1
|
Wang C, Li J, Zhu Q, Li J, Zhang C, Hong R, Huang D, Zhang Z, Xu J, Li D, Wen J, Li C, Zhu Y, Lee D, Chen L. Breeding D1-Type Hybrid Japonica Rice in Diverse Upland Rainfed Environments. Int J Mol Sci 2025; 26:3246. [PMID: 40244086 PMCID: PMC11989851 DOI: 10.3390/ijms26073246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
'Dianheyou615' (DHY615) is an elite Dian (D1)-type hybrid japonica rice variety, renowned for its high yield, exceptional grain quality, and unique adaptability to both irrigated and rainfed conditions in the Yungui Plateau of southwestern China. However, the genetic mechanisms underlying the agronomic performance of the D1-type hybrid japonica rice remain unclear. In this study, a comprehensive analysis of 'DHY615''s agronomic performance, genetic genealogy, and molecular genetic foundation was conducted to dissect its desirable traits for upland rainfed cultivation across diverse ecological environments. The main findings indicate that 'DHY615' possesses 6432 heterozygous SNPs, with 57.48% and 14.43% located in the promoter and coding regions, respectively, potentially affecting key phenotypic traits. High-impact SNPs variants and numerous well-known functional genes were identified, such as OsAAP6, GS3, Sd1, Rf1, BADH2, BPh14, Rymv1, OsFRO1, NRT1.1B, SKC1, OsNCED2, and qUVR-10, which are likely linked to traits including plant architecture, grain yield, grain quality, and resistance to various biotic and abiotic stresses (e.g., disease, cold, drought, salt, high iron, and high UV radiation). Notably, 'Nan615' harbors a greater number of functional allele variants compared to 'H479A', which potentially explaining its superior grain yield and remarkable adaptability. This study offers novel and valuable insights into the molecular genetic foundation of the plateau D1-type hybrid japonica rice, underscoring its potential for sustainable rice production across diverse ecological zones, especially with its unparalleled high-altitude adaptability to rainfed upland planting.
Collapse
Affiliation(s)
- Chunli Wang
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
| | - Juan Li
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
| | - Qian Zhu
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (C.L.); (Y.Z.)
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Junjie Li
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
| | - Cui Zhang
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
| | - Ruke Hong
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
| | - Dajun Huang
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
| | - Zhonglin Zhang
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
| | - Jin Xu
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
| | - Dandan Li
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
| | - Jiancheng Wen
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (C.L.); (Y.Z.)
| | - Youyong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (C.L.); (Y.Z.)
| | - Dongsun Lee
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (C.L.); (Y.Z.)
| | - Lijuan Chen
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (C.W.); (J.L.); (Q.Z.); (J.L.); (C.Z.); (R.H.); (D.H.); (Z.Z.); (J.X.); (D.L.); (J.W.)
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Yang M, Sakuraba Y, Yanagisawa S. Down-regulation of the rice HRS1 HOMOLOG3 transcriptional repressor gene due to N deficiency directly co-activates ammonium and phosphate transporter genes. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:461-477. [PMID: 39470443 PMCID: PMC11714757 DOI: 10.1093/jxb/erae440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/29/2024] [Indexed: 10/30/2024]
Abstract
Rice HRS1 HOMOLOG3 (OsHHO3) acts as a transcriptional repressor of AMMONIUM TRANSPORTER1 (OsAMT1) genes in rice; thus, reduced OsHHO3 expression in nitrogen (N)-deficient environments promotes ammonium uptake. In this study, we show that OsHHO3 also functions as a repressor of a specific subset of phosphate (Pi) transporter (PT) genes involved in the uptake and root-to-shoot translocation of Pi, including OsPT2, OsPT4, and OsPHO1;1. Disruption of OsHHO3 increased Pi uptake and Pi contents in shoots and roots, while overexpression of OsHHO3 caused the opposite effects. Furthermore, phosphorus (P) deficiency slightly decreased OsHHO3 expression, up-regulating a specific subset of PT genes. However, N deficiency was more effective than P deficiency in suppressing OsHHO3 expression in roots, and unlike N deficiency-dependent activation of PT genes under the control of OsHHO3, the P deficiency-dependent activation of OsAMT1 genes was minimal. Interestingly, the simultaneous deficiency of both N and P promoted the OsHHO3-regulated expression of PT genes more significantly than the deficiency of either N or P, but diminished the expression of genes regulated by OsPHR2, a master regulator of Pi starvation-responsive transcriptional activation. Phenotypic analysis revealed that the inactivation and overexpression of OsHHO3 improved and reduced plant growth, respectively, under N-deficient and P-deficient conditions. These results indicate that OsHHO3 regulates a specific subset of PT genes independently of OsPHR2-mediated regulation and plays a critical role in the adaptation to diverse N and P environments.
Collapse
Affiliation(s)
- Mailun Yang
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuhito Sakuraba
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
Jost R, Berkowitz O, Pegg A, Hurgobin B, Tamiru-Oli M, Welling MT, Deseo MA, Noorda H, Brugliera F, Lewsey MG, Doblin MS, Bacic A, Whelan J. Sink strength, nutrient allocation, cannabinoid yield, and associated transcript profiles vary in two drug-type Cannabis chemovars. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:152-174. [PMID: 39225376 PMCID: PMC11659186 DOI: 10.1093/jxb/erae367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 09/05/2024] [Indexed: 09/04/2024]
Abstract
Cannabis sativa L. is one of the oldest domesticated crops. Hemp-type cultivars, which predominantly produce non-intoxicating cannabidiol (CBD), have been selected for their fast growth, seed, and fibre production, while drug-type chemovars were bred for high accumulation of tetrahydrocannabinol (THC). We investigated how the generation of CBD-dominant chemovars by introgression of hemp- into drug-type Cannabis impacted plant performance. The THC-dominant chemovar showed superior sink strength, higher flower biomass, and demand-driven control of nutrient uptake. By contrast, the CBD-dominant chemovar hyperaccumulated phosphate in sink organs leading to reduced carbon and nitrogen assimilation in leaves, which limited flower biomass and cannabinoid yield. RNA-seq analyses determined organ- and chemovar-specific differences in expression of genes associated with nitrate and phosphate homeostasis as well as growth-regulating transcription factors that were correlated with measured traits. Among these were genes positively selected for during Cannabis domestication encoding an inhibitor of the phosphate starvation response, SPX DOMAIN GENE3, nitrate reductase, and two nitrate transporters. Altered nutrient sensing, acquisition, or distribution are likely a consequence of adaption to growth on marginal, low-nutrient-input lands in hemp. Our data provide evidence that such ancestral traits may become detrimental for female flower development and consequently overall CBD yield in protected cropping environments.
Collapse
Affiliation(s)
- Ricarda Jost
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Oliver Berkowitz
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Amelia Pegg
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Bhavna Hurgobin
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Muluneh Tamiru-Oli
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Matthew T Welling
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Myrna A Deseo
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Hannah Noorda
- Cann Group Limited, Port Melbourne, VIC 3207, Australia
| | | | - Mathew G Lewsey
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Centre of Excellence in Plants for Space, La Trobe University, Bundoora, VIC, Australia
| | - Monika S Doblin
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Antony Bacic
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - James Whelan
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
4
|
Du Y, Gong J, Dou Z, Zheng W, Sun R, Gao S. Genome-wide identification and expression analysis of phosphate-sensing SPX proteins in oats. Front Genet 2024; 15:1469704. [PMID: 39634271 PMCID: PMC11614802 DOI: 10.3389/fgene.2024.1469704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Phosphorus is indispensable to plant growth and development. Soil phosphorus deficiency poses a substantial constraint on crop yield. SPXs play pivotal roles in phosphate transport and absorption in plants. Yet, the functions of SPXs of oat (Avena sativa L.) under abiotic stresses remain unclear. In this study, we conducted a genome-wide analysis of 169 SPXs from hexaploid oat and five closely related plant species. All homologous AsSPXs were found to arise from duplication events and depict a strong purifying selection. Subcellular localization prediction revealed that AsSPXs were mainly located on the plasma membrane. Seventeen cis-acting elements, predominantly comprising light-, low temperature-, abscisic acid-, and drought-responsive elements, were dispersed in the promoter regions of AsSPXs. Analysis of cis-regulatory elements, protein-protein interaction networks, and qRT-PCR showed that AsSPXs are not solely involved in phosphorus starvation response but also in various stress responses. Notably, AsSPX18-5D (AVESA.00001b.r3.5Dg0002895) exerted pivotal roles in conferring resistance against low phosphorus, salt, and ABA treatments. Our study aimed to explore important stress-resistant genes in oat. Our results could provide a basis for future studies on the evolution and functions of the AsSPX gene family and a crucial foundation for comprehending how oat responds to environmental stresses.
Collapse
Affiliation(s)
- Yinke Du
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
| | - Jie Gong
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
| | - Ziyi Dou
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Wei Zheng
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Renwei Sun
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Laboratory of Plant Breeding and Genetics, Department of Agricultural and Environmental Biology, The University of Tokyo, Tokyo, Japan
| | - Shiqing Gao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
| |
Collapse
|
5
|
Yang Y, Liang Y, Wang C, Wang Y. MicroRNAs as potent regulators in nitrogen and phosphorus signaling transduction and their applications. STRESS BIOLOGY 2024; 4:38. [PMID: 39264517 PMCID: PMC11393275 DOI: 10.1007/s44154-024-00181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/18/2024] [Indexed: 09/13/2024]
Abstract
Nitrogen (N) and phosphorus (Pi) are essential macronutrients that affect plant growth and development by influencing the molecular, metabolic, biochemical, and physiological responses at the local and whole levels in plants. N and Pi stresses suppress the physiological activities of plants, resulting in agricultural productivity losses and severely threatening food security. Accordingly, plants have elaborated diverse strategies to cope with N and Pi stresses through maintaining N and Pi homeostasis. MicroRNAs (miRNAs) as potent regulators fine-tune N and Pi signaling transduction that are distinct and indivisible from each other. Specific signals, such as noncoding RNAs (ncRNAs), interact with miRNAs and add to the complexity of regulation. Elucidation of the mechanisms by which miRNAs regulate N and Pi signaling transduction aids in the breeding of plants with strong tolerance to N and Pi stresses and high N and Pi use efficiency by fine-tuning MIR genes or miRNAs. However, to date, there has been no detailed and systematic introduction and comparison of the functions of miRNAs in N and Pi signaling transduction from the perspective of miRNAs and their applications. Here, we summarized and discussed current advances in the involvement of miRNAs in N and Pi signaling transduction and highlighted that fine-tuning the MIR genes or miRNAs involved in maintaining N and Pi homeostasis might provide valuable sights for sustainable agriculture.
Collapse
Affiliation(s)
- Yuzhang Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanting Liang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Chun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
6
|
Li J, Hu L, Luan Q, Zhang J, Feng X, Li H, Wang Z, He W. Mining key genes associated with phosphorus deficiency through genome-wide identification and characterization of cucumber SPX family genes. BMC PLANT BIOLOGY 2024; 24:699. [PMID: 39044149 PMCID: PMC11267760 DOI: 10.1186/s12870-024-05436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Proteins harboring the SPX domain are crucial for the regulation of phosphate (Pi) homeostasis in plants. This study aimed to identify and analyze the entire SPX gene family within the cucumber genome. RESULTS The cucumber genome encompassed 16 SPX domain-containing genes, which were distributed across six chromosomes and categorized into four distinct subfamilies: SPX, SPX-MFS, SPX-EXS and SPX-RING, based on their structure characteristics. Additionally, gene duplications and synteny analysis were conducted for CsSPXs, revealing that their promoter regions were enriched with a variety of hormone-responsive, biotic/abiotic stress and typical P1BS-related elements. Tissue expression profiling of CsSPX genes revealed that certain members were specifically expressed in particular organs, suggesting essential roles in cucumber growth and development. Under low Pi stress, CsSPX1 and CsSPX2 exhibited a particularly strong response to Pi starvation. It was observed that the cucumber cultivar Xintaimici displayed greater tolerance to low Pi compared to black-spined cucumber under low Pi stress conditions. Protein interaction networks for the 16 CsSPX proteins were predicted, and yeast two-hybrid assay revealed that CsPHR1 interacted with CsSPX2, CsSPX3, CsSPX4 and CsSPX5, implying their involvement in the Pi signaling pathway in conjunction with CsPHR1. CONCLUSION This research lays the foundation for further exploration of the function of the CsSPX genes in response to low Pi stress and for elucidating the underlying mechanism.
