1
|
Nieto C, Vargas-García CA, Singh A. A generalized adder for cell size homeostasis: Effects on stochastic clonal proliferation. Biophys J 2025; 124:1376-1386. [PMID: 40119521 DOI: 10.1016/j.bpj.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/02/2025] [Accepted: 03/17/2025] [Indexed: 03/24/2025] Open
Abstract
Measurements of cell size dynamics have revealed phenomenological principles by which individual cells control their size across diverse organisms. One of the emerging paradigms of cell size homeostasis is the adder, where the cell cycle duration is established such that the cell size increase from birth to division is independent of the newborn cell size. We provide a mechanistic formulation of the adder, considering that cell size follows any arbitrary nonexponential growth law. Our results show that the main requirement to obtain an adder regardless of the growth law (the time derivative of cell size) is that cell cycle regulators are produced at a rate proportional to the growth law, and cell division is triggered when these molecules reach a prescribed threshold level. Among the implications of this generalized adder, we investigate fluctuations in the proliferation of single-cell-derived colonies. Considering exponential cell size growth, random fluctuations in clonal size show a transient increase and then eventually decay to zero over time (i.e., clonal populations become asymptotically more similar). In contrast, several forms of nonexponential cell size dynamics (with adder-based cell size control) yield qualitatively different results: clonal size fluctuations monotonically increase over time, reaching a nonzero value. These results characterize the interplay between cell size homeostasis at the single-cell level and clonal proliferation at the population level, explaining the broad fluctuations in clonal sizes seen in barcoded human cell lines.
Collapse
Affiliation(s)
- César Nieto
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware
| | | | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware; Department of Electrical and Computer Engineering, Biomedical Engineering, Mathematical Sciences, Interdisciplinary Neuroscience Program, University of Delaware, Newark, Delaware.
| |
Collapse
|
2
|
Singh Yadav A, Hong L, Klees PM, Kiss A, Petit M, He X, Barrios IM, Heeney M, Galang AMD, Smith RS, Boudaoud A, Roeder AH. Growth directions and stiffness across cell layers determine whether tissues stay smooth or buckle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.07.22.549953. [PMID: 37546730 PMCID: PMC10401922 DOI: 10.1101/2023.07.22.549953] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
From smooth shapes to buckles, nature exhibits organs of various shapes and forms. How cells grow to produce smooth shaped leaves and sepals remain unclear. Here, we show that growth along the longitudinal axis during early developmental stages and comparable stiffness across both epidermal layers of Arabidopsis sepals are essential for smoothness, as seen in the wild type. We identified a mutant (as2-7D) with ectopic expression of ASYMMETRIC LEAVES 2 (AS2) on the outer epidermis. Our analysis reveals that ectopic AS2 expression causes the outer epidermis of as2-7D sepals to buckle during early stages of sepal development. We show that buckling of the outer epidermis occurs due to conflicting cell growth directions and unequal tissue stiffness across the epidermal layers. Overexpression of cyclin-dependent kinase (CDK) inhibitor Kip-related protein 1 (KRP1) in as2-7D restores sepal smoothness by aligning the growth directions of the outer epidermal cells along the longitudinal axis, while also increasing the overall stiffness of the outer epidermis. Furthermore, buckling is associated with the convergence of auxin efflux transporter protein PIN-FORMED 1 (PIN1) to generate outgrowth in the sepals at later stages, suggesting that buckling can initiate outgrowths. Our findings suggest that in addition to molecular cues influencing tissue mechanics, tissue mechanics can also modulate molecular signals, giving rise to well-defined shapes.
Collapse
Affiliation(s)
- Avilash Singh Yadav
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Lilan Hong
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Patrick M. Klees
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Annamaria Kiss
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, F-69342 Lyon, France
| | - Manuel Petit
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, F-69342 Lyon, France
| | - Xi He
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Iselle M. Barrios
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Michelle Heeney
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Anabella Maria D. Galang
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | - Arezki Boudaoud
- LadHyX, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau Cedex, France
| | - Adrienne H.K. Roeder
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Russell NJ, Belato PB, Oliver LS, Chakraborty A, Roeder AHK, Fox DT, Formosa-Jordan P. Spatial ploidy inference using quantitative imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642217. [PMID: 40166315 PMCID: PMC11957035 DOI: 10.1101/2025.03.11.642217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Polyploidy (whole-genome multiplication) is a common yet under-surveyed property of tissues across multicellular organisms. Polyploidy plays a critical role during tissue development, following acute stress, and during disease progression. Common methods to reveal polyploidy involve either destroying tissue architecture by cell isolation or by tedious identification of individual nuclei in intact tissue. Therefore, there is a critical need for rapid and high-throughput ploidy quantification using images of nuclei in intact tissues. Here, we present iSPy (Inferring Spatial Ploidy), a new unsupervised learning pipeline that is designed to create a spatial map of nuclear ploidy across a tissue of interest. We demonstrate the use of iSPy in Arabidopsis, Drosophila, and human tissue. iSPy can be adapted for a variety of tissue preparations, including whole mount and sectioned. This high-throughput pipeline will facilitate rapid and sensitive identification of nuclear ploidy in diverse biological contexts and organisms.
Collapse
Affiliation(s)
- Nicholas J. Russell
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Polyploidy Integration and Innovation Institute
| | - Paulo B. Belato
- Department of Pharmacology and Cancer Biology, Duke University, Durham, USA
- Polyploidy Integration and Innovation Institute
| | - Lilijana Sarabia Oliver
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
- Polyploidy Integration and Innovation Institute
| | - Archan Chakraborty
- Department of Pharmacology and Cancer Biology, Duke University, Durham, USA
- Polyploidy Integration and Innovation Institute
| | - Adrienne H. K. Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
- Polyploidy Integration and Innovation Institute
| | - Donald T. Fox
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Polyploidy Integration and Innovation Institute
| | - Pau Formosa-Jordan
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Polyploidy Integration and Innovation Institute
| |
Collapse
|
4
|
López-Jurado J, Bourbia I, Brodribb TJ. Polyploidy drives changes in tissue allocation modifying whole-plant water relations. PLANT PHYSIOLOGY 2025; 197:kiaf079. [PMID: 40138700 PMCID: PMC11939995 DOI: 10.1093/plphys/kiaf079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/04/2025] [Indexed: 03/29/2025]
Abstract
Polyploid plants often display functional trait values distinct from those of diploids, influencing their stress tolerance and adaptive capacity. These differences shape how polyploids interact with their environment, a factor that is crucial to their evolutionary success. Here, we investigated the species complex Dianthus broteri, where ploidy level is known to correlate with water availability, as a model system to understand the possible link between ploidy and whole-plant water relations. We quantified allocation between leaves, xylem, and roots in 4 different ploidies of D. broteri (2×, 4×, 6×, 12×), and examined its relationship with hydraulic efficiency (Kr-s), water potential regulation, and stomatal conductance (gc) in response to varying leaf-to-air vapor pressure deficits (VPDL). A gradient in tissue allocation with increasing ploidy led to contrasting water-use strategies within D. broteri. Higher ploidy was associated with greater allocation to roots and xylem, resulting in higher Kr-s and gc and lower water potential gradients. Despite these differences, gc responses to VPDL were largely consistent across ploidies. In D. broteri 12×, the significant investment in water uptake and transport without a proportional increase in leaf area appeared suboptimal, incurring high xylem costs per unit water transport. However, this trade-off also led to increased water uptake and transport efficiency, potentially advantageous under water-limited conditions. Overall, our results indicate that multiple rounds of genome duplication cause substantial changes in whole-plant water relations, likely impacting water stress exposure in the field.
Collapse
Affiliation(s)
- Javier López-Jurado
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart TAS 7001, Australia
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, E-41080 Sevilla, Spain
| | - Ibrahim Bourbia
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart TAS 7001, Australia
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart TAS 7001, Australia
| |
Collapse
|
5
|
Barker J, Murray A, Bell SP. Cell integrity limits ploidy in budding yeast. G3 (BETHESDA, MD.) 2025; 15:jkae286. [PMID: 39804723 PMCID: PMC11797008 DOI: 10.1093/g3journal/jkae286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025]
Abstract
Evidence suggests that increases in ploidy have occurred frequently in the evolutionary history of organisms and can serve adaptive functions to specialized somatic cells in multicellular organisms. However, the sudden multiplication of all chromosome content may present physiological challenges to the cells in which it occurs. Experimental studies have associated increases in ploidy with reduced cell survival and proliferation. To understand the physiological challenges that suddenly increased chromosome content imposes on cells, we used S. cerevisiae to ask how much chromosomal DNA cells may contain and what determines this limit. We generated polyploid cells using 2 distinct methods causing cells to undergo endoreplication and identified the maximum ploidy of these cells, 32-64C. We found that physical determinants that alleviate or exacerbate cell surface stress increase and decrease the limit to ploidy, respectively. We also used these cells to investigate gene expression changes associated with increased ploidy and identified the repression of genes involved in ergosterol biosynthesis. We propose that ploidy is inherently limited by the impacts of growth in size, which accompany whole-genome duplication, to cell surface integrity.
Collapse
Affiliation(s)
- Juliet Barker
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrew Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Stephen P Bell
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Morris JP, Baslan T, Soltis DE, Soltis PS, Fox DT. Integrating the Study of Polyploidy Across Organisms, Tissues, and Disease. Annu Rev Genet 2024; 58:297-318. [PMID: 39227132 PMCID: PMC11590481 DOI: 10.1146/annurev-genet-111523-102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Polyploidy is a cellular state containing more than two complete chromosome sets. It has largely been studied as a discrete phenomenon in either organismal, tissue, or disease contexts. Increasingly, however, investigation of polyploidy across disciplines is coalescing around common principles. For example, the recent Polyploidy Across the Tree of Life meeting considered the contribution of polyploidy both in organismal evolution over millions of years and in tumorigenesis across much shorter timescales. Here, we build on this newfound integration with a unified discussion of polyploidy in organisms, cells, and disease. We highlight how common polyploidy is at multiple biological scales, thus eliminating the outdated mindset of its specialization. Additionally, we discuss rules that are likely common to all instances of polyploidy. With increasing appreciation that polyploidy is pervasive in nature and displays fascinating commonalities across diverse contexts, inquiry related to this important topic is rapidly becoming unified.
