1
|
Wiedmann NM, Fuller-Jackson JP, Osborne PB, Keast JR. An adeno-associated viral labeling approach to visualize the meso- and microanatomy of mechanosensory afferents and autonomic innervation of the rat urinary bladder. FASEB J 2024; 38:e23380. [PMID: 38102980 PMCID: PMC10789495 DOI: 10.1096/fj.202301113r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/04/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
The urinary bladder is supplied by a rich network of sensory and autonomic axons, commonly visualized by immunolabeling for neural markers. This approach demonstrates overall network patterning but is less suited to understanding the structure of individual motor and sensory terminals within these complex plexuses. There is a further limitation visualizing the lightly myelinated (A-delta) class of sensory axons that provides the primary mechanosensory drive for initiation of voiding. Whereas most unmyelinated sensory axons can be revealed by immunolabeling for specific neuropeptides, to date no unique neural marker has been identified to immunohistochemically label myelinated visceral afferents. We aimed to establish a non-surgical method to visualize and map myelinated afferents in the bladder in rats. We found that in rats, the adeno-associated virus (AAV), AAV-PHP.S, which shows a high tropism for the peripheral nervous system, primarily transduced myelinated dorsal root ganglion neurons, enabling us to identify the structure and regional distribution of myelinated (mechanosensory) axon endings within the muscle and lamina propria of the bladder. We further identified the projection of myelinated afferents within the pelvic nerve and lumbosacral spinal cord. A minority of noradrenergic and cholinergic neurons in pelvic ganglia were transduced, enabling visualization and regional mapping of both autonomic and sensory axon endings within the bladder. Our study identified a sparse labeling approach for investigating myelinated sensory and autonomic axon endings within the bladder and provides new insights into the nerve-bladder interface.
Collapse
Affiliation(s)
- Nicole M Wiedmann
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | | | - Peregrine B Osborne
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Janet R Keast
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Liu Y, Zhong Y, Zhao X, Liu L, Ding L, Peng H. Tracing weak neuron fibers. Bioinformatics 2022; 39:6960919. [PMID: 36571479 PMCID: PMC9848051 DOI: 10.1093/bioinformatics/btac816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 11/01/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022] Open
Abstract
MOTIVATION Precise reconstruction of neuronal arbors is important for circuitry mapping. Many auto-tracing algorithms have been developed toward full reconstruction. However, it is still challenging to trace the weak signals of neurite fibers that often correspond to axons. RESULTS We proposed a method, named the NeuMiner, for tracing weak fibers by combining two strategies: an online sample mining strategy and a modified gamma transformation. NeuMiner improved the recall of weak signals (voxel values <20) by a large margin, from 5.1 to 27.8%. This is prominent for axons, which increased by 6.4 times, compared to 2.0 times for dendrites. Both strategies were shown to be beneficial for weak fiber recognition, and they reduced the average axonal spatial distances to gold standards by 46 and 13%, respectively. The improvement was observed on two prevalent automatic tracing algorithms and can be applied to any other tracers and image types. AVAILABILITY AND IMPLEMENTATION Source codes of NeuMiner are freely available on GitHub (https://github.com/crazylyf/neuronet/tree/semantic_fnm). Image visualization, preprocessing and tracing are conducted on the Vaa3D platform, which is accessible at the Vaa3D GitHub repository (https://github.com/Vaa3D). All training and testing images are cropped from high-resolution fMOST mouse brains downloaded from the Brain Image Library (https://www.brainimagelibrary.org/), and the corresponding gold standards are available at https://doi.brainimagelibrary.org/doi/10.35077/g.25. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yufeng Liu
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu 210096, China
| | - Ye Zhong
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xuan Zhao
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu 210096, China
| | - Lijuan Liu
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu 210096, China
| | - Liya Ding
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu 210096, China
| | | |
Collapse
|
3
|
Liu Y, Wang G, Ascoli GA, Zhou J, Liu L. Neuron tracing from light microscopy images: automation, deep learning and bench testing. Bioinformatics 2022; 38:5329-5339. [PMID: 36303315 PMCID: PMC9750132 DOI: 10.1093/bioinformatics/btac712] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Large-scale neuronal morphologies are essential to neuronal typing, connectivity characterization and brain modeling. It is widely accepted that automation is critical to the production of neuronal morphology. Despite previous survey papers about neuron tracing from light microscopy data in the last decade, thanks to the rapid development of the field, there is a need to update recent progress in a review focusing on new methods and remarkable applications. RESULTS This review outlines neuron tracing in various scenarios with the goal to help the community understand and navigate tools and resources. We describe the status, examples and accessibility of automatic neuron tracing. We survey recent advances of the increasingly popular deep-learning enhanced methods. We highlight the semi-automatic methods for single neuron tracing of mammalian whole brains as well as the resulting datasets, each containing thousands of full neuron morphologies. Finally, we exemplify the commonly used datasets and metrics for neuron tracing bench testing.
Collapse
Affiliation(s)
- Yufeng Liu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Gaoyu Wang
- School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Jiangning Zhou
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lijuan Liu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Structural diverseness of neurons between brain areas and between cases. Transl Psychiatry 2021; 11:49. [PMID: 33446640 PMCID: PMC7809156 DOI: 10.1038/s41398-020-01173-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022] Open
Abstract
The cerebral cortex is composed of multiple cortical areas that exert a wide variety of brain functions. Although human brain neurons are genetically and areally mosaic, the three-dimensional structural differences between neurons in different brain areas or between the neurons of different individuals have not been delineated. Here we report a nanometer-scale geometric analysis of brain tissues of the superior temporal gyrus of schizophrenia and control cases. The results of the analysis and a comparison with results for the anterior cingulate cortex indicated that (1) neuron structures are significantly dissimilar between brain areas and that (2) the dissimilarity varies from case to case. The structural diverseness was mainly observed in terms of the neurite curvature that inversely correlates with the diameters of the neurites and spines. The analysis also revealed the geometric differences between the neurons of the schizophrenia and control cases. The schizophrenia cases showed a thin and tortuous neuronal network compared with the controls, suggesting that the neuron structure is associated with the disorder. The area dependency of the neuron structure and its diverseness between individuals should represent the individuality of brain functions.
Collapse
|
5
|
Combining mGRASP and Optogenetics Enables High-Resolution Functional Mapping of Descending Cortical Projections. Cell Rep 2020; 24:1071-1080. [PMID: 30044974 PMCID: PMC6083038 DOI: 10.1016/j.celrep.2018.06.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/23/2018] [Accepted: 06/18/2018] [Indexed: 11/25/2022] Open
Abstract
We have applied optogenetics and mGRASP, a light microscopy technique that labels synaptic contacts, to map the number and strength of defined corticocollicular (CC) connections. Using mGRASP, we show that CC projections form small, medium, and large synapses, and both the number and the distribution of synapse size vary among the IC regions. Using optogenetics, we show that low-frequency stimulation of CC axons expressing channelrhodopsin produces prolonged elevations of the CC miniature EPSC (mEPSC) rate. Functional analysis of CC mEPSCs reveals small-, medium-, and large-amplitude events that mirror the synaptic distributions observed with mGRASP. Our results reveal that descending ipsilateral projections dominate CC feedback via an increased number of large synaptic contacts, especially onto the soma of IC neurons. This study highlights the feasibility of combining microscopy (i.e., mGRASP) and optogenetics to reveal synaptic weighting of defined projections at the level of single neurons, enabling functional connectomic mapping in diverse neural circuits. Optogenetic axonal stimulation causes prolonged increases in quantal synaptic release Quantal and anatomical measures of synapse strength directly correspond Strength and cellular location of cortical inputs to midbrain are region specific
Collapse
|
6
|
Belciug S. Pathologist at work. Artif Intell Cancer 2020. [DOI: 10.1016/b978-0-12-820201-2.00003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
7
|
Minota K, Schmeichel AM, Gehrking JA, Mandrekar JN, Low PA, Singer W. Refined Quantitation of Sweat Gland Innervation. J Neuropathol Exp Neurol 2019; 78:453-459. [PMID: 30861073 PMCID: PMC6467193 DOI: 10.1093/jnen/nlz015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Skin biopsies have gained increasing popularity as a tool to evaluate disorders affecting small nerve fibers. While reports on sweat gland nerve fiber density (SGNFD) to quantitate sudomotor innervation have been promising, methodologies vary significantly. Although conventional stereology is commonly used, no standard technique has been established. We sought to develop an accurate and reproducible technique to quantify SGNFD. Skin punch biopsies from healthy individuals were cut and stained. Images of sweat glands (SGs) were acquired using confocal and widefield microscopes, and optimized using deconvolution. Nerve fibers were reconstructed and nerve fiber length (NFL) was quantified using three-dimensional (3D) automated software. SGNFD was obtained by dividing NFL by SG volume. SGNFD was also assessed using stereology for comparison. Ninety-two SGs from 10 healthy subjects were analyzed by independent observers. Using confocal microscopy, the software reliably traced nerve fibers. In contrast, rendering of nerve fibers was inferior using widefield microscopy. Interobserver reliability was suboptimal using widefield images compared to confocal (ICC = 0.82 vs ICC = 0.98). Correlation between 3D-reconstruction and stereology was poor (ICC = 0.38). The newly developed technique of SGNFD quantitation using 3D reconstruction of SG innervation with confocal microscopy reliably traces nerve fibers, shows outstanding reproducibility, is almost completely unbiased, and superior to conventional stereology methods.
