1
|
Jiang W, Zhou Z, Li X, Zhao Y, Zhou S. DNA methylation dynamics play crucial roles in shaping the distinct transcriptomic profiles for different root-type initiation in rice. Genome Biol 2025; 26:99. [PMID: 40247350 PMCID: PMC12004658 DOI: 10.1186/s13059-025-03571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 04/07/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Monocots possess a fibrous root system comprising an embryonic root, crown roots, and lateral roots. The distinct cellular origins highlight the diversity of the initiation mechanism. To date, the distinct initiation mechanisms have been poorly studied. In this study, we conduct a comprehensive transcriptome and DNA methylome assay of these root types during their initiation. RESULTS Our findings indicate significant divergence in transcriptome regulation trajectories with apparent transcriptional activation in post-embryonic root initials (crown root and lateral root) contrasted by suppression in embryonic root generation. Additionally, CHH methylation is dynamically and differentially regulated across the initiation stages of the various root types, and is significantly associated with the short transposon element within the promoter regions of functional genes, which plays crucial roles in determining the genes' spatiotemporal transcription. Moreover, our work reveals that the activation of DNA glycosylase 702 (DNG702) and repression of Domains Rearranged Methyltransferase 2 (DRM2) play important roles in the erasure of CHH methylation and activation of functional genes during the processes, such as a novel identified key regulatory bZip65, thus directly impacting the initiation of post-embryonic roots in rice. CONCLUSIONS Our extensive analysis delineates the landscapes of spatiotemporal transcriptomes and DNA methylomes during the initiation of the three root types in rice, shedding light on the pivotal role of CHH methylation in the spatiotemporal regulation of various key genes, ensuring the successful initiation of distinct root types in rice.
Collapse
Affiliation(s)
- Wei Jiang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhou Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaoying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shaoli Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
2
|
Yang Z, Yu L, Jiang Y, Meng Y, Shao C. Identification of the co-regulatory siRNAs of "miRNA→target" in Oryza sativa. PLoS One 2025; 20:e0321182. [PMID: 40179082 PMCID: PMC11967944 DOI: 10.1371/journal.pone.0321182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/02/2025] [Indexed: 04/05/2025] Open
Abstract
The current "small interfering RNA(siRNA)→Target" mining tools can only search for targets of known siRNAs, and cannot discover co-regulatory siRNAs of unknown sequences that may exist, which means that the "microRNA(miRNA)→Target" database obtained by these mining tools is incomplete. Using the previously developed sRNATargetDigger, we re-mined the rice "miRNA→Target" database supported by the degradome and found 86.2% of the target genes were co-regulated by one or more miRNAs\siRNAs. Besides the known miRNAs, 30 miRNA isoforms (isomiRs) and 12 siRNAs were identified to be involved in co-regulation, which play important roles in rice response to external auxin regulation, rice blast resistance, adventitious root formation, cold resistance, and tillering etc. Some isomiRs even have higher expression levels than miRNAs. In addition, we also found that the regulatory relationship between 51 miRNAs and 48 target genes in the original database could not be verified due to the low expression levels of miRNA, poor complementarity between miRNA and target, or no specific cleavage signal detected by degradome in the middle of the miRNA binding site in the targets. Four miRNAs (osa-miR530-5p,osa-miR319b,osa-miR172c and osa-miR395a) only found isomiRs involved in regulation. In addition, we also found a number of miRNA→target regulatory relationships missed in the database. This study improved the rice "miRNA→target" database which will contribute to the research of rice miRNA and molecular breeding.
Collapse
Affiliation(s)
- Zhihong Yang
- College of Life Sciences, Huzhou University, Huzhou, Zhejiang, P.R. China
| | - Lan Yu
- College of Life Sciences, Huzhou University, Huzhou, Zhejiang, P.R. China
| | - Yeqing Jiang
- College of Life Sciences, Huzhou University, Huzhou, Zhejiang, P.R. China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, P.R. China
| | - Chaogang Shao
- College of Life Sciences, Huzhou University, Huzhou, Zhejiang, P.R. China
| |
Collapse
|
3
|
Huang X, Kuang Z, Zhou R, Liu T, Tang L, Gao Z, Liu T, Fan X, Xuan W, Luo L, Xu G. Mutation of strigolactone biosynthetic gene DWARF 17 impairs the responses of rice tillering to N supply. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70124. [PMID: 40169169 DOI: 10.1111/tpj.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 04/03/2025]
Abstract
Tiller number is one important parameter for rice yield and is influenced by both strigolactone (SL) and nitrogen (N). However, how SL and N interact to regulate the tiller outgrowth in rice is unclear. In this study, we isolated a multi-tillering mutant, tin, from an ethyl methanesulfonate (EMS)-mutagenized population of Wuyunjing 7, a japonica cultivar. The tin mutant exhibited low sensitivity to varying N concentrations during the tiller development. Through bulk segregation analysis (BSA), we identified a missense mutation located in the exon of DWARF 17 (D17), a key gene involved in SL biosynthesis. Complementation experiments confirmed that D17 is responsible for the tin tiller phenotype, and exogenous application of the SL analogue GR24 restored the tiller response of tin to N. Transcriptome analysis further revealed that D17 and SL regulate the tiller response to N by modulating the expression of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes and ammonium transporter genes. These findings elucidate the mechanism by which SL and N coordinate to regulate rice tillering growth, providing valuable insights for optimizing rice plant architecture to enhance yield potential.
Collapse
Affiliation(s)
- Xin Huang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhiming Kuang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Rui Zhou
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tiantian Liu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Li Tang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhipeng Gao
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tao Liu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaorong Fan
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wei Xuan
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Le Luo
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guohua Xu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Lou Q, Chen Y, Wang X, Zhang Y, Gao T, Shi J, Yan M, Feng F, Xu K, Lin F, Xie S, Xi X, Weikun Li, Nie Y, Gao H, Xia H, Wang L, Li T, Chen S, Zhu Y, Zhang J, Mei H, Chen L, Yang W, Luo L. Phenomics-assisted genetic dissection and molecular design of drought resistance in rice. PLANT COMMUNICATIONS 2025; 6:101218. [PMID: 39645582 PMCID: PMC11956149 DOI: 10.1016/j.xplc.2024.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/16/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Dissecting the mechanism of drought resistance (DR) and designing drought-resistant rice varieties are promising strategies to address the challenge of climate change. Here, we selected a typical drought-avoidant (DA) variety, IRAT109, and a drought-tolerant (DT) variety, Hanhui15, as parents to develop a stable recombinant inbred line (RIL) population (F8, 1262 lines). The de novo assembled genomes of both parents were released. By resequencing of the RIL population, a set of 1 189 216 reliable SNPs were obtained and used to construct a dense genetic map. Using above- and belowground phenomic platforms and multimodal cameras, we captured 139 040 image-based traits (i-traits) of whole-plant phenotypes in response to drought stress throughout the entire rice growth period and identified 32 586 drought-responsive quantitative trait loci (QTLs), including 2097 unique QTLs. QTLs associated with panicle i-traits occurred more than 600 times on the middle of chromosome 8, and QTLs associated with leaf i-traits occurred more than 800 times on the 5' end of chromosome 3, indicating the potential effects of these QTLs on plant phenotypes. We selected three candidate genes (OsMADS50, OsGhd8, OsSAUR11) related to leaf, panicle, and root traits, respectively, and verified their functions in DR. OsMADS50 was found to negatively regulate DR by modulating leaf dehydration, grain size, and downward root growth. A total of 18 and 21 composite QTLs significantly related to grain weight and plant biomass were also screened from 597 lines in the RIL population under drought conditions in field experiments, and the composite QTL regions showed substantial overlap (76.9%) with known DR gene regions. Based on three candidate DR genes, we proposed a haplotype design suitable for different environments and breeding objectives. This study provides a valuable reference for multimodal and time-series phenomic analyses, deciphers the genetic mechanisms of DA and DT rice varieties, and offers a molecular navigation map for breeding of DR varieties.
Collapse
Affiliation(s)
- Qiaojun Lou
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Yunyu Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Wang
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yulu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Gao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawei Shi
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Yan
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Fangjun Feng
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Kai Xu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Feng Lin
- Zhejiang University, Hangzhou 310058, China
| | - Shangyuan Xie
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyan Xi
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Weikun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Nie
- Jiangxi Research and Development Center of Super Rice, Nanchang Branch of Chinese National Center for Rice Improvement, Nanchang 330200, China
| | - Huan Gao
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Hui Xia
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Lei Wang
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Tiemei Li
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Shoujun Chen
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanwei Mei
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China.
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China.
| |
Collapse
|
5
|
Shao Y, Ma J, Zhang S, Xu Y, Yu H. NERD-dependent m 6A modification of the nascent FLC transcript regulates flowering time in Arabidopsis. NATURE PLANTS 2025; 11:468-482. [PMID: 40087542 DOI: 10.1038/s41477-025-01945-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/19/2025] [Indexed: 03/17/2025]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification on messenger RNA. Although recent studies have shown m6A effects on determining the fate of mRNA through modulating various aspects of plant mRNA metabolism, whether and how m6A affects gene transcription in plants remains elusive. Here we show that NEEDED FOR RDR2-INDEPENDENT DNA METHYLATION (NERD), a plant-specific protein, is an essential component of the m6A methyltransferase complex required for regulating the transcription of a central floral repressor FLOWERING LOCUS C (FLC) in Arabidopsis. NERD interacts with and stabilizes the two core methyltransferases, mRNA adenosine methylases A and B, to promote m6A modification of nascent RNA, conferring an overall negative effect on gene transcription. At the FLC locus, NERD-mediated m6A modification on the nascent transcript negatively affects H3K36me3 deposition and FLC transcription through NERD interaction with the H3K36me3 methyltransferase SET DOMAIN GROUP 8. Collectively, our findings reveal that NERD mediates the crosstalk between epitranscriptomic and epigenetic regulation of FLC to modulate flowering in Arabidopsis.
Collapse
Affiliation(s)
- Yanlin Shao
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Jinqi Ma
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Songyao Zhang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yifeng Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hao Yu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Wu W, Li H, Zhou Q, Wu B, Huang W, Fang Z. Auxin-responsive OsMADS60 negatively mediates rice tillering and grain yield by modulating OsPIN5b expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70107. [PMID: 40089916 DOI: 10.1111/tpj.70107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Rice tillering determines grain yield, yet the molecular regulatory network is still limited. In this study, we demonstrated that the transcription factor OsMADS60 promotes the expression of the auxin transporter OsPIN5b to affect auxin distribution and inhibit rice tillering and grain yield. Natural variation was observed in the promoter region of OsMADS60, with its expression level negatively correlated with tiller number and inducible by auxin. Overexpression of OsMADS60 resulted in reduced tillers and grain yield, whereas CRISPR-mediated knockouts of OsMADS60 led to increased tillering and yield. OsMADS60 was found to directly bind the CArG motif [CATTTAC] in the OsPIN5b promoter, thereby upregulating its expression. Moreover, we found that auxin content in various tissues of OsMADS60 and OsPIN5b overexpression lines increased relative to the wild-type ZH11, whereas the auxin levels in mutant lines showed the opposite trend. Genetic analysis further confirmed that OsPIN5b acted downstream of OsMADS60, coregulating the expression of genes involved in hormone pathways. Our findings reveal that OsMADS60 modulates auxin distribution by promoting OsPIN5b expression, thereby influencing rice tillering. This regulatory mechanism holds significant potential for the genetic improvement of rice architecture and grain yield.