Collapse
Affiliation(s)
- John P Morris
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA;
| | - Timour Baslan
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Systems Pharmacology and Translational Therapeutics and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biomedical Sciences and Penn Vet Cancer Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA;
- Biodiversity Institute, University of Florida, Gainesville, Florida, USA
- Polyploidy Integration and Innovation Institute
- Department of Biology, University of Florida, Gainesville, Florida, USA;
| | - Pamela S Soltis
- Biodiversity Institute, University of Florida, Gainesville, Florida, USA
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA;
- Polyploidy Integration and Innovation Institute
| | - Donald T Fox
- Department of Pharmacology and Cancer Biology, Duke Regeneration Center, and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA;
- Polyploidy Integration and Innovation Institute
| |
Collapse
|
7
|
Srikant T, Gonzalo A, Bomblies K. Chromatin Accessibility and Gene Expression Vary Between a New and Evolved Autopolyploid of Arabidopsis arenosa. Mol Biol Evol 2024; 41:msae213. [PMID: 39404085 PMCID: PMC11518924 DOI: 10.1093/molbev/msae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Polyploids arise from whole-genome duplication (WGD) events, which have played important roles in genome evolution across eukaryotes. WGD can increase genome complexity, yield phenotypic novelty, and influence adaptation. Neo-polyploids have been reported to often show seemingly stochastic epigenetic and transcriptional changes, but this leaves open the question whether these changes persist in evolved polyploids. A powerful approach to address this is to compare diploids, neo-polyploids, and evolved polyploids of the same species. Arabidopsis arenosa is a species that allows us to do this-natural diploid and autotetraploid populations exist, while neo-tetraploids can be artificially generated. Here, we use ATAC-seq to assay local chromatin accessibility, and RNA-seq to study gene expression on matched leaf and petal samples from diploid, neo-tetraploid and evolved tetraploid A. arenosa. We found over 8,000 differentially accessible chromatin regions across all samples. These are largely tissue specific and show distinct trends across cytotypes, with roughly 70% arising upon WGD. Interestingly, only a small proportion is associated with expression changes in nearby genes. However, accessibility variation across cytotypes associates strongly with the number of nearby transposable elements. Relatively few genes were differentially expressed upon genome duplication, and ∼60% of these reverted to near-diploid levels in the evolved tetraploid, suggesting that most initial perturbations do not last. Our results provide new insights into how epigenomic and transcriptional mechanisms jointly respond to genome duplication and subsequent evolution of autopolyploids, and importantly, show that one cannot be directly predicted from the other.
Collapse
Affiliation(s)
- Thanvi Srikant
- Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| | - Adrián Gonzalo
- Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| | - Kirsten Bomblies
- Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Burda I, Brauns F, Clark FK, Li CB, Roeder AHK. Robust organ size in Arabidopsis is primarily governed by cell growth rather than cell division patterns. Development 2024; 151:dev202531. [PMID: 39324278 PMCID: PMC11488635 DOI: 10.1242/dev.202531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Organ sizes and shapes are highly reproducible, or robust, within a species and individuals. Arabidopsis thaliana sepals, which are the leaf-like organs that enclose flower buds, have consistent size and shape, indicating robust development. Cell growth is locally heterogeneous due to intrinsic and extrinsic noise. To achieve robust organ shape, fluctuations in cell growth must average to an even growth rate, which requires that fluctuations are uncorrelated or anti-correlated in time and space. Here, we live image and quantify the development of sepals with an increased or decreased number of cell divisions (lgo mutant and LGO overexpression, respectively), a mutant with altered cell growth variability (ftsh4), and double mutants combining these. Changes in the number of cell divisions do not change the overall growth pattern. By contrast, in ftsh4 mutants, cell growth accumulates in patches of over- and undergrowth owing to correlations that impair averaging, resulting in increased organ shape variability. Thus, we demonstrate in vivo that the number of cell divisions does not affect averaging of cell growth, preserving robust organ morphogenesis, whereas correlated growth fluctuations impair averaging.
Collapse
Affiliation(s)
- Isabella Burda
- Genetics, Genomics, and Development Graduate Program, Cornell University, Ithaca, NY 14850, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850, USA
- School of Integrative Plant Science, Section of Plant Biology,Cornell University, Ithaca, NY 14850, USA
| | - Fridtjof Brauns
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Frances K. Clark
- Genetics, Genomics, and Development Graduate Program, Cornell University, Ithaca, NY 14850, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850, USA
- School of Integrative Plant Science, Section of Plant Biology,Cornell University, Ithaca, NY 14850, USA
| | - Chun-Biu Li
- Department of Mathematics, Stockholm University, Stockholm 10691, Sweden
| | - Adrienne H. K. Roeder
- Genetics, Genomics, and Development Graduate Program, Cornell University, Ithaca, NY 14850, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850, USA
- School of Integrative Plant Science, Section of Plant Biology,Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
9
|
Kikuchi S, Sakamoto T, Matsunaga S, Sugiyama M, Iwamoto A. Plant chromosome polytenization contributes to suppression of root growth in high polyploids. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5703-5716. [PMID: 38970333 PMCID: PMC11538578 DOI: 10.1093/jxb/erae288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Autopolyploidization, which refers to a polyploidization via genome duplication without hybridization, promotes growth in autotetraploids, but suppresses growth in high polyploids (autohexaploids or auto-octoploids). The mechanism underlying this growth suppression (i.e. 'high-ploidy syndrome') has not been comprehensively characterized. In this study, we conducted a kinematic analysis of the root apical meristem cells in Arabidopsis thaliana autopolyploids (diploid, tetraploid, hexaploid, and octoploid) to determine the effects of the progression of genome duplication on root growth. The results of the root growth analysis showed that tetraploidization increases the cell volume, but decreases cell proliferation. However, cell proliferation and volume growth are suppressed in high polyploids. Whole-mount fluorescence in situ hybridization analysis revealed extensive chromosome polytenization in the region where cell proliferation does not usually occur in the roots of high polyploids, which is likely to be at least partly correlated with the suppression of endoreduplication. The study findings indicate that chromosome polytenization is important for the suppressed growth of high polyploids.
Collapse
Affiliation(s)
- Suzuka Kikuchi
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuou-ku, Kumamoto-shi, Kumamoto, 860-8555, Japan
| | - Takuya Sakamoto
- Faculty of Science, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-8686, Japan
- Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Sachihiro Matsunaga
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8561, Japan
| | - Munetaka Sugiyama
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akitoshi Iwamoto
- Faculty of Science, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-8686, Japan
| |
Collapse
|
10
|
Nieto C, Vargas-García CA, Singh A. A Generalized Adder mechanism for Cell Size Homeostasis: Implications for Stochastic Dynamics of Clonal Proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612972. [PMID: 39345437 PMCID: PMC11429681 DOI: 10.1101/2024.09.13.612972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Measurements of cell size dynamics have revealed phenomenological principles by which individual cells control their size across diverse organisms. One of the emerging paradigms of cell size homeostasis is the adder, where the cell cycle duration is established such that the cell size increase from birth to division is independent of the newborn cell size. We provide a mechanistic formulation of the adder considering that cell size follows any arbitrary non-exponential growth law. Our results show that the main requirement to obtain an adder regardless of the growth law (the time derivative of cell size) is that cell cycle regulators are produced at a rate proportional to the growth law and cell division is triggered when these molecules reach a prescribed threshold level. Among the implications of this generalized adder, we investigate fluctuations in the proliferation of single-cell derived colonies. Considering exponential cell size growth, random fluctuations in clonal size show a transient increase and then eventually decay to zero over time (i.e., clonal populations become asymptotically more similar). In contrast, several forms of non-exponential cell size dynamics (with adder-based cell size control) yield qualitatively different results: clonal size fluctuations monotonically increase over time reaching a non-zero value. These results characterize the interplay between cell size homeostasis at the single-cell level and clonal proliferation at the population level, explaining the broad fluctuations in clonal sizes seen in barcoded human cell lines.
Collapse
Affiliation(s)
- César Nieto
- Department of Electrical and Computer Engineering, University of Delaware. Newark, DE 19716, USA
| | | | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware. Newark, DE 19716, USA
- Department of Electrical and Computer Engineering, Biomedical Engineering, Mathematical Sciences, Interdisciplinary Neuroscience Program, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
11
|
Singh Yadav A, Roeder AHK. An optimized live imaging and multiple cell layer growth analysis approach using Arabidopsis sepals. FRONTIERS IN PLANT SCIENCE 2024; 15:1449195. [PMID: 39290725 PMCID: PMC11405221 DOI: 10.3389/fpls.2024.1449195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024]
Abstract
Arabidopsis thaliana sepals are excellent models for analyzing growth of entire organs due to their relatively small size, which can be captured at a cellular resolution under a confocal microscope. To investigate how differential growth of connected cell layers generate unique organ morphologies, it is necessary to live-image deep into the tissue. However, imaging deep cell layers of the sepal (or plant tissues in general) is practically challenging. Image processing is also difficult due to the low signal-to-noise ratio of the deeper tissue layers, an issue mainly associated with live imaging datasets. Addressing some of these challenges, we provide an optimized methodology for live imaging sepals, and subsequent image processing. For live imaging early-stage sepals, we found that the use of a bright fluorescent membrane marker, coupled with increased laser intensity and an enhanced Z- resolution produces high-quality images suitable for downstream image processing. Our optimized parameters allowed us to image the bottommost cell layer of the sepal (inner epidermal layer) without compromising viability. We used a 'voxel removal' technique to visualize the inner epidermal layer in MorphoGraphX image processing software. We also describe the MorphoGraphX parameters for creating a 2.5D mesh surface for the inner epidermis. Our parameters allow for the segmentation and parent tracking of individual cells through multiple time points, despite the weak signal of the inner epidermal cells. While we have used sepals to illustrate our approach, the methodology will be useful for researchers intending to live-image and track growth of deeper cell layers in 2.5D for any plant tissue.
Collapse
Affiliation(s)
| | - Adrienne H. K. Roeder
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
12
|
Wang J, Wang R, Luo F, Du W, Hou J, Chen G, Tang X, Wu J, Wang W, Huang B, Wang C, Yuan L. Comparative Morphological, Physiological, and Transcriptomic Analyses of Diploid and Tetraploid Wucai ( Brassica campestris L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2341. [PMID: 39204777 PMCID: PMC11359193 DOI: 10.3390/plants13162341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Polyploid plants often exhibit superior yield, stress resistance, and quality. In this study, homologous tetraploid wucai (Brassica campestris L.) was successfully obtained by spraying seedling growth points with colchicine. The morphological, cytological, and physiological characteristics of diploid and tetraploid wucai were analyzed, and transcriptomic sequencing was performed at three stages of development. Tetraploid seedings grew slowly but exhibited darker leaves, enlarged organs and cells, increased stomatal volume, decreased stomatal density, improved nutritional content, and enhanced photosynthesis. Differentially expressed genes (DEGs) identified in diploid and tetraploid plants at three stages of development were enriched in different pathways. Notably, DEGs identified in the tetraploid plants were specifically enriched in starch and sucrose metabolism, pentose and glucuronate interconversions, and ascorbate and aldarate metabolism. In addition, we found that the light green module was most relevant to ploidy, and DEGs in this module were significantly enriched in the glycolysis/gluconeogenesis and TCA cycle pathways. The differential expression of key glycolysis-associated genes at different developmental stages may be the driver of the observed differences between diploid and tetraploid wucai. This study lays a technical foundation for the development of polyploid wucai germplasm resources as well as the breeding of new varieties with improved quality, yield, and stress resistance. It also provides a good empirical reference for the genetic breeding of closely related Brassica species.
Collapse
Affiliation(s)
- Jian Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.W.); (R.W.); (F.L.); (W.D.); (J.H.); (G.C.); (X.T.); (J.W.); (W.W.); (B.H.)
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Ruxi Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.W.); (R.W.); (F.L.); (W.D.); (J.H.); (G.C.); (X.T.); (J.W.); (W.W.); (B.H.)
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Fan Luo
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.W.); (R.W.); (F.L.); (W.D.); (J.H.); (G.C.); (X.T.); (J.W.); (W.W.); (B.H.)
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Wenjing Du
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.W.); (R.W.); (F.L.); (W.D.); (J.H.); (G.C.); (X.T.); (J.W.); (W.W.); (B.H.)
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Jinfeng Hou
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.W.); (R.W.); (F.L.); (W.D.); (J.H.); (G.C.); (X.T.); (J.W.); (W.W.); (B.H.)
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Department of Vegetable Culture and Breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Guohu Chen
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.W.); (R.W.); (F.L.); (W.D.); (J.H.); (G.C.); (X.T.); (J.W.); (W.W.); (B.H.)
