1
|
Gunduz H, Almammadov T, Dirak M, Acari A, Bozkurt B, Kolemen S. A mitochondria-targeted chemiluminescent probe for detection of hydrogen sulfide in cancer cells, human serum and in vivo. RSC Chem Biol 2023; 4:675-684. [PMID: 37654504 PMCID: PMC10467614 DOI: 10.1039/d3cb00070b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/14/2023] [Indexed: 09/02/2023] Open
Abstract
Hydrogen sulfide (H2S) as a critical messenger molecule plays vital roles in regular cell function. However, abnormal levels of H2S, especially mitochondrial H2S, are directly correlated with the formation of pathological states including neurodegenerative diseases, cardiovascular disorders, and cancer. Thus, monitoring fluxes of mitochondrial H2S concentrations both in vitro and in vivo with high selectivity and sensitivity is crucial. In this direction, herein we developed the first ever example of a mitochondria-targeted and H2S-responsive new generation 1,2-dioxetane-based chemiluminescent probe (MCH). Chemiluminescent probes offer unique advantages compared to conventional fluorophores as they do not require external light irradiation to emit light. MCH exhibited a dramatic turn-on response in its luminescence signal upon reacting with H2S with high selectivity. It was used to detect H2S activity in different biological systems ranging from cancerous cells to human serum and tumor-bearing mice. We anticipate that MCH will pave the way for development of new organelle-targeted chemiluminescence agents towards imaging of different analytes in various biological models.
Collapse
Affiliation(s)
- Hande Gunduz
- Nanofabrication and Nanocharacterization Center for Scientific and Technological Advanced Research, Koç University Istanbul 34450 Turkey
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Toghrul Almammadov
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Musa Dirak
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Alperen Acari
- Koç University Research Center for Translational Medicine (KUTTAM) Istanbul 34450 Turkey
| | - Berkan Bozkurt
- Koç University Research Center for Translational Medicine (KUTTAM) Istanbul 34450 Turkey
- Graduate School of Health Sciences, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Safacan Kolemen
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
- Koç University Research Center for Translational Medicine (KUTTAM) Istanbul 34450 Turkey
- Koç University Surface Science and Technology Center (KUYTAM) Istanbul 34450 Turkey
| |
Collapse
|
2
|
Dirak M, Turan SE, Kolemen S. Hydrogen Sulfide Responsive Phototherapy Agents: Design Strategies and Biological Applications. ACS BIO & MED CHEM AU 2023; 3:305-321. [PMID: 37599789 PMCID: PMC10436264 DOI: 10.1021/acsbiomedchemau.3c00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 08/22/2023]
Abstract
Hydrogen sulfide (H2S) is one of the critical gasotransmitters, which play important roles in regular physiological processes, especially in vital signaling pathways. However, fluctuations in endogenous H2S concentration can be linked to serious health problems, such as neurodegenerative diseases, cancer, diabetes, inflammation, cardiovascular diseases, and hypertension. Thus, it has attracted a great deal of attention in therapeutic applications, specifically in the field of phototherapy. Photodynamic therapy (PDT) and photothermal therapy (PTT) are two subclasses of phototherapy, which utilize either reactive oxygen species (ROS) or local temperature increase upon irradiation of a photosensitizer (PS) to realize the therapeutic action. Phototherapies offer unique advantages compared to conventional methods; thus, they are highly promising and popular. One of the design principles followed in new generation PSs is to build activity-based PSs, which stay inactive before getting activated by disease-associated stimuli. These activatable PSs dramatically improve the selectivity and efficacy of the therapy. In this review, we summarize small molecule and nanomaterial-based PDT and PTT agents that are activated selectively by H2S to initiate their cytotoxic effect. We incorporate single mode PDT and PTT agents along with synergistic and/or multimodal photosensitizers that can combine more than one therapeutic approach. Additionally, H2S-responsive theranostic agents, which offer therapy and imaging at the same time, are highlighted. Design approaches, working principles, and biological applications for each example are discussed in detail.
Collapse
Affiliation(s)
- Musa Dirak
- Koç
University, Department of Chemistry, 34450 Istanbul, Turkey
| | - Sarp E. Turan
- Koç
University, Department of Chemistry, 34450 Istanbul, Turkey
| | - Safacan Kolemen
- Koç
University, Department of Chemistry, 34450 Istanbul, Turkey
- Koç
University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| |
Collapse
|
3
|
Almammadov T, Dirak M, Saymaz A, Acari A, Kolemen S. A hydrogen sulfide and tyrosinase responsive dual-locked fluorophore for selective imaging of melanoma cells. Chem Commun (Camb) 2023; 59:9972-9975. [PMID: 37503543 DOI: 10.1039/d3cc02676k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A resorufin-based dual-locked fluorescent probe (RHT) was introduced to image melanoma cells selectively. RHT was shown to function as an AND molecular logic gate as it emitted a signal only in the presence of both hydrogen sulfide (H2S) and tyrosinase (Tyr), which are known to be overexpressed in melanoma cells. In vitro cell culture studies revealed that RHT can be activated with endogenous H2S and Tyr and allows selective imaging of B16-F10 cancer cells under confocal microscopy. RHT marks the first ever example of a fluorescent probe that is sequentially activated by H2S and Tyr.
Collapse
Affiliation(s)
- Toghrul Almammadov
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland.
- Department of Chemistry, Koç University, Rumelifeneri Yolu, Istanbul 34450, Turkey.
| | - Musa Dirak
- Department of Chemistry, Koç University, Rumelifeneri Yolu, Istanbul 34450, Turkey.
| | - Ayca Saymaz
- Department of Chemistry, Koç University, Rumelifeneri Yolu, Istanbul 34450, Turkey.
| | - Alperen Acari
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul 34450, Turkey
| | - Safacan Kolemen
- Department of Chemistry, Koç University, Rumelifeneri Yolu, Istanbul 34450, Turkey.
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul 34450, Turkey
- Surface Science and Technology Center (KUYTAM), Koç University, Istanbul 34450, Turkey
| |
Collapse
|
4
|
Basic A, Dahlén G. Microbial metabolites in the pathogenesis of periodontal diseases: a narrative review. FRONTIERS IN ORAL HEALTH 2023; 4:1210200. [PMID: 37388417 PMCID: PMC10300593 DOI: 10.3389/froh.2023.1210200] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
The purpose of this narrative review is to highlight the importance of microbial metabolites in the pathogenesis of periodontal diseases. These diseases, involving gingivitis and periodontitis are inflammatory conditions initiated and maintained by the polymicrobial dental plaque/biofilm. Gingivitis is a reversible inflammatory condition while periodontitis involves also irreversible destruction of the periodontal tissues including the alveolar bone. The inflammatory response of the host is a natural reaction to the formation of plaque and the continuous release of metabolic waste products. The microorganisms grow in a nutritious and shielded niche in the periodontal pocket, protected from natural cleaning forces such as saliva. It is a paradox that the consequences of the enhanced inflammatory reaction also enable more slow-growing, fastidious, anaerobic bacteria, with often complex metabolic pathways, to colonize and thrive. Based on complex food chains, nutrient networks and bacterial interactions, a diverse microbial community is formed and established in the gingival pocket. This microbiota is dominated by anaerobic, often motile, Gram-negatives with proteolytic metabolism. Although this alternation in bacterial composition often is considered pathologic, it is a natural development that is promoted by ecological factors and not necessarily a true "dysbiosis". Normal commensals are adapting to the gingival crevice when tooth cleaning procedures are absent. The proteolytic metabolism is highly complex and involves a number of metabolic pathways with production of a cascade of metabolites in an unspecific manner. The metabolites involve short chain fatty acids (SCFAs; formic, acetic, propionic, butyric, and valeric acid), amines (indole, scatole, cadaverine, putrescine, spermine, spermidine) and gases (NH3, CO, NO, H2S, H2). A homeostatic condition is often present between the colonizers and the host response, where continuous metabolic fluctuations are balanced by the inflammatory response. While it is well established that the effect of the dental biofilm on the host response and tissue repair is mediated by microbial metabolites, the mechanisms behind the tissue destruction (loss of clinical attachment and bone) are still poorly understood. Studies addressing the functions of the microbiota, the metabolites, and how they interplay with host tissues and cells, are therefore warranted.
Collapse
|
5
|
Li TJ, Hao YH, Tang YL, Liang XH. Periodontal Pathogens: A Crucial Link Between Periodontal Diseases and Oral Cancer. Front Microbiol 2022; 13:919633. [PMID: 35847109 PMCID: PMC9279119 DOI: 10.3389/fmicb.2022.919633] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence shows a striking link between periodontal diseases and various human cancers including oral cancer. And periodontal pathogens, leading to periodontal diseases development, may serve a crucial role in oral cancer. This review elucidated the molecular mechanisms of periodontal pathogens in oral cancer. The pathogens directly engage in their own unique molecular dialogue with the host epithelium to acquire cancer phenotypes, and indirectly induce a proinflammatory environment and carcinogenic substance in favor of cancer development. And functional, rather than compositional, properties of oral microbial community correlated with cancer development are discussed. The effect of periodontal pathogens on periodontal diseases and oral cancer will further detail the pathogenesis of oral cancer and intensify the need of maintaining oral hygiene for the prevention of oral diseases including oral cancer.
Collapse
Affiliation(s)
- Tian-Jiao Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi-hang Hao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Wu DD, Ngowi EE, Zhai YK, Wang YZ, Khan NH, Kombo AF, Khattak S, Li T, Ji XY. Role of Hydrogen Sulfide in Oral Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1886277. [PMID: 35116090 PMCID: PMC8807043 DOI: 10.1155/2022/1886277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Oral diseases are among the most common human diseases yet less studied. These diseases affect both the physical, mental, and social health of the patients resulting in poor quality of life. They affect all ages, although severe stages are mostly observed in older individuals. Poor oral hygiene, genetics, and environmental factors contribute enormously to the development and progression of these diseases. Although there are available treatment options for these diseases, the recurrence of the diseases hinders their efficiency. Oral volatile sulfur compounds (VSCs) are highly produced in oral cavity as a result of bacteria activities. Together with bacteria components such as lipopolysaccharides, VSCs participate in the progression of oral diseases by regulating cellular activities and interfering with the immune response. Hydrogen sulfide (H2S) is a gaseous neurotransmitter primarily produced endogenously and is involved in the regulation of cellular activities. The gas is also among the VSCs produced by oral bacteria. In numerous diseases, H2S have been reported to have dual effects depending on the cell, concentration, and donor used. In oral diseases, high production and subsequent utilization of this gas have been reported. Also, this high production is associated with the progression of oral diseases. In this review, we will discuss the production of H2S in oral cavity, its interaction with cellular activities, and most importantly its role in oral diseases.