Collapse
Affiliation(s)
- Jialin Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Linyue Hu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Qianqian Luan
- Gansu Agricultural Engineering Technology Research Institute, Lanzhou, 730000, China
| | - Jingdan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xueru Feng
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Hongmei Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Zenghui Wang
- Shandong Institute of Pomology, Tai'an, Shandong, 271000, China.
| | - Wenxing He
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
7
|
Zhang F, Wang W, Yuan A, Li Q, Chu M, Jiang S, An Y. Investigating the involvement of potato ( Solanum tuberosum L.) StPHR1 gene in the combined stress response to phosphorus deficiency and aluminum toxicity. FRONTIERS IN PLANT SCIENCE 2024; 15:1413755. [PMID: 38974976 PMCID: PMC11225713 DOI: 10.3389/fpls.2024.1413755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024]
Abstract
Phosphorus deficiency and aluminum toxicity in acidic soils are important factors that limit crop yield. To further explore this issue, we identified 18 members of the StPHR gene family in the potato genome in this study. Through bioinformatics analysis, we found that the StPHR1 gene, an important member of this family, exhibited high expression levels in potato roots, particularly under conditions of phosphorus deficiency and aluminum toxicity stress. This suggested that the StPHR1 gene may play a crucial regulatory role in potato's resistance to phosphorus deficiency and aluminum toxicity. To validate this hypothesis, we conducted a series of experiments on the StPHR1 gene, including subcellular localization, GUS staining for tissue expression, heterologous overexpression, yeast two-hybrid hybridization, and bimolecular fluorescence complementation (BiFC). The results demonstrated that the StPHR1 gene is highly conserved in plants and is localized in the nucleus of potato cells. The heterologous overexpression of the gene in Arabidopsis plants resulted in a growth phenotype that exhibited resistance to both aluminum toxicity and phosphorus deficiency. Moreover, the heterologous overexpressing plants showed reduced aluminum content in the root system compared to the control group. Furthermore, we also identified an interaction between StPHR1 and StALMT6. These results highlight the potential application of regulating the expression of the StPHR1 gene in potato production to enhance its adaptation to the dual stress of phosphorus deficiency and high aluminum toxicity in acidic soils.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Food Science and Engineering, Moutai Institute, Luban Street, Renhuai, Guizhou, China
| | - Wenlun Wang
- Department of Food Science and Engineering, Moutai Institute, Luban Street, Renhuai, Guizhou, China
| | - Anping Yuan
- Department of Food Science and Engineering, Moutai Institute, Luban Street, Renhuai, Guizhou, China
| | - Qiong Li
- Department of Brewing Engineering, Moutai Institute, Luban Street, Renhuai, Guizhou, China
| | - Moli Chu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources/College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Sixia Jiang
- Department of Food Science and Engineering, Moutai Institute, Luban Street, Renhuai, Guizhou, China
| | - Yanlin An
- Department of Food Science and Engineering, Moutai Institute, Luban Street, Renhuai, Guizhou, China
| |
Collapse
|
8
|
Jing Y, Yang Z, Yang Z, Bai W, Yang R, Zhang Y, Zhang K, Zhang Y, Sun J. Sequential activation of strigolactone and salicylate biosynthesis promotes leaf senescence. THE NEW PHYTOLOGIST 2024; 242:2524-2540. [PMID: 38641854 DOI: 10.1111/nph.19760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/22/2024] [Indexed: 04/21/2024]
Abstract
Leaf senescence is a complex process strictly regulated by various external and endogenous factors. However, the key signaling pathway mediating leaf senescence remains unknown. Here, we show that Arabidopsis SPX1/2 negatively regulate leaf senescence genetically downstream of the strigolactone (SL) pathway. We demonstrate that the SL receptor AtD14 and MAX2 mediate the age-dependent degradation of SPX1/2. Intriguingly, we uncover an age-dependent accumulation of SLs in leaves via transcriptional activation of SL biosynthetic genes by the transcription factors (TFs) SPL9/15. Furthermore, we reveal that SPX1/2 interact with the WRKY75 subclade TFs to inhibit their DNA-binding ability and thus repress transcriptional activation of salicylic acid (SA) biosynthetic gene SA Induction-Deficient 2, gating the age-dependent SA accumulation in leaves at the leaf senescence onset stage. Collectively, our new findings reveal a signaling pathway mediating sequential activation of SL and salicylate biosynthesis for the onset of leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Yexing Jing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ziyi Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zongju Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Wanqing Bai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruizhen Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanjun Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Yunwei Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
9
|
Wang Z, Zhang X, Yang X, Tang H, Feng L, Yin Y, Li J. Evolution of the SPX gene family and its role in the response mechanism to low phosphorus stress in self-rooted apple stock. BMC Genomics 2024; 25:488. [PMID: 38755552 PMCID: PMC11108120 DOI: 10.1186/s12864-024-10402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Phosphorus plays a key role in plant adaptation to adversity and plays a positive role in the yield and quality formation of apples. Genes of the SPX domain-containing family are widely involved in the regulation of phosphorus signalling networks. However, the mechanisms controlling phosphorus deficiency are not completely understood in self-rooted apple stock. RESULTS In this study, 26 members of the apple SPX gene family were identified by genome-wide analysis, and further divided into four subfamilies (SPX, SPX-MFS, SPX-EXS, and SPX-RING) based on their structural features. The chromosome distribution and gene duplications of MdSPXs were also examined. The promoter regions of MdSPXs were enriched for multiple biotic/abiotic stresses, hormone responses and typical P1BS-related elements. Analysis of the expression levels of 26 MdSPXs showed that some members were remarkably induced when subjected to low phosphate (Pi) stress, and in particular MdSPX2, MdSPX3, and MdPHO1.5 exhibited an intense response to low Pi stress. MdSPX2 and MdSPX3 showed significantly divergent expression levels in low Pi sensitive and insensitive apple species. Protein interaction networks were predicted for 26 MdSPX proteins. The interaction of MdPHR1 with MdSPX2, MdSPX3, MdSPX4, and MdSPX6 was demonstrated by yeast two-hybrid assay, suggesting that these proteins might be involved in the Pi-signaling pathway by interacting with MdPHR1. CONCLUSION This research improved the understanding of the apple SPX gene family and contribute to future biological studies of MdSPX genes in self-rooted apple stock.
Collapse
Affiliation(s)
- Zenghui Wang
- Shandong Institute of Pomology, Tai'an, 271000, Shandong, China
| | - Xiaowen Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xuemei Yang
- Shandong Institute of Pomology, Tai'an, 271000, Shandong, China
| | - Haixia Tang
- Shandong Institute of Pomology, Tai'an, 271000, Shandong, China
| | - Lijuan Feng
- Shandong Institute of Pomology, Tai'an, 271000, Shandong, China
| | - Yanlei Yin
- Shandong Institute of Pomology, Tai'an, 271000, Shandong, China.
| | - Jialin Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
10
|
Bi Y, Yu Y, Mao S, Wu T, Wang T, Zhou Y, Xie K, Zhang H, Liu L, Chu Z. Comparative transcriptomic profiling of the two-stage response of rice to Xanthomonas oryzae pv. oryzicola interaction with two different pathogenic strains. BMC PLANT BIOLOGY 2024; 24:347. [PMID: 38684939 PMCID: PMC11057074 DOI: 10.1186/s12870-024-05060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Two-tiered plant immune responses involve cross-talk among defense-responsive (DR) genes involved in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), effector-triggered immunity (ETI) and effector-triggered susceptibility (ETS). Bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv. oryzicola (Xoc) is an important bacterial disease that causes serious threats to rice yield and quality. Transcriptomic profiling provides an effective approach for the comprehensive and large-scale detection of DR genes that participate in the interactions between rice and Xoc. RESULTS In this study, we used RNA-seq to analyze the differentially expressed genes (DEGs) in susceptible rice after inoculation with two naturally pathogenic Xoc strains, a hypervirulent strain, HGA4, and a relatively hypovirulent strain, RS105. First, bacterial growth curve and biomass quantification revealed that differential growth occurred beginning at 1 day post inoculation (dpi) and became more significant at 3 dpi. Additionally, we analyzed the DEGs at 12 h and 3 days post inoculation with two strains, representing the DR genes involved in the PTI and ETI/ETS responses, respectively. Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed on the common DEGs, which included 4380 upregulated and 4019 downregulated genes and 930 upregulated and 1383 downregulated genes identified for the two strains at 12 h post inoculation (hpi) and 3 dpi, respectively. Compared to those at 12 hpi, at 3 dpi the number of common DEGs decreased, while the degree of differential expression was intensified. In addition, more disease-related GO pathways were enriched, and more transcription activator-like effector (TALE) putative target genes were upregulated in plants inoculated with HGA4 than in those inoculated with RS105 at 3 dpi. Then, four DRs were randomly selected for the BLS resistance assay. We found that CDP3.10, LOC_Os11g03820, and OsDSR2 positively regulated rice resistance to Xoc, while OsSPX3 negatively regulated rice resistance. CONCLUSIONS By using an enrichment method for RNA-seq, we identified a group of DEGs related to the two stages of response to the Xoc strain, which included four functionally identified DR genes.
Collapse
Affiliation(s)
- Yunya Bi
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yue Yu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Shuaige Mao
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Tao Wu
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Tao Wang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying Zhou
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430072, China
| | - Kabin Xie
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Zhang
- Tancheng Jinghua Seed Co., LTD, Linyi, Shandong, 276100, China
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
11
|
Collins E, Shou H, Mao C, Whelan J, Jost R. Dynamic interactions between SPX proteins, the ubiquitination machinery, and signalling molecules for stress adaptation at a whole-plant level. Biochem J 2024; 481:363-385. [PMID: 38421035 DOI: 10.1042/bcj20230163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
The plant macronutrient phosphorus is a scarce resource and plant-available phosphate is limiting in most soil types. Generally, a gene regulatory module called the phosphate starvation response (PSR) enables efficient phosphate acquisition by roots and translocation to other organs. Plants growing on moderate to nutrient-rich soils need to co-ordinate availability of different nutrients and repress the highly efficient PSR to adjust phosphate acquisition to the availability of other macro- and micronutrients, and in particular nitrogen. PSR repression is mediated by a small family of single SYG1/Pho81/XPR1 (SPX) domain proteins. The SPX domain binds higher order inositol pyrophosphates that signal cellular phosphorus status and modulate SPX protein interaction with PHOSPHATE STARVATION RESPONSE1 (PHR1), the central transcriptional regulator of PSR. Sequestration by SPX repressors restricts PHR1 access to PSR gene promoters. Here we focus on SPX4 that primarily acts in shoots and sequesters many transcription factors other than PHR1 in the cytosol to control processes beyond the classical PSR, such as nitrate, auxin, and jasmonic acid signalling. Unlike SPX1 and SPX2, SPX4 is subject to proteasomal degradation not only by singular E3 ligases, but also by SCF-CRL complexes. Emerging models for these different layers of control and their consequences for plant acclimation to the environment will be discussed.
Collapse
Affiliation(s)
- Emma Collins
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- Hainan Institute, Zhejiang University, Sanya 572025, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - Ricarda Jost
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
12
|
Baek D, Hong S, Kim HJ, Moon S, Jung KH, Yang WT, Kim DH. OsMYB58 Negatively Regulates Plant Growth and Development by Regulating Phosphate Homeostasis. Int J Mol Sci 2024; 25:2209. [PMID: 38396886 PMCID: PMC10889527 DOI: 10.3390/ijms25042209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Phosphate (Pi) starvation is a critical factor limiting crop growth, development, and productivity. Rice (Oryza sativa) R2R3-MYB transcription factors function in the transcriptional regulation of plant responses to various abiotic stresses and micronutrient deprivation, but little is known about their roles in Pi starvation signaling and Pi homeostasis. Here, we identified the R2R3-MYB transcription factor gene OsMYB58, which shares high sequence similarity with AtMYB58. OsMYB58 expression was induced more strongly by Pi starvation than by other micronutrient deficiencies. Overexpressing OsMYB58 in Arabidopsis thaliana and rice inhibited plant growth and development under Pi-deficient conditions. In addition, the overexpression of OsMYB58 in plants exposed to Pi deficiency strongly affected root development, including seminal root, lateral root, and root hair formation. Overexpressing OsMYB58 strongly decreased the expression of the rice microRNAs OsmiR399a and OsmiR399j. By contrast, overexpressing OsMYB58 strongly increased the expression of rice PHOSPHATE 2 (OsPHO2), whose expression is repressed by miR399 during Pi starvation signaling. OsMYB58 functions as a transcriptional repressor of the expression of its target genes, as determined by a transcriptional activity assay. These results demonstrate that OsMYB58 negatively regulates OsmiR399-dependent Pi starvation signaling by enhancing OsmiR399s expression.
