1
|
Oost W, Meilof JF, Baron W. Multiple sclerosis: what have we learned and can we still learn from electron microscopy. Cell Mol Life Sci 2025; 82:172. [PMID: 40266347 PMCID: PMC12018678 DOI: 10.1007/s00018-025-05690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease marked by the formation of demyelinated lesions in the central nervous system. MS lesions can undergo remyelination, temporarily alleviating symptoms, but as the disease advances, remyelination becomes less effective. Beyond lesions, normal-appearing brain tissue exhibits subtle alterations, potentially indicating a broader, diffuse pathology and/or increased susceptibility to lesion formation. The pathology of MS varies between grey and white matter lesions and their normal-appearing regions, which most likely relates to their distinct cellular composition. Despite insights gained from MRI studies, serum and blood analyses, and post-mortem tissue examination, the molecular mechanisms driving MS lesion formation and persistent demyelination remain poorly understood. Exploring less conventional methods, such as electron microscopy (EM), may provide valuable new insights. EM offers detailed, nanometre-scale structural analysis that may enhance findings from immunohistochemistry and 'omics' approaches on MS brain tissue. Although earlier EM studies from before the 1990's provided some foundational data, advancements in EM technology now enable more comprehensive and detailed structural analysis. In this review we outline the pathogenesis of MS, summarize current knowledge of its ultrastructural features, and highlight how cutting-edge EM techniques could uncover new insights into pathological processes, including lesion formation, remyelination failure and diffuse pathology, which may aid therapeutic development.
Collapse
Affiliation(s)
- Wendy Oost
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- MS Center Noord Nederland, Groningen, The Netherlands
| | - Jan F Meilof
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- MS Center Noord Nederland, Groningen, The Netherlands
- Department of Neurology, Martini Hospital, Groningen, The Netherlands
| | - Wia Baron
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
- MS Center Noord Nederland, Groningen, The Netherlands.
| |
Collapse
|
2
|
Ballerini C, Amoriello R, Maghrebi O, Bellucci G, Addazio I, Betti M, Aprea MG, Masciulli C, Caporali A, Penati V, Ballerini C, De Meo E, Portaccio E, Salvetti M, Amato MP. Exploring the role of EBV in multiple sclerosis pathogenesis through EBV interactome. Front Immunol 2025; 16:1557483. [PMID: 40242760 PMCID: PMC11999961 DOI: 10.3389/fimmu.2025.1557483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Background Epstein-Barr virus (EBV) is a known risk factor for multiple sclerosis (MS), even though the underlying molecular mechanisms are unclear and engage multiple immune pathways. Furthermore, the ultimate role of EBV in MS pathogenesis is still elusive. In contrast, Cytomegalovirus (CMV) has been identified as a protective factor for MS. Objectives This study aims to identify MS-associated genes that overlap with EBV interactome and to examine their expression in immune and glial cell subtypes. Methods We used P-HIPSTer, GWAS, and the Human Protein Atlas (HPA) to derive data on the EBV interactome, MS-associated genes and single-cell gene expression in immune and glial cells. The geneOverlap and dplyr R packages identified overlapping genes. A similar analysis was done for CMV and Adenovirus as negative control. Metascape and GTEx analyzed biological pathways and brain-level gene expression; transcriptomic analysis was performed on glial cells and peripheral blood in MS and controls. All the analyses performed in this study were generated using publicly available data sets. Results We identified a "core" group of 21 genes shared across EBV interactome, MS genes, and immune and glial cells (p<0.001). Pathway analysis revealed expected associations, such as immune system activation, and unforeseen results, like the prolactin signaling pathway. BCL2 in astrocytes, MINK1 in microglia were significantly upregulated while AHI1 was downregulated in MS compared to controls. Conclusions Our findings offer novel insights into EBV and CMV interaction with immune and glial cells in MS, that may shed light on mechanisms involved in disease pathophysiology.
Collapse
Affiliation(s)
- Chiara Ballerini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Roberta Amoriello
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Olfa Maghrebi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gianmarco Bellucci
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Ilaria Addazio
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Matteo Betti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Maria Grazia Aprea
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Camilla Masciulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Arianna Caporali
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Valeria Penati
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Clara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ermelinda De Meo
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Emilio Portaccio
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Marco Salvetti
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
- Neuromed, IRCCS Istituto Neurologico Mediterraneo (INM), Pozzilli, Italy
| | - Maria Pia Amato
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Don Carlo Gnocchi, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Wang Z, Sun Y, Bai Z, Li M, Kong D, Wu G. Mitochondria-Related Genome-Wide Mendelian Randomization Identifies Putatively Causal Genes for Neurodegenerative Diseases. Mov Disord 2025; 40:693-703. [PMID: 39838927 DOI: 10.1002/mds.30123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/30/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Mitochondrial dysfunction is increasingly recognized as a key factor in neurodegenerative diseases (NDDs), underscoring the therapeutic potential of targeting mitochondria-related genes. This study aimed to identify novel biomarkers and drug targets for these diseases through a comprehensive analysis that integrated genome-wide Mendelian randomization (MR) with genes associated with mitochondrial function. METHODS Using existing publicly available genome-wide association studies (GWAS) summary statistics and comprehensive data on 1136 mitochondria-related genes, we initially identified a subset of genes related to mitochondrial function that exhibited significant associations with NDDs. We then conducted colocalization and summary-data-based Mendelian randomization (SMR) analyses using expression quantitative trait loci (eQTL) to validate the causal role of these candidate genes. Additionally, we assessed the druggability of the encoded proteins to prioritize potential therapeutic targets for further exploration. RESULTS Genetically predicted levels of 10 genes were found to be significantly associated with the risk of NDDs. Elevated DMPK and LACTB2 levels were associated with increased Alzheimer's disease risk. Higher expression of NDUFAF2, BCKDK, and MALSU1, along with lower TTC19, raised Parkinson's disease risk. Higher ACLY levels were associated with both amyotrophic lateral sclerosis and multiple sclerosis (MS) risks, while decreased MCL1, TOP3A, and VWA8 levels raised MS risk. These genes primarily impact mitochondrial function and energy metabolism. Notably, several druggable protein targets identified are being explored for potential NDDs treatment. CONCLUSIONS This data-driven MR study demonstrated the causal role of mitochondrial dysfunction in NDDs. Additionally, this study identified candidate genes that could serve as potential pharmacological targets for the prevention and treatment of NDDs. © 2025 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Zheyi Wang
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Medical Experimental Center, Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital (Qingdao), Shandong University, Qingdao, China
| | - Yize Sun
- Department of Traditional Chinese Medicine, Qilu Hospital (Qingdao), Shandong University, Qingdao, China
| | - Zetai Bai
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Medical Experimental Center, Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital (Qingdao), Shandong University, Qingdao, China
| | - Mei Li
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Medical Experimental Center, Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital (Qingdao), Shandong University, Qingdao, China
| | - Deyuan Kong
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Medical Experimental Center, Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital (Qingdao), Shandong University, Qingdao, China
| | - Guanzhao Wu
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Medical Experimental Center, Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital (Qingdao), Shandong University, Qingdao, China
| |
Collapse
|
4
|
Pistolesi A, Ranieri G, Calvani M, Guasti D, Chiarugi A, Buonvicino D. Microglial suppression by myeloperoxidase inhibitor does not delay neurodegeneration in a mouse model of progressive multiple sclerosis. Exp Neurol 2025; 385:115095. [PMID: 39674307 DOI: 10.1016/j.expneurol.2024.115095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Drugs able to efficiently counteract the progression of multiple sclerosis (MS) are still an unmet need. Numerous preclinical evidence indicates that reactive oxygen-generating enzyme myeloperoxidase (MPO), expressed by neutrophils and microglia, might play a key role in neurodegenerative disorders. Then, the MPO inhibition has been evaluated in clinical trials in Parkinson's and multiple system atrophy patients, and a clinical trial for the treatment of amyotrophic lateral sclerosis is underway. The effects of MPO inhibition on MS patients have not yet been explored. In the present study, by adopting the NOD mouse model of progressive MS (PMS), we evaluated the pharmacological effects of the MPO inhibitor verdiperstat (also known as AZD3241) on functional, immune, and mitochondrial parameters during disease evolution. We found that daily treatment with verdiperstat did not affect the pattern of progression as well as survival, despite its ability to reduce mitochondrial reactive oxygen species and microglia activation in the spinal cord of immunized mice. Remarkably, verdiperstat did not affect adaptive immunity, neutrophils invasion as well as mitochondrial derangement in the spinal cords of immunized mice. Data suggest that microglia suppression is not sufficient to prevent disease evolution, corroborating the hypothesis that immune-independent components drive neurodegeneration in progressive MS.
Collapse
Affiliation(s)
- Alessandra Pistolesi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Giuseppe Ranieri
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Maura Calvani
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
| | - Daniele Guasti
- Imaging Platform, Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| |
Collapse
|
5
|
Sharma Y, Gupta JK, Babu MA, Singh S, Sindhu RK. Signaling Pathways Concerning Mitochondrial Dysfunction: Implications in Neurodegeneration and Possible Molecular Targets. J Mol Neurosci 2024; 74:101. [PMID: 39466510 DOI: 10.1007/s12031-024-02269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
Mitochondrion is an important organelle present in our cells responsible for meeting energy requirements. All higher organisms rely on efficient mitochondrial bioenergetic machinery to sustain life. No other respiratory process can produce as much power as generated by mitochondria in the form of ATPs. This review is written in order to get an insight into the magnificent working of mitochondrion and its implications in cellular homeostasis, bioenergetics, redox, calcium signaling, and cell death. However, if this machinery gets faulty, it may lead to several disease states. Mitochondrial dysfunctioning is of growing concern today as it is seen in the pathogenesis of several diseases which includes neurodegenerative disorders, cardiovascular disorders, diabetes mellitus, skeletal muscle defects, liver diseases, and so on. To cover all these aspects is beyond the scope of this article; hence, our study is restricted to neurodegenerative disorders only. Moreover, faulty functioning of this organelle can be one of the causes of early ageing in individuals. This review emphasizes mutations in the mitochondrial DNA, defects in oxidative phosphorylation, generation of ROS, and apoptosis. Researchers have looked into new approaches that might be able to control mitochondrial failure and show a lot of promise as treatments.
Collapse
Affiliation(s)
- Yati Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Jeetendra Kumar Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Sumitra Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Rakesh K Sindhu
- School of Pharmacy, Sharda University, Gautam Buddha Nagar, Greater Noida, Uttar Paresdh, 201310, India.
| |
Collapse
|
6
|
Stys PK, Tsutsui S, Gafson AR, ‘t Hart BA, Belachew S, Geurts JJG. New views on the complex interplay between degeneration and autoimmunity in multiple sclerosis. Front Cell Neurosci 2024; 18:1426231. [PMID: 39161786 PMCID: PMC11330826 DOI: 10.3389/fncel.2024.1426231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/14/2024] [Indexed: 08/21/2024] Open
Abstract
Multiple sclerosis (MS) is a frequently disabling neurological disorder characterized by symptoms, clinical signs and imaging abnormalities that typically fluctuate over time, affecting any level of the CNS. Prominent lymphocytic inflammation, many genetic susceptibility variants involving immune pathways, as well as potent responses of the neuroinflammatory component to immunomodulating drugs, have led to the natural conclusion that this disease is driven by a primary autoimmune process. In this Hypothesis and Theory article, we discuss emerging data that cast doubt on this assumption. After three decades of therapeutic experience, what has become clear is that potent immune modulators are highly effective at suppressing inflammatory relapses, yet exhibit very limited effects on the later progressive phase of MS. Moreover, neuropathological examination of MS tissue indicates that degeneration, CNS atrophy, and myelin loss are most prominent in the progressive stage, when lymphocytic inflammation paradoxically wanes. Finally, emerging clinical observations such as "progression independent of relapse activity" and "silent progression," now thought to take hold very early in the course, together argue that an underlying "cytodegenerative" process, likely targeting the myelinating unit, may in fact represent the most proximal step in a complex pathophysiological cascade exacerbated by an autoimmune inflammatory overlay. Parallels are drawn with more traditional neurodegenerative disorders, where a progressive proteopathy with prion-like propagation of toxic misfolded species is now known to play a key role. A potentially pivotal contribution of the Epstein-Barr virus and B cells in this process is also discussed.