Collapse
Affiliation(s)
- Dong-Dong Wu
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Yuan-Kun Zhai
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ahmad Fadhil Kombo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
7
|
Ku JWK, Gan YH. New roles for glutathione: Modulators of bacterial virulence and pathogenesis. Redox Biol 2021; 44:102012. [PMID: 34090244 PMCID: PMC8182430 DOI: 10.1016/j.redox.2021.102012] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023] Open
Abstract
Low molecular weight (LMW) thiols contain reducing sulfhydryl groups that are important for maintaining antioxidant defense in the cell. Aside from the traditional roles of LMW thiols as redox regulators in bacteria, glutathione (GSH) has been reported to affect virulence and bacterial pathogenesis. The role of GSH in virulence is diverse, including the activation of virulence gene expression and contributing to optimal biofilm formation. GSH can also be converted to hydrogen sulfide (H2S) which is important for the pathogenesis of certain bacteria. Besides GSH, some bacteria produce other LMW thiols such as mycothiol and bacillithiol that affect bacterial virulence. We discuss these newer reported functions of LMW thiols modulating bacterial pathogenesis either directly or indirectly and via modulation of the host immune system.
Collapse
Affiliation(s)
- Joanne Wei Kay Ku
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, National University of Singapore, 8 Medical Drive, 117596, Singapore
| | - Yunn-Hwen Gan
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, National University of Singapore, 8 Medical Drive, 117596, Singapore.
| |
Collapse
|
8
|
Ben Lagha A, Maquera Huacho P, Grenier D. A cocoa (Theobroma cacao L.) extract impairs the growth, virulence properties, and inflammatory potential of Fusobacterium nucleatum and improves oral epithelial barrier function. PLoS One 2021; 16:e0252029. [PMID: 34029354 PMCID: PMC8143394 DOI: 10.1371/journal.pone.0252029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/08/2021] [Indexed: 12/15/2022] Open
Abstract
Fusobacterium nucleatum is associated with many conditions and diseases, including periodontal diseases that affect tooth-supporting tissues. The aim of the present study was to investigate the effects of a cocoa extract (Theobroma cacao L.) on F. nucleatum with respect to growth, biofilm formation, adherence, and hydrogen sulfide (H2S) production. The anti-inflammatory properties and the effect on epithelial barrier function of the cocoa extract were also assessed. The cocoa extract, whose major phenolic compound is epicatechin, dose-dependently inhibited the growth, biofilm formation, adherence properties (basement membrane matrix, oral epithelial cells), and H2S production of F. nucleatum. It also decreased IL-6 and IL-8 production by F. nucleatum-stimulated oral epithelial cells and inhibited F. nucleatum-induced NF-κB activation in monocytes. Lastly, the cocoa extract enhanced the barrier function of an oral epithelial model by increasing the transepithelial electrical resistance. We provide evidence that the beneficial properties of an epicatechin-rich cocoa extract may be useful for preventing and/or treating periodontal diseases.
Collapse
Affiliation(s)
- Amel Ben Lagha
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Patricia Maquera Huacho
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
- * E-mail:
| |
Collapse
|
9
|
Effects of Labrador Tea, Peppermint, and Winter Savory Essential Oils on Fusobacterium nucleatum. Antibiotics (Basel) 2020; 9:antibiotics9110794. [PMID: 33182686 PMCID: PMC7697736 DOI: 10.3390/antibiotics9110794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 01/10/2023] Open
Abstract
Bad breath or halitosis is an oral condition caused by volatile sulfur compounds (VSC) produced by bacteria found in the dental and tongue biofilms. Fusobacterium nucleatum is a Gram-negative anaerobic bacterium that has been strongly associated with halitosis. In this study, essential oils (EO) from three plants, Labrador tea (Rhododendron groenlandicum [Oeder] Kron & Judd), peppermint (Mentha x piperita L.), and winter savory (Satureja montana L.), were investigated for their effects on growth, biofilm formation and killing, and VSC production by F. nucleatum. Moreover, their biocompatibility with oral keratinocytes was investigated. Using a broth microdilution assay, winter savory EO and to a lesser extent Labrador tea and peppermint EO showed antibacterial activity against F. nucleatum. A treatment of pre-formed biofilms of F. nucleatum with EO also significantly decreased bacterial viability as determined by a luminescence assay monitoring adenosine triphosphate production. The EO were found to permeabilize the bacterial cell membrane, suggesting that it represents the target of the tested EO. The three EO under investigation were able to dose-dependently reduce VSC production by F. nucleatum. Lastly, no significant loss of cell viability was observed when oral keratinocytes were treated with the EO at concentrations effective against F. nucleatum. This study supports the potential of Labrador tea, peppermint, and winter savory EO as promising agents to control halitosis and promote oral health.
Collapse
|
10
|
Rahman MA, Glasgow JN, Nadeem S, Reddy VP, Sevalkar RR, Lancaster JR, Steyn AJC. The Role of Host-Generated H 2S in Microbial Pathogenesis: New Perspectives on Tuberculosis. Front Cell Infect Microbiol 2020; 10:586923. [PMID: 33330130 PMCID: PMC7711268 DOI: 10.3389/fcimb.2020.586923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, hydrogen sulfide (H2S) was considered primarily as a poisonous gas and environmental hazard. However, with the discovery of prokaryotic and eukaryotic enzymes for H2S production, breakdown, and utilization, H2S has emerged as an important signaling molecule in a wide range of physiological and pathological processes. Hence, H2S is considered a gasotransmitter along with nitric oxide (•NO) and carbon monoxide (CO). Surprisingly, despite having overlapping functions with •NO and CO, the role of host H2S in microbial pathogenesis is understudied and represents a gap in our knowledge. Given the numerous reports that followed the discovery of •NO and CO and their respective roles in microbial pathogenesis, we anticipate a rapid increase in studies that further define the importance of H2S in microbial pathogenesis, which may lead to new virulence paradigms. Therefore, this review provides an overview of sulfide chemistry, enzymatic production of H2S, and the importance of H2S in metabolism and immunity in response to microbial pathogens. We then describe our current understanding of the role of host-derived H2S in tuberculosis (TB) disease, including its influences on host immunity and bioenergetics, and on Mycobacterium tuberculosis (Mtb) growth and survival. Finally, this review discusses the utility of H2S-donor compounds, inhibitors of H2S-producing enzymes, and their potential clinical significance.
Collapse
Affiliation(s)
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sajid Nadeem
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ritesh R Sevalkar
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jack R Lancaster
- Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Adrie J C Steyn
- Africa Health Research Institute, Durban, South Africa.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States.,Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
11
|
Dilek N, Papapetropoulos A, Toliver-Kinsky T, Szabo C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol Res 2020; 161:105119. [PMID: 32781284 DOI: 10.1016/j.phrs.2020.105119] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S) is now recognized as an endogenous signaling gasotransmitter in mammals. It is produced by mammalian cells and tissues by various enzymes - predominantly cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) - but part of the H2S is produced by the intestinal microbiota (colonic H2S-producing bacteria). Here we summarize the available information on the production and functional role of H2S in the various cell types typically associated with innate immunity (neutrophils, macrophages, dendritic cells, natural killer cells, mast cells, basophils, eosinophils) and adaptive immunity (T and B lymphocytes) under normal conditions and as it relates to the development of various inflammatory and immune diseases. Special attention is paid to the physiological and the pathophysiological aspects of the oral cavity and the colon, where the immune cells and the parenchymal cells are exposed to a special "H2S environment" due to bacterial H2S production. H2S has many cellular and molecular targets. Immune cells are "surrounded" by a "cloud" of H2S, as a result of endogenous H2S production and exogenous production from the surrounding parenchymal cells, which, in turn, importantly regulates their viability and function. Downregulation of endogenous H2S producing enzymes in various diseases, or genetic defects in H2S biosynthetic enzyme systems either lead to the development of spontaneous autoimmune disease or accelerate the onset and worsen the severity of various immune-mediated diseases (e.g. autoimmune rheumatoid arthritis or asthma). Low, regulated amounts of H2S, when therapeutically delivered by small molecule donors, improve the function of various immune cells, and protect them against dysfunction induced by various noxious stimuli (e.g. reactive oxygen species or oxidized LDL). These effects of H2S contribute to the maintenance of immune functions, can stimulate antimicrobial defenses and can exert anti-inflammatory therapeutic effects in various diseases.
Collapse
Affiliation(s)
- Nahzli Dilek
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tracy Toliver-Kinsky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
12
|
Phillips L, Chu L, Kolodrubetz D. Multiple enzymes can make hydrogen sulfide from cysteine in Treponema denticola. Anaerobe 2020; 64:102231. [PMID: 32603680 PMCID: PMC7484134 DOI: 10.1016/j.anaerobe.2020.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
Abstract
Treponema denticola is a spirochete that is involved in causing periodontal diseases. This bacterium can produce H2S from thiol compounds found in the gingival crevicular fluid. Determining how H2S is made by oral bacteria is important since this molecule is present at high levels in periodontally-diseased pockets and the biological effects of H2S can explain some of the pathologies seen in periodontitis. Thus, it is of interest to identify the enzyme, or enzymes, involved in the synthesis of H2S by T. denticola. We, and others, have previously identified and characterized a T. denticola cystalysin, called HlyA, which hydrolyzes cysteine into H2S (and pyruvate and ammonia). However, there have been no studies to show that HlyA is, or is not, the only pathway that T. denticola can use to make H2S. To address this question, allelic replacement mutagenesis was used to make a deletion mutant (ΔhlyA) in the gene encoding HlyA. The mutant produces the same amount of H2S from cysteine as do wild type spirochetes, indicating that T. denticola has at least one other enzyme that can generate H2S from cysteine. To identify candidates for this other enzyme, a BLASTp search of T. denticola strain 33520 was done. There was one gene that encoded an HlyA homolog so we named it HlyB. Recombinant His-tagged HlyB was expressed in E. coli and partially purified. This enzyme was able to make H2S from cysteine in vitro. To test the role of HlyB in vivo, an HlyB deletion mutant (ΔhlyB) was constructed in T. denticola. This mutant still made normal levels of H2S from cysteine, but a strain mutated in both hly genes (ΔhlyA ΔhlyB) synthesizes significantly less H2S from cysteine. We conclude that the HlyA and HlyB enzymes perform redundant functions in vivo and are the major contributors to H2S production in T. denticola. However, at least one other enzyme can still convert cysteine to H2S in the ΔhlyA ΔhlyB mutant. An in silico analysis that identifies candidate genes for this other enzyme is presented.
