage in plants under saline conditions. CRCK3 phosphorylated CAT2 at the Thr209 residue, resulting in elevated catalase activity to reduce ROS accumulation under saline conditions. Therefore, the CRCK3-CAT2 module mediates plant salt tolerance by maintaining redox homeostasis. This study expands our knowledge of how plants respond to salt stress.
Collapse
Affiliation(s)
- Yufen Zhuang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yiyi Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Haifan Shi
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanan Pang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xixian Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Wenjuan Fan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Dan Chang
- Herbaceous Plants Research Department, Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Huapeng Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
15
|
Zheng X, Yang H, Zou J, Jin W, Qi Z, Yang P, Yu J, Zhou J. SnRK1α1-mediated RBOH1 phosphorylation regulates reactive oxygen species to enhance tolerance to low nitrogen in tomato. THE PLANT CELL 2024; 37:koae321. [PMID: 39667074 DOI: 10.1093/plcell/koae321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/29/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Nitrogen is essential for plant growth and development. SNF1-related protein kinase 1 (SnRK1) is an evolutionarily conserved protein kinase pivotal for regulating plant responses to nutrient deficiency. Here, we discovered that the expression and activity of the SnRK1 α-catalytic subunit (SnRK1α1) increased in response to low-nitrogen stress. SnRK1α1 overexpression enhanced seedling tolerance, nitrate uptake capacity, apoplastic reactive oxygen species (ROS) accumulation, and NADPH oxidase activity in tomato (Solanum lycopersicum L.) under low-nitrogen stress compared to wild type plants, while snrk1α1 mutants exhibited the opposite phenotypes. Mutation of the NADPH oxidase gene Respiratory burst oxidase homolog 1 (RBOH1) suppressed numerous nitrate uptake and metabolism genes during low-nitrogen stress. rboh1 mutants displayed lower NADPH oxidase activity, apoplastic ROS production, and seedling tolerance to low nitrogen. Silencing RBOH1 expression also compromised SnRK1α1-mediated seedling tolerance to low-nitrogen stress. SnRK1α1 interacts with and activates RBOH1 through phosphorylation of three N-terminal serine residues, leading to increased apoplastic ROS production and enhanced tolerance to low nitrogen conditions. Furthermore, RBOH1-dependent ROS oxidatively modified the transcription factor TGA4 at residue Cys-334, which increased NRT1.1 and NRT2.1 expression under low-nitrogen stress. These findings reveal a SnRK1α1-mediated signaling pathway and highlight the essential role of RBOH1-dependent ROS production in enhancing plant tolerance to low nitrogen.
Collapse
Affiliation(s)
- Xuelian Zheng
- Department of Horticulture, Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| | - Hongfei Yang
- Department of Horticulture, Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| | - Jinping Zou
- Department of Horticulture, Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| | - Weiduo Jin
- Department of Horticulture, Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| | - Zhenyu Qi
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Ping Yang
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| |
Collapse
|
16
|
Yang J, Zhang Z, Li X, Guo L, Li C, Lai J, Han Y, Ye W, Miao Y, Deng M, Cao P, Zhang Y, Ding X, Zhang J, Yang J, Wang S. A gene cluster for polyamine transport and modification improves salt tolerance in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1706-1723. [PMID: 39401077 DOI: 10.1111/tpj.17074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/11/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Polyamines act as protective compounds directly protecting plants from stress-related damage, while also acting as signaling molecules to participate in serious abiotic stresses. However, the molecular mechanisms underlying these effects are poorly understood. Here, we utilized metabolome genome-wide association study to investigate the polyamine content of wild and cultivated tomato accessions, and we discovered a new gene cluster that drove polyamine content during tomato domestication. The gene cluster contains two polyphenol oxidases (SlPPOE and SlPPOF), two BAHD acyltransferases (SlAT4 and SlAT5), a coumaroyl-CoA ligase (Sl4CL6), and a polyamine uptake transporter (SlPUT3). SlPUT3 mediates polyamine uptake and transport, while the five other genes are involved in polyamine modification. Further salt tolerance assays demonstrated that SlPPOE, SlPPOF, and SlAT5 overexpression lines showed greater phenolamide accumulation and salt tolerance as compared with wild-type (WT). Meanwhile, the exogenous application of Spm to SlPUT3-OE lines displayed salt tolerance compared with WT, while having the opposite effect in slput3 lines, confirms that the polyamine and phenolamide can play a protective role by alleviating cell damage. SlPUT3 interacted with SlPIP2;4, a H2O2 transport protein, to maintain H2O2 homeostasis. Polyamine-derived H2O2 linked Spm to stress responses, suggesting that Spm signaling activates stress response pathways. Collectively, our finding reveals that the H2O2-polyamine-phenolamide module coordinately enhanced tomato salt stress tolerance and provide a foundation for tomato stress-resistance breeding.
Collapse
Affiliation(s)
- Jie Yang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Zhonghui Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Xianggui Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Langchen Guo
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Chun Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Jun Lai
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Yige Han
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Weizhen Ye
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Yuanyuan Miao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Meng Deng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Peng Cao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Yueran Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Xiangyu Ding
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Jianing Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Jun Yang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Shouchuang Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| |
Collapse
|
17
|
Di T, Wu Y, Feng X, He M, Lei L, Wang J, Li N, Hao X, Whelan J, Wang X, Wang L. CIPK11 phosphorylates GSTU23 to promote cold tolerance in Camellia sinensis. PLANT, CELL & ENVIRONMENT 2024; 47:4786-4799. [PMID: 39087790 DOI: 10.1111/pce.15070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/28/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Cold stress negatively impacts the growth, development, and quality of Camellia sinensis (Cs, tea) plants. CBL-interacting protein kinases (CIPK) comprise a pivotal protein family involved in plant development and response to multiple environmental stimuli. However, their roles and regulatory mechanisms in tea plants (Camellia sinensis (L.) O. Kuntze) remain unknown. Here we show that CsCBL-interacting protein kinase 11 (CsCIPK11), whose transcript abundance was significantly induced at low temperatures, interacts and phosphorylates tau class glutathione S-transferase 23 (CsGSTU23). CsGSTU23 was also a cold-inducible gene and has significantly higher transcript abundance in cold-resistant accessions than in cold-susceptible accessions. CsCIPK11 phosphorylated CsGSTU23 at Ser37, enhancing its stability and enzymatic activity. Overexpression of CsCIPK11 in Arabidopsis thaliana resulted in enhanced cold tolerance under freezing conditions, while transient knockdown of CsCIPK11 expression in tea plants had the opposite effect, resulting in decreased cold tolerance and suppression of the C-repeat-binding transcription factor (CBF) transcriptional pathway under freezing stress. Furthermore, the transient overexpression of CsGSTU23 in tea plants increased cold tolerance. These findings demonstrate that CsCIPK11 plays a central role in the signaling pathway to cold signals and modulates antioxidant capacity by phosphorylating CsGSTU23, leading to improved cold tolerance in tea plants.
Collapse
Affiliation(s)
- Taimei Di
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yedie Wu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xia Feng
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Mingming He
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Lei Lei
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jie Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Nana Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xinyuan Hao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - James Whelan
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinchao Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Lu Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
18
|
Zhu M, Zhong T, Xu L, Guo C, Zhang X, Liu Y, Zhang Y, Li Y, Xie Z, Liu T, Jiang F, Fan X, Balint-Kurti P, Xu M. The ZmCPK39-ZmDi19-ZmPR10 immune module regulates quantitative resistance to multiple foliar diseases in maize. Nat Genet 2024; 56:2815-2826. [PMID: 39496881 PMCID: PMC11631770 DOI: 10.1038/s41588-024-01968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/01/2024] [Indexed: 11/06/2024]
Abstract
Gray leaf spot, northern leaf blight and southern leaf blight are three of the most destructive foliar diseases affecting maize (Zea mays L.). Here we identified a gene, ZmCPK39, that encodes a calcium-dependent protein kinase and negatively regulates quantitative resistance to these three diseases. The ZmCPK39 allele in the resistant line displayed significantly lower pathogen-induced gene expression than that in the susceptible line. A marked decrease in ZmCPK39 abundance mitigated the phosphorylation and degradation of the transcription factor ZmDi19. This led to elevated expression of ZmPR10, a gene known to encode an antimicrobial protein, thereby enhancing maize resistance to foliar diseases. Moreover, the F1 hybrid with reduced ZmCPK39 expression favored disease resistance, thereby increasing yield. Hence, the discovery of the ZmCPK39-ZmDi19-ZmPR10 immune module provides insight into the mechanisms underlying broad-spectrum quantitative disease resistance and also offers a new avenue for the genetic control of maize foliar diseases.
Collapse
Affiliation(s)
- Mang Zhu
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China
| | - Tao Zhong
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China
| | - Ling Xu
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing, P. R. China
- College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Chenyu Guo
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China
| | - Xiaohui Zhang
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China
| | - Yulin Liu
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China
| | - Yan Zhang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, P. R. China
| | - Yancong Li
- Baoshan Institute of Agricultural Science, Baoshan, P. R. China
| | - Zhijian Xie
- Baoshan Institute of Agricultural Science, Baoshan, P. R. China
| | - Tingting Liu
- Baoshan Institute of Agricultural Science, Baoshan, P. R. China
| | - Fuyan Jiang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, P. R. China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, P. R. China
| | - Peter Balint-Kurti
- USDA-ARS Plant Science Research Unit, Raleigh NC and Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Mingliang Xu
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing, P. R. China.