Collapse
Affiliation(s)
- Peter K. Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shigeki Tsutsui
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Arie R. Gafson
- Biogen Digital Health, Biogen, Cambridge, MA, United States
| | - Bert A. ‘t Hart
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers (location VUmc), Amsterdam, Netherlands
| | - Shibeshih Belachew
- TheraPanacea, Paris, France
- Indivi (DBA of Healios AG), Basel, Switzerland
| | - Jeroen J. G. Geurts
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers (location VUmc), Amsterdam, Netherlands
| |
Collapse
|
7
|
Tian H, Huang D, Wang J, Li H, Gao J, Zhong Y, Xia L, Zhang A, Lin Z, Ke X. The role of the "gut microbiota-mitochondria" crosstalk in the pathogenesis of multiple sclerosis. Front Microbiol 2024; 15:1404995. [PMID: 38741740 PMCID: PMC11089144 DOI: 10.3389/fmicb.2024.1404995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Multiple Sclerosis (MS) is a neurologic autoimmune disease whose exact pathophysiologic mechanisms remain to be elucidated. Recent studies have shown that the onset and progression of MS are associated with dysbiosis of the gut microbiota. Similarly, a large body of evidence suggests that mitochondrial dysfunction may also have a significant impact on the development of MS. Endosymbiotic theory has found that human mitochondria are microbial in origin and share similar biological characteristics with the gut microbiota. Therefore, gut microbiota and mitochondrial function crosstalk are relevant in the development of MS. However, the relationship between gut microbiota and mitochondrial function in the development of MS is not fully understood. Therefore, by synthesizing previous relevant literature, this paper focuses on the changes in gut microbiota and metabolite composition in the development of MS and the possible mechanisms of the crosstalk between gut microbiota and mitochondrial function in the progression of MS, to provide new therapeutic approaches for the prevention or reduction of MS based on this crosstalk.
Collapse
Affiliation(s)
- Huan Tian
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dunbing Huang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaqi Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huaqiang Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxin Gao
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Zhong
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Libin Xia
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhonghua Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Rehabilitation Medicine Center, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincia Hospital, Fuzhou, China
| | - Xiaohua Ke
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Li J, Qi H, Chen Y, Zhu X. Epilepsy and demyelination: Towards a bidirectional relationship. Prog Neurobiol 2024; 234:102588. [PMID: 38378072 DOI: 10.1016/j.pneurobio.2024.102588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Demyelination stands out as a prominent feature in individuals with specific types of epilepsy. Concurrently, individuals with demyelinating diseases, such as multiple sclerosis (MS) are at a greater risk of developing epilepsy compared to non-MS individuals. These bidirectional connections raise the question of whether both pathological conditions share common pathogenic mechanisms. This review focuses on the reciprocal relationship between epilepsy and demyelination diseases. We commence with an overview of the neurological basis of epilepsy and demyelination diseases, followed by an exploration of how our comprehension of these two disorders has evolved in tandem. Additionally, we discuss the potential pathogenic mechanisms contributing to the interactive relationship between these two diseases. A more nuanced understanding of the interplay between epilepsy and demyelination diseases has the potential to unveiling the molecular intricacies of their pathological relationships, paving the way for innovative directions in future clinical management and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Honggang Qi
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Yuzhou Chen
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
9
|
Tonev D, Momchilova A. Oxidative Stress and the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Pathway in Multiple Sclerosis: Focus on Certain Exogenous and Endogenous Nrf2 Activators and Therapeutic Plasma Exchange Modulation. Int J Mol Sci 2023; 24:17223. [PMID: 38139050 PMCID: PMC10743556 DOI: 10.3390/ijms242417223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/18/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The pathogenesis of multiple sclerosis (MS) suggests that, in genetically susceptible subjects, T lymphocytes undergo activation in the peripheral compartment, pass through the BBB, and cause damage in the CNS. They produce pro-inflammatory cytokines; induce cytotoxic activities in microglia and astrocytes with the accumulation of reactive oxygen species, reactive nitrogen species, and other highly reactive radicals; activate B cells and macrophages and stimulate the complement system. Inflammation and neurodegeneration are involved from the very beginning of the disease. They can both be affected by oxidative stress (OS) with different emphases depending on the time course of MS. Thus, OS initiates and supports inflammatory processes in the active phase, while in the chronic phase it supports neurodegenerative processes. A still unresolved issue in overcoming OS-induced lesions in MS is the insufficient endogenous activation of the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) pathway, which under normal conditions plays an essential role in mitochondria protection, OS, neuroinflammation, and degeneration. Thus, the search for approaches aiming to elevate endogenous Nrf2 activation is capable of protecting the brain against oxidative damage. However, exogenous Nrf2 activators themselves are not without drawbacks, necessitating the search for new non-pharmacological therapeutic approaches to modulate OS. The purpose of the present review is to provide some relevant preclinical and clinical examples, focusing on certain exogenous and endogenous Nrf2 activators and the modulation of therapeutic plasma exchange (TPE). The increased plasma levels of nerve growth factor (NGF) in response to TPE treatment of MS patients suggest their antioxidant potential for endogenous Nrf2 enhancement via NGF/TrkA/PI3K/Akt and NGF/p75NTR/ceramide-PKCζ/CK2 signaling pathways.
Collapse
Affiliation(s)
- Dimitar Tonev
- Department of Anesthesiology and Intensive Care, University Hospital “Tzaritza Yoanna—ISUL”, Medical University of Sofia, 1527 Sofia, Bulgaria
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria;
| |
Collapse
|
10
|
Li W, Wu M, Li Y, Shen J. Reactive nitrogen species as therapeutic targets for autophagy/mitophagy modulation to relieve neurodegeneration in multiple sclerosis: Potential application for drug discovery. Free Radic Biol Med 2023; 208:37-51. [PMID: 37532065 DOI: 10.1016/j.freeradbiomed.2023.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease with limited therapeutic effects, eventually developing into handicap. Seeking novel therapeutic strategies for MS is timely important. Active autophagy/mitophagy could mediate neurodegeneration, while its roles in MS remain controversial. To elucidate the exact roles of autophagy/mitophagy and reveal its in-depth regulatory mechanisms, we conduct a systematic literature study and analyze the factors that might be responsible for divergent results obtained. The dynamic change levels of autophagy/mitophagy appear to be a determining factor for final neuron fate during MS pathology. Excessive neuronal autophagy/mitophagy contributes to neurodegeneration after disease onset at the active MS phase. Reactive nitrogen species (RNS) serve as key regulators for redox-related modifications and participate in autophagy/mitophagy modulation in MS. Nitric oxide (•NO) and peroxynitrite (ONOO-), two representative RNS, could nitrate or nitrosate Drp1/parkin/PINK1 pathway, activating excessive mitophagy and aggravating neuronal injury. Targeting RNS-mediated excessive autophagy/mitophagy could be a promising strategy for developing novel anti-MS drugs. In this review, we highlight the important roles of RNS-mediated autophagy/mitophagy in neuronal injury and review the potential therapeutic compounds with the bioactivities of inhibiting RNS-mediated autophagy/mitophagy activation and attenuating MS progression. Overall, we conclude that reactive nitrogen species could be promising therapeutic targets to regulate autophagy/mitophagy for multiple sclerosis treatment.
Collapse
Affiliation(s)
- Wenting Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
11
|
Koudriavtseva T, Lorenzano S, Cellerino M, Truglio M, Fiorelli M, Lapucci C, D’Agosto G, Conti L, Stefanile A, Zannino S, Filippi MM, Cortese A, Piantadosi C, Maschio M, Maialetti A, Galiè E, Salvetti M, Inglese M. Tissue factor as a potential coagulative/vascular marker in relapsing-remitting multiple sclerosis. Front Immunol 2023; 14:1226616. [PMID: 37583699 PMCID: PMC10424925 DOI: 10.3389/fimmu.2023.1226616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Objectives Recent studies supported coagulation involvement in multiple sclerosis, an inflammatory-demyelinating and degenerative disease of the central nervous system. The main objectives of this observational study were to identify the most specific pro-coagulative/vascular factors for multiple sclerosis pathogenesis and to correlate them with brain hemodynamic abnormalities. Methods We compared i) serum/plasma levels of complement(C)/coagulation/vascular factors, viral/microbiological assays, fat-soluble vitamins and lymphocyte count among people with multiple sclerosis sampled in a clinical remission (n=30; 23F/7M, 40 ± 8.14 years) or a relapse (n=30; 24F/6M, age 41 ± 10.74 years) and age/sex-matched controls (n=30; 23F/7M, 40 ± 8.38 years); ii) brain hemodynamic metrics at dynamic susceptibility contrast-enhanced 3T-MRI during relapse and remission, and iii) laboratory data with MRI perfusion metrics and clinical features of people with multiple sclerosis. Two models by Partial Least Squares Discriminant Analysis were performed using two groups as input: (1) multiple sclerosis vs. controls, and (2) relapsing vs. remitting multiple sclerosis. Results Compared to controls, multiple sclerosis patients had a higher Body-Mass-Index, Protein-C and activated-C9; and a lower activated-C4. Levels of Tissue-Factor, Tie-2 and P-Selectin/CD62P were lower in relapse compared to remission and HC, whereas Angiopoietin-I was higher in relapsing vs. remitting multiple sclerosis. A lower number of total lymphocytes was found in relapsing multiple sclerosis vs. remitting multiple sclerosis and controls. Cerebral-Blood-Volume was lower in normal-appearing white matter and left caudatum while Cerebral-Blood-Flow was inferior in bilateral putamen in relapsing versus remitting multiple sclerosis. The mean-transit-time of gadolinium-enhancing lesions negatively correlated with Tissue-Factor. The top-5 discriminating variables for model (1) were: EBV-EBNA-1 IgG, Body-Mass-Index, Protein-C, activated-C4 and Tissue-Factor whereas for model (2) were: Tissue-Factor, Angiopoietin-I, MCHC, Vitamin A and T-CD3. Conclusion Tissue-factor was one of the top-5 variables in the models discriminating either multiple sclerosis from controls or multiple sclerosis relapse from remission and correlated with mean-transit-time of gadolinium-enhancing lesions. Tissue-factor appears a promising pro-coagulative/vascular biomarker and a possible therapeutic target in relapsing-remitting multiple sclerosis. Clinical trial registration ClinicalTrials.gov, identifier NCT04380220.
Collapse
Affiliation(s)
- Tatiana Koudriavtseva
- Medical Direction, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Svetlana Lorenzano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Maria Cellerino
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Mauro Truglio
- Clinical Pathology and Cancer Biobank, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Fiorelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Caterina Lapucci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Giovanna D’Agosto
- Clinical Pathology and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gallicano Dermatological Institute, Rome, Italy
| | - Laura Conti
- Clinical Pathology and Cancer Biobank, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Annunziata Stefanile
- Clinical Pathology and Cancer Biobank, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Silvana Zannino
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | | | - Antonio Cortese
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Carlo Piantadosi
- Unità Operativa Complessa (UOC) Neurology, San Giovanni-Addolorata Hospital, Rome, Italy
| | - Marta Maschio
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Andrea Maialetti
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Edvina Galiè
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Marco Salvetti
- Department of Neuroscience Mental Health and Sensory Organs (NEMOS), Sapienza University, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Department of Neurology, Mount Sinai Hospital, New York, NY, United States
| |
Collapse
|
12
|
Touil H, Mounts K, De Jager PL. Differential impact of environmental factors on systemic and localized autoimmunity. Front Immunol 2023; 14:1147447. [PMID: 37283765 PMCID: PMC10239830 DOI: 10.3389/fimmu.2023.1147447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
The influence of environmental factors on the development of autoimmune disease is being broadly investigated to better understand the multifactorial nature of autoimmune pathogenesis and to identify potential areas of intervention. Areas of particular interest include the influence of lifestyle, nutrition, and vitamin deficiencies on autoimmunity and chronic inflammation. In this review, we discuss how particular lifestyles and dietary patterns may contribute to or modulate autoimmunity. We explored this concept through a spectrum of several autoimmune diseases including Multiple Sclerosis (MS), Systemic Lupus Erythematosus (SLE) and Alopecia Areata (AA) affecting the central nervous system, whole body, and the hair follicles, respectively. A clear commonality between the autoimmune conditions of interest here is low Vitamin D, a well-researched hormone in the context of autoimmunity with pleiotropic immunomodulatory and anti-inflammatory effects. While low levels are often correlated with disease activity and progression in MS and AA, the relationship is less clear in SLE. Despite strong associations with autoimmunity, we lack conclusive evidence which elucidates its role in contributing to pathogenesis or simply as a result of chronic inflammation. In a similar vein, other vitamins impacting the development and course of these diseases are explored in this review, and overall diet and lifestyle. Recent work exploring the effects of dietary interventions on MS showed that a balanced diet was linked to improvement in clinical parameters, comorbid conditions, and overall quality of life for patients. In patients with MS, SLE and AA, certain diets and supplements are linked to lower incidence and improved symptoms. Conversely, obesity during adolescence was linked with higher incidence of MS while in SLE it was associated with organ damage. Autoimmunity is thought to emerge from the complex interplay between environmental factors and genetic background. Although the scope of this review focuses on environmental factors, it is imperative to elaborate the interaction between genetic susceptibility and environment due to the multifactorial origin of these disease. Here, we offer a comprehensive review about the influence of recent environmental and lifestyle factors on these autoimmune diseases and potential translation into therapeutic interventions.