Collapse
Affiliation(s)
- Karla Minota
- Department of Neurology, Mayo Clinic, Rochester, Minnesota (KM, AMS, JAG, JNM, PAL, WS)
| | - Ann M Schmeichel
- Department of Neurology, Mayo Clinic, Rochester, Minnesota (KM, AMS, JAG, JNM, PAL, WS)
| | - Jade A Gehrking
- Department of Neurology, Mayo Clinic, Rochester, Minnesota (KM, AMS, JAG, JNM, PAL, WS)
| | - Jay N Mandrekar
- Department of Neurology, Mayo Clinic, Rochester, Minnesota (KM, AMS, JAG, JNM, PAL, WS)
| | - Phillip A Low
- Department of Neurology, Mayo Clinic, Rochester, Minnesota (KM, AMS, JAG, JNM, PAL, WS)
| | - Wolfgang Singer
- Department of Neurology, Mayo Clinic, Rochester, Minnesota (KM, AMS, JAG, JNM, PAL, WS)
| |
Collapse
|
8
|
Govyadinov PA, Womack T, Eriksen JL, Chen G, Mayerich D. Robust Tracing and Visualization of Heterogeneous Microvascular Networks. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:1760-1773. [PMID: 29993636 PMCID: PMC6360128 DOI: 10.1109/tvcg.2018.2818701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Advances in high-throughput imaging allow researchers to collect three-dimensional images of whole organ microvascular networks. These extremely large images contain networks that are highly complex, time consuming to segment, and difficult to visualize. In this paper, we present a framework for segmenting and visualizing vascular networks from terabyte-sized three-dimensional images collected using high-throughput microscopy. While these images require terabytes of storage, the volume devoted to the fiber network is ≈ 4 percent of the total volume size. While the networks themselves are sparse, they are tremendously complex, interconnected, and vary widely in diameter. We describe a parallel GPU-based predictor-corrector method for tracing filaments that is robust to noise and sampling errors common in these data sets. We also propose a number of visualization techniques designed to convey the complex statistical descriptions of fibers across large tissue sections-including commonly studied microvascular characteristics, such as orientation and volume.
Collapse
|
9
|
Three-dimensional alteration of neurites in schizophrenia. Transl Psychiatry 2019; 9:85. [PMID: 30755587 PMCID: PMC6372695 DOI: 10.1038/s41398-019-0427-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/06/2018] [Accepted: 01/24/2019] [Indexed: 12/20/2022] Open
Abstract
Psychiatric symptoms of schizophrenia suggest alteration of cerebral neurons. However, the physical basis of the schizophrenia symptoms has not been delineated at the cellular level. Here, we report nanometer-scale three-dimensional analysis of brain tissues of schizophrenia and control cases. Structures of cerebral tissues of the anterior cingulate cortex were visualized with synchrotron radiation nanotomography. Tissue constituents visualized in the three-dimensional images were traced to build Cartesian coordinate models of tissue constituents, such as neurons and blood vessels. The obtained Cartesian coordinates were used for calculating curvature and torsion of neurites in order to analyze their geometry. Results of the geometric analyses indicated that the curvature of neurites is significantly different between schizophrenia and control cases. The mean curvature of distal neurites of the schizophrenia cases was ~1.5 times higher than that of the controls. The schizophrenia case with the highest neurite curvature carried a frame shift mutation in the GLO1 gene, suggesting that oxidative stress due to the GLO1 mutation caused the structural alteration of the neurites. The differences in the neurite curvature result in differences in the spatial trajectory and hence alter neuronal circuits. It has been shown that the anterior cingulate cortex analyzed in this study has emotional and cognitive functions. We suggest that the structural alteration of neurons in the schizophrenia cases should reflect psychiatric symptoms of schizophrenia.
Collapse
|
10
|
Boorboor S, Jadhav, Ananth M, Talmage D, Role, Kaufman A. Visualization of Neuronal Structures in Wide-Field Microscopy Brain Images. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:10.1109/TVCG.2018.2864852. [PMID: 30136950 PMCID: PMC6382602 DOI: 10.1109/tvcg.2018.2864852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Wide-field microscopes are commonly used in neurobiology for experimental studies of brain samples. Available visualization tools are limited to electron, two-photon, and confocal microscopy datasets, and current volume rendering techniques do not yield effective results when used with wide-field data. We present a workflow for the visualization of neuronal structures in wide-field microscopy images of brain samples. We introduce a novel gradient-based distance transform that overcomes the out-of-focus blur caused by the inherent design of wide-field microscopes. This is followed by the extraction of the 3D structure of neurites using a multi-scale curvilinear filter and cell-bodies using a Hessian-based enhancement filter. The response from these filters is then applied as an opacity map to the raw data. Based on the visualization challenges faced by domain experts, our workflow provides multiple rendering modes to enable qualitative analysis of neuronal structures, which includes separation of cell-bodies from neurites and an intensity-based classification of the structures. Additionally, we evaluate our visualization results against both a standard image processing deconvolution technique and a confocal microscopy image of the same specimen. We show that our method is significantly faster and requires less computational resources, while producing high quality visualizations. We deploy our workflow in an immersive gigapixel facility as a paradigm for the processing and visualization of large, high-resolution, wide-field microscopy brain datasets.
Collapse
|
11
|
Kayasandik C, Negi P, Laezza F, Papadakis M, Labate D. Automated sorting of neuronal trees in fluorescent images of neuronal networks using NeuroTreeTracer. Sci Rep 2018; 8:6450. [PMID: 29691458 PMCID: PMC5915526 DOI: 10.1038/s41598-018-24753-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 04/10/2018] [Indexed: 11/09/2022] Open
Abstract
Fluorescence confocal microscopy has become increasingly more important in neuroscience due to its applications in image-based screening and profiling of neurons. Multispectral confocal imaging is useful to simultaneously probe for distribution of multiple analytes over networks of neurons. However, current automated image analysis algorithms are not designed to extract single-neuron arbors in images where neurons are not separated, hampering the ability map fluorescence signals at the single cell level. To overcome this limitation, we introduce NeuroTreeTracer - a novel image processing framework aimed at automatically extracting and sorting single-neuron traces in fluorescent images of multicellular neuronal networks. This method applies directional multiscale filters for automated segmentation of neurons and soma detection, and includes a novel tracing routine that sorts neuronal trees in the image by resolving network connectivity even when neurites appear to intersect. By extracting each neuronal tree, NeuroTreetracer enables to automatically quantify the spatial distribution of analytes of interest in the subcellular compartments of individual neurons. This software is released open-source and freely available with the goal to facilitate applications in neuron screening and profiling.
Collapse
Affiliation(s)
- Cihan Kayasandik
- University of Houston, Department of Mathematics, Houston, Texas, United States of America
| | - Pooran Negi
- University of Houston, Department of Mathematics, Houston, Texas, United States of America
| | - Fernanda Laezza
- University of Texas Medical Branch, Department of Pharmacology and Toxicology, Galveston, Texas, United States of America
| | - Manos Papadakis
- University of Houston, Department of Mathematics, Houston, Texas, United States of America
| | - Demetrio Labate
- University of Houston, Department of Mathematics, Houston, Texas, United States of America.
| |
Collapse
|
12
|
Abstract
The reconstruction of neuron morphology allows to investigate how the brain works, which is one of the foremost challenges in neuroscience. This process aims at extracting the neuronal structures from microscopic imaging data. The great advances in microscopic technologies have made a huge amount of data available at the micro-, or even lower, resolution where manual inspection is time consuming, prone to error and utterly impractical. This has motivated the development of methods to automatically trace the neuronal structures, a task also known as neuron tracing. This paper surveys the latest neuron tracing methods available in the scientific literature as well as a selection of significant older papers to better place these proposals into context. They are categorized into global processing, local processing and meta-algorithm approaches. Furthermore, we point out the algorithmic components used to design each method and we report information on the datasets and the performance metrics used.
Collapse
|
13
|
Turetken E, Benmansour F, Andres B, Glowacki P, Pfister H, Fua P. Reconstructing Curvilinear Networks Using Path Classifiers and Integer Programming. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2016; 38:2515-2530. [PMID: 26891482 DOI: 10.1109/tpami.2016.2519025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We propose a novel approach to automated delineation of curvilinear structures that form complex and potentially loopy networks. By representing the image data as a graph of potential paths, we first show how to weight these paths using discriminatively-trained classifiers that are both robust and generic enough to be applied to very different imaging modalities. We then present an Integer Programming approach to finding the optimal subset of paths, subject to structural and topological constraints that eliminate implausible solutions. Unlike earlier approaches that assume a tree topology for the networks, ours explicitly models the fact that the networks may contain loops, and can reconstruct both cyclic and acyclic ones. We demonstrate the effectiveness of our approach on a variety of challenging datasets including aerial images of road networks and micrographs of neural arbors, and show that it outperforms state-of-the-art techniques.
Collapse
|
14
|
Improved detection of soma location and morphology in fluorescence microscopy images of neurons. J Neurosci Methods 2016; 274:61-70. [PMID: 27688018 DOI: 10.1016/j.jneumeth.2016.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND Automated detection and segmentation of somas in fluorescent images of neurons is a major goal in quantitative studies of neuronal networks, including applications of high-content-screenings where it is required to quantify multiple morphological properties of neurons. Despite recent advances in image processing targeted to neurobiological applications, existing algorithms of soma detection are often unreliable, especially when processing fluorescence image stacks of neuronal cultures. NEW METHOD In this paper, we introduce an innovative algorithm for the detection and extraction of somas in fluorescent images of networks of cultured neurons where somas and other structures exist in the same fluorescent channel. Our method relies on a new geometrical descriptor called Directional Ratio and a collection of multiscale orientable filters to quantify the level of local isotropy in an image. To optimize the application of this approach, we introduce a new construction of multiscale anisotropic filters that is implemented by separable convolution. RESULTS Extensive numerical experiments using 2D and 3D confocal images show that our automated algorithm reliably detects somas, accurately segments them, and separates contiguous ones. COMPARISON WITH EXISTING METHODS We include a detailed comparison with state-of-the-art existing methods to demonstrate that our algorithm is extremely competitive in terms of accuracy, reliability and computational efficiency. CONCLUSIONS Our algorithm will facilitate the development of automated platforms for high content neuron image processing. A Matlab code is released open-source and freely available to the scientific community.