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China.
| |
Collapse
|
19
|
Xie G, Huang Y, Hu D, Xia Y, Gong M, Zou Z. Potentiation of Catalase-Mediated Plant Thermotolerance by N-Terminal Attachment of Solubilizing/Thermostabilizing Fusion Partners. Int J Mol Sci 2024; 25:12181. [PMID: 39596251 PMCID: PMC11594932 DOI: 10.3390/ijms252212181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Catalase (CAT) plays a crucial role in plant responses to environmental stresses and maintaining redox homeostasis. However, its putative heat lability might compromise its activity and function, thus restricting plant thermotolerance. Herein, we verified Arabidopsis CAT3 was of poor thermostability that was then engineered by fusion expression in Escherichia coli. We found that our selected fusion partners, three hyperacidic mini-peptides and the short rubredoxin from hyperthermophile Pyrococcus furiosus, were commonly effectual to enhance the solubility and thermostability of CAT3 and enlarge its improvement on heat tolerance in E. coli and yeast. Most importantly, this finding was also achievable in plants. Fusion expression could magnify CAT3-mediated thermotolerance in tobacco. Under heat stress, transgenic lines expressing CAT3 fusions generally outperformed native CAT3 which in turn surpassed wild-type tobacco, in terms of seed germination, seedling survival, plant recovery growth, protection of chlorophyll and membrane lipids, elimination of H2O2, as well as mitigation of cell damage in leaves and roots. Moreover, we revealed that the introduced CAT3 or its fusions seemed solely responsible for the enhanced thermotolerance in tobacco. Prospectively, this fusion expression strategy would be applicable to other crucial plant proteins of intrinsic heat instability and thus provide an alternative biotechnological route for ameliorating plant heat tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhurong Zou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming 650500, China; (G.X.); (Y.H.); (D.H.); (Y.X.); (M.G.)
| |
Collapse
|
20
|
Liu J, Li XD, Jia D, Qi L, Jing R, Hao J, Wang Z, Cheng J, Chen LM. ZmCRK1 negatively regulates maize's response to drought stress by phosphorylating plasma membrane H +-ATPase ZmMHA2. THE NEW PHYTOLOGIST 2024; 244:1362-1376. [PMID: 39219030 DOI: 10.1111/nph.20093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Drought severely affects crop growth and yields. Stomatal regulation plays an important role in plant response to drought stress. Light-activated plasma membrane-localized proton ATPase (PM H+-ATPase) mainly promoted the stomatal opening. Abscisic acid (ABA) plays a dominant role in the stomatal closure during drought stress. It is not clear how PM H+-ATPase is involved in the regulation of ABA-induced stomatal closure. We found that a CALCIUM-DEPENDENT PROTEIN KINASE RELATED KINASE 1 (ZmCRK1), and its mutant zmcrk1 exhibited slow water loss in detached leaves, high-survival rate after drought stress, and sensitivity to stomatal closure induced by ABA. The ZmCRK1 overexpression lines are opposite. ZmCRK1 interacted with the maize PM H+-ATPase ZmMHA2. ZmCRK1 phosphorylated ZmMHA2 at the Ser-901 and inhibited its proton pump activity. ZmCRK1 overexpression lines and zmmha2 mutants had low H+-ATPase activity, resulting in impaired ABA-induced H+ efflux. Taken together, our study indicates that ZmCRK1 negatively regulates maize drought stress response by inhibiting the activity of ZmMHA2. Reducing the expression level of ZmCRK1 has the potential to reduce yield losses under water deficiency.
Collapse
Affiliation(s)
- Jinjie Liu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xi-Dong Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dongyun Jia
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liuran Qi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Rufan Jing
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jie Hao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhe Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jinkui Cheng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Li-Mei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
21
|
Gong F, Zhang T, Lu Y, Govindan V, Liu R, Liu J, Wang X, Liu D, Zheng Y, Huang L, Wu B. Overexpression of TdNACB improves the drought resistance of rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109157. [PMID: 39369649 DOI: 10.1016/j.plaphy.2024.109157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Drought stress greatly affects disrupts the productivity, ecological structure, physiological and biochemical activities of wheat at different growth stages. However, drought stress tolerance is a complex quantitative trait and involves multiple metabolic pathways. We found that a wild emmer introgression line BAd7-209 had stronger drought resistance compared with drought resistant wheat Zhongmai 175. The transcriptome analysis found 14,284, 22,383 and 21,451 genes had expression corresponding responsed to drought stress at 24h, 48h, 120h, respectively and significantly enriched in 'Arginine and proline metabolism' and 'Peroxisome' in BAd7-209. 1666 transcription factors (TFs) related responsed to drought stress in which TdNACB showed high expression at 24h, 48h and 120h and had the closest relationship with TaNAC48 and OsNAC6 in phylogenetic analysis. Overexpression of TdNACB significantly enhanced drought resistance in rice and overexpression lines had significantly higher CAT, POD and SOD activity, Pro content and lower MDA content than those of the WT under drought stress. The result demonstrated that TdNACB positively regulates drought resistance through increasing proline content and enhancing activity of enzyme related to ROS scavenging. The results of this study provides candidate genes for improving wheat drought resistance and guide as reference for studying the molecular mechanisms of wheat drought resistance.
Collapse
Affiliation(s)
- Fangyi Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China; Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Tian Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yusen Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Velu Govindan
- International Maize and Wheat Improvement Center (CIMMYT), Apdo Postal 6-641, Mexico DF, 06600, Mexico
| | - Ruiqin Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jia Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangquan Wang
- Neijiang Academy of Agricultural Sciences, Neijiang, 641000, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bihua Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
22
|
Ma Y, Zhang Y, Xu J, Qi J, Liu X, Guo L, Zhang H. Research on the Mechanisms of Phytohormone Signaling in Regulating Root Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:3051. [PMID: 39519969 PMCID: PMC11548626 DOI: 10.3390/plants13213051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Phytohormones are organic compounds produced in trace amounts within plants that regulate their physiological processes. Their physiological effects are highly complex and diverse. They influence processes ranging from cell division, elongation, and differentiation to plant germination and rooting. Therefore, phytohormones play a crucial regulatory role in plant growth and development. Recently, various studies have highlighted the role of PHs, such as auxin, cytokinin (CK), and abscisic acid (ABA), and newer classes of PHs, such as brassinosteroid (BR) and peptide hormone, in the plant responses toward environmental stresses. These hormones not only have distinct roles at different stages of plant growth but also interact to promote or inhibit each other, thus effectively regulating plant development. Roots are the primary organs for water and mineral absorption in plants. During seed germination, the radicle breaks through the seed coat and grows downward to form the primary root. This occurs because the root needs to quickly penetrate the soil to absorb water and nutrients, providing essential support for the plant's subsequent growth. Root development is a highly complex and precisely regulated process influenced by various signals. Changes in root architecture can affect the plant's ability to absorb nutrients and water, which in turn impacts crop yield. Thus, studying the regulation of root development is of great significance. Numerous studies have reported on the role of phytohormones, particularly auxins, in root regulation. This paper reviews recent studies on the regulation of root development by various phytohormones, both individually and in combination, providing a reference for researchers in this field and offering perspectives on future research directions for improving crop yields.
Collapse
Affiliation(s)
- Yuru Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.M.); (J.X.); (J.Q.); (X.L.); (L.G.)
| | - Ying Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China;
| | - Jiahui Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.M.); (J.X.); (J.Q.); (X.L.); (L.G.)
| | - Jiahong Qi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.M.); (J.X.); (J.Q.); (X.L.); (L.G.)
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.M.); (J.X.); (J.Q.); (X.L.); (L.G.)
| | - Lin Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.M.); (J.X.); (J.Q.); (X.L.); (L.G.)
| | - Hao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.M.); (J.X.); (J.Q.); (X.L.); (L.G.)
| |
Collapse
|
23
|
Luo C, Luo S, Chen Z, Yang R, He X, Chu H, Li Z, Li W, Shi Y. Genome-wide analysis of the Amorphophallus konjac AkCSLA gene family and its functional characterization in drought tolerance of transgenic arabidopsis. BMC PLANT BIOLOGY 2024; 24:1033. [PMID: 39478464 PMCID: PMC11526714 DOI: 10.1186/s12870-024-05747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Amorphophallus konjac (A. konjac), a perennial tuberous plant, is widely cultivated for its high konjac glucomannan (KGM) content, a heteropolysaccharide with diverse applications. The cellulose synthase-like (CSL) gene family is known to be a group of processive glycan synthases involved in the synthesis of cell-wall polysaccharides and plays an important role in the biological process of KGM. However, in A. konjac the classification, structure, and function of the AkCSLA superfamily have been studied very little. RESULTS Bioinformatics methods were used to identify the 11 AkCSLA genes from the whole genome of Amorphophallus konjac and to systematically analyze their characteristics, phylogenetic evolution, promoter cis-elements, expression patterns, and subcellular locations. Phylogenetic analysis revealed that the AkCSLA gene family can be divided into three subfamilies (Groups I- III), which have close relationships with Arabidopsis. The promoters of most AkCSLA family members contain MBS elements and ABA response elements. Analysis of expression patterns in different tissues showed that most AkCSLAs are highly expressed in the corms. Notably, PEG6000 induced down-regulation of the expression of most AkCSLAs, including AkCSLA11. Subcellular localization results showed that AkCSLA11 was localized to the plasma membrane, Golgi apparatus and endoplasmic reticulum. Transgenic Arabidopsis experiments demonstrated that overexpression of AkCSLA11 reduced the plant's drought tolerance. This overexpression also inhibited the expression of drought response genes and altered the sugar components of the cell wall. These findings provide new insights into the response mechanisms of A. konjac to drought stress and may offer potential genetic resources for improving crop drought resistance. CONCLUSION In conclusion, the study reveals that the AkCSLA11 gene from A. konjac negatively impacts drought tolerance when overexpressed in Arabidopsis. This discovery provides valuable insights into the mechanisms of plant response to drought stress and may guide future research on crop improvement for enhanced resilience.