Collapse
Affiliation(s)
- Hanane Touil
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Kristin Mounts
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Philip Lawrence De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
- Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
13
|
Zhang L, Yu F, Xia J. Trimethylamine N-oxide: role in cell senescence and age-related diseases. Eur J Nutr 2023; 62:525-541. [PMID: 36219234 DOI: 10.1007/s00394-022-03011-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/21/2022] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Hayflick and Moorhead first demonstrated cell senescence as the irreversible growth arrest of cells after prolonged cultivation. Telomere shortening and oxidative stress are the fundamental mechanisms that drive cell senescence. Increasing studies have shown that TMAO is closely associated with cellular aging and age-related diseases. An emerging body of evidence from animal models, especially mice, has identified that TMAO contributes to senescence from multiple pathways and appears to accelerate many neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. However, the specific mechanism of how TMAO speeds aging is still not completely clear. MATERIAL AND METHODS In this review, we summarize some key findings in TMAO, cell senescence, and age-related diseases. We focused particular attention on the potential mechanisms for clinical transformation to find ways to interfere with the aging process. CONCLUSION TMAO can accelerate cell senescence by causing mitochondrial damage, superoxide formation, and promoting the generation of pro-inflammatory factors.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Fang Yu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Fields M, Marcuzzi A, Gonelli A, Celeghini C, Maximova N, Rimondi E. Mitochondria-Targeted Antioxidants, an Innovative Class of Antioxidant Compounds for Neurodegenerative Diseases: Perspectives and Limitations. Int J Mol Sci 2023; 24:ijms24043739. [PMID: 36835150 PMCID: PMC9960436 DOI: 10.3390/ijms24043739] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Neurodegenerative diseases comprise a wide spectrum of pathologies characterized by progressive loss of neuronal functions and structures. Despite having different genetic backgrounds and etiology, in recent years, many studies have highlighted a point of convergence in the mechanisms leading to neurodegeneration: mitochondrial dysfunction and oxidative stress have been observed in different pathologies, and their detrimental effects on neurons contribute to the exacerbation of the pathological phenotype at various degrees. In this context, increasing relevance has been acquired by antioxidant therapies, with the purpose of restoring mitochondrial functions in order to revert the neuronal damage. However, conventional antioxidants were not able to specifically accumulate in diseased mitochondria, often eliciting harmful effects on the whole body. In the last decades, novel, precise, mitochondria-targeted antioxidant (MTA) compounds have been developed and studied, both in vitro and in vivo, to address the need to counter the oxidative stress in mitochondria and restore the energy supply and membrane potentials in neurons. In this review, we focus on the activity and therapeutic perspectives of MitoQ, SkQ1, MitoVitE and MitoTEMPO, the most studied compounds belonging to the class of MTA conjugated to lipophilic cations, in order to reach the mitochondrial compartment.
Collapse
Affiliation(s)
- Matteo Fields
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Annalisa Marcuzzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| | - Arianna Gonelli
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Claudio Celeghini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Natalia Maximova
- Department of Pediatrics, Pediatrics, Bone Marrow Transplant Unit, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Erika Rimondi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
15
|
Cis-p-tau plays crucial role in lysolecithin-induced demyelination and subsequent axonopathy in mouse optic chiasm. Exp Neurol 2023; 359:114262. [PMID: 36343678 DOI: 10.1016/j.expneurol.2022.114262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease that leads to axon degeneration as the major cause of everlasting neurological disability. The cis-phosphorylated tau (cis-p-tau) is an isoform of tau phosphorylated on threonine 231 and causes tau fails to bind micro-tubules and promotes assembly. It gains toxic function and forms tangles in the cell which finally leads to cell death. An antibody raised against cis- p-tau (cis mAb) detects this isoform and induces its clearance. Here, we investigated the formation of cis-p-tau in a lysophosphatidylcholine (LPC)-induced prolonged demyelination model as well as the beneficial effects of its clearance using cis mAb. Cis -p-tau was increased in the lesion site, especially in axons and microglia. Behavioral and functional studies were performed using visual cliff test, visual placing test, and visual evoked potential recording. Cis-p-tau clearance resulted in decreased gliosis, protected myelin and reduced axon degeneration. Analysis of behavioral and electrophysiological data showed that clearance of cis-p-tau by cis mAb treatment improved the visual acuity along with the integrity of the optic pathway. Our results highlight the opportunity of using cis mAb as a new therapy for protecting myelin and axons in patients suffering from MS.
Collapse
|
16
|
Butler R, Bradford D, Rodgers KE. Analysis of shared underlying mechanism in neurodegenerative disease. Front Aging Neurosci 2022; 14:1006089. [PMID: 36523957 PMCID: PMC9745190 DOI: 10.3389/fnagi.2022.1006089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
In this review, the relationship between bioenergetics, mitochondrial dysfunction, and inflammation will be and how they contribute to neurodegeneration, specifically in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS) will be reviewed. Long-term changes in mitochondrial function, autophagy dysfunction, and immune activation are commonalities shared across these age-related disorders. Genetic risk factors for these diseases support an autophagy-immune connection in the underlying pathophysiology. Critical areas of deeper evaluation in these bioenergetic processes may lead to potential therapeutics with efficacy across multiple neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Kathleen E. Rodgers
- Department of Medical Pharmacology, Center for Innovation in Brain Science, University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
17
|
Li M, Xu B, Li X, Li Y, Qiu S, Chen K, Liu Z, Ding Y, Wang H, Xu J, Wang H. Mitofusin 2 confers the suppression of microglial activation by cannabidiol: Insights from in vitro and in vivo models. Brain Behav Immun 2022; 104:155-170. [PMID: 35688339 DOI: 10.1016/j.bbi.2022.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/12/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022] Open
Abstract
Currently, there is increasing attention on the regulatory effects of cannabidiol (CBD) on the inflammatory response and the immune system. However, the mechanisms have not yet been completely revealed. Mitofusin 2 (Mfn2) is a mitochondrial fusion protein involved in the inflammatory response. Here, we investigated whether Mfn2 confers the anti-inflammatory effects of CBD. We found that treatment with CBD decreased the levels of tumor necrosis factor α, interleukin 6, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and ionized calcium-binding adaptor molecule-1 (Iba1) in lipopolysaccharide (LPS)-challenged microglia. CBD also significantly suppressed the increase in reactive oxygen species (ROS) and the decline of mitochondrial membrane potential in BV-2 cells subjected to LPS. Interestingly, CBD treatment increased the expression of Mfn2, while knockdown of Mfn2 blocked the effect of CBD. By contrast, overexpression of Mfn2 reversed the increase in the levels of iNOS, COX-2, and Iba1 induced by Mfn2 small interfering RNA. In mice challenged with LPS, we found that CBD ameliorated the anxiety responses and cognitive deficits, increased the level of Mfn2, and decreased the expression of Iba1. Since neuro-inflammation and microglial activation are the common events that are observed in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis, we treated EAE mice with CBD. Mice that received CBD showed amelioration of clinical signs, reduced inflammatory response, and increased myelin basic protein level. Most importantly, the adeno-associated virus delivery of short hairpin RNA against Mfn2 reversed the protective effects of CBD. Altogether, these results indicate that Mfn2 is an essential immunomodulator conferring the anti-inflammatory effects of CBD. Our results also shed new light on the mechanisms underlying the protective effects of CBD against inflammatory diseases including multiple sclerosis.
Collapse
Affiliation(s)
- Mengfan Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bingtian Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xing Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yueqi Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuqin Qiu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kechun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhuhe Liu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuewen Ding
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Honghao Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao, Greater Bay Area, China.
| | - Haitao Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao, Greater Bay Area, China.
| |
Collapse
|
18
|
Al-Kafaji G, Alharbi MA, Alkandari H, Salem AH, Bakhiet M. Analysis of the entire mitochondrial genome reveals Leber's hereditary optic neuropathy mitochondrial DNA mutations in an Arab cohort with multiple sclerosis. Sci Rep 2022; 12:11099. [PMID: 35773337 PMCID: PMC9246974 DOI: 10.1038/s41598-022-15385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
Several mitochondrial DNA (mtDNA) mutations of Leber's hereditary optic neuropathy (LHON) have been reported in patients with multiple sclerosis (MS) from different ethnicities. To further study the involvement of LHON mtDNA mutations in MS in the Arab population, we analyzed sequencing data of the entire mitochondrial genome from 47 unrelated Saudi individuals, 23 patients with relapse-remitting MS (RRMS) and 24 healthy controls. Ten LHON mutations/variants were detected in the patients but were absent in the controls. Of them, the common primary pathogenic mutation m.14484T>C and the rare mutation m.10237T>C were found in one patient, whereas the rare mutation m.9101T>C was found in another patient. The remaining were secondary single nucleotide variants (SNVs) found either in synergy with the primary/rare mutations or individually in other patients. Patients carrying LHON variants also exhibited distinct mtDNA variants throughout the mitochondrial genome, eight were previously reported in patients with LHON. Moreover, five other LHON-related SNVs differed significantly in their prevalence among patients and controls (P < 0.05). This study, the first to investigate LHON mtDNA mutations/variants in a Saudi cohort may suggest a role of these mutations/variants in the pathogenesis or genetic predisposition to MS, a possibility which needs to be explored further in a large-scale.
Collapse
Affiliation(s)
- Ghada Al-Kafaji
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain. .,Department of molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Salmaniya Avenue, Building 293, Road 2904, Block 329, Manama, Kingdom of Bahrain.
| | - Maram A Alharbi
- College of Forensic Sciences, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Hasan Alkandari
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Abdel Halim Salem
- Department of Anatomy, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Moiz Bakhiet
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
19
|
Preventing Axonal Sodium Overload or Mitochondrial Calcium Uptake Protects Axonal Mitochondria from Oxidative Stress-Induced Alterations. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6125711. [PMID: 35663200 PMCID: PMC9157283 DOI: 10.1155/2022/6125711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/26/2022]
Abstract
In neuroinflammatory and neurodegenerative disorders such as multiple sclerosis, mitochondrial damage caused by oxidative stress is believed to contribute to neuroaxonal damage. Previously, we demonstrated that exposure to hydrogen peroxide (H2O2) alters mitochondrial morphology and motility in myelinated axons and that these changes initiate at the nodes of Ranvier, where numerous sodium channels are located. Therefore, we suggested that mitochondrial damage may lead to ATP deficit, thereby affecting the efficiency of the sodium-potassium ATPase and eventually leading to sodium overload in axons. The increased intra-axonal sodium may revert the axonal sodium-calcium exchangers and thus may lead to a pathological calcium overload in the axoplasm and mitochondria. Here, we used the explanted murine ventral spinal roots to investigate whether modulation of sodium or calcium influx may prevent mitochondrial alterations in myelinated axons during exogenous application of H2O2 inducing oxidative stress. For that, tetrodotoxin, an inhibitor of voltage-gated sodium ion channels, and ruthenium 360, an inhibitor of the mitochondrial calcium uniporter, were applied simultaneously with hydrogen peroxide to axons. Mitochondrial shape and motility were analyzed. We showed that inhibition of axonal sodium influx prevented oxidative stress-induced morphological changes (i.e., increase in circularity and area and decrease in length) and preserved mitochondrial membrane potential, which is crucial for ATP production. Blocking mitochondrial calcium uptake prevented decrease in mitochondrial motility and also preserved membrane potential. Our findings indicate that alterations of both mitochondrial morphology and motility in the contexts of oxidative stress can be counterbalanced by modulating intramitochondrial ion concentrations pharmacologically. Moreover, motile mitochondria show preserved membrane potentials, pointing to a close association between mitochondrial motility and functionality.