Collapse
Affiliation(s)
- Wenhao Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Hongyu Li
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Qian Zhou
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bowen Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Weiting Huang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Zhongming Fang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
7
|
Li Y, Deng Y, Qin D, An X. Study of the SPL gene family and miR156-SPL module in Populus tomentosa: Potential roles in juvenile-to-adult phase transition and reproductive phase. Int J Biol Macromol 2025; 296:139547. [PMID: 39793817 DOI: 10.1016/j.ijbiomac.2025.139547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Populus tomentosa, a deciduous tree species distinguished by its significant economic and ecological value, enjoys a wide-ranging natural distribution. However, its long juvenile period severely restricts the advancement of breeding work. The SPL gene family, a distinctive class of transcription factors exclusive to the plant kingdom, is critical in various processes of plant growth and development. The miR156-SPL molecular module stands as an indispensable regulatory mechanism in the transition from the vegetative juvenile phase to the adult phase in plants. Consequently, this research endeavored a methodical and exhaustive exploration of the SPL gene family within the P.tomentosa species, synergistically integrating the miR156 family into the analysis. A total of 56 PtSPL genes were identified and subjected to a comprehensive analysis of their gene structure, conserved motifs, collinearity relationships, chromosomal localization, and promoter cis-acting elements. Further analysis of gene expression profiles confirmed the pivotal role of PtSPLs in the reproductive phase and tissue development of P. tomentosa. In addition, 11 members of miR156 in P. tomentosa were identified and their sequences analyzed, elucidating the miR156-SPL regulatory network. The target relationship between miR156k and PtSPLs was further validated by detecting the expression levels of PtSPLs in transgenic poplars overexpressing 35S::MIR156k. This comprehensive study lays a robust theoretical foundation for the continued exploration and application of the SPL genes in P. tomentosa, opening avenues for future research and potential advancements in plant biology and breeding strategies.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yufei Deng
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Debin Qin
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Xinmin An
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
8
|
Li J, Guo H, Lou Q, Zeng Y, Guo Z, Xu P, Gu Y, Gao S, Xu B, Han S, Su R, Zou A, Ye W, Zhang M, Li Y, Sun X, Zhang Z, Zhang H, Ma W, Chen C, Li Z, Li J. Natural variation of indels in the CTB3 promoter confers cold tolerance in japonica rice. Nat Commun 2025; 16:1613. [PMID: 39948084 PMCID: PMC11825672 DOI: 10.1038/s41467-025-56992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/07/2025] [Indexed: 02/16/2025] Open
Abstract
Improvement of cold tolerance at the booting stage (CTB) in rice is a key strategy for cultivation in high-altitude and high-latitude regions. Here, we identify CTB3 gene, encoding a calmodulin-binding transcriptional activator that positively regulates cold tolerance at the booting stage in japonica rice. Two indels (57-bp and 284-bp) in the CTB3 promoter confer a differential transcriptional response to cold between the japonica and indica subspecies. OsTCP19 suppresses CTB3 expression by binding to these indels, negatively regulating cold tolerance. CTB3 activates the expression of TREHALOSE-6-PHOSPHATE PHOSPHATASE1 (OsTPP1), reducing trehalose 6-phosphate (Tre6P) levels, which increases sugar accumulation in panicles and improves cold tolerance. Additionally, favorable alleles of OsTCP19 and CTB3 are selected in japonica rice for cold adaptation. These findings highlight the important role of CTB3 in cold adaptation and its potential for improving cold tolerance in rice breeding.
Collapse
Affiliation(s)
- Jin Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Haifeng Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qijin Lou
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yawen Zeng
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Zhenhua Guo
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154026, China
| | - Penghui Xu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yunsong Gu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shilei Gao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Bingxia Xu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shichen Han
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Runbin Su
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Andong Zou
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wei Ye
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Meng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yingxiu Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xingming Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhanying Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hongliang Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wendong Ma
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154026, China
| | - Chao Chen
- State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding, Life Science and Technology Center, China National Seed Group Co., Ltd, Wuhan, 430206, China
| | - Zichao Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinjie Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Li J, Zeng X, Jin Z, Zhou T, Lang C, Qin J, Zhang Q, Lan H, Li Y, An H, Zhao D. Genome-wide analysis of the SPL family in Zanthoxylum armatum and ZaSPL21 promotes flowering and improves salt tolerance in transgenic Nicotiana benthamiana. PLANT MOLECULAR BIOLOGY 2025; 115:23. [PMID: 39832014 DOI: 10.1007/s11103-024-01530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 11/06/2024] [Indexed: 01/22/2025]
Abstract
Z. armatum is an economically valued crop known for its rich aroma and medicinal properties. This study identified 45 members of the SQUAMOSA-PROMOTER BINDING PROTEIN LIKE (SPL) gene family in the genome of Z. armatum. Phylogenetic and collinearity analyzes demonstrated a close relationship between ZaSPLs and ZbSPLs from B subgenomes of Zanthoxylum bungeanum. Our miRNA sequencing revealed a high degree of conservation of miR156a within Z. armatum, with the za-miR156a sequence identical to miR156-5p in Arabidopsis thaliana and Citrus sinensis. Of the 45 genes identified by ZaSPLs, 21 were targeted by za-miR156a, transient co-expression experiments in N. benthamiana demonstrated the targeting relationship between za-miR156 and ZaSPL21. Furthermore, RNA-seq and qRT-PCR analysis revealed that ZaSPL genes exhibited elevated expression levels in juvenile tissues of Z. armatum. The expression of nine representative ZaSPL genes were upregulated under polyethylene glycol (PEG) and abscisic acid (ABA). Overexpression of ZaSPL21 delayed the germination of transgenic tobacco and facilitated the flowering process in transgenic N. benthamiana. Significant up-regulation in the expression levels of flowering-related genes such as NbFT1, NbPIP2;1, NbTCP1, NbCOL1, NbGI2, NbGAI1, NbCKX2, and NbARR4 was observed in transgenic plants, suggesting that ZaSPL21 may stimulate plant flowering by regulation of these genes. Furthermore, ZaSPL21 also increased the germination speed of transgenic tobacco seeds during drought and salt stress conditions, and improved the salt tolerance of transgenic seedlings. In conclusion, our study contributes to understanding the functional analysis of the SPL gene family in Z. armatum and emphasizes the crucial role of ZaSPL21 in improving tolerance to salt and promoting flowering. The results offer potential strategies for the further utilization of these genes to improve the salt tolerance of Z. armatum.
Collapse
Affiliation(s)
- Jianrong Li
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Xiaofang Zeng
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Zhengyu Jin
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Tao Zhou
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Chaoting Lang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Jin Qin
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Qingqing Zhang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Haibo Lan
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Yan Li
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Huaming An
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang, 550025, China.
| | - Degang Zhao
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
- Plant Conservation Technology Center, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China.
| |
Collapse
|
10
|
Liu R, Zhao D, Li P, Xia D, Feng Q, Wang L, Wang Y, Shi H, Zhou Y, Chen F, Lou G, Yang H, Gao H, Wu B, Chen J, Gao G, Zhang Q, Xiao J, Li X, Xiong L, Li Y, Li Z, You A, He Y. Natural variation in OsMADS1 transcript splicing affects rice grain thickness and quality by influencing monosaccharide loading to the endosperm. PLANT COMMUNICATIONS 2025; 6:101178. [PMID: 39489992 PMCID: PMC11783882 DOI: 10.1016/j.xplc.2024.101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Grain size, which encompasses grain length, width, and thickness, is a critical determinant of both grain weight and quality in rice. Despite the extensive regulatory networks known to determine grain length and width, the pathway(s) that regulate grain thickness remain to be clarified. Here, we present the map-based cloning and characterization of qGT3, a major quantitative trait locus for grain thickness in rice that encodes the MADS-domain transcription factor OsMADS1. Our findings demonstrate that OsMADS1 regulates grain thickness by affecting sugar delivery during grain filling, and we show that OsMADS1 modulates expression of the downstream monosaccharide transporter gene MST4. A natural variant leads to alternative splicing and thus to a truncated OsMADS1 protein with attenuated transcriptional repressor activity. The truncated OsMADS1 protein results in increased expression of MST4, leading to enhanced loading of monosaccharides into the developing endosperm and thereby increasing grain thickness and improving grain quality. In addition, our results reveal that NF-YB1 and NF-YC12 interact directly with OsMADS1, acting as cofactors to enhance its transcriptional activity toward MST4. Collectively, these findings reveal a novel molecular mechanism underlying grain thickness regulation that is controlled by the OsMADS1-NF-YB1-YC12 complex and has great potential for synergistic improvement of grain yield and quality in rice.
Collapse
Affiliation(s)
- Rongjia Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Da Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Pingbo Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Duo Xia
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingfei Feng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yipei Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Huan Shi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yin Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangying Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangming Lou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanyuan Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Haozhou Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Bian Wu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Junxiao Chen
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Guanjun Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zichao Li
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100000, China
| | - Aiqing You
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China.
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
11
|
Kong D, Xu M, Liu S, Liu T, Liu B, Wang X, Dong Z, Ma X, Zhao J, Lei X. Genome-Wide Identification and Expression Profiling of the SPL Transcription Factor Family in Response to Abiotic Stress in Centipedegrass. PLANTS (BASEL, SWITZERLAND) 2024; 14:62. [PMID: 39795323 PMCID: PMC11723030 DOI: 10.3390/plants14010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
SQUAMOSA promoter-binding protein-like (SPL) transcription factors play a critical role in the regulation of gene expression and are indispensable in orchestrating plant growth and development while also improving resistance to environmental stressors. Although it has been identified across a wide array of plant species, there have been no comprehensive studies on the SPL gene family in centipedegrass [Eremochloa ophiuroides (Munro) Hack.], which is an important warm-season perennial C4 turfgrass. In this study, 19 potential EoSPL genes in centipedegrass were identified and assigned the names EoSPL1-EoSPL19. Gene structure and motif analysis demonstrated that there was relative consistency among the branches of the phylogenetic tree. Five pairs of segmental duplication events were detected within centipedegrass. Ten EoSPL genes were predicted to be targeted by miR156. Additionally, the EoSPL genes were found to be predominantly expressed in leaves and demonstrated diverse responses to abiotic stress (salt, drought, glufosinate ammonium, aluminum, and cold). This study offers a comprehensive insight into the SPL gene family in centipedegrass, creating a foundation for elucidating the functions of EoSPL genes and investigating their involvement in abiotic stress responses.
Collapse
Affiliation(s)
- Dandan Kong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Maotao Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyu Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianqi Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Boyang Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyun Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhixiao Dong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiong Lei
- Sichuan Academy of Grassland Science, Chengdu 611731, China
| |
Collapse
|
12
|
Han L, Gao Z, Li L, Li C, Yan H, Xiao B, Ma Y, Wang H, Yang C, Xun H. Adaptive Strategy of the Perennial Halophyte Grass Puccinellia tenuiflora to Long-Term Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3445. [PMID: 39683238 DOI: 10.3390/plants13233445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
Salinity stress influences plants throughout their entire life cycle. However, little is known about the response of plants to long-term salinity stress (LSS). In this study, Puccinellia tenuiflora, a perennial halophyte grass, was exposed to 300 mM NaCl for two years (completely randomized experiment design with three biological replicates). We measured the photosynthetic parameters and plant hormones and employed a widely targeted metabolomics approach to quantify metabolites. Our results revealed that LSS induced significant metabolic changes in P. tenuiflora, inhibiting the accumulation of 11 organic acids in the leaves and 24 organic acids in the roots and enhancing the accumulation of 15 flavonoids in the leaves and 11 phenolamides in the roots. The elevated accumulation of the flavonoids and phenolamides increased the ability of P. tenuiflora to scavenge reactive oxygen species. A comparative analysis with short-term salinity stress revealed that the specific responses to long-term salinity stress (LSS) included enhanced flavonoid accumulation and reduced amino acid accumulation, which contributed to the adaptation of P. tenuiflora to LSS. LSS upregulated the levels of abscisic acid in the leaves and ACC (a direct precursor of ethylene) in the roots, while it downregulated the levels of cytokinins and jasmonic acids in both the organs. These tolerance-associated changes in plant hormones would be expected to reprogram the energy allocation among growth, pathogen defense, and salinity stress response. We propose that abscisic acid, ethylene, cytokinins, and jasmonic acids may interact with each other to construct a salinity stress response network during the adaptation of P. tenuiflora to LSS, which mediates salinity stress response and significant metabolic changes. Our results provided novel insights into the plant hormone-regulated metabolic response of the plants under LSS, which can enhance our understanding of plant salinity tolerance.