Collapse
Affiliation(s)
- Changxin Luo
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Shicheng Luo
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Zhe Chen
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Rui Yang
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Xingfen He
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Honglong Chu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Zhumei Li
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Wei Li
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Yumei Shi
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China.
| |
Collapse
|
24
|
Li YN, Lei C, Yang Q, Yu X, Li S, Sun Y, Ji C, Zhang C, Xue JA, Cui H, Li R. Identification and expression analysis of calcium-dependent protein kinase family in oat ( Avena sativa L.) and their functions in response to saline-alkali stresses. FRONTIERS IN PLANT SCIENCE 2024; 15:1395696. [PMID: 39450084 PMCID: PMC11499199 DOI: 10.3389/fpls.2024.1395696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024]
Abstract
Calcium-dependent protein kinases (CDPKs) serve as calcium ion sensors and play crucial roles in all aspects of plant life cycle. While CDPK gene family has been extensively studied in various plants, there is limited information available for CDPK members in oat, an important cereal crop worldwide. Totally, 60 AsCDPK genes were identified in oat genome and were classified into four subfamilies based on their phylogenetic relationship. The members within each subfamily shared similar gene structure and conserved motifs. Collinearity analysis revealed that AsCDPK gene amplification was attributed to segmental duplication events and underwent strong purifying selection. AsCDPK promoters were predicted to contain cis-acting elements associated with hormones, biotic and abiotic stresses. AsCDPK gene expressions were induced by different salt stresses, exhibiting stress-specific under different salt treatments. Moreover, overexpression of AsCDPK26 gene enhanced salt resistance in C. reinhardtii, a single-cell photoautotrophic model plants. Further analysis revealed a significant correlation between AsCDPK26 and Na+/H+ antiporter 1 (p<0.05), suggesting that AsCDPK26 may interact with ion transporter to modulate salt resistance. These results not only provide valuable insights into AsCDPK genes in response to different salt stresses, but also lay the foundation to mine novel candidates for improving salt tolerance in oat and other crops.
Collapse
Affiliation(s)
- Ya-nan Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunyan Lei
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Qian Yang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Xiao Yu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Siming Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yan Sun
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunli Ji
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunhui Zhang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jin-ai Xue
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Hongli Cui
- Key Laboratory of Coastal Biology and Bio-Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandon, China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
25
|
Hou X, Zhang Y, Shi X, Duan W, Fu X, Liu J, Xiao K. TaCDPK1-5A positively regulates drought response through modulating osmotic stress responsive-associated processes in wheat (Triticum aestivum). PLANT CELL REPORTS 2024; 43:256. [PMID: 39375249 DOI: 10.1007/s00299-024-03344-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
KEY MESSAGE Wheat TaCDPK1-5A plays critical roles in mediating drought tolerance through regulating osmotic stress-associated physiological processes. Calcium (Ca2+) acts as an essential second messenger in plant signaling pathways and impacts plant abiotic stress responses. This study reported the function of TaCDPK1-5A, a calcium-dependent protein kinase (CDPK) gene in T. aestivum, in mediating drought tolerance. TaCDPK1-5A sensitively responded to drought and exogenous abscisic acid (ABA) signaling, displaying induced transcripts in plants under drought and ABA treatments. Yeast two-hybrid and co-immunoprecipitation assays revealed that TaCDPK1-5A interacts with the mitogen-activated protein kinase TaMAPK4-7D whereas the latter with ABF transcription factor TaABF1-3A, suggesting that TaCDPK1-5A constitutes a signaling module with above partners to transduce signals initiated by drought/ABA stressors. Overexpression of TaCDPK1-5A, TaMAPK4-7D and TaABF1-3A enhanced plant drought adaptation by modulating the osmotic stress-related physiological indices, including increased osmolyte contents, enlarged root morphology, and promoted stomata closure. Yeast one-hybrid assays indicated the binding ability of TaABF1-3A with promoters of TaP5CS1-1B, TaPIN3-5A, and TaSLAC1-3-2A, the genes encoding P5CS enzyme, PIN-FORMED protein, and slow anion channel, respectively. ChIP-PCR and transcriptional activation assays confirmed that TaABF1-3A regulates these genes at transcriptional level. Moreover, transgene analysis indicated that these stress-responsive genes positively regulated proline biosynthesis (TaP5CS1-1B), root morphology (TaPIN3-5A), and stomata closing (TaSLAC1-3-2A) upon drought signaling. Positive correlations were observed between yield and the transcripts of TaCDPK1-5A signaling partners in wheat cultivars under drought condition, with haplotype TaCDPK1-5A-Hap1 contributing to improved drought tolerance. Our study concluded that TaCDPK1-5A positively regulates drought adaptation and is a valuable target for molecular breeding the drought-tolerant cultivars in T. aestivum.
Collapse
Affiliation(s)
- Xiaoyang Hou
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China
| | - Yongli Zhang
- National Key Laboratory of Wheat Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xinxin Shi
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China
| | - Wanrong Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China
| | - Xiaojin Fu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China
| | - Jinzhi Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China
| | - Kai Xiao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China.
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China.
| |
Collapse
|
26
|
Luo P, Wu J, Li TT, Shi P, Ma Q, Di DW. An Overview of the Mechanisms through Which Plants Regulate ROS Homeostasis under Cadmium Stress. Antioxidants (Basel) 2024; 13:1174. [PMID: 39456428 PMCID: PMC11505430 DOI: 10.3390/antiox13101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Cadmium (Cd2+) is a non-essential and highly toxic element to all organic life forms, including plants and humans. In response to Cd stress, plants have evolved multiple protective mechanisms, such as Cd2+ chelation, vesicle sequestration, the regulation of Cd2+ uptake, and enhanced antioxidant defenses. When Cd2+ accumulates in plants to a certain level, it triggers a burst of reactive oxygen species (ROS), leading to chlorosis, growth retardation, and potentially death. To counteract this, plants utilize a complex network of enzymatic and non-enzymatic antioxidant systems to manage ROS and protect cells from oxidative damage. This review systematically summarizes how various elements, including nitrogen, phosphorus, calcium, iron, and zinc, as well as phytohormones such as abscisic acid, auxin, brassinosteroids, and ethylene, and signaling molecules like nitric oxide, hydrogen peroxide, and hydrogen sulfide, regulate the antioxidant system under Cd stress. Furthermore, it explores the mechanisms by which exogenous regulators can enhance the antioxidant capacity and mitigate Cd toxicity.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jingjing Wu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
| | - Ting-Ting Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| | - Peihua Shi
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China;
| | - Qi Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| |
Collapse
|
27
|
Zhou X, Wang M, Yang L, Wang W, Zhang Y, Liu L, Chai J, Liu H, Zhao G. Comparative Physiological and Transcriptomic Analyses of Oat ( Avena sativa) Seedlings under Salt Stress Reveal Salt Tolerance Mechanisms. PLANTS (BASEL, SWITZERLAND) 2024; 13:2238. [PMID: 39204673 PMCID: PMC11359270 DOI: 10.3390/plants13162238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Soil salinity is a major abiotic stress limiting crop production globally. Oat (Avena sativa) is an annual cereal with a strong salt tolerance, a high yield, and nutritional quality, although the mechanisms underlying its salt stress response remain largely unknown. We examined the physiological and transcriptomic responses of A. sativa seedlings to salt stress in tolerant cultivar Qingyongjiu 195 and sensitive cultivar 709. Under salt stress, Qingyongjiu 195 maintained a higher photosynthetic efficiency, antioxidant enzymes activity, and leaf K+ accumulation but a lower Na+ uptake than 709. RNA-seq revealed 6616 differentially expressed genes (DEGs), including 4265 up- and 2351 downregulated. These were enriched in pathways like plant-pathogen interaction, phenylpropanoid biosynthesis, and MAPK signaling. We specifically highlight DEGs involved in photosynthesis (chlG, CP47 psbB, COX2, LHCB) and antioxidants (trxA, GroES). Qingyongjiu 195 also appeared to enhance K+ uptake via KAT1 and AKT2 and sequester Na+ in vacuoles via NHX2. Additionally, HKT restricted Na+ while promoting K+ transport to shoots, maintaining K+/Na+. The expression levels of CAX, ACA, CML, CaM, and CDPK in Qingyongjiu 195 were higher than those in 709. Oats regulated Ca2+ concentration through CAX and ACA after salt stress, decoded Ca2+ signals through CML, and then transferred Ca2+ signals to downstream receptors through the Ca2+ sensors CaM and CDPK, thereby activating K+/Na+ transporters, such as SOS1 and NHX, etc. Our results shed light on plant salt stress response mechanisms and provide transcriptomic resources for molecular breeding in improving salt tolerance in oats.