Collapse
Affiliation(s)
- Dongwon Baek
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Soyeon Hong
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Hye Jeong Kim
- College of Life Science and Natural Resources, Dong-A University, Busan 49315, Republic of Korea;
| | - Sunok Moon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (S.M.); (K.H.J.)
| | - Ki Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (S.M.); (K.H.J.)
| | - Won Tae Yang
- College of Life Science and Natural Resources, Dong-A University, Busan 49315, Republic of Korea;
| | - Doh Hoon Kim
- College of Life Science and Natural Resources, Dong-A University, Busan 49315, Republic of Korea;
| |
Collapse
|
13
|
Wu J, Liu X, Ge F, Li F, Liu N. Tolerance mechanism of rice (Oryza sativa L.) seedings towards polycyclic aromatic hydrocarbons toxicity: The activation of SPX-mediated signal transduction to maintain P homeostasis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:123009. [PMID: 38006996 DOI: 10.1016/j.envpol.2023.123009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/01/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Plant tolerance to abiotic stress depends on fast molecular cascades involving stress perception, signal transduction, gene expression alterations, and metabolic rearrangement. This study sheds light on the tolerance mechanism of rice (Oryza sativa L.) towards the toxicity of the polycyclic aromatic hydrocarbons (PAHs), including phenanthrene (Phe), pyrene (Pyr), and benzo[a]pyrene (BaP). Results showed that three PAHs significantly activated the phosphoinositide signaling system involving the phosphorus (P) metabolism and homeostasis in rice roots. This activation increased phytic acid (IP6) levels to over 54.12% of the control (p < 0.05). Molecular docking verified that three PAHs occupied the IP6 binding site in SPX3, a negative regulatory factor of P homeostasis, where ARG229 interacted with PAHs via the van der Waals force. Moreover, the expression of gene encoding SPX3 was significantly downregulated 2.81-, 2.83-, and 2.18-fold under Phe, Pyr, and BaP stress, respectively, relative to the control. Conversely, the expression levels of the gene coding SDEL2 was significantly increased, promoting the degradation of SPX3. Ultimately, P absorption and nucleic acid synthesis were enhanced, alleviating the inhibition effect of PAHs on rice growth. Notably, Pyr demonstrated the strongest binding affinity for SPX3, confirming its critical interference with P homeostasis. These findings provide insight into the molecular mechanisms regulating plant responses to PAHs, and offer guidance for improving crop resistance against organic pollutants and protecting food security.
Collapse
Affiliation(s)
- Jianjian Wu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Key Laboratory of Environmental and Ecological Health, Hunan, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Xinyue Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Key Laboratory of Environmental and Ecological Health, Hunan, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Fei Ge
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Key Laboratory of Environmental and Ecological Health, Hunan, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Feng Li
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Key Laboratory of Environmental and Ecological Health, Hunan, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Na Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Key Laboratory of Environmental and Ecological Health, Hunan, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
14
|
Liu N, Shang W, Guan M, Xiao J, Tian G, Ma B, Shang W, Li X, Zhao S, Li C, Cheng K, Zheng W. Phosphate deficiency responsive TaSPX3 is involved in the regulation of shoot phosphorus in Arabidopsis plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108215. [PMID: 38029619 DOI: 10.1016/j.plaphy.2023.108215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
SPX (SYG/PHO81/XPR1) domain genes have been reported to play vital roles in the Phosphorus (Pi) signaling network in Arabidopsis thaliana and rice. However, the functions of SPX proteins in wheat remain largely unknown. In this study, the full-length cDNA sequence of the TaSPX3 gene was cloned from the common wheat variety Zhengmai9023. The expression of TaSPX3 was up-regulated in eight different genotypes of wheat under low phosphorus (LP) stress, indicating that TaSPX3 responds to Pi limitation in multiple wheat genotypes. The transcription level of TaSPX3 was also detected in the absence of seven different elements, showing certain specificity for Pi deficiency in wheat. Over expressing TaSPX3 in Arabidopsis can alleviate Pi deficiency symptoms at the seedling stage and promote the growth of plant, and advance the flowering period at the adult stage. The expression of 7 genes associated with the Pi starvation signal pathways was analyzed using qRT-PCR. The results showed that TaSPX3, along with AtSPX1, AtRNS1, AtIPS1, AtPAP2, AtPAP17 and AtAT4, were all induced by Pi deficiency. This study reveals that the TaSPX3 gene in wheat is involved in the response to phosphorus stress and may affect shoot phosphorus levels through AT4 or PAPs-related pathways. Overall, our study provides new insights into the regulation of plant response under LP conditions and the molecular mechanism underlying the role of the wheat SPX gene in coping with LP stress.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Wenyan Shang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Mengxin Guan
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Jibin Xiao
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Guangxiang Tian
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Baozhan Ma
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Wenjing Shang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Xu Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Shijia Zhao
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Chuang Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Kun Cheng
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China.
| | - Wenming Zheng
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China.
| |
Collapse
|
15
|
Gu P, Tao W, Tao J, Sun H, Hu R, Wang D, Zong G, Xie X, Ruan W, Xu G, Yi K, Zhang Y. The D14-SDEL1-SPX4 cascade integrates the strigolactone and phosphate signalling networks in rice. THE NEW PHYTOLOGIST 2023; 239:673-686. [PMID: 37194447 DOI: 10.1111/nph.18963] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/12/2023] [Indexed: 05/18/2023]
Abstract
Modern agriculture needs large quantities of phosphate (Pi) fertilisers to obtain high yields. Information on how plants sense and adapt to Pi is required to enhance phosphorus-use efficiency (PUE) and thereby promote agricultural sustainability. Here, we show that strigolactones (SLs) regulate rice root developmental and metabolic adaptations to low Pi, by promoting efficient Pi uptake and translocation from roots to shoots. Low Pi stress triggers the synthesis of SLs, which dissociate the Pi central signalling module of SPX domain-containing protein (SPX4) and PHOSPHATE STARVATION RESPONSE protein (PHR2), leading to the release of PHR2 into the nucleus and activating the expression of Pi-starvation-induced genes including Pi transporters. The SL synthetic analogue GR24 enhances the interaction between the SL receptor DWARF 14 (D14) and a RING-finger ubiquitin E3 ligase (SDEL1). The sdel mutants have a reduced response to Pi starvation relative to wild-type plants, leading to insensitive root adaptation to Pi. Also, SLs induce the degradation of SPX4 via forming the D14-SDEL1-SPX4 complex. Our findings reveal a novel mechanism underlying crosstalk between the SL and Pi signalling networks in response to Pi fluctuations, which will enable breeding of high-PUE crop plants.
Collapse
Affiliation(s)
- Pengyuan Gu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Wenqing Tao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jinyuan Tao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Huwei Sun
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 450002, Zhengzhou, China
| | - Ripeng Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Daojian Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Guoxinan Zong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xiaonan Xie
- Utsunomiya University, 321-8505, Utsunomiya, Japan
| | - Wenyuan Ruan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210095, Nanjing, China
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Yali Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210095, Nanjing, China
| |
Collapse
|
16
|
Singh NRR, Roychowdhury A, Srivastava R, Gaganan GA, Parida AP, Kumar R. Silencing of SlSPX1 and SlSPX2 promote growth and root mycorrhization in tomato (Solanum lycopersicum L.) seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 333:111723. [PMID: 37142098 DOI: 10.1016/j.plantsci.2023.111723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
Owing to the essential requirement of phosphorus (P) for growth and development, plants tightly control inorganic phosphate (Pi) homeostasis. SPX-PHR regulatory circuit not only control phosphate homeostasis responses but also root mycorrhization by arbuscular mycorrhiza (AM) fungi. Besides sensing Pi deficiency, SPX (SYG1/Pho81/XPR1) proteins also control the transcription of P starvation inducible (PSI) genes by blocking the activity of PHR1 (PHOSPHATE STARVATION RESPONSE1) homologs in plants under Pi-sufficient conditions. However, the roles of SPX members in Pi homeostasis and AM fungi colonization remain to be fully recognized in tomato. In this study, we identified 17 SPX-domain containing members in the tomato genome. Transcript profiling revealed the high Pi-specific nature of their activation. Four SlSPX members have also induced in AM colonized roots. Interestingly, we found that SlSPX1 and SlSPX2 are induced by P starvation and AM colonization. Further, SlSPX1 and SlSPX2 exhibited varying degrees of interaction with the PHR homologs in this study. Virus-induced gene silencing-based (VIGS) transcript inhibition of these genes alone or together promoted the accumulation of higher total soluble Pi in tomato seedlings and improved their growth. It also enhanced AM fungi colonization in the roots of SlSPX1 and SlSPX2 silenced seedlings. Overall, the present study provides evidence in support of SlSPX members being good candidates for improving AM fungi colonization potential in tomato.
Collapse
Affiliation(s)
| | | | - Rajat Srivastava
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | | - Adwaita Prasad Parida
- Department of Entomology, Texas A&M University, College Station, Texas 77843-2475, USA
| | - Rahul Kumar
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
17
|
Luo J, Liu Z, Yan J, Shi W, Ying Y. Genome-Wide Identification of SPX Family Genes and Functional Characterization of PeSPX6 and PeSPX-MFS2 in Response to Low Phosphorus in Phyllostachys edulis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1496. [PMID: 37050121 PMCID: PMC10096891 DOI: 10.3390/plants12071496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Moso bamboo (Phyllostachys edulis) is the most widely distributed bamboo species in the subtropical regions of China. Due to the fast-growing characteristics of P. edulis, its growth requires high nutrients, including phosphorus. Previous studies have shown that SPX proteins play key roles in phosphorus signaling and homeostasis. However, the systematic identification, molecular characterization, and functional characterization of the SPX gene family have rarely been reported in P. edulis. In this study, 23 SPXs were identified and phylogenetic analysis showed that they were classified into three groups and distributed on 13 chromosomes. The analysis of conserved domains indicated that there was a high similarity between PeSPXs among SPX proteins in other species. RNA sequencing and qRT-PCR analysis indicated that PeSPX6 and PeSPX-MFS2, which were highly expressed in roots, were clearly upregulated under low phosphorus. Co-expression network analysis and a dual luciferase experiment in tobacco showed that PeWRKY6 positively regulated the PeSPX6 expression, while PeCIGR1-2, PeMYB20, PeWRKY6, and PeWRKY53 positively regulated the PeSPX-MFS2 expression. Overall, these results provide a basis for the identification of SPX genes in P. edulis and further exploration of their functions in mediating low phosphorus responses.
Collapse
|
18
|
Li M, Zhou J, Liu Q, Mao L, Li H, Li S, Guo R. Dynamic variation of nutrient absorption, metabolomic and transcriptomic indexes of soybean ( Glycine max) seedlings under phosphorus deficiency. AOB PLANTS 2023; 15:plad014. [PMID: 37124081 PMCID: PMC10132309 DOI: 10.1093/aobpla/plad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
The dynamic trajectory of metabolites and gene expression related to phosphorus absorption and utilization in soybean seedling roots were determined under short- and long-term phosphorus deficiency stress. The metabolome results showed that TCA and GS/GOGAT cycles were enhanced after 2 days of phosphorus deficiency stress; however, they were inhibited after 15 days. GC-TOF-MS showed that phosphorus deficiency increased the accumulation of amino acids significantly after 2 days, whereas organic acids and lipid substances increased significantly after 15 days. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) showed that transcriptional levels of five key genes related to phosphorus activation and phosphorus starvation signal transduction increased continuously with phosphorus deficiency. The expression of GmPHT1 and GmSPX triggered the phosphorus starvation signal pathway and induced the expression of the GmPS and GmPAP genes to enhance the synthesis and secretion of organophosphorus hydrolase and organic acid in soybean roots under phosphorus deficiency. The phospholipid metabolism was enhanced significantly after 15 days of stress and when GmSQD, a crucial enzyme in lipid biosynthesis, was up-regulated. Thus, we propose that future investigations on stress caused by phosphorus deficiency should include more organs obtained at different developmental stages.
Collapse
Affiliation(s)
- Mingxia Li
- School of Life Sciences, ChangChun Normal University, Changchun 130024, China
| | - Ji Zhou
- Land Consolidation and Rehabilitation Centre, The Ministry of Land and Resources, Beijing 100035, China
| | - Qi Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lili Mao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haoru Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuying Li
- Forestry and Grassland Bureau of Aohan Banner, Chifeng City 024000, InnerMongolia
| | - Rui Guo
- Corresponding author’s e-mail address:
| |
Collapse
|
19
|
Song J, Xu D, Dong Y, Li F, Bian Y, Li L, Luo X, Fei S, Li L, Zhao C, Zhang Y, Xia X, Ni Z, He Z, Cao S. Fine mapping and characterization of a major QTL for grain weight on wheat chromosome arm 5DL. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3237-3246. [PMID: 35904627 DOI: 10.1007/s00122-022-04182-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
We fine mapped QTL QTKW.caas-5DL for thousand kernel weight in wheat, predicted candidate genes and developed a breeding-applicable marker. Thousand kernel weight (TKW) is an important yield component trait in wheat, and identification of the underlying genetic loci is helpful for yield improvement. We previously identified a stable quantitative trait locus (QTL) QTKW.caas-5DL for TKW in a Doumai/Shi4185 recombinant inbred line (RIL) population. Here we performed fine mapping of QTKW.caas-5DL using secondary populations derived from 15 heterozygous recombinants and delimited the QTL to an approximate 3.9 Mb physical interval from 409.9 to 413.8 Mb according to the Chinese Spring (CS) reference genome. Analysis of genomic synteny showed that annotated genes in the physical interval had high collinearity among CS and eight other wheat genomes. Seven genes with sequence variation and/or differential expression between parents were predicted as candidates for QTKW.caas-5DL based on whole-genome resequencing and transcriptome assays. A kompetitive allele-specific PCR (KASP) marker for QTKW.caas-5DL was developed, and genotyping confirmed a significant association with TKW but not with other yield component traits in a panel of elite wheat cultivars. The superior allele of QTKW.caas-5DL was frequent in a panel of cultivars, suggesting that it had undergone positive selection. These findings not only lay a foundation for map-based cloning of QTKW.caas-5DL but also provide an efficient tool for marker-assisted selection.