Collapse
|
20
|
McCombe PA. The role of sex and pregnancy in multiple sclerosis: what do we know and what should we do? Expert Rev Neurother 2022; 22:377-392. [PMID: 35354378 DOI: 10.1080/14737175.2022.2060079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is more prevalent in women than in men. The sex of the patient, and pregnancy, are reported to be associated with the clinical features of MS. The mechanism of this is unclear. AREAS COVERED This review summarizes data about sex differences in MS and the role of pregnancy. Possible mechanisms for the effects of sex and pregnancy are summarized, and practical suggestions for addressing these issues are provided. EXPERT OPINION There is considerable interdependence of the variables that are associated with MS. Men have a worse outcome of MS, and this could be due to the same factors that lead to greater incidence of neurodegenerative disease in men. The possible role of parity on the long-term outcome of MS is of interest. Future studies that look at the mechanisms of the effects of the sex of the patient on the outcome of MS are required. However, there are some actions that can be taken without further research. We can concentrate on public health measures that address the modifiable risk factors for MS and ensure that disease is controlled in women who intend to become pregnant and use appropriate disease modifying agents during pregnancy.
Collapse
Affiliation(s)
- Pamela A McCombe
- The University of Queensland, Centre for Clinical Research, Royal Brisbane and Women's Hospital, Herston, Australia
| |
Collapse
|
21
|
Al-Kafaji G, Bakheit HF, AlAli F, Fattah M, Alhajeri S, Alharbi MA, Daif A, Alsabbagh MM, Alwehaidah MS, Bakhiet M. Next-generation sequencing of the whole mitochondrial genome identifies functionally deleterious mutations in patients with multiple sclerosis. PLoS One 2022; 17:e0263606. [PMID: 35130313 PMCID: PMC8820615 DOI: 10.1371/journal.pone.0263606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/22/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system with genetics and environmental determinants. Studies focused on the neurogenetics of MS showed that mitochondrial DNA (mtDNA) mutations that can ultimately lead to mitochondrial dysfunction, alter brain energy metabolism and cause neurodegeneration. We analyzed the whole mitochondrial genome using next-generation sequencing (NGS) from 47 Saudi individuals, 23 patients with relapsing-remitting MS and 24 healthy controls to identify mtDNA disease-related mutations/variants. A large number of variants were detected in the D-loop and coding genes of mtDNA. While distinct unique variants were only present in patients or only occur in controls, a number of common variants were shared among the two groups. The prevalence of some common variants differed significantly between patients and controls, thus could be implicated in susceptibility to MS. Of the unique variants only present in the patients, 34 were missense mutations, located in different mtDNA-encoded genes. Seven of these mutations were not previously reported in MS, and predicted to be deleterious with considerable impacts on the functions and structures of encoded-proteins and may play a role in the pathogenesis of MS. These include two heteroplasmic mutations namely 10237T>C in MT-ND3 gene and 15884G>C in MT-CYB gene; and three homoplasmic mutations namely 9288A>G in MT-CO3 gene, 14484T>C in MT-ND6 gene, 15431G>A in MT-CYB gene, 8490T>C in MT-ATP8 gene and 5437C>T in MT-ND2 gene. Notably some patients harboured multiple mutations while other patients carried the same mutations. This study is the first to sequence the entire mitochondrial genome in MS patients in an Arab population. Our results expanded the mutational spectrum of mtDNA variants in MS and highlighted the efficiency of NGS in population-specific mtDNA variant discovery. Further investigations in a larger cohort are warranted to confirm the role of mtDNA MS.
Collapse
Affiliation(s)
- Ghada Al-Kafaji
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
- * E-mail:
| | - Halla F. Bakheit
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Faisal AlAli
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Mina Fattah
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | | | - Maram A. Alharbi
- College of Forensic Sciences, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Abdulqader Daif
- King Saud University Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Manahel Mahmood Alsabbagh
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Materah Salem Alwehaidah
- Department of Medical Laboratory, Faculty of Allied Health, Kuwait University, Kuwait City, State of Kuwait
| | - Moiz Bakhiet
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
22
|
Kamma E, Lasisi W, Libner C, Ng HS, Plemel JR. Central nervous system macrophages in progressive multiple sclerosis: relationship to neurodegeneration and therapeutics. J Neuroinflammation 2022; 19:45. [PMID: 35144628 PMCID: PMC8830034 DOI: 10.1186/s12974-022-02408-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/31/2022] [Indexed: 02/08/2023] Open
Abstract
There are over 15 disease-modifying drugs that have been approved over the last 20 years for the treatment of relapsing–remitting multiple sclerosis (MS), but there are limited treatment options available for progressive MS. The development of new drugs for the treatment of progressive MS remains challenging as the pathophysiology of progressive MS is poorly understood. The progressive phase of MS is dominated by neurodegeneration and a heightened innate immune response with trapped immune cells behind a closed blood–brain barrier in the central nervous system. Here we review microglia and border-associated macrophages, which include perivascular, meningeal, and choroid plexus macrophages, during the progressive phase of MS. These cells are vital and are largely the basis to define lesion types in MS. We will review the evidence that reactive microglia and macrophages upregulate pro-inflammatory genes and downregulate homeostatic genes, that may promote neurodegeneration in progressive MS. We will also review the factors that regulate microglia and macrophage function during progressive MS, as well as potential toxic functions of these cells. Disease-modifying drugs that solely target microglia and macrophage in progressive MS are lacking. The recent treatment successes for progressive MS include include B-cell depletion therapies and sphingosine-1-phosphate receptor modulators. We will describe several therapies being evaluated as a potential treatment option for progressive MS, such as immunomodulatory therapies that can target myeloid cells or as a potential neuroprotective agent.
Collapse
Affiliation(s)
- Emily Kamma
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Wendy Lasisi
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, NL, Canada
| | - Cole Libner
- Department of Health Sciences and the Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Huah Shin Ng
- Division of Neurology and the Djavad Mowafaghian Centre for Brain Health, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jason R Plemel
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada. .,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada. .,University of Alberta, 5-64 Heritage Medical Research Centre, Edmonton, AB, T6G2S2, Canada.
| |
Collapse
|
23
|
Balasa R, Barcutean L, Mosora O, Manu D. Reviewing the Significance of Blood-Brain Barrier Disruption in Multiple Sclerosis Pathology and Treatment. Int J Mol Sci 2021; 22:ijms22168370. [PMID: 34445097 PMCID: PMC8395058 DOI: 10.3390/ijms22168370] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022] Open
Abstract
The disruption of blood–brain barrier (BBB) for multiple sclerosis (MS) pathogenesis has a double effect: early on during the onset of the immune attack and later for the CNS self-sustained ‘inside-out’ demyelination and neurodegeneration processes. This review presents the characteristics of BBB malfunction in MS but mostly highlights current developments regarding the impairment of the neurovascular unit (NVU) and the metabolic and mitochondrial dysfunctions of the BBB’s endothelial cells. The hypoxic hypothesis is largely studied and agreed upon recently in the pathologic processes in MS. Hypoxia in MS might be produced per se by the NVU malfunction or secondary to mitochondria dysfunction. We present three different but related terms that denominate the ongoing neurodegenerative process in progressive forms of MS that are indirectly related to BBB disruption: progression independent of relapses, no evidence of disease activity and smoldering demyelination or silent progression. Dimethyl fumarate (DMF), modulators of S1P receptor, cladribine and laquinimode are DMTs that are able to cross the BBB and exhibit beneficial direct effects in the CNS with very different mechanisms of action, providing hope that a combined therapy might be effective in treating MS. Detailed mechanisms of action of these DMTs are described and also illustrated in dedicated images. With increasing knowledge about the involvement of BBB in MS pathology, BBB might become a therapeutic target in MS not only to make it impenetrable against activated immune cells but also to allow molecules that have a neuroprotective effect in reaching the cell target inside the CNS.
Collapse
Affiliation(s)
- Rodica Balasa
- Department of Neurology, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade”, 540136 Targu Mures, Romania;
- Neurology 1 Clinic, Emergency Clinical County Hospital Mures, 540136 Targu Mures, Romania;
| | - Laura Barcutean
- Department of Neurology, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade”, 540136 Targu Mures, Romania;
- Neurology 1 Clinic, Emergency Clinical County Hospital Mures, 540136 Targu Mures, Romania;
- Correspondence: ; Tel.: +40-745-373947
| | - Oana Mosora
- Neurology 1 Clinic, Emergency Clinical County Hospital Mures, 540136 Targu Mures, Romania;
| | - Doina Manu
- Advanced Research Center Medical and Pharmaceutical, University of Medicine, Pharmacy, Sciences and Technology “George Emil Palade”, 540142 Targu Mures, Romania;
| |
Collapse
|
24
|
Bergaglio T, Luchicchi A, Schenk GJ. Engine Failure in Axo-Myelinic Signaling: A Potential Key Player in the Pathogenesis of Multiple Sclerosis. Front Cell Neurosci 2021; 15:610295. [PMID: 33642995 PMCID: PMC7902503 DOI: 10.3389/fncel.2021.610295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple Sclerosis (MS) is a complex and chronic disease of the central nervous system (CNS), characterized by both degenerative and inflammatory processes leading to axonal damage, demyelination, and neuronal loss. In the last decade, the traditional outside-in standpoint on MS pathogenesis, which identifies a primary autoimmune inflammatory etiology, has been challenged by a complementary inside-out theory. By focusing on the degenerative processes of MS, the axo-myelinic system may reveal new insights into the disease triggering mechanisms. Oxidative stress (OS) has been widely described as one of the means driving tissue injury in neurodegenerative disorders, including MS. Axonal mitochondria constitute the main energy source for electrically active axons and neurons and are largely vulnerable to oxidative injury. Consequently, axonal mitochondrial dysfunction might impair efficient axo-glial communication, which could, in turn, affect axonal integrity and the maintenance of axonal, neuronal, and synaptic signaling. In this review article, we argue that OS-derived mitochondrial impairment may underline the dysfunctional relationship between axons and their supportive glia cells, specifically oligodendrocytes and that this mechanism is implicated in the development of a primary cytodegeneration and a secondary pro-inflammatory response (inside-out), which in turn, together with a variably primed host's immune system, may lead to the onset of MS and its different subtypes.
Collapse
Affiliation(s)
| | | | - Geert J. Schenk
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam MS Center, Amsterdam, Netherlands
| |
Collapse
|
25
|
Patoughi M, Ghafouri-Fard S, Arsang-Jang S, Taheri M. Expression analysis of PINK1 and PINK1-AS in multiple sclerosis patients versus healthy subjects. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 40:157-165. [PMID: 33161812 DOI: 10.1080/15257770.2020.1844229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Recent investigations which have aimed at unraveling the etiology of multiple sclerosis (MS), have underscored the role of mitochondria in this disorder. PINK1 gene codes a serine/threonine kinase that protects mitochondria and maintains its normal function. METHODS In the current project, we quantified expression levels of PINK1 and a long non-coding RNA which is transcribed antisense to this gene (PINK1-AS) in the peripheral blood of MS patients versus normal persons. RESULTS Peripheral expression of PINK1-AS was remarkably higher in MS patients compared with healthy individuals. A significant difference in PINK1-AS level was also recognized in male patients compared with male controls. But, the difference was not remarkable between female subgroups. Expression of PINK1 was not different between MS patients and healthy persons. Univariate analysis showed significant differences in age, disease duration, progression index and age at disease onset between males and females (P values of 0.041, 0.001, <0.0001 and 0.007 respectively). There was a trend toward correlation between expression levels of PINK1 and PINK1-AS (r = 0.26, P = 0.074). However, expressions of either genes were correlated with any of the demographic or clinical features. CONCLUSION Based on the altered expression of PINK1-AS in the peripheral blood of MS patients, PINK1-AS might be a putative culpript in the pathogenesis of MS. We recommend conduction of additional studies to unravel the mechanism of PINK1-AS partake in the MS.