Collapse
Affiliation(s)
- Xiangrui Zhou
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China;
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| | - Miaomiao Wang
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| | - Li Yang
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| | - Wenping Wang
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| | - Yuehua Zhang
- National Center of Pratacultural Technology Innovation (Under Preparation), Huhhot 010000, China;
| | - Linbo Liu
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| | - Jikuan Chai
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| | - Huan Liu
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| | - Guiqin Zhao
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| |
Collapse
|
28
|
Yan M, Chai M, Li L, Dong Z, Jin H, Tan M, Ye Z, Yu S, Feng Z. Calcium-Dependent Protein Kinase GhCDPK16 Exerts a Positive Regulatory Role in Enhancing Drought Tolerance in Cotton. Int J Mol Sci 2024; 25:8308. [PMID: 39125876 PMCID: PMC11311755 DOI: 10.3390/ijms25158308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Cotton is essential for the textile industry as a primary source of natural fibers. However, environmental factors like drought present significant challenges to its cultivation, adversely affecting both production levels and fiber quality. Enhancing cotton's drought resilience has the potential to reduce yield losses and support the growth of cotton farming. In this study, the cotton calcium-dependent protein kinase GhCDPK16 was characterized, and the transcription level of GhCDPK16 was significantly upregulated under drought and various stress-related hormone treatments. Physiological analyses revealed that the overexpression of GhCDPK16 improved drought stress resistance in Arabidopsis by enhancing osmotic adjustment capacity and boosting antioxidant enzyme activities. In contrast, silencing GhCDPK16 in cotton resulted in increased dehydration compared with the control. Furthermore, reduced antioxidant enzyme activities and downregulation of ABA-related genes were observed in GhCDPK16-silenced plants. These findings not only enhanced our understanding of the biological functions of GhCDPK16 and the mechanisms underlying drought stress resistance but also underscored the considerable potential of GhCDPK16 in improving drought resilience in cotton.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuxun Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (M.C.); (L.L.); (Z.D.); (H.J.); (M.T.); (Z.Y.)
| | - Zhen Feng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (M.Y.); (M.C.); (L.L.); (Z.D.); (H.J.); (M.T.); (Z.Y.)
| |
Collapse
|
29
|
González-Gordo S, López-Jaramillo J, Rodríguez-Ruiz M, Taboada J, Palma JM, Corpas FJ. Pepper catalase: a broad analysis of its modulation during fruit ripening and by nitric oxide. Biochem J 2024; 481:883-901. [PMID: 38884605 DOI: 10.1042/bcj20240247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
Catalase is a major antioxidant enzyme located in plant peroxisomes that catalyzes the decomposition of H2O2. Based on our previous transcriptomic (RNA-Seq) and proteomic (iTRAQ) data at different stages of pepper (Capsicum annuum L.) fruit ripening and after exposure to nitric oxide (NO) enriched atmosphere, a broad analysis has allowed us to characterize the functioning of this enzyme. Three genes were identified, and their expression was differentially modulated during ripening and by NO gas treatment. A dissimilar behavior was observed in the protein expression of the encoded protein catalases (CaCat1-CaCat3). Total catalase activity was down-regulated by 50% in ripe (red) fruits concerning immature green fruits. This was corroborated by non-denaturing polyacrylamide gel electrophoresis, where only a single catalase isozyme was identified. In vitro analyses of the recombinant CaCat3 protein exposed to peroxynitrite (ONOO-) confirmed, by immunoblot assay, that catalase underwent a nitration process. Mass spectrometric analysis identified that Tyr348 and Tyr360 were nitrated by ONOO-, occurring near the active center of catalase. The data indicate the complex regulation at gene and protein levels of catalase during the ripening of pepper fruits, with activity significantly down-regulated in ripe fruits. Nitration seems to play a key role in this down-regulation, favoring an increase in H2O2 content during ripening. This pattern can be reversed by the exogenous NO application. While plant catalases are generally reported to be tetrameric, the analysis of the protein structure supports that pepper catalase has a favored quaternary homodimer nature. Taken together, data show that pepper catalase is down-regulated during fruit ripening, becoming a target of tyrosine nitration, which provokes its inhibition.
Collapse
Affiliation(s)
- Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain Granada, Spain
| | | | - Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain Granada, Spain
| | - Jorge Taboada
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain Granada, Spain
| |
Collapse
|
30
|
Mishra S, Ganapathi TR, Pandey GK, Foyer CH, Srivastava AK. Meta-Analysis of Antioxidant Mutants Reveals Common Alarm Signals for Shaping Abiotic Stress-Induced Transcriptome in Plants. Antioxid Redox Signal 2024; 41:42-55. [PMID: 37597205 DOI: 10.1089/ars.2023.0361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Affiliation(s)
- Shefali Mishra
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | - Girdhar Kumar Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | | | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
31
|
Wang Y, Cheng J, Guo Y, Li Z, Yang S, Wang Y, Gong Z. Phosphorylation of ZmAL14 by ZmSnRK2.2 regulates drought resistance through derepressing ZmROP8 expression. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1334-1350. [PMID: 38804844 DOI: 10.1111/jipb.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024]
Abstract
Drought stress has negative effects on crop growth and production. Characterization of transcription factors that regulate the expression of drought-responsive genes is critical for understanding the transcriptional regulatory networks in response to drought, which facilitates the improvement of crop drought tolerance. Here, we identified an Alfin-like (AL) family gene ZmAL14 that negatively regulates drought resistance. Overexpression of ZmAL14 exhibits susceptibility to drought while mutation of ZmAL14 enhances drought resistance. An abscisic acid (ABA)-activated protein kinase ZmSnRK2.2 interacts and phosphorylates ZmAL14 at T38 residue. Knockout of ZmSnRK2.2 gene decreases drought resistance of maize. A dehydration-induced Rho-like small guanosine triphosphatase gene ZmROP8 is directly targeted and repressed by ZmAL14. Phosphorylation of ZmAL14 by ZmSnRK2.2 prevents its binding to the ZmROP8 promoter, thereby releasing the repression of ZmROP8 transcription. Overexpression of ZmROP8 stimulates peroxidase activity and reduces hydrogen peroxide accumulation after drought treatment. Collectively, our study indicates that ZmAL14 is a negative regulator of drought resistance, which can be phosphorylated by ZmSnRK2.2 through the ABA signaling pathway, thus preventing its suppression on ZmROP8 transcription during drought stress response.
Collapse
Affiliation(s)
- Yalin Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jinkui Cheng
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yazhen Guo
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| |
Collapse
|
32
|
Zhu C, Jing B, Lin T, Li X, Zhang M, Zhou Y, Yu J, Hu Z. Phosphorylation of sugar transporter TST2 by protein kinase CPK27 enhances drought tolerance in tomato. PLANT PHYSIOLOGY 2024; 195:1005-1024. [PMID: 38431528 DOI: 10.1093/plphys/kiae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Drought is a major environmental stress threatening plant growth and productivity. Calcium-dependent protein kinases (CPKs) are plant-specific Ca2+ sensors with multifaceted roles in signaling drought responses. Nonetheless, the mechanisms underpinning how CPKs transmit downstream drought signaling remain unresolved. Through genetic investigations, our study unveiled that knocking out CPK27 reduced drought tolerance in tomato (Solanum lycopersicum) plants and impaired abscisic acid (ABA)-orchestrated plant response to drought stress. Proteomics and phosphoproteomics revealed that CPK27-dependent drought-induced proteins were highly associated with the sugar metabolism pathway, which was further verified by reduced soluble sugar content in the cpk27 mutant under drought conditions. Using protein-protein interaction assays and phosphorylation assessments, we demonstrated that CPK27 directly interacted with and phosphorylated tonoplast sugar transporter 2 (TST2), promoting intercellular soluble sugar accumulation during drought stress. Furthermore, Ca2+ and ABA enhanced CPK27-mediated interaction and phosphorylation of TST2, thus revealing a role of TST2 in tomato plant drought tolerance. These findings extend the toolbox of potential interventions for enhancing plant drought stress tolerance and provide a target to improve drought tolerance by manipulating CPK27-mediated soluble sugar accumulation for rendering drought tolerance in a changing climate.