Collapse
Affiliation(s)
- Linda Phillips
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Lianrui Chu
- Department of Developmental Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - David Kolodrubetz
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
13
|
Chu L, Wu Y, Xu X, Phillips L, Kolodrubetz D. Glutathione catabolism by Treponema denticola impacts its pathogenic potential. Anaerobe 2020; 62:102170. [PMID: 32044394 PMCID: PMC7153967 DOI: 10.1016/j.anaerobe.2020.102170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 01/14/2020] [Accepted: 02/04/2020] [Indexed: 12/28/2022]
Abstract
Treponema denticola is a spirochete that is etiologic for periodontal diseases. This bacterium is one of two periodontal pathogens that have been shown to have a complete three step enzymatic pathway (GTSP) that catabolizes glutathione to H2S. This pathway may contribute to the tissue pathology seen in periodontitis since diseased periodontal pockets have lower glutathione levels than healthy sites with a concomitant increase in H2S concentration. In order to be able to demonstrate that glutathione catabolism by the GTSP is critical for the pathogenic potential of T. denticola, allelic replacement mutagenesis was used to make a deletion mutant (Δggt) in the gene encoding the first enzyme in the GTSP. The mutant cannot produce H2S from glutathione since it lacks gamma-glutamyltransferase (GGT) activity. The hemolytic and hemoxidation activities of wild type T. denticola plus glutathione are reduced to background levels with the Δggt mutant and the mutant has lost the ability to grow aerobically when incubated with glutathione. The Δggt bacteria with glutathione cause less cell death in human gingival fibroblasts (hGFs) in vitro than do wild type T. denticola and the levels of hGF death correlate with the amounts of H2S produced. Importantly, the mutant spirochetes plus glutathione make significantly smaller lesions than wild type bacteria plus glutathione in a mouse back lesion model that assesses soft tissue destruction, a major symptom of periodontal diseases. Our results are the first to prove that T. denticola thiol-compound catabolism by its gamma-glutamyltransferase can play a significant role in the in the types of host tissue damage seen in periodontitis.
Collapse
Affiliation(s)
- Lianrui Chu
- Department of Developmental Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yimin Wu
- Department of Developmental Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xiaoping Xu
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Linda Phillips
- Department of Microbiology, Immunology and Molecular Genetics, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - David Kolodrubetz
- Department of Microbiology, Immunology and Molecular Genetics, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
14
|
Wang S, Chi Q, Hu X, Cong Y, Li S. Hydrogen sulfide-induced oxidative stress leads to excessive mitochondrial fission to activate apoptosis in broiler myocardia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109578. [PMID: 31442807 DOI: 10.1016/j.ecoenv.2019.109578] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Hydrogen sulfide (H2S), as an environmental gas pollutant, has harmful effects on many tissues and organs, including myocardium. However, the underlying mechanisms of H2S-induced myocardia toxicity remain poorly understood. The present study was designed to investigate the effect of H2S on myocardia injury in broilers from the perspective of apoptosis. 30 ppm H2S was administered in the broiler chamber for 2, 4 and 6 week, respectively, and the myocardial samples in control groups and H2S groups were collected immediately after euthanized broilers. Transmission electron microscope, test kits, qRT-PCR and western blot were performed. Results showed that H2S exposure decreased the activities of catalase (CAT) and total antioxidant capability (T-AOC), whereas the content of hydrogen peroxide (H2O2) and the activity of inducible nitric oxide synthase (iNOS) enhanced. Besides, we found the excessive expression of mitochondrial fission genes (Drp1 and Mff) by H2S, the dynamic balance of mitochondrial fission and fusion is destroyed. Furthermore, the levels of pro-apoptotic gene (including CytC, Cas3, Cas8, Cas9, TNF-α and Bax) increased after H2S exposure, as well as the expression level of anti-apoptotic gene bcl-2 decreased. At the same time, the activities of ATPase (including Na+-K+-ATPase, Ca2+-ATPase, Mg2+-ATPase and Ca2+-Mg2+-ATPase) weakened under H2S exposure. Therefore, we conclude that H2S induced oxidative stress and then leaded to excessive mitochondrial fission, which involved in apoptosis and damage broiler myocardia.
Collapse
Affiliation(s)
- Shuang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xueyuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yimei Cong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilingjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
15
|
Ikeda E, Shiba T, Ikeda Y, Suda W, Nakasato A, Takeuchi Y, Azuma M, Hattori M, Izumi Y. Japanese subgingival microbiota in health vs disease and their roles in predicted functions associated with periodontitis. Odontology 2019; 108:280-291. [PMID: 31502122 DOI: 10.1007/s10266-019-00452-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
The present study aimed to identify and compare the microbial signatures between periodontally healthy and periodontitis subjects using 454 sequences of 16S rRNA genes. Subgingival plaque samples were collected from ten periodontally healthy subjects and ten matched chronic periodontitis patients. Bacterial DNA was extracted and next-generation sequencing of 16S rRNA genes was performed. The microbial composition differed between healthy subjects and periodontitis patients at all phylogenetic levels. Particularly, 16 species, including Lautropia mirabilis and Neisseria subflava predominated in healthy subjects, whereas nine species, including Porphyromonas gingivalis and Filifactor alocis predominated in periodontitis. UniFrac, a principal coordinate and network analysis, confirmed distinct community profiles in healthy subjects and periodontitis patients. Using predicted function profiling, pathways involved in phenylpropanoid, GPI-anchor biosynthesis, and metabolism of alanine, arginine, aspartate, butanoate, cyanoamino acid, fatty acid, glutamate, methane, proline, and vitamin B6 were significantly over-represented in periodontitis patients. These results highlight the oral microbiota alterations in microbial composition in periodontitis and suggest the genes and metabolic pathways associated with health and periodontitis. Our findings help to further elucidate microbial composition and interactions in health and periodontitis.
Collapse
Affiliation(s)
- Eri Ikeda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Yuichi Ikeda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-0016, Japan
| | - Akinori Nakasato
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Yasuo Takeuchi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan.
| | - Miyuki Azuma
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Masahira Hattori
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.,Faculty of Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan.,Oral Care Perio Center, Southern TOHOKU General Hospital, Southern TOHOKU Research Institute for Neuroscience, 7-115 Yatsuyamada, Koriyama, Fukushima, 963-8052, Japan
| |
Collapse
|
16
|
Importance of Virulence Factors for the Persistence of Oral Bacteria in the Inflamed Gingival Crevice and in the Pathogenesis of Periodontal Disease. J Clin Med 2019; 8:jcm8091339. [PMID: 31470579 PMCID: PMC6780532 DOI: 10.3390/jcm8091339] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 01/18/2023] Open
Abstract
Periodontitis is a chronic inflammation that develops due to a destructive tissue response to prolonged inflammation and a disturbed homeostasis (dysbiosis) in the interplay between the microorganisms of the dental biofilm and the host. The infectious nature of the microbes associated with periodontitis is unclear, as is the role of specific bacterial species and virulence factors that interfere with the host defense and tissue repair. This review highlights the impact of classical virulence factors, such as exotoxins, endotoxins, fimbriae and capsule, but also aims to emphasize the often-neglected cascade of metabolic products (e.g., those generated by anaerobic and proteolytic metabolism) that are produced by the bacterial phenotypes that survive and thrive in deep, inflamed periodontal pockets. This metabolic activity of the microbes aggravates the inflammatory response from a low-grade physiologic (homeostatic) inflammation (i.e., gingivitis) into more destructive or tissue remodeling processes in periodontitis. That bacteria associated with periodontitis are linked with a number of systemic diseases of importance in clinical medicine is highlighted and exemplified with rheumatoid arthritis, The unclear significance of a number of potential "virulence factors" that contribute to the pathogenicity of specific bacterial species in the complex biofilm-host interaction clinically is discussed in this review.
Collapse
|
17
|
Guo J, Xing H, Chen M, Wang W, Zhang H, Xu S. H 2S inhalation-induced energy metabolism disturbance is involved in LPS mediated hepatocyte apoptosis through mitochondrial pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:380-386. [PMID: 30716628 DOI: 10.1016/j.scitotenv.2019.01.360] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/22/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Hydrogen sulfide (H2S) is a toxic gas and one of the air pollutants of great concern. High-concentrated H2S can induce energy metabolism disturbance and apoptosis. However, the mechanism of H2S-induced liver injuries is unknown. Lipopolysaccharide (LPS), the main component of endotoxin, can cause fulminant hepatitis. Here, we evaluated the effects of H2S combined with LPS on the energy metabolism and apoptosis pathway in the liver using a one-day-old chicken as a model. Our results showed that the expression levels of energy metabolism-related genes (AMP-activated protein kinase (AMPK), Hypoxia-inducible factor-1 (HIF-1), aconitase 2 (ACO2), hexokinase1 (HK1), hexokinase 2 (HK2), lactate dehydrogenase A (LDHA), lactate dehydrogenase B (LDHB), phosphofructokinase (PFK), pyruvate kinase (PK) and succinate dehydrogenase B (SDHB)) tended to decrease, that the status of apoptosis increased, and that the expression levels of apoptosis-related genes (caspase3, BCL2, and bax) increased in H2S group, suggesting that H2S exposure disturbed the energy metabolism in the liver and induced hepatocyte apoptosis through the mitochondrial pathway. In addition, H2S combined with the LPS aggravated the level of energy metabolism disorders and apoptosis, indicating that H2S inhalation-induced energy metabolism disturbance is involved in LPS-mediated hepatocyte apoptosis through the mitochondrial pathway.
Collapse
Affiliation(s)
- Jinming Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Menghao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
18
|
Reed LA, O'Bier NS, Oliver LD, Hoffman PS, Marconi RT. Antimicrobial activity of amixicile against Treponema denticola and other oral spirochetes associated with periodontal disease. J Periodontol 2018; 89:1467-1474. [PMID: 29958324 DOI: 10.1002/jper.17-0185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/29/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Periodontal disease is a polymicrobial infection characterized by inflammation of the gingiva, alveolar bone resorption and tooth loss. As periodontal disease progresses, oral treponemes (spirochetes) become dominant bacteria in periodontal pockets. Oral treponemes are anaerobes and all encode the enzyme pyruvate-ferredoxin oxidoreductase (PFOR) which catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA. Here we assess the susceptibility of oral treponemes to amixicile (AMIX), a novel inhibitor of PFOR. METHODS The minimum inhibitory concentration (MIC) of AMIX against several oral treponeme species was determined. The impact of AMIX on processes relevant to virulence including motility, H2 S production, and complement evasion were determined. RESULTS The growth of all oral treponeme species tested was inhibited by AMIX with MIC concentrations (MIC) ranging from 0.5-1.5 μg/mL. AMIX significantly reduced motility, caused a dose-dependent decrease in hydrogen sulfide production and increased sensitivity to killing by human complement (i.e., serum sensitivity). CONCLUSIONS AMIX is effective in vitro in inhibiting growth and other processes central to virulence. AMIX could serve could serve as a new selective therapeutic tool for the treatment of periodontal disease.