Collapse
Affiliation(s)
- Lei Han
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Zhanwu Gao
- Tourism and Geographical Science Institute, Baicheng Normal University, Baicheng 137000, China
| | - Luhao Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Changyou Li
- School of Life Science, Jilin Normal University, Siping 136000, China
| | - Houxing Yan
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Binbin Xiao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yimeng Ma
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Huan Wang
- Department of Agronomy, Jilin Agricultural University, Changchun 130018, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Hongwei Xun
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
13
|
Wang F, Lin J, Yang F, Chen X, Liu Y, Yan L, Chen J, Wang Z, Xie H, Zhang J, Xu H, Chen S. The OsMAPK5-OsWRKY72 module negatively regulates grain length and grain weight in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2648-2663. [PMID: 39474750 PMCID: PMC11622537 DOI: 10.1111/jipb.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 12/07/2024]
Abstract
Grain size and grain weight are important determinants for grain yield. In this study, we identify a novel OsMAPK5-OsWRKY72 module that negatively regulates grain length and grain weight in rice. We found that loss-of-function of OsMAPK5 leads to larger cell size of the rice spikelet hulls and a significant increase in both grain length and grain weight in an indica variety Minghui 86 (MH86). OsMAPK5 interacts with OsMAPKK3/4/5 and OsWRKY72 and phosphorylates OsWRKY72 at T86 and S88. Similar to the osmapk5 MH86 mutants, the oswrky72 knockout MH86 mutants exhibited larger size of spikelet hull cells and increased grain length and grain weight, whereas the OsWRKY72-overexpression MH86 plants showed opposite phenotypes. OsWRKY72 targets the W-box motifs in the promoter of OsARF6, an auxin response factor involved in auxin signaling. Dual-luciferase reporter assays demonstrated that OsWRKY72 activates OsARF6 expression. The activation effect of the phosphorylation-mimicking OsWRKY72T86D/S88D on OsARF6 expression was significantly enhanced, whereas the effects of the OsWRKY72 phosphorylation-null mutants were significantly reduced. In addition, auxin levels in young panicles of the osmapk5 and oswrky72 mutants were significantly higher than that in the wild-type MH86. Collectively, our study uncovered novel connections of the OsMAPKK3/4/5-OsMAPK5-mediated MAPK signaling, OsWRKY72-mediated transcription regulation, and OsARF6-mediated auxin signaling pathways in regulating grain length and grain weight in an indica-type rice, providing promising targets for molecular breeding of rice varieties with high yield and quality.
Collapse
Affiliation(s)
- Fuxiang Wang
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
- National Rice Engineering Laboratory of China, Rice Research InstituteFujian Academy of Agricultural SciencesFuzhou350003China
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Jiexin Lin
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Fan Yang
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Xiaofeng Chen
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Yiyi Liu
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Lingnan Yan
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Jing Chen
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Zonghua Wang
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Huaan Xie
- National Rice Engineering Laboratory of China, Rice Research InstituteFujian Academy of Agricultural SciencesFuzhou350003China
| | - Jianfu Zhang
- National Rice Engineering Laboratory of China, Rice Research InstituteFujian Academy of Agricultural SciencesFuzhou350003China
| | - Huibin Xu
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Songbiao Chen
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| |
Collapse
|
14
|
Zhu J, Li M, Lu H, Li Y, Ren M, Xu J, Ding W, Wang Y, Wu Y, Liu Y, Wu Z, Mo X, Mao C. The t-SNARE protein OsSYP132 is required for vesicle fusion and root morphogenesis in rice. THE NEW PHYTOLOGIST 2024; 244:2413-2429. [PMID: 39449241 DOI: 10.1111/nph.20180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024]
Abstract
Root morphogenesis is crucial for water and nutrient acquisition, but many aspects of root morphogenesis in crops are not well-understood. Here, we cloned and functionally characterized a key gene for root morphogenesis in rice (Oryza sativa) based on mutant analysis. The stop root morphogenesis 1 (srm1) mutant lacks crown roots (CRs) and lateral roots (LRs) and carries a point mutation in the t-SNARE coding gene SYNTAXIN OF PLANTS 132 (OsSYP132), leading to a premature stop codon and ablating the post-transmembrane (PTM) region of OsSYP132. We identified the functional SNARE complex OsSYP132-OsNPSN13-OsSYP71-OsVAMP721/722 and determined that the integrity of the PTM region of OsSYP132 is essential for OsSYP132-based SNARE complex-mediated fusion of OsVAMP721/722 vesicles with the plasma membrane. The loss of this region in srm1 disrupts the intercellular trafficking and plasma membrane localization of OsPIN1b, preventing proper auxin distribution in the primordia of CRs and LRs and inhibiting their outgrowth.
Collapse
Affiliation(s)
- Jianshu Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mengzhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong Lu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yong Li
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meiyan Ren
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiming Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wona Ding
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, 315300, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yunrong Wu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhongchang Wu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Mo
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, Hainan, 572025, China
| |
Collapse
|
15
|
Sun L, Wang L, Niu J, Yang W, Li Z, Liu L, Gao S. The maize gene ZmSBP17 encoding an SBP transcription factor confers osmotic resistance in transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1483486. [PMID: 39574449 PMCID: PMC11578699 DOI: 10.3389/fpls.2024.1483486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/07/2024] [Indexed: 11/24/2024]
Abstract
Among the major abiotic stresses, salt and drought have considerably affected agricultural development globally by interfering with gene expression profiles and cell metabolism. Transcription factors play crucial roles in activating or inhibiting the expression of stress-related genes in response to abiotic stress in plants. In this study, the Zea mays L. SQUAMOSA promoter-binding protein gene (ZmSBP17) was identified, and the molecular regulatory mechanism of osmotic stress tolerance was analyzed. Phylogenetic analysis confirmed that ZmSBP17 is part of the SBP gene family and is closely related to OsSBP17. The ZmSBP17-GFP fusion protein exhibited green fluorescence in the nucleus, as determined via tobacco epidermal transient transformation system. Acting as a transcriptional activator, the overexpression of ZmSBP17 in Arabidopsis significantly enhanced the expression of genes encoding superoxide dismutases (CSD1/2, MSD1), catalases (CAT1/2), ascorbate peroxidase 1 (APX1), and myeloblastosis transcription factors (AtMYB53/65), which increased the activity of reactive oxygen species (ROS)-scavenging enzymes and reduced ROS levels. Additionally, the expression of abiotic stress-related genes, such as AtDREB2A and AtNHX1, was significantly upregulated by ZmSBP17. Furthermore, ZmSBP17 specifically bound to cis-acting elements containing GTAC core sequences in the promoters of stress-related genes, suggesting that ZmSBP17 regulates the transcription of certain genes by recognizing these sequences. These results indicate that the overexpression of ZmSBP17 in Arabidopsis thaliana significantly increased tolerance to osmotic stress during the germination and seedling stages, which may enhance our understanding of the biological functions of SBPs in maize under abiotic stresses.
Collapse
Affiliation(s)
- Lifang Sun
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| | - Lijiao Wang
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Jinping Niu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Wei Yang
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Zhifang Li
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Libin Liu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| | - Shuren Gao
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| |
Collapse
|
16
|
Thiruppathi A, Salunkhe SR, Ramasamy SP, Palaniswamy R, Rajagopalan VR, Rathnasamy SA, Alagarswamy S, Swaminathan M, Manickam S, Muthurajan R. Unleashing the Potential of CRISPR/Cas9 Genome Editing for Yield-Related Traits in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:2972. [PMID: 39519891 PMCID: PMC11547960 DOI: 10.3390/plants13212972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Strategies to enhance rice productivity in response to global demand have been the paramount focus of breeders worldwide. Multiple factors, including agronomical traits such as plant architecture and grain formation and physiological traits such as photosynthetic efficiency and NUE (nitrogen use efficiency), as well as factors such as phytohormone perception and homeostasis and transcriptional regulation, indirectly influence rice grain yield. Advances in genetic analysis methodologies and functional genomics, numerous genes, QTLs (Quantitative Trait Loci), and SNPs (Single-Nucleotide Polymorphisms), linked to yield traits, have been identified and analyzed in rice. Genome editing allows for the targeted modification of identified genes to create novel mutations in rice, avoiding the unintended mutations often caused by random mutagenesis. Genome editing technologies, notably the CRISPR/Cas9 system, present a promising tool to generate precise and rapid modifications in the plant genome. Advancements in CRISPR have further enabled researchers to modify a larger number of genes with higher efficiency. This paper reviews recent research on genome editing of yield-related genes in rice, discusses available gene editing tools, and highlights their potential to expedite rice breeding programs.
Collapse
Affiliation(s)
- Archana Thiruppathi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Shubham Rajaram Salunkhe
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Shobica Priya Ramasamy
- Department of Plant Breeding and Genetics, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Rakshana Palaniswamy
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Veera Ranjani Rajagopalan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Sakthi Ambothi Rathnasamy
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Senthil Alagarswamy
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Manonmani Swaminathan
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Sudha Manickam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| |
Collapse
|
17
|
Jiang Y, Liu C, He G, Zhang Y, Liu M, Zhang K, Liu M, Wang A, Zhang M, Wang Y, Zhao M, Wang K. Regulation of ginseng adventitious root growth in Panax ginseng by the miR156-targeted PgSPL24-09 transcription factors. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109026. [PMID: 39137685 DOI: 10.1016/j.plaphy.2024.109026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
MicroRNA (miRNA) is a class of non-coding endogenous small-molecule, single-stranded RNAs, and it is involved in post-transcriptional gene expression regulation in plants and plays an important role in plant growth and development. Among them, miRNA156 regulates members of target SPL gene family and thus participates in plant growth and development, hormonal response and adversity stress. However, it has not been reported in ginseng. In this study, based on the previous analysis of the SPL gene family, the age-related and stably expressed SPL gene PgSPL24-09 was obtained in roots. The binding site of miRNA156 to this gene was analyzed using target gene prediction tools, and the interactions between miRNA156 and PgSPL24-09 gene were verified by dual luciferase reporter gene assay and RT-qPCR. At the same time, miRNA156 silencing vector and overexpression vector were constructed and transformed into ginseng adventitious roots and Arabidopsis thaliana to analyze the molecular mechanism of miRNA156-SPL module in regulating the growth of ginseng adventitious roots. This study provides a theoretical basis for the in-depth study of the molecular role of miRNAs in ginseng growth, and also lays the foundation for the study of the role of miRNA156-SPL module in regulating the growth and development of ginseng.
Collapse
Affiliation(s)
- Yang Jiang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Chang Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Gaohui He
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Yu Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Mengna Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Kexin Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Mingming Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Aimin Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| |
Collapse
|
18
|
Song J, Tang L, Cui Y, Fan H, Zhen X, Wang J. Research Progress on Photoperiod Gene Regulation of Heading Date in Rice. Curr Issues Mol Biol 2024; 46:10299-10311. [PMID: 39329965 PMCID: PMC11430500 DOI: 10.3390/cimb46090613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Heading date is a critical physiological process in rice that is influenced by both genetic and environmental factors. The photoperiodic pathway is a primary regulatory mechanism for rice heading, with key florigen genes Hd3a (Heading date 3a) and RFT1 (RICE FLOWERING LOCUS T1) playing central roles. Upstream regulatory pathways, including Hd1 and Ehd1, also significantly impact this process. This review aims to provide a comprehensive examination of the localization, cloning, and functional roles of photoperiodic pathway-related genes in rice, and to explore the interactions among these genes as well as their pleiotropic effects on heading date. We systematically review recent advancements in the identification and functional analysis of genes involved in the photoperiodic pathway. We also discuss the molecular mechanisms underlying rice heading date variation and highlight the intricate interactions between key regulatory genes. Significant progress has been made in understanding the molecular mechanisms of heading date regulation through the cloning and functional analysis of photoperiod-regulating genes. However, the regulation of heading date remains complex, and many underlying mechanisms are not yet fully elucidated. This review consolidates current knowledge on the photoperiodic regulation of heading date in rice, emphasizing novel findings and gaps in the research. It highlights the need for further exploration of the interactions among flowering-related genes and their response to environmental signals. Despite advances, the full regulatory network of heading date remains unclear. Further research is needed to elucidate the intricate gene interactions, transcriptional and post-transcriptional regulatory mechanisms, and the role of epigenetic factors such as histone methylation in flowering time regulation. This review provides a detailed overview of the current understanding of photoperiodic pathway genes in rice, setting the stage for future research to address existing gaps and improve our knowledge of rice flowering regulation.