Collapse
|
15
|
Hieber SE, Bikis C, Khimchenko A, Schweighauser G, Hench J, Chicherova N, Schulz G, Müller B. Tomographic brain imaging with nucleolar detail and automatic cell counting. Sci Rep 2016; 6:32156. [PMID: 27581254 PMCID: PMC5007499 DOI: 10.1038/srep32156] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/19/2016] [Indexed: 01/27/2023] Open
Abstract
Brain tissue evaluation is essential for gaining in-depth insight into its diseases and disorders. Imaging the human brain in three dimensions has always been a challenge on the cell level. In vivo methods lack spatial resolution, and optical microscopy has a limited penetration depth. Herein, we show that hard X-ray phase tomography can visualise a volume of up to 43 mm3 of human post mortem or biopsy brain samples, by demonstrating the method on the cerebellum. We automatically identified 5,000 Purkinje cells with an error of less than 5% at their layer and determined the local surface density to 165 cells per mm2 on average. Moreover, we highlight that three-dimensional data allows for the segmentation of sub-cellular structures, including dendritic tree and Purkinje cell nucleoli, without dedicated staining. The method suggests that automatic cell feature quantification of human tissues is feasible in phase tomograms obtained with isotropic resolution in a label-free manner.
Collapse
Affiliation(s)
- Simone E Hieber
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland
| | - Christos Bikis
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland
| | - Anna Khimchenko
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland
| | - Gabriel Schweighauser
- Institute of Pathology, Department of Neuropathology, University Hospital of Basel, Schönbeinstrasse 40, 4001 Basel, Switzerland
| | - Jürgen Hench
- Institute of Pathology, Department of Neuropathology, University Hospital of Basel, Schönbeinstrasse 40, 4001 Basel, Switzerland
| | - Natalia Chicherova
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland.,Medical Image Analysis Center, Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland
| | - Georg Schulz
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland
| | - Bert Müller
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland
| |
Collapse
|
16
|
Abstract
The spatial organization of neurites, the thin processes (i.e., dendrites and axons) that stem from a neuron's soma, conveys structural information required for proper brain function. The alignment, direction and overall geometry of neurites in the brain are subject to continuous remodeling in response to healthy and noxious stimuli. In the developing brain, during neurogenesis or in neuroregeneration, these structural changes are indicators of the ability of neurons to establish axon-to-dendrite connections that can ultimately develop into functional synapses. Enabling a proper quantification of this structural remodeling would facilitate the identification of new phenotypic criteria to classify developmental stages and further our understanding of brain function. However, adequate algorithms to accurately and reliably quantify neurite orientation and alignment are still lacking. To fill this gap, we introduce a novel algorithm that relies on multiscale directional filters designed to measure local neurites orientation over multiple scales. This innovative approach allows us to discriminate the physical orientation of neurites from finer scale phenomena associated with local irregularities and noise. Building on this multiscale framework, we also introduce a notion of alignment score that we apply to quantify the degree of spatial organization of neurites in tissue and cultured neurons. Numerical codes were implemented in Python and released open source and freely available to the scientific community.
Collapse
|
17
|
Adaptive Image Enhancement for Tracing 3D Morphologies of Neurons and Brain Vasculatures. Neuroinformatics 2016; 13:153-66. [PMID: 25310965 DOI: 10.1007/s12021-014-9249-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is important to digitally reconstruct the 3D morphology of neurons and brain vasculatures. A number of previous methods have been proposed to automate the reconstruction process. However, in many cases, noise and low signal contrast with respect to the image background still hamper our ability to use automation methods directly. Here, we propose an adaptive image enhancement method specifically designed to improve the signal-to-noise ratio of several types of individual neurons and brain vasculature images. Our method is based on detecting the salient features of fibrous structures, e.g. the axon and dendrites combined with adaptive estimation of the optimal context windows where such saliency would be detected. We tested this method for a range of brain image datasets and imaging modalities, including bright-field, confocal and multiphoton fluorescent images of neurons, and magnetic resonance angiograms. Applying our adaptive enhancement to these datasets led to improved accuracy and speed in automated tracing of complicated morphology of neurons and vasculatures.
Collapse
|
18
|
Detrez JR, Verstraelen P, Gebuis T, Verschuuren M, Kuijlaars J, Langlois X, Nuydens R, Timmermans JP, De Vos WH. Image Informatics Strategies for Deciphering Neuronal Network Connectivity. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2016; 219:123-48. [PMID: 27207365 DOI: 10.1007/978-3-319-28549-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Amongst the neuronal structures that show morphological plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular communication and the associated calcium bursting behaviour. In vitro cultured neuronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardization of both image acquisition and image analysis, it has become possible to extract statistically relevant readouts from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies.
Collapse
Affiliation(s)
- Jan R Detrez
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Peter Verstraelen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Titia Gebuis
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Jacobine Kuijlaars
- Neuroscience Department, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
- Laboratory for Cell Physiology, Biomedical Research Institute (BIOMED), Hasselt University, Agoralaan, 3590, Diepenbeek, Belgium
| | - Xavier Langlois
- Neuroscience Department, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Rony Nuydens
- Neuroscience Department, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
- Cell Systems and Cellular Imaging, Department Molecular Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
19
|
Silva-Villalobos F, Pimentel JA, Darszon A, Corkidi G. Imaging of the 3D dynamics of flagellar beating in human sperm. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:190-3. [PMID: 25569929 DOI: 10.1109/embc.2014.6943561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The study of the mechanical and environmental factors that regulate a fundamental event such as fertilization have been subject of multiple studies. Nevertheless, the microscopical size of the spermatozoa and the high beating frequency of their flagella (up to 20 Hz) impose a series of technological challenges for the study of the mechanical factors implicated. Traditionally, due to the inherent characteristics of the rapid sperm movement, and to the technological limitations of microscopes (optical or confocal) to follow in three dimensions (3D) their movement, the analysis of their dynamics has been studied in two dimensions, when the head is confined to a surface. Flagella propel sperm and while their head can be confined to a surface, flagellar movement is not restricted to 2D, always displaying 3D components. In this work, we present a highly novel and useful tool to analyze sperm flagella dynamics in 3D. The basis of the method is a 100 Hz oscillating objective mounted on a bright field optical microscope covering a 16 microns depth space at a rate of ~ 5000 images per second. The best flagellum focused subregions were associated to their respective Z real 3D position. Unprecedented graphical results making evident the 3D movement of the flagella are shown in this work and supplemental material illustrating a 3D animation using the obtained experimental results is also included.
Collapse
|
20
|
Luo G, Sui D, Wang K, Chae J. Neuron anatomy structure reconstruction based on a sliding filter. BMC Bioinformatics 2015; 16:342. [PMID: 26498293 PMCID: PMC4619512 DOI: 10.1186/s12859-015-0780-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/16/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Reconstruction of neuron anatomy structure is a challenging and important task in neuroscience. However, few algorithms can automatically reconstruct the full structure well without manual assistance, making it essential to develop new methods for this task. METHODS This paper introduces a new pipeline for reconstructing neuron anatomy structure from 3-D microscopy image stacks. This pipeline is initialized with a set of seeds that were detected by our proposed Sliding Volume Filter (SVF), given a non-circular cross-section of a neuron cell. Then, an improved open curve snake model combined with a SVF external force is applied to trace the full skeleton of the neuron cell. A radius estimation method based on a 2D sliding band filter is developed to fit the real edge of the cross-section of the neuron cell. Finally, a surface reconstruction method based on non-parallel curve networks is used to generate the neuron cell surface to finish this pipeline. RESULTS The proposed pipeline has been evaluated using publicly available datasets. The results show that the proposed method achieves promising results in some datasets from the DIgital reconstruction of Axonal and DEndritic Morphology (DIADEM) challenge and new BigNeuron project. CONCLUSION The new pipeline works well in neuron tracing and reconstruction. It can achieve higher efficiency, stability and robustness in neuron skeleton tracing. Furthermore, the proposed radius estimation method and applied surface reconstruction method can obtain more accurate neuron anatomy structures.