Collapse
Affiliation(s)
- Jie Song
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100094, China
| | - Dengan Xu
- Shandong Province Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Yan Dong
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Faji Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Yingjie Bian
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Lingli Li
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xumei Luo
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Shuaipeng Fei
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Lei Li
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Cong Zhao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yong Zhang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhongfu Ni
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100094, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China.
| | - Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
20
|
Liu L, Xiang H, Song J, Shen H, Sun X, Tian L, Fan H. Genome-Wide Analysis of DoSPX Genes and the Function of DoSPX4 in Low Phosphorus Response in Dendrobium officinale. FRONTIERS IN PLANT SCIENCE 2022; 13:943788. [PMID: 35898219 PMCID: PMC9313600 DOI: 10.3389/fpls.2022.943788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Dendrobium officinale Kimura et Migo is a famous Chinese herb. D. officinale grows on rocks where the available phosphorus is low. The SPX family plays a critical role in maintaining Pi homeostasis in plants. In this paper, 9 SPX family genes were identified in the genome of D. officinale. Bioinformatics and qRT-PCR analysis showed that DoSPXs were involved in response to -Pi stress and had different expression patterns. DoSPX4, which had a unique expression pattern, was clustered with AtSPX4 and OsSPX4. Under -Pi treatment, the expression level of DoSPX4 reached a peak on 5 d in roots, while showing a downward trend in the aboveground parts. DoSPX4 was located on the cell membrane. Overexpression DoSPX4 promoted Pi content in the stem and the expression level of NtPHT1/2 in Nicotiana tabacum. The results of Yeast two-hybrid showed that DoSPX4 could interact with Phosphate High-Affinity Response factor (DoPHR2). These results highlight the role of DoSPX4 in response to low phosphorus, which provides a theoretical basis for further study on the response mechanism of -Pi in D. officinale.
Collapse
|
21
|
Takehisa H, Ando F, Takara Y, Ikehata A, Sato Y. Transcriptome and hyperspectral profiling allows assessment of phosphorus nutrient status in rice under field conditions. PLANT, CELL & ENVIRONMENT 2022; 45:1507-1519. [PMID: 35128701 DOI: 10.1111/pce.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/11/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) is one of the macronutrients indispensable for crop production, and therefore it is important to understand the potential of plants to adapt to low P conditions. We compared growth and leaf genome-wide transcriptome of four rice cultivars during growth between two fields with different amount of available phosphate and further analysed the acceptable range of P levels for normal growth from the view of both appearance traits and internal P nutrient status, which was measured by profiling the expression of the P indicator gene. This demonstrated that rice plants have a robustness to moderate P-deficient conditions expressing a system for P acquisition and usage without any effects on yield potential and that P indicator gene expression could be a useful index for early diagnosis of P status in plants. To develop a simple method for assessment of P status, we tried to predict the expression level using reflectance spectroscopy and hyperspectral imaging, thereby providing models with good performance. Our findings suggest that rice plants have the potential to adapt to moderate low P conditions in the field and showed that the hyperspectral technique is one of the useful tools for simple measurement of molecular-level dynamics reflecting internal nutrient conditions.
Collapse
Affiliation(s)
- Hinako Takehisa
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | | | | | - Akifumi Ikehata
- Institute of Food Research, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Yutaka Sato
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
22
|
Yang J, Zhao X, Chen Y, Li G, Li X, Xia M, Sun Z, Chen Y, Li Y, Yao L, Hou H. Identification, Structural, and Expression Analyses of SPX Genes in Giant Duckweed (Spirodela polyrhiza) Reveals Its Role in Response to Low Phosphorus and Nitrogen Stresses. Cells 2022; 11:cells11071167. [PMID: 35406731 PMCID: PMC8997716 DOI: 10.3390/cells11071167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/25/2023] Open
Abstract
SPX genes play important roles in the coordinated utilization of nitrogen (N) and phosphorus (P) in plants. However, a genome-wide analysis of the SPX family is still lacking. In this study, the gene structure and phylogenetic relationship of 160 SPX genes were systematically analyzed at the genome-wide level. Results revealed that SPX genes were highly conserved in plants. All SPX genes contained the conserved SPX domain containing motifs 2, 3, 4, and 8. The 160 SPX genes were divided into five clades and the SPX genes within the same clade shared a similar motif composition. P1BS cis–elements showed a high frequency in the promoter region of SPXs, indicating that SPX genes could interact with the P signal center regulatory gene Phosphate Starvation Response1 (PHR1) in response to low P stress. Other cis–elements were also involved in plant development and biotic/abiotic stress, suggesting the functional diversity of SPXs. Further studies were conducted on the interaction network of three SpSPXs, revealing that these genes could interact with important components of the P signaling network. The expression profiles showed that SpSPXs responded sensitively to N and P deficiency stresses, thus playing a key regulatory function in P and N metabolism. Furthermore, the expression of SpSPXs under P and N deficiency stresses could be affected by environmental factors such as ABA treatment, osmotic, and LT stresses. Our study suggested that SpSPXs could be good candidates for enhancing the uptake ability of Spirodela polyrhiza for P nutrients in wastewater. These findings could broaden the understanding of the evolution and biological function of the SPX family and offer a foundation to further investigate this family in plants.
Collapse
Affiliation(s)
- Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.Y.); (X.Z.); (Y.C.); (G.L.); (X.L.); (M.X.); (Z.S.); (Y.C.); (Y.L.)
| | - Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.Y.); (X.Z.); (Y.C.); (G.L.); (X.L.); (M.X.); (Z.S.); (Y.C.); (Y.L.)
| | - Yan Chen
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.Y.); (X.Z.); (Y.C.); (G.L.); (X.L.); (M.X.); (Z.S.); (Y.C.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.Y.); (X.Z.); (Y.C.); (G.L.); (X.L.); (M.X.); (Z.S.); (Y.C.); (Y.L.)
| | - Xiaozhe Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.Y.); (X.Z.); (Y.C.); (G.L.); (X.L.); (M.X.); (Z.S.); (Y.C.); (Y.L.)
| | - Manli Xia
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.Y.); (X.Z.); (Y.C.); (G.L.); (X.L.); (M.X.); (Z.S.); (Y.C.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuoliang Sun
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.Y.); (X.Z.); (Y.C.); (G.L.); (X.L.); (M.X.); (Z.S.); (Y.C.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yimeng Chen
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.Y.); (X.Z.); (Y.C.); (G.L.); (X.L.); (M.X.); (Z.S.); (Y.C.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixian Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.Y.); (X.Z.); (Y.C.); (G.L.); (X.L.); (M.X.); (Z.S.); (Y.C.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lunguang Yao
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang 473061, China;
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.Y.); (X.Z.); (Y.C.); (G.L.); (X.L.); (M.X.); (Z.S.); (Y.C.); (Y.L.)
- Correspondence: ; Tel.: +86-2768788691; Fax: +86-2768780123
| |
Collapse
|
23
|
Satheesh V, Tahir A, Li J, Lei M. Plant phosphate nutrition: sensing the stress. STRESS BIOLOGY 2022; 2:16. [PMID: 37676547 PMCID: PMC10441931 DOI: 10.1007/s44154-022-00039-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/31/2022] [Indexed: 09/08/2023]
Abstract
Phosphorus (P) is obtained by plants as phosphate (Pi) from the soil and low Pi levels affects plant growth and development. Adaptation to low Pi condition entails sensing internal and external Pi levels and translating those signals to molecular and morphophysiological changes in the plant. In this review, we present findings related to local and systemin Pi sensing with focus the molecular mechanisms behind root system architectural changes and the impact of hormones and epigenetic mechanisms affecting those changes. We also present some of the recent advances in the Pi sensing and signaling mechanisms focusing on inositol pyrophosphate InsP8 and its interaction with SPX domain proteins to regulate the activity of the central regulator of the Pi starvation response, PHR.
Collapse
Affiliation(s)
- Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| | - Ayesha Tahir
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Jinkai Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| |
Collapse
|
24
|
Das D, Paries M, Hobecker K, Gigl M, Dawid C, Lam HM, Zhang J, Chen M, Gutjahr C. PHOSPHATE STARVATION RESPONSE transcription factors enable arbuscular mycorrhiza symbiosis. Nat Commun 2022; 13:477. [PMID: 35078978 PMCID: PMC8789775 DOI: 10.1038/s41467-022-27976-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/21/2021] [Indexed: 01/19/2023] Open
Abstract
Arbuscular mycorrhiza (AM) is a widespread symbiosis between roots of the majority of land plants and Glomeromycotina fungi. AM is important for ecosystem health and functioning as the fungi critically support plant performance by providing essential mineral nutrients, particularly the poorly accessible phosphate, in exchange for organic carbon. AM fungi colonize the inside of roots and this is promoted at low but inhibited at high plant phosphate status, while the mechanistic basis for this phosphate-dependence remained obscure. Here we demonstrate that a major transcriptional regulator of phosphate starvation responses in rice PHOSPHATE STARVATION RESPONSE 2 (PHR2) regulates AM. Root colonization of phr2 mutants is drastically reduced, and PHR2 is required for root colonization, mycorrhizal phosphate uptake, and yield increase in field soil. PHR2 promotes AM by targeting genes required for pre-contact signaling, root colonization, and AM function. Thus, this important symbiosis is directly wired to the PHR2-controlled plant phosphate starvation response.
Collapse
Affiliation(s)
- Debatosh Das
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
- CUHK Shenzhen Research Institute, No. 10 Yuexing 2nd Road, Nanshan, Shenzhen, China
| | - Michael Paries
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354, Freising, Germany
| | - Karen Hobecker
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354, Freising, Germany
| | - Michael Gigl
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich (TUM), Lise-Meitner-Str. 34, D-85354, Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich (TUM), Lise-Meitner-Str. 34, D-85354, Freising, Germany
| | - Hon-Ming Lam
- CUHK Shenzhen Research Institute, No. 10 Yuexing 2nd Road, Nanshan, Shenzhen, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jianhua Zhang
- CUHK Shenzhen Research Institute, No. 10 Yuexing 2nd Road, Nanshan, Shenzhen, China.
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
- Department of Biology, Hong Kong Baptist University, Shatin, Hong Kong.
| | - Moxian Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China.
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354, Freising, Germany.
| |
Collapse
|
25
|
Das D, Paries M, Hobecker K, Gigl M, Dawid C, Lam HM, Zhang J, Chen M, Gutjahr C. PHOSPHATE STARVATION RESPONSE transcription factors enable arbuscular mycorrhiza symbiosis. Nat Commun 2022; 13:477. [PMID: 35078978 DOI: 10.1101/2021.11.05.467437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/21/2021] [Indexed: 05/26/2023] Open
Abstract
Arbuscular mycorrhiza (AM) is a widespread symbiosis between roots of the majority of land plants and Glomeromycotina fungi. AM is important for ecosystem health and functioning as the fungi critically support plant performance by providing essential mineral nutrients, particularly the poorly accessible phosphate, in exchange for organic carbon. AM fungi colonize the inside of roots and this is promoted at low but inhibited at high plant phosphate status, while the mechanistic basis for this phosphate-dependence remained obscure. Here we demonstrate that a major transcriptional regulator of phosphate starvation responses in rice PHOSPHATE STARVATION RESPONSE 2 (PHR2) regulates AM. Root colonization of phr2 mutants is drastically reduced, and PHR2 is required for root colonization, mycorrhizal phosphate uptake, and yield increase in field soil. PHR2 promotes AM by targeting genes required for pre-contact signaling, root colonization, and AM function. Thus, this important symbiosis is directly wired to the PHR2-controlled plant phosphate starvation response.