Collapse
Affiliation(s)
- Changan Zhu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Beiyu Jing
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Teng Lin
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Xinyan Li
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Min Zhang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
| |
Collapse
|
33
|
Zhong Y, Luo Y, Sun J, Qin X, Gan P, Zhou Z, Qian Y, Zhao R, Zhao Z, Cai W, Luo J, Chen LL, Song JM. Pan-transcriptomic analysis reveals alternative splicing control of cold tolerance in rice. THE PLANT CELL 2024; 36:2117-2139. [PMID: 38345423 PMCID: PMC11132889 DOI: 10.1093/plcell/koae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/19/2024] [Indexed: 05/30/2024]
Abstract
Plants have evolved complex mechanisms to adapt to harsh environmental conditions. Rice (Oryza sativa) is a staple food crop that is sensitive to low temperatures. However, its cold stress responses remain poorly understood, thus limiting possibilities for crop engineering to achieve greater cold tolerance. In this study, we constructed a rice pan-transcriptome and characterized its transcriptional regulatory landscape in response to cold stress. We performed Iso-Seq and RNA-Seq of 11 rice cultivars subjected to a time-course cold treatment. Our analyses revealed that alternative splicing-regulated gene expression plays a significant role in the cold stress response. Moreover, we identified CATALASE C (OsCATC) and Os03g0701200 as candidate genes for engineering enhanced cold tolerance. Importantly, we uncovered central roles for the 2 serine-arginine-rich proteins OsRS33 and OsRS2Z38 in cold tolerance. Our analysis of cold tolerance and resequencing data from a diverse collection of 165 rice cultivars suggested that OsRS2Z38 may be a key selection gene in japonica domestication for cold adaptation, associated with the adaptive evolution of rice. This study systematically investigated the distribution, dynamic changes, and regulatory mechanisms of alternative splicing in rice under cold stress. Overall, our work generates a rich resource with broad implications for understanding the genetic basis of cold response mechanisms in plants.
Collapse
Affiliation(s)
- Yuanyuan Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yuhong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinliang Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xuemei Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Ping Gan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zuwen Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yongqing Qian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Rupeng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhiyuan Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Wenguo Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jijing Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Ming Song
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
34
|
Weraduwage SM, Whitten D, Kulke M, Sahu A, Vermaas JV, Sharkey TD. The isoprene-responsive phosphoproteome provides new insights into the putative signalling pathways and novel roles of isoprene. PLANT, CELL & ENVIRONMENT 2024; 47:1099-1117. [PMID: 38038355 DOI: 10.1111/pce.14776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023]
Abstract
Many plants, especially trees, emit isoprene in a highly light- and temperature-dependent manner. The advantages for plants that emit, if any, have been difficult to determine. Direct effects on membranes have been disproven. New insights have been obtained by RNA sequencing, proteomic and metabolomic studies. We determined the responses of the phosphoproteome to exposure of Arabidopsis leaves to isoprene in the gas phase for either 1 or 5 h. Isoprene effects that were not apparent from RNA sequencing and other methods but were apparent in the phosphoproteome include effects on chloroplast movement proteins and membrane remodelling proteins. Several receptor kinases were found to have altered phosphorylation levels. To test whether potential isoprene receptors could be identified, we used molecular dynamics simulations to test for proteins that might have strong binding to isoprene and, therefore might act as receptors. Although many Arabidopsis proteins were found to have slightly higher binding affinities than a reference set of Homo sapiens proteins, no specific receptor kinase was found to have a very high binding affinity. The changes in chloroplast movement, photosynthesis capacity and so forth, found in this work, are consistent with isoprene responses being especially useful in the upper canopy of trees.
Collapse
Affiliation(s)
- Sarathi M Weraduwage
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Departments of Biology and Biochemistry, Bishop's University, Sherbrooke, Quebec, Canada
| | - Douglas Whitten
- Research Technology Support Facility-Proteomics Core, Michigan State University, East Lansing, Michigan, USA
| | - Martin Kulke
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- School of Natural Sciences, Technische Universität München, Munich, Germany
| | - Abira Sahu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
35
|
Tian Y, Zeng H, Wu JC, Dai GX, Zheng HP, Liu C, Wang Y, Zhou ZK, Tang DY, Deng GF, Tang WB, Liu XM, Lin JZ. The zinc finger protein DHHC09 S-acylates the kinase STRK1 to regulate H2O2 homeostasis and promote salt tolerance in rice. THE PLANT CELL 2024; 36:919-940. [PMID: 38180963 PMCID: PMC10980341 DOI: 10.1093/plcell/koae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Soil salinity results in oxidative stress and heavy losses to crop production. The S-acylated protein SALT TOLERANCE RECEPTOR-LIKE CYTOPLASMIC KINASE 1 (STRK1) phosphorylates and activates CATALASE C (CatC) to improve rice (Oryza sativa L.) salt tolerance, but the molecular mechanism underlying its S-acylation involved in salt signal transduction awaits elucidation. Here, we show that the DHHC-type zinc finger protein DHHC09 S-acylates STRK1 at Cys5, Cys10, and Cys14 and promotes salt and oxidative stress tolerance by enhancing rice H2O2-scavenging capacity. This modification determines STRK1 targeting to the plasma membrane or lipid nanodomains and is required for its function. DHHC09 promotes salt signaling from STRK1 to CatC via transphosphorylation, and its deficiency impairs salt signal transduction. Our findings demonstrate that DHHC09 S-acylates and anchors STRK1 to the plasma membrane to promote salt signaling from STRK1 to CatC, thereby regulating H2O2 homeostasis and improving salt stress tolerance in rice. Moreover, overexpression of DHHC09 in rice mitigates grain yield loss under salt stress. Together, these results shed light on the mechanism underlying the role of S-acylation in RLK/RLCK-mediated salt signal transduction and provide a strategy for breeding highly salt-tolerant rice.
Collapse
Affiliation(s)
- Ye Tian
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Hui Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Ji-Cai Wu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Gao-Xing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - He-Ping Zheng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Cong Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, 410125, China
| | - Yan Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Zheng-Kun Zhou
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Dong-Ying Tang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, 410125, China
| | - Guo-Fu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Wen-Bang Tang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, 410125, China
| | - Xuan-Ming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, 410125, China
| | - Jian-Zhong Lin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, 410125, China
| |
Collapse
|
36
|
Bai Y, Dong Y, Zheng L, Zeng H, Wei Y, Shi H. Cassava phosphatase PP2C1 modulates thermotolerance via fine-tuning dephosphorylation of antioxidant enzymes. PLANT PHYSIOLOGY 2024; 194:2724-2738. [PMID: 38198213 DOI: 10.1093/plphys/kiae009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 01/12/2024]
Abstract
Global warming is an adverse environmental factor that threatens crop yields and food security. 2C-type protein phosphatases (PP2Cs), as core protein phosphatase components, play important roles in plant hormone signaling to cope with various environmental stresses. However, the function and underlying mechanism of PP2Cs in the heat stress response remain elusive in tropical crops. Here, we report that MePP2C1 negatively regulated thermotolerance in cassava (Manihot esculenta Crantz), accompanied by the modulation of reactive oxygen species (ROS) accumulation and the underlying antioxidant enzyme activities of catalase (CAT) and ascorbate peroxidase (APX). Further investigation found that MePP2C1 directly interacted with and dephosphorylated MeCAT1 and MeAPX2 at serine (S) 112 and S160 residues, respectively. Moreover, in vitro and in vivo assays showed that protein phosphorylation of MeCAT1S112 and MeAPX2S160 was essential for their enzyme activities, and MePP2C1 negatively regulated thermotolerance and redox homeostasis by dephosphorylating MeCAT1S112 and MeAPX2S160. Taken together, this study illustrates the direct relationship between MePP2C1-mediated protein dephosphorylation of MeCAT1 and MeAPX2 and ROS accumulation in thermotolerance to provide insights for adapting to global warming via fine-tuning thermotolerance of the tropical crop cassava.
Collapse
Affiliation(s)
- Yujing Bai
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Yabin Dong
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Liyan Zheng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Hongqiu Zeng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Yunxie Wei
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Haitao Shi
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| |
Collapse
|
37
|
Wang B, Xue P, Zhang Y, Zhan X, Wu W, Yu P, Chen D, Fu J, Hong Y, Shen X, Sun L, Cheng S, Liu Q, Cao L. OsCPK12 phosphorylates OsCATA and OsCATC to regulate H 2O 2 homeostasis and improve oxidative stress tolerance in rice. PLANT COMMUNICATIONS 2024; 5:100780. [PMID: 38130060 PMCID: PMC10943579 DOI: 10.1016/j.xplc.2023.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Calcium-dependent protein kinases (CPKs), the best-characterized calcium sensors in plants, regulate many aspects of plant growth and development as well as plant adaptation to biotic and abiotic stresses. However, how CPKs regulate the antioxidant defense system remains largely unknown. We previously found that impaired function of OsCPK12 leads to oxidative stress in rice, with more H2O2, lower catalase (CAT) activity, and lower yield. Here, we explored the roles of OsCPK12 in oxidative stress tolerance in rice. Our results show that OsCPK12 interacts with and phosphorylates OsCATA and OsCATC at Ser11. Knockout of either OsCATA or OsCATC leads to an oxidative stress phenotype accompanied by higher accumulation of H2O2. Overexpression of the phosphomimetic proteins OsCATAS11D and OsCATCS11D in oscpk12-cr reduced the level of H2O2 accumulation. Moreover, OsCATAS11D and OsCATCS11D showed enhanced catalase activity in vivo and in vitro. OsCPK12-overexpressing plants exhibited higher CAT activity as well as higher tolerance to oxidative stress. Our findings demonstrate that OsCPK12 affects CAT enzyme activity by phosphorylating OsCATA and OsCATC at Ser11 to regulate H2O2 homeostasis, thereby mediating oxidative stress tolerance in rice.