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Department of Vegetable Culture and Breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Xiaoyan Tang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.W.); (R.W.); (F.L.); (W.D.); (J.H.); (G.C.); (X.T.); (J.W.); (W.W.); (B.H.)
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Department of Vegetable Culture and Breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Jianqiang Wu
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.W.); (R.W.); (F.L.); (W.D.); (J.H.); (G.C.); (X.T.); (J.W.); (W.W.); (B.H.)
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Department of Vegetable Culture and Breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Wenjie Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.W.); (R.W.); (F.L.); (W.D.); (J.H.); (G.C.); (X.T.); (J.W.); (W.W.); (B.H.)
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Department of Vegetable Culture and Breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Bin Huang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.W.); (R.W.); (F.L.); (W.D.); (J.H.); (G.C.); (X.T.); (J.W.); (W.W.); (B.H.)
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Chenggang Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.W.); (R.W.); (F.L.); (W.D.); (J.H.); (G.C.); (X.T.); (J.W.); (W.W.); (B.H.)
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Department of Vegetable Culture and Breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Lingyun Yuan
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.W.); (R.W.); (F.L.); (W.D.); (J.H.); (G.C.); (X.T.); (J.W.); (W.W.); (B.H.)
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Department of Vegetable Culture and Breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| |
Collapse
|
13
|
Jeon D, Kim C. Polyploids of Brassicaceae: Genomic Insights and Assembly Strategies. PLANTS (BASEL, SWITZERLAND) 2024; 13:2087. [PMID: 39124204 PMCID: PMC11314605 DOI: 10.3390/plants13152087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
The Brassicaceae family is distinguished by its inclusion of high-value crops such as cabbage, broccoli, mustard, and wasabi, all noted for their glucosinolates. In this family, many polyploidy species are distributed and shaped by numerous whole-genome duplications, independent genome doublings, and hybridization events. The evolutionary trajectory of the family is marked by enhanced diversification and lineage splitting after paleo- and meso-polyploidization, with discernible remnants of whole-genome duplications within their genomes. The recent neopolyploidization events notably increased the proportion of polyploid species within the family. Although sequencing efforts for the Brassicaceae genome have been robust, accurately distinguishing sub-genomes remains a significant challenge, frequently complicating the assembly process. Assembly strategies include comparative analyses with ancestral species and examining k-mers, long terminal repeat retrotransposons, and pollen sequencing. This review comprehensively explores the unique genomic characteristics of the Brassicaceae family, with a particular emphasis on polyploidization events and the latest strategies for sequencing and assembly. This review will significantly improve our understanding of polyploidy in the Brassicaceae family and assist in future genome assembly methods.
Collapse
Affiliation(s)
- Donghyun Jeon
- Department of Science in Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Changsoo Kim
- Department of Science in Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea;
- Department of Crop Science, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
14
|
Cerbantez-Bueno VE, Serwatowska J, Rodríguez-Ramos C, Cruz-Valderrama JE, de Folter S. The role of D3-type cyclins is related to cytokinin and the bHLH transcription factor SPATULA in Arabidopsis gynoecium development. PLANTA 2024; 260:48. [PMID: 38980389 PMCID: PMC11233295 DOI: 10.1007/s00425-024-04481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
MAIN CONCLUSION We studied the D3-type cyclin function during gynoecium development in Arabidopsis and how they are related to the hormone cytokinin and the transcription factor SPATULA. Growth throughout the life of plants is sustained by cell division and differentiation processes in meristematic tissues. In Arabidopsis, gynoecium development implies a multiphasic process where the tissues required for pollination, fertilization, and seed development form. The Carpel Margin Meristem (CMM) is a mass of undifferentiated cells that gives rise to the gynoecium internal tissues, such as septum, ovules, placenta, funiculus, transmitting tract, style, and stigma. Different genetic and hormonal factors, including cytokinin, control the CMM function. Cytokinin regulates the cell cycle transitions through the activation of cell cycle regulators as cyclin genes. D3-type cyclins are expressed in proliferative tissues, favoring the mitotic cell cycle over the endoreduplication. Though the role of cytokinin in CMM and gynoecium development is highly studied, its specific role in regulating the cell cycle in this tissue remains unclear. Additionally, despite extensive research on the relationship between CYCD3 genes and cytokinin, the regulatory mechanism that connects them remains elusive. Here, we found that D3-type cyclins are expressed in proliferative medial and lateral tissues. Conversely, the depletion of the three CYCD3 genes showed that they are not essential for gynoecium development. However, the addition of exogenous cytokinin showed that they could control the division/differentiation balance in gynoecium internal tissues and outgrowths. Finally, we found that SPATULA can be a mechanistic link between cytokinin and the D3-type cyclins. The data suggest that the role of D3-type cyclins in gynoecium development is related to the cytokinin response, and they might be activated by the transcription factor SPATULA.
Collapse
Affiliation(s)
- Vincent E Cerbantez-Bueno
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Joanna Serwatowska
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
| | - Carolina Rodríguez-Ramos
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
| | - J Erik Cruz-Valderrama
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México.
| |
Collapse
|
15
|
Kong S, Zhu M, Roeder AHK. Self-organization underlies developmental robustness in plants. Cells Dev 2024:203936. [PMID: 38960068 PMCID: PMC11688513 DOI: 10.1016/j.cdev.2024.203936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Development is a self-organized process that builds on cells and their interactions. Cells are heterogeneous in gene expression, growth, and division; yet how development is robust despite such heterogeneity is a fascinating question. Here, we review recent progress on this topic, highlighting how developmental robustness is achieved through self-organization. We will first discuss sources of heterogeneity, including stochastic gene expression, heterogeneity in growth rate and direction, and heterogeneity in division rate and precision. We then discuss cellular mechanisms that buffer against such noise, including Paf1C- and miRNA-mediated denoising, spatiotemporal growth averaging and compensation, mechanisms to improve cell division precision, and coordination of growth rate and developmental timing between different parts of an organ. We also discuss cases where such heterogeneity is not buffered but utilized for development. Finally, we highlight potential directions for future studies of noise and developmental robustness.
Collapse
Affiliation(s)
- Shuyao Kong
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Mingyuan Zhu
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
16
|
Zhang X, Chen K, Lv G, Wang W, Jiang J, Liu G. The association analysis of DNA methylation and transcriptomics identified BpCYCD3;2 as a participant in influencing cell division in autotetraploid birch (Betula pendula) leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112099. [PMID: 38640971 DOI: 10.1016/j.plantsci.2024.112099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Polyploidization plays a crucial role in plant breeding and genetic improvement. Although the phenomenon of polyploidization affecting the area and number of plant epidermal pavement cells is well described, the underlying mechanism behind this phenomenon is still largely unknown. In this study, we found that the leaves of autotetraploid birch (Betula pendula) stopped cell division earlier and had a larger cell area. In addition, compared to diploids, tetraploids have a smaller stomatal density and fewer stomatal numbers. Genome-wide DNA methylation analysis revealed no significant difference in global DNA methylation levels between diploids and tetraploids. A total of 9154 differential methylation regions (DMRs) were identified between diploids and tetraploids, with CHH-type DMRs accounting for 91.73% of all types of DMRs. Further research has found that there are a total of 2105 differentially methylated genes (DMEGs) with CHH-type DMRs in birch. The GO functional enrichment results of DMEGs showed that differentially methylated genes were mainly involved in terms such as cellular process and metabolic process. The analysis of differentially methylated genes and differentially expressed genes suggests that hyper-methylation in the promoter region may inhibit the gene expression level of BpCYCD3;2 in tetraploids. To investigate the function of BpCYCD3;2 in birch, we obtained overexpression and repressed expression lines of BpCYCD3;2 through genetic transformation. The morphogenesis of both BpCYCD3;2-OE and BpCYCD3;2-RE lines was not affected. However, low expression of BpCYCD3;2 can lead to inhibition of cell division in leaves, and this inhibition of cell proliferation can be compensated for by an increase in cell size. Additionally, we found that the number and density of stomata in the BpCYCD3;2-RE lines were significantly reduced, consistent with the tetraploid. These data indicate that changes in cell division ability and stomatal changes in tetraploid birch can be partially attributed to low expression of the BpCYCD3;2 gene, which may be related to hyper-methylation in its promoter region. These results will provide new insights into the mechanism by which polyploidization affects plant development.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Kun Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Guanbin Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Wei Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| |
Collapse
|
17
|
Laosuntisuk K, Vennapusa A, Somayanda IM, Leman AR, Jagadish SK, Doherty CJ. A normalization method that controls for total RNA abundance affects the identification of differentially expressed genes, revealing bias toward morning-expressed responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1241-1257. [PMID: 38289828 DOI: 10.1111/tpj.16654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
RNA-Sequencing is widely used to investigate changes in gene expression at the transcription level in plants. Most plant RNA-Seq analysis pipelines base the normalization approaches on the assumption that total transcript levels do not vary between samples. However, this assumption has not been demonstrated. In fact, many common experimental treatments and genetic alterations affect transcription efficiency or RNA stability, resulting in unequal transcript abundance. The addition of synthetic RNA controls is a simple correction that controls for variation in total mRNA levels. However, adding spike-ins appropriately is challenging with complex plant tissue, and carefully considering how they are added is essential to their successful use. We demonstrate that adding external RNA spike-ins as a normalization control produces differences in RNA-Seq analysis compared to traditional normalization methods, even between two times of day in untreated plants. We illustrate the use of RNA spike-ins with 3' RNA-Seq and present a normalization pipeline that accounts for differences in total transcriptional levels. We evaluate the effect of normalization methods on identifying differentially expressed genes in the context of identifying the effect of the time of day on gene expression and response to chilling stress in sorghum.
Collapse
Affiliation(s)
- Kanjana Laosuntisuk
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Amaranatha Vennapusa
- Department of Agriculture and Natural Resources, Delaware State University, Dover, Delaware, USA
| | - Impa M Somayanda
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, 79410, USA
| | - Adam R Leman
- Department of Science and Technology, The Good Food Institute, Washington, District of Columbia, 20090, USA
| | - Sv Krishna Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, 79410, USA
- Department of Agronomy, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Colleen J Doherty
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
18
|
Wu M, Bian X, Hu S, Huang B, Shen J, Du Y, Wang Y, Xu M, Xu H, Yang M, Wu S. A gradient of the HD-Zip regulator Woolly regulates multicellular trichome morphogenesis in tomato. THE PLANT CELL 2024; 36:2375-2392. [PMID: 38470570 PMCID: PMC11132899 DOI: 10.1093/plcell/koae077] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Homeodomain (HD) proteins regulate embryogenesis in animals such as the fruit fly (Drosophila melanogaster), often in a concentration-dependent manner. HD-leucine zipper (Zip) IV family genes are unique to plants and often function in the L1 epidermal cell layer. However, our understanding of the roles of HD-Zip IV family genes in plant morphogenesis is limited. In this study, we investigated the morphogenesis of tomato (Solanum lycopersicum) multicellular trichomes, a type of micro-organ in plants. We found that a gradient of the HD-Zip IV regulator Woolly (Wo) coordinates spatially polarized cell division and cell expansion in multicellular trichomes. Moreover, we identified a TEOSINTE BRANCHED1, CYCLOIDEA, and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR (TCP) transcription factor-encoding gene, SlBRANCHED2a (SlBRC2a), as a key downstream target of Wo that regulates the transition from cell division to cell expansion. High levels of Wo promote cell division in apical trichome cells, whereas in basal trichome cells, Wo mediates a negative feedback loop with SlBRC2a that forces basal cells to enter endoreduplication. The restricted high and low activities of Wo pattern the morphogenesis of tomato multicellular trichomes. These findings provide insights into the functions of HD-Zip IV genes during plant morphogenesis.