Collapse
Affiliation(s)
- Mona Patoughi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Arsang-Jang
- Faculty of Medicine, Department of Biostatistics and Epidemiology, Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Biernacki T, Sandi D, Bencsik K, Vécsei L. Kynurenines in the Pathogenesis of Multiple Sclerosis: Therapeutic Perspectives. Cells 2020; 9:cells9061564. [PMID: 32604956 PMCID: PMC7349747 DOI: 10.3390/cells9061564] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Over the past years, an increasing amount of evidence has emerged in support of the kynurenine pathway’s (KP) pivotal role in the pathogenesis of several neurodegenerative, psychiatric, vascular and autoimmune diseases. Different neuroactive metabolites of the KP are known to exert opposite effects on neurons, some being neuroprotective (e.g., picolinic acid, kynurenic acid, and the cofactor nicotinamide adenine dinucleotide), while others are toxic to neurons (e.g., 3-hydroxykynurenine, quinolinic acid). Not only the alterations in the levels of the metabolites but also disturbances in their ratio (quinolinic acid/kynurenic acid) have been reported in several diseases. In addition to the metabolites, the enzymes participating in the KP have been unearthed to be involved in modulation of the immune system, the energetic upkeep of neurons and have been shown to influence redox processes and inflammatory cascades, revealing a sophisticated, intertwined system. This review considers various methods through which enzymes and metabolites of the kynurenine pathway influence the immune system, the roles they play in the pathogenesis of neuroinflammatory diseases based on current evidence with a focus on their involvement in multiple sclerosis, as well as therapeutic approaches.
Collapse
Affiliation(s)
- Tamás Biernacki
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - Dániel Sandi
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - Krisztina Bencsik
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - László Vécsei
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
- MTA—SZTE Neuroscience Research Group, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Center, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-356; Fax: +36-62-545-597
| |
Collapse
|
27
|
Oxidative Damage of Blood Platelets Correlates with the Degree of Psychophysical Disability in Secondary Progressive Multiple Sclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2868014. [PMID: 32655763 PMCID: PMC7317616 DOI: 10.1155/2020/2868014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/22/2020] [Accepted: 05/30/2020] [Indexed: 12/11/2022]
Abstract
The results of past research studies show that platelets are one of the main sources of reactive oxygen species (ROS) and reactive nitrogen species (RNS) to be found in the course of many pathological states. The aim of this study was to determine the level of oxidative/nitrative stress biomarkers in blood platelets obtained from multiple sclerosis (MS) patients (n = 110) and to verify their correlation with the clinical parameters of the psychophysical disability of patients. The mitochondrial metabolism of platelets was assessed by measuring the intracellular production of ROS using the fluorescence method with DCFH-DA dye and by identification of changes in the mitochondrial membrane potential of platelets using the JC-1 dye. Moreover, we measured the mRNA expression for the gene encoding the cytochrome c oxidase subunit I (MTCO-1) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in platelets and megakaryocytes using the RT-qPCR method, as well as the concentration of NADPH oxidase (NOX-1) by the ELISA method. Our results proved an increased level of oxidative/nitrative damage of proteins (carbonyl groups, 3-nitrotyrosine) (p < 0.0001) and decreased level of -SH in MS (p < 0.0001) and also a pronounced correlation between these biomarkers and parameters assessed by the Expanded Disability Status Scale and the Beck's Depression Inventory. The application of fluorescence methods showed mitochondrial membrane potential disruption (p < 0.001) and higher production of ROS in platelets from MS compared to control (p < 0.0001). Our research has also confirmed the impairment of red-ox metabolism in MS, which was achieved by increasing the relative mRNA expression in platelets for the genes studied (2-fold increase for the MTCO-1 gene and 1.5-fold increase in GAPDH gene, p < 0.05), as well as the augmented concentration of NOX-1 compared to control (p < 0.0001). Our results indicate that the oxidative/nitrative damage of platelets is implicated in the pathophysiology of MS, which reflects the status of the disease.
Collapse
|
28
|
Grist JT, Miller JJ, Zaccagna F, McLean MA, Riemer F, Matys T, Tyler DJ, Laustsen C, Coles AJ, Gallagher FA. Hyperpolarized 13C MRI: A novel approach for probing cerebral metabolism in health and neurological disease. J Cereb Blood Flow Metab 2020; 40:1137-1147. [PMID: 32153235 PMCID: PMC7238376 DOI: 10.1177/0271678x20909045] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
Cerebral metabolism is tightly regulated and fundamental for healthy neurological function. There is increasing evidence that alterations in this metabolism may be a precursor and early biomarker of later stage disease processes. Proton magnetic resonance spectroscopy (1H-MRS) is a powerful tool to non-invasively assess tissue metabolites and has many applications for studying the normal and diseased brain. However, the technique has limitations including low spatial and temporal resolution, difficulties in discriminating overlapping peaks, and challenges in assessing metabolic flux rather than steady-state concentrations. Hyperpolarized carbon-13 magnetic resonance imaging is an emerging clinical technique that may overcome some of these spatial and temporal limitations, providing novel insights into neurometabolism in both health and in pathological processes such as glioma, stroke and multiple sclerosis. This review will explore the growing body of pre-clinical data that demonstrates a potential role for the technique in assessing metabolism in the central nervous system. There are now a number of clinical studies being undertaken in this area and this review will present the emerging clinical data as well as the potential future applications of hyperpolarized 13C magnetic resonance imaging in the brain, in both clinical and pre-clinical studies.
Collapse
Affiliation(s)
- James T Grist
- Institute of Cancer and Genomic Sciences, University of
Birmingham, Birmingham, UK
- Department of Radiology, University of Cambridge, Cambridge,
UK
| | - Jack J Miller
- Department of Physiology, Anatomy, and Genetics, University of
Oxford, Oxford, UK
- Department of Physics, Clarendon Laboratory, University of
Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, John
Radcliffe Hospital, Oxford, UK
| | - Fulvio Zaccagna
- Department of Radiology, University of Cambridge, Cambridge,
UK
| | - Mary A McLean
- Department of Radiology, University of Cambridge, Cambridge,
UK
- CRUK Cambridge Institute, Cambridge, UK
| | - Frank Riemer
- Department of Radiology, University of Cambridge, Cambridge,
UK
| | - Tomasz Matys
- Department of Radiology, University of Cambridge, Cambridge,
UK
| | - Damian J Tyler
- Department of Physiology, Anatomy, and Genetics, University of
Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, John
Radcliffe Hospital, Oxford, UK
| | | | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge,
Cambridge, UK
| | | |
Collapse
|
29
|
Promises and Limitations of Neural Stem Cell Therapies for Progressive Multiple Sclerosis. Trends Mol Med 2020; 26:898-912. [PMID: 32448751 DOI: 10.1016/j.molmed.2020.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022]
Abstract
Multiple disease-modifying medications with regulatory approval to treat multiple sclerosis (MS) are unable to prevent inflammatory tissue damage in the central nervous system (CNS), and none directly promote repair. Thus, there is an unmet clinical need for therapies that can arrest and reverse the persistent accumulation of disabilities associated with progressive forms of MS (P-MS). Preclinical research has revealed an unexpected ability of neural stem cell (NSC) therapies to provide neurotrophic support and inhibit detrimental host immune responses in vivo following transplantation into the chronically inflamed CNS. We discuss NSC transplantation as a promising therapy for P-MS, elaborate on the necessities of clinical trial validation and formalized usage guidelines, and caution about unscrupulous 'clinics' marketing unproven therapies to patients.
Collapse
|
30
|
Berger S, Stattmann M, Cicvaric A, Monje FJ, Coiro P, Hotka M, Ricken G, Hainfellner J, Greber-Platzer S, Yasuda M, Desnick RJ, Pollak DD. Severe hydroxymethylbilane synthase deficiency causes depression-like behavior and mitochondrial dysfunction in a mouse model of homozygous dominant acute intermittent porphyria. Acta Neuropathol Commun 2020; 8:38. [PMID: 32197664 PMCID: PMC7082933 DOI: 10.1186/s40478-020-00910-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022] Open
Abstract
Acute intermittent porphyria (AIP) is an autosomal dominant inborn error of heme biosynthesis due to a pathogenic mutation in the Hmbs gene, resulting in half-normal activity of hydroxymethylbilane synthase. Factors that induce hepatic heme biosynthesis induce episodic attacks in heterozygous patients. The clinical presentation of acute attacks involves the signature neurovisceral pain and may include psychiatric symptoms. Here we used a knock-in mouse line that is biallelic for the Hmbs c.500G > A (p.R167Q) mutation with ~ 5% of normal hydroxymethylbilane synthase activity to unravel the consequences of severe HMBS deficiency on affective behavior and brain physiology. Hmbs knock-in mice (KI mice) model the rare homozygous dominant form of AIP and were used as tool to elucidate the hitherto unknown pathophysiology of the behavioral manifestations of the disease and its neural underpinnings. Extensive behavioral analyses revealed a selective depression-like phenotype in Hmbs KI mice; transcriptomic and immunohistochemical analyses demonstrated aberrant myelination. The uncovered compromised mitochondrial function in the hippocampus of knock-in mice and its ensuing neurogenic and neuroplastic deficits lead us to propose a mechanistic role for disrupted mitochondrial energy production in the pathogenesis of the behavioral consequences of severe HMBS deficiency and its neuropathological sequelae in the brain.
Collapse
Affiliation(s)
- Stefanie Berger
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, A-1090, Vienna, Austria
| | - Miranda Stattmann
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, A-1090, Vienna, Austria
| | - Ana Cicvaric
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, A-1090, Vienna, Austria
| | - Francisco J Monje
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, A-1090, Vienna, Austria
| | - Pierluca Coiro
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, A-1090, Vienna, Austria
| | - Matej Hotka
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, A-1090, Vienna, Austria
| | - Gerda Ricken
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
| | - Johannes Hainfellner
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
| | - Susanne Greber-Platzer
- Department of Pediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Makiko Yasuda
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, A-1090, Vienna, Austria.
| |
Collapse
|
31
|
Mitochondrial DNA Copy Number in Peripheral Blood as a Potential Non-invasive Biomarker for Multiple Sclerosis. Neuromolecular Med 2020; 22:304-313. [PMID: 31902116 DOI: 10.1007/s12017-019-08588-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022]
Abstract
The impaired mitochondrial function has been implicated in the pathogenicity of multiple sclerosis (MS), a chronic inflammatory, demyelinating, and neurodegenerative disease of the CNS. Circulating mtDNA copy number in body fluids has been proposed as an indicator for several neurodegenerative diseases, and the altered cerebrospinal fluid mtDNA has been shown as a promising marker for MS. The aim of this study was to determine changes and biomarker potential of circulating mtDNA in peripheral blood in MS. The mtDNA copy number was quantified by real-time PCR in blood samples from 60 patients with relapsing-remitting MS (RRMS) and 64 healthy controls. The RRMS patients had significantly lower circulating mtDNA copy number compared to controls. Subgroup analysis with stratification of RRMS patients based on disease duration under or over 10 years revealed that the mtDNA copy number was significantly lower in the group with longer disease duration. A negative correlation was observed between mtDNA copy number and disease duration. The ROC curve analysis indicated a significant ability of mtDNA copy number to separate RRMS patients from controls with an AUC of 0.859. This is the first study to measure peripheral blood mtDNA copy number in MS patients. Current data suggest that the reduction in peripheral blood mtDNA copy number may be an early event in MS and correlate with the disease progression. The findings of this study indicate that circulating blood-based mtDNA copy number may be a potential non-invasive candidate biomarker for mitochondria-mediated neurodegeneration and MS. This can put forward the clinical applicability over other invasive markers.
Collapse
|
32
|
Li W, Deng R, Jing X, Chen J, Yang D, Shen J. Acteoside ameliorates experimental autoimmune encephalomyelitis through inhibiting peroxynitrite-mediated mitophagy activation. Free Radic Biol Med 2020; 146:79-91. [PMID: 31634539 DOI: 10.1016/j.freeradbiomed.2019.10.408] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/24/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease in central nervous system (CNS) with limited therapeutic drugs. In the present study, we explored the anti-inflammatory/neuroprotective properties of Acteoside (AC), an active compound from medicinal herb Radix Rehmanniae (RR), and neuroprotective effects of AC on MS pathology by using an experimental autoimmune encephalomyelitis (EAE) model. We tested the hypothesis that AC could alleviate EAE pathogenesis through inhibiting inflammation and ONOO--mediated mitophagy activation in vivo and in vitro. The results showed that AC treatment effectively ameliorated neurological deficit score and postponed disease onset in the EAE mice. AC treatment inhibited inflammation/demyelination, alleviated peripheral activation and CNS infiltration of encephalitogenic CD4+ T cells and CD11b+ activated microglia/macrophages in the spinal cord of EAE mice. Meanwhile, AC treatment reduced ONOO- production, down-regulated the expression of iNOS and NADPH oxidases, and inhibited neuronal apoptotic cell death and mitochondrial damage in the spinal cords of the EAE mice. Furthermore, AC treatment decreased the ratio of LC3-II to LC3-I in mitochondrial fraction, and inhibited the translocation of Drp1 to the mitochondria. In vitro studies further proved that AC possessed strong ONOO- scavenging capability and protected the neuronal cells from nitrative cytotoxicity via suppressing ONOO--mediated excessive mitophagy. Taken together, Acteoside could be a potential therapeutic agent for multiple sclerosis treatment. The suppression of ONOO--induced excessive mitophagy activation could be one of the critical mechanisms contributing to its anti-inflammatory and anti-demyelinating properties.