Collapse
Affiliation(s)
- Jian Song
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liqun Tang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yongtao Cui
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Honghuan Fan
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueqiang Zhen
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianjun Wang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
19
|
Shi Q, Li X, Yang S, Zhao X, Yue Y, Yang Y, Yu Y. Dynamic temporal transcriptome analysis reveals grape VlMYB59- VlCKX4 regulatory module controls fruit set. HORTICULTURE RESEARCH 2024; 11:uhae183. [PMID: 39247886 PMCID: PMC11374532 DOI: 10.1093/hr/uhae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
Fruit set is a key stage in determining yield potential and guaranteeing quality formation and regulation. N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU) has been widely applied in grape production, the most iconic of which is the promotion of grape fruit set. However, current studies still lack the molecular mechanism of CPPU-induced grape fruit set. Here, the dynamic, high-resolution stage-specific transcriptome profiles were generated based on two different treatments and five developmental periods during fruit set in 'Kyoho' grape (Vitis vinifera L. × V. labrusca L.). Pairwise comparison and functional category analysis showed that phytohormone action cytokinin was significantly enriched during the CPPU-induced grape fruit set, but not the natural one. Value differentially expressed gene (VDEG) was a newly proposed analysis strategy for mining genes related to the grape fruit set. Notably, the cytokinin metabolic process was significantly enriched among up-regulated VDEGs. Of importance, a key VDEG VlCKX4 related to the cytokinin metabolic process was identified as related to the grape fruit set. Overexpression of VlCKX4 gene promoted the Arabidopsis plants that produce more and heavier siliques. The transcription factor VlMYB59 directly bound to the promoter of VlCKX4 and activated its expression. Moreover, overexpression of VlMYB59 gene also promoted the Arabidopsis fruit set. Overall, VlMYB59 responded to CPPU treatment and directly activated the expression of VlCKX4, thus promoting the fruit set. A regulatory pathway of the VlMYB59-VlCKX4 module in the fruit set was uncovered, which provides important insights into the molecular mechanisms of the fruit set and good genetic resources for high fruit set rate breeding.
Collapse
Affiliation(s)
- Qiaofang Shi
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Xufei Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
- Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Shengdi Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
- Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Xiaochun Zhao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Yihan Yue
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Yingjun Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Yihe Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| |
Collapse
|
20
|
He Y, Han Y, Ma Y, Liu S, Fan T, Liang Y, Tang X, Zheng X, Wu Y, Zhang T, Qi Y, Zhang Y. Expanding plant genome editing scope and profiles with CRISPR-FrCas9 systems targeting palindromic TA sites. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2488-2503. [PMID: 38713743 PMCID: PMC11331784 DOI: 10.1111/pbi.14363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 05/09/2024]
Abstract
CRISPR-Cas9 is widely used for genome editing, but its PAM sequence requirements limit its efficiency. In this study, we explore Faecalibaculum rodentium Cas9 (FrCas9) for plant genome editing, especially in rice. FrCas9 recognizes a concise 5'-NNTA-3' PAM, targeting more abundant palindromic TA sites in plant genomes than the 5'-NGG-3' PAM sites of the most popular SpCas9. FrCas9 shows cleavage activities at all tested 5'-NNTA-3' PAM sites with editing outcomes sharing the same characteristics of a typical CRISPR-Cas9 system. FrCas9 induces high-efficiency targeted mutagenesis in stable rice lines, readily generating biallelic mutants with expected phenotypes. We augment FrCas9's ability to generate larger deletions through fusion with the exonuclease, TREX2. TREX2-FrCas9 generates much larger deletions than FrCas9 without compromise in editing efficiency. We demonstrate TREX2-FrCas9 as an efficient tool for genetic knockout of a microRNA gene. Furthermore, FrCas9-derived cytosine base editors (CBEs) and adenine base editors (ABE) are developed to produce targeted C-to-T and A-to-G base edits in rice plants. Whole-genome sequencing-based off-target analysis suggests that FrCas9 is a highly specific nuclease. Expression of TREX2-FrCas9 in plants, however, causes detectable guide RNA-independent off-target mutations, mostly as single nucleotide variants (SNVs). Together, we have established an efficient CRISPR-FrCas9 system for targeted mutagenesis, large deletions, C-to-T base editing, and A-to-G base editing in plants. The simple palindromic TA motif in the PAM makes the CRISPR-FrCas9 system a promising tool for genome editing in plants with an expanded targeting scope.
Collapse
Affiliation(s)
- Yao He
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life SciencesSouthwest UniversityChongqingChina
| | - Yangshuo Han
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life SciencesSouthwest UniversityChongqingChina
| | - Yanqin Ma
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Shishi Liu
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Tingting Fan
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yanling Liang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xu Tang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life SciencesSouthwest UniversityChongqingChina
| | - Xuelian Zheng
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life SciencesSouthwest UniversityChongqingChina
| | - Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhou University, YangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of EducationAgricultural College of Yangzhou UniversityYangzhou University, YangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
| | - Yiping Qi
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
- Institute for Bioscience and Biotechnology Research, University of MarylandRockvilleMarylandUSA
| | - Yong Zhang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life SciencesSouthwest UniversityChongqingChina
| |
Collapse
|
21
|
Wang W, Jiao M, Huang X, Liang W, Ma Z, Lu Z, Tian S, Gao X, Fan L, He X, Bao J, Yu Y, Zhang D, Bao L. The auxin-responsive CsSPL9-CsGH3.4 module finely regulates auxin levels to suppress the development of adventitious roots in tea (Camellia sinensis). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2273-2287. [PMID: 39012276 DOI: 10.1111/tpj.16916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
The cutting technique is extensively used in tea breeding, with key emphasis on promoting the growth of adventitious roots (ARs). Despite its importance in tea cultivation, the mechanisms underlying AR development in tea remain unclear. In this study, we demonstrated the essential role of auxins in the initiation and progression of AR and established that the application of exogenous 1-naphthaleneacetic acid-enhanced AR formation in tissue-cultured seedlings and cuttings. Then, we found that the auxin-responsive transcription factor CsSPL9 acted as a negative regulator of AR development by reducing the levels of free indole-3-acetic acid (IAA) in tea plants. Furthermore, we identified CsGH3.4 as a downstream target of CsSPL9, which was activated by direct binding to its promoter. CsGH3.4 also inhibited AR development and maintained low levels of free IAA. Thus, these results revealed the inhibitory effect of the auxin-responsive CsSPL9-CsGH3.4 module on AR development by reducing free IAA levels in tea. These findings have significant theoretical and practical value for enhancing tea breeding practices.
Collapse
Affiliation(s)
- Wenzhao Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengmin Jiao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xue Huang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenjuan Liang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhonglian Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhanling Lu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shenyang Tian
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiuhua Gao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Fan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinyue He
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Junhua Bao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lu Bao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
22
|
Liu J, Yi Q, Dong G, Chen Y, Guo L, Gao Z, Zhu L, Ren D, Zhang Q, Li Q, Li J, Liu Q, Zhang G, Qian Q, Shen L. Improving Rice Quality by Regulating the Heading Dates of Rice Varieties without Yield Penalties. PLANTS (BASEL, SWITZERLAND) 2024; 13:2221. [PMID: 39204657 PMCID: PMC11360702 DOI: 10.3390/plants13162221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The heading date, a critical trait influencing the rice yield and quality, has always been a hot topic in breeding research. Appropriately delaying the flowering time of excellent northern rice varieties is of great significance for improving yields and enhancing regional adaptability during the process for introducing varieties from north to south. In this study, genes influencing the heading date were identified through genome-wide association studies (GWAS). Using KenDao 12 (K12), an excellent cultivar from northern China, as the material, the specific flowering activator, OsMADS50, was edited using the genome-editing method to regulate the heading date to adapt to the southern planting environment. The results indicated that the osmads50 mutant line of K12 flowered about a week later, with a slight increase in the yield and good adaptability in the southern region in China. Additionally, the expressions of key flowering regulatory genes, such as Hd1, Ghd7, Ehd1, Hd3a, and RFT1, were reduced in the mutant plants, corroborating the delayed flowering phenotype. Yield trait analysis revealed that the primary factor for improved yield was an increase in the number of effective tillers, although there is potential for further enhancements in the seed-setting rate and grain plumpness. Furthermore, there were significant increases in the length-to-width ratio of the rice grains, fat content, and seed transparency, all contributing to an overall improvement in the rice quality. In summary, this study successfully obtained a rice variety with a delayed growth period through OsMADS50 gene editing, effectively implementing the strategy for adapting northern rice varieties to southern climates. This achievement significantly supports efforts to enhance the rice yield and quality as well as to optimize production management practices.
Collapse
Affiliation(s)
- Jianguo Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Qinqin Yi
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Yuyu Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Longbiao Guo
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Li Zhu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Deyong Ren
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Qiang Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Qing Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Jingyong Li
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Qiangming Liu
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Qian Qian
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Lan Shen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| |
Collapse
|
23
|
Li X, Wang R, Wang Y, Li X, Shi Q, Yu Y. PpGATA21 Enhances the Expression of PpGA2ox7 to Regulate the Mechanism of Cerasus humilis Rootstock-Mediated Dwarf in Peach Trees. Int J Mol Sci 2024; 25:7402. [PMID: 39000509 PMCID: PMC11242874 DOI: 10.3390/ijms25137402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Dwarfing rootstocks enhance planting density, lower tree height, and reduce both labor in peach production. Cerasus humilis is distinguished by its dwarf stature, rapid growth, and robust fruiting capabilities, presenting substantial potential for further development. In this study, Ruipan 4 was used as the scion and grafted onto Amygdalus persica and Cerasus humilis, respectively. The results indicate that compared to grafting combination R/M (Ruipan 4/Amygdalus persica), grafting combination R/O (Ruipan 4/Cerasus humilis) plants show a significant reduction in height and a significant increase in flower buds. RNA-seq indicates that genes related to gibberellin (GA) and auxin metabolism are involved in the dwarfing process of scions mediated by C. humilis. The expression levels of the GA metabolism-related gene PpGA2ox7 significantly increased in R/O and are strongly correlated with plant height, branch length, and internode length. Furthermore, GA levels were significantly reduced in R/O. The transcription factor PpGATA21 was identified through yeast one-hybrid screening of the PpGA2ox7 promoter. Yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) demonstrate that PpGATA21 can bind to the promoter of PpGA2ox7 and activate its expression. Overall, PpGATA21 activates the expression of the GA-related gene PpGA2ox7, resulting in reduced GA levels and consequent dwarfing of plants mediated by C. humilis. This study provides new insights into the mechanisms of C. humilis and offers a scientific foundation for the dwarfing and high-density cultivation of peach trees.
Collapse
Affiliation(s)
- Xiuzhen Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (R.W.); (Y.W.); (X.L.); (Q.S.)
| | - Ruxin Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (R.W.); (Y.W.); (X.L.); (Q.S.)
- Henan Provincial Engineering Research Center on Characteristic Berry Germplasm Innovation & Utilization, Luoyang 471023, China
| | - Yuman Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (R.W.); (Y.W.); (X.L.); (Q.S.)
| | - Xueqiang Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (R.W.); (Y.W.); (X.L.); (Q.S.)
| | - Qiaofang Shi
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (R.W.); (Y.W.); (X.L.); (Q.S.)
- Henan Provincial Engineering Research Center on Characteristic Berry Germplasm Innovation & Utilization, Luoyang 471023, China
| | - Yihe Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (R.W.); (Y.W.); (X.L.); (Q.S.)
- Henan Provincial Engineering Research Center on Characteristic Berry Germplasm Innovation & Utilization, Luoyang 471023, China
| |
Collapse
|
24
|
Li L, Xu JB, Zhu ZW, Ma R, Wu XZ, Geng YK. Genome-wide identification and expression analysis of the SPL transcription factor family and its response to abiotic stress in Pisum sativum L. BMC Genomics 2024; 25:539. [PMID: 38822248 PMCID: PMC11140923 DOI: 10.1186/s12864-024-10262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/27/2024] [Indexed: 06/02/2024] Open
Abstract
Squamous promoter binding protein-like (SPL) genes encode plant-specific transcription factors (TFs) that play essential roles in modulating plant growth, development, and stress response. Pea (Pisum sativum L.) is a coarse grain crop of great importance in food production, biodiversity conservation and molecular genetic research, providing genetic information and nutritional resources for improving agricultural production and promoting human health. However, only limited researches on the structure and functions of SPL genes exist in pea (PsSPLs). In this study, we identified 22 PsSPLs and conducted a genome-wide analysis of their physical characteristics, chromosome distribution, gene structure, phylogenetic evolution and gene expression patterns. As a result, the PsSPLs were unevenly distributed on the seven chromosomes of pea and harbored the SBP domain, which is composed of approximately 76 amino acid residues. The phylogenetic analysis revealed that the PsSPLs clustered into eight subfamilies and showed high homology with SPL genes in soybean. Further analysis showed the presence of segmental duplications in the PsSPLs. The expression patterns of 22 PsSPLs at different tissues, developmental stages and under various stimulus conditions were evaluated by qRT-PCR method. It was found that the expression patterns of PsSPLs from the same subfamily were similar in different tissues, the transcripts of most PsSPLs reached the maximum peak value at 14 days after anthesis in the pod. Abiotic stresses can cause significantly up-regulated PsSPL19 expression with spatiotemporal specificity, in addition, four plant hormones can cause the up-regulated expression of most PsSPLs including PsSPL19 in a time-dependent manner. Therefore, PsSPL19 could be a key candidate gene for signal transduction during pea growth and development, pod formation, abiotic stress and plant hormone response. Our findings should provide insights for the elucidating of development regulation mechanism and breeding for resistance to abiotic stress pea.