Collapse
Affiliation(s)
- Debatosh Das
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
- CUHK Shenzhen Research Institute, No. 10 Yuexing 2nd Road, Nanshan, Shenzhen, China
| | - Michael Paries
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354, Freising, Germany
| | - Karen Hobecker
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354, Freising, Germany
| | - Michael Gigl
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich (TUM), Lise-Meitner-Str. 34, D-85354, Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich (TUM), Lise-Meitner-Str. 34, D-85354, Freising, Germany
| | - Hon-Ming Lam
- CUHK Shenzhen Research Institute, No. 10 Yuexing 2nd Road, Nanshan, Shenzhen, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jianhua Zhang
- CUHK Shenzhen Research Institute, No. 10 Yuexing 2nd Road, Nanshan, Shenzhen, China.
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
- Department of Biology, Hong Kong Baptist University, Shatin, Hong Kong.
| | - Moxian Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China.
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354, Freising, Germany.
| |
Collapse
|
26
|
Li C, You Q, Zhao P. Genome-wide identification and characterization of SPX-domain-containing protein gene family in Solanum lycopersicum. PeerJ 2022; 9:e12689. [PMID: 35036163 PMCID: PMC8710047 DOI: 10.7717/peerj.12689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/03/2021] [Indexed: 01/24/2023] Open
Abstract
The SYG1, PHO81, and XPR1 (SPX) domain is named after the suppressor of yeast gpa1 (Syg1), yeast phosphatase (Pho81) and the human Xenotropic and Polytrophic Retrovirus receptor1 (XPR1). SPX-domain-containing proteins play pivotal roles in maintaining phosphate ions (Pi) homeostasis in plant. This study was to genome-wide identification and analysis of Solanum lycopersicum SPX-domain-containing protein gene family. The Solanum lycopersicum genome contains 19 SPX-domain-containing protein genes. These SPX-domain-containing protein genes were located in seven of the 12 chromosomes. According to the different conserved domains, the proteins encoded by those genes could be divided into four SPX-domain-containing protein families, which included SPX Family, SPX-ERD1/XPR1/SYG1(SPX-EXS) Family, SPX-Major Facilitator Superfamily (SPX-MFS) Family and SPX-Really Interesting New Gene (SPX-RING) Family. Phylogenetic analysis of SPX-domain-containing protein genes in Arabidopsis thaliana, Solanum tuberosum, Capsicum annuum and Solanum lycopersicum classified these genes into eight clades. Expression profiles derived from transcriptome (RNA-seq) data analysis showed 19 SPX-domain-containing protein genes displayed various expression patterns. SPX-domain-containing protein may play different roles in phosphate nutrition of Solanum lycopersicum different tissues and development stages. And, this study can provide the selection of candidate genes for functional research and genome editing in Solanum lycopersicum phosphate ions (Pi) nutrition.
Collapse
Affiliation(s)
- Chunwei Li
- Nanchang Normal University, Nanchang, China
| | - Qiuye You
- Shanghai Center for Plant Stress Biology, Shanghai, China
| | | |
Collapse
|
27
|
Nezamivand-Chegini M, Ebrahimie E, Tahmasebi A, Moghadam A, Eshghi S, Mohammadi-Dehchesmeh M, Kopriva S, Niazi A. New insights into the evolution of SPX gene family from algae to legumes; a focus on soybean. BMC Genomics 2021; 22:915. [PMID: 34969367 PMCID: PMC8717665 DOI: 10.1186/s12864-021-08242-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/09/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND SPX-containing proteins have been known as key players in phosphate signaling and homeostasis. In Arabidopsis and rice, functions of some SPXs have been characterized, but little is known about their function in other plants, especially in the legumes. RESULTS We analyzed SPX gene family evolution in legumes and in a number of key species from algae to angiosperms. We found that SPX harboring proteins showed fluctuations in domain fusions from algae to the angiosperms with, finally, four classes appearing and being retained in the land plants. Despite these fluctuations, Lysine Surface Cluster (KSC), and the third residue of Phosphate Binding Sites (PBS) showed complete conservation in almost all of SPXs except few proteins in Selaginella moellendorffii and Papaver sumniferum, suggesting they might have different ligand preferences. In addition, we found that the WGD/segmentally or dispersed duplication types were the most frequent contributors to the SPX expansion, and that there is a positive correlation between the amount of WGD contribution to the SPX expansion in individual species and its number of EXS genes. We could also reveal that except SPX class genes, other classes lost the collinearity relationships among Arabidopsis and legume genomes. The sub- or neo-functionalization of the duplicated genes in the legumes makes it difficult to find the functional orthologous genes. Therefore, we used two different methods to identify functional orthologs in soybean and Medicago. High variance in the dynamic and spatial expression pattern of GmSPXs proved the new or sub-functionalization in the paralogs. CONCLUSION This comprehensive analysis revealed how SPX gene family evolved from algae to legumes and also discovered several new domains fused to SPX domain in algae. In addition, we hypothesized that there different phosphate sensing mechanisms might occur in S. moellendorffii and P. sumniferum. Finally, we predicted putative functional orthologs of AtSPXs in the legumes, especially, orthologs of AtPHO1, involved in long-distance Pi transportation. These findings help to understand evolution of phosphate signaling and might underpin development of new legume varieties with improved phosphate use efficiency.
Collapse
Affiliation(s)
| | - Esmaeil Ebrahimie
- Institute of biotechnology, Shiraz university, Shiraz, Iran
- La Trobe Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, 3086, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA, 5371, Australia
| | | | - Ali Moghadam
- Institute of biotechnology, Shiraz university, Shiraz, Iran
| | - Saeid Eshghi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Ali Niazi
- Institute of biotechnology, Shiraz university, Shiraz, Iran.
| |
Collapse
|
28
|
Jafari M, Shiran B, Rabiei G, Ravash R, Sayed Tabatabaei BE, Martínez-Gómez P. Identification and verification of seed development related miRNAs in kernel almond by small RNA sequencing and qPCR. PLoS One 2021; 16:e0260492. [PMID: 34851991 PMCID: PMC8635354 DOI: 10.1371/journal.pone.0260492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
Many studies have investigated the role of miRNAs on the yield of various plants, but so far, no report is available on the identification and role of miRNAs in fruit and seed development of almonds. In this study, preliminary analysis by high-throughput sequencing of short RNAs of kernels from the crosses between almond cultivars 'Sefid' × 'Mamaee' (with small and large kernels, respectively) and 'Sefid' × 'P. orientalis' (with small kernels) showed that the expressions of several miRNAs such as Pdu-miR395a-3p, Pdu-miR8123-5p, Pdu-miR482f, Pdu-miR6285, and Pdu-miR396a were significantly different. These miRNAs targeted genes encoding different proteins such as NYFB-3, SPX1, PGSIP3 (GUX2), GH3.9, and BEN1. The result of RT-qPCR revealed that the expression of these genes showed significant differences between the crosses and developmental stages of the seeds, suggesting that these genes might be involved in controlling kernel size because the presence of these miRNAs had a negative effect on their target genes. Pollen source can influence kernel size by affecting hormonal signaling and metabolic pathways through related miRNAs, a phenomenon known as xenia.
Collapse
Affiliation(s)
- Marjan Jafari
- Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Behrouz Shiran
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
- Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Gholamreza Rabiei
- Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Roudabeh Ravash
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | | | | |
Collapse
|
29
|
Xiao J, Xie X, Li C, Xing G, Cheng K, Li H, Liu N, Tan J, Zheng W. Identification of SPX family genes in the maize genome and their expression under different phosphate regimes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:211-220. [PMID: 34649024 DOI: 10.1016/j.plaphy.2021.09.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/31/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Many studies have revealed that SPX (SYG1/Pho81/XPR1) family genes play a key role in signal transduction related to phosphorus (P) deficiency in plants. Here, we identified 33 SPX gene family members in maize through genome-wide analysis and classified them into 4 subfamilies according to SPX structural characteristics (SPX, SPX-MFS, SPX-EXS and SPX-RING). The promoter regions of ZmSPXs are rich in biotic/abiotic-related stress elements. The quantitative real-time PCR analysis of 33 ZmSPXs revealed that all members except for ZmSPX3 of the SPX subfamily were significantly induced under P-deficient conditions, especially ZmSPX4.1 and ZmSPX4.2, which showed strong responses to low P stress and exhibited remarkably different expression patterns in low Pi sensitive and insensitive cultivars of maize. These results suggested that the SPX subfamily might play pivotal roles in P stress sensing and response. Experimental observations of subcellular localization in maize protoplasts indicated the following results, implying multiple roles in cell metabolism: ZmSPX2, ZmSPX5 and ZmSPX6 localized in the nucleus; ZmSPX1 and ZmSPX3 localized in the nucleus and cytoplasm; and ZmSPX4.2 localized in the chloroplast. A Y2H assay suggested that ZmPHR1 could interact with ZmSPX3, ZmSPX4.2, ZmSPX5, and ZmSPX6, indicating the involvement of these proteins in the P stress response in a ZmPHR1-mediated manner.
Collapse
Affiliation(s)
- Jibin Xiao
- Collaborative Innovation Center of Henan Grain Crops / State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xuanmin Xie
- Collaborative Innovation Center of Henan Grain Crops / State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Chuang Li
- Collaborative Innovation Center of Henan Grain Crops / State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Guozhen Xing
- Collaborative Innovation Center of Henan Grain Crops / State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Kun Cheng
- Collaborative Innovation Center of Henan Grain Crops / State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Hui Li
- College of Resource and Environment, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Na Liu
- Collaborative Innovation Center of Henan Grain Crops / State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jinfang Tan
- College of Resource and Environment, Henan Agricultural University, Zhengzhou, 450002, China; School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Wenming Zheng
- Collaborative Innovation Center of Henan Grain Crops / State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
30
|
Kale RR, Durga Rani CV, Anila M, Mahadeva Swamy HK, Bhadana VP, Senguttuvel P, Subrahmanyam D, Ayyappa Dass M, Swapnil K, Anantha MS, Punniakotti E, Prasanna BL, Rekha G, Sinha P, Kousik MBVN, Dilip T, Hajira SK, Brajendra P, Mangrauthia SK, Gireesh C, Tuti M, Mahendrakumar R, Giri J, Singh P, Sundaram RM. Novel major QTLs associated with low soil phosphorus tolerance identified from the Indian rice landrace, Wazuhophek. PLoS One 2021; 16:e0254526. [PMID: 34264991 PMCID: PMC8282084 DOI: 10.1371/journal.pone.0254526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/28/2021] [Indexed: 11/21/2022] Open
Abstract
With an objective of mapping novel low soil P (Phosphorus) tolerance loci in the non-Pup1 type donor rice line, Wazuhophek, we screened a recombinant inbred line (RIL) mapping population consisting of 330 lines derived from the cross Wazuhophek x Improved Samba Mahsuri (which is highly sensitive to low soil P) in a plot with low soil P for tolerance associated traits. Molecular mapping with SSR markers revealed a total of 16 QTLs (seven major and nine minor QTLs), which are associated with low soil P tolerance related traits. Interestingly, a QTL hotspot, harbouring 10 out of 16 QTLs were identified on the short arm of chromosome 8 (flanked by the makers RM22554 and RM80005). Five major QTLs explaining phenotypic variance to an extent of 15.28%, 17.25%, 21.84%, 20.23%, and 18.50%, associated with the traits, plant height, shoot length, the number of productive tillers, panicle length and yield, respectively, were located in the hotspot. Two major QTLs located on chromosome 1, associated with the traits, total biomass and root to shoot ratio, explaining 15.44% and 15.44% phenotypic variance, respectively were also identified. Complex epistatic interactions were observed among the traits, grain yield per plant, days to 50% flowering, dry shoot weight, and P content of the seed. In-silico analysis of genomic regions flanking the major QTLs revealed the presence of key putative candidate genes, possibly associated with tolerance.
