1
|
Huang H, Huang K, Chen Y, Huang S, Wang J, Wu H, Zheng Z. Individual and combined effects of sodium dichloroisocyanurate and isothiazolinone on the cyanobacteria-Vallisneria natans-microbe aquatic ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136229. [PMID: 39490170 DOI: 10.1016/j.jhazmat.2024.136229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
The use of algaecides to control high-density cyanobacterial blooms is often complicated by secondary pollution and the toxicity to non-target organisms. This study investigates the individual and combined effects of sodium dichloroisocyanurate (NaDCC, 5, 50, and 100 mg/L) and isothiazolinone (0.1, 0.5, and 1.5 mg/L) on a cyanobacteria-Vallisneria natans-microbe aquatic ecosystem, focusing on their interactions and ecological impacts. Results indicate that NaDCC could achieve a higher algae removal rate than isothiazolinone within 15 days, but has a greater negative effect on Vallisneria natans. Both algaecides disrupt nutrient and secondary metabolite balances at low and high concentrations, increasing nutrient loads and harmful substances. Optimal results were obtained with low concentrations of NaDCC (5 mg/L) and isothiazolinone (0.1 mg/L), effectively controlling cyanobacteria while minimizing harm to Vallisneria natans and reducing nutrient loads and microcystin accumulation. Algaecide application enhanced microbial diversity in water and leaves, shifting the dominant community from cyanobacteria to organisms adapted to the post-cyanobacterial decay environment. Metabolomic analysis indicated increased secretion of lipids and organic acids by cyanobacteria in response to algaecide stress. High concentrations of NaDCC and isothiazolinone disrupted nitrogen metabolism in cyanobacteria and induced ROS overproduction, affecting unsaturated fatty acid synthesis and other metabolic pathways. These findings highlight the importance of exploring different combinations of algaecides to reduce their concentrations, balance algal control with ecological stability, and offer insights for effective eutrophication management.
Collapse
Affiliation(s)
- Haiqing Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Kaili Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Yican Chen
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Suzhen Huang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, 310015, PR China
| | - Jie Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Hanqi Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
2
|
Karlicki M, Bednarska A, Hałakuc P, Maciszewski K, Karnkowska A. Spatio-temporal changes of small protist and free-living bacterial communities in a temperate dimictic lake: insights from metabarcoding and machine learning. FEMS Microbiol Ecol 2024; 100:fiae104. [PMID: 39039016 DOI: 10.1093/femsec/fiae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024] Open
Abstract
Microbial communities, which include prokaryotes and protists, play an important role in aquatic ecosystems and influence ecological processes. To understand these communities, metabarcoding provides a powerful tool to assess their taxonomic composition and track spatio-temporal dynamics in both marine and freshwater environments. While marine ecosystems have been extensively studied, there is a notable research gap in understanding eukaryotic microbial communities in temperate lakes. Our study addresses this gap by investigating the free-living bacteria and small protist communities in Lake Roś (Poland), a dimictic temperate lake. Metabarcoding analysis revealed that both the bacterial and protist communities exhibit distinct seasonal patterns that are not necessarily shaped by dominant taxa. Furthermore, machine learning and statistical methods identified crucial amplicon sequence variants (ASVs) specific to each season. In addition, we identified a distinct community in the anoxic hypolimnion. We have also shown that the key factors shaping the composition of analysed community are temperature, oxygen, and silicon concentration. Understanding these community structures and the underlying factors is important in the context of climate change potentially impacting mixing patterns and leading to prolonged stratification.
Collapse
Affiliation(s)
- Michał Karlicki
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Anna Bednarska
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Paweł Hałakuc
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
3
|
Mukherjee I, Grujčić V, Salcher MM, Znachor P, Seďa J, Devetter M, Rychtecký P, Šimek K, Shabarova T. Integrating depth-dependent protist dynamics and microbial interactions in spring succession of a freshwater reservoir. ENVIRONMENTAL MICROBIOME 2024; 19:31. [PMID: 38720385 PMCID: PMC11080224 DOI: 10.1186/s40793-024-00574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Protists are essential contributors to eukaryotic diversity and exert profound influence on carbon fluxes and energy transfer in freshwaters. Despite their significance, there is a notable gap in research on protistan dynamics, particularly in the deeper strata of temperate lakes. This study aimed to address this gap by integrating protists into the well-described spring dynamics of Římov reservoir, Czech Republic. Over a 2-month period covering transition from mixing to established stratification, we collected water samples from three reservoir depths (0.5, 10 and 30 m) with a frequency of up to three times per week. Microbial eukaryotic and prokaryotic communities were analysed using SSU rRNA gene amplicon sequencing and dominant protistan groups were enumerated by Catalysed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH). Additionally, we collected samples for water chemistry, phyto- and zooplankton composition analyses. RESULTS Following the rapid changes in environmental and biotic parameters during spring, protistan and bacterial communities displayed swift transitions from a homogeneous community to distinct strata-specific communities. A prevalence of auto- and mixotrophic protists dominated by cryptophytes was associated with spring algal bloom-specialized bacteria in the epilimnion. In contrast, the meta- and hypolimnion showcased a development of a protist community dominated by putative parasitic Perkinsozoa, detritus or particle-associated ciliates, cercozoans, telonemids and excavate protists (Kinetoplastida), co-occurring with bacteria associated with lake snow. CONCLUSIONS Our high-resolution sampling matching the typical doubling time of microbes along with the combined microscopic and molecular approach and inclusion of all main components of the microbial food web allowed us to unveil depth-specific populations' successions and interactions in a deep lentic ecosystem.
Collapse
Affiliation(s)
- Indranil Mukherjee
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic.
| | - Vesna Grujčić
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Michaela M Salcher
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Petr Znachor
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005, Ceske Budejovice, Czech Republic
| | - Jaromír Seďa
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Miloslav Devetter
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Pavel Rychtecký
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Karel Šimek
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005, Ceske Budejovice, Czech Republic
| | - Tanja Shabarova
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic.
| |
Collapse
|
4
|
Chiriac MC, Haber M, Salcher MM. Adaptive genetic traits in pelagic freshwater microbes. Environ Microbiol 2023; 25:606-641. [PMID: 36513610 DOI: 10.1111/1462-2920.16313] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Pelagic microbes have adopted distinct strategies to inhabit the pelagial of lakes and oceans and can be broadly categorized in two groups: free-living, specialized oligotrophs and patch-associated generalists or copiotrophs. In this review, we aim to identify genomic traits that enable pelagic freshwater microbes to thrive in their habitat. To do so, we discuss the main genetic differences of pelagic marine and freshwater microbes that are both dominated by specialized oligotrophs and the difference to freshwater sediment microbes, where copiotrophs are more prevalent. We phylogenomically analysed a collection of >7700 metagenome-assembled genomes, classified habitat preferences on different taxonomic levels, and compared the metabolic traits of pelagic freshwater, marine, and freshwater sediment microbes. Metabolic differences are mainly associated with transport functions, environmental information processing, components of the electron transport chain, osmoregulation and the isoelectric point of proteins. Several lineages with known habitat transitions (Nitrososphaeria, SAR11, Methylophilaceae, Synechococcales, Flavobacteriaceae, Planctomycetota) and the underlying mechanisms in this process are discussed in this review. Additionally, the distribution, ecology and genomic make-up of the most abundant freshwater prokaryotes are described in details in separate chapters for Actinobacteriota, Bacteroidota, Burkholderiales, Verrucomicrobiota, Chloroflexota, and 'Ca. Patescibacteria'.
Collapse
Affiliation(s)
| | - Markus Haber
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| |
Collapse
|
5
|
Kavagutti VS, Bulzu PA, Chiriac CM, Salcher MM, Mukherjee I, Shabarova T, Grujčić V, Mehrshad M, Kasalický V, Andrei AS, Jezberová J, Seďa J, Rychtecký P, Znachor P, Šimek K, Ghai R. High-resolution metagenomic reconstruction of the freshwater spring bloom. MICROBIOME 2023; 11:15. [PMID: 36698172 PMCID: PMC9878933 DOI: 10.1186/s40168-022-01451-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/16/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND The phytoplankton spring bloom in freshwater habitats is a complex, recurring, and dynamic ecological spectacle that unfolds at multiple biological scales. Although enormous taxonomic shifts in microbial assemblages during and after the bloom have been reported, genomic information on the microbial community of the spring bloom remains scarce. RESULTS We performed a high-resolution spatio-temporal sampling of the spring bloom in a freshwater reservoir and describe a multitude of previously unknown taxa using metagenome-assembled genomes of eukaryotes, prokaryotes, and viruses in combination with a broad array of methodologies. The recovered genomes reveal multiple distributional dynamics for several bacterial groups with progressively increasing stratification. Analyses of abundances of metagenome-assembled genomes in concert with CARD-FISH revealed remarkably similar in situ doubling time estimates for dominant genome-streamlined microbial lineages. Discordance between quantitations of cryptophytes arising from sequence data and microscopic identification suggested the presence of hidden, yet extremely abundant aplastidic cryptophytes that were confirmed by CARD-FISH analyses. Aplastidic cryptophytes are prevalent throughout the water column but have never been considered in prior models of plankton dynamics. We also recovered the first metagenomic-assembled genomes of freshwater protists (a diatom and a haptophyte) along with thousands of giant viral genomic contigs, some of which appeared similar to viruses infecting haptophytes but owing to lack of known representatives, most remained without any indication of their hosts. The contrasting distribution of giant viruses that are present in the entire water column to that of parasitic perkinsids residing largely in deeper waters allows us to propose giant viruses as the biological agents of top-down control and bloom collapse, likely in combination with bottom-up factors like a nutrient limitation. CONCLUSION We reconstructed thousands of genomes of microbes and viruses from a freshwater spring bloom and show that such large-scale genome recovery allows tracking of planktonic succession in great detail. However, integration of metagenomic information with other methodologies (e.g., microscopy, CARD-FISH) remains critical to reveal diverse phenomena (e.g., distributional patterns, in situ doubling times) and novel participants (e.g., aplastidic cryptophytes) and to further refine existing ecological models (e.g., factors affecting bloom collapse). This work provides a genomic foundation for future approaches towards a fine-scale characterization of the organisms in relation to the rapidly changing environment during the course of the freshwater spring bloom. Video Abstract.
Collapse
Affiliation(s)
- Vinicius S Kavagutti
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Paul-Adrian Bulzu
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Cecilia M Chiriac
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Indranil Mukherjee
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Tanja Shabarova
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Vesna Grujčić
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Present address: Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Maliheh Mehrshad
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Present address: Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Vojtěch Kasalický
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Adrian-Stefan Andrei
- Limnological Station, Microbial Evogenomics Lab (MiEL), University of Zurich, Kilchberg, Switzerland
| | - Jitka Jezberová
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Jaromir Seďa
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Pavel Rychtecký
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Petr Znachor
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Karel Šimek
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Rohit Ghai
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
6
|
Cryptic and ubiquitous aplastidic cryptophytes are key freshwater flagellated bacterivores. THE ISME JOURNAL 2023; 17:84-94. [PMID: 36207492 PMCID: PMC9751141 DOI: 10.1038/s41396-022-01326-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022]
Abstract
Morphology-based microscopic approaches are insufficient for a taxonomic classification of bacterivorous heterotrophic nanoflagellates (HNF) in aquatic environments since their cells do not display reliably distinguishable morphological features. This leads to a considerable lack of ecological insights into this large and taxonomically diverse functional guild. Here, we present a combination of fluorescence in situ hybridization followed by catalyzed reporter deposition (CARD-FISH) and environmental sequence analyses which revealed that morphologically indistinguishable, so far largely cryptic and uncultured aplastidic cryptophytes are ubiquitous and prominent protistan bacterivores in diverse freshwater ecosystems. Using a general probe for Cryptophyceae and its heterotrophic CRY1 lineage, we analyzed different water layers in 24 freshwater lakes spanning a broad range of trophic states, sizes and geographical locations. We show that bacterivorous aplastidic cryptophytes and the CRY1 lineage accounted for ca. 2/3 and ¼ of total HNF, respectively, in both epilimnetic and hypolimnetic samples. These heterotrophic cryptophytes were generally smaller and more abundant than their chloroplast-bearing counterparts. They had high uptake rates of bacteria, hinting at their important roles in channeling carbon flow from prokaryotes to higher trophic levels. The worldwide ubiquity of Cryptophyceae and its CRY1 lineage was supported by 18S rRNA gene sequence analyses across a diverse set of 297 freshwater metagenomes. While cryptophytes have been considered to be mainly plastidic "algae", we show that it is the aplastidic counterparts that contribute considerably to bacterial mortality rates. Additionally, our results suggest an undiscovered diversity hidden amongst these abundant and morphologically diverse aplastidic cryptophytes.