Collapse
Affiliation(s)
- Lucas A Reed
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA
| | - Nathaniel S O'Bier
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA
| | - Lee D Oliver
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA
| | - Paul S Hoffman
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA
| |
Collapse
|
19
|
Yang R, Liu Y, Yu T, Liu D, Shi S, Zhou Y, Zhou Y. Hydrogen sulfide maintains dental pulp stem cell function via TRPV1-mediated calcium influx. Cell Death Discov 2018; 4:1. [PMID: 30062050 PMCID: PMC6060166 DOI: 10.1038/s41420-018-0071-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S), an endogenous gasotransmitter, mediated a variety of biological processes through multiple signaling pathways, and aberrant H2S metabolism has been associated with mesenchymal stem cell (MSC) dysfunction. Here we employed the small interfering RNA treatment for cystathionine β-synthase (CBS), cystathionine γ-lyase, the main enzymes to synthesize H2S, and CBS-knockout mice to analyze the effect of H2S on dental pulp homeostasis. We showed that H2S deficiency attenuated dental pulp stem cell (DPSC) osteogenic/dentinogenic differentiation in vitro and in vivo with enhanced cell proliferation. Mechanically, H2S facilitated the transient receptor potential action channel subfamily V member 1-mediated calcium (Ca2+) influx, which subsequently activated the β-catenin pathway. While H2S deficiency decreased Ca2+, resulting in glycogen synthase kinase-3β-mediated β-catenin degradation, which controls proliferation and differentiation of DPSCs. Consistently, H2S-deficient mice displayed disturbed pattern of dental pulp and less dentin formation. In this study, we identified a previously unknown mechanism by which H2S regulates DPSC lineage determination and dental pulp homeostasis.
Collapse
Affiliation(s)
- Ruili Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 100081 Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081 Beijing, China
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050 Beijing, China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 100081 Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081 Beijing, China
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Dawei Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 100081 Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081 Beijing, China
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Songtao Shi
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Yongsheng Zhou
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081 Beijing, China
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 100081 Beijing, China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 100081 Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081 Beijing, China
| |
Collapse
|
20
|
Yang R, Yu T, Liu D, Shi S, Zhou Y. Hydrogen sulfide promotes immunomodulation of gingiva-derived mesenchymal stem cells via the Fas/FasL coupling pathway. Stem Cell Res Ther 2018; 9:62. [PMID: 29523215 PMCID: PMC5845196 DOI: 10.1186/s13287-018-0804-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/05/2018] [Accepted: 02/11/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells derived from gingiva (GMSCs) display profound immunomodulation properties in addition to self-renewal and multilineage differentiation capacities. Hydrogen sulfide (H2S) is not only an environmental pollutant, but also is an important biological gas transmitter in health and disease. METHODS We used an in-vitro coculture system and a mouse colitis model to compare the immunomodulatory effects between control and H2S-deficient GMSCs. The flow cytometry analysis was used for T-cell apoptosis and T-helper 17 (Th17) and regulatory T (Treg) cell differentiation. RESULTS We revealed that GMSCs exerted their immunomodulatory effect by inducing T-cell apoptosis, promoting Treg cell polarization, and inhibiting Th17 cell polarization in vitro. The levels of H2S regulated the immunomodulatory effect of GMSCs. Mechanically, H2S deficiency downregulated the expression of Fas in GMSCs, resulting in reduced secretion of monocyte chemotactic protein 1 (MCP-1), which in turn led to decreased T-cell migration to GMSCs mediated by MCP-1. Moreover, H2S deficiency downregulated the expression of Fas ligand (FasL) in GMSCs. The Fas/FasL coupling-induced T-cell apoptosis by GMSCs was attenuated in H2S-deficient GMSCs. Consistent with this, H2S-deficient GMSCs showed attenuated therapeutic effects on colitis in vivo, which could be restored by treatment with the H2S donor, NaHS. CONCLUSIONS These findings showed that H2S was required to maintain immunomodulation of GMSCs, which was mediated by Fas/FasL coupling-induced T-cell apoptosis.
Collapse
Affiliation(s)
- Ruili Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081 China
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104 USA
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081 China
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104 USA
| | - Dawei Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081 China
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104 USA
| | - Songtao Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104 USA
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081 China
| |
Collapse
|
21
|
Huynh HTT, Pignoly M, Drancourt M, Aboudharam G. A new methanogen "Methanobrevibacter massiliense" isolated in a case of severe periodontitis. BMC Res Notes 2017; 10:657. [PMID: 29191236 PMCID: PMC5710069 DOI: 10.1186/s13104-017-2980-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/22/2017] [Indexed: 12/19/2022] Open
Abstract
Background A few methanogens have been previously recovered from periodontitis lesions, yet their repertoire may not be completed. We recovered a previously unreported methanogen species in this situation. Case presentation A 64-year-old Caucasian woman was diagnosed with chronic, severe generalized periodontitis. In the presence of negative controls, an 18-month culture of periodontal pockets in anaerobe Hungate tube yielded “Methanobrevibacter massiliense” and Pyramidobacter piscolens. Conclusions This case report provides evidence of the symbiotic strategy deployed by the methanogens and the anaerobes, and reports the first culture of a new methanogen, “M. massiliense”. Electronic supplementary material The online version of this article (10.1186/s13104-017-2980-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong T T Huynh
- UFR Odontologie, Aix-Marseille Université, 27, Boulevard Jean Moulin, Marseille Cedex 5, France.,URMITE, CNRS, UMR 7278, IRD 198, IHU Méditerranée-Infection, Aix-Marseille Université, Marseille, France
| | - Marion Pignoly
- UFR Odontologie, Aix-Marseille Université, 27, Boulevard Jean Moulin, Marseille Cedex 5, France
| | - Michel Drancourt
- URMITE, CNRS, UMR 7278, IRD 198, IHU Méditerranée-Infection, Aix-Marseille Université, Marseille, France.
| | - Gérard Aboudharam
- UFR Odontologie, Aix-Marseille Université, 27, Boulevard Jean Moulin, Marseille Cedex 5, France.,URMITE, CNRS, UMR 7278, IRD 198, IHU Méditerranée-Infection, Aix-Marseille Université, Marseille, France
| |
Collapse
|
22
|
LeBel G, Haas B, Adam AA, Veilleux MP, Lagha AB, Grenier D. Effect of cinnamon (Cinnamomum verum) bark essential oil on the halitosis-associated bacterium Solobacterium moorei and in vitro cytotoxicity. Arch Oral Biol 2017; 83:97-104. [DOI: 10.1016/j.archoralbio.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/04/2017] [Accepted: 07/09/2017] [Indexed: 01/04/2023]
|
23
|
Ebersole JL, Dawson D, Emecen-Huja P, Nagarajan R, Howard K, Grady ME, Thompson K, Peyyala R, Al-Attar A, Lethbridge K, Kirakodu S, Gonzalez OA. The periodontal war: microbes and immunity. Periodontol 2000 2017; 75:52-115. [DOI: 10.1111/prd.12222] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Basic A, Alizadehgharib S, Dahlén G, Dahlgren U. Hydrogen sulfide exposure induces NLRP3 inflammasome-dependent IL-1β and IL-18 secretion in human mononuclear leukocytes in vitro. Clin Exp Dent Res 2017; 3:115-120. [PMID: 29744188 PMCID: PMC5719819 DOI: 10.1002/cre2.69] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 12/28/2022] Open
Abstract
The aim was to investigate if hydrogen sulfide (H2S) induces the formation of the NLRP3 inflammasome and subsequent IL‐1β and IL‐18 secretion in human peripheral blood mononuclear cells (PBMCs) and in the human monocyte cell line THP1. Bacterial production of H2S has been suggested to participate in the inflammatory host response in periodontitis pathogenesis. H2S is a toxic gas with pro‐inflammatory properties. It is produced by bacterial degradation of sulfur‐containing amino acids, for example, cysteine. We hypothesize that H2S affects the inflammatory host response by inducing formation of the NLRP3 inflammasome and thereby causes the secretion of IL‐1ß and IL‐18. PBMCs from eight healthy blood donors, the human monocyte cell line THP1 Null, and two variants of the THP1 cell line unable to form the NLRP3 inflammasome were cultured in the presence or absence of 1 mM sodium hydrosulfide (NaHS) in 24‐well plates at 37°C for 24 hr. Supernatants were collected and the IL‐1β and IL‐18 concentrations were measured with DuoSet ELISA Development kit. PBMCs exposed to NaHS produced more IL‐1ß and IL‐18 than unexposed control cells (p = .023 and p = .008, respectively). An increase of extracellular potassium ions (K+) inhibited the secretion of IL‐1ß and IL‐18 (p = .008). Further, NaHS triggered the secretion of IL‐1ß and IL‐18 in human THP1‐Null monocytes (p = .0006 and p = .002, respectively), while the NaHS‐dependent secretion was reduced in the monocyte cell lines unable to form the NLRP3 inflammasome. Hence, the results suggest that NaHS induces the formation of the NLRP3 inflammasome and thus the secretion of IL‐1ß and IL‐18. Enhanced NLRP3 inflammasome‐dependent secretion of IL‐1β and IL‐18 in human mononuclear leukocytes exposed to NaHS in vitro is reported. This may be a mode for H2S to contribute to the inflammatory host response and pathogenesis of periodontal disease.
Collapse
Affiliation(s)
- Amina Basic
- Department of Oral Microbiology and Immunology Institute of Odontology, Sahlgrenska Academy, University of Gothenburg Sweden
| | - Sara Alizadehgharib
- Department of Oral Microbiology and Immunology Institute of Odontology, Sahlgrenska Academy, University of Gothenburg Sweden
| | - Gunnar Dahlén
- Department of Oral Microbiology and Immunology Institute of Odontology, Sahlgrenska Academy, University of Gothenburg Sweden
| | - Ulf Dahlgren
- Department of Oral Microbiology and Immunology Institute of Odontology, Sahlgrenska Academy, University of Gothenburg Sweden
| |
Collapse
|
25
|
Gene Regulation, Two Component Regulatory Systems, and Adaptive Responses in Treponema Denticola. Curr Top Microbiol Immunol 2017; 415:39-62. [PMID: 29026924 DOI: 10.1007/82_2017_66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The oral microbiome consists of a remarkably diverse group of 500-700 bacterial species. The microbial etiology of periodontal disease is similarly complex. Of the ~400 bacterial species identified in subgingival plaque, at least 50 belong to the genus Treponema. As periodontal disease develops and progresses, T. denticola transitions from a low to high abundance species in the subgingival crevice. Changes in the overall composition of the bacterial population trigger significant changes in the local physical, immunological and physiochemical conditions. For T. denticola to thrive in periodontal pockets, it must be nimble and adapt to rapidly changing environmental conditions. The purpose of this chapter is to review the current understanding of the molecular basis of these essential adaptive responses, with a focus on the role of two component regulatory systems with global regulatory potential.