Collapse
Affiliation(s)
- Beifang Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China; Northern Rice Research Center of Bao Qing, Shuangyashan 155600, China; Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
| | - Pao Xue
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Weixun Wu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Ping Yu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Daibo Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Junlin Fu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yongbo Hong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xihong Shen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Lianping Sun
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Shihua Cheng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China.
| | - Qunen Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China.
| | - Liyong Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China; Northern Rice Research Center of Bao Qing, Shuangyashan 155600, China; Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
38
|
Sato H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. Complex plant responses to drought and heat stress under climate change. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1873-1892. [PMID: 38168757 DOI: 10.1111/tpj.16612] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Global climate change is predicted to result in increased yield losses of agricultural crops caused by environmental conditions. In particular, heat and drought stress are major factors that negatively affect plant development and reproduction, and previous studies have revealed how these stresses induce plant responses at physiological and molecular levels. Here, we provide a comprehensive overview of current knowledge concerning how drought, heat, and combinations of these stress conditions affect the status of plants, including crops, by affecting factors such as stomatal conductance, photosynthetic activity, cellular oxidative conditions, metabolomic profiles, and molecular signaling mechanisms. We further discuss stress-responsive regulatory factors such as transcription factors and signaling factors, which play critical roles in adaptation to both drought and heat stress conditions and potentially function as 'hubs' in drought and/or heat stress responses. Additionally, we present recent findings based on forward genetic approaches that reveal natural variations in agricultural crops that play critical roles in agricultural traits under drought and/or heat conditions. Finally, we provide an overview of the application of decades of study results to actual agricultural fields as a strategy to increase drought and/or heat stress tolerance. This review summarizes our current understanding of plant responses to drought, heat, and combinations of these stress conditions.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Junya Mizoi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuraoka, Setagara-ku, Tokyo, 156-8502, Japan
| |
Collapse
|
39
|
Zhang J, Chen X, Song Y, Gong Z. Integrative regulatory mechanisms of stomatal movements under changing climate. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:368-393. [PMID: 38319001 DOI: 10.1111/jipb.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Global climate change-caused drought stress, high temperatures and other extreme weather profoundly impact plant growth and development, restricting sustainable crop production. To cope with various environmental stimuli, plants can optimize the opening and closing of stomata to balance CO2 uptake for photosynthesis and water loss from leaves. Guard cells perceive and integrate various signals to adjust stomatal pores through turgor pressure regulation. Molecular mechanisms and signaling networks underlying the stomatal movements in response to environmental stresses have been extensively studied and elucidated. This review focuses on the molecular mechanisms of stomatal movements mediated by abscisic acid, light, CO2 , reactive oxygen species, pathogens, temperature, and other phytohormones. We discussed the significance of elucidating the integrative mechanisms that regulate stomatal movements in helping design smart crops with enhanced water use efficiency and resilience in a climate-changing world.
Collapse
Affiliation(s)
- Jingbo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Xuexue Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yajing Song
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Institute of Life Science and Green Development, School of Life Sciences, Hebei University, Baoding, 071001, China
| |
Collapse
|
40
|
Liu Y, Zhang Q, Chen D, Shi W, Gao X, Liu Y, Hu B, Wang A, Li X, An X, Yang Y, Li X, Liu Z, Wang J. Positive regulation of ABA signaling by MdCPK4 interacting with and phosphorylating MdPYL2/12 in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2024; 293:154165. [PMID: 38237440 DOI: 10.1016/j.jplph.2023.154165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 02/23/2024]
Abstract
The phytohormone abscisic acid (ABA) regulates plant growth and development and stress resistance through the ABA receptor PYLs. To date, no interaction between CPK and PYL has been reported, even in Arabidopsis and rice. In this study, we found that MdCPK4 from Malus domestica (Md for short) interacts with two MdPYLs, MdPYL2/12, in the nucleus and the cytoplasm in vivo and phosphorylates the latter in vitro as well. Compared with the wild type (WT), the MdCPK4- or MdPYL2/12-overexpressing Arabidopsis lines showed more sensitivity to ABA, and therefore stronger drought resistance. The ABA-related genes (ABF1, ABF2, ABF4, RD29A and SnRK2.2) were significantly upregulated in the overexpressing (OE) lines after ABA treatment. These results indicate that MdCPK4 and MdPYL2/12 act as positive regulators in response to ABA-mediated drought resistance in apple. Our results reveal the relationship between MdCPK4 and MdPYL2/12 in ABA signaling, which will further enrich the molecular mechanism of drought resistance in plants.
Collapse
Affiliation(s)
- Yingying Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Qian Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Dixu Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Wensen Shi
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xuemeng Gao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yu Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Bo Hu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Anhu Wang
- Xichang University, Xichang, 615013, Sichuan, China
| | - Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xinyuan An
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xufeng Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Zhibin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
41
|
Li C, Zhang S, Li J, Huang S, Zhao T, Lv S, Liu J, Wang S, Liu X, He S, Zhang Y, Xiao F, Wang F, Gao J, Wang X. PHB3 interacts with BRI1 and BAK1 to mediate brassinosteroid signal transduction in Arabidopsis and tomato. THE NEW PHYTOLOGIST 2024; 241:1510-1524. [PMID: 38130037 DOI: 10.1111/nph.19469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
Brassinosteroids (BRs) are plant hormones that are essential in plant growth and development. BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and BRI1 ASSOCIATED RECEPTOR KINASE 1 (BAK1), which are located on the plasma membrane, function as co-receptors that accept and transmit BR signals. PROHIBITIN 3 (PHB3) was identified in both BRI1 and BAK1 complexes by affinity purification and LC-MS/MS analysis. Biochemical data showed that BRI1/BAK1 interacted with PHB3 in vitro and in vivo. BRI1/BAK1 phosphorylated PHB3 in vitro. When the Thr-80 amino acid in PHB3 was mutated to Ala, the mutant protein was not phosphorylated by BRI1 and the mutant protein interaction with BRI1 was abolished in the yeast two-hybrid assay. BAK1 did not phosphorylate the mutant protein PHB3T54A . The loss-of-function phb3 mutant showed a weaker BR signal than the wild-type. Genetic analyses revealed that PHB3 is a BRI1/BAK1 downstream substrate that participates in BR signalling. PHB3 has five homozygous in tomato, and we named the closest to AtPHB3 as SlPHB3.1. Biochemical data showed that SlBRI1/SlSERK3A/SlSERK3B interacted with SlPHB3.1 and SlPHB3.3. The CRISPR-Cas9 method generated slphb3.1 mutant led to a BR signal stunted relatively in tomatoes. PHB3 is a new component of the BR signal pathway in both Arabidopsis and tomato.
Collapse
Affiliation(s)
- Cheng Li
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shan Zhang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Shandong Institute of Innovation and Development, Jinan, 250101, China
| | - Jingjuan Li
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shuhua Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Tong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Siqi Lv
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jianwei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shufen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaohui Liu
- Xian Highness Agricultural Science & Technology Co. Ltd, Xian, Shaanxi, 710086, China
| | - Shen He
- Xian Highness Agricultural Science & Technology Co. Ltd, Xian, Shaanxi, 710086, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Fengde Wang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jianwei Gao
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiaofeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
42
|
Shen L, Xia X, Zhang L, Yang S, Yang X. Genome-Wide Identification of Catalase Gene Family and the Function of SmCAT4 in Eggplant Response to Salt Stress. Int J Mol Sci 2023; 24:16979. [PMID: 38069301 PMCID: PMC10706941 DOI: 10.3390/ijms242316979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Salinity is an important abiotic stress, damaging plant tissues by causing a burst of reactive oxygen species (ROS). Catalase (CAT) enzyme coded by Catalase (CAT) genes are potent in reducing harmful ROS and hydrogen peroxide (H2O2) produced. Herein, we performed bioinformatics and functional characterization of four SmCAT genes, retrieved from the eggplant genome database. Evolutionary analysis CAT genes revealed that they are divided into subgroups I and II. The RT-qPCR analysis of SmCAT displayed a differential expression pattern in response to abiotic stresses. All the CAT proteins of eggplant were localized in the peroxisome, except for SmCAT4, which localized in the cytomembrane and nucleus. Silencing of SmCAT4 compromised the tolerance of eggplant to salt stress. Suppressed expression levels of salt stress defense related genes SmTAS14 and SmDHN1, as well as increase of H2O2 content and decrease of CAT enzyme activity was observed in the SmCAT4 silenced eggplants. Our data provided insightful knowledge of CAT gene family in eggplant. Positive regulation of eggplant response to salinity by SmCAT4 provides resource for future breeding programs.