Collapse
|
7
|
Sherwell S, Kalra I, Li W, McKnight DM, Priscu JC, Morgan-Kiss RM. Antarctic lake phytoplankton and bacteria from near-surface waters exhibit high sensitivity to climate-driven disturbance. Environ Microbiol 2022; 24:6017-6032. [PMID: 35860854 PMCID: PMC10084183 DOI: 10.1111/1462-2920.16113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 01/12/2023]
Abstract
The McMurdo Dry Valleys (MDVs), Antarctica, represent a cold, desert ecosystem poised on the threshold of melting and freezing water. The MDVs have experienced dramatic signs of climatic change, most notably a warm austral summer in 2001-2002 that caused widespread flooding, partial ice cover loss and lake level rise. To understand the impact of these climatic disturbances on lake microbial communities, we simulated lake level rise and ice-cover loss by transplanting dialysis-bagged communities from selected depths to other locations in the water column or to an open water perimeter moat. Bacteria and eukaryote communities residing in the surface waters (5 m) exhibited shifts in community composition when exposed to either disturbance, while microbial communities from below the surface were largely unaffected by the transplant. We also observed an accumulation of labile dissolved organic carbon in the transplanted surface communities. In addition, there were taxa-specific sensitivities: cryptophytes and Actinobacteria were highly sensitive particularly to the moat transplant, while chlorophytes and several bacterial taxa increased in relative abundance or were unaffected. Our results reveal that future climate-driven disturbances will likely undermine the stability and productivity of MDV lake phytoplankton and bacterial communities in the surface waters of this extreme environment.
Collapse
Affiliation(s)
| | - Isha Kalra
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| | - Wei Li
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Diane M McKnight
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
| | | | | |
Collapse
|
8
|
Šimek K, Mukherjee I, Nedoma J, de Paula CCP, Jezberová J, Sirová D, Vrba J. CARD-FISH and prey tracer techniques reveal the role of overlooked flagellate groups as major bacterivores in freshwater hypertrophic shallow lakes. Environ Microbiol 2022; 24:4256-4273. [PMID: 34933408 PMCID: PMC9788210 DOI: 10.1111/1462-2920.15846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022]
Abstract
Heterotrophic nanoflagellates (HNF) and ciliates are major protistan planktonic bacterivores. The term HNF, however, describes a functional guild only and, in contrast to the morphologically distinguishable ciliates, does not reflect the phylogenetic diversity of flagellates in aquatic ecosystems. Associating a function with taxonomic affiliation of key flagellate taxa is currently a major task in microbial ecology. We investigated seasonal changes in the HNF and ciliate community composition as well as taxa-specific bacterivory in four hypertrophic freshwater lakes. Taxa-specific catalyzed reporter deposition-fluorescence in situ hybridization probes assigned taxonomic affiliations to 51%-96% (average ±SD, 75 ± 14%) of total HNF. Ingestion rates of fluorescently labelled bacteria unveiled that HNF contributed to total protist-induced bacterial mortality rates more (56%) than ciliates (44%). Surprisingly, major HNF bacterivores were aplastidic cryptophytes and their Cry1 lineage, comprising on average 53% and 24% of total HNF abundance and 67% and 21% of total HNF bacterivory respectively. Kinetoplastea were important consumers of bacteria during summer phytoplankton blooms, reaching 38% of total HNF. Katablepharidacea (7.5% of total HNF) comprised mainly omnivores, with changing contributions of bacterivorous and algivorous phylotypes. Our results show that aplastidic cryptophytes, accompanied by small omnivorous ciliate genera Halteria/Pelagohalteria, are the major protistan bacterivores in hypertrophic freshwaters.
Collapse
Affiliation(s)
- Karel Šimek
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7České Budějovice37005Czech Republic,Faculty of ScienceUniversity of South Bohemia, Branišovská 1760České Budějovice37005Czech Republic
| | - Indranil Mukherjee
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7České Budějovice37005Czech Republic
| | - Jiří Nedoma
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7České Budějovice37005Czech Republic
| | | | - Jitka Jezberová
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7České Budějovice37005Czech Republic
| | - Dagmara Sirová
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7České Budějovice37005Czech Republic
| | - Jaroslav Vrba
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7České Budějovice37005Czech Republic,Faculty of ScienceUniversity of South Bohemia, Branišovská 1760České Budějovice37005Czech Republic
| |
Collapse
|
9
|
Orita R, Yoshida K, Terazono H, Nagano Y, Goto M, Kimura K, Kobayashi G. Weekly Observations of Estuarine Microbial Assemblages during Summer in the Inner Part of Ariake Bay, Japan; Microbial Water-sediment Coupling in Turbid Shallow Waters. Microbes Environ 2022; 37. [PMID: 35676048 PMCID: PMC9530734 DOI: 10.1264/jsme2.me22015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Estuarine microbial assemblages are altered by a number of environmental factors, and knowledge of these changes is essential for understanding the functions of microbes in estuarine ecosystems. The aims of the present study were to examine the relationship between microbial assemblages in the water column and sediment surface, and to identify the environmental factors that influence the short-term dynamics of microbial assemblages in these two zones in summer in the inner part of Ariake Bay. The microbial assemblage of each sample consisted of a mean of 71.1% operational taxonomic units (OTUs), which commonly occurred in the water column and sediment surface, although their relative composition markedly differed between the two zones. In the water column, spatiotemporal changes in microbial assemblages correlated with several environmental factors, such as the nitrogen content in suspended particles, turbidity, and salinity. On the other hand, temporal changes in the sediment’s microbial assemblages were governed by a single environmental factor, namely, the oxygen reduction potential. These results suggest that the composition of microbial assemblages in the water column and sediment surface differed even in highly turbid brackish waters with high sediment resuspension, and the environmental factors contributing to the change in the assemblage composition also differed between the water column and sediment.
Collapse
Affiliation(s)
- Ryo Orita
- Faculty of Agriculture, Saga University
| | | | | | - Yukio Nagano
- Analytical Research Center for Experimental Sciences, Saga University
| | | | | | | |
Collapse
|
10
|
Pavlovska M, Prekrasna I, Dykyi E, Zotov A, Dzhulai A, Frolova A, Slobodnik J, Stoica E. Niche partitioning of bacterial communities along the stratified water column in the Black Sea. Microbiologyopen 2021; 10:e1195. [PMID: 34180601 PMCID: PMC8217838 DOI: 10.1002/mbo3.1195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 11/22/2022] Open
Abstract
The Black Sea is the largest semi‐closed permanently anoxic basin on our planet with long‐term stratification. The study aimed at describing the Black Sea microbial community taxonomic and functional composition within the range of depths spanning across oxic/anoxic interface, and to uncover the factors behind both their vertical and regional differentiation. 16S rRNA gene MiSeq sequencing was applied to get the data on microbial community taxonomy, and the PICRUSt pipeline was used to infer their functional profile. The normoxic zone was mainly inhabited by primary producers and heterotrophic prokaryotes (e.g., Flavobacteriaceae, Rhodobacteraceae, Synechococcaceae) whereas the euxinic zone—by heterotrophic and chemoautotrophic taxa (e.g., MSBL2, Piscirickettsiaceae, and Desulfarculaceae). Assimilatory sulfate reduction and oxygenic photosynthesis were prevailing within the normoxic zone, while the role of nitrification, dissimilatory sulfate reduction, and anoxygenic photosynthesis increased in the oxygen‐depleted water column part. Regional differentiation of microbial communities between the Ukrainian shelf and offshore zone was detected as well, yet it was significantly less pronounced than the vertical one. It is suggested that regional differentiation within a well‐oxygenated zone is driven by the difference in phytoplankton communities providing various substrates for the prokaryotes, whereas redox stratification is the main driving force behind microbial community vertical structure.
Collapse
Affiliation(s)
- Mariia Pavlovska
- State Institution National Antarctic Scientific Center, Kyiv, Ukraine.,Ukrainian Scientific Center of Ecology of the Sea, Odesa, Ukraine.,National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | | | - Evgen Dykyi
- State Institution National Antarctic Scientific Center, Kyiv, Ukraine.,Ukrainian Scientific Center of Ecology of the Sea, Odesa, Ukraine
| | - Andrii Zotov
- State Institution National Antarctic Scientific Center, Kyiv, Ukraine.,State Institution Institute of Marine Biology of the NAS of Ukraine, Odesa, Ukraine
| | - Artem Dzhulai
- State Institution National Antarctic Scientific Center, Kyiv, Ukraine
| | - Alina Frolova
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | | | - Elena Stoica
- National Institute for Marine Research and Development "Grigore Antipa", Constanta, Romania
| |
Collapse
|
11
|
Lipko IA, Belykh OI. Environmental Features of Freshwater Planktonic Actinobacteria. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s1995425521020074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Forster D, Qu Z, Pitsch G, Bruni EP, Kammerlander B, Pröschold T, Sonntag B, Posch T, Stoeck T. Lake Ecosystem Robustness and Resilience Inferred from a Climate-Stressed Protistan Plankton Network. Microorganisms 2021; 9:microorganisms9030549. [PMID: 33800927 PMCID: PMC8001626 DOI: 10.3390/microorganisms9030549] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 11/23/2022] Open
Abstract
Network analyses of biological communities allow for identifying potential consequences of climate change on the resilience of ecosystems and their robustness to resist stressors. Using DNA metabarcoding datasets from a three-year-sampling (73 samples), we constructed the protistan plankton co-occurrence network of Lake Zurich, a model lake ecosystem subjected to climate change. Despite several documentations of dramatic lake warming in Lake Zurich, our study provides an unprecedented perspective by linking changes in biotic association patterns to climate stress. Water temperature belonged to the strongest environmental parameters splitting the data into two distinct seasonal networks (October–April; May–September). The expected ecological niche of phytoplankton, weakened through nutrient depletion because of permanent thermal stratification and through parasitic fungi, was occupied by the cyanobacterium Planktothrix rubescens and mixotrophic nanoflagellates. Instead of phytoplankton, bacteria and nanoflagellates were the main prey organisms associated with key predators (ciliates), which contrasts traditional views of biological associations in lake plankton. In a species extinction scenario, the warm season network emerged as more vulnerable than the cold season network, indicating a time-lagged effect of warmer winter temperatures on the communities. We conclude that climate stressors compromise lake ecosystem robustness and resilience through species replacement, richness differences, and succession as indicated by key network properties.
Collapse
Affiliation(s)
- Dominik Forster
- Department of Ecology, University of Kaiserslautern, D-67633 Kaiserslautern, Germany; (D.F.); (Z.Q.)
| | - Zhishuai Qu
- Department of Ecology, University of Kaiserslautern, D-67633 Kaiserslautern, Germany; (D.F.); (Z.Q.)
| | - Gianna Pitsch
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, CH-8802 Zurich, Switzerland; (G.P.); (E.P.B.); (T.P.)
| | - Estelle P. Bruni
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, CH-8802 Zurich, Switzerland; (G.P.); (E.P.B.); (T.P.)
- Laboratory of Soil Biodiversity, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Barbara Kammerlander
- Research Department for Limnology, University of Innsbruck, A-5310 Mondsee, Austria; (B.K.); (T.P.); (B.S.)
| | - Thomas Pröschold
- Research Department for Limnology, University of Innsbruck, A-5310 Mondsee, Austria; (B.K.); (T.P.); (B.S.)
| | - Bettina Sonntag
- Research Department for Limnology, University of Innsbruck, A-5310 Mondsee, Austria; (B.K.); (T.P.); (B.S.)
| | - Thomas Posch
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, CH-8802 Zurich, Switzerland; (G.P.); (E.P.B.); (T.P.)
| | - Thorsten Stoeck
- Department of Ecology, University of Kaiserslautern, D-67633 Kaiserslautern, Germany; (D.F.); (Z.Q.)