Collapse
Affiliation(s)
- MinLiang Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - XinXin Bian
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - ShouRong Hu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - BenBen Huang
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - JingYuan Shen
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - YaDi Du
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - YanLi Wang
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - MengYuan Xu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - HuiMin Xu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - MeiNa Yang
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuang Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
19
|
Trinh DC, Lionnet C, Trehin C, Hamant O. Sepal shape variability is robust to cell size heterogeneity in Arabidopsis. Biol Lett 2024; 20:20240099. [PMID: 38807547 PMCID: PMC11285780 DOI: 10.1098/rsbl.2024.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 05/30/2024] Open
Abstract
How organisms produce organs with robust shapes and sizes is still an open question. In recent years, the Arabidopsis sepal has been used as a model system to study this question because of its highly reproducible shape and size. One interesting aspect of the sepal is that its epidermis contains cells of very different sizes. Previous reports have qualitatively shown that sepals with more or less giant cells exhibit comparable final size and shape. Here, we investigate this question using quantitative approaches. We find that a mixed population of cell size modestly contribute to the normal width of the sepal but is not essential for its shape robustness. Furthermore, in a mutant with increased cell and organ growth variability, the change in final sepal shape caused by giant cells is exaggerated but the shape robustness is not affected. This formally demonstrates that sepal shape variability is robust to cell size heterogeneity.
Collapse
Affiliation(s)
- Duy-Chi Trinh
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon69364 CEDEX 07, France
- Vietnam Academy of Science and Technology (VAST), University of Science and Technology of Hanoi, Ha Noi, Vietnam
| | - Claire Lionnet
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon69364 CEDEX 07, France
| | - Christophe Trehin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon69364 CEDEX 07, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon69364 CEDEX 07, France
| |
Collapse
|
20
|
Tourdot E, Martin PGP, Maza E, Mauxion JP, Djari A, Gévaudant F, Chevalier C, Pirrello J, Gonzalez N. Ploidy-specific transcriptomes shed light on the heterogeneous identity and metabolism of developing tomato pericarp cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:997-1015. [PMID: 38281284 DOI: 10.1111/tpj.16646] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 01/05/2024] [Indexed: 01/30/2024]
Abstract
Endoreduplication, during which cells increase their DNA content through successive rounds of full genome replication without cell division, is the major source of endopolyploidy in higher plants. Endoreduplication plays pivotal roles in plant growth and development and is associated with the activation of specific transcriptional programmes that are characteristic of each cell type, thereby defining their identity. In plants, endoreduplication is found in numerous organs and cell types, especially in agronomically valuable ones, such as the fleshy fruit (pericarp) of tomato presenting high ploidy levels. We used the tomato pericarp tissue as a model system to explore the transcriptomes associated with endoreduplication progression during fruit growth. We confirmed that expression globally scales with ploidy level and identified sets of differentially expressed genes presenting only developmental-specific, only ploidy-specific expression patterns or profiles resulting from an additive effect of ploidy and development. When comparing ploidy levels at a specific developmental stage, we found that non-endoreduplicated cells are defined by cell division state and cuticle synthesis while endoreduplicated cells are mainly defined by their metabolic activity changing rapidly over time. By combining this dataset with publicly available spatiotemporal pericarp expression data, we proposed a map describing the distribution of ploidy levels within the pericarp. These transcriptome-based predictions were validated by quantifying ploidy levels within the pericarp tissue. This in situ ploidy quantification revealed the dynamic progression of endoreduplication and its cell layer specificity during early fruit development. In summary, the study sheds light on the complex relationship between endoreduplication, cell differentiation and gene expression patterns in the tomato pericarp.
Collapse
Affiliation(s)
- Edouard Tourdot
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| | - Pascal G P Martin
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| | - Elie Maza
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, F-31326, Castanet-Tolosan, France
| | - Jean-Philippe Mauxion
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| | - Anis Djari
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, F-31326, Castanet-Tolosan, France
| | - Frédéric Gévaudant
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| | - Christian Chevalier
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, F-31326, Castanet-Tolosan, France
| | - Nathalie Gonzalez
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882, Villenave d'Ornon, France
| |
Collapse
|
21
|
Zhong L, Zou X, Wu S, Chen L, Fang S, Zhong W, Xie L, Zhan R, Chen L. Volatilome and flavor analyses based on e-nose combined with HS-GC-MS provide new insights into ploidy germplasm diversity in Platostoma palustre. Food Res Int 2024; 183:114180. [PMID: 38760124 DOI: 10.1016/j.foodres.2024.114180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 05/19/2024]
Abstract
Platostoma palustre (Mesona chinensis Benth or Hsian-tsao, also known as "Xiancao" in China), is an edible and medicinal plant native to India, Myanmar, and Indo-China. It is the main ingredient in the popular desserts Hsian-tsao tea, herbal jelly, and sweet herbal jelly soup. P. palustre is found abundantly in nutrient-rich substances and possesses unique aroma compounds. Variations in the contents of volatile compounds among different germplasms significantly affect the quality and flavor of P. palustre, causing contradiction in demand. This study investigates the variation in the volatile compound profiles of distinct ploidy germplasms of P. palustre by utilising headspace gas chromatography-mass spectrometry (HS-GC-MS) and an electronic nose (e-nose). The results showed significant differences in the aroma characteristics of stem and leaf samples in diverse P. palustre germplasms. A total of sixty-seven volatile compounds have been identified and divided into ten classes. Six volatile compounds (caryophyllene, α-bisabolol, benzaldehyde, β-selinene, β-elemene and acetic acid) were screened as potential marker volatile compounds to discriminate stems and leaves of P. palustre. In this study, leaves of P. palustre showed one odor pattern and stems showed two odor patterns under the influence of α-bisabolol, acetic acid, and butyrolactone. In addition, a correlation analysis was conducted on the main volatile compounds identified by HS-GC-MS and e-nose. This analysis provided additional insight into the variations among samples resulting from diverse germplasms. The present study provides a valuable volatilome, and flavor, and quality evaluation for P. palustre, as well as new insights and scientific basis for the development and use of P. palustre germplasm resources.
Collapse
Affiliation(s)
- Ling'an Zhong
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Xuan Zou
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Shuiqin Wu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Lang Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Siyu Fang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Wenxuan Zhong
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Lili Xie
- Guangdong Institute of Tropical Crop Science, Maoming, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Likai Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China; Guangdong Yintian Agricultural Technology Co., Ltd, Yunfu, China.
| |
Collapse
|
22
|
Darmasaputra GS, van Rijnberk LM, Galli M. Functional consequences of somatic polyploidy in development. Development 2024; 151:dev202392. [PMID: 38415794 PMCID: PMC10946441 DOI: 10.1242/dev.202392] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Polyploid cells contain multiple genome copies and arise in many animal tissues as a regulated part of development. However, polyploid cells can also arise due to cell division failure, DNA damage or tissue damage. Although polyploidization is crucial for the integrity and function of many tissues, the cellular and tissue-wide consequences of polyploidy can be very diverse. Nonetheless, many polyploid cell types and tissues share a remarkable similarity in function, providing important information about the possible contribution of polyploidy to cell and tissue function. Here, we review studies on polyploid cells in development, underlining parallel functions between different polyploid cell types, as well as differences between developmentally-programmed and stress-induced polyploidy.
Collapse
Affiliation(s)
- Gabriella S. Darmasaputra
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Lotte M. van Rijnberk
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Matilde Galli
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
23
|
Yadav AS, Roeder AH. An optimized live imaging and growth analysis approach for Arabidopsis Sepals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576735. [PMID: 38328103 PMCID: PMC10849554 DOI: 10.1101/2024.01.22.576735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Background Arabidopsis thaliana sepals are excellent models for analyzing growth of entire organs due to their relatively small size, which can be captured at a cellular resolution under a confocal microscope [1]. To investigate how growth of different tissue layers generates unique organ morphologies, it is necessary to live-image deep into the tissue. However, imaging deep cell layers of the sepal is practically challenging, as it is hindered by the presence of extracellular air spaces between mesophyll cells, among other factors which causes optical aberrations. Image processing is also difficult due to the low signal-to-noise ratio of the deeper tissue layers, an issue mainly associated with live imaging datasets. Addressing some of these challenges, we provide an optimized methodology for live imaging sepals and subsequent image processing. This helps us track the growth of individual cells on the outer and inner epidermal layers, which are the key drivers of sepal morphogenesis. Results For live imaging sepals across all tissue layers at early stages of development, we found that the use of a bright fluorescent membrane marker, coupled with increased laser intensity and an enhanced Z- resolution produces high-quality images suitable for downstream image processing. Our optimized parameters allowed us to image the bottommost cell layer of the sepal (inner epidermal layer) without compromising viability. We used a 'voxel removal' technique to visualize the inner epidermal layer in MorphoGraphX [2, 3] image processing software. Finally, we describe the process of optimizing the parameters for creating a 2.5D mesh surface for the inner epidermis. This allowed segmentation and parent tracking of individual cells through multiple time points, despite the weak signal of the inner epidermal cells. Conclusion We provide a robust pipeline for imaging and analyzing growth across inner and outer epidermal layers during early sepal development. Our approach can potentially be employed for analyzing growth of other internal cell layers of the sepals as well. For each of the steps, approaches, and parameters we used, we have provided in-depth explanations to help researchers understand the rationale and replicate our pipeline.
Collapse
Affiliation(s)
- Avilash Singh Yadav
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Adrienne H.K. Roeder
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
24
|
Burda I, Li CB, Clark FK, Roeder AHK. Robust organ size in Arabidopsis is primarily governed by cell growth rather than cell division patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566685. [PMID: 38014347 PMCID: PMC10680605 DOI: 10.1101/2023.11.11.566685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Organ sizes and shapes are highly reproducible, or robust, within a species and individuals. Arabidopsis thaliana sepals, which are the leaf-like organs that enclose flower buds, have consistent size and shape, which indicates robust development. Counterintuitively, variability in cell growth rate over time and between cells facilitates robust development because cumulative cell growth averages to a uniform rate. Here we investigate how sepal morphogenesis is robust to changes in cell division but not robust to changes in cell growth variability. We live image and quantitatively compare the development of sepals with increased or decreased cell division rate (lgo mutant and LGO overexpression, respectively), a mutant with altered cell growth variability (ftsh4), and double mutants combining these. We find that robustness is preserved when cell division rate changes because there is no change in the spatial pattern of growth. Meanwhile when robustness is lost in ftsh4 mutants, cell growth accumulates unevenly, and cells have disorganized growth directions. Thus, we demonstrate in vivo that both cell growth rate and direction average in robust development, preserving robustness despite changes in cell division.