Collapse
Affiliation(s)
| | | | | | | | - Xu Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (L.S.); (X.X.); (L.Z.); (S.Y.)
| |
Collapse
|
43
|
da Cruz TI, Rocha DC, Lanna AC, Dedicova B, Vianello RP, Brondani C. Calcium-Dependent Protein Kinase 5 ( OsCPK5) Overexpression in Upland Rice ( Oryza sativa L.) under Water Deficit. PLANTS (BASEL, SWITZERLAND) 2023; 12:3826. [PMID: 38005723 PMCID: PMC10674721 DOI: 10.3390/plants12223826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Water deficit significantly affects global crop growth and productivity, particularly in water-limited environments, such as upland rice cultivation, reducing grain yield. Plants activate various defense mechanisms during water deficit, involving numerous genes and complex metabolic pathways. Exploring homologous genes that are linked to enhanced drought tolerance through the use of genomic data from model organisms can aid in the functional validation of target species. We evaluated the upland rice OsCPK5 gene, an A. thaliana AtCPK6 homolog, by overexpressing it in the BRSMG Curinga cultivar. Transformants were assessed using a semi-automated phenotyping platform under two irrigation conditions: regular watering, and water deficit applied 79 days after seeding, lasting 14 days, followed by irrigation at 80% field capacity. The physiological data and leaf samples were collected at reproductive stages R3, R6, and R8. The genetically modified (GM) plants consistently exhibited higher OsCPK5 gene expression levels across stages, peaking during grain filling, and displayed reduced stomatal conductance and photosynthetic rate and increased water-use efficiency compared to non-GM (NGM) plants under drought. The GM plants also exhibited a higher filled grain percentage under both irrigation conditions. Their drought susceptibility index was 0.9 times lower than that of NGM plants, and they maintained a higher chlorophyll a/b index, indicating sustained photosynthesis. The NGM plants under water deficit exhibited more leaf senescence, while the OsCPK5-overexpressing plants retained their green leaves. Overall, OsCPK5 overexpression induced diverse drought tolerance mechanisms, indicating the potential for future development of more drought-tolerant rice cultivars.
Collapse
Affiliation(s)
- Thaís Ignez da Cruz
- Escola de Agronomia, Universidade Federal de Goiás, Goiânia 74690-900, Brazil;
| | | | - Anna Cristina Lanna
- Embrapa Arroz e Feijão, Santo Antônio de Goiás 75375-000, Brazil; (A.C.L.); (R.P.V.)
| | - Beata Dedicova
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Sundsvägen 10, P.O. Box 101, SE-230 53 Alnarp, Sweden;
| | | | - Claudio Brondani
- Embrapa Arroz e Feijão, Santo Antônio de Goiás 75375-000, Brazil; (A.C.L.); (R.P.V.)
| |
Collapse
|
44
|
Yoo Y, Yoo YH, Lee DY, Jung KH, Lee SW, Park JC. Caffeine Produced in Rice Plants Provides Tolerance to Water-Deficit Stress. Antioxidants (Basel) 2023; 12:1984. [PMID: 38001837 PMCID: PMC10669911 DOI: 10.3390/antiox12111984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Exogenous or endogenous caffeine application confers resistance to diverse biotic stresses in plants. In this study, we demonstrate that endogenous caffeine in caffeine-producing rice (CPR) increases tolerance even to abiotic stresses such as water deficit. Caffeine produced by CPR plants influences the cytosolic Ca2+ ion concentration gradient. We focused on examining the expression of Ca2+-dependent protein kinase genes, a subset of the numerous proteins engaged in abiotic stress signaling. Under normal conditions, CPR plants exhibited increased expressions of seven OsCPKs (OsCPK10, OsCPK12, OsCPK21, OsCPK25, OsCPK26, OsCPK30, and OsCPK31) and biochemical modifications, including antioxidant enzyme (superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase) activity and non-enzymatic antioxidant (ascorbic acid) content. CPR plants exhibited more pronounced gene expression changes and biochemical alterations in response to water-deficit stress. CPR plants revealed increased expressions of 16 OsCPKs (OsCPK1, OsCPK2, OsCPK3, OsCPK4, OsCPK5, OsCPK6, OsCPK9, OsCPK10, OsCPK11, OsCPK12, OsCPK14, OsCPK16, OsCPK18, OsCPK22, OsCPK24, and OsCPK25) and 8 genes (OsbZIP72, OsLEA25, OsNHX1, OsRab16d, OsDREB2B, OsNAC45, OsP5CS, and OsRSUS1) encoding factors related to abiotic stress tolerance. The activity of antioxidant enzymes increased, and non-enzymatic antioxidants accumulated. In addition, a decrease in reactive oxygen species, an accumulation of malondialdehyde, and physiological alterations such as the inhibition of chlorophyll degradation and the protection of photosynthetic machinery were observed. Our results suggest that caffeine is a natural chemical that increases the potential ability of rice to cope with water-deficit stress and provides robust resistance by activating a rapid and comprehensive resistance mechanism in the case of water-deficit stress. The discovery, furthermore, presents a new approach for enhancing crop tolerance to abiotic stress, including water deficit, via the utilization of a specific natural agent.
Collapse
Affiliation(s)
- Youngchul Yoo
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Republic of Korea;
| | - Yo-Han Yoo
- Central Area Crop Breeding Division, Department of Central Area Crop Science, National Institute of Crop Science, RDA, Suwon 16429, Republic of Korea;
| | - Dong Yoon Lee
- Graduate School of Green-Bio Science, Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (D.Y.L.); (K.-H.J.)
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science, Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (D.Y.L.); (K.-H.J.)
| | - Sang-Won Lee
- Graduate School of Green-Bio Science, Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (D.Y.L.); (K.-H.J.)
| | - Jong-Chan Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| |
Collapse
|
45
|
Nguyen T, Silva‐Alvim FAL, Hills A, Blatt MR. OnGuard3e: A predictive, ecophysiology-ready tool for gas exchange and photosynthesis research. PLANT, CELL & ENVIRONMENT 2023; 46:3644-3658. [PMID: 37498151 PMCID: PMC10946835 DOI: 10.1111/pce.14674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Gas exchange across the stomatal pores of leaves is a focal point in studies of plant-environmental relations. Stomata regulate atmospheric exchange with the inner air spaces of the leaf. They open to allow CO2 entry for photosynthesis and close to minimize water loss. Models that focus on the phenomenology of stomatal conductance generally omit the mechanics of the guard cells that regulate the pore aperture. The OnGuard platform fills this gap and offers a truly mechanistic approach with which to analyse stomatal gas exchange, whole-plant carbon assimilation and water-use efficiency. Previously, OnGuard required specialist knowledge of membrane transport, signalling and metabolism. Here we introduce OnGuard3e, a software package accessible to ecophysiologists and membrane biologists alike. We provide a brief guide to its use and illustrate how the package can be applied to explore and analyse stomatal conductance, assimilation and water use efficiencies, addressing a range of experimental questions with truly predictive outputs.
Collapse
Affiliation(s)
- Thanh‐Hao Nguyen
- Laboratory of Plant Physiology and BiophysicsUniversity of GlasgowGlasgowUK
| | | | - Adrian Hills
- Laboratory of Plant Physiology and BiophysicsUniversity of GlasgowGlasgowUK
| | - Michael R. Blatt
- Laboratory of Plant Physiology and BiophysicsUniversity of GlasgowGlasgowUK
| |
Collapse
|
46
|
Wu Y, Luo Q, Wu Z, Yu J, Zhang Q, Shi F, Zou Y, Li L, Zhao H, Wang Y, Chen M, Chang J, He G, Yang G, Li Y. A straight-forward gene mining strategy to identify TaCIPK19 as a new regulator of drought tolerance in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108034. [PMID: 37738865 DOI: 10.1016/j.plaphy.2023.108034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Drought stress is one of the most impactful abiotic stresses to global wheat production. Therefore, identifying key regulators such as the calcineurin B-like protein interacting protein kinase (CIPK) in the signaling cascades known to coordinate developmental cues and environmental stimuli represents a useful approach to improve drought tolerance. However, functional studies have been very limited partly due to the difficulties in prioritizing candidate genes from the large TaCIPK family. To address this issue, we demonstrate a straight-forward strategy by analyzing gene expression patterns in response to phytohormones or stresses and identified TaCIPK19 as a new regulator to improve drought tolerance. The effects of TaCIPK19 on drought tolerance were evaluated in both tobacco and wheat through transgenic approach. Ectopic expression of TaCIPK19 in tobacco greatly improves drought tolerance with enhanced ABA biosynthesis/signaling and ROS scavenging capacity. TaCIPK19 overexpression in wheat also confers the drought tolerance at both seedling and mature stages with enhanced ROS scavenging capacity. Additionally, potential CBL partners interacting with TaCIPK19 were investigated. Collectively, our finding exemplifies a straight-forward approach to facilitate reverse genetics related to abiotic stress improvement and demonstrates TaCIPK19 as a new candidate gene to improve ROS scavenging capacity and drought tolerance, which is useful for genetic improvement and breeding application in wheat.