- Correspondence: ; Tel.: +49-631-205-2502; Fax: +49-631-2051-32496
| |
Collapse
|
13
|
Piwosz K, Mukherjee I, Salcher MM, Grujčić V, Šimek K. CARD-FISH in the Sequencing Era: Opening a New Universe of Protistan Ecology. Front Microbiol 2021; 12:640066. [PMID: 33746931 PMCID: PMC7970053 DOI: 10.3389/fmicb.2021.640066] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Phagotrophic protists are key players in aquatic food webs. Although sequencing-based studies have revealed their enormous diversity, ecological information on in situ abundance, feeding modes, grazing preferences, and growth rates of specific lineages can be reliably obtained only using microscopy-based molecular methods, such as Catalyzed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH). CARD-FISH is commonly applied to study prokaryotes, but less so to microbial eukaryotes. Application of this technique revealed that Paraphysomonas or Spumella-like chrysophytes, considered to be among the most prominent members of protistan communities in pelagic environments, are omnipresent but actually less abundant than expected, in contrast to little known groups such as heterotrophic cryptophyte lineages (e.g., CRY1), cercozoans, katablepharids, or the MAST lineages. Combination of CARD-FISH with tracer techniques and application of double CARD-FISH allow visualization of food vacuole contents of specific flagellate groups, thus considerably challenging our current, simplistic view that they are predominantly bacterivores. Experimental manipulations with natural communities revealed that larger flagellates are actually omnivores ingesting both prokaryotes and other protists. These new findings justify our proposition of an updated model of microbial food webs in pelagic environments, reflecting more authentically the complex trophic interactions and specific roles of flagellated protists, with inclusion of at least two additional trophic levels in the nanoplankton size fraction. Moreover, we provide a detailed CARD-FISH protocol for protists, exemplified on mixo- and heterotrophic nanoplanktonic flagellates, together with tips on probe design, a troubleshooting guide addressing most frequent obstacles, and an exhaustive list of published probes targeting protists.
Collapse
Affiliation(s)
- Kasia Piwosz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
- Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Indranil Mukherjee
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czechia
| | - Michaela M. Salcher
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czechia
| | - Vesna Grujčić
- Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Karel Šimek
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czechia
| |
Collapse
|
14
|
Eckert EM, Anicic N, Fontaneto D. Freshwater zooplankton microbiome composition is highly flexible and strongly influenced by the environment. Mol Ecol 2021; 30:1545-1558. [PMID: 33484584 DOI: 10.1111/mec.15815] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022]
Abstract
The association with microbes in plants and animals is known to be beneficial for host's survival and fitness, but the generality of the effect of the microbiome is still debated. For some animals, similarities in microbiome composition reflect taxonomic relatedness of the hosts, a pattern termed phylosymbiosis. The mechanisms behind the pattern could be due to co-evolution and/or to correlated ecological constraints. General conclusions are hampered by the fact that available knowledge is highly dominated by microbiomes from model species. Here, we addressed the issue of the generality of phylosymbiosis by analysing the species-specificity of microbiomes across different species of freshwater zooplankton, including rotifers, cladocerans, and copepods, coupling field surveys and experimental manipulations. We found that no signal of phylosymbiosis was present, and that the proportion of "core" microbial taxa, stable and consistent within each species, was very low. Changes in food and temperature under laboratory experimental settings revealed that the microbiome of freshwater zooplankton is highly flexible and can be influenced by the external environment. Thus, the role of co-evolution, strict association, and interaction with microbes within the holobiont concept highlighted for vertebrates, corals, sponges, and other animals does not seem to be supported for all animals, at least not for freshwater zooplankton. Zooplankton floats in the environment where both food and bacteria that can provide help in digesting such food are available. In addition, there is probably redundancy for beneficial bacterial functions in the environment, not allowing a strict host-microbiome association to originate and persist.
Collapse
Affiliation(s)
- Ester M Eckert
- MEG- Molecular Ecology Group, Water Research Institute, National Research Council of Italy (CNR-IRSA), Verbania, Italy
| | - Nikoleta Anicic
- MEG- Molecular Ecology Group, Water Research Institute, National Research Council of Italy (CNR-IRSA), Verbania, Italy.,Laboratory of Applied Microbiology, Department of Environment, Construction and Design, University of Applied Sciences and Arts of Southern Switzerland, Bellinzona, Switzerland
| | - Diego Fontaneto
- MEG- Molecular Ecology Group, Water Research Institute, National Research Council of Italy (CNR-IRSA), Verbania, Italy
| |
Collapse
|
15
|
Reis MP, Suhadolnik MLS, Dias MF, Ávila MP, Motta AM, Barbosa FAR, Nascimento AMA. Characterizing a riverine microbiome impacted by extreme disturbance caused by a mining sludge tsunami. CHEMOSPHERE 2020; 253:126584. [PMID: 32278186 DOI: 10.1016/j.chemosphere.2020.126584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Studies on disturbance events in riverine systems caused by environmental disasters and their effects on microbial diversity are scarce. Here, we evaluated the impact of the collapse of an iron ore dam holding approximately 50 million cubic meters of waste on both water and sediment microbiomes by deeply sequencing the 16S rRNA gene. Samples were taken from two impacted rivers and one reference river 7, 30 and 150 days postdisturbance. The impacted community structure changed greatly over spatiotemporal scales, being less diverse and more uneven, particularly on day 7 for the do Carmo River (the closest to the dam). However, the reference community structure remained similar between sampling events. Moreover, the impacted sediments were positively correlated with metals. The taxa abundance varied greatly over spatiotemporal scales, allowing for the identification of several potential bioindicators, e.g., Comamonadaceae, Novosphingobium, Sediminibacterium and Bacteriovorax. Our results showed that the impacted communities consisted mostly of Fe(II) oxidizers and Fe(III) reducers, aromatic compound degraders and predator bacteria. Network analysis showed a highly interconnected microbiome whose interactions switched from positive to negative or vice versa between the impacted and reference communities. This work revealed potential molecular signatures associated with the rivers heavily impacted by metals that might be useful sentinels for predicting riverine health.
Collapse
Affiliation(s)
- Mariana P Reis
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Maria Luíza S Suhadolnik
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Marcela F Dias
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Marcelo P Ávila
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Amanda M Motta
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Francisco A R Barbosa
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Andréa M A Nascimento
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
16
|
Light and Primary Production Shape Bacterial Activity and Community Composition of Aerobic Anoxygenic Phototrophic Bacteria in a Microcosm Experiment. mSphere 2020; 5:5/4/e00354-20. [PMID: 32611696 PMCID: PMC7333569 DOI: 10.1128/msphere.00354-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Phytoplankton is a key component of aquatic microbial communities, and metabolic coupling between phytoplankton and bacteria determines the fate of dissolved organic carbon (DOC). Yet, the impact of primary production on bacterial activity and community composition remains largely unknown, as, for example, in the case of aerobic anoxygenic phototrophic (AAP) bacteria that utilize both phytoplankton-derived DOC and light as energy sources. Here, we studied how reduction of primary production in a natural freshwater community affects the bacterial community composition and its activity, focusing primarily on AAP bacteria. The bacterial respiration rate was the lowest when photosynthesis was reduced by direct inhibition of photosystem II and the highest in ambient light condition with no photosynthesis inhibition, suggesting that it was limited by carbon availability. However, bacterial assimilation rates of leucine and glucose were unaffected, indicating that increased bacterial growth efficiency (e.g., due to photoheterotrophy) can help to maintain overall bacterial production when low primary production limits DOC availability. Bacterial community composition was tightly linked to light intensity, mainly due to the increased relative abundance of light-dependent AAP bacteria. This notion shows that changes in bacterial community composition are not necessarily reflected by changes in bacterial production or growth and vice versa. Moreover, we demonstrated for the first time that light can directly affect bacterial community composition, a topic which has been neglected in studies of phytoplankton-bacteria interactions.IMPORTANCE Metabolic coupling between phytoplankton and bacteria determines the fate of dissolved organic carbon in aquatic environments, and yet how changes in the rate of primary production affect the bacterial activity and community composition remains understudied. Here, we experimentally limited the rate of primary production either by lowering light intensity or by adding a photosynthesis inhibitor. The induced decrease had a greater influence on bacterial respiration than on bacterial production and growth rate, especially at an optimal light intensity. This suggests that changes in primary production drive bacterial activity, but the effect on carbon flow may be mitigated by increased bacterial growth efficiencies, especially of light-dependent AAP bacteria. Bacterial activities were independent of changes in bacterial community composition, which were driven by light availability and AAP bacteria. This direct effect of light on composition of bacterial communities has not been documented previously.
Collapse
|
17
|
Linking Shifts in Bacterial Community Composition and Function with Changes in the Dissolved Organic Matter Pool in Ice-Covered Baiyangdian Lake, Northern China. Microorganisms 2020; 8:microorganisms8060883. [PMID: 32545218 PMCID: PMC7357102 DOI: 10.3390/microorganisms8060883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
The relationship between CDOM (Chromophoric dissolved organic matter) and the bacterial community was investigated in ice-covered Baiyangdian Lake. The results showed that environmental parameters significantly differed in Baiyangdian Lake, whereas a-diversity was not significantly different. Moreover, the microbial and functional communities exhibited significant differences, and T (Temperature), pH, ORP (Oxidation-reduction potential), DO (Dissolved oxygen), NO3−-N, NH4+-N, and Mn (Manganese) were the main environmental factors of these differences, based on redundancy analysis and the Mantel test. Biomarkers of the microbial and functional communities were investigated through linear discriminant analysis effect size and STAMP analysis. The number of biomarkers in the natural area was highest among the typical zones, and most top functions were related to carbohydrate metabolism. Two protein-like components (C1 and C2) and one humic-like component (C3) were identified by parallel factor analysis, and C1 was positively related to C2 (R = 0.99, p < 0.001), indicating the same sources. Moreover, CDOM significantly differed among the typical zones (p < 0.001). The high biological index, fluorescence index, β:α, and low humification index indicated a strong autochthonous component and aquatic bacterial origin, which was consistent with the results of UV-vis absorption spectroscopy. Network analysis revealed non-random co-occurrence patterns. The bacterial and functional communities interacted closely with CDOM. The dominant genera were CL500-29_marine_group, Flavobacterium, Limnohabitans, and Candidatus_Aquirestis. Random forest analysis showed that C1, C2, and C3 are important predictors of α- and β-diversity in the water bacterial community and its functional composition. This study provides insight into the interaction between bacterial communities and DOM (Dissolved organic matter) in ice-covered Baiyangdian Lake.
Collapse
|
18
|
Yang N, Cao Q, Hu S, Xu C, Fan K, Chen F, Yang C, Liang H, Wu M, Bae T, Lan L. Alteration of protein homeostasis mediates the interaction of
Pseudomonas aeruginosa
with
Staphylococcus aureus. Mol Microbiol 2020; 114:423-442. [DOI: 10.1111/mmi.14519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Nana Yang
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Qiao Cao
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
- College of Life Science Northwest University Xi'an China
| | - Shuyang Hu
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Chenchen Xu
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Ke Fan
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Feifei Chen
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
- College of Life Science Northwest University Xi'an China
| | - Cai‐Guang Yang
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Haihua Liang
- College of Life Science Northwest University Xi'an China
| | - Min Wu
- Department of Biomedical Sciences University of North Dakota Grand Forks ND USA
| | - Taeok Bae
- Department of Microbiology and Immunology Indiana University School of Medicine‐Northwest Gary IN USA
| | - Lefu Lan
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
- College of Life Science Northwest University Xi'an China
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology Shanghai Institute for Food and Drug Control Shanghai China
| |
Collapse
|
19
|
Bock C, Jensen M, Forster D, Marks S, Nuy J, Psenner R, Beisser D, Boenigk J. Factors shaping community patterns of protists and bacteria on a European scale. Environ Microbiol 2020; 22:2243-2260. [PMID: 32202362 DOI: 10.1111/1462-2920.14992] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 03/18/2020] [Indexed: 01/19/2023]
Abstract
Factors shaping community patterns of microorganisms are controversially discussed. Physical and chemical factors certainly limit the survival of individual taxa and maintenance of diversity. In recent years, a contribution of geographic distance and dispersal barriers to distribution patterns of protists and bacteria has been demonstrated. Organismic interactions such as competition, predation and mutualism further modify community structure and maintenance of distinct taxa. Here, we address the relative importance of these different factors in shaping protists and bacterial communities on a European scale using high-throughput sequencing data obtained from lentic freshwater ecosystems. We show that community patterns of protists are similar to those of bacteria. Our results indicate that cross-domain organismic factors are important variables with a higher influence on protists as compared with bacteria. Abiotic physical and chemical factors also contributed significantly to community patterns. The contribution of these latter factors was higher for bacteria, which may reflect a stronger biogeochemical coupling. The contribution of geographical distance was similar for both microbial groups.