Collapse
Affiliation(s)
- Gongning Luo
- Research Center of Perception and Computing, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.
| | - Dong Sui
- Research Center of Perception and Computing, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.
| | - Kuanquan Wang
- Research Center of Perception and Computing, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.
| | - Jinseok Chae
- Department of Computer Science and Engineering, Incheon National University, Incheon, Korea.
| |
Collapse
|
21
|
Smafield T, Pasupuleti V, Sharma K, Huganir RL, Ye B, Zhou J. Automatic Dendritic Length Quantification for High Throughput Screening of Mature Neurons. Neuroinformatics 2015; 13:443-58. [PMID: 25854493 PMCID: PMC4600005 DOI: 10.1007/s12021-015-9267-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High-throughput automated fluorescent imaging and screening are important for studying neuronal development, functions, and pathogenesis. An automatic approach of analyzing images acquired in automated fashion, and quantifying dendritic characteristics is critical for making such screens high-throughput. However, automatic and effective algorithms and tools, especially for the images of mature mammalian neurons with complex arbors, have been lacking. Here, we present algorithms and a tool for quantifying dendritic length that is fundamental for analyzing growth of neuronal network. We employ a divide-and-conquer framework that tackles the challenges of high-throughput images of neurons and enables the integration of multiple automatic algorithms. Within this framework, we developed algorithms that adapt to local properties to detect faint branches. We also developed a path search that can preserve the curvature change to accurately measure dendritic length with arbor branches and turns. In addition, we proposed an ensemble strategy of three estimation algorithms to further improve the overall efficacy. We tested our tool on images for cultured mouse hippocampal neurons immunostained with a dendritic marker for high-throughput screen. Results demonstrate the effectiveness of our proposed method when comparing the accuracy with previous methods. The software has been implemented as an ImageJ plugin and available for use.
Collapse
Affiliation(s)
- Timothy Smafield
- Department of Computer Science, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Venkat Pasupuleti
- Department of Computer Science, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Kamal Sharma
- Department of Neuroscience, John Hopkins University, Baltimore, MD, 21205, USA
| | - Richard L Huganir
- Department of Neuroscience, John Hopkins University, Baltimore, MD, 21205, USA
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jie Zhou
- Department of Computer Science, Northern Illinois University, DeKalb, IL, 60115, USA.
| |
Collapse
|
22
|
Ross JD, Cullen DK, Harris JP, LaPlaca MC, DeWeerth SP. A three-dimensional image processing program for accurate, rapid, and semi-automated segmentation of neuronal somata with dense neurite outgrowth. Front Neuroanat 2015; 9:87. [PMID: 26257609 PMCID: PMC4507056 DOI: 10.3389/fnana.2015.00087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/18/2015] [Indexed: 12/02/2022] Open
Abstract
Three-dimensional (3-D) image analysis techniques provide a powerful means to rapidly and accurately assess complex morphological and functional interactions between neural cells. Current software-based identification methods of neural cells generally fall into two applications: (1) segmentation of cell nuclei in high-density constructs or (2) tracing of cell neurites in single cell investigations. We have developed novel methodologies to permit the systematic identification of populations of neuronal somata possessing rich morphological detail and dense neurite arborization throughout thick tissue or 3-D in vitro constructs. The image analysis incorporates several novel automated features for the discrimination of neurites and somata by initially classifying features in 2-D and merging these classifications into 3-D objects; the 3-D reconstructions automatically identify and adjust for over and under segmentation errors. Additionally, the platform provides for software-assisted error corrections to further minimize error. These features attain very accurate cell boundary identifications to handle a wide range of morphological complexities. We validated these tools using confocal z-stacks from thick 3-D neural constructs where neuronal somata had varying degrees of neurite arborization and complexity, achieving an accuracy of ≥95%. We demonstrated the robustness of these algorithms in a more complex arena through the automated segmentation of neural cells in ex vivo brain slices. These novel methods surpass previous techniques by improving the robustness and accuracy by: (1) the ability to process neurites and somata, (2) bidirectional segmentation correction, and (3) validation via software-assisted user input. This 3-D image analysis platform provides valuable tools for the unbiased analysis of neural tissue or tissue surrogates within a 3-D context, appropriate for the study of multi-dimensional cell-cell and cell-extracellular matrix interactions.
Collapse
Affiliation(s)
- James D Ross
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory Atlanta, GA, USA ; School of Electrical and Computer Engineering, Georgia Institute of Technology Atlanta, GA, USA
| | - D Kacy Cullen
- Department of Neurosurgery, University of Pennsylvania Philadelphia, PA, USA ; Philadelphia Veterans Affairs Medical Center Philadelphia, PA, USA
| | - James P Harris
- Department of Neurosurgery, University of Pennsylvania Philadelphia, PA, USA ; Philadelphia Veterans Affairs Medical Center Philadelphia, PA, USA
| | - Michelle C LaPlaca
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory Atlanta, GA, USA
| | - Stephen P DeWeerth
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory Atlanta, GA, USA ; School of Electrical and Computer Engineering, Georgia Institute of Technology Atlanta, GA, USA
| |
Collapse
|
23
|
McDougal RA, Shepherd GM. 3D-printer visualization of neuron models. Front Neuroinform 2015; 9:18. [PMID: 26175684 PMCID: PMC4485057 DOI: 10.3389/fninf.2015.00018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/15/2015] [Indexed: 01/05/2023] Open
Abstract
Neurons come in a wide variety of shapes and sizes. In a quest to understand this neuronal diversity, researchers have three-dimensionally traced tens of thousands of neurons; many of these tracings are freely available through online repositories like NeuroMorpho.Org and ModelDB. Tracings can be visualized on the computer screen, used for statistical analysis of the properties of different cell types, used to simulate neuronal behavior, and more. We introduce the use of 3D printing as a technique for visualizing traced morphologies. Our method for generating printable versions of a cell or group of cells is to expand dendrite and axon diameters and then to transform the tracing into a 3D object with a neuronal surface generating algorithm like Constructive Tessellated Neuronal Geometry (CTNG). We show that 3D printed cells can be readily examined, manipulated, and compared with other neurons to gain insight into both the biology and the reconstruction process. We share our printable models in a new database, 3DModelDB, and encourage others to do the same with cells that they generate using our code or other methods. To provide additional context, 3DModelDB provides a simulatable version of each cell, links to papers that use or describe it, and links to associated entries in other databases.
Collapse
|
24
|
Ozcan B, Negi P, Laezza F, Papadakis M, Labate D. Automated detection of soma location and morphology in neuronal network cultures. PLoS One 2015; 10:e0121886. [PMID: 25853656 PMCID: PMC4390318 DOI: 10.1371/journal.pone.0121886] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/04/2015] [Indexed: 01/05/2023] Open
Abstract
Automated identification of the primary components of a neuron and extraction of its sub-cellular features are essential steps in many quantitative studies of neuronal networks. The focus of this paper is the development of an algorithm for the automated detection of the location and morphology of somas in confocal images of neuronal network cultures. This problem is motivated by applications in high-content screenings (HCS), where the extraction of multiple morphological features of neurons on large data sets is required. Existing algorithms are not very efficient when applied to the analysis of confocal image stacks of neuronal cultures. In addition to the usual difficulties associated with the processing of fluorescent images, these types of stacks contain a small number of images so that only a small number of pixels are available along the z-direction and it is challenging to apply conventional 3D filters. The algorithm we present in this paper applies a number of innovative ideas from the theory of directional multiscale representations and involves the following steps: (i) image segmentation based on support vector machines with specially designed multiscale filters; (ii) soma extraction and separation of contiguous somas, using a combination of level set method and directional multiscale filters. We also present an approach to extract the soma's surface morphology using the 3D shearlet transform. Extensive numerical experiments show that our algorithms are computationally efficient and highly accurate in segmenting the somas and separating contiguous ones. The algorithms presented in this paper will facilitate the development of a high-throughput quantitative platform for the study of neuronal networks for HCS applications.
Collapse
Affiliation(s)
- Burcin Ozcan
- Dept. of Mathematics, University of Houston, Houston, Texas, United States of America
| | - Pooran Negi
- Dept. of Mathematics, University of Houston, Houston, Texas, United States of America
| | - Fernanda Laezza
- Dept. of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Manos Papadakis
- Dept. of Mathematics, University of Houston, Houston, Texas, United States of America
| | - Demetrio Labate
- Dept. of Mathematics, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Nilufar S, Perkins TJ. Learning a cost function for microscope image segmentation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:5506-9. [PMID: 25571241 DOI: 10.1109/embc.2014.6944873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Quantitative analysis of microscopy images is increasingly important in clinical researchers' efforts to unravel the cellular and molecular determinants of disease, and for pathological analysis of tissue samples. Yet, manual segmentation and measurement of cells or other features in images remains the norm in many fields. We report on a new system that aims for robust and accurate semi-automated analysis of microscope images. A user interactively outlines one or more examples of a target object in a training image. We then learn a cost function for detecting more objects of the same type, either in the same or different images. The cost function is incorporated into an active contour model, which can efficiently determine optimal boundaries by dynamic programming. We validate our approach and compare it to some standard alternatives on three different types of microscopic images: light microscopy of blood cells, light microscopy of muscle tissue sections, and electron microscopy cross-sections of axons and their myelin sheaths.
Collapse
|
26
|
Jiménez D, Labate D, Kakadiaris IA, Papadakis M. Improved Automatic Centerline Tracing for Dendritic and Axonal Structures. Neuroinformatics 2014; 13:227-44. [DOI: 10.1007/s12021-014-9256-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
27
|
Sümbül U, Zlateski A, Vishwanathan A, Masland RH, Seung HS. Automated computation of arbor densities: a step toward identifying neuronal cell types. Front Neuroanat 2014; 8:139. [PMID: 25505389 PMCID: PMC4243570 DOI: 10.3389/fnana.2014.00139] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/06/2014] [Indexed: 11/17/2022] Open
Abstract
The shape and position of a neuron convey information regarding its molecular and functional identity. The identification of cell types from structure, a classic method, relies on the time-consuming step of arbor tracing. However, as genetic tools and imaging methods make data-driven approaches to neuronal circuit analysis feasible, the need for automated processing increases. Here, we first establish that mouse retinal ganglion cell types can be as precise about distributing their arbor volumes across the inner plexiform layer as they are about distributing the skeletons of the arbors. Then, we describe an automated approach to computing the spatial distribution of the dendritic arbors, or arbor density, with respect to a global depth coordinate based on this observation. Our method involves three-dimensional reconstruction of neuronal arbors by a supervised machine learning algorithm, post-processing of the enhanced stacks to remove somata and isolate the neuron of interest, and registration of neurons to each other using automatically detected arbors of the starburst amacrine interneurons as fiducial markers. In principle, this method could be generalizable to other structures of the CNS, provided that they allow sparse labeling of the cells and contain a reliable axis of spatial reference.