Collapse
|
26
|
Ye XF, Xue Y, Ling T, Wang Y, Yu XN, Cheng C, Feng G, Hu L, Shi Z, Chen J. Cinnamaldehyde Ameliorates Cadmium-Inhibited Root Elongation in Tobacco Seedlings via Decreasing Endogenous Hydrogen Sulfide Production. Molecules 2016; 22:E15. [PMID: 28029133 PMCID: PMC6155710 DOI: 10.3390/molecules22010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 12/22/2022] Open
Abstract
Cinnamaldehyde (CA) is natural plant-derived compound that has been highly appreciated for its medicinal properties. However, little information is known about the regulation of plant intrinsic physiology by CA. To address these gaps, physiological, histochemical, and biochemical approaches were applied to investigate CA-facilitated cadmium (Cd) tolerance in the roots of tobacco (Nicotiana tabacum) seedlings. Treatment with CdCl₂ at 20 μM for 72 h resulted in the significant decrease in root elongation by 40.39% as compared to control. CA alleviated Cd-inhibited root elongation in dose- and time-dependent manners. The addition of CA at 20 μM induced significant increase in root elongation by 42.58% as compared to Cd treatment alone. CA abolished Cd-induced ROS (reactive oxygen species) accumulation, lipid peroxidation, loss of membrane integrity, cell death, and free Cd2+ accumulation in roots. CA blocked the Cd-induced increase in the endogenous H₂S level through the down-regulation of d-cysteine desulfhydrase (DCD) expression. H₂S scavenger hypotaurine (HT) or potent H₂S-biosynthetic inhibitor dl-propargylglicine (PAG) were able mimic the action of CA on the blockade of Cd-induced H₂S accumulation, cell death, and growth inhibition. Enhancement of the endogenous H₂S level with NaHS (H₂S donor) abrogated all the beneficial capabilities of CA, HT, and PAG. Collectively, these results suggest that CA has great potential to confer plant tolerance against Cd stress, which is closely associated with its capability to inhibit Cd-induced H₂S production. This study not only provides evidences for the regulation of plant physiology by CA but also sheds new light on the cross-talk between CA and H₂S in physiological modulations.
Collapse
Affiliation(s)
- Xie-Feng Ye
- Tobacco Science College/National Tobacco Cultivation and Physiology and Biochemistry Research Centre/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yanfeng Xue
- Nanjing Yangzi Modern Agriculture Investment and Development Co. Ltd., Nanjing 211899, China.
| | - Tianxiao Ling
- Tobacco Science College/National Tobacco Cultivation and Physiology and Biochemistry Research Centre/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yong Wang
- Chongqing Tobacco Corporation, Chongqing 400023, China.
| | - Xiao-Na Yu
- Tobacco Science College/National Tobacco Cultivation and Physiology and Biochemistry Research Centre/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Changxin Cheng
- Hongyun Honghe Tobacco Group Co. Ltd., Kunming 650231, China.
| | - Guosheng Feng
- Henan Tobacco Corporation Queshan Branch, Queshan 463200, China.
| | - Liangbin Hu
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Zhiqi Shi
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China.
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China.
| |
Collapse
|
27
|
Yang R, Liu Y, Shi S. Hydrogen Sulfide Regulates Homeostasis of Mesenchymal Stem Cells and Regulatory T Cells. J Dent Res 2016; 95:1445-1451. [PMID: 27432317 PMCID: PMC5119679 DOI: 10.1177/0022034516659041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hydrogen sulfide (H2S) has long been known as a toxic gas. However, recently accumulated evidence suggests that H2S contributes to a variety of physiologic and pathologic processes. Endogenous H2S production is regulated by multiple enzymes that are differentially expressed in the cardiovascular, neuronal, immune, renal, respiratory, gastrointestinal, reproductive, liver, and endocrine systems. Alteration of H2S metabolism may affect multiple signaling pathways and tissue homeostasis. The growing number of diverse targets for which H2S serves as a gasotransmitter has been extensively reviewed elsewhere. In this review, the authors discuss current emerging evidence that H2S regulates mesenchymal stem cell and T-cell functions.
Collapse
Affiliation(s)
- R Yang
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Y Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - S Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| |
Collapse
|
28
|
Chun-Mei J, Wu C, Guo-Liang M, Yue G, Ning C, Ji Y. Production of endogenous hydrogen sulfide in human gingival tissue. Arch Oral Biol 2016; 74:108-113. [PMID: 27930932 DOI: 10.1016/j.archoralbio.2016.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/28/2016] [Accepted: 11/27/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Endogenous hydrogen sulfide (H2S) has recently been shown to play an important role in inflammation, but the role of endogenous H2S in the human gingival tissue is unknown. The aim of this study was to investigate whether gingiva had enzymes for H2S synthesis, and whether the effect of these enzymes for H2S production changed with periodontal inflammation. DESIGN Gingival tissues were collected from patients undergoing periodontal operation including gingivitis, moderate chronic periodontitis, severe chronic periodontitis and normal controls. RT-PCR and western blotting were performed to measure mRNA and protein levels of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) for H2S production. Immunohistochemistry was carried out to detect the location of the enzymes. H2S levels and synthesis in gingival tissue were evaluated with modified methylene blue method. RESULTS The mRNA and protein of CBS and CSE were both expressed in human gingiva and raised significantly in moderate and severe periodontitis compared of that in healthy control. CBS, but not CSE, increased in gingivitis (p<0.05). However, there was no significant difference of H2S level and synthesis among these groups (p>0.05). CONCLUSIONS Both CBS and CSE were expressed in human gingival tissue. The mRNA and protein levels of CBS and CSE were up-regulated in periodontitis.
Collapse
Affiliation(s)
- Jiang Chun-Mei
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Chen Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Meng Guo-Liang
- Atherosclerosis Research Center, School of Pharmacy, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Gu Yue
- Atherosclerosis Research Center, School of Pharmacy, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Chen Ning
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| | - Yong Ji
- Atherosclerosis Research Center, School of Pharmacy, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
29
|
Yalçın Yeler D, Aydın M, Hocaoğlu PT, Koraltan M, Özdemir H, Kotil T, Gül M. Ultrastructural changes in epithelial cells of rats exposed to low concentration of hydrogen sulfide for 50 days. Ultrastruct Pathol 2016; 40:351-357. [PMID: 27736270 DOI: 10.1080/01913123.2016.1234530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Hydrogen sulfide (H2S) and other volatile sulfur compounds (VSCs) appear mainly in the oral air of patients with halitosis. It seems that VSCs are directly involved in the pathogenesis of gingival diseases. In previous studies, short-term (7 hours-4 days), high concentrations (5-400 ppm) of H2S applications on periodontal tissues have been evaluated in a culture medium. The aim of the present study was to investigate the potential effects of lower (equivalent to halitosis) concentrations of H2S on rat gingival tissue for longer-term inhalation. The threshold level of pathologic halitosis perceived by humans at 250 ppb of H2S was converted to rat equivalent concentration (4.15 ppm). Rats in the experimental (H2S) group (n=8) were exposed to H2S continuously but not the control rats (n=8). After 50 days, the gingival sulcular tissue samples of each rat were taken and examined using transmission electron microscope. Ultrastructural changes in the sulcular epithelia of the rat gingiva showed deformation of celullar shape, vacuolization, and disintegrity of intercelullar connection by loss of desmosomes and collagen fibrils. No basal membrane damage was observed. Inhalation of low levels of H2S (equivalent of halitosis) in the oral environment causes ultrastructural celullar damages in rat sulcular mucosa. These results suggest that halitosis may be the potential reason for periodontal destruction in humans.
Collapse
Affiliation(s)
- Defne Yalçın Yeler
- a Depatment of Oral and Maxillofacial Radiology, Faculty of Dentistry , Cumhuriyet University , Sivas , Turkey.,g Member of Halitorium-Halitosis , Research Group
| | - Murat Aydın
- c Private practice , Adana , Turkey.,g Member of Halitorium-Halitosis , Research Group
| | - Peyami Turgay Hocaoğlu
- b Department of Oral and Maxillofacial Surgery, Faculty of Dentistry , Cumhuriyet University , Sivas , Turkey
| | - Melike Koraltan
- b Department of Oral and Maxillofacial Surgery, Faculty of Dentistry , Cumhuriyet University , Sivas , Turkey
| | - Hakan Özdemir
- f Department of Periodontology, Faculty of Dentistry , Osmangazi University , Eskişehir , Turkey
| | - Tuğba Kotil
- e Department of Histology and Embryology, Faculty of Medicine , Istanbul University , Istanbul , Turkey
| | - Mehmet Gül
- d Department of Histology and Embryology, Faculty of Medicine , Inönü University , Malatya , Turkey
| |
Collapse
|
30
|
Song B, Zhou T, Yang WL, Liu J, Shao LQ. Programmed cell death in periodontitis: recent advances and future perspectives. Oral Dis 2016; 23:609-619. [PMID: 27576069 DOI: 10.1111/odi.12574] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/31/2016] [Accepted: 08/19/2016] [Indexed: 12/18/2022]
Abstract
Periodontitis is a highly prevalent infectious disease, characterized by destruction of the periodontium, and is the main cause of tooth loss. Periodontitis is initiated by periodontal pathogens, while other risk factors including smoking, stress, and systemic diseases aggravate its progression. Periodontitis affects many people worldwide, but the molecular mechanisms by which pathogens and risk factors destroy the periodontium are unclear. Programmed cell death (PCD), different from necrosis, is an active cell death mediated by a cascade of gene expression events and can be mainly classified into apoptosis, autophagy, necroptosis, and pyroptosis. Although PCD is involved in many inflammatory diseases, its correlation with periodontitis is unclear. After reviewing the relevant published articles, we found that apoptosis has indeed been reported to play a role in periodontitis. However, the role of autophagy in periodontitis needs further verification. Additionally, implication of necroptosis or pyroptosis in periodontitis remains unknown. Therefore, we recommend future studies, which will unravel the pivotal role of PCD in periodontitis, allowing us to prevent, diagnose, and treat the disease, as well as predict its outcomes.