Collapse
Affiliation(s)
- Ya'nan Wu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Qingchen Luo
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, Department of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, China
| | - Zehao Wu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Jingbo Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Qian Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Fu Shi
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yuge Zou
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Li Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Hongyan Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| |
Collapse
|
47
|
You Z, Guo S, Li Q, Fang Y, Huang P, Ju C, Wang C. The CBL1/9-CIPK1 calcium sensor negatively regulates drought stress by phosphorylating the PYLs ABA receptor. Nat Commun 2023; 14:5886. [PMID: 37735173 PMCID: PMC10514306 DOI: 10.1038/s41467-023-41657-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
The stress hormone, Abscisic acid (ABA), is crucial for plants to respond to changes in their environment. It triggers changes in cytoplasmic Ca2+ levels, which activate plant responses to external stresses. However, how Ca2+ sensing and signaling feeds back into ABA signaling is not well understood. Here we reveal a calcium sensing module that negatively regulates drought stress via modulating ABA receptor PYLs. Mutants cbl1/9 and cipk1 exhibit hypersensitivity to ABA and drought resilience. Furthermore, CIPK1 is shown to interact with and phosphorylate 7 of 14 ABA receptors at the evolutionarily conserved site corresponding to PYL4 Ser129, thereby suppressing their activities and promoting PP2C activities under normal conditions. Under drought stress, ABA impedes PYLs phosphorylation by CIPK1 to respond to ABA signaling and survive in unfavorable environment. These findings provide insights into a previously unknown negative regulatory mechanism of the ABA signaling pathway, which is mediated by CBL1/9-CIPK1-PYLs, resulting in plants that are more sensitive to drought stress. This discovery expands our knowledge about the interplay between Ca2+ signaling and ABA signaling.
Collapse
Affiliation(s)
- Zhang You
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shiyuan Guo
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qiao Li
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yanjun Fang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Panpan Huang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chuanfeng Ju
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Cun Wang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
- Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
48
|
Liu C, Lin JZ, Wang Y, Tian Y, Zheng HP, Zhou ZK, Zhou YB, Tang XD, Zhao XH, Wu T, Xu SL, Tang DY, Zuo ZC, He H, Bai LY, Yang YZ, Liu XM. The protein phosphatase PC1 dephosphorylates and deactivates CatC to negatively regulate H2O2 homeostasis and salt tolerance in rice. THE PLANT CELL 2023; 35:3604-3625. [PMID: 37325884 PMCID: PMC10473223 DOI: 10.1093/plcell/koad167] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Catalase (CAT) is often phosphorylated and activated by protein kinases to maintain hydrogen peroxide (H2O2) homeostasis and protect cells against stresses, but whether and how CAT is switched off by protein phosphatases remains inconclusive. Here, we identified a manganese (Mn2+)-dependent protein phosphatase, which we named PHOSPHATASE OF CATALASE 1 (PC1), from rice (Oryza sativa L.) that negatively regulates salt and oxidative stress tolerance. PC1 specifically dephosphorylates CatC at Ser-9 to inhibit its tetramerization and thus activity in the peroxisome. PC1 overexpressing lines exhibited hypersensitivity to salt and oxidative stresses with a lower phospho-serine level of CATs. Phosphatase activity and seminal root growth assays indicated that PC1 promotes growth and plays a vital role during the transition from salt stress to normal growth conditions. Our findings demonstrate that PC1 acts as a molecular switch to dephosphorylate and deactivate CatC and negatively regulate H2O2 homeostasis and salt tolerance in rice. Moreover, knockout of PC1 not only improved H2O2-scavenging capacity and salt tolerance but also limited rice grain yield loss under salt stress conditions. Together, these results shed light on the mechanisms that switch off CAT and provide a strategy for breeding highly salt-tolerant rice.
Collapse
Affiliation(s)
- Cong Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha 410082, China
| | - Jian-Zhong Lin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha 410082, China
| | - Yan Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha 410082, China
| | - Ye Tian
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha 410082, China
| | - He-Ping Zheng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha 410082, China
| | - Zheng-Kun Zhou
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha 410082, China
| | - Yan-Biao Zhou
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha 410001, China
| | - Xiao-Dan Tang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha 410001, China
| | - Xin-Hui Zhao
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha 410001, China
| | - Ting Wu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha 410082, China
| | - Shi-Long Xu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha 410001, China
| | - Dong-Ying Tang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha 410082, China
| | - Ze-Cheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| | - Hang He
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China
| | - Lian-Yang Bai
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yuan-Zhu Yang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha 410001, China
| | - Xuan-Ming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
49
|
Dong X, Gao Y, Bao X, Wang R, Ma X, Zhang H, Liu Y, Jin L, Lin G. Multi-Omics Revealed Peanut Root Metabolism Regulated by Exogenous Calcium under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3130. [PMID: 37687376 PMCID: PMC10490012 DOI: 10.3390/plants12173130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
High salinity severely inhibits plant seedling root development and metabolism. Although plant salt tolerance can be improved by exogenous calcium supplementation, the metabolism molecular mechanisms involved remain unclear. In this study, we integrated three types of omics data (transcriptome, metabolome, and phytohormone absolute quantification) to analyze the metabolic profiles of peanut seedling roots as regulated by exogenous calcium under salt stress. (1) exogenous calcium supplementation enhanced the allocation of carbohydrates to the TCA cycle and plant cell wall biosynthesis rather than the shikimate pathway influenced by up-regulating the gene expression of antioxidant enzymes under salt stress; (2) exogenous calcium induced further ABA accumulation under salt stress by up-regulating the gene expression of ABA biosynthesis key enzymes AAO2 and AAO3 while down-regulating ABA glycosylation enzyme UGT71C5 expression; (3) exogenous calcium supplementation under salt stress restored the trans-zeatin absolute content to unstressed levels while inhibiting the root cis-zeatin biosynthesis.
Collapse
Affiliation(s)
- Xuan Dong
- College of Land and Environment, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China; (X.D.); (Y.G.); (X.B.); (R.W.); (H.Z.); (Y.L.); (L.J.)
| | - Yan Gao
- College of Land and Environment, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China; (X.D.); (Y.G.); (X.B.); (R.W.); (H.Z.); (Y.L.); (L.J.)
| | - Xuefeng Bao
- College of Land and Environment, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China; (X.D.); (Y.G.); (X.B.); (R.W.); (H.Z.); (Y.L.); (L.J.)
| | - Rongjin Wang
- College of Land and Environment, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China; (X.D.); (Y.G.); (X.B.); (R.W.); (H.Z.); (Y.L.); (L.J.)
| | - Xinyu Ma
- Testing Center for Agricultural Product Safety and Environmental Quality, Shenyang Institute of Applied Ecology, Chinese Academy of Sciences, No. 72, Culture Road, Shenhe District, Shenyang 110017, China
| | - Hui Zhang
- College of Land and Environment, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China; (X.D.); (Y.G.); (X.B.); (R.W.); (H.Z.); (Y.L.); (L.J.)
| | - Yifei Liu
- College of Land and Environment, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China; (X.D.); (Y.G.); (X.B.); (R.W.); (H.Z.); (Y.L.); (L.J.)
| | - Lanshu Jin
- College of Land and Environment, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China; (X.D.); (Y.G.); (X.B.); (R.W.); (H.Z.); (Y.L.); (L.J.)
| | - Guolin Lin
- College of Land and Environment, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China; (X.D.); (Y.G.); (X.B.); (R.W.); (H.Z.); (Y.L.); (L.J.)
| |
Collapse
|
50
|
Yang F, Liu Y, Zhang X, Liu X, Wang G, Jing X, Wang XF, Zhang Z, Hao GF, Zhang S, You CX. Oxidative post-translational modification of catalase confers salt stress acclimatization by regulating H 2O 2 homeostasis in Malus hupehensis. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154037. [PMID: 37354701 DOI: 10.1016/j.jplph.2023.154037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/29/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023]
Abstract
Reactive oxygen species (ROS) play an essential role as both signaling molecule and damage agent during salt stress. As a signaling molecule, proper accumulation of H2O2 is crucial to trigger stress response and enhance stress tolerance. However, the dynamic regulation mechanism of H2O2 remains unclear. Here, we show that MhCAT2 (catalase 2 in Malus hupehensis) undergoes oxidative modification in an O2•--dependent manner and that oxidation at His225 residue reduces the MhCAT2 activity. Furthermore, the substitution of His225 with Tyr weakens the activity of MhCAT2. The oxidation modification provides a post-translational brake mechanism for the excessive scavenging of H2O2 caused by salt stress-induced catalase (CAT) over-expression. Overall, this finding provides mechanistic insights on stress tolerance augmentation by an O2•--mediated switch that regulates H2O2 homeostasis in Malus hupehensis.
Collapse
Affiliation(s)
- Fei Yang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China.
| | - Yankai Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China.
| | - Xiao Zhang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang, PR China.
| | - Xuzhe Liu
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, China.
| | - Guanzhu Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China.
| | - Xiuli Jing
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China.
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China.
| | - Zhenlu Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China.
| | - Ge-Fei Hao
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang, PR China.
| | - Shuai Zhang
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, China.
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|