Collapse
Affiliation(s)
- Christina Bock
- Biodiversity, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Manfred Jensen
- Biodiversity, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Dominik Forster
- Department of Ecology, University of Kaiserslautern, Erwin-Schrödinger-Str. 14, 67663, Kaiserslautern, Germany
| | - Sabina Marks
- Biodiversity, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Julia Nuy
- Biodiversity, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Roland Psenner
- Lake and Glacier Research, Institute of Ecology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Daniela Beisser
- Biodiversity, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Jens Boenigk
- Biodiversity, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| |
Collapse
|
20
|
Di Cesare A, Eckert EM, Cottin C, Bouchez A, Callieri C, Cortesini M, Lami A, Corno G. The vertical distribution of tetA and intI1 in a deep lake is rather due to sedimentation than to resuspension. FEMS Microbiol Ecol 2020; 96:5700709. [DOI: 10.1093/femsec/fiaa002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Lakes are exposed to anthropogenic pollution including the release of allochthonous bacteria into their waters. Antibiotic resistance genes (ARGs) stabilize in bacterial communities of temperate lakes, and these environments act as long-term reservoirs of ARGs. Still, it is not clear if the stabilization of the ARGs is caused by a periodical introduction, or by other factors regulated by dynamics within the water column. Here we observed the dynamics of the tetracycline resistance gene (tetA) and of the class 1 integron integrase gene intI1 a proxy of anthropogenic pollution in the water column and in the sediments of subalpine Lake Maggiore, together with several chemical, physical and microbiological variables. Both genes resulted more abundant within the bacterial community of the sediment compared to the water column and the water-sediment interface. Only at the inset of thermal stratification they reached quantifiable abundances in all the water layers, too. Moreover, the bacterial communities of the water-sediment interface were more similar to deep waters than to the sediments. These results suggest that the vertical distribution of tetA and intI1 is mainly due to the deposition of bacteria from the surface water to the sediment, while their resuspension from the sediment is less important.
Collapse
Affiliation(s)
- Andrea Di Cesare
- CNR – IRSA Water Research Institute, Molecular Ecology Group (MEG). Largo Tonolli 50, 28922 Verbania, Italy
| | - Ester M Eckert
- CNR – IRSA Water Research Institute, Molecular Ecology Group (MEG). Largo Tonolli 50, 28922 Verbania, Italy
| | - Camille Cottin
- CNR – IRSA Water Research Institute, Molecular Ecology Group (MEG). Largo Tonolli 50, 28922 Verbania, Italy
- INRA – UMR CARRTEL, 75 ave de Corzent, 74200 Thonon les Bains, France
| | - Agnès Bouchez
- INRA – UMR CARRTEL, 75 ave de Corzent, 74200 Thonon les Bains, France
| | - Cristiana Callieri
- CNR – IRSA Water Research Institute, Molecular Ecology Group (MEG). Largo Tonolli 50, 28922 Verbania, Italy
| | - Mario Cortesini
- CNR – IRSA Water Research Institute, Molecular Ecology Group (MEG). Largo Tonolli 50, 28922 Verbania, Italy
| | - Andrea Lami
- CNR – IRSA Water Research Institute, Molecular Ecology Group (MEG). Largo Tonolli 50, 28922 Verbania, Italy
| | - Gianluca Corno
- CNR – IRSA Water Research Institute, Molecular Ecology Group (MEG). Largo Tonolli 50, 28922 Verbania, Italy
| |
Collapse
|
21
|
Eckert EM, Quero GM, Di Cesare A, Manfredini G, Mapelli F, Borin S, Fontaneto D, Luna GM, Corno G. Antibiotic disturbance affects aquatic microbial community composition and food web interactions but not community resilience. Mol Ecol 2019; 28:1170-1182. [PMID: 30697889 DOI: 10.1111/mec.15033] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/13/2018] [Accepted: 01/14/2019] [Indexed: 01/17/2023]
Abstract
Notwithstanding the fundamental role that environmental microbes play for ecosystem functioning, data on how microbes react to disturbances are still scarce, and most factors that confer stability to microbial communities are unknown. In this context, antibiotic discharge into the environment is considered a worldwide threat for ecosystems with potential risks to human health. We therefore tested resilience of microbial communities challenged by the presence of an antibiotic. In a continuous culture experiment, we compared the abundance, composition and diversity of microbial communities undisturbed or disturbed by the constant addiction of tetracycline in low (10 µg/L) or intermediate (100 µg/L) concentration (press disturbance). Further, the bacterial communities in the three treatments had to face the sudden pulse disturbance of adding an allochthonous bacterium (Escherichia coli). Tetracycline, even at low concentrations, affected microbial communities by changing their phylogenetic composition and causing cell aggregation. This, however, did not coincide with a reduced microbial diversity, but was mainly caused by a shift in dominance of specific bacterial families. Moreover, the less disturbed community (10 µg/L tetracycline) was sometimes more similar to the control and sometimes more similar to heavily disturbed community (100 µg/L tetracycline). All in all, we could not see a pattern where the communities disturbed with antibiotics were less resilient to a second disturbance introducing E. coli, but they seemed to be able to buffer the input of the allochthonous strain in a similar manner as the control.
Collapse
Affiliation(s)
- Ester M Eckert
- Microbial Ecology Group, National Research Council - Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Grazia M Quero
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
| | - Andrea Di Cesare
- Microbial Ecology Group, National Research Council - Water Research Institute (CNR-IRSA), Verbania, Italy.,Department of Environmental and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| | - Giuliana Manfredini
- Microbial Ecology Group, National Research Council - Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milano, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milano, Italy
| | - Diego Fontaneto
- Microbial Ecology Group, National Research Council - Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Gian Marco Luna
- National Research Council, Istituto per le Risorse Biologiche e le Biotecnologie Marine (CNR-IRBIM), Ancona, Italy
| | - Gianluca Corno
- Microbial Ecology Group, National Research Council - Water Research Institute (CNR-IRSA), Verbania, Italy
| |
Collapse
|
22
|
Silva MOD, Pernthaler J. Priming of microcystin degradation in carbon-amended membrane biofilm communities is promoted by oxygen-limited conditions. FEMS Microbiol Ecol 2019; 95:5582606. [PMID: 31589311 PMCID: PMC6804753 DOI: 10.1093/femsec/fiz157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/04/2019] [Indexed: 01/09/2023] Open
Abstract
Microbial biofilms are an important element of gravity-driven membrane (GDM) filtration systems for decentralized drinking water production. Mature biofilms fed with biomass from the toxic cyanobacterium Microcystis aeruginosa efficiently remove the cyanotoxin microcystin (MC). MC degradation can be ‘primed’ by prior addition of biomass from a non-toxic M. aeruginosa strain. Increased proportions of bacteria with an anaerobic metabolism in M. aeruginosa-fed biofilms suggest that this ‘priming’ could be due to higher productivity and the resulting changes in habitat conditions. We, therefore, investigated GDM systems amended with the biomass of toxic (WT) or non-toxic (MUT) M. aeruginosa strains, of diatoms (DT), or with starch solution (ST). After 25 days, these treatments were changed to receiving toxic cyanobacterial biomass. MC degradation established significantly more rapidly in MUT and ST than in DT. Oxygen measurements suggested that this was due to oxygen-limited conditions in MUT and ST already prevailing before addition of MC-containing biomass. Moreover, the microbial communities in the initial ST biofilms featured high proportions of facultative anaerobic taxa, whereas aerobes dominated in DT biofilms. Thus, the ‘priming’ of MC degradation in mature GDM biofilms seems to be related to the prior establishment of oxygen-limited conditions mediated by higher productivity.
Collapse
Affiliation(s)
- Marisa O D Silva
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Seestrasse 187, CH-8802 Kilchberg, Switzerland
| | - Jakob Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Seestrasse 187, CH-8802 Kilchberg, Switzerland
| |
Collapse
|
23
|
Obertegger U, Pindo M, Flaim G. Multifaceted aspects of synchrony between freshwater prokaryotes and protists. Mol Ecol 2019; 28:4500-4512. [DOI: 10.1111/mec.15228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/29/2019] [Accepted: 08/12/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Ulrike Obertegger
- Research and Innovation Centre Fondazione Edmund Mach San Michele all'Adige Italy
| | - Massimo Pindo
- Research and Innovation Centre Fondazione Edmund Mach San Michele all'Adige Italy
| | - Giovanna Flaim
- Research and Innovation Centre Fondazione Edmund Mach San Michele all'Adige Italy
| |
Collapse
|
24
|
Ávila MP, Brandão LPM, Brighenti LS, Tonetta D, Reis MP, Stæhr PA, Asmala E, Amado AM, Barbosa FAR, Bezerra-Neto JF, Nascimento AMA. Linking shifts in bacterial community with changes in dissolved organic matter pool in a tropical lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:990-1003. [PMID: 30981171 DOI: 10.1016/j.scitotenv.2019.04.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Bacterioplankton communities have a pivotal role in the global carbon cycle. Still the interaction between microbial community and dissolved organic matter (DOM) in freshwater ecosystems remains poorly understood. Here, we report results from a 12-day mesocosm study performed in the epilimnion of a tropical lake, in which inorganic nutrients and allochthonous DOM were supplemented under full light and shading. Although the production of autochthonous DOM triggered by nutrient addition was the dominant driver of changes in bacterial community structure, temporal covariations between DOM optical proxies and bacterial community structure revealed a strong influence of community shifts on DOM fate. Community shifts were coupled to a successional stepwise alteration of the DOM pool, with different fractions being selectively consumed by specific taxa. Typical freshwater clades as Limnohabitans and Sporichthyaceae were associated with consumption of low molecular weight carbon, whereas Gammaproteobacteria and Flavobacteria utilized higher molecular weight carbon, indicating differences in DOM preference among clades. Importantly, Verrucomicrobiaceae were important in the turnover of freshly produced autochthonous DOM, ultimately affecting light availability and dissolved organic carbon concentrations. Our findings suggest that taxonomically defined bacterial assemblages play definite roles when influencing DOM fate, either by changing specific fractions of the DOM pool or by regulating light availability and DOC levels.
Collapse
Affiliation(s)
- Marcelo P Ávila
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Luciana P M Brandão
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Ludmila S Brighenti
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Denise Tonetta
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Mariana P Reis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| | - Peter A Stæhr
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, Box 358, 4000 Roskilde, Denmark
| | - Eero Asmala
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, Box 358, 4000 Roskilde, Denmark; Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900 Hanko, Finland
| | - André M Amado
- Limnology Laboratory, Department of Oceanography and Limnology, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| | - Francisco A R Barbosa
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - José F Bezerra-Neto
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Andréa M A Nascimento
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
25
|
Culturing the ubiquitous freshwater actinobacterial acI lineage by supplying a biochemical 'helper' catalase. ISME JOURNAL 2019; 13:2252-2263. [PMID: 31073214 DOI: 10.1038/s41396-019-0432-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 03/18/2019] [Accepted: 04/24/2019] [Indexed: 01/21/2023]
Abstract
The actinobacterial acI lineage is among the most successful and ubiquitous freshwater bacterioplankton found on all continents, often representing more than half of all microbial cells in the lacustrine environment and constituting multiple ecotypes. However, stably growing pure cultures of the acI lineage have not been established despite various cultivation efforts based on ecological and genomic studies on the lineage, which is in contrast to the ocean from which abundant microorganisms such as Prochlorococcus, Pelagibacter, and Nitrosopumilus have been isolated. Here, we report the first two pure cultures of the acI lineage successfully maintained by supplementing the growth media with catalase. Catalase was critical for stabilizing the growth of acI strains irrespective of the genomic presence of the catalase-peroxidase (katG) gene. The two strains, representing two novel species, displayed differential phenotypes and distinct preferences for reduced sulfurs and carbohydrates, some of which were difficult to predict based on genomic information. Our results suggest that culture of previously uncultured freshwater bacteria can be facilitated by a simple catalase-supplement method and indicate that genome-based metabolic prediction can be complemented by physiological analyses.