Collapse
Affiliation(s)
- Uygar Sümbül
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology Cambridge, MA, USA ; Department of Ophthalmology, Harvard Medical School Boston, MA, USA
| | - Aleksandar Zlateski
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Ashwin Vishwanathan
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Richard H Masland
- Department of Ophthalmology, Harvard Medical School Boston, MA, USA ; Department of Neurobiology, Harvard Medical School Boston, MA, USA
| | - H Sebastian Seung
- Princeton Neuroscience Institute and Computer Science Department, Princeton University Princeton, NJ, USA
| |
Collapse
|
28
|
A pipeline for neuron reconstruction based on spatial sliding volume filter seeding. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:386974. [PMID: 25101141 PMCID: PMC4101938 DOI: 10.1155/2014/386974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 06/16/2014] [Indexed: 11/17/2022]
Abstract
Neuron's shape and dendritic architecture are important for biosignal transduction in neuron networks. And the anatomy architecture reconstruction of neuron cell is one of the foremost challenges and important issues in neuroscience. Accurate reconstruction results can facilitate the subsequent neuron system simulation. With the development of confocal microscopy technology, researchers can scan neurons at submicron resolution for experiments. These make the reconstruction of complex dendritic trees become more feasible; however, it is still a tedious, time consuming, and labor intensity task. For decades, computer aided methods have been playing an important role in this task, but none of the prevalent algorithms can reconstruct full anatomy structure automatically. All of these make it essential for developing new method for reconstruction. This paper proposes a pipeline with a novel seeding method for reconstructing neuron structures from 3D microscopy images stacks. The pipeline is initialized with a set of seeds detected by sliding volume filter (SVF), and then the open curve snake is applied to the detected seeds for reconstructing the full structure of neuron cells. The experimental results demonstrate that the proposed pipeline exhibits excellent performance in terms of accuracy compared with traditional method, which is clearly a benefit for 3D neuron detection and reconstruction.
Collapse
|
29
|
Greenblum A, Sznitman R, Fua P, Arratia PE, Oren M, Podbilewicz B, Sznitman J. Dendritic tree extraction from noisy maximum intensity projection images in C. elegans. Biomed Eng Online 2014; 13:74. [PMID: 25012210 PMCID: PMC4090658 DOI: 10.1186/1475-925x-13-74] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 05/27/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Maximum Intensity Projections (MIP) of neuronal dendritic trees obtained from confocal microscopy are frequently used to study the relationship between tree morphology and mechanosensory function in the model organism C. elegans. Extracting dendritic trees from noisy images remains however a strenuous process that has traditionally relied on manual approaches. Here, we focus on automated and reliable 2D segmentations of dendritic trees following a statistical learning framework. METHODS Our dendritic tree extraction (DTE) method uses small amounts of labelled training data on MIPs to learn noise models of texture-based features from the responses of tree structures and image background. Our strategy lies in evaluating statistical models of noise that account for both the variability generated from the imaging process and from the aggregation of information in the MIP images. These noisy models are then used within a probabilistic, or Bayesian framework to provide a coarse 2D dendritic tree segmentation. Finally, some post-processing is applied to refine the segmentations and provide skeletonized trees using a morphological thinning process. RESULTS Following a Leave-One-Out Cross Validation (LOOCV) method for an MIP databse with available "ground truth" images, we demonstrate that our approach provides significant improvements in tree-structure segmentations over traditional intensity-based methods. Improvements for MIPs under various imaging conditions are both qualitative and quantitative, as measured from Receiver Operator Characteristic (ROC) curves and the yield and error rates in the final segmentations. In a final step, we demonstrate our DTE approach on previously unseen MIP samples including the extraction of skeletonized structures, and compare our method to a state-of-the art dendritic tree tracing software. CONCLUSIONS Overall, our DTE method allows for robust dendritic tree segmentations in noisy MIPs, outperforming traditional intensity-based methods. Such approach provides a useable segmentation framework, ultimately delivering a speed-up for dendritic tree identification on the user end and a reliable first step towards further morphological characterizations of tree arborization.
Collapse
Affiliation(s)
- Ayala Greenblum
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Raphael Sznitman
- School of Computer and Communications, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Pascal Fua
- School of Computer and Communications, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Paulo E Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 19104, Philadelphia, USA
| | - Meital Oren
- Department of Biology, Technion - Israel Institute of Technology, 32000, Haifa, Israel
- Current address: Department of Biochemistry & Molecular Biophysics, Columbia University, 1032, New York, USA
| | - Benjamin Podbilewicz
- Current address: Department of Biochemistry & Molecular Biophysics, Columbia University, 1032, New York, USA
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| |
Collapse
|
30
|
Gala R, Chapeton J, Jitesh J, Bhavsar C, Stepanyants A. Active learning of neuron morphology for accurate automated tracing of neurites. Front Neuroanat 2014; 8:37. [PMID: 24904306 PMCID: PMC4032887 DOI: 10.3389/fnana.2014.00037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/30/2014] [Indexed: 11/24/2022] Open
Abstract
Automating the process of neurite tracing from light microscopy stacks of images is essential for large-scale or high-throughput quantitative studies of neural circuits. While the general layout of labeled neurites can be captured by many automated tracing algorithms, it is often not possible to differentiate reliably between the processes belonging to different cells. The reason is that some neurites in the stack may appear broken due to imperfect labeling, while others may appear fused due to the limited resolution of optical microscopy. Trained neuroanatomists routinely resolve such topological ambiguities during manual tracing tasks by combining information about distances between branches, branch orientations, intensities, calibers, tortuosities, colors, as well as the presence of spines or boutons. Likewise, to evaluate different topological scenarios automatically, we developed a machine learning approach that combines many of the above mentioned features. A specifically designed confidence measure was used to actively train the algorithm during user-assisted tracing procedure. Active learning significantly reduces the training time and makes it possible to obtain less than 1% generalization error rates by providing few training examples. To evaluate the overall performance of the algorithm a number of image stacks were reconstructed automatically, as well as manually by several trained users, making it possible to compare the automated traces to the baseline inter-user variability. Several geometrical and topological features of the traces were selected for the comparisons. These features include the total trace length, the total numbers of branch and terminal points, the affinity of corresponding traces, and the distances between corresponding branch and terminal points. Our results show that when the density of labeled neurites is sufficiently low, automated traces are not significantly different from manual reconstructions obtained by trained users.
Collapse
Affiliation(s)
- Rohan Gala
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University Boston, MA, USA
| | - Julio Chapeton
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University Boston, MA, USA
| | - Jayant Jitesh
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University Boston, MA, USA
| | - Chintan Bhavsar
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University Boston, MA, USA
| | - Armen Stepanyants
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University Boston, MA, USA
| |
Collapse
|
31
|
Tapias V, Greenamyre JT. A rapid and sensitive automated image-based approach for in vitro and in vivo characterization of cell morphology and quantification of cell number and neurite architecture. CURRENT PROTOCOLS IN CYTOMETRY 2014; 68:12.33.1-12.33.22. [PMID: 24692056 DOI: 10.1002/0471142956.cy1233s68] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Stereological methods for tissue cell counting, specifically for neuron quantification, decrease systematic error and sampling bias; however, they are tedious, labor intensive, and time consuming. Approaches for cell (neuron) quantification in vitro are not accurate, sensitive, or subsequently reproducible. Neuronal phenotype is related to alterations in cell morphology and neurite pattern. The techniques currently available for quantification of these features present several limitations. In this unit, we provide validated automated procedures for in vivo and in vitro quantification of cell number, morphological cell changes, and neurite morphometry in a fast, simple, and reliable manner. Our method counts up to 8 times as many neurons in less than 5% to 10% of the time required for stereological analysis (optical fractionator). In summary, this technology offers an unparalleled opportunity to examine features of cells at high resolution in a complex three-dimensional environment. These techniques provide an exceptional in vivo and in vitro system for neurotoxicity studies, disease modeling, and drug discovery.
Collapse
Affiliation(s)
- Victor Tapias
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - J Timothy Greenamyre
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh VA Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
32
|
Ming X, Li A, Wu J, Yan C, Ding W, Gong H, Zeng S, Liu Q. Rapid reconstruction of 3D neuronal morphology from light microscopy images with augmented rayburst sampling. PLoS One 2013; 8:e84557. [PMID: 24391966 PMCID: PMC3877282 DOI: 10.1371/journal.pone.0084557] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/16/2013] [Indexed: 11/22/2022] Open
Abstract
Digital reconstruction of three-dimensional (3D) neuronal morphology from light microscopy images provides a powerful technique for analysis of neural circuits. It is time-consuming to manually perform this process. Thus, efficient computer-assisted approaches are preferable. In this paper, we present an innovative method for the tracing and reconstruction of 3D neuronal morphology from light microscopy images. The method uses a prediction and refinement strategy that is based on exploration of local neuron structural features. We extended the rayburst sampling algorithm to a marching fashion, which starts from a single or a few seed points and marches recursively forward along neurite branches to trace and reconstruct the whole tree-like structure. A local radius-related but size-independent hemispherical sampling was used to predict the neurite centerline and detect branches. Iterative rayburst sampling was performed in the orthogonal plane, to refine the centerline location and to estimate the local radius. We implemented the method in a cooperative 3D interactive visualization-assisted system named flNeuronTool. The source code in C++ and the binaries are freely available at http://sourceforge.net/projects/flneurontool/. We validated and evaluated the proposed method using synthetic data and real datasets from the Digital Reconstruction of Axonal and Dendritic Morphology (DIADEM) challenge. Then, flNeuronTool was applied to mouse brain images acquired with the Micro-Optical Sectioning Tomography (MOST) system, to reconstruct single neurons and local neural circuits. The results showed that the system achieves a reasonable balance between fast speed and acceptable accuracy, which is promising for interactive applications in neuronal image analysis.