Collapse
Affiliation(s)
- Long Li
- Minzu University of China, 100010, Beijing, P.R. China
- College of Agronomy, Hebei Agricultural University, 071001, Baoding, P.R. China
| | - Jian Bo Xu
- School of Food and Biological engineering, Zhengzhou University of Light Industry, 450002, Zhengzhou, P.R. China
| | - Zhi Wen Zhu
- School of Food and Biological engineering, Zhengzhou University of Light Industry, 450002, Zhengzhou, P.R. China
| | - Rui Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100, Yangling, Shaanxi, P.R. China
| | - Xiao Zong Wu
- School of Food and Biological engineering, Zhengzhou University of Light Industry, 450002, Zhengzhou, P.R. China.
- Zhengzhou University of Light Industry, 450002, Zhengzhou, P.R. China.
| | - Yu Ke Geng
- Minzu University of China, 100010, Beijing, P.R. China.
| |
Collapse
|
25
|
Li Y, Wang J, Gao Y, Pandey BK, Peralta Ogorek LL, Zhao Y, Quan R, Zhao Z, Jiang L, Huang R, Qin H. The OsEIL1-OsWOX11 transcription factor module controls rice crown root development in response to soil compaction. THE PLANT CELL 2024; 36:2393-2409. [PMID: 38489602 PMCID: PMC11132869 DOI: 10.1093/plcell/koae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Optimizing the root architecture of crops is an effective strategy for improving crop yields. Soil compaction is a serious global problem that limits crop productivity by restricting root growth, but the underlying molecular mechanisms are largely unclear. Here, we show that ethylene stimulates rice (Oryza sativa) crown root development in response to soil compaction. First, we demonstrate that compacted soil promotes ethylene production and the accumulation of ETHYLENE INSENSITIVE 3-LIKE 1 (OsEIL1) in rice roots, stimulating crown root primordia initiation and development, thereby increasing crown root number in lower stem nodes. Through transcriptome profiling and molecular analyses, we reveal that OsEIL1 directly activates the expression of WUSCHEL-RELATED HOMEOBOX 11 (OsWOX11), an activator of crown root emergence and growth, and that OsWOX11 mutations delay crown root development, thus impairing the plant's response to ethylene and soil compaction. Genetic analysis demonstrates that OsWOX11 functions downstream of OsEIL1. In summary, our results demonstrate that the OsEIL1-OsWOX11 module regulates ethylene action during crown root development in response to soil compaction, providing a strategy for the genetic modification of crop root architecture and grain agronomic traits.
Collapse
Affiliation(s)
- Yuxiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Yadi Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bipin K Pandey
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Lucas León Peralta Ogorek
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Zihan Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Hua Qin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| |
Collapse
|
26
|
Zhao Y, He J, Liu M, Miao J, Ma C, Feng Y, Qian J, Li H, Bi H, Liu W. The SPL transcription factor TaSPL6 negatively regulates drought stress response in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108264. [PMID: 38091935 DOI: 10.1016/j.plaphy.2023.108264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 02/15/2024]
Abstract
Environmental stresses, such as heat and drought, severely affect plant growth and development, and reduce wheat yield and quality globally. Squamosa promoter binding protein-like (SPL) proteins are plant-specific transcription factors that play a critical role in regulating plant responses to diverse stresses. In this study, we cloned and characterized TaSPL6, a wheat orthologous gene of rice OsSPL6. Three TaSPL6 homoeologs are located on the long arms of chromosomes 4A, 5B, and 5D, respectively, and share more than 98% sequence identity with each other. The TaSPL6 genes were preferentially expressed in roots, and their expression levels were downregulated in wheat seedlings subjected to heat, dehydration, and abscisic acid treatments. Subcellular localization experiments showed that TaSPL6 was localized in the nucleus. Overexpression of TaSPL6-A in wheat resulted in enhanced sensitivity to drought stress. The transgenic lines exhibited higher leaf water loss, malondialdehyde and reactive oxygen species (ROS) content, and lower antioxidant enzyme activities after drought treatment than wild-type plants. Gene silencing of TaSPL6 enhanced the drought tolerance of wheat, as reflected by better growth status. Additionally, RNA-seq and qRT-PCR analyses revealed that TaSPL6-A functions by decreasing the expression of a number of genes involved in stress responses. These findings suggest that TaSPL6 acts as a negative regulator of drought stress responses in plants, which may have major implications for understanding and enhancing crop tolerance to environmental stresses.
Collapse
Affiliation(s)
- Yue Zhao
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jinqiu He
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengmeng Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jingnan Miao
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chao Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yajun Feng
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiajun Qian
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huanhuan Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huihui Bi
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Wenxuan Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
27
|
Li K, Cheng Y, Fang C. OsDWARF10, transcriptionally repressed by OsSPL3, regulates the nutritional metabolism of polished rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1322463. [PMID: 38130489 PMCID: PMC10733476 DOI: 10.3389/fpls.2023.1322463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Strigolactone (SL) plays essential roles in plant development and the metabolism of rice leaves. However, the impact of SL on the accumulation of nutritional metabolites in polished rice, as well as the transcription factors directly involved in SL synthesis, remains elusive. In this study, we performed a metabolome analysis on polished rice samples from mutants of an SL biosynthetic gene, OsDWARF10 (OsD10). Compared with those in the wild type plants, primary and secondary metabolites exhibited a series of alterations in the d10 mutants. Notably, the d10 mutants showed a substantial increase in the amino acids and vitamins content. Through a yeast one-hybridization screening assay, we identified OsSPL3 as a transcription factor that binds to the OsD10 promoter, thereby inhibiting OsD10 transcription in vivo and in vitro. Furthermore, we conducted a metabolic profiling analysis in polished rice from plants that overexpressed OsSPL3 and observed enhanced levels of amino acids and vitamins. This study identified a novel transcriptional repressor of the SL biosynthetic gene and elucidated the regulatory roles of OsSPL3 and OsD10 on the accumulation of nutritional metabolites in polished rice.
Collapse
Affiliation(s)
- Kang Li
- Hainan Yazhou Bay Seed Laboratory, Scool of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yan Cheng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Chuanying Fang
- Hainan Yazhou Bay Seed Laboratory, Scool of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
28
|
Wang HQ, Zhao XY, Xuan W, Wang P, Zhao FJ. Rice roots avoid asymmetric heavy metal and salinity stress via an RBOH-ROS-auxin signaling cascade. MOLECULAR PLANT 2023; 16:1678-1694. [PMID: 37735869 DOI: 10.1016/j.molp.2023.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/14/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Root developmental plasticity is crucial for plants to adapt to a changing soil environment, where nutrients and abiotic stress factors are distributed heterogeneously. How plant roots sense and avoid heterogeneous abiotic stress in soil remains unclear. Here, we show that, in response to asymmetric stress of heavy metals (cadmium, copper, or lead) and salt, rice roots rapidly proliferate lateral roots (LRs) in the stress-free area, thereby remodeling root architecture to avoid localized stress. Imaging and quantitative analyses of reactive oxygen species (ROS) showed that asymmetric stress induces a ROS burst in the tips of the exposed roots and simultaneously triggers rapid systemic ROS signaling to the unexposed roots. Addition of a ROS scavenger to either the stressed or stress-free area abolished systemic ROS signaling and LR proliferation induced by asymmetric stress. Asymmetric stress also enhanced cytosolic calcium (Ca2+) signaling; blocking Ca2+signaling inhibited systemic ROS propagation and LR branching in the stress-free area. We identified two plasma-membrane-localized respiratory burst oxidase homologs, OsRBOHA and OsRBOHI, as key players in systemic ROS signaling under asymmetric stress. Expression of OsRBOHA and OsRBOHI in roots was upregulated by Cd stress, and knockout of either gene reduced systemic ROS signaling and LR proliferation under asymmetric stress. Furthermore, we demonstrated that auxin signaling and cell wall remodeling act downstream of the systemic ROS signaling to promote LR development. Collectively, our study reveals an RBOH-ROS-auxin signaling cascade that enables rice roots to avoid localized stress of heavy metals and salt and provides new insight into root system plasticity in heterogenous soil.
Collapse
Affiliation(s)
- Han-Qing Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing-Yu Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
29
|
Wang Y, Wang F, Lu H, Lin R, Liu J, Liu Y, Xu J, Wu Y, Wang Z, Zhou M, Mo X, Wu Z, Shou H, Zheng S, Mao C. Rice chromatin protein OsHMGB1 is involved in phosphate homeostasis and plant growth by affecting chromatin accessibility. THE NEW PHYTOLOGIST 2023; 240:727-743. [PMID: 37553956 DOI: 10.1111/nph.19189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023]
Abstract
Although phosphorus is one of the most important essential elements for plant growth and development, the epigenetic regulation of inorganic phosphate (Pi) signaling is poorly understood. In this study, we investigated the biological function and mode of action of the high-mobility-group box 1 protein OsHMGB1 in rice (Oryza sativa), using molecular and genetic approaches. We determined that OsHMGB1 expression is induced by Pi starvation and encodes a nucleus-localized protein. Phenotypic analysis of Oshmgb1 mutant and OsHMGB1 overexpression transgenic plants showed that OsHMGB1 positively regulates Pi homeostasis and plant growth. Transcriptome deep sequencing and chromatin immunoprecipitation followed by sequencing indicated that OsHMGB1 regulates the expression of a series of phosphate starvation-responsive (PSR) genes by binding to their promoters. Furthermore, an assay for transposase-accessible chromatin followed by sequencing revealed that OsHMGB1 is involved in maintaining chromatin accessibility. Indeed, OsHMGB1 occupancy positively correlated with genome-wide chromatin accessibility and gene expression levels. Our results demonstrate that OsHMGB1 is a transcriptional facilitator that regulates the expression of a set of PSR genes to maintain Pi homeostasis in rice by increasing the chromatin accessibility, revealing a key epigenetic mechanism that fine-tune plant acclimation responses to Pi-limited environments.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rongbin Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiaming Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yunrong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ming Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhongchang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shaojian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Yazhou District, Sanya, Hainan, 572024, China
| |
Collapse
|
30
|
Guo X, Chen Y, Hu Y, Feng F, Zhu X, Sun H, Li J, Zhao Q, Sun H. OsMADS5 interacts with OsSPL14/17 to inhibit rice root elongation by restricting cell proliferation of root meristem under ammonium supply. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:87-99. [PMID: 37340958 DOI: 10.1111/tpj.16361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/28/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Nitrogen (N) is a vital major nutrient for rice (Oryza sativa). Rice responds to different applications of N by altering its root morphology, including root elongation. Although ammonium (NH 4 + ) is the primary source of N for rice,NH 4 + is toxic to rice roots and inhibits root elongation. However, the precise molecular mechanism thatNH 4 + -inhibited root elongation of rice is not well understood. Here, we identified a rice T-DNA insert mutant of OsMADS5 with a longer seminal root (SR) under sufficient N conditions. Reverse-transcription quantitative PCR analysis revealed that the expression level of OsMADS5 was increased underNH 4 + compared withNO 3 - supply. UnderNH 4 + conditions, knocking out OsMADS5 (cas9) produced a longer SR, phenocopying osmads5, while there was no significant difference in SR length between wild-type and cas9 underNO 3 - supply. Moreover, OsMADS5-overexpression plants displayed the opposite SR phenotype. Further study demonstrated that enhancement of OsMADS5 byNH 4 + supply inhibited rice SR elongation, likely by reducing root meristem activity of root tip, with the involvement of OsCYCB1;1. We also found that OsMADS5 interacted with OsSPL14 and OsSPL17 (OsSPL14/17) to repress their transcriptional activation by attenuating DNA binding ability. Moreover, loss of OsSPL14/17 function in osmads5 eliminated its stimulative effect on SR elongation underNH 4 + conditions, implying OsSPL14/17 may function downstream of OsMADS5 to mediate rice SR elongation underNH 4 + supply. Overall, our results indicate the existence of a novel modulatory pathway in which enhancement of OsMADS5 byNH 4 + supply represses the transcriptional activities of OsSPL14/17 to restrict SR elongation of rice.