Collapse
Affiliation(s)
- Ravindra Ramrao Kale
- Institute of Biotechnology, The Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad, India
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - Ch. V. Durga Rani
- Institute of Biotechnology, The Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad, India
| | - M. Anila
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - H. K. Mahadeva Swamy
- Indian Council of Agricultural Research—Sugarcane Breeding Institute, Coimbatore, India
| | - V. P. Bhadana
- Indian Council of Agricultural Research -Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - P. Senguttuvel
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - D. Subrahmanyam
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - M. Ayyappa Dass
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - K. Swapnil
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - M. S. Anantha
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - E. Punniakotti
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - B. Laxmi Prasanna
- Institute of Biotechnology, The Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad, India
| | - G. Rekha
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - P. Sinha
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - M. B. V. N. Kousik
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - T. Dilip
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - S. K. Hajira
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - P. Brajendra
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - S. K. Mangrauthia
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - C. Gireesh
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - Mangaldeep Tuti
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - R. Mahendrakumar
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - Jitendra Giri
- Department of Biotechnology - National Institute of Plant Genome Research, New Delhi, India
| | - Pawandeep Singh
- Department of Biotechnology - National Institute of Plant Genome Research, New Delhi, India
| | - R. M. Sundaram
- Indian Council of Agricultural Research -Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| |
Collapse
|
31
|
Kumar S, Chugh C, Seem K, Kumar S, Vinod KK, Mohapatra T. Characterization of contrasting rice (Oryza sativa L.) genotypes reveals the Pi-efficient schema for phosphate starvation tolerance. BMC PLANT BIOLOGY 2021; 21:282. [PMID: 34154533 PMCID: PMC8215752 DOI: 10.1186/s12870-021-03015-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/05/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Phosphorus (P), being one of the essential components of nucleic acids, cell membranes and enzymes, indispensable for diverse cellular processes like photosynthesis/carbohydrate metabolism, energy production, redox homeostasis and signaling. Crop yield is severely affected due to Phosphate (Pi) deficiency; and to cope with Pi-deficiency, plants have evolved several strategies. Some rice genotypes are compatible with low Pi availability, whereas others are sensitive to Pi deficiency. However, the underlying molecular mechanism for low Pi tolerance remains largely unexplored. RESULT Several studies were carried out to understand Pi-deficiency responses in rice at seedling stage, but few of them targeted molecular aspects/responses of Pi-starvation at the advanced stage of growth. To delineate the molecular mechanisms for low Pi tolerance, a pair of contrasting rice (Oryza sativa L.) genotypes [viz. Pusa-44 (Pi-deficiency sensitive) and its near isogenic line (NIL-23, Pi-deficiency tolerant) harboring Phosphorus uptake 1 (Pup1) QTL from an aus landrace Kasalath] were used. Comparative morphological, physiological, and biochemical analyses confirmed some of the well-known findings. Transcriptome analysis of shoot and root tissues from 45-day-old rice plants grown hydroponically under P-sufficient (16 ppm Pi) or P-starved (0 ppm Pi) medium revealed that Pi-starvation stress causes global transcriptional reprogramming affecting several transcription factors, signaling pathways and other regulatory genes. We could identify several significantly up-regulated genes in roots of NIL-23 under Pi-starvation which might be responsible for the Pi starvation tolerance. Pathway enrichment analysis indicated significant role of certain phosphatases, transporters, transcription factors, carbohydrate metabolism, hormone-signaling, and epigenetic processes in improving P-starvation stress tolerance in NIL-23. CONCLUSION We report the important candidate mechanisms for Pi acquisition/solubilization, recycling, remobilization/transport, sensing/signalling, genetic/epigenetic regulation, and cell wall structural changes to be responsible for P-starvation tolerance in NIL-23. The study provides some of the novel information useful for improving phosphorus-use efficiency in rice cultivars.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi , 110012, India.
| | - Chetna Chugh
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi , 110012, India
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi , 110012, India
| | | | - K K Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
32
|
Torres-Rodríguez JV, Salazar-Vidal MN, Chávez Montes RA, Massange-Sánchez JA, Gillmor CS, Sawers RJH. Low nitrogen availability inhibits the phosphorus starvation response in maize (Zea mays ssp. mays L.). BMC PLANT BIOLOGY 2021; 21:259. [PMID: 34090337 PMCID: PMC8178920 DOI: 10.1186/s12870-021-02997-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Nitrogen (N) and phosphorus (P) are macronutrients essential for crop growth and productivity. In cultivated fields, N and P levels are rarely sufficient, contributing to the gap between realized and potential production. Fertilizer application increases nutrient availability, but is not available to all farmers, nor are current rates of application sustainable or environmentally desirable. Transcriptomic studies of cereal crops have revealed dramatic responses to either low N or low P single stress treatments. In the field, however, levels of both N and P may be suboptimal. The interaction between N and P starvation responses remains to be fully characterized. RESULTS We characterized growth and root and leaf transcriptomes of young maize plants under nutrient replete, low N, low P or combined low NP conditions. We identified 1555 genes to respond to our nutrient treatments, in one or both tissues. A large group of genes, including many classical P starvation response genes, were regulated antagonistically between low N and P conditions. An additional experiment over a range of N availability indicated that a mild reduction in N levels was sufficient to repress the low P induction of P starvation genes. Although expression of P transporter genes was repressed under low N or low NP, we confirmed earlier reports of P hyper accumulation under N limitation. CONCLUSIONS Transcriptional responses to low N or P were distinct, with few genes responding in a similar way to the two single stress treatments. In combined NP stress, the low N response dominated, and the P starvation response was largely suppressed. A mild reduction in N availability was sufficient to repress the induction of P starvation associated genes. We conclude that activation of the transcriptional response to P starvation in maize is contingent on N availability.
Collapse
Affiliation(s)
- J Vladimir Torres-Rodríguez
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, C.P, 36824, Guanajuato, Mexico
| | - M Nancy Salazar-Vidal
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, C.P, 36824, Guanajuato, Mexico
- Department of Evolution and Ecology, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
- Division of Plant Sciences, Univ. of Missouri, Columbia, MO, 65211, USA
| | - Ricardo A Chávez Montes
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, C.P, 36824, Guanajuato, Mexico
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, 79409, USA
| | - Julio A Massange-Sánchez
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ) Subsede Zapopan, Guadalajara, Mexico
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, C.P, 36824, Guanajuato, Mexico
| | - Ruairidh J H Sawers
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, C.P, 36824, Guanajuato, Mexico.
- Department of Plant Science, The Pennsylvania State University, State College, PA, USA.
| |
Collapse
|
33
|
NH787 EMS mutant of rice variety Nagina22 exhibits higher phosphate use efficiency. Sci Rep 2021; 11:9156. [PMID: 33911118 PMCID: PMC8080636 DOI: 10.1038/s41598-021-88419-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Rice (Oryza sativa L.), a major dietary source, is often cultivated in soils poor in available inorganic orthophosphate (Pi), which is a key nutrient for growth and development. Poor soils are amended by phosphorus (P) fertilizer, which is derived from the non-renewable rock phosphate reserves. Therefore, there is a need for developing rice varieties with high productivity under low P conditions. At the ICAR-IIRR, ethyl methanesulfonate (EMS) mutagenized rice genotype Nagina22 (N22) were screened for high grain yield in Pi-deprived soil, which led to the identification of ~ 10 gain-of-function mutants including NH787. Here, detailed comparative morphophysiological, biochemical, and molecular analyses of N22 and NH787 were carried out in hydroponics and potting soil under different Pi regimes. Under Pi-deprived condition, compared with N22, NH787 exhibited higher root and vegetative biomass, the number of tillers, and grain yield. The augmented agronomic traits of NH787 were corroborated with significantly higher photosynthetic rate, pollen fertility, stigma receptivity, and the activities of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). Further, several genes involved in the maintenance of Pi homeostasis (GPH) were differentially regulated. The study thus revealed a wide-spectrum influence of the mutation in NH787 that contributed towards its higher Pi use efficiency (PUE).
Collapse
|
34
|
Nasr Esfahani M, Inoue K, Nguyen KH, Chu HD, Watanabe Y, Kanatani A, Burritt DJ, Mochida K, Tran LSP. Phosphate or nitrate imbalance induces stronger molecular responses than combined nutrient deprivation in roots and leaves of chickpea plants. PLANT, CELL & ENVIRONMENT 2021; 44:574-597. [PMID: 33145807 DOI: 10.1111/pce.13935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 05/25/2023]
Abstract
The negative effects of phosphate (Pi) and/or nitrate (NO3- ) fertilizers on the environment have raised an urgent need to develop crop varieties with higher Pi and/or nitrogen use efficiencies for cultivation in low-fertility soils. Achieving this goal depends upon research that focuses on the identification of genes involved in plant responses to Pi and/or NO3- starvation. Although plant responses to individual deficiency in either Pi (-Pi/+NO3- ) or NO3- (+Pi/-NO3- ) have been separately studied, our understanding of plant responses to combined Pi and NO3- deficiency (-Pi/-NO3- ) is still very limited. Using RNA-sequencing approach, transcriptome changes in the roots and leaves of chickpea cultivated under -Pi/+NO3- , +Pi/-NO3- or -Pi/-NO3- conditions were investigated in a comparative manner. -Pi/-NO3- treatment displayed lesser effect on expression changes of genes related to Pi or NO3- transport, signalling networks, lipid remodelling, nitrogen and Pi scavenging/remobilization/recycling, carbon metabolism and hormone metabolism than -Pi/+NO3- or +Pi/-NO3- treatments. Therefore, the plant response to -Pi/-NO3- is not simply an additive result of plant responses to -Pi/+NO3- and +Pi/-NO3- treatments. Our results indicate that nutrient imbalance is a stronger stimulus for molecular reprogramming than an overall deficiency.
Collapse
Affiliation(s)
| | - Komaki Inoue
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Kien Huu Nguyen
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
| | - Ha Duc Chu
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Asaka Kanatani
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - David J Burritt
- Department of Botany, University of Otago, Dunedin, New Zealand
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Microalgae Production Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
| | - Lam-Son Phan Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
35
|
Takehisa H, Sato Y. Transcriptome-based approaches for clarification of nutritional responses and improvement of crop production. BREEDING SCIENCE 2021; 71:76-88. [PMID: 33762878 PMCID: PMC7973498 DOI: 10.1270/jsbbs.20098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Genome-wide transcriptome profiling is a powerful tool for identifying key genes and pathways involved in plant development and physiological processes. This review summarizes studies that have used transcriptome profiling mainly in rice to focus on responses to macronutrients such as nitrogen, phosphorus and potassium, and spatio-temporal root profiling in relation to the regulation of root system architecture as well as nutrient uptake and transport. We also discuss strategies based on meta- and co-expression analyses with different attributed transcriptome data, which can be used for investigating the regulatory mechanisms and dynamics of nutritional responses and adaptation, and speculate on further advances in transcriptome profiling that could have potential application to crop breeding and cultivation.
Collapse
Affiliation(s)
- Hinako Takehisa
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Yutaka Sato
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
36
|
Ried MK, Wild R, Zhu J, Pipercevic J, Sturm K, Broger L, Harmel RK, Abriata LA, Hothorn LA, Fiedler D, Hiller S, Hothorn M. Inositol pyrophosphates promote the interaction of SPX domains with the coiled-coil motif of PHR transcription factors to regulate plant phosphate homeostasis. Nat Commun 2021; 12:384. [PMID: 33452263 PMCID: PMC7810988 DOI: 10.1038/s41467-020-20681-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/09/2020] [Indexed: 12/05/2022] Open
Abstract
Phosphorus is an essential nutrient taken up by organisms in the form of inorganic phosphate (Pi). Eukaryotes have evolved sophisticated Pi sensing and signaling cascades, enabling them to stably maintain cellular Pi concentrations. Pi homeostasis is regulated by inositol pyrophosphate signaling molecules (PP-InsPs), which are sensed by SPX domain-containing proteins. In plants, PP-InsP-bound SPX receptors inactivate Myb coiled-coil (MYB-CC) Pi starvation response transcription factors (PHRs) by an unknown mechanism. Here we report that a InsP8–SPX complex targets the plant-unique CC domain of PHRs. Crystal structures of the CC domain reveal an unusual four-stranded anti-parallel arrangement. Interface mutations in the CC domain yield monomeric PHR1, which is no longer able to bind DNA with high affinity. Mutation of conserved basic residues located at the surface of the CC domain disrupt interaction with the SPX receptor in vitro and in planta, resulting in constitutive Pi starvation responses. Together, our findings suggest that InsP8 regulates plant Pi homeostasis by controlling the oligomeric state and hence the promoter binding capability of PHRs via their SPX receptors. Plants regulate phosphate homeostasis via the interaction of PHR transcription factors with SPX receptors bound to inositol pyrophosphate signaling molecules. Here the authors show that inositol pyrophosphate-bound SPX interacts with the coiled-coil domain of PHR, which regulates the oligomerization and activity of the transcription factor.