Collapse
Affiliation(s)
- Xing Ming
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory of Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory of Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Jingpeng Wu
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory of Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Yan
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory of Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Wenxiang Ding
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory of Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory of Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory of Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Liu
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory of Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
33
|
Yin Y, Adel M, Bourennane S. Automatic segmentation and measurement of vasculature in retinal fundus images using probabilistic formulation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:260410. [PMID: 24382979 PMCID: PMC3870630 DOI: 10.1155/2013/260410] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/21/2013] [Indexed: 11/17/2022]
Abstract
The automatic analysis of retinal blood vessels plays an important role in the computer-aided diagnosis. In this paper, we introduce a probabilistic tracking-based method for automatic vessel segmentation in retinal images. We take into account vessel edge detection on the whole retinal image and handle different vessel structures. During the tracking process, a Bayesian method with maximum a posteriori (MAP) as criterion is used to detect vessel edge points. Experimental evaluations of the tracking algorithm are performed on real retinal images from three publicly available databases: STARE (Hoover et al., 2000), DRIVE (Staal et al., 2004), and REVIEW (Al-Diri et al., 2008 and 2009). We got high accuracy in vessel segmentation, width measurements, and vessel structure identification. The sensitivity and specificity on STARE are 0.7248 and 0.9666, respectively. On DRIVE, the sensitivity is 0.6522 and the specificity is up to 0.9710.
Collapse
Affiliation(s)
- Yi Yin
- Institut Fresnel, Ecole Centrale de Marseille, Aix-Marseille Université, Domaine Universitaire de Saint-Jérôme, 13397 Marseille, France
| | - Mouloud Adel
- Institut Fresnel, Ecole Centrale de Marseille, Aix-Marseille Université, Domaine Universitaire de Saint-Jérôme, 13397 Marseille, France
| | - Salah Bourennane
- Institut Fresnel, Ecole Centrale de Marseille, Aix-Marseille Université, Domaine Universitaire de Saint-Jérôme, 13397 Marseille, France
| |
Collapse
|
34
|
Nilufar S, Morrow AA, Lee JM, Perkins TJ. FiloDetect: automatic detection of filopodia from fluorescence microscopy images. BMC SYSTEMS BIOLOGY 2013; 7:66. [PMID: 23880086 PMCID: PMC3726292 DOI: 10.1186/1752-0509-7-66] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 07/11/2013] [Indexed: 01/09/2023]
Abstract
Background Filopodia are small cellular projections that help cells to move through and sense their environment. Filopodia play crucial roles in processes such as development and wound-healing. Also, increases in filopodia number or size are characteristic of many invasive cancers and are correlated with increased rates of metastasis in mouse experiments. Thus, one possible route to developing anti-metastatic therapies is to target factors that influence the filopodia system. Filopodia can be detected by eye using confocal fluorescence microscopy, and they can be manually annotated in images to quantify filopodia parameters. Although this approach is accurate, it is slow, tedious and not entirely objective. Manual detection is a significant barrier to the discovery and quantification of new factors that influence the filopodia system. Results Here, we present FiloDetect, an automated tool for detecting, counting and measuring the length of filopodia in fluorescence microscopy images. The method first segments the cell from the background, using a modified triangle threshold method, and then extracts the filopodia using a series of morphological operations. We verified the accuracy of FiloDetect on Rat2 and B16F1 cell images from three different labs, showing that per-cell filopodia counts and length estimates are highly correlated with the manual annotations. We then used FiloDetect to assess the role of a lipid kinase on filopodia production in breast cancer cells. Experimental results show that PI4KIII β expression leads to an increase in filopodia number and length, suggesting that PI4KIII β is involved in driving filopodia production. Conclusion FiloDetect provides accurate and objective quantification of filopodia in microscopy images, and will enable large scale comparative studies to assess the effects of different genetic and chemical perturbations on filopodia production in different cell types, including cancer cell lines.
Collapse
Affiliation(s)
- Sharmin Nilufar
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1Y 4E9, Canada.
| | | | | | | |
Collapse
|
35
|
Tapias V, Greenamyre JT, Watkins SC. Automated imaging system for fast quantitation of neurons, cell morphology and neurite morphometry in vivo and in vitro. Neurobiol Dis 2013; 54:158-68. [PMID: 23220621 PMCID: PMC3604080 DOI: 10.1016/j.nbd.2012.11.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 11/20/2012] [Accepted: 11/28/2012] [Indexed: 12/21/2022] Open
Abstract
Quantitation of neurons using stereologic approaches reduces bias and systematic error, but is time-consuming and labor-intensive. Accurate methods for quantifying neurons in vitro are lacking; conventional methodologies are limited in reliability and application. The morphological properties of the soma and neurites are a key aspect of neuronal phenotype and function, but the assays commonly used in such evaluations are beset with several methodological drawbacks. Herein we describe automated techniques to quantify the number and morphology of neurons (or any cell type, e.g., astrocytes) and their processes with high speed and accuracy. Neuronal quantification from brain tissue using a motorized stage system yielded results that were statistically comparable to those generated by stereology. The approach was then adapted for in vitro neuron and neurite outgrowth quantification. To determine the utility of our methods, rotenone was used as a neurotoxicant leading to morphological changes in neurons and cell death, astrocytic activation, and loss of neurites. Importantly, our technique counted about 8 times as many neurons in less than 5-10% of the time taken by manual stereological analysis.
Collapse
Affiliation(s)
- Victor Tapias
- Department of Neurology, University of Pittsburgh, USA.
| | | | | |
Collapse
|
36
|
Automated and accurate detection of soma location and surface morphology in large-scale 3D neuron images. PLoS One 2013; 8:e62579. [PMID: 23638117 PMCID: PMC3634810 DOI: 10.1371/journal.pone.0062579] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/21/2013] [Indexed: 11/19/2022] Open
Abstract
Automated and accurate localization and morphometry of somas in 3D neuron images is essential for quantitative studies of neural networks in the brain. However, previous methods are limited in obtaining the location and surface morphology of somas with variable size and uneven staining in large-scale 3D neuron images. In this work, we proposed a method for automated soma locating in large-scale 3D neuron images that contain relatively sparse soma distributions. This method involves three steps: (i) deblocking the image with overlap between adjacent sub-stacks; (ii) locating the somas in each small sub-stack using multi-scale morphological close and adaptive thresholds; and (iii) fusion of the repeatedly located somas in all sub-stacks. We also describe a new method for the accurate detection of the surface morphology of somas containing hollowness; this was achieved by improving the classical Rayburst Sampling with a new gradient-based criteria. Three 3D neuron image stacks of different sizes were used to quantitatively validate our methods. For the soma localization algorithm, the average recall and precision were greater than 93% and 96%, respectively. For the soma surface detection algorithm, the overlap of the volumes created by automatic detection of soma surfaces and manually segmenting soma volumes was more than 84% for 89% of all correctly detected somas. Our method for locating somas can reveal the soma distributions in large-scale neural networks more efficiently. The method for soma surface detection will serve as a valuable tool for systematic studies of neuron types based on neuron structure.
Collapse
|
37
|
Xiao H, Peng H. APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree. ACTA ACUST UNITED AC 2013; 29:1448-54. [PMID: 23603332 DOI: 10.1093/bioinformatics/btt170] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
MOTIVATION Tracing of neuron morphology is an essential technique in computational neuroscience. However, despite a number of existing methods, few open-source techniques are completely or sufficiently automated and at the same time are able to generate robust results for real 3D microscopy images. RESULTS We developed all-path-pruning 2.0 (APP2) for 3D neuron tracing. The most important idea is to prune an initial reconstruction tree of a neuron's morphology using a long-segment-first hierarchical procedure instead of the original termini-first-search process in APP. To further enhance the robustness of APP2, we compute the distance transform of all image voxels directly for a gray-scale image, without the need to binarize the image before invoking the conventional distance transform. We also design a fast-marching algorithm-based method to compute the initial reconstruction trees without pre-computing a large graph. This method allows us to trace large images. We bench-tested APP2 on ~700 3D microscopic images and found that APP2 can generate more satisfactory results in most cases than several previous methods. AVAILABILITY The software has been implemented as an open-source Vaa3D plugin. The source code is available in the Vaa3D code repository http://vaa3d.org. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hang Xiao
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | |
Collapse
|
38
|
Abstract
Recent advances in automated high-resolution fluorescence microscopy and robotic handling have made the systematic and cost effective study of diverse morphological changes within a large population of cells possible under a variety of perturbations, e.g., drugs, compounds, metal catalysts, RNA interference (RNAi). Cell population-based studies deviate from conventional microscopy studies on a few cells, and could provide stronger statistical power for drawing experimental observations and conclusions. However, it is challenging to manually extract and quantify phenotypic changes from the large amounts of complex image data generated. Thus, bioimage informatics approaches are needed to rapidly and objectively quantify and analyze the image data. This paper provides an overview of the bioimage informatics challenges and approaches in image-based studies for drug and target discovery. The concepts and capabilities of image-based screening are first illustrated by a few practical examples investigating different kinds of phenotypic changes caEditorsused by drugs, compounds, or RNAi. The bioimage analysis approaches, including object detection, segmentation, and tracking, are then described. Subsequently, the quantitative features, phenotype identification, and multidimensional profile analysis for profiling the effects of drugs and targets are summarized. Moreover, a number of publicly available software packages for bioimage informatics are listed for further reference. It is expected that this review will help readers, including those without bioimage informatics expertise, understand the capabilities, approaches, and tools of bioimage informatics and apply them to advance their own studies.