Collapse
Affiliation(s)
- Wenting Li
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Ruixia Deng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Xiaoshu Jing
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Jianping Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Dan Yang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Jiangang Shen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
33
|
de la Peña MJ, Peña IC, García PGP, Gavilán ML, Malpica N, Rubio M, González RA, de Vega VM. Early perfusion changes in multiple sclerosis patients as assessed by MRI using arterial spin labeling. Acta Radiol Open 2019; 8:2058460119894214. [PMID: 32002192 PMCID: PMC6964247 DOI: 10.1177/2058460119894214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 11/19/2019] [Indexed: 01/01/2023] Open
Abstract
Background Gadolinium-perfusion magnetic resonance (MR) identifies gray matter abnormalities in early multiple sclerosis (MS), even in the absence of structural differences. These perfusion changes could be related to the cognitive disability of these patients, especially in the working memory. Arterial spin labeling (ASL) is a relatively recent perfusion technique that does not require intravenous contrast, making the technique especially attractive for clinical research. Purpose To verify the perfusion alterations in early MS, even in the absence of cerebral volume changes. To introduce the ASL sequence as a suitable non-invasive method in the monitoring of these patients. Material and Methods Nineteen healthy controls and 28 patients were included. The neuropsychological test EDSS and SDMT were evaluated. Cerebral blood flow and bolus arrival time were collected from the ASL study. Cerebral volume and cortical thickness were obtained from the volumetric T1 sequence. Spearman's correlation analyzed the correlation between EDSS and SDMT tests and perfusion data. Differences were considered significant at a level of P < 0.05. Results Reduction of the cerebral blood flow and an increase in the bolus arrival time were found in patients compared to controls. A negative correlation between EDSS and thalamus transit time, and between EDSS and cerebral blood flow in the frontal cortex, was found. Conclusion ASL perfusion might detect changes in MS patients even in absent structural volumetric changes. More longitudinal studies are needed, but perfusion parameters could be biomarkers for monitoring these patients.
Collapse
Affiliation(s)
| | | | | | | | - Norberto Malpica
- Faculty of Biomedical Imaging, Universidad Rey Juan Carlos, Madrid, Spain
| | - Margarita Rubio
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | | |
Collapse
|
34
|
Elkjaer ML, Frisch T, Reynolds R, Kacprowski T, Burton M, Kruse TA, Thomassen M, Baumbach J, Illes Z. Molecular signature of different lesion types in the brain white matter of patients with progressive multiple sclerosis. Acta Neuropathol Commun 2019; 7:205. [PMID: 31829262 PMCID: PMC6907342 DOI: 10.1186/s40478-019-0855-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022] Open
Abstract
To identify pathogenetic markers and potential drivers of different lesion types in the white matter (WM) of patients with progressive multiple sclerosis (PMS), we sequenced RNA from 73 different WM areas. Compared to 25 WM controls, 6713 out of 18,609 genes were significantly differentially expressed in MS tissues (FDR < 0.05). A computational systems medicine analysis was performed to describe the MS lesion endophenotypes. The cellular source of specific molecules was examined by RNAscope, immunohistochemistry, and immunofluorescence. To examine common lesion specific mechanisms, we performed de novo network enrichment based on shared differentially expressed genes (DEGs), and found TGFβ-R2 as a central hub. RNAscope revealed astrocytes as the cellular source of TGFβ-R2 in remyelinating lesions. Since lesion-specific unique DEGs were more common than shared signatures, we examined lesion-specific pathways and de novo networks enriched with unique DEGs. Such network analysis indicated classic inflammatory responses in active lesions; catabolic and heat shock protein responses in inactive lesions; neuronal/axonal specific processes in chronic active lesions. In remyelinating lesions, de novo analyses identified axonal transport responses and adaptive immune markers, which was also supported by the most heterogeneous immunoglobulin gene expression. The signature of the normal-appearing white matter (NAWM) was more similar to control WM than to lesions: only 465 DEGs differentiated NAWM from controls, and 16 were unique. The upregulated marker CD26/DPP4 was expressed by microglia in the NAWM but by mononuclear cells in active lesions, which may indicate a special subset of microglia before the lesion develops, but also emphasizes that omics related to MS lesions should be interpreted in the context of different lesions types. While chronic active lesions were the most distinct from control WM based on the highest number of unique DEGs (n = 2213), remyelinating lesions had the highest gene expression levels, and the most different molecular map from chronic active lesions. This may suggest that these two lesion types represent two ends of the spectrum of lesion evolution in PMS. The profound changes in chronic active lesions, the predominance of synaptic/neural/axonal signatures coupled with minor inflammation may indicate end-stage irreversible molecular events responsible for this less treatable phase.
Collapse
|
35
|
Van Schependom J, Guldolf K, D'hooghe MB, Nagels G, D'haeseleer M. Detecting neurodegenerative pathology in multiple sclerosis before irreversible brain tissue loss sets in. Transl Neurodegener 2019; 8:37. [PMID: 31827784 PMCID: PMC6900860 DOI: 10.1186/s40035-019-0178-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background Multiple sclerosis (MS) is a complex chronic inflammatory and degenerative disorder of the central nervous system. Accelerated brain volume loss, or also termed atrophy, is currently emerging as a popular imaging marker of neurodegeneration in affected patients, but, unfortunately, can only be reliably interpreted at the time when irreversible tissue damage likely has already occurred. Timing of treatment decisions based on brain atrophy may therefore be viewed as suboptimal. Main body This Narrative Review focuses on alternative techniques with the potential of detecting neurodegenerative events in the brain of subjects with MS prior to the atrophic stage. First, metabolic and molecular imaging provide the opportunity to identify early subcellular changes associated with energy dysfunction, which is an assumed core mechanism of axonal degeneration in MS. Second, cerebral hypoperfusion has been observed throughout the entire clinical spectrum of the disorder but it remains an open question whether this serves as an alternative marker of reduced metabolic activity, or exists as an independent contributing process, mediated by endothelin-1 hyperexpression. Third, both metabolic and perfusion alterations may lead to repercussions at the level of network performance and structural connectivity, respectively assessable by functional and diffusion tensor imaging. Fourth and finally, elevated body fluid levels of neurofilaments are gaining interest as a biochemical mirror of axonal damage in a wide range of neurological conditions, with early rises in patients with MS appearing to be predictive of future brain atrophy. Conclusions Recent findings from the fields of advanced neuroradiology and neurochemistry provide the promising prospect of demonstrating degenerative brain pathology in patients with MS before atrophy has installed. Although the overall level of evidence on the presented topic is still preliminary, this Review may pave the way for further longitudinal and multimodal studies exploring the relationships between the abovementioned measures, possibly leading to novel insights in early disease mechanisms and therapeutic intervention strategies.
Collapse
Affiliation(s)
- Jeroen Van Schependom
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,2Radiology Department Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Kaat Guldolf
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium
| | - Marie Béatrice D'hooghe
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| | - Guy Nagels
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| | - Miguel D'haeseleer
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| |
Collapse
|
36
|
Alharbi MA, Al-Kafaji G, Khalaf NB, Messaoudi SA, Taha S, Daif A, Bakhiet M. Four novel mutations in the mitochondrial ND4 gene of complex I in patients with multiple sclerosis. Biomed Rep 2019; 11:257-268. [PMID: 31798871 PMCID: PMC6873451 DOI: 10.3892/br.2019.1250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated neurological, inflammatory disease of the central nervous system. Recent studies have suggested that genetic variants in mitochondrial DNA (mtDNA)-encoded complexes of respiratory chain, particularly, complex I (NADH dehydrogenase), contribute to the pathogenicity of MS among different ethnicities, and targeting mitochondrial function may represent a novel approach for MS therapy. In this study, we sequenced ND genes (ND1, ND2, ND3, ND4, ND4L, ND5 and ND6) encoding subunits of complex I in 124 subjects, 60 patients with relapsing-remitting MS and 64 healthy individuals, in order to identify potential novel mutations in these patients. We found several variants in ND genes in both the patients and controls, and specific variants only in patients with MS. While the majority of these variants were synonymous, 4 variants in the ND4 gene were identified as missense mutations in patients with MS. Of these, m.11150G>A was observed in one patient, whereas m.11519A>C, m.11523A>C and m.11527C>T were observed in another patient. Functional analysis predicted the mutations, m.11519A>C, m.11523A>C and m.11150G>A, as deleterious with a direct impact on ND4 protein stability and complex I function, whereas m.11527C>T mutation had no effect on ND4 protein stability. However, the 3 mutations, m.11519A>C, m.11523A>C and m.11527C>T, which were observed in the same patient, were predicted to cause a cumulative destabilizing effect on ND4 protein, and could thus disrupt complex I function. On the whole, this study identified 4 novel mutations in the mtDNA-encoded ND4 gene in patients with MS, which could lead to complex I dysfunction, and further confirmed the implication of mtDNA mutations in the pathogenicity of MS. The identified novel mutations in patients with MS may be ethnic-related and may prove to be significant in personalized treatment.
Collapse
Affiliation(s)
- Maram Atallah Alharbi
- College of Forensic Sciences, Naif Arab University for Security Sciences, Riyadh 14812, Kingdom of Saudi Arabia
| | - Ghada Al-Kafaji
- Department of Molecular Medicine, Al-Jawhara Centre for Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Block 329, Manama, Kingdom of Bahrain
| | - Noureddine Ben Khalaf
- Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Block 329, Manama, Kingdom of Bahrain
| | - Safia Abdulsalam Messaoudi
- College of Forensic Sciences, Naif Arab University for Security Sciences, Riyadh 14812, Kingdom of Saudi Arabia
| | - Safa Taha
- Department of Molecular Medicine, Al-Jawhara Centre for Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Block 329, Manama, Kingdom of Bahrain
| | - Abdulqader Daif
- King Saud University Medical City, Riyadh 12372, Kingdom of Saudi Arabia
| | - Moiz Bakhiet
- Department of Molecular Medicine, Al-Jawhara Centre for Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Block 329, Manama, Kingdom of Bahrain
| |
Collapse
|
37
|
Sabharwal V, Koushika SP. Crowd Control: Effects of Physical Crowding on Cargo Movement in Healthy and Diseased Neurons. Front Cell Neurosci 2019; 13:470. [PMID: 31708745 PMCID: PMC6823667 DOI: 10.3389/fncel.2019.00470] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/02/2019] [Indexed: 01/22/2023] Open
Abstract
High concentration of cytoskeletal filaments, organelles, and proteins along with the space constraints due to the axon's narrow geometry lead inevitably to intracellular physical crowding along the axon of a neuron. Local cargo movement is essential for maintaining steady cargo transport in the axon, and this may be impeded by physical crowding. Molecular motors that mediate active transport share movement mechanisms that allow them to bypass physical crowding present on microtubule tracks. Many neurodegenerative diseases, irrespective of how they are initiated, show increased physical crowding owing to the greater number of stalled organelles and structural changes associated with the cytoskeleton. Increased physical crowding may be a significant factor in slowing cargo transport to synapses, contributing to disease progression and culminating in the dying back of the neuronal process. This review explores the idea that physical crowding can impede cargo movement along the neuronal process. We examine the sources of physical crowding and strategies used by molecular motors that might enable cargo to circumvent physically crowded locations. Finally, we describe sub-cellular changes in neurodegenerative diseases that may alter physical crowding and discuss the implications of such changes on cargo movement.