Collapse
|
26
|
Silva MOD, Desmond P, Derlon N, Morgenroth E, Pernthaler J. Source Community and Assembly Processes Affect the Efficiency of Microbial Microcystin Degradation on Drinking Water Filtration Membranes. Front Microbiol 2019; 10:843. [PMID: 31057530 PMCID: PMC6482319 DOI: 10.3389/fmicb.2019.00843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/02/2019] [Indexed: 01/14/2023] Open
Abstract
Microbial biofilms in gravity-driven membrane (GDM) filtration systems can efficiently degrade the cyanotoxin microcystin (MC), but it is unclear if this function depends on the presence of MC-producing cyanobacteria in the source water habitat. We assessed the removal of MC from added Microcystis aeruginosa biomass in GDMs fed with water from a lake with regular blooms of toxic cyanobacteria (ExpL) or from a stream without such background (ExpS). While initial MC removal was exclusively due to abiotic processes, significantly higher biological MC removal was observed in ExpL. By contrast, there was no difference in MC degradation capacity between lake and stream bacteria in separately conducted liquid enrichments on pure MC. Co-occurrence network analysis revealed a pronounced modularity of the biofilm communities, with a clear hierarchic distinction according to feed water origin and treatment type. Genotypes in the network modules associated with ExpS had significantly more links to each other, indicating that these biofilms had assembled from a more coherent source community. In turn, signals for stochastic community assembly were stronger in ExpL biofilms. We propose that the less "tightly knit" ExpL biofilm assemblages allowed for the better establishment of facultatively MC degrading bacteria, and thus for higher overall functional efficiency.
Collapse
Affiliation(s)
- Marisa O. D. Silva
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Peter Desmond
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Environmental Engineering, ETH Zurich, Institute of Environmental Engineering, Zurich, Switzerland
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Environmental Engineering, ETH Zurich, Institute of Environmental Engineering, Zurich, Switzerland
| | - Jakob Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Piwosz K, Shabarova T, Tomasch J, Šimek K, Kopejtka K, Kahl S, Pieper DH, Koblížek M. Determining lineage-specific bacterial growth curves with a novel approach based on amplicon reads normalization using internal standard (ARNIS). THE ISME JOURNAL 2018; 12:2640-2654. [PMID: 29980795 PMCID: PMC6194029 DOI: 10.1038/s41396-018-0213-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/01/2018] [Accepted: 06/09/2018] [Indexed: 01/07/2023]
Abstract
The growth rate is a fundamental characteristic of bacterial species, determining its contributions to the microbial community and carbon flow. High-throughput sequencing can reveal bacterial diversity, but its quantitative inaccuracy precludes estimation of abundances and growth rates from the read numbers. Here, we overcame this limitation by normalizing Illumina-derived amplicon reads using an internal standard: a constant amount of Escherichia coli cells added to samples just before biomass collection. This approach made it possible to reconstruct growth curves for 319 individual OTUs during the grazer-removal experiment conducted in a freshwater reservoir Římov. The high resolution data signalize significant functional heterogeneity inside the commonly investigated bacterial groups. For instance, many Actinobacterial phylotypes, a group considered to harbor slow-growing defense specialists, grew rapidly upon grazers' removal, demonstrating their considerable importance in carbon flow through food webs, while most Verrucomicrobial phylotypes were particle associated. Such differences indicate distinct life strategies and roles in food webs of specific bacterial phylotypes and groups. The impact of grazers on the specific growth rate distributions supports the hypothesis that bacterivory reduces competition and allows existence of diverse bacterial communities. It suggests that the community changes were driven mainly by abundant, fast, or moderately growing, and not by rare fast growing, phylotypes. We believe amplicon read normalization using internal standard (ARNIS) can shed new light on in situ growth dynamics of both abundant and rare bacteria.
Collapse
Affiliation(s)
- Kasia Piwosz
- Center Algatech, Institute of Microbiology CAS, Novohradská 237, 37981, Třeboň, Czech Republic
| | - Tanja Shabarova
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7, 37005, Česke Budějovice, Czech Republic
| | - Jürgen Tomasch
- Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Karel Šimek
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7, 37005, Česke Budějovice, Czech Republic
| | - Karel Kopejtka
- Center Algatech, Institute of Microbiology CAS, Novohradská 237, 37981, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, CZ-37005, České Budějovice, Czech Republic
| | - Silke Kahl
- Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Dietmar H Pieper
- Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Michal Koblížek
- Center Algatech, Institute of Microbiology CAS, Novohradská 237, 37981, Třeboň, Czech Republic.
- Faculty of Science, University of South Bohemia in České Budějovice, CZ-37005, České Budějovice, Czech Republic.
| |
Collapse
|
28
|
Bock C, Salcher M, Jensen M, Pandey RV, Boenigk J. Synchrony of Eukaryotic and Prokaryotic Planktonic Communities in Three Seasonally Sampled Austrian Lakes. Front Microbiol 2018; 9:1290. [PMID: 29963032 PMCID: PMC6014231 DOI: 10.3389/fmicb.2018.01290] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/28/2018] [Indexed: 01/15/2023] Open
Abstract
Freshwater systems are characterized by an enormous diversity of eukaryotic protists and prokaryotic taxa. The community structures in different lakes are thereby influenced by factors such as habitat size, lake chemistry, biotic interactions, and seasonality. In our study, we used high throughput 454 sequencing to study the diversity and temporal changes of prokaryotic and eukaryotic planktonic communities in three Austrian lakes during the ice-free season. In the following year, one lake was sampled again with a reduced set of sampling dates to observe reoccurring patterns. Cluster analyses (based on SSU V9 (eukaryotic) and V4 (prokaryotic) OTU composition) grouped samples according to their origin followed by separation into seasonal clusters, indicating that each lake has a unique signature based on OTU composition. These results suggest a strong habitat-specificity of microbial communities and in particular of community patterns at the OTU level. A comparison of the prokaryotic and eukaryotic datasets via co-inertia analysis (CIA) showed a consistent clustering of prokaryotic and eukaryotic samples, probably reacting to the same environmental forces (e.g., pH, conductivity). In addition, the shifts in eukaryotic and bacterioplanktonic communities generally occurred at the same time and on the same scale. Regression analyses revealed a linear relationship between an increase in Bray-Curtis dissimilarities and elapsed time. Our study shows a pronounced coupling between bacteria and eukaryotes in seasonal samplings of the three analyzed lakes. However, our temporal resolution (biweekly sampling) and data on abiotic factors were insufficient to determine if this was caused by direct biotic interactions or by reacting to the same seasonally changing environmental forces.
Collapse
Affiliation(s)
- Christina Bock
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Michaela Salcher
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland.,Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
| | - Manfred Jensen
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Ram Vinay Pandey
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Vienna, Austria.,Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jens Boenigk
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
29
|
Zhou J, Richlen ML, Sehein TR, Kulis DM, Anderson DM, Cai Z. Microbial Community Structure and Associations During a Marine Dinoflagellate Bloom. Front Microbiol 2018; 9:1201. [PMID: 29928265 PMCID: PMC5998739 DOI: 10.3389/fmicb.2018.01201] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 05/16/2018] [Indexed: 11/13/2022] Open
Abstract
Interactions between microorganisms and algae during bloom events significantly impacts their physiology, alters ambient chemistry, and shapes ecosystem diversity. The potential role these interactions have in bloom development and decline are also of particular interest given the ecosystem impacts of algal blooms. We hypothesized that microbial community structure and succession is linked to specific bloom stages, and reflects complex interactions among taxa comprising the phycosphere environment. This investigation used pyrosequencing and correlation approaches to assess patterns and associations among bacteria, archaea, and microeukaryotes during a spring bloom of the dinoflagellate Alexandrium catenella. Within the bacterial community, Gammaproteobacteria and Bacteroidetes were predominant during the initial bloom stage, while Alphaproteobacteria, Cyanobacteria, and Actinobacteria were the most abundant taxa present during bloom onset and termination. In the archaea biosphere, methanogenic members were present during the early bloom period while the majority of species identified in the late bloom stage were ammonia-oxidizing archaea and Halobacteriales. Dinoflagellates were the major eukaryotic group present during most stages of the bloom, whereas a mixed assemblage comprising diatoms, green-algae, rotifera, and other microzooplankton were present during bloom termination. Temperature and salinity were key environmental factors associated with changes in bacterial and archaeal community structure, respectively, whereas inorganic nitrogen and inorganic phosphate were associated with eukaryotic variation. The relative contribution of environmental parameters measured during the bloom to variability among samples was 35.3%. Interaction analysis showed that Maxillopoda, Spirotrichea, Dinoflagellata, and Halobacteria were keystone taxa within the positive-correlation network, while Halobacteria, Dictyochophyceae, Mamiellophyceae, and Gammaproteobacteria were the main contributors to the negative-correlation network. The positive and negative relationships were the primary drivers of mutualist and competitive interactions that impacted algal bloom fate, respectively. Functional predictions showed that blooms enhance microbial carbohydrate and energy metabolism, and alter the sulfur cycle. Our results suggest that microbial community structure is strongly linked to bloom progression, although specific drivers of community interactions and responses are not well understood. The importance of considering biotic interactions (e.g., competition, symbiosis, and predation) when investigating the link between microbial ecological behavior and an algal bloom's trajectory is also highlighted.
Collapse
Affiliation(s)
- Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Mindy L. Richlen
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Taylor R. Sehein
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - David M. Kulis
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Donald M. Anderson
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| |
Collapse
|
30
|
Priming of microbial microcystin degradation in biomass-fed gravity driven membrane filtration biofilms. Syst Appl Microbiol 2017; 41:221-231. [PMID: 29358063 DOI: 10.1016/j.syapm.2017.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/21/2022]
Abstract
Gravity-driven membrane (GDM) filtration is a promising tool for low-cost decentralized drinking water production. The biofilms in GDM systems are able of removing harmful chemical components, particularly toxic cyanobacterial metabolites such as microcystins (MCs). This is relevant for the application of GDM filtration because anthropogenic nutrient input and climate change have led to an increase of toxic cyanobacterial blooms. However, removal of MCs in newly developing GDM biofilms is only established after a prolonged period of time. Since cyanobacterial blooms are transient phenomena, it is important to understand MC removal in mature biofilms with or without prior toxin exposure. In this study, the microbial community composition of GDM biofilms was investigated in systems fed with water from a lake with periodic blooms of MC-producing cyanobacteria. Two out of three experimental treatments were supplemented with dead biomass of a MC-containing cyanobacterial strain, or of a non-toxic mutant, respectively. Analysis of bacterial rRNA genes revealed that both biomass-amended treatments were significantly more similar to each other than to a non-supplemented control. Therefore, it was hypothesized that biofilms could potentially be 'primed' for rapid MC removal by prior addition of non-toxic biomass. A subsequent experiment showed that MC removal developed significantly faster in mature biofilms that were pre-fed with biomass from the mutant strain than in unamended controls, indicating that MC degradation was a facultative trait of bacterial populations in GDM biofilms. The significant enrichment of bacteria related to both aerobic and anaerobic MC degraders suggested that this process might have occurred in parallel in different microniches.
Collapse
|
31
|
Callieri C, Amalfitano S, Corno G, Di Cesare A, Bertoni R, Eckert EM. The microbiome associated with two Synechococcus ribotypes at different levels of ecological interaction. JOURNAL OF PHYCOLOGY 2017; 53:1151-1158. [PMID: 28915336 DOI: 10.1111/jpy.12583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
Planktonic cyanobacteria belonging to the genus Synechococcus are ubiquitously distributed in marine and fresh waters, substantially contributing to total carbon fixation on a global scale. While their ecological relevance is acknowledged, increasing resolution in molecular techniques allows disentangling cyanobacteria's role at the micro-scale, where complex microbial interactions may drive the overall community assembly. The interplay between phylogenetically different Synechococcus clades and their associated bacterial communities can affect their ecological fate and susceptibility to protistan predation. In this study, we experimentally promoted different levels of ecological interaction by mixing two Synechococcus ribotypes (MW101C3 and LL) and their associated bacteria, with and without a nanoflagellate grazer (Poterioochromonas sp.) in laboratory cultures. The beta-diversity of the Synechococcus-associated microbiome in laboratory cultures indicated that the presence of the LL ribotype was the main factor determining community composition changes (41% of total variance), and prevailed over the effect of protistan predation (18% of total variance). Our outcomes also showed that species coexistence and predation may promote microbial diversity, thus highlighting the underrated ecological relevance of such micro-scale factors.