Collapse
Affiliation(s)
- Isabella Burda
- Genetics, Genomics, and Development Graduate Program, Cornell University, Ithaca, NY 14850, USA
- Weill Institute for Cell and Molecular Biology Cornell University, Ithaca, NY, 14850, USA
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Chun-Biu Li
- Department of Mathematics, Stockholm University, Stockholm 10691, Sweden
| | - Frances K. Clark
- Genetics, Genomics, and Development Graduate Program, Cornell University, Ithaca, NY 14850, USA
- Weill Institute for Cell and Molecular Biology Cornell University, Ithaca, NY, 14850, USA
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Adrienne H. K. Roeder
- Genetics, Genomics, and Development Graduate Program, Cornell University, Ithaca, NY 14850, USA
- Weill Institute for Cell and Molecular Biology Cornell University, Ithaca, NY, 14850, USA
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
25
|
Tourdot E, Mauxion JP, Gonzalez N, Chevalier C. Endoreduplication in plant organogenesis: a means to boost fruit growth. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6269-6284. [PMID: 37343125 DOI: 10.1093/jxb/erad235] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Endoreduplication is the major source of somatic endopolyploidy in higher plants, and leads to variation in cell ploidy levels due to iterative rounds of DNA synthesis in the absence of mitosis. Despite its ubiquitous occurrence in many plant organs, tissues, and cells, the physiological meaning of endoreduplication is not fully understood, although several roles during plant development have been proposed, mostly related to cell growth, differentiation, and specialization via transcriptional and metabolic reprogramming. Here, we review recent advances in our knowledge of the molecular mechanisms and cellular characteristics of endoreduplicated cells, and provide an overview of the multi-scale effects of endoreduplication on supporting growth in plant development. In addition, the effects of endoreduplication in fruit development are discussed, since it is highly prominent during fruit organogenesis where it acts as a morphogenetic factor supporting rapid fruit growth, as illustrated by case of the model fleshy fruit, tomato (Solanum lycopersicum).
Collapse
Affiliation(s)
- Edouard Tourdot
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Jean-Philippe Mauxion
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Nathalie Gonzalez
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Christian Chevalier
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| |
Collapse
|
26
|
Gong Y, Dale R, Fung HF, Amador GO, Smit ME, Bergmann DC. A cell size threshold triggers commitment to stomatal fate in Arabidopsis. SCIENCE ADVANCES 2023; 9:eadf3497. [PMID: 37729402 PMCID: PMC10881030 DOI: 10.1126/sciadv.adf3497] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 08/15/2023] [Indexed: 09/22/2023]
Abstract
How flexible developmental programs integrate information from internal and external factors to modulate stem cell behavior is a fundamental question in developmental biology. Cells of the Arabidopsis stomatal lineage modify the balance of stem cell proliferation and differentiation to adjust the size and cell type composition of mature leaves. Here, we report that meristemoids, one type of stomatal lineage stem cell, trigger the transition from asymmetric self-renewing divisions to commitment and terminal differentiation by crossing a critical cell size threshold. Through computational simulation, we demonstrate that this cell size-mediated transition allows robust, yet flexible termination of stem cell proliferation, and we observe adjustments in the number of divisions before the differentiation threshold under several genetic manipulations. We experimentally evaluate several mechanisms for cell size sensing, and our data suggest that this stomatal lineage transition is dependent on a nuclear factor that is sensitive to DNA content.
Collapse
Affiliation(s)
- Yan Gong
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Renee Dale
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Hannah F. Fung
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Gabriel O. Amador
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Margot E. Smit
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Dominique C. Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Escrich A, Hidalgo D, Bonfill M, Palazon J, Sanchez-Muñoz R, Moyano E. Polyploidy as a strategy to increase taxane production in yew cell cultures: Obtaining and characterizing a Taxus baccata tetraploid cell line. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111776. [PMID: 37343603 DOI: 10.1016/j.plantsci.2023.111776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/24/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Novel approaches to optimize the production of plant specialized metabolites are crucial to reach maximum productivity of plant biofactories. Plant polyploidization frequently enhances protein synthesis and thereby increases the biosynthesis of specialized metabolites. Paclitaxel is a valuable anticancer agent scarcely produced in nature. Therefore, plant biofactories represent a sustainable alternative source of this compound and related taxanes. With the aim of improving the productivity of Taxus spp. cell cultures, we induced polyploidy in vitro by treating immature embryos of Taxus baccata with colchicine. To obtain the polyploid cell lines, calli were induced from T. baccata plantlets previously treated with colchicine and ploidy levels were accurately identified using flow cytometry. In terms of cell morphology, tetraploid cells were about 3-fold bigger than the diploid cells. The expression of taxane pathway genes was higher in the tetraploid cell line compared to the diploid cells. Moreover, taxane production was 6.2-fold higher and the production peak was achieved 8 days earlier than in the diploid cell line, indicating a higher productivity. The obtained tetraploid cell line proved to be highly productive, constituting a step forward towards the development of a bio-sustainable production system for this chemotherapeutic drug.
Collapse
Affiliation(s)
- Ainoa Escrich
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Diego Hidalgo
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Mercedes Bonfill
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Javier Palazon
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Raul Sanchez-Muñoz
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium.
| | - Elisabeth Moyano
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
28
|
Schvarzstein M, Alam F, Toure M, Yanowitz JL. An Emerging Animal Model for Querying the Role of Whole Genome Duplication in Development, Evolution, and Disease. J Dev Biol 2023; 11:26. [PMID: 37367480 PMCID: PMC10299280 DOI: 10.3390/jdb11020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Whole genome duplication (WGD) or polyploidization can occur at the cellular, tissue, and organismal levels. At the cellular level, tetraploidization has been proposed as a driver of aneuploidy and genome instability and correlates strongly with cancer progression, metastasis, and the development of drug resistance. WGD is also a key developmental strategy for regulating cell size, metabolism, and cellular function. In specific tissues, WGD is involved in normal development (e.g., organogenesis), tissue homeostasis, wound healing, and regeneration. At the organismal level, WGD propels evolutionary processes such as adaptation, speciation, and crop domestication. An essential strategy to further our understanding of the mechanisms promoting WGD and its effects is to compare isogenic strains that differ only in their ploidy. Caenorhabditis elegans (C. elegans) is emerging as an animal model for these comparisons, in part because relatively stable and fertile tetraploid strains can be produced rapidly from nearly any diploid strain. Here, we review the use of Caenorhabditis polyploids as tools to understand important developmental processes (e.g., sex determination, dosage compensation, and allometric relationships) and cellular processes (e.g., cell cycle regulation and chromosome dynamics during meiosis). We also discuss how the unique characteristics of the C. elegans WGD model will enable significant advances in our understanding of the mechanisms of polyploidization and its role in development and disease.
Collapse
Affiliation(s)
- Mara Schvarzstein
- Biology Department, Brooklyn College at the City University of New York, Brooklyn, NY 11210, USA
- Biology Department, The Graduate Center at the City University of New York, New York, NY 10016, USA
- Biochemistry Department, The Graduate Center at the City University of New York, New York, NY 10016, USA
| | - Fatema Alam
- Biology Department, Brooklyn College at the City University of New York, Brooklyn, NY 11210, USA
| | - Muhammad Toure
- Biology Department, Brooklyn College at the City University of New York, Brooklyn, NY 11210, USA
| | - Judith L. Yanowitz
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA;
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
29
|
Fung HF, Bergmann DC. Function follows form: How cell size is harnessed for developmental decisions. Eur J Cell Biol 2023; 102:151312. [PMID: 36989838 DOI: 10.1016/j.ejcb.2023.151312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Cell size has profound effects on biological function, influencing a wide range of processes, including biosynthetic capacity, metabolism, and nutrient uptake. As a result, size is typically maintained within a narrow, population-specific range through size control mechanisms, which are an active area of study. While the physiological consequences of cell size are relatively well-characterized, less is known about its developmental consequences, and specifically its effects on developmental transitions. In this review, we compare systems where cell size is linked to developmental transitions, paying particular attention to examples from plants. We conclude by proposing that size can offer a simple readout of complex inputs, enabling flexible decisions during plant development.
Collapse
|
30
|
Hong L, Rusnak B, Ko CS, Xu S, He X, Qiu D, Kang SE, Pruneda-Paz JL, Roeder AHK. Enhancer activation via TCP and HD-ZIP and repression by Dof transcription factors mediate giant cell-specific expression. THE PLANT CELL 2023; 35:2349-2368. [PMID: 36814410 PMCID: PMC10226562 DOI: 10.1093/plcell/koad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 05/30/2023]
Abstract
Proper cell-type identity relies on highly coordinated regulation of gene expression. Regulatory elements such as enhancers can produce cell type-specific expression patterns, but the mechanisms underlying specificity are not well understood. We previously identified an enhancer region capable of driving specific expression in giant cells, which are large, highly endoreduplicated cells in the Arabidopsis thaliana sepal epidermis. In this study, we use the giant cell enhancer as a model to understand the regulatory logic that promotes cell type-specific expression. Our dissection of the enhancer revealed that giant cell specificity is mediated primarily through the combination of two activators and one repressor. HD-ZIP and TCP transcription factors are involved in the activation of expression throughout the epidermis. High expression of HD-ZIP transcription factor genes in giant cells promoted higher expression driven by the enhancer in giant cells. Dof transcription factors repressed the activity of the enhancer such that only giant cells maintained enhancer activity. Thus, our data are consistent with a conceptual model whereby cell type-specific expression emerges from the combined activities of three transcription factor families activating and repressing expression in epidermal cells.
Collapse
Affiliation(s)
- Lilan Hong
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | - Byron Rusnak
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | - Clint S Ko
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | - Shouling Xu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xi He
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dengying Qiu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - S Earl Kang
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jose L Pruneda-Paz
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
31
|
Goldy C, Barrera V, Taylor I, Buchensky C, Vena R, Benfey PN, De Veylder L, Rodriguez RE. SCARECROW-LIKE28 modulates organ growth in Arabidopsis by controlling mitotic cell cycle exit, endoreplication, and cell expansion dynamics. THE NEW PHYTOLOGIST 2023; 237:1652-1666. [PMID: 36451535 DOI: 10.1111/nph.18650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
The processes that contribute to plant organ morphogenesis are spatial-temporally organized. Within the meristem, mitosis produces new cells that subsequently engage in cell expansion and differentiation programs. The latter is frequently accompanied by endoreplication, being an alternative cell cycle that replicates the DNA without nuclear division, causing a stepwise increase in somatic ploidy. Here, we show that the Arabidopsis SCL28 transcription factor promotes organ growth by modulating cell expansion dynamics in both root and leaf cells. Gene expression studies indicated that SCL28 regulates members of the SIAMESE/SIAMESE-RELATED (SIM/SMR) family, encoding cyclin-dependent kinase inhibitors with a role in promoting mitotic cell cycle (MCC) exit and endoreplication, both in response to developmental and environmental cues. Consistent with this role, mutants in SCL28 displayed reduced endoreplication, both in roots and leaves. We also found evidence indicating that SCL28 co-expresses with and regulates genes related to the biogenesis, assembly, and remodeling of the cytoskeleton and cell wall. Our results suggest that SCL28 controls, not only cell proliferation as reported previously but also cell expansion and differentiation by promoting MCC exit and endoreplication and by modulating aspects of the biogenesis, assembly, and remodeling of the cytoskeleton and cell wall.