Collapse
Affiliation(s)
- Xiaoli Guo
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yake Chen
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yibo Hu
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fan Feng
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiuli Zhu
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hongzheng Sun
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junzhou Li
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Quanzhi Zhao
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Huwei Sun
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
31
|
Lv X, Tian S, Huang S, Wei J, Han D, Li J, Guo D, Zhou Y. Genome-wide identification of the longan R2R3-MYB gene family and its role in primary and lateral root. BMC PLANT BIOLOGY 2023; 23:448. [PMID: 37741992 PMCID: PMC10517564 DOI: 10.1186/s12870-023-04464-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
R2R3-MYB is an important transcription factor family that regulates plant growth and development. Root development directly affects the absorption of water and nutrients by plants. Therefore, to understand the regulatory role of R2R3-MYB transcription factor family in root development of longan, this study identified the R2R3-MYB gene family members at the genome-wide level, and analyzed their phylogenetic characteristics, physical and chemical properties, gene structure, chromosome location and tissue expression. The analysis identified 124 R2R3-MYB family members in the longan genome. Phylogenetic analysis divided these members into 22 subfamilies, and the members of the unified subfamily had similar motifs and gene structures. The result of qRT-PCR showed that expression levels of DlMYB33, DlMYB34, DlMYB59, and DlMYB77 were significantly higher in main roots than in lateral as opposed to those of DlMYB35, DlMYB69, DlMYB70, and DlMYB83, which were significantly lower. SapBase database prediction and miRNAs sequencing results showed that 34 longan miRNAs could cleave R2R3-MYB, including 17 novel miRNAs unique to longan. The qRT-PCR and subcellular localization experiments of DlMYB92 and DlMYB98 showed that DlMYB92 is a key factor that regulates transcription in the nucleus and participates in the regulation of longan lateral root development. Longan also has a conserved miRNA-MYB-lateral root development regulation mechanism. This study provides a reference for further research on the transcriptional regulation of the miRNA-R2R3-MYB module in the root development of longan.
Collapse
Affiliation(s)
- Xinmin Lv
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shichang Tian
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shilian Huang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Junbin Wei
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Dongmei Han
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianguang Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Dongliang Guo
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Yan Zhou
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China.
| |
Collapse
|
32
|
Garg T, Yadav M, Mushahary KKK, Kumar A, Pal V, Singh H, Jain M, Yadav SR. Spatially activated conserved auxin-transcription factor regulatory module controls de novo root organogenesis in rice. PLANTA 2023; 258:52. [PMID: 37491477 DOI: 10.1007/s00425-023-04210-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
MAIN CONCLUSION This study reveals that the process of crown root development and auxin-induced de novo root organogenesis during in vitro plantlet regeneration share a common auxin-OsWOX10 regulatory module in rice. In the fibrous-type root system of rice, the crown roots (CR) are developed naturally from the shoot tissues. Generation of robust auxin response, followed by activation of downstream cell fate determinants and signaling pathways at the onset of crown root primordia (CRP) establishment is essential for new root initiation. During rice tissue culture, embryonic calli are induced to regenerate shoots in vitro which undergo de novo root organogenesis on an exogenous auxin-supplemented medium, but the mechanism underlying spatially restricted root organogenesis remains unknown. Here, we reveal the dynamics of progressive activation of genes involved in auxin homeostasis and signaling during initiation and outgrowth of rice crown root primordia. By comparative global dataset analysis, we identify the crown root primordia-expressed genes whose expression is also regulated by auxin signaling. In-depth spatio-temporal expression pattern analysis shows that the exogenous application of auxin induces a set of key transcription factors exclusively in the spatially positioned CRP. Further, functional analysis of rice WUSCHEL-RELATED HOMEOBOX 10 (OsWOX10) during in vitro plantlet regeneration from embryogenic calli shows that it promotes de novo root organogenesis from regenerated shoots. Expression of rice OsWOX10 also induces adventitious roots (AR) in Arabidopsis, independent of homologous endogenous Arabidopsis genes. Together, our findings reveal that a common auxin-transcription factor regulatory module is involved in root organogenesis under different conditions.
Collapse
Affiliation(s)
- Tushar Garg
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
- Department of Plant Biology, University of California, Davis, CA, USA
| | - Manoj Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
- Department of Biochemistry, All India Institute of Medical Sciences, Raebareli, Uttar Pradesh, India
| | | | - Akshay Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Vivek Pal
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Harshita Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
- Center for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shri Ram Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
33
|
Hui S, Ke Y, Chen D, Wang L, Li Q, Yuan M. Rice microRNA156/529-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7/14/17 modules regulate defenses against bacteria. PLANT PHYSIOLOGY 2023; 192:2537-2553. [PMID: 36994827 PMCID: PMC10315298 DOI: 10.1093/plphys/kiad201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Rice (Oryza sativa L.) microRNA156/529-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7/14/17 (miR156/529-SPL7/14/17) modules have pleiotropic effects on many biological pathways. OsSPL7/14 can interact with DELLA protein SLENDER RICE1 (SLR1) to modulate gibberellin acid (GA) signal transduction against the bacterial pathogen Xanthomonas oryzae pv. oryzae. However, whether the miR156/529-OsSPL7/14/17 modules also regulate resistance against other pathogens is unclear. Notably, OsSPL7/14/17 functioning as transcriptional activators, their target genes, and the corresponding downstream signaling pathways remain largely unexplored. Here, we demonstrate that miR156/529 play negative roles in plant immunity and that miR156/529-regulated OsSPL7/14/17 confer broad-spectrum resistance against 2 devastating bacterial pathogens. Three OsSPL7/14/17 proteins directly bind to the promoters of rice Allene Oxide Synthase 2 (OsAOS2) and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (OsNPR1) and activate their transcription, regulating jasmonic acid (JA) accumulation and the salicylic acid (SA) signaling pathway, respectively. Overexpression of OsAOS2 or OsNPR1 impairs the susceptibility of the osspl7/14/17 triple mutant. Exogenous application of JA enhances resistance of the osspl7/14/17 triple mutant and the miR156 overexpressing plants. In addition, genetic evidence confirms that bacterial pathogen-activated miR156/529 negatively regulate pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) responses, such as pattern recognition receptor Xa3/Xa26-initiated PTI. Our findings demonstrate that bacterial pathogens modulate miR156/529-OsSPL7/14/17 modules to suppress OsAOS2-catalyzed JA accumulation and the OsNPR1-promoted SA signaling pathway, facilitating pathogen infection. The uncovered miR156/529-OsSPL7/14/17-OsAOS2/OsNPR1 regulatory network provides a potential strategy to genetically improve rice disease resistance.
Collapse
Affiliation(s)
- Shugang Hui
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yinggen Ke
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingqing Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
34
|
Wang F, Wang Y, Ying L, Lu H, Liu Y, Liu Y, Xu J, Wu Y, Mo X, Wu Z, Mao C. Integrated transcriptomic analysis identifies coordinated responses to nitrogen and phosphate deficiency in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1164441. [PMID: 37223782 PMCID: PMC10200874 DOI: 10.3389/fpls.2023.1164441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/15/2023] [Indexed: 05/25/2023]
Abstract
Nitrogen (N) and phosphorus (P) are two primary components of fertilizers for crop production. Coordinated acquisition and utilization of N and P are crucial for plants to achieve nutrient balance and optimal growth in a changing rhizospheric nutrient environment. However, little is known about how N and P signaling pathways are integrated. We performed transcriptomic analyses and physiological experiments to explore gene expression profiles and physiological homeostasis in the response of rice (Oryza sativa) to N and P deficiency. We revealed that N and P shortage inhibit rice growth and uptake of other nutrients. Gene Ontology (GO) analysis of differentially expressed genes (DEGs) suggested that N and Pi deficiency stimulate specific different physiological reactions and also some same physiological processes in rice. We established the transcriptional regulatory network between N and P signaling pathways based on all DEGs. We determined that the transcript levels of 763 core genes changed under both N or P starvation conditions. Among these core genes, we focused on the transcription factor gene NITRATE-INDUCIBLE, GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1) and show that its encoded protein is a positive regulator of P homeostasis and a negative regulator of N acquisition in rice. NIGT1 promoted Pi uptake but inhibited N absorption, induced the expression of Pi responsive genes PT2 and SPX1 and repressed the N responsive genes NLP1 and NRT2.1. These results provide new clues about the mechanisms underlying the interaction between plant N and P starvation responses.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Luying Ying
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hong Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yijian Liu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, Hainan, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yunrong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhongchang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, Hainan, China
| |
Collapse
|
35
|
Gao J, Zhao Y, Zhao Z, Liu W, Jiang C, Li J, Zhang Z, Zhang H, Zhang Y, Wang X, Sun X, Li Z. RRS1 shapes robust root system to enhance drought resistance in rice. THE NEW PHYTOLOGIST 2023; 238:1146-1162. [PMID: 36862074 DOI: 10.1111/nph.18775] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
A strong root system facilitates the absorption of water and nutrients from the soil, to improve the growth of crops. However, to date, there are still very few root development regulatory genes that can be used in crop breeding for agriculture. In this study, we cloned a negative regulator gene of root development, Robust Root System 1 (RRS1), which encodes an R2R3-type MYB family transcription factor. RRS1 knockout plants showed enhanced root growth, including longer root length, longer lateral root length, and larger lateral root density. RRS1 represses root development by directly activating the expression of OsIAA3 which is involved in the auxin signaling pathway. A natural variation in the coding region of RRS1 changes the transcriptional activity of its protein. RRS1T allele, originating from wild rice, possibly increases root length by means of weakening regulation of OsIAA3. Knockout of RRS1 enhances drought resistance by promoting water absorption and improving water use efficiency. This study provides a new gene resource for improving root systems and cultivating drought-resistant rice varieties with important values in agricultural applications.
Collapse
Affiliation(s)
- Jie Gao
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yong Zhao
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhikun Zhao
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wei Liu
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Conghui Jiang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Jinjie Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhanying Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hongliang Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yage Zhang
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China
| | - Xiaoning Wang
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China
| | - Xingming Sun
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zichao Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China
| |
Collapse
|
36
|
Wang J, Li C, Mao X, Wang J, Li L, Li J, Fan Z, Zhu Z, He L, Jing R. The wheat basic helix-loop-helix gene TabHLH123 positively modulates the formation of crown roots and is associated with plant height and 1000-grain weight under various conditions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2542-2555. [PMID: 36749713 DOI: 10.1093/jxb/erad051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/03/2023] [Indexed: 06/06/2023]
Abstract
Crown roots are the main components of the fibrous root system in cereal crops and play critical roles in plant adaptation; however, the molecular mechanisms underlying their formation in wheat (Triticum aestivum) have not been fully elucidated. In this study, we identified a wheat basic helix-loop-helix (bHLH) protein, TabHLH123, that interacts with the essential regulator of crown root initiation, MORE ROOT in wheat (TaMOR). TabHLH123 is expressed highly in shoot bases and roots. Ectopic expression of TabHLH123 in rice resulted in more roots compared with the wild type. TabHLH123 regulates the expression of genes controlling crown-root development and auxin metabolism, responses, and transport. In addition, we analysed the nucleotide sequence polymorphisms of TabHLH123s in the wheat genome and identified a superior haplotype, TabHLH123-6B, that is associated with high root dry weight and 1000-grain weight, and short plant height. Our study reveals the role of TabHLH123 in controlling the formation of crown roots and provides beneficial insights for molecular marker-assisted breeding in wheat.