Collapse
Affiliation(s)
- Fuhai Li
- NCI Center for Modeling Cancer Development, Department of Systems Medicine and Bioengineering, The Methodist Hospital Research Institute, Weil Medical College of Cornell University, Houston, Texas, United States of America
| | - Zheng Yin
- NCI Center for Modeling Cancer Development, Department of Systems Medicine and Bioengineering, The Methodist Hospital Research Institute, Weil Medical College of Cornell University, Houston, Texas, United States of America
| | - Guangxu Jin
- NCI Center for Modeling Cancer Development, Department of Systems Medicine and Bioengineering, The Methodist Hospital Research Institute, Weil Medical College of Cornell University, Houston, Texas, United States of America
| | - Hong Zhao
- NCI Center for Modeling Cancer Development, Department of Systems Medicine and Bioengineering, The Methodist Hospital Research Institute, Weil Medical College of Cornell University, Houston, Texas, United States of America
| | - Stephen T. C. Wong
- NCI Center for Modeling Cancer Development, Department of Systems Medicine and Bioengineering, The Methodist Hospital Research Institute, Weil Medical College of Cornell University, Houston, Texas, United States of America
| |
Collapse
|
39
|
A distance-field based automatic neuron tracing method. BMC Bioinformatics 2013; 14:93. [PMID: 23497429 PMCID: PMC3637550 DOI: 10.1186/1471-2105-14-93] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 02/22/2013] [Indexed: 11/24/2022] Open
Abstract
Background Automatic 3D digital reconstruction (tracing) of neurons embedded in noisy microscopic images is challenging, especially when the cell morphology is complex. Results We have developed a novel approach, named DF-Tracing, to tackle this challenge. This method first extracts the neurite signal (foreground) from a noisy image by using anisotropic filtering and automated thresholding. Then, DF-Tracing executes a coupled distance-field (DF) algorithm on the extracted foreground neurite signal and reconstructs the neuron morphology automatically. Two distance-transform based “force” fields are used: one for “pressure”, which is the distance transform field of foreground pixels (voxels) to the background, and another for “thrust”, which is the distance transform field of the foreground pixels to an automatically determined seed point. The coupling of these two force fields can “push” a “rolling ball” quickly along the skeleton of a neuron, reconstructing the 3D cell morphology. Conclusion We have used DF-Tracing to reconstruct the intricate neuron structures found in noisy image stacks, obtained with 3D laser microscopy, of dragonfly thoracic ganglia. Compared to several previous methods, DF-Tracing produces better reconstructions.
Collapse
|
40
|
Neurient: an algorithm for automatic tracing of confluent neuronal images to determine alignment. J Neurosci Methods 2013; 214:210-22. [PMID: 23384629 DOI: 10.1016/j.jneumeth.2013.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/25/2013] [Accepted: 01/25/2013] [Indexed: 01/08/2023]
Abstract
A goal of neural tissue engineering is the development and evaluation of materials that guide neuronal growth and alignment. However, the methods available to quantitatively evaluate the response of neurons to guidance materials are limited and/or expensive, and may require manual tracing to be performed by the researcher. We have developed an open source, automated Matlab-based algorithm, building on previously published methods, to trace and quantify alignment of fluorescent images of neurons in culture. The algorithm is divided into three phases, including computation of a lookup table which contains directional information for each image, location of a set of seed points which may lie along neurite centerlines, and tracing neurites starting with each seed point and indexing into the lookup table. This method was used to obtain quantitative alignment data for complex images of densely cultured neurons. Complete automation of tracing allows for unsupervised processing of large numbers of images. Following image processing with our algorithm, available metrics to quantify neurite alignment include angular histograms, percent of neurite segments in a given direction, and mean neurite angle. The alignment information obtained from traced images can be used to compare the response of neurons to a range of conditions. This tracing algorithm is freely available to the scientific community under the name Neurient, and its implementation in Matlab allows a wide range of researchers to use a standardized, open source method to quantitatively evaluate the alignment of dense neuronal cultures.
Collapse
|
41
|
Rigamonti R, Lepetit V. Accurate and efficient linear structure segmentation by leveraging ad hoc features with learned filters. ACTA ACUST UNITED AC 2013; 15:189-97. [PMID: 23285551 DOI: 10.1007/978-3-642-33415-3_24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Extracting linear structures, such as blood vessels or dendrites, from images is crucial in many medical imagery applications, and many handcrafted features have been proposed to solve this problem. However, such features rely on assumptions that are never entirely true. Learned features, on the other hand, can capture image characteristics difficult to define analytically, but tend to be much slower to compute than handcrafted features. We propose to complement handcrafted methods with features found using very recent Machine Learning techniques, and we show that even few filters are sufficient to efficiently leverage handcrafted features. We demonstrate our approach on the STARE, DRIVE, and BF2D datasets, and on 2D projections of neural images from the DIADEM challenge. Our proposal outperforms handcrafted methods, and pairs up with learning-only approaches at a fraction of their computational cost.
Collapse
Affiliation(s)
- Roberto Rigamonti
- CVLab, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
42
|
Coronary artery center-line extraction using second order local features. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:940981. [PMID: 23227111 PMCID: PMC3513753 DOI: 10.1155/2012/940981] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/24/2012] [Accepted: 09/06/2012] [Indexed: 11/17/2022]
Abstract
Of interest is the accurate and robust delineation of vessel center-lines for complete arterial tree structure in coronary angiograms which is an imperative step towards 3D reconstruction of coronary tree and feature-based registration of multiple view angiograms. Most existing center-line tracking methods encounter limitations in coping with abrupt variations in local artery direction and sudden changes of lumen diameter that occur in the vicinity of arterial lesions. This paper presents an improved center-line tracing algorithm for automatic extraction of coronary arterial tree based on robust local features. The algorithm employs an improved scanning schema based on eigenvalues of Hessian matrix for reliable identification of true vessel points as well as an adaptive look-ahead distance schema for calculating the magnitude of scanning profile. In addition to a huge variety of clinical examples, a well-established vessel simulation tool was used to create several synthetic angiograms for objective comparison and performance evaluation. The experimental results on the accuracy and robustness of the proposed algorithm and its counterparts under difficult situations such as poor image quality and complicated vessel geometry are presented.
Collapse
|
43
|
Konstantinidis I, Santamaria-Pang A, Kakadiaris I. Frames-Based Denoising in 3D Confocal Microscopy Imaging. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2012; 2006:290-3. [PMID: 17282170 DOI: 10.1109/iembs.2005.1616401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this paper, we propose a novel denoising method for 3D confocal microscopy data based on robust edge detection. Our approach relies on the construction of a non-separable frame system in 3D that incorporates the Sobel operator in dual spatial directions. This multidirectional set of digital filters is capable of robustly detecting edge information by ensemble thresholding of the filtered data. We demonstrate the application of our method to both synthetic and real confocal microscopy data by comparing it to denoising methods based on separable 3D wavelets and 3D median filtering, and report very encouraging results.
Collapse
Affiliation(s)
- Ioannis Konstantinidis
- Computational Biomedicine Lab (formerly known as Visual Computing Lab), Department of Computer Science, University of Houston, Texas 77204, USA
| | | | | |
Collapse
|
44
|
Lee PC, Chuang CC, Chiang AS, Ching YT. High-throughput computer method for 3D neuronal structure reconstruction from the image stack of the Drosophila brain and its applications. PLoS Comput Biol 2012; 8:e1002658. [PMID: 23028271 PMCID: PMC3441491 DOI: 10.1371/journal.pcbi.1002658] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 07/12/2012] [Indexed: 11/19/2022] Open
Abstract
Drosophila melanogaster is a well-studied model organism, especially in the field of neurophysiology and neural circuits. The brain of the Drosophila is small but complex, and the image of a single neuron in the brain can be acquired using confocal microscopy. Analyzing the Drosophila brain is an ideal start to understanding the neural structure. The most fundamental task in studying the neural network of Drosophila is to reconstruct neuronal structures from image stacks. Although the fruit fly brain is small, it contains approximately 100 000 neurons. It is impossible to trace all the neurons manually. This study presents a high-throughput algorithm for reconstructing the neuronal structures from 3D image stacks collected by a laser scanning confocal microscope. The proposed method reconstructs the neuronal structure by applying the shortest path graph algorithm. The vertices in the graph are certain points on the 2D skeletons of the neuron in the slices. These points are close to the 3D centerlines of the neuron branches. The accuracy of the algorithm was verified using the DIADEM data set. This method has been adopted as part of the protocol of the FlyCircuit Database, and was successfully applied to process more than 16 000 neurons. This study also shows that further analysis based on the reconstruction results can be performed to gather more information on the neural network. It is now possible to image a single neuron in the fruit fly brain. However, manually reconstructing neuronal structures is tremendously time consuming. The proposed method avoids user interventions by first automatically identifying the end points and detecting the appropriate representative point of the soma, and then, by finding the shortest paths from the soma to the end points in an image stack. In the proposed algorithm, a tailor-made weighting function allows the resulting reconstruction to represent the neuron appropriately. Accuracy analysis and a robustness test demonstrated that the proposed method is accurate and robust to handle the noisy image data. Tract discovery is one of the most frequently mentioned potentials of reconstructed results. In addition to a method for neuronal structure reconstruction, this study presents a method for tract discovery and explores the tract-connecting olfactory neuropils using the reconstructed results. The discovered tracts are in agreement with the results of previous studies in the literature. Software for reconstructing the neuronal structures and the reconstruction results can be downloaded from the Web site http://www.flycircuit.tw. More details on acquiring the software and the reconstruction results are provided in Text S1.