Collapse
Affiliation(s)
- Camila Goldy
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Virginia Barrera
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Isaiah Taylor
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA
| | - Celeste Buchensky
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Rodrigo Vena
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Philip N Benfey
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Ramiro E Rodriguez
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, 2000, Argentina
| |
Collapse
|
32
|
Kikuchi S, Horiuchi A, Nishimoto Y, Iwamoto A. Different effects of gellan gum and agar on change in root elongation in Arabidopsis thaliana by polyploidization: the key role of aluminum. JOURNAL OF PLANT RESEARCH 2023; 136:253-263. [PMID: 36689102 DOI: 10.1007/s10265-023-01435-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Agar and gellan gum have been considered to have different effects on polyploidy-dependent growth in plants. We aim to demonstrate that agar and gellan gum differently affect the change in root elongation in Arabidopsis thaliana by polyploidization and examined the physico-chemical parameters in each gelling agent to elucidate key factors that caused the differences. Each polyploid strain was cultured vertically on agar and gellan gum solidified medium under fixed conditions. Root elongation rate was measured during 4-10 days after sowing. As a result, agar promoted root elongation of polyploids more than the gellan gum. Then water potential, gel hardness, and trace elements of each medium were quantified in each medium. Water potential and gel hardness of agar medium were significantly higher than those of gellan gum medium. The decrease in water potential and gel hardness in agar medium, however, did not affect the change in polyploidy-dependent growth. Elemental analysis showed that gellan gum contained more aluminum than agar. Subsequently, the polyploids were grown on agar media with additional aluminum, on which the root elongation in tetraploids and octoploids was significantly suppressed. These results revealed that agar and gellan gum affect the change in growth of root elongation in A. thaliana by polyploidization in different ways and the different effects on change in polyploidy-dependent growth is partially caused by aluminum in the gellan gum, which may be due to cell wall composition of polyploids.
Collapse
Affiliation(s)
- Suzuka Kikuchi
- Department of Biological Sciences, Graduate School of Sciences, Kanagawa University, Hiratsuka, Japan
| | - Arisa Horiuchi
- Department of Biology, Tokyo Gakugei University, Koganei, Japan
| | - Yuko Nishimoto
- Department of Chemistry, Faculty of Science, Kanagawa University, Hiratsuka, Japan
| | - Akitoshi Iwamoto
- Department of Biological Sciences, Graduate School of Sciences, Kanagawa University, Hiratsuka, Japan.
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Japan.
| |
Collapse
|
33
|
Coate JE. Beyond Transcript Concentrations: Quantifying Polyploid Expression Responses per Biomass, per Genome, and per Cell with RNA-Seq. Methods Mol Biol 2023; 2545:227-250. [PMID: 36720816 DOI: 10.1007/978-1-0716-2561-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
RNA-seq has been used extensively to study expression responses to polyploidy. Most current methods for normalizing RNA-seq data yield estimates of transcript concentrations (transcripts per transcriptome). The implicit assumption of these normalization methods is that transcriptome size is equivalent between the samples being compared such that transcript concentrations are equivalent to transcripts per cell. In recent years, however, evidence has mounted that transcriptome size can vary dramatically in response to a range of factors including polyploidy and that such variation is ubiquitous. Where such variation exists, transcript concentration is often a poor or even misleading proxy for expression responses at other biologically relevant scales (e.g., expression per cell). Thus, it is important that transcriptomic studies of polyploids move beyond simply comparing transcript concentrations if we are to gain a complete understanding of how genome multiplication affects gene expression. I discuss this issue in more detail and summarize a suite of approaches that can leverage RNA-seq to quantify expression responses per genome, per cell, and per unit of biomass.
Collapse
|
34
|
Iriarte LS, Martinez CI, de Miguel N, Coceres VM. Tritrichomonas foetus Cell Division Involves DNA Endoreplication and Multiple Fissions. Microbiol Spectr 2023; 11:e0325122. [PMID: 36728437 PMCID: PMC10100903 DOI: 10.1128/spectrum.03251-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
Tritrichomonas foetus and Trichomonas vaginalis are extracellular flagellated parasites that inhabit animals and humans, respectively. Cell division is a crucial process in most living organisms that leads to the formation of 2 daughter cells from a single mother cell. It has been assumed that T. vaginalis and T. foetus modes of reproduction are exclusively by binary fission. However, here, we showed that multinuclearity is a phenomenon regularly observed in different T. foetus and T. vaginalis strains in standard culture conditions. Additionally, we revealed that nutritional depletion or nutritional deprivation led to different dormant phenotypes. Although multinucleated T. foetus are mostly observed during nutritional depletion, numerous cells with 1 larger nucleus have been observed under nutritional deprivation conditions. In both cases, when the standard culture media conditions are restored, the cytoplasm of these multinucleated cells separates, and numerous parasites are generated in a short period of time by the fission multiple. We also revealed that DNA endoreplication occurs both in large and multiple nuclei of parasites under nutritional deprivation and depletion conditions, suggesting an important function in stress nutritional situations. These results provide valuable data about the cell division process of these extracellular parasites. IMPORTANCE Nowadays, it's known that T. foetus and T. vaginalis generate daughter cells by binary fission. Here, we report that both parasites are also capable of dividing by multiple fission under stress conditions. We also demonstrated, for the first time, that T. foetus can increase its DNA content per parasite without concluding the cytokinesis process (endoreplication) under stress conditions, which represents an efficient strategy for subsequent fast multiplication when the context becomes favorable. Additionally, we revealed the existence of novel dormant forms of resistance (multinucleated or mononucleated polyploid parasites), different than the previously described pseudocysts, that are formed under stress conditions. Thus, it is necessary to evaluate the role of these structures in the parasites' transmission in the future.
Collapse
Affiliation(s)
- Lucrecia S. Iriarte
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| | - Cristian I. Martinez
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| | - Natalia de Miguel
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| | - Veronica M. Coceres
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| |
Collapse
|
35
|
Shi Q, Guo X, Su H, Zhang Y, Hu Z, Zhang J, Han F. Autoploid origin and rapid diploidization of the tetraploid Thinopyrum elongatum revealed by genome differentiation and chromosome pairing in meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:536-545. [PMID: 36534091 DOI: 10.1111/tpj.16066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/12/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Polyploidy is a common mode of evolution in flowering plants. Both the natural tetraploid Thinopyrum elongatum and the diploid one from the same population show a diploid-like pairing in meiosis. However, debate on the chromosome composition and origin of the tetraploid Th. elongatum is ongoing. In the present study, we obtained the induced tetraploid Th. elongatum and found that the induced and natural tetraploids are morphologically close, except for slower development and lower seed setting. Using probes developed from single chromosome microdissection and a Fosmid library, obvious differentiations were discovered between two chromosome sets (E1 and E2 ) of the natural tetraploid Th. elongatum but not the induced one. Interestingly, hybrid F1 derived from the two different wheat-tetraploid Th. elongatum amphiploids 8802 and 8803 produced seeds well. More importantly, analysis of meiosis in F2 individuals revealed that chromosomes from E1 and E2 could pair well on the durum wheat background with the presence of Ph1. No chromosome set differentiation on the FISH level was discovered from the S1 to S4 generations in the induced one. In metaphase of the meiosis first division in the natural tetraploid, more pairings were bivalents and fewer quadrivalents with ratio of 13.94 II + 0.03 IV (n = 31). Chromosome pairing configuration in the induced tetraploid is 13.05 II + 0.47 IV (n = 19), with the quadrivalent ratio being only slightly higher than the ratio in the natural tetraploid. Therefore, the natural tetraploid Th. elongatum is of autoploid origin and the induced tetraploid Th. elongatum evolutionarily underwent rapid diploidization in the low generation.
Collapse
Affiliation(s)
- Qinghua Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yingxin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zanmin Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
36
|
Harline K, Roeder AHK. An optimized pipeline for live imaging whole Arabidopsis leaves at cellular resolution. PLANT METHODS 2023; 19:10. [PMID: 36726130 PMCID: PMC9890716 DOI: 10.1186/s13007-023-00987-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Live imaging is the gold standard for determining how cells give rise to organs. However, tracking many cells across whole organs over large developmental time windows is extremely challenging. In this work, we provide a comparably simple method for confocal live imaging entire Arabidopsis thaliana first leaves across early development. Our imaging method works for both wild-type leaves and the complex curved leaves of the jaw-1D mutant. RESULTS We find that dissecting the cotyledons, affixing a coverslip above the samples and mounting samples with perfluorodecalin yields optimal imaging series for robust cellular and organ level analysis. We provide details of our complementary image processing steps in MorphoGraphX software for segmenting, tracking lineages, and measuring a suite of cellular properties. We also provide MorphoGraphX image processing scripts we developed to automate analysis of segmented images and data presentation. CONCLUSIONS Our imaging techniques and processing steps combine into a robust imaging pipeline. With this pipeline we are able to examine important nuances in the cellular growth and differentiation of jaw-D versus WT leaves that have not been demonstrated before. Our pipeline is approachable and easy to use for leaf development live imaging.
Collapse
Affiliation(s)
- Kate Harline
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA.
- Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
37
|
Shi X, Yang H, Birchler JA. MicroRNAs play regulatory roles in genomic balance. Bioessays 2023; 45:e2200187. [PMID: 36470594 DOI: 10.1002/bies.202200187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Classic genetics studies found that genomic imbalance caused by changing the dosage of part of the genome (aneuploidy) has more detrimental effects than altering the dosage of the whole genome (ploidy). Previous analysis revealed global modulation of gene expression triggered by aneuploidy across various species, including maize (Zea mays), Arabidopsis, yeast, mammals, etc. Plant microRNAs (miRNAs) are a class of 20- to 24-nt endogenous small noncoding RNAs that carry out post-transcriptional gene expression regulation. That miRNAs and their putative targets are preferentially retained as duplicates after whole-genome duplication, as are many transcription factors and signaling components, indicates miRNAs are likely to be dosage-sensitive and potentially involved in genomic balance networks. This review addresses the following questions regarding the role of miRNAs in genomic imbalance. (1) How do aneuploidy and polyploidy impact the expression of miRNAs? (2) Do miRNAs play a regulatory role in modulating the expression of their targets under genomic imbalance?
Collapse
Affiliation(s)
- Xiaowen Shi
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
38
|
Bafort Q, Wu T, Natran A, De Clerck O, Van de Peer Y. The immediate effects of polyploidization of Spirodela polyrhiza change in a strain-specific way along environmental gradients. Evol Lett 2023; 7:37-47. [PMID: 37065435 PMCID: PMC10091501 DOI: 10.1093/evlett/qrac003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 02/04/2023] Open
Abstract
Abstract
The immediate effects of plant polyploidization are well characterized and it is generally accepted that these morphological, physiological, developmental, and phenological changes contribute to polyploid establishment. Studies on the environmental dependence of the immediate effects of whole-genome duplication (WGD) are, however, scarce but suggest that these immediate effects are altered by stressful conditions. As polyploid establishment seems to be associated with environmental disturbance, the relationship between ploidy-induced phenotypical changes and environmental conditions is highly relevant. Here, we use a common garden experiment on the greater duckweed Spirodela polyrhiza to test whether the immediate effects of WGD can facilitate the establishment of tetraploid duckweed along gradients of two environmental stressors. Because successful polyploid establishment often depends on recurrent polyploidization events, we include four genetically diverse strains and assess whether these immediate effects are strain-specific. We find evidence that WGD can indeed confer a fitness advantage under stressful conditions and that the environment affects ploidy-induced changes in fitness and trait reaction norms in a strain-specific way.