Collapse
Affiliation(s)
- Cristiana Callieri
- Institute of Ecosystem Study - CNR-ISE, Largo Tonolli 50, 28922, Verbania, Italy
| | - Stefano Amalfitano
- Water Research Institute - CNR-IRSA, Via Salaria km 29, 300, Monterotondo, Rome, Italy
| | - Gianluca Corno
- Institute of Ecosystem Study - CNR-ISE, Largo Tonolli 50, 28922, Verbania, Italy
| | - Andrea Di Cesare
- Institute of Ecosystem Study - CNR-ISE, Largo Tonolli 50, 28922, Verbania, Italy
| | - Roberto Bertoni
- Institute of Ecosystem Study - CNR-ISE, Largo Tonolli 50, 28922, Verbania, Italy
| | - Ester M Eckert
- Institute of Ecosystem Study - CNR-ISE, Largo Tonolli 50, 28922, Verbania, Italy
| |
Collapse
|
32
|
Abrupt stop of deep water turnover with lake warming: Drastic consequences for algal primary producers. Sci Rep 2017; 7:13770. [PMID: 29062037 PMCID: PMC5653828 DOI: 10.1038/s41598-017-13159-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/19/2017] [Indexed: 11/25/2022] Open
Abstract
After strong fertilization in the 20th century, many deep lakes in Central Europe are again nutrient poor due to long-lasting restoration (re-oligotrophication). In line with reduced phosphorus and nitrogen loadings, total organismic productivity decreased and lakes have now historically low nutrient and biomass concentrations. This caused speculations that restoration was overdone and intended fertilizations are needed to ensure ecological functionality. Here we show that recent re-oligotrophication processes indeed accelerated, however caused by lake warming. Rising air temperatures strengthen thermal stabilization of water columns which prevents thorough turnover (holomixis). Reduced mixis impedes down-welling of oxygen rich epilimnetic (surface) and up-welling of phosphorus and nitrogen rich hypolimnetic (deep) water. However, nutrient inputs are essential for algal spring blooms acting as boost for annual food web successions. We show that repeated lack (since 1977) and complete stop (since 2013) of holomixis caused drastic epilimnetic phosphorus depletions and an absence of phytoplankton spring blooms in Lake Zurich (Switzerland). By simulating holomixis in experiments, we could induce significant vernal algal blooms, confirming that there would be sufficient hypolimnetic phosphorus which presently accumulates due to reduced export. Thus, intended fertilizations are highly questionable, as hypolimnetic nutrients will become available during future natural or artificial turnovers.
Collapse
|
33
|
The Limnohabitans Genus Harbors Generalistic and Opportunistic Subtypes: Evidence from Spatiotemporal Succession in a Canyon-Shaped Reservoir. Appl Environ Microbiol 2017; 83:AEM.01530-17. [PMID: 28842542 DOI: 10.1128/aem.01530-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022] Open
Abstract
We studied the diversity of Limnohabitans using reverse line blot hybridization with Limnohabitans lineage-specific probes in the freshwater canyon-shaped Římov reservoir (Czech Republic). To examine the succession of distinct lineages, we performed (i) a study of an intensive spring sampling program at the lacustrine part of the Římov reservoir (from ice melt through a phytoplankton peak to the clear-water phase), and (ii) a seasonal study (April to November) when the occurrence of distinct Limnohabitans lineages was related to the inherent longitudinal heterogeneity of the reservoir. Significant spatiotemporal changes in the compositions of distinct Limnohabitans lineages allowed for the identification of "generalists" that were always present throughout the whole season as well as "specialists" that appeared in the reservoir only for limited periods of time or irregularly. Our results indicate that some phytoplankton groups, such as cryptophytes or cyanobacteria, and zooplankton composition were the major factors modulating the distribution and dynamics of distinct Limnohabitans lineages. The highest Limnohabitans diversity was observed during the spring algal bloom, whereas the lowest was during the summer cyanobacterial bloom. The microdiversity also markedly increased upstream in the reservoir, being highest at the inflow, and thus likely reflecting strong influences of the watershed.IMPORTANCE The genus Limnohabitans is a typical freshwater bacterioplankton and is believed to play a significant role in inland freshwater habitats. This work is unique in detecting and tracing different closely related lineages of this bacterial genus in its natural conditions using the semiquantitative reverse line blot hybridization method and in discovering the factors influencing the microdiversity, subtype alternations, and seasonality.
Collapse
|
34
|
Neuenschwander SM, Ghai R, Pernthaler J, Salcher MM. Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria. ISME JOURNAL 2017; 12:185-198. [PMID: 29027997 DOI: 10.1038/ismej.2017.156] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/03/2017] [Accepted: 06/28/2017] [Indexed: 01/08/2023]
Abstract
Actinobacteria of the acI lineage are the most abundant microbes in freshwater systems, but there are so far no pure living cultures of these organisms, possibly because of metabolic dependencies on other microbes. This, in turn, has hampered an in-depth assessment of the genomic basis for their success in the environment. Here we present genomes from 16 axenic cultures of acI Actinobacteria. The isolates were not only of minute cell size, but also among the most streamlined free-living microbes, with extremely small genome sizes (1.2-1.4 Mbp) and low genomic GC content. Genome reduction in these bacteria might have led to auxotrophy for various vitamins, amino acids and reduced sulphur sources, thus creating dependencies to co-occurring organisms (the 'Black Queen' hypothesis). Genome analyses, moreover, revealed a surprising degree of inter- and intraspecific diversity in metabolic pathways, especially of carbohydrate transport and metabolism, and mainly encoded in genomic islands. The striking genotype microdiversification of acI Actinobacteria might explain their global success in highly dynamic freshwater environments with complex seasonal patterns of allochthonous and autochthonous carbon sources. We propose a new order within Actinobacteria ('Candidatus Nanopelagicales') with two new genera ('Candidatus Nanopelagicus' and 'Candidatus Planktophila') and nine new species.
Collapse
Affiliation(s)
- Stefan M Neuenschwander
- Limnological Station, Institute of Microbial and Plant Biology, University of Zurich, Zurich, Switzerland
| | - Rohit Ghai
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czech Republic
| | - Jakob Pernthaler
- Limnological Station, Institute of Microbial and Plant Biology, University of Zurich, Zurich, Switzerland
| | - Michaela M Salcher
- Limnological Station, Institute of Microbial and Plant Biology, University of Zurich, Zurich, Switzerland.,Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czech Republic
| |
Collapse
|
35
|
Horňák K, Kasalický V, Šimek K, Grossart HP. Strain-specific consumption and transformation of alga-derived dissolved organic matter by members of the Limnohabitans-C and Polynucleobacter-B clusters of Betaproteobacteria. Environ Microbiol 2017; 19:4519-4535. [PMID: 28856804 DOI: 10.1111/1462-2920.13900] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 01/07/2023]
Abstract
We investigated changes in quality and quantity of extracellular and biomass-derived organic matter (OM) from three axenic algae (genera Rhodomonas, Chlamydomonas, Coelastrum) during growth of Limnohabitans parvus, Limnohabitans planktonicus and Polynucleobacter acidiphobus representing important clusters of freshwater planktonic Betaproteobacteria. Total extracellular and biomass-derived OM concentrations from each alga were approximately 20 mg l-1 and 1 mg l-1 respectively, from which up to 9% could be identified as free carbohydrates, polyamines, or free and combined amino acids. Carbohydrates represented 54%-61% of identified compounds of the extracellular OM from each alga. In biomass-derived OM of Rhodomonas and Chlamydomonas 71%-77% were amino acids and polyamines, while in that of Coelastrum 85% were carbohydrates. All bacteria grew on alga-derived OM of Coelastrum, whereas only Limnohabitans strains grew on OM from Rhodomonas and Chlamydomonas. Bacteria consumed 24%-76% and 38%-82% of all identified extracellular and biomass-derived OM compounds respectively, and their consumption was proportional to the concentration of each OM compound in the different treatments. The bacterial biomass yield was higher than the total identifiable OM consumption indicating that bacteria also utilized other unidentified alga-derived OM compounds. Bacteria, however, also produced specific OM compounds suggesting enzymatic polymer degradation or de novo exudation.
Collapse
Affiliation(s)
- Karel Horňák
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Seestrasse 187, Kilchberg CH-8802, Switzerland
| | - Vojtěch Kasalický
- Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., Institute of Hydrobiology, Na Sádkách 7, České Budějovice CZ-37005, Czech Republic
| | - Karel Šimek
- Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., Institute of Hydrobiology, Na Sádkách 7, České Budějovice CZ-37005, Czech Republic
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Limnology of Stratified Lakes, Alte Fisherhütte 2, OT Neuglobsow, Stechlin D-16775, Germany.,Institute for Biochemistry and Biology, Potsdam University, Maulbeerallee 2, Potsdam D-14468, Germany
| |
Collapse
|
36
|
Metabolic Network Analysis and Metatranscriptomics Reveal Auxotrophies and Nutrient Sources of the Cosmopolitan Freshwater Microbial Lineage acI. mSystems 2017; 2:mSystems00091-17. [PMID: 28861526 PMCID: PMC5574706 DOI: 10.1128/msystems.00091-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/08/2017] [Indexed: 11/20/2022] Open
Abstract
The metabolic activity of uncultivated microorganisms contributes to numerous ecosystem processes, ranging from nutrient cycling in the environment to influencing human health and disease. Advances in sequencing technology have enabled the assembly of genomes for these microorganisms, but our ability to generate reference genomes far outstrips our ability to analyze them. Common approaches to analyzing microbial metabolism require reconstructing the entirety of an organism’s metabolic pathways or performing targeted searches for genes involved in a specific process. This paper presents a third approach, in which draft metabolic reconstructions are used to identify compounds through which an organism may interact with its environment. These compounds can then guide more-intensive metabolic reconstruction efforts and can also provide new hypotheses about the specific contributions that microbes make to ecosystem-scale metabolic processes. An explosion in the number of available genome sequences obtained through metagenomics and single-cell genomics has enabled a new view of the diversity of microbial life, yet we know surprisingly little about how microbes interact with each other or their environment. In fact, the majority of microbial species remain uncultivated, while our perception of their ecological niches is based on reconstruction of their metabolic potential. In this work, we demonstrate how the “seed set framework,” which computes the set of compounds that an organism must acquire from its environment (E. Borenstein, M. Kupiec, M. W. Feldman, and E. Ruppin, Proc Natl Acad Sci U S A 105:14482–14487, 2008, https://doi.org/10.1073/pnas.0806162105), enables computational analysis of metabolic reconstructions while providing new insights into a microbe’s metabolic capabilities, such as nutrient use and auxotrophies. We apply this framework to members of the ubiquitous freshwater actinobacterial lineage acI, confirming and extending previous experimental and genomic observations implying that acI bacteria are heterotrophs reliant on peptides and saccharides. We also present the first metatranscriptomic study of the acI lineage, revealing high expression of transport proteins and the light-harvesting protein actinorhodopsin. Putative transport proteins complement predictions of nutrients and essential metabolites while providing additional support of the hypothesis that members of the acI are photoheterotrophs. IMPORTANCE The metabolic activity of uncultivated microorganisms contributes to numerous ecosystem processes, ranging from nutrient cycling in the environment to influencing human health and disease. Advances in sequencing technology have enabled the assembly of genomes for these microorganisms, but our ability to generate reference genomes far outstrips our ability to analyze them. Common approaches to analyzing microbial metabolism require reconstructing the entirety of an organism’s metabolic pathways or performing targeted searches for genes involved in a specific process. This paper presents a third approach, in which draft metabolic reconstructions are used to identify compounds through which an organism may interact with its environment. These compounds can then guide more-intensive metabolic reconstruction efforts and can also provide new hypotheses about the specific contributions that microbes make to ecosystem-scale metabolic processes.
Collapse
|
37
|
Pernthaler J. Competition and niche separation of pelagic bacteria in freshwater habitats. Environ Microbiol 2017; 19:2133-2150. [PMID: 28370850 DOI: 10.1111/1462-2920.13742] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 11/29/2022]
Abstract
Freshwater bacterioplankton assemblages are composed of sympatric populations that can be delineated, for example, by ribosomal RNA gene relatedness and that differ in key ecophysiological properties. They may be free-living or attached, specialized for particular concentrations or subsets of substrates, or invest a variable amount of their resources in defence traits against protistan predators and viruses. Some may be motile and tactic whereas others are not, with far-reaching implications for their respective life styles and niche partitioning. The co-occurrence of competitors with overlapping growth requirements has profound consequences for the stability of community functions; it can to some extent be explained by habitat factors such as the microscale complexity and spatiotemporal variability of the lacustrine environments. On the other hand, the composition and diversity of freshwater microbial assemblages also reflects non-equilibrium states, dispersal and the stochasticity of community assembly processes. This review synoptically discusses the competition and niche separation of heterotrophic bacterial populations (defined at various levels of phylogenetic resolution) in the pelagic zone of inland surface waters from a variety of angles, focusing on habitat heterogeneity and the resulting biogeographic distribution patterns, the ecophysiological adaptations to the substrate field and the interactions of prokaryotes with predators and viruses.