Collapse
Affiliation(s)
- B Song
- Guizhou Provincial People's Hospital, Guiyang, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - T Zhou
- Guizhou Provincial People's Hospital, Guiyang, China
| | - W L Yang
- Guizhou Provincial People's Hospital, Guiyang, China
| | - J Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - L Q Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Gaurilcikaite E, Renton T, Grant AD. The paradox of painless periodontal disease. Oral Dis 2016; 23:451-463. [PMID: 27397640 DOI: 10.1111/odi.12537] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/04/2016] [Accepted: 06/23/2016] [Indexed: 12/23/2022]
Abstract
Periodontal diseases, primarily gingivitis and periodontitis, are characterised by progressive inflammation and tissue destruction. However, they are unusual in that they are not also accompanied by the pain commonly seen in other inflammatory conditions. This suggests that interactions between periodontal bacteria and host cells create a unique environment in which the pro-algesic effects of inflammatory mediators and factors released during tissue damage are directly or indirectly inhibited. In this review, we summarise the evidence that periodontal disease is characterised by an accumulation of classically pro-algesic factors from bacteria and host cells. We then discuss several mechanisms by which inflammatory sensitisation of nociceptive fibres could be prevented through inactivation or inhibition of these factors. Further studies are necessary to fully understand the molecular processes underlying the endogenous localised hypoalgesia in human periodontal disease. This knowledge might provide a rational basis to develop future therapeutic interventions, such as host modulation therapies, against a wide variety of other human pain conditions.
Collapse
Affiliation(s)
- E Gaurilcikaite
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - T Renton
- Department of Oral Surgery, Dental Institute, King's College London, London, UK
| | - A D Grant
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
32
|
Yeler DY, Hocaoglu T, Koraltan M, Aydin M, Gul M, Gul S. Structural changes in periodontium of rats exposed to a low concentration of hydrogen sulfide for 50 days. EUR J INFLAMM 2016. [DOI: 10.1177/1721727x16659289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The aim of the present study was to investigate the effect of H2S inhalation at a low concentration (at human equivalent dose of pathologic halitosis) on rat periodontium over a long term (50 days). The threshold level of pathologic halitosis perceived by humans at 250 ppb of H2S was converted to rat equivalent concentration (4.15 ppm). Rats in the experimental (H2S) group (n = 8) were exposed to H2S continuously but not the control rats (n = 8). After 50 days, periodontal tissue samples were taken from the mandibular first molar region and examined histopathologically to determine inflammatory cell infiltration (ICI), osteoblastic activities, number of osteoclasts, and resorption lacunae. Sulcular epithelium layer destruction was observed in the H2S group. Frequency of ICI was significantly higher in the H2S group compared to the control group ( P <0.05). The number of osteoclasts were found significantly higher in the H2S group (34.28 ± 3.28) compared to the control group (8.85 ± 1.85) ( P <0.05) and the number of resorption lacunae were also higher in the cementum tissue (6.1 ± 2.4) and alveolar bone (3.8 ± 1.5) versus their corresponding control groups (1.6 ± 0.5 and 1.4 ± 0.5, respectively) ( P <0.05). There were no statistically significant differences between the two groups with regard to osteoblastic activity. H2S inhalation induces inflammatory changes in the periodontium as well as resorption of the alveolar bone and cementum tissue in rats. These histopathologic changes in periodontal tissues support the idea that long-term H2S inhalation may have a destructive effect on periodontal tissues.
Collapse
Affiliation(s)
- Defne Yalcin Yeler
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Cumhuriyet University, Sivas, Turkey
| | - Turgay Hocaoglu
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Cumhuriyet University, Sivas, Turkey
| | - Melike Koraltan
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Cumhuriyet University, Sivas, Turkey
| | | | - Mehmet Gul
- Department of Histology and Embryology, Faculty of Medicine, Inönü University, Malatya, Turkey
| | - Semir Gul
- Department of Histology and Embryology, Faculty of Medicine, Inönü University, Malatya, Turkey
| |
Collapse
|
33
|
Song B, Zhang YL, Chen LJ, Zhou T, Huang WK, Zhou X, Shao LQ. The role of Toll-like receptors in periodontitis. Oral Dis 2016; 23:168-180. [PMID: 26923115 DOI: 10.1111/odi.12468] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/08/2016] [Accepted: 02/21/2016] [Indexed: 12/14/2022]
Abstract
Periodontitis is a common infectious disease. Recent studies have indicated that the progression of periodontitis may be regulated by interactions between host immunity and periodontopathic bacteria. Although periodontopathic bacteria can destroy periodontal tissue, a dysfunctional host immune response triggered by the bacteria can lead to more severe and persistent destruction. Toll-like receptors (TLRs), a type of pattern recognition receptor (PRR) that recognizes pathogens, have been implicated in host innate immune responses to periodontopathic bacteria and in the activation of adaptive immunity. TLR-targeted drugs may hold promise to treat periodontal disease. This review summarizes recent studies on the role of TLRs in periodontitis and discusses areas needing further research. We believe TLRs may be an effective biomarker for the prevention, diagnosis, and treatment of periodontitis in the near future.
Collapse
Affiliation(s)
- B Song
- Guizhou Provincial People's Hospital, Guiyang, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Y L Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - L J Chen
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - T Zhou
- Guizhou Provincial People's Hospital, Guiyang, China
| | - W K Huang
- Guizhou Provincial People's Hospital, Guiyang, China
| | - X Zhou
- Guizhou Provincial People's Hospital, Guiyang, China
| | - L Q Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Endogenous hydrogen sulfide is involved in osteogenic differentiation in human periodontal ligament cells. Arch Oral Biol 2016; 68:1-8. [PMID: 27035752 DOI: 10.1016/j.archoralbio.2016.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 03/01/2016] [Accepted: 03/18/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Endogenous hydrogen sulfide (H2S) has recently emerged as an important intracellular gaseous signaling molecule within cellular systems. Endogenous H2S is synthesized from l-cysteine via cystathionine β-synthase and cystathionine γ-lyase and it regulates multiple signaling pathways in mammalian cells. Indeed, aberrant H2S levels have been linked to defects in bone formation in experimental mice. The aim of this study was to examine the potential production mechanism and function of endogenous H2S within primary human periodontal ligament cells (PDLCs). DESIGN Primary human PDLCs were obtained from donor molars with volunteer permission. Immunofluorescent labeling determined expression of the H2S synthetase enzymes. These enzymes were inhibited with D,L-propargylglycine or hydroxylamine to examine the effects of H2S signaling upon the osteogenic differentiation of PDLCs. Gene and protein expression levels of osteogenic markers in conjunction with ALP staining and activity and alizarin red S staining of calcium deposition were used to assay the progression of osteogenesis under different treatment conditions. Cultures were exposed to Wnt3a treatment to assess downstream signaling mechanisms. RESULTS In this study, we show that H2S is produced by human PDLCs via the cystathionine β-synthase/cystathionine γ-lyase pathway to promote their osteogenic differentiation. These levels must be carefully maintained as excessive or deficient H2S levels temper the observed osteogenic effect by inhibiting Wnt/β-catenin signaling. CONCLUSIONS These results demonstrate that optimal concentrations of endogenous H2S must be maintained within PDLCs to promote osteogenic differentiation by activating the Wnt/β-catenin signaling cascade.
Collapse
|
35
|
Zhang S, Bian H, Li X, Wu H, Bi Q, Yan Y, Wang Y. Hydrogen sulfide promotes cell proliferation of oral cancer through activation of the COX2/AKT/ERK1/2 axis. Oncol Rep 2016; 35:2825-32. [PMID: 26987083 DOI: 10.3892/or.2016.4691] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/27/2016] [Indexed: 11/05/2022] Open
Abstract
Hydrogen sulfide, the third gaseous transmitter, is one of the main causes of halitosis in the oral cavity. It is generally considered as playing a deleterious role in many oral diseases including oral cancer. However, the regulatory mechanisms involved in the effects of hydrogen sulfide on oral cancer growth remain largely unknown. In the present study, we investigated the underlying mechanisms through CCK-8 assay, EdU incorporation, real-time PCR, western blot and pathway blockade assays. Our results showed that hydrogen sulfide promoted oral cancer cell proliferation through activation of the COX2, AKT and ERK1/2 pathways in a dose-dependent manner. Blocking any of the three above pathways inhibited hydrogen sulfide-induced oral cancer cell proliferation. Meanwhile, blockade of COX2 by niflumic acid downregulated NaHS-induced p-ERK and p-AKT expression. Inactivation of the AKT pathway by GSK690693 significantly decreased NaHS‑induced p-ERK1/2 expression, and inhibition of the ERK1/2 pathway by U0126 markedly increased NaHS-induced p-AKT expression. Either the AKT or ERK1/2 inhibitor did not significantly alter the COX2 expression level. Our data revealed, for the first time, that hydrogen sulfide promotes oral cancer cell proliferation through activation of the COX2/AKT/ERK1/2 axis, suggesting new potential targets to eliminate the effect of hydrogen sulfide on the development of oral cancer.
Collapse
Affiliation(s)
- Shuai Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Huan Bian
- Department of Stomatology, The First Affiliated Hospital of the Chinese PLA General Hospital, Beijing, P.R. China
| | - Xiaoxu Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Huanhuan Wu
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Qingwei Bi
- Department of Oral Surgery, Hospital for Oral Disease Prevention and Treatment, Harbin, Heilongjiang, P.R. China
| | - Yingbin Yan
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, Tianjin, P.R. China
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| |
Collapse
|
36
|
Su Y, Liu D, Liu Y, Zhang C, Wang J, Wang S. Physiologic Levels of Endogenous Hydrogen Sulfide Maintain the Proliferation and Differentiation Capacity of Periodontal Ligament Stem Cells. J Periodontol 2015; 86:1276-86. [DOI: 10.1902/jop.2015.150240] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Short-term effects of subchronic low-level hydrogen sulfide exposure on oil field workers. Environ Health Prev Med 2014; 20:12-7. [PMID: 25315268 DOI: 10.1007/s12199-014-0415-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/10/2014] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVES To investigate the short-term effects of low-level hydrogen sulfide (H2S) exposure on oil field workers. MATERIALS AND METHODS Observational study included 34 patients who work at an oil field. All patients were males with age range of 22-60 years (mean 37 years). The data were collected by systematic questionnaire about symptoms. The inclusion criteria of patients were symptoms related to inhalation of H2S gas in the oil field. The complaints should be frequent and relapsed after each gas exposure and disappeared when there was no gas exposure. Exclusion criteria were the symptoms which experienced with or without H2S exposure. The presence of H2S gas was confirmed by valid gas detector devices. RESULTS The most frequent presenting symptom was nasal bleeding. It was revealed in 18 patients (52.9%). This followed by pharyngeal bleeding, gum bleeding, and bloody saliva (mouth bleeding) which were encountered in five cases for each complaint (14.7%). Other less frequent presenting symptoms were tongue bleeding, bloody sputum, headache, abdominal colic, pharyngeal soreness, fatigue, and sleepiness. CONCLUSIONS Nasal mucosa was the most vulnerable part to H2S effect. Inhalation of H2S produced upper respiratory tract epithelial damage that led to bleeding from nose, pharynx, gum, tongue, trachea, and bronchi. There were no complaints of asthmatic attack upon exposure to low level of H2S. Sunlight had a significant role in reduction of ambient air H2S level.