Collapse
Affiliation(s)
- Quinten Bafort
- Department of Biology, Ghent University , Ghent , Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB-UGent Center for Plant Systems Biology , Ghent , Belgium
| | - Tian Wu
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB-UGent Center for Plant Systems Biology , Ghent , Belgium
| | - Annelore Natran
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB-UGent Center for Plant Systems Biology , Ghent , Belgium
| | | | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB-UGent Center for Plant Systems Biology , Ghent , Belgium
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University , Nanjing , China
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria , Pretoria , South Africa
| |
Collapse
|
39
|
Camarero MC, Briegas B, Corbacho J, Labrador J, Gallardo M, Gomez-Jimenez MC. Characterization of Transcriptome Dynamics during Early Fruit Development in Olive ( Olea europaea L.). Int J Mol Sci 2023; 24:961. [PMID: 36674474 PMCID: PMC9864153 DOI: 10.3390/ijms24020961] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
In the olive (Olea europaea L.), an economically leading oil crop worldwide, fruit size and yield are determined by the early stages of fruit development. However, few detailed analyses of this stage of fruit development are available. This study offers an extensive characterization of the various processes involved in early olive fruit growth (cell division, cell cycle regulation, and cell expansion). For this, cytological, hormonal, and transcriptional changes characterizing the phases of early fruit development were analyzed in olive fruit of the cv. 'Picual'. First, the surface area and mitotic activity (by flow cytometry) of fruit cells were investigated during early olive fruit development, from 0 to 42 days post-anthesis (DPA). The results demonstrate that the cell division phase extends up to 21 DPA, during which the maximal proportion of 4C cells in olive fruits was reached at 14 DPA, indicating that intensive cell division was activated in olive fruits at that time. Subsequently, fruit cell expansion lasted as long as 3 weeks more before endocarp lignification. Finally, the molecular mechanisms controlling the early fruit development were investigated by analyzing the transcriptome of olive flowers at anthesis (fruit set) as well as olive fruits at 14 DPA (cell division phase) and at 28 DPA (cell expansion phase). Sequential induction of the cell cycle regulating genes is associated with the upregulation of genes involved in cell wall remodeling and ion fluxes, and with a shift in plant hormone metabolism and signaling genes during early olive fruit development. This occurs together with transcriptional activity of subtilisin-like protease proteins together with transcription factors potentially involved in early fruit growth signaling. This gene expression profile, together with hormonal regulators, offers new insights for understanding the processes that regulate cell division and expansion, and ultimately fruit yield and olive size.
Collapse
Affiliation(s)
- Maria C. Camarero
- Laboratory of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Beatriz Briegas
- Laboratory of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Jorge Corbacho
- Laboratory of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Juana Labrador
- Laboratory of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Mercedes Gallardo
- Laboratory of Plant Physiology, University of Vigo, Campus Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Maria C. Gomez-Jimenez
- Laboratory of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| |
Collapse
|
40
|
Chahtane H, Lai X, Tichtinsky G, Rieu P, Arnoux-Courseaux M, Cancé C, Marondedze C, Parcy F. Flower Development in Arabidopsis. Methods Mol Biol 2023; 2686:3-38. [PMID: 37540352 DOI: 10.1007/978-1-0716-3299-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Like in other angiosperms, the development of flowers in Arabidopsis starts right after the floral transition, when the shoot apical meristem (SAM) stops producing leaves and makes flowers instead. On the flanks of the SAM emerge the flower meristems (FM) that will soon differentiate into the four main floral organs, sepals, petals, stamens, and pistil, stereotypically arranged in concentric whorls. Each phase of flower development-floral transition, floral bud initiation, and floral organ development-is under the control of specific gene networks. In this chapter, we describe these different phases and the gene regulatory networks involved, from the floral transition to the floral termination.
Collapse
Affiliation(s)
- Hicham Chahtane
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Institut de Recherche Pierre Fabre, Green Mission Pierre Fabre, Conservatoire Botanique Pierre Fabre, Soual, France
| | - Xuelei Lai
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Wuhan, China
| | | | - Philippe Rieu
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | | | - Coralie Cancé
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
| | - Claudius Marondedze
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Department of Biochemistry, Faculty of Medicine, Midlands State University, Senga, Gweru, Zimbabwe
| | - François Parcy
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France.
| |
Collapse
|
41
|
Kuan C, Yang SL, Ho CMK. Using quantitative methods to understand leaf epidermal development. QUANTITATIVE PLANT BIOLOGY 2022; 3:e28. [PMID: 37077990 PMCID: PMC10097589 DOI: 10.1017/qpb.2022.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 05/03/2023]
Abstract
As the interface between plants and the environment, the leaf epidermis provides the first layer of protection against drought, ultraviolet light, and pathogen attack. This cell layer comprises highly coordinated and specialised cells such as stomata, pavement cells and trichomes. While much has been learned from the genetic dissection of stomatal, trichome and pavement cell formation, emerging methods in quantitative measurements that monitor cellular or tissue dynamics will allow us to further investigate cell state transitions and fate determination in leaf epidermal development. In this review, we introduce the formation of epidermal cell types in Arabidopsis and provide examples of quantitative tools to describe phenotypes in leaf research. We further focus on cellular factors involved in triggering cell fates and their quantitative measurements in mechanistic studies and biological patterning. A comprehensive understanding of how a functional leaf epidermis develops will advance the breeding of crops with improved stress tolerance.
Collapse
Affiliation(s)
- Chi Kuan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei City, Taiwan
| | - Shao-Li Yang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei City, Taiwan
| | - Chin-Min Kimmy Ho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei City, Taiwan
| |
Collapse
|
42
|
Koprivý L, Fráková V, Kolarčik V, Mártonfiová L, Dudáš M, Mártonfi P. Genome size and endoreplication in two pairs of cytogenetically contrasting species of Pulmonaria (Boraginaceae) in Central Europe. AOB PLANTS 2022; 14:plac036. [PMID: 36128515 PMCID: PMC9476981 DOI: 10.1093/aobpla/plac036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 08/16/2022] [Indexed: 06/13/2023]
Abstract
Genome size is species-specific feature and commonly constant in an organism. In various plants, DNA content in cell nucleus is commonly increased in process of endoreplication, cellular-specific multiplication of DNA content without mitosis. This leads to the endopolyploidy, the presence of multiplied chromosome sets in a subset of cells. The relationship of endopolyploidy to species-specific genome size is rarely analysed and is not fully understood. While negative correlation between genome size and endopolyploidy level is supposed, this is species- and lineage-specific. In the present study, we shed light on this topic, exploring both genome size and endoreplication-induced DNA content variation in two pairs of morphologically similar species of Pulmonaria, P. obscura-P. officinalis and P. mollis-P. murinii. We aim (i) to characterize genome size and chromosome numbers in these species using cytogenetic, root-tip squashing and flow cytometry (FCM) techniques; (ii) to investigate the degree of endopolyploidy in various plant organs, including the root, stem, leaf, calyx and corolla using FCM; and (iii) to comprehensively characterize and compare the level of endopolyploidy and DNA content in various organs of all four species in relation to species systematic relationships and genome size variation. We have confirmed the diploid-dysploid nature of chromosome complements, and divergent genome sizes for Pulmonaria species: P. murinii with 2n = 2x = 14, 2.31 pg/2C, P. obscura 2n = 2x = 14, 2.69 pg/2C, P. officinalis 2n = 2x = 16, 2.96 pg/2C and P. mollis 2n = 2x = 18, 3.18 pg/2C. Endopolyploidy varies between species and organs, and we have documented 4C-8C in all four organs and up to 32C (64C) endopolyploid nuclei in stems at least in some species. Two species with lower genome sizes tend to have higher endopolyploidy levels than their closest relatives. Endoreplication-generated tissue-specific mean DNA content is increased and more balanced among species in all four organs compared to genome size. Our results argue for the narrow relationship between genome size and endopolyploidy in the present plant group within the genus Pulmonaria, and endopolyploidization seems to play a compensatory developmental role in organs of related morphologically similar species.
Collapse
Affiliation(s)
- Lukáš Koprivý
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Mánesova 23, SK-041 54 Košice, Slovak Republic
- Botanical Garden, Pavol Jozef Šafárik University, Mánesova 23, SK-043 52 Košice, Slovak Republic
| | - Viera Fráková
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Mánesova 23, SK-041 54 Košice, Slovak Republic
| | - Vladislav Kolarčik
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Mánesova 23, SK-041 54 Košice, Slovak Republic
| | - Lenka Mártonfiová
- Botanical Garden, Pavol Jozef Šafárik University, Mánesova 23, SK-043 52 Košice, Slovak Republic
| | - Matej Dudáš
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Mánesova 23, SK-041 54 Košice, Slovak Republic
| | - Pavol Mártonfi
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Mánesova 23, SK-041 54 Košice, Slovak Republic
- Botanical Garden, Pavol Jozef Šafárik University, Mánesova 23, SK-043 52 Košice, Slovak Republic
| |
Collapse
|
43
|
Leitch AR, Leitch IJ. Genome evolution: On the nature of trade-offs with polyploidy and endopolyploidy. Curr Biol 2022; 32:R952-R954. [PMID: 36167043 DOI: 10.1016/j.cub.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A new study uncovers a novel trade-off in polyploid plants. While the larger cells of polyploids benefit from increased cell storage and water retention, this comes at the cost of reduced structural stability, potentially impacting survival.
Collapse
Affiliation(s)
- Andrew R Leitch
- Queen Mary University of London, London, UK. a.r.leitch,@,qmul.ac.uk
| | | |
Collapse
|
44
|
Curran S, Dey G, Rees P, Nurse P. A quantitative and spatial analysis of cell cycle regulators during the fission yeast cycle. Proc Natl Acad Sci U S A 2022; 119:e2206172119. [PMID: 36037351 PMCID: PMC9457408 DOI: 10.1073/pnas.2206172119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
We have carried out a systems-level analysis of the spatial and temporal dynamics of cell cycle regulators in the fission yeast Schizosaccharomyces pombe. In a comprehensive single-cell analysis, we have precisely quantified the levels of 38 proteins previously identified as regulators of the G2 to mitosis transition and of 7 proteins acting at the G1- to S-phase transition. Only 2 of the 38 mitotic regulators exhibit changes in concentration at the whole-cell level: the mitotic B-type cyclin Cdc13, which accumulates continually throughout the cell cycle, and the regulatory phosphatase Cdc25, which exhibits a complex cell cycle pattern. Both proteins show similar patterns of change within the nucleus as in the whole cell but at higher concentrations. In addition, the concentrations of the major fission yeast cyclin-dependent kinase (CDK) Cdc2, the CDK regulator Suc1, and the inhibitory kinase Wee1 also increase in the nucleus, peaking at mitotic onset, but are constant in the whole cell. The significant increase in concentration with size for Cdc13 supports the view that mitotic B-type cyclin accumulation could act as a cell size sensor. We propose a two-step process for the control of mitosis. First, Cdc13 accumulates in a size-dependent manner, which drives increasing CDK activity. Second, from mid-G2, the increasing nuclear accumulation of Cdc25 and the counteracting Wee1 introduce a bistability switch that results in a rapid rise of CDK activity at the end of G2 and thus, brings about an orderly progression into mitosis.