Collapse
Affiliation(s)
- Jinping Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Shanxi Agricultural University, Taigu 030031, China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jialu Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zipei Fan
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhi Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liheng He
- College of Agronomy, Shanxi Agricultural University, Taigu 030031, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
37
|
Tanaka W, Yamauchi T, Tsuda K. Genetic basis controlling rice plant architecture and its modification for breeding. BREEDING SCIENCE 2023; 73:3-45. [PMID: 37168811 PMCID: PMC10165344 DOI: 10.1270/jsbbs.22088] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/25/2022] [Indexed: 05/13/2023]
Abstract
The shoot and root system architectures are fundamental for crop productivity. During the history of artificial selection of domestication and post-domestication breeding, the architecture of rice has significantly changed from its wild ancestor to fulfil requirements in agriculture. We review the recent studies on developmental biology in rice by focusing on components determining rice plant architecture; shoot meristems, leaves, tillers, stems, inflorescences and roots. We also highlight natural variations that affected these structures and were utilized in cultivars. Importantly, many core regulators identified from developmental mutants have been utilized in breeding as weak alleles moderately affecting these architectures. Given a surge of functional genomics and genome editing, the genetic mechanisms underlying the rice plant architecture discussed here will provide a theoretical basis to push breeding further forward not only in rice but also in other crops and their wild relatives.
Collapse
Affiliation(s)
- Wakana Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Katsutoshi Tsuda
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
38
|
Singh Z, Singh H, Garg T, Mushahary KKK, Yadav SR. Genetic and Hormonal Blueprint of Shoot-Borne Adventitious Root Development in Rice and Maize. PLANT & CELL PHYSIOLOGY 2023; 63:1806-1813. [PMID: 35713294 DOI: 10.1093/pcp/pcac084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/05/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The evolution of root architecture in plants was a prerequisite for the absorption of water and minerals from the soil, and thus a major determinant of terrestrial plant colonization. Cereals have a remarkably complex root system consisting of embryonic primary roots and post-embryonic lateral roots and shoot-borne adventitious roots. Among grass species, rice adventitious roots (also called crown roots) are developed from compressed nodes at the stem base, whereas in maize, besides crown roots, several aboveground brace roots are also formed, thus adventitious root types display species-specific diversity. Despite being the backbone for the adult root system in monocots, adventitious roots are the least studied of all the plant organs. In recent times, molecular genetics, genomics and proteomics-based approaches have been utilized to dissect the mechanism of post-embryonic meristem formation and tissue patterning. Adventitious root development is a cumulative effect of the actions and interactions of crucial genetic and hormonal regulators. In this review, we provide a comprehensive view of the key regulators involved during the different stages of adventitious root development in two important crop plants, rice and maize. We have reviewed the roles of major phytohormones, microRNAs and transcription factors and their crosstalk during adventitious root development in these cereal crops.
Collapse
Affiliation(s)
- Zeenu Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Harshita Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Tushar Garg
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | | | - Shri Ram Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
39
|
Zhang Y, Han S, Lin Y, Qiao J, Han N, Li Y, Feng Y, Li D, Qi Y. Auxin Transporter OsPIN1b, a Novel Regulator of Leaf Inclination in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:409. [PMID: 36679122 PMCID: PMC9861231 DOI: 10.3390/plants12020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Leaf inclination is one of the most important components of the ideal architecture, which effects yield gain. Leaf inclination was shown that is mainly regulated by brassinosteroid (BR) and auxin signaling. Here, we reveal a novel regulator of leaf inclination, auxin transporter OsPIN1b. Two CRISPR-Cas9 homozygous mutants, ospin1b-1 and ospin1b-2, with smaller leaf inclination compared to the wild-type, Nipponbare (WT/NIP), while overexpression lines, OE-OsPIN1b-1 and OE-OsPIN1b-2 have opposite phenotype. Further cell biological observation showed that in the adaxial region, OE-OsPIN1b-1 has significant bulge compared to WT/NIP and ospin1b-1, indicating that the increase in the adaxial cell division results in the enlarging of the leaf inclination in OE-OsPIN1b-1. The OsPIN1b was localized on the plasma membrane, and the free IAA contents in the lamina joint of ospin1b mutants were significantly increased while they were decreased in OE-OsPIN1b lines, suggesting that OsPIN1b might action an auxin transporter such as AtPIN1 to alter IAA content and leaf inclination. Furthermore, the OsPIN1b expression was induced by exogenous epibrassinolide (24-eBL) and IAA, and ospin1b mutants are insensitive to BR or IAA treatment, indicating that the effecting leaf inclination is regulated by OsPIN1b. This study contributes a new gene resource for molecular design breeding of rice architecture.
Collapse
Affiliation(s)
- Yanjun Zhang
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010030, China
| | - Shaqila Han
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010030, China
| | - Yuqing Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiyue Qiao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Naren Han
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010030, China
| | - Yanyan Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China
| | - Yaning Feng
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China
| | - Dongming Li
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010030, China
| | - Yanhua Qi
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010030, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
40
|
Geng L, Li Q, Jiao L, Xiang Y, Deng Q, Zhou DX, Zhao Y. WOX11 and CRL1 act synergistically to promote crown root development by maintaining cytokinin homeostasis in rice. THE NEW PHYTOLOGIST 2023; 237:204-216. [PMID: 36208055 DOI: 10.1111/nph.18522] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Crown root (CR) morphogenesis is critical for normal growth and nutrition absorption in cereals. In rice, WUSCHEL-RELATED HOMEOBOX11 (WOX11) and CROWN ROOTLESS1 (CRL1) play vital roles in controlling CR development. Despite their importance, whether and how the two regulators coordinate CR formation remains unclear. Electrophoretic mobility shift assays, transient expression, and chromatin immunoprecipitation qPCR suggested that WOX11 and CRL1 directly bind to OsCKX4 to regulate its expression during CR development. CRL1 enhances OsCKX4 activation through direct interaction with WOX11 at root emergence and elongation stages. Genetic dissection showed that the wox11/crl1 double mutant exhibits a more severe root phenotype. OsCKX4 knockout plants generated by CRISPR/Cas9 exhibited fewer CRs and higher cytokinin levels in the root meristem. Increased expression of OsCKX4 could partially complement the CR phenotypes of both crl1 and wox11 mutants. Furthermore, cytokinin can promote WOX11 protein accumulation in the root meristem. Together, these findings show that cytokinin accumulation is tightly regulated by the WOX11-CRL1 complex during CR elongation by counteracting the negative regulatory effects of cytokinin on root development. Importantly, these results reveal an intrinsic link between WOX11 protein accumulation and cytokinin to maintain CR growth.
Collapse
Affiliation(s)
- Leping Geng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lele Jiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yimeng Xiang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiyu Deng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
41
|
Li Y, Wu L, Ren M, Zhu J, Xu J, Hu H, Quan X, Huang C, Mao C. Functional redundancy of OsPIN1 paralogous genes in regulating plant growth and development in rice. PLANT SIGNALING & BEHAVIOR 2022; 17:2065432. [PMID: 35442849 PMCID: PMC9037464 DOI: 10.1080/15592324.2022.2065432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The OsPIN1 paralogous genes (OsPIN1a-1d) are important for root and panicle development in rice (Oryza sativa L.). However, the specific role of OsPIN1 paralogous genes is still not clear. To understand the specific roles of PIN1 paralogs in rice, we generated pin1 triple and quadruple mutants by crossing the pin1a pin1b and pin1c pin1d double mutants which we previously created. Compared with the 7-day-old wild type, the pin1a pin1c pin1d and pin1b pin1c pin1d triple mutants showed no obvious phenotype variation except that the pin1a pin1c pin1d triple mutant had shorter primary root and shoot. The pin1a pin1b pin1c and pin1a pin1b pin1d triple mutants exhibited a series of developmental abnormalities, including shorter primary roots, longer root hairs, fewer crown roots and lateral roots, shorter and curved shoots. Furthermore, the pin1a pin1b pin1c pin1d quadruple mutant displayed more severe phenotypic defects which was lethal. In addition, the expression levels of some hormone signal transduction and crown root development related genes, such as OsIAAs, OsARFs, OsRRs, and OsCRLs, were significantly altered in the stem base of all examined pin1 multiple mutants. Taken together, our results demonstrated that the four OsPIN1 paralogous genes function redundantly in regulating rice growth and development.
Collapse
Affiliation(s)
- Yong Li
- Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lingling Wu
- Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Meiyan Ren
- Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianshu Zhu
- Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiming Xu
- Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Han Hu
- Agricultural Experiment Station of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaokang Quan
- Agricultural Experiment Station of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chongping Huang
- Agricultural Experiment Station of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chuanzao Mao
- Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
42
|
Wei J, Yang Q, Ni J, Gao Y, Tang Y, Bai S, Teng Y. Early defoliation induces auxin redistribution, promoting paradormancy release in pear buds. PLANT PHYSIOLOGY 2022; 190:2739-2756. [PMID: 36200868 PMCID: PMC9706473 DOI: 10.1093/plphys/kiac426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/18/2022] [Indexed: 06/06/2023]
Abstract
Paradormancy of fruit trees occurs in summer and autumn when signals from adjacent organs stimulate buds to develop slowly. This stage has received less attention that the other stages of dormancy, and the underlying mechanism remains uncharacterized. Early defoliation in late summer and early autumn is usually followed by out-of-season blooming in pear (Pyrus spp.), which substantially decreases the number of buds the following spring and negatively affects fruit production. This early bud flush is an example of paradormancy release. Here, we determined that flower bud auxin content is stable after defoliation; however, polar distribution of the pear (Pyrus pyrifolia) PIN-FORMED auxin efflux carrier 1b (PpyPIN1b) implied that auxin tends to be exported from buds. Transcriptome analysis of floral buds after artificial defoliation revealed changes in auxin metabolism, transport, and signal transduction pathways. Exogenous application of a high concentration of the auxin analog 1-naphthaleneacetic acid (300 mg/L) suppressed PpyPIN1b expression and its protein accumulation in the cell membrane, likely leading to decreased auxin efflux from buds, which hindered flower bud sprouting. Furthermore, carbohydrates and additional hormones also influenced out-of-season flowering. Our results indicate that defoliation-induced auxin efflux from buds accelerates bud paradormancy release. This differs from release of apical-dominance-related lateral bud paradormancy after the apex is removed. Our findings and proposed model further elucidate the mechanism underlying paradormancy and will help researchers to develop methods for inhibiting early defoliation-induced out-of-season bud sprouting.
Collapse
Affiliation(s)
- Jia Wei
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058 Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, China
| | - Qinsong Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Haidian, Beijing 100083, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058 Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, China
| | - Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058 Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, China
| | - Yinxin Tang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Yantai Institute, China Agricultural University, Yantai, Shandong 264670, China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058 Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, China
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058 Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan 572000, China
| |
Collapse
|
43
|
Integrative Proteomics and Transcriptomics Profiles of the Oviduct Reveal the Prolificacy-Related Candidate Biomarkers of Goats ( Capra hircus) in Estrous Periods. Int J Mol Sci 2022; 23:ijms232314888. [PMID: 36499219 PMCID: PMC9737051 DOI: 10.3390/ijms232314888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The oviduct is a dynamic reproductive organ for mammalian reproduction and is required for gamete storage, maturation, fertilization, and early embryonic development, and it directly affects fecundity. However, the molecular regulation of prolificacy occurring in estrous periods remain poorly understood. This study aims to gain a better understanding of the genes involved in regulating goat fecundity in the proteome and transcriptome levels of the oviducts. Twenty female Yunshang black goats (between 2 and 3 years old, weight 52.22 ± 0.43 kg) were divided into high- and low-fecundity groups in the follicular (FH and FL, five individuals per group) and luteal (LH and LL, five individuals per group) phases, respectively. The DIA-based high-resolution mass spectrometry (MS) method was used to quantify proteins in twenty oviducts. A total of 5409 proteins were quantified, and Weighted gene co-expression network analysis (WGCNA) determined that the tan module was highly associated with the high-fecundity trait in the luteal phase, and identified NUP107, ANXA11, COX2, AKP13, and ITF140 as hub proteins. Subsequently, 98 and 167 differentially abundant proteins (DAPs) were identified in the FH vs. FL and LH vs. LL comparison groups, respectively. Parallel reaction monitoring (PRM) was used to validate the results of the proteomics data, and the hub proteins were analyzed with Western blot (WB). In addition, biological adhesion and transporter activity processes were associated with oviductal function, and several proteins that play roles in oviductal communication with gametes or embryos were identified, including CAMSAP3, ITGAM, SYVN1, EMG1, ND5, RING1, CBS, PES1, ELP3, SEC24C, SPP1, and HSPA8. Correlation analysis of proteomics and transcriptomic revealed that the DAPs and differentially expressed genes (DEGs) are commonly involved in the metabolic processes at the follicular phase; they may prepare the oviductal microenvironment for gamete reception; and the MAP kinase activity, estrogen receptor binding, and angiotensin receptor binding terms were enriched in the luteal phase, which may be actively involved in reproductive processes. By generating the proteome data of the oviduct at two critical phases and integrating transcriptome analysis, we uncovered novel aspects of oviductal gene regulation of fecundity and provided a reference for other mammals.