Collapse
Affiliation(s)
- Martina K Ried
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland.,Leibniz Institute of Plant Biochemistry, 06120, Halle, Germany
| | - Rebekka Wild
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland.,Institut de Biologie Structurale (IBS), 38044, Grenoble, France
| | - Jinsheng Zhu
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | | | - Kristina Sturm
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Larissa Broger
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Robert K Harmel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125, Berlin, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Luciano A Abriata
- Protein production and structure Core Facility, EPFL, 1015, Lausanne, Switzerland
| | - Ludwig A Hothorn
- Institute of Biostatistics, Leibniz University, 30419, Hannover, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125, Berlin, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | | | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
37
|
MicroRNA-Mediated Responses to Cadmium Stress in Arabidopsis thaliana. PLANTS 2021; 10:plants10010130. [PMID: 33435199 PMCID: PMC7827075 DOI: 10.3390/plants10010130] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 01/30/2023]
Abstract
In recent decades, the presence of cadmium (Cd) in the environment has increased significantly due to anthropogenic activities. Cd is taken up from the soil by plant roots for its subsequent translocation to shoots. However, Cd is a non-essential heavy metal and is therefore toxic to plants when it over-accumulates. MicroRNA (miRNA)-directed gene expression regulation is central to the response of a plant to Cd stress. Here, we document the miRNA-directed response of wild-type Arabidopsis thaliana (Arabidopsis) plants and the drb1, drb2 and drb4 mutant lines to Cd stress. Phenotypic and physiological analyses revealed the drb1 mutant to display the highest degree of tolerance to the imposed stress while the drb2 mutant was the most sensitive. RT-qPCR-based molecular profiling of miRNA abundance and miRNA target gene expression revealed DRB1 to be the primary double-stranded RNA binding (DRB) protein required for the production of six of the seven Cd-responsive miRNAs analyzed. However, DRB2, and not DRB1, was determined to be required for miR396 production. RT-qPCR further inferred that transcript cleavage was the RNA silencing mechanism directed by each assessed miRNA to control miRNA target gene expression. Taken together, the results presented here reveal the complexity of the miRNA-directed molecular response of Arabidopsis to Cd stress.
Collapse
|
38
|
Abstract
Phosphate is an essential nutrient for life and is a critical component of bone formation, a major signaling molecule, and structural component of cell walls. Phosphate is also a component of high-energy compounds (i.e., AMP, ADP, and ATP) and essential for nucleic acid helical structure (i.e., RNA and DNA). Phosphate plays a central role in the process of mineralization, normal serum levels being associated with appropriate bone mineralization, while high and low serum levels are associated with soft tissue calcification. The serum concentration of phosphate and the total body content of phosphate are highly regulated, a process that is accomplished by the coordinated effort of two families of sodium-dependent transporter proteins. The three isoforms of the SLC34 family (SLC34A1-A3) show very restricted tissue expression and regulate intestinal absorption and renal excretion of phosphate. SLC34A2 also regulates the phosphate concentration in multiple lumen fluids including milk, saliva, pancreatic fluid, and surfactant. Both isoforms of the SLC20 family exhibit ubiquitous expression (with some variation as to which one or both are expressed), are regulated by ambient phosphate, and likely serve the phosphate needs of the individual cell. These proteins exhibit similarities to phosphate transporters in nonmammalian organisms. The proteins are nonredundant as mutations in each yield unique clinical presentations. Further research is essential to understand the function, regulation, and coordination of the various phosphate transporters, both the ones described in this review and the phosphate transporters involved in intracellular transport.
Collapse
Affiliation(s)
- Nati Hernando
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Kenneth Gagnon
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Eleanor Lederer
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| |
Collapse
|
39
|
Luo J, Liu Y, Zhang H, Wang J, Chen Z, Luo L, Liu G, Liu P. Metabolic alterations provide insights into Stylosanthes roots responding to phosphorus deficiency. BMC PLANT BIOLOGY 2020; 20:85. [PMID: 32087672 PMCID: PMC7036231 DOI: 10.1186/s12870-020-2283-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/07/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Phosphorus (P) deficiency is one of the major constraints limiting plant growth, especially in acid soils. Stylosanthes (stylo) is a pioneer tropical legume with excellent adaptability to low P stress, but its underlying mechanisms remain largely unknown. RESULTS In this study, the physiological, molecular and metabolic changes in stylo responding to phosphate (Pi) starvation were investigated. Under low P condition, the growth of stylo root was enhanced, which was attributed to the up-regulation of expansin genes participating in root growth. Metabolic profiling analysis showed that a total of 256 metabolites with differential accumulations were identified in stylo roots response to P deficiency, which mainly included flavonoids, sugars, nucleotides, amino acids, phenylpropanoids and phenylamides. P deficiency led to significant reduction in the accumulation of phosphorylated metabolites (e.g., P-containing sugars, nucleotides and cholines), suggesting that internal P utilization was enhanced in stylo roots subjected to low P stress. However, flavonoid metabolites, such as kaempferol, daidzein and their glycoside derivatives, were increased in P-deficient stylo roots. Furthermore, the qRT-PCR analysis showed that a set of genes involved in flavonoids synthesis were found to be up-regulated by Pi starvation in stylo roots. In addition, the abundances of phenolic acids and phenylamides were significantly increased in stylo roots during P deficiency. The increased accumulation of the metabolites in stylo roots, such as flavonoids, phenolic acids and phenylamides, might facilitate P solubilization and cooperate with beneficial microorganisms in rhizosphere, and thus contributing to P acquisition and utilization in stylo. CONCLUSIONS These results suggest that stylo plants cope with P deficiency by modulating root morphology, scavenging internal Pi from phosphorylated metabolites and increasing accumulation of flavonoids, phenolic acids and phenylamides. This study provides valuable insights into the complex responses and adaptive mechanisms of stylo roots to P deficiency.
Collapse
Affiliation(s)
- Jiajia Luo
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China
| | - Yunxi Liu
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China
| | - Huikai Zhang
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China
| | - Jinpeng Wang
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China
| | - Zhijian Chen
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China
| | - Lijuan Luo
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China.
| | - Guodao Liu
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China.
| | - Pandao Liu
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China.
| |
Collapse
|
40
|
Lee HY, Chen Z, Zhang C, Yoon GM. Editing of the OsACS locus alters phosphate deficiency-induced adaptive responses in rice seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1927-1940. [PMID: 30810167 PMCID: PMC6436150 DOI: 10.1093/jxb/erz074] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/04/2019] [Indexed: 05/21/2023]
Abstract
Phosphate (Pi) deficiency severely influences the growth and reproduction of plants. To cope with Pi deficiency, plants initiate morphological and biochemical adaptive responses upon sensing low Pi in the soil, and the plant hormone ethylene plays a crucial role during this process. However, how regulation of ethylene biosynthesis influences the Pi-induced adaptive responses remains unclear. Here, we determine the roles of rice 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), the rate-limiting enzymes in ethylene biosynthesis, in response to Pi deficiency. Through analysis of tissue-specific expression of OsACS in response to Pi deficiency and OsACS mutants generated by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9] genome editing, we found that two members of the OsACS family, i.e. OsACS1 and OsACS2, are involved but differed in their importance in controlling the remodeling of root system architecture, transcriptional regulation of Pi starvation-induced genes, and cellular phosphorus homeostasis. Interestingly, in contrast to the known inhibitory role of ethylene on root elongation, both OsACS mutants, especially OsACS1, almost fail to promote lateral root growth in response to Pi deficiency, demonstrating a stimulatory role for ethylene in lateral root development under Pi-deficient conditions. Together, this study provides new insights into the roles of ethylene in Pi deficiency response in rice seedlings and the isoform-specific function of OsACS genes in this process.
Collapse
Affiliation(s)
- Han Yong Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Zhixiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Cankui Zhang
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Gyeong Mee Yoon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
41
|
Li D, Zhang T, Wang M, Liu Y, Brestic M, Chen THH, Yang X. Genetic Engineering of the Biosynthesis of Glycine Betaine Modulates Phosphate Homeostasis by Regulating Phosphate Acquisition in Tomato. FRONTIERS IN PLANT SCIENCE 2019; 9:1995. [PMID: 30687378 PMCID: PMC6335352 DOI: 10.3389/fpls.2018.01995] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/21/2018] [Indexed: 05/03/2023]
Abstract
Glycine betaine (GB), as a putative compatible substance, protects plants against the damaging effects of abiotic stresses. Phosphorus deficiency is one type of abiotic stress that is detrimental to plant growth. Maintenance of phosphate (Pi) homeostasis is crucial. This study demonstrates GB-regulated phosphate homeostasis in the tomato (Solanum lycopersicum cv. 'Moneymaker') transformed with the choline oxidase gene codA from Arthrobacter globiformis. The codA-transgenic lines displayed more resistance to low-phosphate stress. The data revealed that the wild-type plants were stunted and consistently retained less Pi than transgenic lines, especially when grown under low-phosphate conditions. This difference in Pi retention was attributable to the enhanced Pi uptake ability in the transgenic lines. The transgenic plants translocated more Pi into the plant cell due to the enhanced enzymatic activity of plasma membrane H+-ATPase and increased Pi/H+ co-transport, which improved Pi uptake. The differential expression of 'PHO regulon' genes further maintained intracellular Pi homeostasis. Furthermore, GB maintained a higher photosynthesis rate, thus increasing the production and translocation of sucrose via phloem loading to enhance plant response to low-phosphate stress. We conclude that GB mediates Pi uptake and translocation by regulating physiological and biochemical processes that promote adaptation to environmental changes in Pi availability. These processes eventually lead to better growth and development of the codA-transgenic lines. This finding will help to further elucidate the signaling mechanism of how GB perceives and transmits low-phosphate signals to alleviate Pi nutritional stress.
Collapse
Affiliation(s)
- Daxing Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Tianpeng Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Mengwei Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Tony H. H. Chen
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
42
|
Ding Y, Wang Z, Ren M, Zhang P, Li Z, Chen S, Ge C, Wang Y. Iron and callose homeostatic regulation in rice roots under low phosphorus. BMC PLANT BIOLOGY 2018; 18:326. [PMID: 30514218 PMCID: PMC6278065 DOI: 10.1186/s12870-018-1486-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Phosphorus (Pi) deficiency induces root morphological remodeling in plants. The primary root length of rice increased under Pi deficiency stress; however, the underlying mechanism is not well understood. In this study, transcriptome analysis (RNA-seq) and Real-time quantitative PCR (qRT-PCR) techniques were combined with the determination of physiological and biochemical indexes to research the regulation mechanisms of iron (Fe) accumulation and callose deposition in rice roots, to illuminate the relationship between Fe accumulation and primary root growth under Pi deficient conditions. RESULTS Induced expression of LPR1 genes was observed under low Pi, which also caused Fe accumulation, resulting in iron plaque formation on the root surface in rice; however, in contrast to Arabidopsis, low Pi promoted primary root lengthening in rice. This might be due to Fe accumulation and callose deposition being still appropriately regulated under low Pi. The down-regulated expression of Fe-uptake-related key genes (including IRT, NAS, NAAT, YSLs, OsNRAMP1, ZIPs, ARF, and Rabs) inhibited iron uptake pathways I, II, and III in rice roots under low Pi conditions. In contrast, due to the up-regulated expression of the VITs gene, Fe was increasingly stored in both root vacuoles and cell walls. Furthermore, due to induced expression and increased activity of β-1-3 glucanase, callose deposition was more controlled in low Pi treated rice roots. In addition, low Pi and low Fe treatment still caused primary root lengthening. CONCLUSIONS The obtained results indicate that Low phosphorus induces iron and callose homeostatic regulation in rice roots. Because of the Fe homeostatic regulation, Fe plays a small role in rice root morphological remodeling under low Pi.
Collapse
Affiliation(s)
- Yan Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
- College of Materials and chemical engineering, Bengbu University, 1866 Caoshan Road, Bengbu, 233000 People’s Republic of China
| | - Zegang Wang
- College of Bioscience and Biotechnology, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
| | - Menglian Ren
- College of Bioscience and Biotechnology, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
| | - Ping Zhang
- College of Bioscience and Biotechnology, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
| | - Zhongnan Li
- College of Bioscience and Biotechnology, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
| | - Sheng Chen
- College of Bioscience and Biotechnology, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
| | - Cailin Ge
- College of Bioscience and Biotechnology, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
| | - Yulong Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
| |
Collapse
|
43
|
Xue Y, Zhuang Q, Zhu S, Xiao B, Liang C, Liao H, Tian J. Genome Wide Transcriptome Analysis Reveals Complex Regulatory Mechanisms Underlying Phosphate Homeostasis in Soybean Nodules. Int J Mol Sci 2018; 19:E2924. [PMID: 30261621 PMCID: PMC6213598 DOI: 10.3390/ijms19102924] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 01/22/2023] Open
Abstract
Phosphorus (P) deficiency is a major limitation for legume crop production. Although overall adaptations of plant roots to P deficiency have been extensively studied, only fragmentary information is available in regard to root nodule responses to P deficiency. In this study, genome wide transcriptome analysis was conducted using RNA-seq analysis in soybean nodules grown under P-sufficient (500 μM KH₂PO₄) and P-deficient (25 μM KH₂PO₄) conditions to investigate molecular mechanisms underlying soybean (Glycine max) nodule adaptation to phosphate (Pi) starvation. Phosphorus deficiency significantly decreased soybean nodule growth and nitrogenase activity. Nodule Pi concentrations declined by 49% in response to P deficiency, but this was well below the 87% and 88% decreases observed in shoots and roots, respectively. Nodule transcript profiling revealed that a total of 2055 genes exhibited differential expression patterns between Pi sufficient and deficient conditions. A set of (differentially expressed genes) DEGs appeared to be involved in maintaining Pi homeostasis in soybean nodules, including eight Pi transporters (PTs), eight genes coding proteins containing the SYG1/PHO81/XPR1 domain (SPXs), and 16 purple acid phosphatases (PAPs). The results suggest that a complex transcriptional regulatory network participates in soybean nodule adaption to Pi starvation, most notable a Pi signaling pathway, are involved in maintaining Pi homeostasis in nodules.