Collapse
Affiliation(s)
- Ping-Chang Lee
- Department of Computer Science, National Chiao Tung University, HsinChu, Taiwan
| | - Chao-Chun Chuang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, HsinChu, Taiwan
- National Center for High-Performance Computing, HsinChu, Taiwan
| | - Ann-Shyn Chiang
- Institute of Biotechnology, National Tsing Hua University, HsinChu, Taiwan
- Brain Research Center, National Tsing Hua University, HsinChu, Taiwan
| | - Yu-Tai Ching
- Department of Computer Science, National Chiao Tung University, HsinChu, Taiwan
- * E-mail:
| |
Collapse
|
45
|
Jia Z, Rahmatpanah FB, Chen X, Lernhardt W, Wang Y, Xia XQ, Sawyers A, Sutton M, McClelland M, Mercola D. Expression changes in the stroma of prostate cancer predict subsequent relapse. PLoS One 2012; 7:e41371. [PMID: 22870216 PMCID: PMC3411675 DOI: 10.1371/journal.pone.0041371] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 06/20/2012] [Indexed: 01/24/2023] Open
Abstract
Biomarkers are needed to address overtreatment that occurs for the majority of prostate cancer patients that would not die of the disease but receive radical treatment. A possible barrier to biomarker discovery may be the polyclonal/multifocal nature of prostate tumors as well as cell-type heterogeneity between patient samples. Tumor-adjacent stroma (tumor microenvironment) is less affected by genetic alteration and might therefore yield more consistent biomarkers in response to tumor aggressiveness. To this end we compared Affymetrix gene expression profiles in stroma near tumor and identified a set of 115 probe sets for which the expression levels were significantly correlated with time-to-relapse. We also compared patients that chemically relapsed shortly after prostatectomy (<1 year), and patients that did not relapse in the first four years after prostatectomy. We identified 131 differentially expressed microarray probe sets between these two categories. 19 probe sets (15 genes overlapped between the two gene lists with p<0.0001). We developed a PAM-based classifier by training on samples containing stroma near tumor: 9 rapid relapse patient samples and 9 indolent patient samples. We then tested the classifier on 47 different samples, containing 90% or more stroma. The classifier predicted the risk status of patients with an average accuracy of 87%. This is the first general tumor microenvironment-based prognostic classifier. These results indicate that the prostate cancer microenvironment exhibits reproducible changes useful for predicting outcomes for patients.
Collapse
Affiliation(s)
- Zhenyu Jia
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Basu S, Condron B, Aksel A, Acton S. Segmentation and tracing of single neurons from 3D confocal microscope images. IEEE J Biomed Health Inform 2012; 17:319-35. [PMID: 22835569 DOI: 10.1109/titb.2012.2209670] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In order to understand the brain, we need to first understand the morphology of neurons. In the neurobiology community, there have been recent pushes to analyze both neuron connectivity and the influence of structure on function. Currently, a technical road block that stands in the way of these studies is the inability to automatically trace neuronal structure from microscopy. On the image processing side, proposed tracing algorithms face difficulties in low contrast, indistinct boundaries, clutter, and complex branching structure. To tackle these difficulties, we develop Tree2Tree, a robust automatic neuron segmentation and morphology generation algorithm. Tree2Tree uses a local medial tree generation strategy in combination with a global tree linking to build a maximum likelihood global tree. Recasting the neuron tracing problem in a graph-theoretic context enables Tree2Tree to estimate bifurcations naturally, which is currently a challenge for current neuron tracing algorithms. Tests on cluttered confocal microscopy images of Drosophila neurons give results that correspond to ground truth within a margin of ±2.75% normalized mean absolute error.
Collapse
|
47
|
Orlowski D, Bjarkam CR. A simple reproducible and time saving method of semi-automatic dendrite spine density estimation compared to manual spine counting. J Neurosci Methods 2012; 208:128-33. [DOI: 10.1016/j.jneumeth.2012.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/27/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
|
48
|
Choromanska A, Chang SF, Yuste R. Automatic reconstruction of neural morphologies with multi-scale tracking. Front Neural Circuits 2012; 6:25. [PMID: 22754498 PMCID: PMC3385559 DOI: 10.3389/fncir.2012.00025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/19/2012] [Indexed: 11/21/2022] Open
Abstract
Neurons have complex axonal and dendritic morphologies that are the structural building blocks of neural circuits. The traditional method to capture these morphological structures using manual reconstructions is time-consuming and partly subjective, so it appears important to develop automatic or semi-automatic methods to reconstruct neurons. Here we introduce a fast algorithm for tracking neural morphologies in 3D with simultaneous detection of branching processes. The method is based on existing tracking procedures, adding the machine vision technique of multi-scaling. Starting from a seed point, our algorithm tracks axonal or dendritic arbors within a sphere of a variable radius, then moves the sphere center to the point on its surface with the shortest Dijkstra path, detects branching points on the surface of the sphere, scales it until branches are well separated and then continues tracking each branch. We evaluate the performance of our algorithm on preprocessed data stacks obtained by manual reconstructions of neural cells, corrupted with different levels of artificial noise, and unprocessed data sets, achieving 90% precision and 81% recall in branch detection. We also discuss limitations of our method, such as reconstructing highly overlapping neural processes, and suggest possible improvements. Multi-scaling techniques, well suited to detect branching structures, appear a promising strategy for automatic neuronal reconstructions.
Collapse
Affiliation(s)
- Anna Choromanska
- Department of Electrical Engineering, Columbia University New York, NY, USA
| | | | | |
Collapse
|
49
|
Hogrebe L, Paiva AR, Jurrus E, Christensen C, Bridge M, Dai L, Pfeiffer R, Hof PR, Roysam B, Korenberg JR, Tasdizen T. Serial section registration of axonal confocal microscopy datasets for long-range neural circuit reconstruction. J Neurosci Methods 2012; 207:200-10. [PMID: 22465678 PMCID: PMC4981587 DOI: 10.1016/j.jneumeth.2012.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 03/02/2012] [Accepted: 03/15/2012] [Indexed: 12/19/2022]
Abstract
In the context of long-range digital neural circuit reconstruction, this paper investigates an approach for registering axons across histological serial sections. Tracing distinctly labeled axons over large distances allows neuroscientists to study very explicit relationships between the brain's complex interconnects and, for example, diseases or aberrant development. Large scale histological analysis requires, however, that the tissue be cut into sections. In immunohistochemical studies thin sections are easily distorted due to the cutting, preparation, and slide mounting processes. In this work we target the registration of thin serial sections containing axons. Sections are first traced to extract axon centerlines, and these traces are used to define registration landmarks where they intersect section boundaries. The trace data also provides distinguishing information regarding an axon's size and orientation within a section. We propose the use of these features when pairing axons across sections in addition to utilizing the spatial relationships among the landmarks. The global rotation and translation of an unregistered section are accounted for using a random sample consensus (RANSAC) based technique. An iterative nonrigid refinement process using B-spline warping is then used to reconnect axons and produce the sought after connectivity information.
Collapse
Affiliation(s)
- Luke Hogrebe
- Scientific Computing and Imaging Institute, University of Utah, UT, United States
- Department of Electrical and Computer Engineering, University of Utah, UT, United States
| | - Antonio R.C. Paiva
- Scientific Computing and Imaging Institute, University of Utah, UT, United States
| | - Elizabeth Jurrus
- Scientific Computing and Imaging Institute, University of Utah, UT, United States
- School of Computing, University of Utah, UT, United States
| | - Cameron Christensen
- Scientific Computing and Imaging Institute, University of Utah, UT, United States
| | | | - Li Dai
- Brain Institute, University of Utah, UT, United States
- Center for the Integration of Neuroscience and Human Behavior, University of Utah, UT, United States
- Department of Pediatrics, University of Utah, UT, United States
| | - Rebecca Pfeiffer
- Brain Institute, University of Utah, UT, United States
- Neuroscience Program, University of Utah, UT, United States
- Center for the Integration of Neuroscience and Human Behavior, University of Utah, UT, United States
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, NY, United States
| | - Badrinath Roysam
- Department of Electrical and Computer Engineering, University of Houston, TX, United States
| | | | - Tolga Tasdizen
- Scientific Computing and Imaging Institute, University of Utah, UT, United States
- Department of Electrical and Computer Engineering, University of Utah, UT, United States
| |
Collapse
|
50
|
Erdmann G, Volz C, Boutros M. Systematic approaches to dissect biological processes in stem cells by image-based screening. Biotechnol J 2012; 7:768-78. [DOI: 10.1002/biot.201200117] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|