Collapse
Affiliation(s)
- Scott Curran
- Cell Cycle Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Gautam Dey
- Medical Research Council Laboratory for Molecular Cell Biology, London, WC1E 6BT, United Kingdom
| | - Paul Rees
- College of Engineering, Swansea University, Swansea, SA1 8EN, United Kingdom
- Imaging Platform Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY 10065
| |
Collapse
|
45
|
Shi X, Yang H, Chen C, Hou J, Ji T, Cheng J, Birchler JA. Dosage-sensitive miRNAs trigger modulation of gene expression during genomic imbalance in maize. Nat Commun 2022; 13:3014. [PMID: 35641525 PMCID: PMC9156689 DOI: 10.1038/s41467-022-30704-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
The genomic imbalance caused by varying the dosage of individual chromosomes or chromosomal segments (aneuploidy) has more detrimental effects than altering the dosage of complete chromosome sets (ploidy). Previous analysis of maize (Zea mays) aneuploids revealed global modulation of gene expression both on the varied chromosome (cis) and the remainder of the genome (trans). However, little is known regarding the role of microRNAs (miRNAs) under genomic imbalance. Here, we report the impact of aneuploidy and polyploidy on the expression of miRNAs. In general, cis miRNAs in aneuploids present a predominant gene-dosage effect, whereas trans miRNAs trend toward the inverse level, although other types of responses including dosage compensation, increased effect, and decreased effect also occur. By contrast, polyploids show less differential miRNA expression than aneuploids. Significant correlations between expression levels of miRNAs and their targets are identified in aneuploids, indicating the regulatory role of miRNAs on gene expression triggered by genomic imbalance.
Collapse
Affiliation(s)
- Xiaowen Shi
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, MO, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
46
|
Niide T, Asari S, Kawabata K, Hara Y. Specificity of Nuclear Size Scaling in Frog Erythrocytes. Front Cell Dev Biol 2022; 10:857862. [PMID: 35663388 PMCID: PMC9159806 DOI: 10.3389/fcell.2022.857862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
In eukaryotes, the cell has the ability to modulate the size of the nucleus depending on the surrounding environment, to enable nuclear functions such as DNA replication and transcription. From previous analyses of nuclear size scaling in various cell types and species, it has been found that eukaryotic cells have a conserved scaling rule, in which the nuclear size correlates with both cell size and genomic content. However, there are few studies that have focused on a certain cell type and systematically analyzed the size scaling properties in individual species (intra-species) and among species (inter-species), and thus, the difference in the scaling rules among cell types and species is not well understood. In the present study, we analyzed the size scaling relationship among three parameters, nuclear size, cell size, and genomic content, in our measured datasets of terminally differentiated erythrocytes of five Anura frogs and collected datasets of different species classes from published papers. In the datasets of isolated erythrocytes from individual frogs, we found a very weak correlation between the measured nuclear and cell cross-sectional areas. Within the erythrocytes of individual species, the correlation of the nuclear area with the cell area showed a very low hypoallometric relationship, in which the relative nuclear size decreased when the cell size increased. These scaling trends in intra-species erythrocytes are not comparable to the known general correlation in other cell types. When comparing parameters across species, the nuclear areas correlated with both cell areas and genomic contents among the five frogs and the collected datasets in each species class. However, the contribution of genomic content to nuclear size determination was smaller than that of the cell area in all species classes. In particular, the estimated degree of the contribution of genomic content was greater in the amphibian class than in other classes. Together with our imaging analysis of structural components in nuclear membranes, we hypothesized that the observed specific features in nuclear size scaling are achieved by the weak interaction of the chromatin with the nuclear membrane seen in frog erythrocytes.
Collapse
Affiliation(s)
| | | | | | - Yuki Hara
- Evolutionary Cell Biology Laboratory, Faculty of Science, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
47
|
Magar MM, Liu H, Yan G. Genome-Wide Analysis of AP2/ERF Superfamily Genes in Contrasting Wheat Genotypes Reveals Heat Stress-Related Candidate Genes. FRONTIERS IN PLANT SCIENCE 2022; 13:853086. [PMID: 35498651 PMCID: PMC9044922 DOI: 10.3389/fpls.2022.853086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/03/2022] [Indexed: 06/09/2023]
Abstract
The AP2/ERF superfamily is one of the largest groups of transcription factors (TFs) in plants, which plays important roles in regulating plant growth and development under heat stress. A complete genome-wide identification, characterization, and expression analysis of AP2/ERF superfamily genes focusing on heat stress response were conducted in bread wheat. This study identified 630 putative AP2/ERF superfamily TF genes in wheat, with 517 genes containing well-defined AP2-protein domains. They were classified into five sub-families, according to domain content, conserved motif, and gene structure. The unique genes identified in this study were 112 TaERF genes, 77 TaDREB genes, four TaAP2 genes, and one TaRAV gene. The chromosomal distribution analysis showed the unequal distribution of TaAP2/ERF genes in 21 wheat chromosomes, with 127 pairs of segmental duplications and one pair of tandem duplication, highly concentrated in TaERF and TaDREB sub-families. The qRT-PCR validation of differentially expressed genes (DEGs) in contrasting wheat genotypes under heat stress conditions revealed that significant DEGs in tolerant and susceptible genotypes could unequivocally differentiate tolerant and susceptible wheat genotypes. This study provides useful information on TaAP2/ERF superfamily genes and reveals candidate genes in response to heat stress, which forms a foundation for heat tolerance breeding in wheat.
Collapse
|
48
|
Shi X, Yang H, Chen C, Hou J, Ji T, Cheng J, Birchler JA. Effect of aneuploidy of a non-essential chromosome on gene expression in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:193-211. [PMID: 34997647 PMCID: PMC9310612 DOI: 10.1111/tpj.15665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 05/20/2023]
Abstract
The non-essential supernumerary maize (Zea mays) B chromosome (B) has recently been shown to contain active genes and to be capable of impacting gene expression of the A chromosomes. However, the effect of the B chromosome on gene expression is still unclear. In addition, it is unknown whether the accumulation of the B chromosome has a cumulative effect on gene expression. To examine these questions, the global expression of genes, microRNAs (miRNAs), and transposable elements (TEs) of leaf tissue of maize W22 plants with 0-7 copies of the B chromosome was studied. All experimental genotypes with B chromosomes displayed a trend of upregulated gene expression for a subset of A-located genes compared to the control. Over 3000 A-located genes are significantly differentially expressed in all experimental genotypes with the B chromosome relative to the control. Modulations of these genes are largely determined by the presence rather than the copy number of the B chromosome. By contrast, the expression of most B-located genes is positively correlated with B copy number, showing a proportional gene dosage effect. The B chromosome also causes increased expression of A-located miRNAs. Differentially expressed miRNAs potentially regulate their targets in a cascade of effects. Furthermore, the varied copy number of the B chromosome leads to the differential expression of A-located and B-located TEs. The findings provide novel insights into the function and properties of the B chromosome.
Collapse
Affiliation(s)
- Xiaowen Shi
- Division of Biological SciencesUniversity of MissouriColumbiaMissouri65211USA
- Present address:
College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Hua Yang
- Division of Biological SciencesUniversity of MissouriColumbiaMissouri65211USA
| | - Chen Chen
- Department of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouri65211USA
| | - Jie Hou
- Department of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouri65211USA
| | - Tieming Ji
- Department of StatisticsUniversity of MissouriColumbiaMissouri65211USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouri65211USA
| | - James A. Birchler
- Division of Biological SciencesUniversity of MissouriColumbiaMissouri65211USA
| |
Collapse
|
49
|
Hornych O, Černochová L, Lisner A, Ekrt L. An experimental assessment of competitive interactions between sexual and apomictic fern gametophytes using Easy Leaf Area. APPLICATIONS IN PLANT SCIENCES 2022; 10:e11466. [PMID: 35495190 PMCID: PMC9039791 DOI: 10.1002/aps3.11466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 05/14/2023]
Abstract
PREMISE Few studies have explored competition in fern gametophyte populations. One limiting factor is the tedious measurement of gametophyte size as a proxy for biomass in these small plants. Here, an alternative approach of estimating the number of green pixels from photos was employed to measure the competitive interactions among apomictic and sexual Dryopteris gametophytes. METHODS We cultivated the gametophytes of two apomictic (diploid and triploid) and one sexual (tetraploid) Dryopteris species in monocultures and in two-species mixtures in the ratios 1 : 1 and 1 : 3. The total gametophyte cover of each population originating from 20 spores was assessed using Easy Leaf Area. Assessments were performed weekly between weeks 4 and 10 of cultivation. Additionally, during week 5, the cover of each species in each mixture was estimated separately. RESULTS We identified a positive correlation between gametophyte size and ploidy level as well as sexual reproduction. The performance of the tested species in mixtures was dependent on the competitor species identity, indicating the importance of competition between gametophytes. DISCUSSION The methods outlined can be used for a rapid assessment of fern gametophyte cover in large gametophyte populations. Ploidy level and reproduction type seem to play a major role in the competitive abilities of fern gametophytes, but more research is needed on this topic.
Collapse
Affiliation(s)
- Ondřej Hornych
- Department of Botany, Faculty of ScienceUniversity of South BohemiaBranišovská 1760, České Budějovice, CZ‐37005Czech Republic
| | - Lucie Černochová
- Department of Botany, Faculty of ScienceUniversity of South BohemiaBranišovská 1760, České Budějovice, CZ‐37005Czech Republic
| | - Aleš Lisner
- Department of Botany, Faculty of ScienceUniversity of South BohemiaBranišovská 1760, České Budějovice, CZ‐37005Czech Republic
| | - Libor Ekrt
- Department of Botany, Faculty of ScienceUniversity of South BohemiaBranišovská 1760, České Budějovice, CZ‐37005Czech Republic
| |
Collapse
|
50
|
Roeder AHK, Otegui MS, Dixit R, Anderson CT, Faulkner C, Zhang Y, Harrison MJ, Kirchhelle C, Goshima G, Coate JE, Doyle JJ, Hamant O, Sugimoto K, Dolan L, Meyer H, Ehrhardt DW, Boudaoud A, Messina C. Fifteen compelling open questions in plant cell biology. THE PLANT CELL 2022; 34:72-102. [PMID: 34529074 PMCID: PMC8774073 DOI: 10.1093/plcell/koab225] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/02/2021] [Indexed: 05/02/2023]
Abstract
As scientists, we are at least as excited about the open questions-the things we do not know-as the discoveries. Here, we asked 15 experts to describe the most compelling open questions in plant cell biology. These are their questions: How are organelle identity, domains, and boundaries maintained under the continuous flux of vesicle trafficking and membrane remodeling? Is the plant cortical microtubule cytoskeleton a mechanosensory apparatus? How are the cellular pathways of cell wall synthesis, assembly, modification, and integrity sensing linked in plants? Why do plasmodesmata open and close? Is there retrograde signaling from vacuoles to the nucleus? How do root cells accommodate fungal endosymbionts? What is the role of cell edges in plant morphogenesis? How is the cell division site determined? What are the emergent effects of polyploidy on the biology of the cell, and how are any such "rules" conditioned by cell type? Can mechanical forces trigger new cell fates in plants? How does a single differentiated somatic cell reprogram and gain pluripotency? How does polarity develop de-novo in isolated plant cells? What is the spectrum of cellular functions for membraneless organelles and intrinsically disordered proteins? How do plants deal with internal noise? How does order emerge in cells and propagate to organs and organisms from complex dynamical processes? We hope you find the discussions of these questions thought provoking and inspiring.
Collapse
Affiliation(s)
- Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St Louis, Missouri 63130, USA
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christine Faulkner
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | | | - Charlotte Kirchhelle
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon Cedex 07, France
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Jeremy E Coate
- Department of Biology, Reed College, Portland, Oregon 97202, USA
| | - Jeff J Doyle
- School of Integrative Plant Science, Section of Plant Biology and Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon Cedex 07, France
| | - Keiko Sugimoto
- Center for Sustainable Resource Science, RIKEN, Kanagawa 230-0045, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Liam Dolan
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Vienna 1030, Austria
| | - Heather Meyer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Arezki Boudaoud
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau Cedex 91128 France
| | | |
Collapse
|