Collapse
Affiliation(s)
| | - Sandhya P. Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
38
|
Bargiela D, Chinnery PF. Mitochondria in neuroinflammation – Multiple sclerosis (MS), leber hereditary optic neuropathy (LHON) and LHON-MS. Neurosci Lett 2019; 710:132932. [DOI: 10.1016/j.neulet.2017.06.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/27/2017] [Indexed: 01/12/2023]
|
39
|
Wu Y, Chen M, Jiang J. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion 2019; 49:35-45. [PMID: 31288090 DOI: 10.1016/j.mito.2019.07.003] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/24/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction is becoming one of the most emerging pathological process in the etiology of neurological disorders. Other common etiologies of the neurological disorders are aging and oxidative stress. Neurodegenerative disorders for instance Huntington's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Epilepsy, Schizophrenia, Multiple sclerosis, Neuropathic pain and Alzheimer's disease involves mitochondrial dysfunction and is regarded as the core of their pathological processes. Most central pathological feature of the neurodegenerative diseases is apoptosis which is regulated by mitochondria. Altered signaling of the apoptotic mechanisms are involved in neurodegeneration. Abnormal levels of these molecular apoptotic proteins promotes the pathogenesis of neurological disorders. Mitochondria are also implicated in the production of reactive oxygen species (ROS). Raised ROS levels initiates the cascade leading to the non-apoptotic death of cells. ROS produced in cells acts as signaling molecules, but when produced in abundance will result in cellular consequences to deoxyribonucleic acid, proteins and lipids, decreased effectiveness of cellular mechanisms, initiation of inflammatory pathways, excitotoxicity, protein agglomeration and apoptosis. Protecting mitochondrial function has been identified as the most effective therapeutic approach to attenuate the pathogenesis of neurodegenerative diseases. This review aims to provide an insight into the mitochondrial dysfunction in the pathogenesis of neurological disorders, alteration in signaling cascades of apoptosis in mitochondrial dysfunction and the therapeutic strategies (both natural and synthetic drugs) targeting these mitochondrial apoptotic pathways and oxidative stress that holds great promise.
Collapse
Affiliation(s)
- Yuanbo Wu
- Department of Neurology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui Province 230001, PR China; Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, PR China
| | - Meiqiao Chen
- Department of Neurology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui Province 230001, PR China
| | - Jielong Jiang
- Department of Nephrology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui Province 230001, PR China; Department of Nephrology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, PR China.
| |
Collapse
|
40
|
Elkjaer ML, Frisch T, Reynolds R, Kacprowski T, Burton M, Kruse TA, Thomassen M, Baumbach J, Illes Z. Unique RNA signature of different lesion types in the brain white matter in progressive multiple sclerosis. Acta Neuropathol Commun 2019; 7:58. [PMID: 31023379 PMCID: PMC6482546 DOI: 10.1186/s40478-019-0709-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/22/2019] [Indexed: 01/18/2023] Open
Abstract
The heterogeneity of multiple sclerosis is reflected by dynamic changes of different lesion types in the brain white matter (WM). To identify potential drivers of this process, we RNA-sequenced 73 WM areas from patients with progressive MS (PMS) and 25 control WM. Lesion endophenotypes were described by a computational systems medicine analysis combined with RNAscope, immunohistochemistry, and immunofluorescence. The signature of the normal-appearing WM (NAWM) was more similar to control WM than to lesions: one of the six upregulated genes in NAWM was CD26/DPP4 expressed by microglia. Chronic active lesions that become prominent in PMS had a signature that were different from all other lesion types, and were differentiated from them by two clusters of 62 differentially expressed genes (DEGs). An upcoming MS biomarker, CHI3L1 was among the top ten upregulated genes in chronic active lesions expressed by astrocytes in the rim. TGFβ-R2 was the central hub in a remyelination-related protein interaction network, and was expressed there by astrocytes. We used de novo networks enriched by unique DEGs to determine lesion-specific pathway regulation, i.e. cellular trafficking and activation in active lesions; healing and immune responses in remyelinating lesions characterized by the most heterogeneous immunoglobulin gene expression; coagulation and ion balance in inactive lesions; and metabolic changes in chronic active lesions. Because we found inverse differential regulation of particular genes among different lesion types, our data emphasize that omics related to MS lesions should be interpreted in the context of lesion pathology. Our data indicate that the impact of molecular pathways is substantially changing as different lesions develop. This was also reflected by the high number of unique DEGs that were more common than shared signatures. A special microglia subset characterized by CD26 may play a role in early lesion development, while astrocyte-derived TGFβ-R2 and TGFβ pathways may be drivers of repair in contrast to chronic tissue damage. The highly specific mechanistic signature of chronic active lesions indicates that as these lesions develop in PMS, the molecular changes are substantially skewed: the unique mitochondrial/metabolic changes and specific downregulation of molecules involved in tissue repair may reflect a stage of exhaustion.
Collapse
|
41
|
Zhang-James Y, Vaudel M, Mjaavatten O, Berven FS, Haavik J, Faraone SV. Effect of disease-associated SLC9A9 mutations on protein-protein interaction networks: implications for molecular mechanisms for ADHD and autism. ACTA ACUST UNITED AC 2019; 11:91-105. [PMID: 30927234 DOI: 10.1007/s12402-018-0281-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022]
Abstract
Na+/H+ Exchanger 9 (NHE9) is an endosomal membrane protein encoded by the Solute Carrier 9A, member 9 gene (SLC9A9). SLC9A9 has been implicated in attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), epilepsy, multiple sclerosis and cancers. To better understand the function of NHE9 and the effects of disease-associated variants on protein-protein interactions, we conducted a quantitative analysis of the NHE9 interactome using co-immunoprecipitation and isobaric labeling-based quantitative mass spectrometry. We identified 100 proteins that interact with NHE9. These proteins were enriched in known functional pathways for NHE9: the endocytosis, protein ubiquitination and phagosome pathways, as well as some novel pathways including oxidative stress, mitochondrial dysfunction, mTOR signaling, cell death and RNA processing pathways. An ADHD-associated mutation (A409P) significantly altered NHE9's interactions with a subset of proteins involved in caveolae-mediated endocytosis and MAP2K2-mediated downstream signaling. An ASD nonsense mutation in SLC9A9, R423X, produced no-detectable amount of NHE9, suggesting the overall loss of NHE9 functional networks. In addition, seven of the NHE9 interactors are products of known autism candidate genes (Simons Foundation Autism Research Initiative, SFARI Gene) and 90% of the NHE9 interactome overlap with SFARI protein interaction network PIN (p < 0.0001), supporting the role of NHE9 interactome in ASDs molecular mechanisms. Our results provide a detailed understanding of the functions of protein NHE9 and its disrupted interactions, possibly underlying ADHD and ASDs. Furthermore, our methodological framework proved useful for functional characterization of disease-associated genetic variants and suggestion of druggable targets.
Collapse
Affiliation(s)
- Yanli Zhang-James
- Departments of Psychiatry, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY, 13210, USA
| | - Marc Vaudel
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Olav Mjaavatten
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Frode S Berven
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway.,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway.,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Stephen V Faraone
- Departments of Psychiatry, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY, 13210, USA. .,Neuroscience and Physiology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY, 13210, USA.
| |
Collapse
|
42
|
Masvekar R, Wu T, Kosa P, Barbour C, Fossati V, Bielekova B. Cerebrospinal fluid biomarkers link toxic astrogliosis and microglial activation to multiple sclerosis severity. Mult Scler Relat Disord 2019; 28:34-43. [PMID: 30553167 PMCID: PMC6411304 DOI: 10.1016/j.msard.2018.11.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/20/2018] [Accepted: 11/29/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Once multiple sclerosis (MS) reaches the progressive stage, immunomodulatory treatments have limited efficacy. This suggests that processes other than activation of innate immunity may at least partially underlie disability progression during late stages of MS. Pathology identified these alternative processes as aberrant activation of astrocytes and microglia, and subsequent degeneration of oligodendrocytes and neurons. However, we mostly lack biomarkers that could measure central nervous system (CNS) cell-specific intrathecal processes in living subjects. This prevents differentiating pathogenic processes from an epiphenomenon. Therefore, we sought to develop biomarkers of CNS cell-specific processes and link them to disability progression in MS. METHODS In a blinded manner, we measured over 1000 proteins in the cerebrospinal fluid (CSF) of 431 patients with neuroimmunological diseases and healthy volunteers using modified DNA-aptamers (SOMAscan®). We defined CNS cell type-enriched clusters using variable cluster analysis, combined with in vitro modeling. Differences between diagnostic categories were identified in the training cohort (n = 217) and their correlation to disability measures were assessed; results were validated in an independent validation cohort (n = 214). RESULTS Astrocyte cluster 8 (MMP7, SERPINA3, GZMA and CLIC1) and microglial cluster 2 (DSG2 and TNFRSF25) were reproducibly elevated in MS and had a significant and reproducible correlation with MS severity suggesting their pathogenic role. In vitro studies demonstrated that proteins of astrocyte cluster 8 are noticeably released upon stimulation with proinflammatory stimuli and overlap with the phenotype of recently described neuro-toxic (A1) astrocytes. CONCLUSION Microglial activation and toxic astrogliosis are associated with MS disease process and may partake in CNS tissue destruction. This hypothesis should be tested in new clinical trials.
Collapse
Affiliation(s)
- Ruturaj Masvekar
- Neuroimmunological Diseases Section (NDS), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 5N248, 10 Center Drive, MSC1444, Bethesda, MD 20892, United States
| | - Tianxia Wu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Peter Kosa
- Neuroimmunological Diseases Section (NDS), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 5N248, 10 Center Drive, MSC1444, Bethesda, MD 20892, United States
| | - Christopher Barbour
- Neuroimmunological Diseases Section (NDS), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 5N248, 10 Center Drive, MSC1444, Bethesda, MD 20892, United States; Department of Mathematical Sciences, Montana State University, Bozeman, MT, United States
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - Bibiana Bielekova
- Neuroimmunological Diseases Section (NDS), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 5N248, 10 Center Drive, MSC1444, Bethesda, MD 20892, United States.
| |
Collapse
|
43
|
Sriram S, Shaginurova G, Tossberg JT, Natarajan C, Spurlock CF, Aune TM. Longitudinal changes in the expression of IL-33 and IL-33 regulated genes in relapsing remitting MS. PLoS One 2018; 13:e0208755. [PMID: 30562364 PMCID: PMC6298727 DOI: 10.1371/journal.pone.0208755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/20/2018] [Indexed: 12/03/2022] Open
Abstract
Objective We tested the hypothesis that the expression of IL-33 in MS is dynamic and is likely to reflect the clinical and radiological changes during the course of RRMS. Methods MS with either clinical or radiological relapses were recruited for the study and followed for one year. IL-33 and a panel of genes was measured by q PCR and flow cytometry at different time points. Results Among 22 RRMS patients, 4 patients showed highest levels of IL-33 at the time they were recruited to the study (Month 0); in 14 patients highest levels of IL-33 were seen between 6–11 months after relapse and in 4 patients maximal levels of IL-33 were seen 12 months after relapse. A similar pattern of IL-33 kinetics was seen when IL-33 was measured by flow cytometry in an additional cohort of 12 patients. The timing of the improvement clinically did not correlate with IL-33 expression with highest expression levels either preceding or following clinical recovery. From our whole genome RNA-sequencing data we found a strong correlation between expression levels of IL-33 and a ~2000 mRNA genes. However, none of these genes encoded proteins involved in either innate or adaptive immunity. Rather, many of the genes that correlated highly with IL-33 encoded to proteins involved in DNA repair or mitochondrial function and mRNA splicing pathways. Interpretation Given the neuro-reparative and remodeling functions attributed to IL-33, it is likely that some of the novel genes we have uncovered may be involved in repair and recovery of the CNS in MS.