Collapse
|
44
|
Li Z, Yang Y, Chen B, Xia B, Li H, Zhou Y, He M. Genome-wide identification and expression analysis of SBP-box gene family reveal their involvement in hormone response and abiotic stresses in Chrysanthemum nankingense. PeerJ 2022; 10:e14241. [PMID: 36320567 PMCID: PMC9618261 DOI: 10.7717/peerj.14241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023] Open
Abstract
SQUAMOSA promoter-binding-protein (SBP)-box family proteins are a class of plant-specific transcription factors, and widely regulate the development of floral and leaf morphology in plant growth and involve in environment and hormone signal response. In this study, we isolated and identified 21 non-redundant SBP-box genes in Chrysanthemum nankingense with bioinformatics analysis. Sequence alignments of 21 CnSBP proteins discovered a highly conserved SBP domain including two zinc finger-like structures and a nuclear localization signal region. According to the amino acid sequence alignments, 67 SBP-box genes from Arabidopsis thaliana, rice, Artemisia annua and C. nankingense were clustered into eight groups, and the motif and gene structure analysis also sustained this classification. The gene evolution analysis indicated the CnSBP genes experienced a duplication event about 10 million years ago (Mya), and the CnSBP and AtSPL genes occurred a divergence at 24 Mya. Transcriptome data provided valuable information for tissue-specific expression profiles of the CnSBPs, which highly expressed in floral tissues and differentially expressed in leaf, root and stem organs. Quantitative Real-time Polymerase Chain Reaction data showed expression patterns of the CnSBPs under exogenous hormone and abiotic stress treatments, separately abscisic acid, salicylic acid, gibberellin A3, methyl jasmonate and ethylene spraying as well as salt and drought stresses, indicating that the candidate CnSBP genes showed differentiated spatiotemporal expression patterns in response to hormone and abiotic stresses. Our study provides a systematic genome-wide analysis of the SBP-box gene family in C. nankingense. In general, it provides a fundamental theoretical basis that SBP-box genes may regulate the resistance of stress physiology in chrysanthemum via exogenous hormone pathways.
Collapse
Affiliation(s)
- Ziwei Li
- College of Landscape Architecture, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Yujia Yang
- College of Landscape Architecture, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Bin Chen
- College of Landscape Architecture, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Bin Xia
- College of Landscape Architecture, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Hongyao Li
- College of Landscape Architecture, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Yunwei Zhou
- College of Horticulture, Jilin Agricultural University, Jilin, China
| | - Miao He
- College of Landscape Architecture, Northeast Forestry University, Harbin, Heilongjiang, China
| |
Collapse
|
45
|
Qiao J, Zhang Y, Han S, Chang S, Gao Z, Qi Y, Qian Q. OsARF4 regulates leaf inclination via auxin and brassinosteroid pathways in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:979033. [PMID: 36247537 PMCID: PMC9561258 DOI: 10.3389/fpls.2022.979033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Leaf inclination is a vital agronomic trait and is important for plant architecture that affects photosynthetic efficiency and grain yield. To understand the molecular mechanisms underlying regulation of leaf inclination, we constructed an auxin response factor (arf) rice mutant-osarf4-showing increased leaf inclination using CRISPR/Cas9 gene editing technology. OsARF4 encodes a nuclear protein that is expressed in the lamina joint (LJ) at different developmental stages in rice. Histological analysis indicated that an increase in cell differentiation on the adaxial side resulted in increased leaf inclination in the osarf4 mutants; however, OsARF4-overexpressing lines showed a decrease in leaf inclination, resulting in erect leaves. Additionally, a decrease in the content and distribution of indole-3-acetic acid (IAA) in osarf4 mutant led to a greater leaf inclination, whereas the OsARF4-overexpressing lines showed the opposite phenotype with increased IAA content. RNA-sequencing analysis revealed that the expression of genes related to brassinosteroid (BR) biosynthesis and response was different in the mutants and overexpressing lines, suggesting that OsARF4 participates in the BR signaling pathway. Moreover, BR sensitivity assay revealed that OsARF4-overexpressing lines were more sensitive to exogenous BR treatment than the mutants. In conclusion, OsARF4, a transcription factor in auxin signaling, participates in leaf inclination regulation and links auxin and BR signaling pathways. Our results provide a novel insight into l leaf inclination regulation, and have significant implications for improving rice architecture and grain yield.
Collapse
Affiliation(s)
- Jiyue Qiao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yanjun Zhang
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - ShaqiLa Han
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Senqiu Chang
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yanhua Qi
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
46
|
Wang R, Miao X. Lipid turnover and SQUAMOSA promoter-binding proteins mediate variation in fatty acid desaturation under early nitrogen deprivation revealed by lipidomic and transcriptomic analyses in Chlorella pyrenoidosa. FRONTIERS IN PLANT SCIENCE 2022; 13:987354. [PMID: 36247620 PMCID: PMC9558234 DOI: 10.3389/fpls.2022.987354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen deprivation induces variations in fatty acid desaturation in microalgae, which determines the performance of biodiesel and the nutritional value of bioproducts. However, the detailed scenario and the underlying regulatory mechanism remain unclear. In this study, we attempt to outline these scenario and mechanisms by performing biochemical, lipidomic, and transcriptomic analyses in Chlorella pyrenoidosa and functional characterization of transcription factors in Yarrowia lipolytica. We found that early nitrogen deprivation dramatically reduced fatty acid desaturation without increasing lipid content. The contents of palmitic acid (16:0) and oleic acid (18:1) dramatically increased to 2.14 and 2.87 times that of nitrogen repletion on the second day, respectively. Lipidomic analysis showed the transfer of polyunsaturated fatty acids from phospholipids and glycolipids to triacylglycerols, and an increase in lipid species with 16:0 or 18:1 under nitrogen deprivation conditions. Upregulated stearoyl-ACP desaturase and oleyl-ACP thioesterase promoted the synthesis of 18:1, but restricted acetyl-CoA supply revealed that it was the intensive lipid turnover instead of an attenuated Kennedy pathway that played an important role in the variation in fatty acid composition under early nitrogen deprivation. Finally, two differentially expressed SQUAMOSA promoter-binding proteins (SBPs) were heterologously expressed in Y. lipolytica, demonstrating their role in promoting the accumulation of total fatty acid and the reduction in fatty acid desaturation. These results revealed the crucial role of lipid turnover and SBPs in determining fatty acid desaturation under early nitrogen deprivation, opening new avenues for the metabolic engineering of fatty acid desaturation in microalgae.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
47
|
Jiang R, Zhou S, Da X, Chen T, Xu J, Yan P, Mo X. Ubiquitin-Specific Protease 2 (OsUBP2) Negatively Regulates Cell Death and Disease Resistance in Rice. PLANTS 2022; 11:plants11192568. [PMID: 36235432 PMCID: PMC9571816 DOI: 10.3390/plants11192568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Lesion mimic mutants (LMMs) are great materials for studying programmed cell death and immune mechanisms in plants. Various mechanisms are involved in the phenotypes of different LMMs, but few studies have explored the mechanisms linking deubiquitination and LMMs in rice (Oryza sativa). Here, we identified a rice LMM, rust spots rice (rsr1), resulting from the mutation of a single recessive gene. This LMM has spontaneous reddish-brown spots on its leaves, and displays enhanced resistance to both fungal leaf blast (caused by Magnaporthe oryzae) and bacterial blight (caused by Xanthomonas oryzae pv. oryzae). Map-based cloning showed that the mutated gene in rsr1 encodes a Ubiquitin-Specific Protease 2 (OsUBP2). The mutation of OsUBP2 was shown to result in reactive oxygen species (ROS) accumulation, chloroplast structural defects, and programmed cell death, while the overexpression of OsUBP2 weakened rice resistance to leaf blast. OsUBP2 is therefore a negative regulator of immune processes and ROS production. OsUBP2 has deubiquitinating enzyme activity in vitro, and the enzyme active site includes a cysteine at the 234th residue. The ubiquitinated proteomics data of rsr1 and WT provide some possible target protein candidates for OsUBP2.
Collapse
|
48
|
Lin Y, Chu S, Xu X, Han X, Huang H, Tong Z, Zhang J. Identification of Nitrogen Starvation-Responsive miRNAs to Reveal the miRNA-Mediated Regulatory Network in Betula luminifera. Front Genet 2022; 13:957505. [PMID: 36061195 PMCID: PMC9428261 DOI: 10.3389/fgene.2022.957505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
Because of the immobility, plants encounter a series of stresses, such as varied nutrient concentrations in soil, which regulate plant growth, development, and phase transitions. Nitrogen (N) is one of the most limiting factors for plants, which was exemplified by the fact that low nitrogen (LN) has a great adverse effect on plant growth and development. In the present study, we explored the potential role of microRNAs (miRNAs) in response to LN stress in Betula luminifera. We identified 198 miRNAs using sRNA sequencing, including 155 known and 43 novel miRNAs. Among them, 98 known miRNAs and 31 novel miRNAs were differentially expressed after 0.5 h or 24 h of LN stress. Based on degradome data, 122 differential expressed miRNAs (DEmiRNAs) including 102 known miRNAs and 20 novel miRNAs targeted 203 genes, comprising 321 miRNA–target pairs. A big proportion of target genes were transcription factors and functional proteins, and most of the Gene Ontology terms were enriched in biological processes; moreover, one Kyoto Encyclopedia of Genes and Genomes term “ascorbate and aldarate metabolism” was significantly enriched. The expression patterns of six miRNAs and their corresponding target genes under LN stress were monitored. According to the potential function for targets of DEmiRNAs, a proposed regulatory network mediated by miRNA–target pairs under LN stress in B. luminifera was constructed. Taken together, these findings provide useful information to elucidate miRNA functions and establish a framework for exploring N signaling networks mediated by miRNAs in B. luminifera. It may provide new insights into the genetic engineering of the high use efficiency of N in forestry trees.
Collapse
|
49
|
Identification of quantitative trait loci for tillering, root, and shoot biomass at the maximum tillering stage in rice. Sci Rep 2022; 12:13304. [PMID: 35922462 PMCID: PMC9349274 DOI: 10.1038/s41598-022-17109-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/20/2022] [Indexed: 11/14/2022] Open
Abstract
Tillering and plant biomass are key determinants of rice crop productivity. Tillering at the vegetative stage is associated with weed competition, nutrient uptake, and methane emissions. However, little information is available on quantitative trait loci (QTLs) associated with tiller number (qTN), root biomass (qRB), and shoot biomass (qSB) at the active tillering stage which occurs approximately 6 weeks after planting. Here, we mapped tiller and biomass QTLs with ~ 250 recombinant inbred lines derived from a ‘Francis’ by ‘Rondo’ cross using data collected at the maximum tillering stage from two years of greenhouse study, and further compared these QTLs with those mapped at the harvest stage from a field study. Across these three studies, we discovered six qTNs, two qRBs, and three qSBs. Multiple linear regression further indicated that qTN1-2, qTN3-3, qTN4-1, qRB3-1, and qRB5-1 were significant at the maximum tillering stage while qTN3-2 was detected only at the harvest stage. Moreover, qTN3-1 was consistently significant across different developmental stages and growing environments. The genes identified from the peak target qTN regions included a carotenoid metabolism enzyme, a MYB transcription factor, a CBS domain-containing protein, a SAC3/GANP family protein, a TIFY motif containing protein, and an ABC transporter protein. Two genes in the qRB peak target regions included an expressed protein and a WRKY gene. This knowledge of the QTLs, associated markers, candidate genes, and germplasm resources with high TN, RB and SB is of value to rice cultivar improvement programs.
Collapse
|
50
|
Exploring the mechanism of Akebia trifoliata fruit cracking based on cell-wall metabolism. Food Res Int 2022; 157:111219. [DOI: 10.1016/j.foodres.2022.111219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023]
|