Collapse
Affiliation(s)
- Jakob Pernthaler
- Limnological Station Kilchberg, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Kang I, Kim S, Islam MR, Cho JC. The first complete genome sequences of the acI lineage, the most abundant freshwater Actinobacteria, obtained by whole-genome-amplification of dilution-to-extinction cultures. Sci Rep 2017; 7:42252. [PMID: 28186143 PMCID: PMC5301498 DOI: 10.1038/srep42252] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/06/2017] [Indexed: 02/07/2023] Open
Abstract
The acI lineage of the phylum Actinobacteria is the most abundant bacterial group in most freshwater lakes. However, due to difficulties in laboratory cultivation, only two mixed cultures and some incomplete single-amplified or metagenome-derived genomes have been reported for the lineage. Here, we report the initial cultivation and complete genome sequences of four novel strains of the acI lineage from the tribes acI-A1, -A4, -A7, and -C1. The acI strains, initially isolated by dilution-to-extinction culturing, eventually failed to be maintained as axenic cultures. However, the first complete genomes of the acI lineage were successfully obtained from these initial cultures through whole genome amplification applied to more than hundreds of cultured acI cells. The genome sequences exhibited features of genome streamlining and showed that the strains are aerobic chemoheterotrophs sharing central metabolic pathways, with some differences among tribes that may underlie niche diversification within the acI lineage. Actinorhodopsin was found in all strains, but retinal biosynthesis was complete in only A1 and A4 tribes.
Collapse
Affiliation(s)
- Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Suhyun Kim
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Md Rashedul Islam
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
39
|
Shabarova T, Kasalický V, Šimek K, Nedoma J, Znachor P, Posch T, Pernthaler J, Salcher MM. Distribution and ecological preferences of the freshwater lineage LimA (genus Limnohabitans) revealed by a new double hybridization approach. Environ Microbiol 2017; 19:1296-1309. [PMID: 28063252 DOI: 10.1111/1462-2920.13663] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/21/2016] [Accepted: 01/02/2017] [Indexed: 11/26/2022]
Abstract
The ecological relevance and factors shaping dynamics of Limnohabitans sp. have been largely studied by fluorescence in situ hybridization with a 16S rRNA probe targeting the R-BT group (lineages LimBCDE), but not lineage LimA. Consequently, ecology and distribution of LimA remained unknown. We developed a double hybridization strategy using a novel 23S rRNA probe specifically targeting LimA and LimE that in combination with the existing R-BT probe can discriminate LimA populations. This technique was applied for more than 1000 samples from 46 freshwater sites including long-term data sets from oligo-mesotrophic Lake Zurich, CH and meso-eutrophic Římov reservoir, CZ. LimA was ubiquitously distributed and highly abundant. Observed ecological preferences of LimA in Lake Zurich were in general similar to already reported for Limnohabitans with highest numbers in surface waters during growing seasons. Three times higher densities of LimA were detected in Římov reservoir, where they were significantly more abundant at the riverine zone especially after flood events that introduced fresh terrestrial DOM (dissolved organic matter). Moreover, statistical analyses of biological and physicochemical parameters obtained from small dynamic water bodies confirmed a correspondence between LimA and allochthonous DOM, in opposite to R-BT that was more related to algal primary production.
Collapse
Affiliation(s)
- Tanja Shabarova
- Institute of Hydrobiology, Aquatic Microbial Ecology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Vojtěch Kasalický
- Institute of Hydrobiology, Aquatic Microbial Ecology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Karel Šimek
- Institute of Hydrobiology, Aquatic Microbial Ecology, Biology Centre CAS, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jiří Nedoma
- Institute of Hydrobiology, Aquatic Microbial Ecology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Petr Znachor
- Institute of Hydrobiology, Aquatic Microbial Ecology, Biology Centre CAS, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Thomas Posch
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Jakob Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Michaela M Salcher
- Institute of Hydrobiology, Aquatic Microbial Ecology, Biology Centre CAS, České Budějovice, Czech Republic.,Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| |
Collapse
|
40
|
von Scheibner M, Sommer U, Jürgens K. Tight Coupling of Glaciecola spp. and Diatoms during Cold-Water Phytoplankton Spring Blooms. Front Microbiol 2017; 8:27. [PMID: 28154558 PMCID: PMC5243806 DOI: 10.3389/fmicb.2017.00027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/05/2017] [Indexed: 11/15/2022] Open
Abstract
Early spring phytoplankton blooms can occur at very low water temperatures but they are often decoupled from bacterial growth, which is assumed to be often temperature controlled. In a previous mesocosm study with Baltic Sea plankton communities, an early diatom bloom was associated with a high relative abundance of Glaciecola sequences (Gammaproteobacteria), at both low (2°C) and elevated (8°C) temperatures, suggesting an important role for this genus in phytoplankton-bacteria coupling. In this study, the temperature-dependent dynamics of free-living Glaciecola spp. during the bloom were analyzed by catalyzed reporter deposition fluorescence in situ hybridization using a newly developed probe. The analysis revealed the appearance of Glaciecola spp. in this and in previous spring mesocosm experiments as the dominating bacterial clade during diatom blooms, with a close coupling between the population dynamics of Glaciecola and phytoplankton development. Although elevated temperature resulted in a higher abundance and a higher net growth rate of Glaciecola spp. (Q10 ∼ 2.2), their growth was, in contrast to that of the bulk bacterial assemblages, not suppressed at 2°C and showed a similar pattern at 8°C. Independent of temperature, the highest abundance of Glaciecola spp. (24.0 ± 10.0% of total cell number) occurred during the peak of the phytoplankton bloom. Together with the slightly larger cell size of Glaciecola, this resulted in a ∼30% contribution of Glaciecola to total bacterial biomass. Overall, the results of this and previous studies suggest that Glaciecola has an ecological niche during early diatom blooms at low temperatures, when it becomes a dominant consumer of phytoplankton-derived dissolved organic matter.
Collapse
Affiliation(s)
| | | | - Klaus Jürgens
- Leibniz Institute for Baltic Sea Research WarnemündeRostock, Germany
| |
Collapse
|
41
|
Lee CS, Kim M, Lee C, Yu Z, Lee J. The Microbiota of Recreational Freshwaters and the Implications for Environmental and Public Health. Front Microbiol 2016; 7:1826. [PMID: 27909431 PMCID: PMC5112438 DOI: 10.3389/fmicb.2016.01826] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/31/2016] [Indexed: 12/03/2022] Open
Abstract
The microbial communities in recreational freshwaters play important roles in both environmental and public health perspectives. In this study, the bacterial community structure and its associations with freshwater environments were investigated by analyzing the summertime microbiomes of three beach waters in Ohio (East Fork, Delaware, and Madison lakes) together with environmental and microbial water quality parameters. From the swimming season of 2009, 21 water samples were collected from the three freshwater beaches. From the samples, 110,000 quality-checked bacterial 16S rRNA gene sequences were obtained and analyzed, resulting in an observation of 4500 bacterial operational taxonomic units (OTUs). The most abundant bacteria were Mycobacterium and Arthrobacter of the Actinobacteria (33.2%), Exiguobacterium and Paenisporosarcina of the Firmicutes (23.4%), Planktothrix and Synechococcus of the Cyanobacteria (20.8%), and Methylocystis and Polynucleobacter of the Proteobacteria (16.3%). Considerable spatial and temporal variations were observed in the bacterial community of Actinobacteria, Cyanobacteria, and Firmicutes, where the bacterial community structure was greatly influenced by hydrological and weather conditions. The most influential factors were (1) water inflow for Bacteroidia and Clostridia, (2) turbidity for Gammaproteobacteria, (3) precipitation for Bacilli, and (4) temperature and pH for Cyanobacteria. One noticeable microbial interaction in the bacterial community was a significant negative relationship between Cyanobacteria and Bacilli (P < 0.05). Concerning beach water quality, the level of the genetic markers for cyanobacterial toxin (mcyA) was linked to the abundance of Cyanobacteria. In addition, unique distributions of the genera Enterococcus, Staphylococcus, Streptococcus, Bacteroides, Clostridium, Finegoldia, Burkholderia, and Klebsiella, together with a high density of fecal indicator Escherichia coli, were markedly observed in the sample from Madison Lake on July 13, suggesting a distinctly different source of bacterial loading into the lake, possibly fecal contamination. In conclusion, deep sequencing-based microbial community analysis can provide detailed profiles of bacterial communities and information on potential public health risks at freshwater beaches.
Collapse
Affiliation(s)
- Chang Soo Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State UniversityColumbus, OH, USA
| | - Minseok Kim
- Department of Animal Sciences, The Ohio State UniversityColumbus, OH, USA
| | - Cheonghoon Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State UniversityColumbus, OH, USA
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State UniversityColumbus, OH, USA
| | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State UniversityColumbus, OH, USA
- Department of Food Science and Technology, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
42
|
Okazaki Y, Nakano SI. Vertical partitioning of freshwater bacterioplankton community in a deep mesotrophic lake with a fully oxygenated hypolimnion (Lake Biwa, Japan). ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:780-788. [PMID: 27402328 DOI: 10.1111/1758-2229.12439] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/20/2016] [Indexed: 05/03/2023]
Abstract
In freshwater microbial ecology, extensive studies are attempting to characterize the vast majority of uncultivated bacterioplankton taxa. However, these studies mainly focus on the epilimnion and little is known regarding the bacterioplankton inhabiting the hypolimnion of deep holomictic lakes, despite its biogeochemical importance. In this study, we investigated the bacterioplankton community composition in a deep freshwater lake with a fully oxygenated hypolimnion (Lake Biwa, Japan) using high-throughput 16S rRNA gene amplicon sequencing. Sampling at a pelagic site over 15 months throughout the water column revealed that the community composition in the hypolimnion was significantly different from that in the epilimnion. The bacterial community in the hypolimnion was composed of groups dominating in the whole water layer (e.g., bacI-A1 and acI-B1) and groups that were hypolimnion habitat specialists. Among the hypolimnion specialists, members of Chloroflexi and Planctomycetes were highly represented (e.g., CL500-11, CL500-15 and CL500-37), followed by members of Acidobacteria, Chlorobi and nitrifiers (e.g., Ca. Nitrosoarchaeum, Nitrosospira and Nitrospira). This study identified the number of previously understudied taxa dominating the deep aerobic freshwater habitat, suggesting that the biogeochemical cycling there is driven by the microbial community that are different from that in the epilimnion.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, 520-2113, Japan
| | - Shin-Ichi Nakano
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, 520-2113, Japan
| |
Collapse
|
43
|
Teufel AG, Li W, Kiss AJ, Morgan-Kiss RM. Impact of nitrogen and phosphorus on phytoplankton production and bacterial community structure in two stratified Antarctic lakes: a bioassay approach. Polar Biol 2016. [DOI: 10.1007/s00300-016-2025-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Ultrastructural and Single-Cell-Level Characterization Reveals Metabolic Versatility in a Microbial Eukaryote Community from an Ice-Covered Antarctic Lake. Appl Environ Microbiol 2016; 82:3659-3670. [PMID: 27084010 DOI: 10.1128/aem.00478-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/10/2016] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED The McMurdo Dry Valleys (MCM) of southern Victoria Land, Antarctica, harbor numerous ice-covered bodies of water that provide year-round liquid water oases for isolated food webs dominated by the microbial loop. Single-cell microbial eukaryotes (protists) occupy major trophic positions within this truncated food web, ranging from primary producers (e.g., chlorophytes, haptophytes, and cryptophytes) to tertiary predators (e.g., ciliates, dinoflagellates, and choanoflagellates). To advance the understanding of MCM protist ecology and the roles of MCM protists in nutrient and energy cycling, we investigated potential metabolic strategies and microbial interactions of key MCM protists isolated from a well-described lake (Lake Bonney). Fluorescence-activated cell sorting (FACS) of enrichment cultures, combined with single amplified genome/amplicon sequencing and fluorescence microscopy, revealed that MCM protists possess diverse potential metabolic capabilities and interactions. Two metabolically distinct bacterial clades (Flavobacteria and Methylobacteriaceae) were independently associated with two key MCM lake microalgae (Isochrysis and Chlamydomonas, respectively). We also report on the discovery of two heterotrophic nanoflagellates belonging to the Stramenopila supergroup, one of which lives as a parasite of Chlamydomonas, a dominate primary producer in the shallow, nutrient-poor layers of the lake. IMPORTANCE Single-cell eukaryotes called protists play critical roles in the cycling of organic matter in aquatic environments. In the ice-covered lakes of Antarctica, protists play key roles in the aquatic food web, providing the majority of organic carbon to the rest of the food web (photosynthetic protists) and acting as the major consumers at the top of the food web (predatory protists). In this study, we utilized a combination of techniques (microscopy, cell sorting, and genomic analysis) to describe the trophic abilities of Antarctic lake protists and their potential interactions with other microbes. Our work reveals that Antarctic lake protists rely on metabolic versatility for their energy and nutrient requirements in this unique and isolated environment.