Collapse
Affiliation(s)
- Subramaniam Sriram
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- * E-mail:
| | - Guzel Shaginurova
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
- IQuity, Inc., Nashville, TN, United States of America
| | | | - Chandramohan Natarajan
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Charles F. Spurlock
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Thomas M. Aune
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| |
Collapse
|
44
|
Scheld M, Fragoulis A, Nyamoya S, Zendedel A, Denecke B, Krauspe B, Teske N, Kipp M, Beyer C, Clarner T. Mitochondrial Impairment in Oligodendroglial Cells Induces Cytokine Expression and Signaling. J Mol Neurosci 2018; 67:265-275. [PMID: 30547416 DOI: 10.1007/s12031-018-1236-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022]
Abstract
Widespread inflammatory lesions within the central nervous system grey and white matter are major hallmarks of multiple sclerosis. The development of full-blown demyelinating multiple sclerosis lesions might be preceded by preactive lesions which are characterized by focal microglia activation in close spatial relation to apoptotic oligodendrocytes. In this study, we investigated the expression of signaling molecules of oligodendrocytes that might be involved in initial microglia activation during preactive lesion formation. Sodium azide was used to trigger mitochondrial impairment and cellular stress in oligodendroglial cells in vitro. Among various chemokines and cytokines, IL6 was identified as a possible oligodendroglial cell-derived signaling molecule in response to cellular stress. Relevance of this finding for lesion development was further explored in the cuprizone model by applying short-term cuprizone feeding (2-4 days) on male C57BL/6 mice and subsequent analysis of gene expression, in situ hybridization and histology. Additionally, we analyzed the possible signaling of stressed oligodendroglial cells in vitro as well as in the cuprizone mouse model. In vitro, conditioned medium of stressed oligodendroglial cells triggered the activation of microglia cells. In cuprizone-fed animals, IL6 expression in oligodendrocytes was found in close vicinity of activated microglia cells. Taken together, our data support the view that stressed oligodendrocytes have the potential to activate microglia cells through a specific cocktail of chemokines and cytokines among IL6. Further studies will have to identify the temporal activation pattern of these signaling molecules, their cellular sources, and impact on neuroinflammation.
Collapse
Affiliation(s)
- Miriam Scheld
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | - Stella Nyamoya
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.,Department of Neuroanatomy, Faculty of Medicine, Ludwig-Maximilians-University of Munich, 80336, Munich, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Bernd Denecke
- IZKF Genomics Facility, Interdisciplinary Center for Clinical Research, RWTH Aachen University, 52074, Aachen, Germany
| | - Barbara Krauspe
- Clinic for Gynaecology and Obstetrics, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | - Nico Teske
- Department of Neuroanatomy, Faculty of Medicine, Ludwig-Maximilians-University of Munich, 80336, Munich, Germany
| | - Markus Kipp
- Institute of Anatomy, Faculty of Medicine, University of Rostock, 18057, Rostock, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Tim Clarner
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| |
Collapse
|
45
|
Hernández‐Torres E, Wiggermann V, Machan L, Sadovnick AD, Li DK, Traboulsee A, Hametner S, Rauscher A. Increased mean R2* in the deep gray matter of multiple sclerosis patients: Have we been measuring atrophy? J Magn Reson Imaging 2018; 50:201-208. [DOI: 10.1002/jmri.26561] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 11/09/2022] Open
Affiliation(s)
- Enedino Hernández‐Torres
- UBC MRI Research CentreUniversity of British Columbia Vancouver Canada
- Department of PediatricsUniversity of British Columbia Vancouver Canada
| | - Vanessa Wiggermann
- UBC MRI Research CentreUniversity of British Columbia Vancouver Canada
- Department of PediatricsUniversity of British Columbia Vancouver Canada
- Department of Physics and AstronomyUniversity of British Columbia Vancouver Canada
| | - Lindsay Machan
- Department of RadiologyUniversity of British Columbia Vancouver Canada
| | - A. Dessa Sadovnick
- Department of Medicine (Neurology)University of British Columbia Vancouver Canada
- Centre for Brain HealthUniversity of British Columbia Vancouver Canada
- Department of Medical GeneticsUniversity of British Columbia Vancouver Canada
| | - David K.B. Li
- UBC MRI Research CentreUniversity of British Columbia Vancouver Canada
- Department of RadiologyUniversity of British Columbia Vancouver Canada
- Department of Medicine (Neurology)University of British Columbia Vancouver Canada
| | - Anthony Traboulsee
- Department of Medicine (Neurology)University of British Columbia Vancouver Canada
- Centre for Brain HealthUniversity of British Columbia Vancouver Canada
| | - Simon Hametner
- Department of Neuroimmunology, Center for Brain ResearchMedical University of Vienna Vienna Austria
- Institute of NeuropathologyUniversity Medical Center Göttingen Germany
| | - Alexander Rauscher
- UBC MRI Research CentreUniversity of British Columbia Vancouver Canada
- Department of PediatricsUniversity of British Columbia Vancouver Canada
- Department of Physics and AstronomyUniversity of British Columbia Vancouver Canada
- Department of RadiologyUniversity of British Columbia Vancouver Canada
- BC Children's Hospital Research InstituteUniversity of British Columbia Vancouver Canada
| |
Collapse
|
46
|
Lan M, Tang X, Zhang J, Yao Z. Insights in pathogenesis of multiple sclerosis: nitric oxide may induce mitochondrial dysfunction of oligodendrocytes. Rev Neurosci 2018; 29:39-53. [PMID: 28822986 DOI: 10.1515/revneuro-2017-0033] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/15/2017] [Indexed: 01/01/2023]
Abstract
Demyelinating diseases, such as multiple sclerosis (MS), are kinds of common diseases in the central nervous system (CNS), and originated from myelin loss and axonal damage. Oligodendrocyte dysfunction is the direct reason of demyelinating lesions in the CNS. Nitric oxide (NO) plays an important role in the pathological process of demyelinating diseases. Although the neurotoxicity of NO is more likely mediated by peroxynitrite rather than NO itself, NO can impair oligodendrocyte energy metabolism through mediating the damaging of mitochondrial DNA, mitochondrial membrane and mitochondrial respiratory chain complexes. In the progression of MS, NO can mainly mediate demyelination, axonal degeneration and cell death. Hence, in this review, we extensively discuss endangerments of NO in oligodendrocytes (OLs), which is suggested to be the main mediator in demyelinating diseases, e.g. MS. We hypothesize that NO takes part in MS through impairing the function of monocarboxylate transporter 1, especially causing axonal degeneration. Then, it further provides a new insight that NO for OLs may be a reliable therapeutic target to ameliorate the course of demyelinating diseases.
Collapse
Affiliation(s)
- Minghong Lan
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | - Xiaoyi Tang
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | - Jie Zhang
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | - Zhongxiang Yao
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
47
|
Peruzzotti-Jametti L, Pluchino S. Targeting Mitochondrial Metabolism in Neuroinflammation: Towards a Therapy for Progressive Multiple Sclerosis. Trends Mol Med 2018; 24:838-855. [DOI: 10.1016/j.molmed.2018.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023]
|
48
|
Kritsilis M, V Rizou S, Koutsoudaki PN, Evangelou K, Gorgoulis VG, Papadopoulos D. Ageing, Cellular Senescence and Neurodegenerative Disease. Int J Mol Sci 2018; 19:E2937. [PMID: 30261683 PMCID: PMC6213570 DOI: 10.3390/ijms19102937] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 01/10/2023] Open
Abstract
Ageing is a major risk factor for developing many neurodegenerative diseases. Cellular senescence is a homeostatic biological process that has a key role in driving ageing. There is evidence that senescent cells accumulate in the nervous system with ageing and neurodegenerative disease and may predispose a person to the appearance of a neurodegenerative condition or may aggravate its course. Research into senescence has long been hindered by its variable and cell-type specific features and the lack of a universal marker to unequivocally detect senescent cells. Recent advances in senescence markers and genetically modified animal models have boosted our knowledge on the role of cellular senescence in ageing and age-related disease. The aim now is to fully elucidate its role in neurodegeneration in order to efficiently and safely exploit cellular senescence as a therapeutic target. Here, we review evidence of cellular senescence in neurons and glial cells and we discuss its putative role in Alzheimer's disease, Parkinson's disease and multiple sclerosis and we provide, for the first time, evidence of senescence in neurons and glia in multiple sclerosis, using the novel GL13 lipofuscin stain as a marker of cellular senescence.
Collapse
Affiliation(s)
- Marios Kritsilis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Sophia V Rizou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Paraskevi N Koutsoudaki
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Konstantinos Evangelou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Vassilis G Gorgoulis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Dimitrios Papadopoulos
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| |
Collapse
|
49
|
Morris G, Reiche EMV, Murru A, Carvalho AF, Maes M, Berk M, Puri BK. Multiple Immune-Inflammatory and Oxidative and Nitrosative Stress Pathways Explain the Frequent Presence of Depression in Multiple Sclerosis. Mol Neurobiol 2018; 55:6282-6306. [PMID: 29294244 PMCID: PMC6061180 DOI: 10.1007/s12035-017-0843-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
Abstract
Patients with a diagnosis of multiple sclerosis (MS) or major depressive disorder (MDD) share a wide array of biological abnormalities which are increasingly considered to play a contributory role in the pathogenesis and pathophysiology of both illnesses. Shared abnormalities include peripheral inflammation, neuroinflammation, chronic oxidative and nitrosative stress, mitochondrial dysfunction, gut dysbiosis, increased intestinal barrier permeability with bacterial translocation into the systemic circulation, neuroendocrine abnormalities and microglial pathology. Patients with MS and MDD also display a wide range of neuroimaging abnormalities and patients with MS who display symptoms of depression present with different neuroimaging profiles compared with MS patients who are depression-free. The precise details of such pathology are markedly different however. The recruitment of activated encephalitogenic Th17 T cells and subsequent bidirectional interaction leading to classically activated microglia is now considered to lie at the core of MS-specific pathology. The presence of activated microglia is common to both illnesses although the pattern of such action throughout the brain appears to be different. Upregulation of miRNAs also appears to be involved in microglial neurotoxicity and indeed T cell pathology in MS but does not appear to play a major role in MDD. It is suggested that the antidepressant lofepramine, and in particular its active metabolite desipramine, may be beneficial not only for depressive symptomatology but also for the neurological symptoms of MS. One clinical trial has been carried out thus far with, in particular, promising MRI findings.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, Geelong, Australia
| | - Edna Maria Vissoci Reiche
- Department of Pathology, Clinical Analysis, and Toxicology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Andrea Murru
- Bipolar Disorders Program, Hospital Clínic Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, Geelong, Australia
- Department of Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria
- Department of Psychiatry, Faculty of Medicine, State University of Londrina, Londrina, Brazil
- Revitalis, Waalre, The Netherlands
- Orygen - The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
50
|
Singh I, Samuvel DJ, Choi S, Saxena N, Singh AK, Won J. Combination therapy of lovastatin and AMP-activated protein kinase activator improves mitochondrial and peroxisomal functions and clinical disease in experimental autoimmune encephalomyelitis model. Immunology 2018; 154:434-451. [PMID: 29331024 DOI: 10.1111/imm.12893] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/29/2017] [Indexed: 01/04/2023] Open
Abstract
Recent studies report that loss and dysfunction of mitochondria and peroxisomes contribute to the myelin and axonal damage in multiple sclerosis (MS). In this study, we investigated the efficacy of a combination of lovastatin and AMP-activated protein kinase (AMPK) activator (AICAR) on the loss and dysfunction of mitochondria and peroxisomes and myelin and axonal damage in spinal cords, relative to the clinical disease symptoms, using a mouse model of experimental autoimmune encephalomyelitis (EAE, a model for MS). We observed that lovastatin and AICAR treatments individually provided partial protection of mitochondria/peroxisomes and myelin/axons, and therefore partial attenuation of clinical disease in EAE mice. However, treatment of EAE mice with the lovastatin and AICAR combination provided greater protection of mitochondria/peroxisomes and myelin/axons, and greater improvement in clinical disease compared with individual drug treatments. In spinal cords of EAE mice, lovastatin-mediated inhibition of RhoA and AICAR-mediated activation of AMPK cooperatively enhanced the expression of the transcription factors and regulators (e.g. PPARα/β, SIRT-1, NRF-1, and TFAM) required for biogenesis and the functions of mitochondria (e.g. OXPHOS, MnSOD) and peroxisomes (e.g. PMP70 and catalase). In summary, these studies document that oral medication with a combination of lovastatin and AICAR, which are individually known to have immunomodulatory effects, provides potent protection and repair of inflammation-induced loss and dysfunction of mitochondria and peroxisomes as well as myelin and axonal abnormalities in EAE. As statins are known to provide protection in progressive MS (Phase II study), these studies support that supplementation statin treatment with an AMPK activator may provide greater efficacy against MS.
Collapse
Affiliation(s)
- Inderjit Singh
- Charles P. Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA.,Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Devadoss J Samuvel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Seungho Choi
- Charles P. Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Nishant Saxena
- Charles P. Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.,Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|