Collapse
|
38
|
Chi XP, Ouyang XY, Wang YX. Hydrogen sulfide synergistically upregulates Porphyromonas gingivalis lipopolysaccharide-induced expression of IL-6 and IL-8 via NF-κB signalling in periodontal fibroblasts. Arch Oral Biol 2014; 59:954-61. [DOI: 10.1016/j.archoralbio.2014.05.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 12/17/2022]
|
39
|
Spyrakis F, Cellini B, Bruno S, Benedetti P, Carosati E, Cruciani G, Micheli F, Felici A, Cozzini P, Kellogg GE, Voltattorni CB, Mozzarelli A. Targeting cystalysin, a virulence factor of treponema denticola-supported periodontitis. ChemMedChem 2014; 9:1501-11. [PMID: 24616267 DOI: 10.1002/cmdc.201300527] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/13/2014] [Indexed: 01/01/2023]
Abstract
Cystalysin from Treponema denticola is a pyridoxal 5'-phosphate dependent lyase that catalyzes the formation of pyruvate, ammonia, and sulfide from cysteine. It is a virulence factor in adult periodontitis because its reaction contributes to hemolysis, which sustains the pathogen. Therefore, it was proposed as a potential antimicrobial target. To identify specific inhibitors by structure-based in silico methods, we first validated the crystal structure of cystalysin as a reliable starting point for the design of ligands. By using single-crystal absorption microspectrophotometry, we found that the enzyme in the crystalline state, with respect to that in solution, exhibits: 1) the same absorption spectra for the catalytic intermediates, 2) a close pKa value for the residue controlling the keto enamine ionization, and 3) similar reactivity with glycine, L-serine, L-methionine, and the nonspecific irreversible inhibitor aminoethoxyvinylglycine. Next, we screened in silico a library of 9357 compounds with the Fingerprints for Ligands and Proteins (FLAP) software, by using the three-dimensional structure of cystalysin as a template. From the library, 17 compounds were selected and experimentally evaluated by enzyme assays and spectroscopic methods. Two compounds were found to competitively inhibit recombinant T. denticola cystalysin, with inhibition constant (Ki ) values of 25 and 37 μM. One of them exhibited a minimum inhibitory concentration (MIC) value of 64 μg mL(-1) on Moraxella catarrhalis ATCC 23246, which proves its ability to cross bacterial membranes.
Collapse
Affiliation(s)
- Francesca Spyrakis
- Department of Food Sciences, University of Parma, Parma (Italy); Current address: Department of Life Sciences, University of Modena and Reggio Emilia, Modena (Italy)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Liao C, Hua Y. Effect of hydrogen sulphide on the expression of osteoprotegerin and receptor activator of NF-κB ligand in human periodontal ligament cells induced by tension-force stimulation. Arch Oral Biol 2013; 58:1784-90. [DOI: 10.1016/j.archoralbio.2013.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 07/08/2013] [Accepted: 08/05/2013] [Indexed: 01/03/2023]
|
41
|
Qabazard B, Ahmed S, Li L, Arlt VM, Moore PK, Stürzenbaum SR. C. elegans aging is modulated by hydrogen sulfide and the sulfhydrylase/cysteine synthase cysl-2. PLoS One 2013; 8:e80135. [PMID: 24260346 PMCID: PMC3832670 DOI: 10.1371/journal.pone.0080135] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/30/2013] [Indexed: 12/28/2022] Open
Abstract
Exogenous hydrogen sulfide (H2S) administration and endogenous H2S metabolism were explored in the nematode C. elegans. Chronic treatment with a slow-releasing H2S donor, GYY4137, extended median survival by 17-23% and increased tolerance towards oxidative and endoplasmic reticulum (ER) stress. Also, cysl-2, a sulfhydrylase/cysteine synthase in C. elegans, was transcriptionally upregulated by GYY4137 treatment and the deletion of cysl-2 resulted in a significant reduction in lifespan which was partially recovered by the supplementation of GYY4137. Likewise, a mammalian cell culture system, GYY4137 was able to protect bovine aortic endothelial cells (BAECs) from oxidative stress and (H2O2)-induced cell death. Taken together, this provides further support that H2S exerts a protective function which is consistent with the longevity dividend theory. Overall, this study underlines the therapeutic potential of a slow-releasing H2S donor as regulators of the aging and cellular stress pathways.
Collapse
Affiliation(s)
- Bedoor Qabazard
- School of Biomedical Sciences, King's College London, London, United Kingdom
| | - Samanza Ahmed
- School of Biomedical Sciences, King's College London, London, United Kingdom
| | - Ling Li
- School of Biomedical Sciences, King's College London, London, United Kingdom
| | - Volker M. Arlt
- School of Biomedical Sciences, King's College London, London, United Kingdom
| | - Philip K. Moore
- Neurobiology Group, Life Sciences Institute and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
42
|
Sodium/calcium exchanger is upregulated by sulfide signaling, forms complex with the β1 and β3 but not β2 adrenergic receptors, and induces apoptosis. Pflugers Arch 2013; 466:1329-42. [PMID: 24114174 DOI: 10.1007/s00424-013-1366-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/06/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022]
Abstract
Hydrogen sulfide (H2S) as a novel gasotransmitter regulates variety of processes, including calcium transport systems. Sodium calcium exchanger (NCX) is one of the key players in a regulation calcium homeostasis. Thus, the aims of our work were to determine effect of sulfide signaling on the NCX type 1 (NCX1) expression and function in HeLa cells, to investigate the relationship of β-adrenergic receptors with the NCX1 in the presence and/or absence of H2S, and to determine physiological importance of this potential communication. As a H2S donor, we used morpholin-4-ium-4-methoxyphenyl(morpholino) phosphinodithioate-GYY4137. We observed increased levels of the NCX1 mRNA, protein, and activity after 24 h of GYY4137 treatment. This increase was accompanied by elevated cAMP due to the GYY4137 treatment, which was completely abolished, when NCX1 was silenced. Increased cAMP levels would point to upregulation of β-adrenergic receptors. Indeed, GYY4137 increased expression of β1 and β3 (but not β2) adrenergic receptors. These receptors co-precipitated, co-localized with the NCX1, and induced apoptosis in the presence of H2S. Our results suggest that sulfide signaling plays a role in regulation of the NCX1, β1 and β3 adrenergic receptors, their co-localization, and stimulation of apoptosis, which might be of a potential importance in cancer treatment.
Collapse
|
43
|
Fu YW, He HB. Apoptosis of periodontium cells in streptozototocin- and ligature-induced experimental diabetic periodontitis in rats. Acta Odontol Scand 2013; 71:1206-15. [PMID: 23294164 DOI: 10.3109/00016357.2012.757638] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the presence of apoptosis of periodontium cells in streptozototocin- and ligature-induced experimental diabetic periodontitis in rats. MATERIALS AND METHODS Sixty-two 6-week-old male Sprague-Dawley (SD) rats were randomly divided into three groups: the diabetic periodontitis group (group DP; n = 22), periodontitis group (group P; n = 20) and normal control group (group N; n = 20). Diabetes was induced by intraperitoneal injection of streptozototocin (STZ). Periodontitis was initiated by ligating floss around maxillary second molars. The animals were sacrificed at 3 and 6 weeks after ligature placement in the P and DP groups. Maxillary dentoalveolar segments were isolated and were prepared for morphometric analysis of alveolar bone loss (ABL) and for histological analysis. RESULTS ABL was significantly increased in group DP compared with group P (p < 0.05). The number of PDL fibroblasts, osteoblasts and osteocytes in group DP was decreased compared with group P (p < 0.05). Inter-group analysis revealed higher osteoclast numbers in the inflammatory area of group DP and group P when compared with group N (p < 0.05). Also, compared with group P, group DP had more higher osteoclast numbers (p < 0.05). Periodontitis and diabetic periodontitis also increased apoptosis of fibroblasts, osteoblasts and osteocytes. The percentage of these apoptotic cells was ∼ 2-fold higher in group DP vs group P. CONCLUSIONS The results of these studies suggest that diabetes may have a negative effect on the periodontium by increasing the formation of osteoclasts and enhancing apoptosis of fibroblasts, osteoblasts and osteocytes in the periodontal tissue.
Collapse
Affiliation(s)
- Yong-Wei Fu
- Department of Stomatology, The First People's Hospital of Lianyungang City, Lianyungang, Jiangsu Province, PR China.
| | | |
Collapse
|
44
|
Lencesova L, Hudecova S, Csaderova L, Markova J, Soltysova A, Pastorek M, Sedlak J, Wood ME, Whiteman M, Ondrias K, Krizanova O. Sulphide signalling potentiates apoptosis through the up-regulation of IP3 receptor types 1 and 2. Acta Physiol (Oxf) 2013; 208:350-61. [PMID: 23582047 DOI: 10.1111/apha.12105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/15/2012] [Accepted: 04/04/2013] [Indexed: 12/14/2022]
Abstract
AIM To investigate an interaction between the calcium and sulphide signalling pathways, particularly effects of the slow H2 S release donor morpholin-4-ium-4-methoxyphenyl-(morpholino)-phosphinodithioate (GYY4137) on the expression of inositol 1,4,5-trisphosphate receptors (IP3 R) with the possible impact on the apoptosis induction in HeLa cells. METHODS Gene expression, Western blot analysis, apoptosis determination by Annexin-V-FLUOS and drop in mitochondrial membrane potential by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide (JC1) and immunofluorescence were used to determine differences in control and GYY4137-treated HeLa cells. RESULTS In HeLa cell line, GYY4137 (10 μm) up-regulated expression of the IP3 R1 and IP3 R2, but not IP3 R3 on both mRNA and protein levels. Concurrently, cytosolic calcium increased and reticular calcium was depleted in concentration-dependent manner, partially by the involvement of IP3 R. Depletion of calcium from reticulum was accompanied by increase in endoplasmic reticulum (ER) stress markers, such as X-box, CHOP and ATF4, thus pointing to the development of ER stress due to GYY4137 treatment. Also, GYY4137 treatment of HeLa cells increased the number of apoptotic cells. CONCLUSION These results suggest an involvement of H2 S in both IP3 -induced calcium signalling and induction of apoptosis, possibly through the activation of ER stress.