Collapse
|
45
|
Denef VJ, Fujimoto M, Berry MA, Schmidt ML. Seasonal Succession Leads to Habitat-Dependent Differentiation in Ribosomal RNA:DNA Ratios among Freshwater Lake Bacteria. Front Microbiol 2016; 7:606. [PMID: 27199936 PMCID: PMC4850342 DOI: 10.3389/fmicb.2016.00606] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/12/2016] [Indexed: 11/24/2022] Open
Abstract
Relative abundance profiles of bacterial populations measured by sequencing DNA or RNA of marker genes can widely differ. These differences, made apparent when calculating ribosomal RNA:DNA ratios, have been interpreted as variable activities of bacterial populations. However, inconsistent correlations between ribosomal RNA:DNA ratios and metabolic activity or growth rates have led to a more conservative interpretation of this metric as the cellular protein synthesis potential (PSP). Little is known, particularly in freshwater systems, about how PSP varies for specific taxa across temporal and spatial environmental gradients and how conserved PSP is across bacterial phylogeny. Here, we generated 16S rRNA gene sequencing data using simultaneously extracted DNA and RNA from fractionated (free-living and particulate) water samples taken seasonally along a eutrophic freshwater estuary to oligotrophic pelagic transect in Lake Michigan. In contrast to previous reports, we observed frequent clustering of DNA and RNA data from the same sample. Analysis of the overlap in taxa detected at the RNA and DNA level indicated that microbial dormancy may be more common in the estuary, the particulate fraction, and during the stratified period. Across spatiotemporal gradients, PSP was often conserved at the phylum and class levels. PSPs for specific taxa were more similar across habitats in spring than in summer and fall. This was most notable for PSPs of the same taxa when located in the free-living or particulate fractions, but also when contrasting surface to deep, and estuary to Lake Michigan communities. Our results show that community composition assessed by RNA and DNA measurements are more similar than previously assumed in freshwater systems. However, the similarity between RNA and DNA measurements and taxa-specific PSPs that drive community-level similarities are conditional on spatiotemporal factors.
Collapse
Affiliation(s)
- Vincent J Denef
- Department of Ecology and Evolutionary Biology, University of Michigan Ann Arbor, MI, USA
| | - Masanori Fujimoto
- Department of Ecology and Evolutionary Biology, University of Michigan Ann Arbor, MI, USA
| | - Michelle A Berry
- Department of Ecology and Evolutionary Biology, University of Michigan Ann Arbor, MI, USA
| | - Marian L Schmidt
- Department of Ecology and Evolutionary Biology, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
46
|
Ye Q, Liu J, Du J, Zhang J. Bacterial Diversity in Submarine Groundwater along the Coasts of the Yellow Sea. Front Microbiol 2016; 6:1519. [PMID: 26779172 PMCID: PMC4705239 DOI: 10.3389/fmicb.2015.01519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/17/2015] [Indexed: 01/17/2023] Open
Abstract
Submarine groundwater (SGD) is one of the most significant pathways for the exchange of groundwater and/or source of nutrients, metals and carbon to the ocean, subsequently cause deleterious impacts on the coastal ecosystems. Microorganisms have been recognized as the important participators in the biogeochemical processes in the SGD. In this study, by utilizing 16S rRNA-based Illumina Miseq sequencing technology, we investigated bacterial diversity and distribution in both fresh well water and brackish recirculated porewater along the coasts in the Yellow Sea. The results showed that Actinobacteria and Betaproteobacteria, especially Comamonas spp. and Limnohabitans spp. were dominated in fresh well samples. Distinct patterns of bacterial communities were found among the porewater samples due to different locations, for examples, Cyanbacteria was the most abundant in the porewater samples far from the algal bloomed areas. The analysis of correlation between representative bacterial taxonomic groups and the contexture environmental parameters showed that fresh well water and brackish porewater might provide different nutrients to the coastal waters. Potential key bacterial groups such as Comamonas spp. may be excellent candidates for the bioremediation of the natural pollutants in the SGD. Our comprehensive understanding of bacterial diversity in the SGD along the coasts of the Yellow Sea will create a basis for designing the effective clean-up approach in-situ, and provide valuable information for the coastal management.
Collapse
Affiliation(s)
- Qi Ye
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University Shanghai, China
| | - Jianan Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University Shanghai, China
| | - Jinzhou Du
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University Shanghai, China
| | - Jing Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University Shanghai, China
| |
Collapse
|
47
|
Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake. ISME JOURNAL 2015; 10:1337-51. [PMID: 26636552 DOI: 10.1038/ismej.2015.218] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/28/2015] [Accepted: 10/08/2015] [Indexed: 01/19/2023]
Abstract
The frequency of freshwater cyanobacterial blooms is at risk of increasing as a consequence of climate change and eutrophication of waterways. It is increasingly apparent that abiotic data are insufficient to explain variability within the cyanobacterial community, with biotic factors such as heterotrophic bacterioplankton, viruses and protists emerging as critical drivers. During the Australian summer of 2012-2013, a bloom that occurred in a shallow ephemeral lake over a 6-month period was comprised of 22 distinct cyanobacteria, including Microcystis, Dolichospermum, Oscillatoria and Sphaerospermopsis. Cyanobacterial cell densities, bacterial community composition and abiotic parameters were assessed over this period. Alpha-diversity indices and multivariate analysis were successful at differentiating three distinct bloom phases and the contribution of abiotic parameters to each. Network analysis, assessing correlations between biotic and abiotic variables, reproduced these phases and assessed the relative importance of both abiotic and biotic factors. Variables possessing elevated betweeness centrality included temperature, sodium and operational taxonomic units belonging to the phyla Verrucomicrobia, Planctomyces, Bacteroidetes and Actinobacteria. Species-specific associations between cyanobacteria and bacterioplankton, including the free-living Actinobacteria acI, Bacteroidetes, Betaproteobacteria and Verrucomicrobia, were also identified. We concluded that changes in the abundance and nature of freshwater cyanobacteria are associated with changes in the diversity and composition of lake bacterioplankton. Given this, an increase in the frequency of cyanobacteria blooms has the potential to alter nutrient cycling and contribute to long-term functional perturbation of freshwater systems.
Collapse
|
48
|
Posch T, Eugster B, Pomati F, Pernthaler J, Pitsch G, Eckert EM. Network of Interactions Between Ciliates and Phytoplankton During Spring. Front Microbiol 2015; 6:1289. [PMID: 26635757 PMCID: PMC4653745 DOI: 10.3389/fmicb.2015.01289] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/04/2015] [Indexed: 01/26/2023] Open
Abstract
The annually recurrent spring phytoplankton blooms in freshwater lakes initiate pronounced successions of planktonic ciliate species. Although there is considerable knowledge on the taxonomic diversity of these ciliates, their species-specific interactions with other microorganisms are still not well understood. Here we present the succession patterns of 20 morphotypes of ciliates during spring in Lake Zurich, Switzerland, and we relate their abundances to phytoplankton genera, flagellates, heterotrophic bacteria, and abiotic parameters. Interspecific relationships were analyzed by contemporaneous correlations and time-lagged co-occurrence and visualized as association networks. The contemporaneous network pointed to the pivotal role of distinct ciliate species (e.g., Balanion planctonicum, Rimostrombidium humile) as primary consumers of cryptomonads, revealed a clear overclustering of mixotrophic/omnivorous species, and highlighted the role of Halteria/Pelagohalteria as important bacterivores. By contrast, time-lagged statistical approaches (like local similarity analyses, LSA) proved to be inadequate for the evaluation of high-frequency sampling data. LSA led to a conspicuous inflation of significant associations, making it difficult to establish ecologically plausible interactions between ciliates and other microorganisms. Nevertheless, if adequate statistical procedures are selected, association networks can be powerful tools to formulate testable hypotheses about the autecology of only recently described ciliate species.
Collapse
Affiliation(s)
- Thomas Posch
- Limnological Station, Institute of Plant Biology and Microbiology, University of Zurich Kilchberg, Switzerland
| | - Bettina Eugster
- Limnological Station, Institute of Plant Biology and Microbiology, University of Zurich Kilchberg, Switzerland
| | - Francesco Pomati
- Department Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology Dübendorf, Switzerland
| | - Jakob Pernthaler
- Limnological Station, Institute of Plant Biology and Microbiology, University of Zurich Kilchberg, Switzerland
| | - Gianna Pitsch
- Limnological Station, Institute of Plant Biology and Microbiology, University of Zurich Kilchberg, Switzerland
| | - Ester M Eckert
- Limnological Station, Institute of Plant Biology and Microbiology, University of Zurich Kilchberg, Switzerland ; Microbial Ecology Group, Consiglio Nazionale Delle Ricerche- Istituto per lo studio degli ecosistemi Verbania Pallanza, Italy
| |
Collapse
|
49
|
Ecology and Distribution of Thaumarchaea in the Deep Hypolimnion of Lake Maggiore. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2015; 2015:590434. [PMID: 26379473 PMCID: PMC4561949 DOI: 10.1155/2015/590434] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/17/2015] [Indexed: 01/05/2023]
Abstract
Ammonia-oxidizing Archaea (AOA) play an important role in the oxidation of ammonia in terrestrial, marine, and geothermal habitats, as confirmed by a number of studies specifically focused on those environments. Much less is known about the ecological role of AOA in freshwaters. In order to reach a high resolution at the Thaumarchaea community level, the probe MGI-535 was specifically designed for this study and applied to fluorescence in situ hybridization and catalyzed reporter deposition (CARD-FISH) analysis. We then applied it to a fine analysis of diversity and relative abundance of AOA in the deepest layers of the oligotrophic Lake Maggiore, confirming previous published results of AOA presence, but showing differences in abundance and distribution within the water column without significant seasonal trends with respect to Bacteria. Furthermore, phylogenetic analysis of AOA clone libraries from deep lake water and from a lake tributary, River Maggia, suggested the riverine origin of AOA of the deep hypolimnion of the lake.
Collapse
|
50
|
Di Cesare A, Eckert EM, Teruggi A, Fontaneto D, Bertoni R, Callieri C, Corno G. Constitutive presence of antibiotic resistance genes within the bacterial community of a large subalpine lake. Mol Ecol 2015; 24:3888-900. [DOI: 10.1111/mec.13293] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/19/2015] [Accepted: 06/24/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Andrea Di Cesare
- Microbial Ecology Group; National Research Council - Institute of Ecosystem Study (CNR-ISE); Largo Tonolli 50 28922 Verbania Italy
| | - Ester M. Eckert
- Microbial Ecology Group; National Research Council - Institute of Ecosystem Study (CNR-ISE); Largo Tonolli 50 28922 Verbania Italy
| | - Alessia Teruggi
- Microbial Ecology Group; National Research Council - Institute of Ecosystem Study (CNR-ISE); Largo Tonolli 50 28922 Verbania Italy
| | - Diego Fontaneto
- Microbial Ecology Group; National Research Council - Institute of Ecosystem Study (CNR-ISE); Largo Tonolli 50 28922 Verbania Italy
| | - Roberto Bertoni
- Microbial Ecology Group; National Research Council - Institute of Ecosystem Study (CNR-ISE); Largo Tonolli 50 28922 Verbania Italy
| | - Cristiana Callieri
- Microbial Ecology Group; National Research Council - Institute of Ecosystem Study (CNR-ISE); Largo Tonolli 50 28922 Verbania Italy
| | - Gianluca Corno
- Microbial Ecology Group; National Research Council - Institute of Ecosystem Study (CNR-ISE); Largo Tonolli 50 28922 Verbania Italy
| |
Collapse
|