Collapse
Affiliation(s)
- L. Lencesova
- Institute of Molecular Physiology and Genetics; Slovak Academy of Sciences; Bratislava; Slovak Republic
| | - S. Hudecova
- Institute of Molecular Physiology and Genetics; Slovak Academy of Sciences; Bratislava; Slovak Republic
| | - L. Csaderova
- Molecular Medicine Center; Slovak Academy of Sciences; Bratislava; Slovak Republic
| | - J. Markova
- Institute of Molecular Physiology and Genetics; Slovak Academy of Sciences; Bratislava; Slovak Republic
| | - A. Soltysova
- Institute of Molecular Physiology and Genetics; Slovak Academy of Sciences; Bratislava; Slovak Republic
| | - M. Pastorek
- Cancer Research Institute; Slovak Academy of Sciences; Bratislava; Slovak Republic
| | - J. Sedlak
- Cancer Research Institute; Slovak Academy of Sciences; Bratislava; Slovak Republic
| | - M. E. Wood
- Department of Biosciences; College of Life and Environmental Sciences; University of Exeter; Exeter; UK
| | - M. Whiteman
- University of Exeter Medical School; Exeter; UK
| | - K. Ondrias
- Institute of Molecular Physiology and Genetics; Slovak Academy of Sciences; Bratislava; Slovak Republic
| | - O. Krizanova
- Institute of Molecular Physiology and Genetics; Slovak Academy of Sciences; Bratislava; Slovak Republic
| |
Collapse
|
45
|
Fox B, Schantz JT, Haigh R, Wood ME, Moore PK, Viner N, Spencer JPE, Winyard PG, Whiteman M. Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: is H2S a novel cytoprotective mediator in the inflamed joint? J Cell Mol Med 2012; 16:896-910. [PMID: 21679296 PMCID: PMC3822858 DOI: 10.1111/j.1582-4934.2011.01357.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Hydrogen sulfide (H2S) has recently been proposed as an endogenous mediator of inflammation and is present in human synovial fluid. This study determined whether primary human articular chondrocytes (HACs) and mesenchymal progenitor cells (MPCs) could synthesize H2S in response to pro-inflammatory cytokines relevant to human arthropathies, and to determine the cellular responses to endogenous and pharmacological H2S. HACs and MPCs were exposed to IL-1β, IL-6, TNF-α and lipopolysaccharide (LPS). The expression and enzymatic activity of the H2S synthesizing enzymes cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) were determined by Western blot and zinc-trap spectrophotometry, respectively. Cellular oxidative stress was induced by H2O2, the peroxynitrite donor SIN-1 and 4-hydroxynonenal (4-HNE). Cell death was assessed by 3-(4,5-dimethyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Mitochondrial membrane potential (DCm) was determined in situ by flow cytometry. Endogenous H2S synthesis was inhibited by siRNA-mediated knockdown of CSE and CBS and pharmacological inhibitors D,L-propargylglycine and aminoxyacetate, respectively. Exogenous H2S was generated using GYY4137. Under basal conditions HACs and MPCs expressed CBS and CSE and synthesized H2S in a CBS-dependent manner, whereas CSE expression and activity was induced by treatment of cells with IL-1β, TNF-α, IL-6 or LPS. Oxidative stress-induced cell death was significantly inhibited by GYY4137 treatment but increased by pharmacological inhibition of H2S synthesis or by CBS/CSE-siRNA treatment. These data suggest CSE is an inducible source of H2S in cultured HACs and MPCs. H2S may represent a novel endogenous mechanism of cytoprotection in the inflamed joint, suggesting a potential opportunity for therapeutic intervention.
Collapse
Affiliation(s)
- Bridget Fox
- Peninsula Medical School, University of Exeter, St. Luke's Campus, Exeter, Devon, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pan Y, Ye S, Yuan D, Zhang J, Bai Y, Shao C. Radioprotective role of H(2)S/CSE pathway in Chang liver cells. Mutat Res 2012; 738-739:12-18. [PMID: 22982226 DOI: 10.1016/j.mrfmmm.2012.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/13/2012] [Accepted: 08/30/2012] [Indexed: 06/01/2023]
Abstract
Radiation-induced liver cell damage may be life-threatening. Here, we investigated whether hydrogen sulfide (H(2)S)/cystathionine γ-lyase (CSE) pathway could serve the protective role toward radiation in normal human liver cells. Our data showed that pretreatment of cells with H(2)S donor, sodium hydrosulfide (NaHS) significantly attenuated radiation induced micronuclei formation and improved cell viability. However, the use of dl-propargylglycine (PPG), a potent inhibitor of CSE, markedly enhanced the cell-killing effect induced by radiation. Exposure of cells to 2Gy γ-radiation led to significant increases of the endogenous H(2)S content. The mRNA and protein expressions of CSE also increased after radiation in a time-dependent manner, while the expression of cystathionine β-synthase (CBS), another endogenous H(2)S synthetase, did not change significantly. Notably, radiation induced production of reactive oxygen species (ROS) was significantly reversed by the pretreatment of NaHS, while blockage of CSE activity resulted in an enhanced ROS production in irradiated cells. Moreover, NaHS markedly suppressed radiation-induced phosphorylation of P53, decrease of Bcl-2/Bax, and activity of nuclear factor kappaB (NF-κB). In conclusion, our finding demonstrates that H(2)S/CSE pathway plays a radioprotection role by inhibiting radiation-induced ROS production, P53 phosphorylation, NF-κB activation and decrease of Bcl-2/Bax, indicating that modulation of H(2)S may be a novel protection strategy for liver radiation injury in radiotherapy.
Collapse
Affiliation(s)
- Yan Pan
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
47
|
Tomokiyo A, Maeda H, Fujii S, Monnouchi S, Wada N, Hori K, Koori K, Yamamoto N, Teramatsu Y, Akamine A. Alternation of extracellular matrix remodeling and apoptosis by activation of the aryl hydrocarbon receptor pathway in human periodontal ligament cells. J Cell Biochem 2012; 113:3093-103. [DOI: 10.1002/jcb.24186] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
Abstract
Oral Treponema species, most notably T. denticola, are implicated in the destructive effects of human periodontal disease. Progress in the molecular analysis of interactions between T. denticola and host proteins is reviewed here, with particular emphasis on the characterization of surface-expressed and secreted proteins of T. denticola involved in interactions with host cells, extracellular matrix components, and components of the innate immune system.
Collapse
Affiliation(s)
- J. Christopher Fenno
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
49
|
Suwabe K, Yoshida Y, Nagano K, Yoshimura F. Identification of an L-methionine γ-lyase involved in the production of hydrogen sulfide from L-cysteine in Fusobacterium nucleatum subsp. nucleatum ATCC 25586. MICROBIOLOGY-SGM 2011; 157:2992-3000. [PMID: 21798982 DOI: 10.1099/mic.0.051813-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fusobacterium nucleatum produces an abundance of hydrogen sulfide (H(2)S) in the oral cavity that is mediated by several enzymes. The identification and characterization of three distinct enzymes (Fn0625, Fn1055 and Fn1220) in F. nucleatum that catalyse the production of H(2)S from l-cysteine have been reported. In the current study, a novel enzyme involved in the production of H(2)S in F. nucleatum ATCC 25586, whose molecular mass had been estimated to be approximately 130 kDa, was identified by two-dimensional electrophoresis combined with MALDI-TOF MS. The enzyme, Fn1419, has previously been characterized as an l-methionine γ-lyase. SDS-PAGE and gel-filtration chromatography indicated that Fn1419 has a molecular mass of 43 kDa and forms tetramers in solution. Unlike other enzymes associated with H(2)S production in F. nucleatum, the quaternary structure of Fn1419 was not completely disrupted by exposure to SDS. The purified recombinant enzyme exhibited a K(m) of 0.32±0.02 mM and a k(cat) of 0.69±0.01 s(-1). Based on current and published data, the enzymic activity for H(2)S production from l-cysteine in F. nucleatum is ranked as follows: Fn1220>Fn1055>Fn1419>Fn0625. Based on kinetic values and relative mRNA levels of the respective genes, as determined by real-time quantitative PCR, the amount of H(2)S produced by Fn1419 was estimated to be 1.9 % of the total H(2)S produced from l-cysteine in F. nucleatum ATCC 25586. In comparison, Fn1220 appeared to contribute significantly to H(2)S production (87.6 %).
Collapse
Affiliation(s)
- Kyosuke Suwabe
- Department of Conservative Dentistry and Oral Rehabilitation, School of Dentistry, Iwate Medical University, Morioka, Iwate, Japan.,Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Yasuo Yoshida
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| |
Collapse
|
50
|
Baskar R, Bian J. Hydrogen sulfide gas has cell growth regulatory role. Eur J Pharmacol 2011; 656:5-9. [PMID: 21300051 DOI: 10.1016/j.ejphar.2011.01.052] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 01/08/2011] [Accepted: 01/25/2011] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide (H(2)S) has been classified as a third novel gasotransmitter signaling molecule alongside nitric oxide and carbon monoxide. H(2)S rapidly travels through the cell membranes without using any specific receptors/transporters and signaling intracellular proteins. Recently, it has been shown that H(2)S induces DNA damage and alter cell cycle in various mammalian cells. Endogenously produced or exogenously treated H(2)S has a role in the accumulation or proliferation of cells and further may provide for development of a novel therapeutic approach in conditions associated with uncontrolled cell growth. However, the potential biological and clinical significance of H(2)S are subject of intense debate in recent years and despite considerable progress in our understanding about H(2)S, much still needs to be learned about their production at the site of tissue injury and its downstream signaling pathways on cell growth. Here, we provide an overview of the recent findings on its role in DNA damage/repair and cell growth followed by its potential translational implications.
Collapse
Affiliation(s)
- Rajamanickam Baskar
- Department of Radiation Oncology, Division of Cellular and Molecular Research, National Cancer Centre, 11, Hospital Drive, Singapore-169610, Republic of Singapore.
| | | |
Collapse
|