Collapse
Affiliation(s)
- Yingbin Xue
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Qingli Zhuang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Shengnan Zhu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Bixian Xiao
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Hong Liao
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350000, China.
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
44
|
Yugandhar P, Sun Y, Liu L, Negi M, Nallamothu V, Sun S, Neelamraju S, Rai V, Jain A. Characterization of the loss-of-function mutant NH101 for yield under phosphate deficiency from EMS-induced mutants of rice variety Nagina22. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:1-13. [PMID: 29957570 DOI: 10.1016/j.plaphy.2018.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/28/2018] [Accepted: 06/14/2018] [Indexed: 05/09/2023]
Abstract
In earlier studies at IIRR, Hyderabad, screening of ∼2000 EMS mutants of the rice variety Nagina22 (N22) resulted in the identification of 11 loss-of-function mutants with zero grain yield in Pi-deprived soil under field condition. Among these mutants, NH101 was selected for comparative analyses with N22 for various morphophysiological and/or molecular traits during growth in a hydroponic system (7 d) and in a pot soil (50% flowering) under different Pi regime. The total length of the seminal and adventitious roots, agronomic traits (panicle length and unfilled spikelet/panicle), activities of the antioxidant enzymes (SOD, POD, and APX), and the relative expression levels of the genes involved in the maintenance of Pi homeostasis (MPH) i.e., OsPHR2, SPX1/2 OsPT4, 6, and 8 showed significant increase in the Pi-deprived mutant compared with N22. Whereas, some of the traits showed significant reduction in NH101 than N22 such as number of tillers and filled spikelets/panicle, yield, contents of Pi and externally secreted APase, activity of CAT, and the relative expression levels of MPH genes i.e., OsmiR399a, OsPHO1;2, OsIPS1, OsPAP10a, OsPT2, 9, and 10. The study highlighted wide spectrum differential effects of the mutation in NH101 on various traits that play important roles governing the maintenance of Pi homeostasis. This mutant thus provides a rich repository of genetic material amenable for the identification of the genes that are pivotal for Pi use efficiency.
Collapse
Affiliation(s)
- Poli Yugandhar
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - Yafei Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lu Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Manisha Negi
- National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, 110012, India
| | | | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sarla Neelamraju
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Vandna Rai
- National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, 110012, India
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| |
Collapse
|
45
|
Zhu CQ, Zhu XF, Wang C, Dong XY, Shen RF. Nitrate inhibits the remobilization of cell wall phosphorus under phosphorus-starvation conditions in rice (Oryza sativa). PLANTA 2018; 248:185-196. [PMID: 29663070 DOI: 10.1007/s00425-018-2892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
NO3- not only inhibited the reutilization of cell wall P via decreasing root cell wall pectin content and PME activity, but also hampered the P translocation from root to shoot. The rice cultivars 'Kasalath' (Kas) and 'Nipponbare' (Nip) were used to demonstrate that the nitrogen source NO3- inhibits internal phosphorus (P) reutilization in rice under P-absence conditions. Analysis using Kas showed that the expression of - P-induced marker genes OsIPS1/2 and OsSPX1/2/3/5 are significantly higher under 1 mM NO 3- - P (1N - P) treatment than 0 mM NO 3- - P (0N - P) treatment. The absence of NO3- from the nutrient solution significantly increased cell wall P release by increasing pectin synthesis and increasing the activity of pectin methylesterase (PME), and also significantly improved the translocation of soluble P from the root to the shoot by increasing xylem sap P content under P-absence conditions. The rice seedlings grown in 0 mM NO3- accumulated significantly higher nitric oxide (NO) in the roots than those grown in 1 mM NO3-. Exogenously applying the NO donor sodium nitroprusside (SNP) revealed that NO is a major contributor to differential cell wall P remobilization in rice by mediating pectin synthesis and demethylation under different NO3- concentrations (0 and 1 mM) under P-deprived conditions.
Collapse
Affiliation(s)
- Chun Quan Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
| | - Chao Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
| | - Xiao Ying Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
46
|
Zhong Y, Wang Y, Guo J, Zhu X, Shi J, He Q, Liu Y, Wu Y, Zhang L, Lv Q, Mao C. Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2. THE NEW PHYTOLOGIST 2018; 219:135-148. [PMID: 29658119 DOI: 10.1111/nph.15155] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
Phosphorus (P) is an essential macronutrient for plant growth and development, but the molecular mechanism determining how plants sense external inorganic phosphate (Pi) levels and reprogram transcriptional and adaptive responses is incompletely understood. In this study, we investigated the function of OsSPX6 (hereafter SPX6), an uncharacterized member of SPX domain (SYG1, Pho81 and XPR1)-containing proteins in rice, using reverse genetics and biochemical approaches. Transgenic plants overexpressing SPX6 exhibited decreased Pi concentrations and suppression of phosphate starvation-induced (PSI) genes. By contrast, transgenic lines with decreased SPX6 transcript levels or spx6 mutant showed significant Pi accumulation in the leaf and upregulation of PSI genes. Overexpression of SPX6 genetically suppressed the overexpression of PHOSPHATE STARVATION RESPONSE REGULATOR 2 (PHR2) in terms of the accumulation of high Pi content. Moreover, direct interaction of SPX6 with PHR2 impeded PHR2 translocation into the nucleus, and inhibited PHR2 binding to the P1BS (PHR1 binding sequence) element. SPX6 protein was degraded in leaves under Pi-deficient conditions, whereas it accumulated in roots. We conclude that rice SPX6 is another important negative regulator in Pi starvation signaling through the interaction with PHR2. SPX6 shows different responses to Pi starvation in shoot and root, which differ from those of other SPX proteins.
Collapse
Affiliation(s)
- Yongjia Zhong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Yuguang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiangfan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Xinlu Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Jing Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Qiuju He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Yunrong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Li Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Qundan Lv
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
- Chemical Biology Center, Lishui Institute of Agricultural Science, Lishui, Zhejiang, 323000, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
47
|
Liu N, Shang W, Li C, Jia L, Wang X, Xing G, Zheng W. Evolution of the SPX gene family in plants and its role in the response mechanism to phosphorus stress. Open Biol 2018; 8:170231. [PMID: 29298909 PMCID: PMC5795055 DOI: 10.1098/rsob.170231] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/01/2017] [Indexed: 12/16/2022] Open
Abstract
Molecular and genomic studies have shown the presence of a large number of SPX gene family members in plants, some of which have been proved to act in P signalling and homeostasis. In this study, the molecular and evolutionary characteristics of the SPX gene family in plants were comprehensively analysed, and the mechanisms underlying the function of SPX genes in P signalling and homeostasis in the model plant species Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), and in important crops, including wheat (Triticum aestivum), soya beans (Glycine max) and rapeseed (Brassica napus), were described. Emerging findings on the involvement of SPX genes in other important processes (i.e. disease resistance, iron deficiency response, low oxygen response and phytochrome-mediated light signalling) were also highlighted. The available data suggest that SPX genes are important regulators in the P signalling network, and may be valuable targets for enhancing crop tolerance to low P stress. Further studies on SPX proteins should include more diverse members, which may reveal SPX proteins as important regulatory hubs for multiple processes including P signalling and homeostasis in plants.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Wenyan Shang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Chuang Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Lihua Jia
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Xin Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Guozhen Xing
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - WenMing Zheng
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| |
Collapse
|
48
|
Qi W, Manfield IW, Muench SP, Baker A. AtSPX1 affects the AtPHR1-DNA-binding equilibrium by binding monomeric AtPHR1 in solution. Biochem J 2017; 474:3675-3687. [PMID: 28887383 PMCID: PMC5651819 DOI: 10.1042/bcj20170522] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 01/06/2023]
Abstract
Phosphorus is an essential macronutrient for plant growth and is deficient in ∼50% of agricultural soils. The transcription factor phosphate starvation response 1 (PHR1) plays a central role in regulating the expression of a subset of phosphate starvation-induced (PSI) genes through binding to a cis-acting DNA element termed P1BS (PHR1-binding sequences). In Arabidopsis and rice, activity of AtPHR1/OsPHR2 is regulated in part by their downstream target SPX (Syg1, Pho81, Xpr1) proteins through protein-protein interaction. Here, we provide kinetic and affinity data for interaction between AtPHR1 and P1BS sites. Using surface plasmon resonance, a tandem P1BS sequence showed ∼50-fold higher affinity for MBPAtdPHR1 (a fusion protein comprising the DNA-binding domain and coiled-coil domain of AtPHR1 fused to maltose-binding protein) than a single site. The affinity difference was largely reflected in a much slower dissociation rate from the 2× P1BS-binding site, suggesting an important role for protein co-operativity. Injection of AtSPX1 in the presence of phosphate or inositol hexakisphosphate (InsP6) failed to alter the MBPAtdPHR1-P1BS dissociation rate, while pre-mixing of these two proteins in the presence of either 5 mM Pi or 500 µM InsP6 resulted in a much lower DNA-binding signal from MBPAtdPHR1. These data suggest that, in the Pi-restored condition, AtSPX1 can bind to monomeric AtPHR1 in solution and therefore regulate PSI gene expression by tuning the AtPHR1-DNA-binding equilibrium. This Pi-dependent regulation of AtPHR1-DNA-binding equilibrium also generates a negative feedback loop on the expression of AtSPX1 itself, providing a tight control of PSI gene expression.
Collapse
Affiliation(s)
- Wanjun Qi
- School of Molecular and Cellular Biology, Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Iain W Manfield
- School of Molecular and Cellular Biology, Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Stephen P Muench
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Alison Baker
- School of Molecular and Cellular Biology, Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
49
|
Pei W, Jain A, Sun Y, Zhang Z, Ai H, Liu X, Wang H, Feng B, Sun R, Zhou H, Xu G, Sun S. OsSIZ2 exerts regulatory influences on the developmental responses and phosphate homeostasis in rice. Sci Rep 2017; 7:12280. [PMID: 28947784 PMCID: PMC5612973 DOI: 10.1038/s41598-017-10274-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023] Open
Abstract
OsSIZ1, a small ubiquitin-related modifier (SUMO) E3 ligase, exerts regulatory influences on the developmental responses and phosphate (Pi) homeostasis in rice (Oryza sativa). Whether paralogs OsSIZ1 and OsSIZ2 are functionally redundant or the latter regulates these traits independent of the former is not known. To determine this, in this study, OsSIZ2 was functionally characterized by employing reverse genetic approaches. Although the relative expression of OsSIZ2 was spatiotemporally regulated, it showed constitutive expression in root and leaf blade irrespective of Pi regime. Analysis of T-DNA insertion knockout (ossiz2) and RNAi-mediated knockdown (Ri1-3) mutants revealed positive influences on growth and developmental responses including yield-related traits. On the contrary, these mutants exhibited negative effects on the concentrations of Pi and total P in different tissues. The relative expression levels of some of the genes that are involved in Pi sensing and signaling cascades were differentially modulated in the mutants. Further, attenuation in the expression levels of OsSIZ2 in the roots of ossiz1 and relatively similar trend of the effects of the mutation in OsSIZ1 and OsSIZ2 on growth and development and total P concentration in different tissues suggested a prevalence of partial functional redundancy between these paralogs.
Collapse
Affiliation(s)
- Wenxia Pei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Ajay Jain
- Amity Centre of Nano Biotechnology and Plant Nutrition, Kant Kalwar, NH-11C, Jaipur, 303002, India
| | - Yafei Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhantian Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Hao Ai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xiuli Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Huadun Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China.,Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bing Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Rui Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Hongmin Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
50
|
Wang F, Deng M, Xu J, Zhu X, Mao C. Molecular mechanisms of phosphate transport and signaling in higher plants. Semin Cell Dev Biol 2017. [PMID: 28648582 DOI: 10.1016/j.semcdb.2017.06.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Phosphorus (P) is an essential macronutrient for plant growth and development. To adapt to low inorganic-phosphate (Pi) environments, plants have evolved complex mechanisms and pathways that regulate the acquisition and remobilization of Pi and maintain P homeostasis. These mechanisms are regulated by complex gene regulatory networks through the functions of Pi transporters (PTs) and Pi starvation-induced (PSI) genes. This review summarizes recent progress in determining the molecular regulatory mechanisms of phosphate transporters and the Pi signaling network in the dicot Arabidopsis (Arabidopsis thaliana) and the monocot rice (Oryza sativa L.). Recent advances in this field provide a reference for understanding plant Pi signaling and specific mechanisms that mediate plant adaptation to environments with limited Pi availability. We propose potential biotechnological applications of known genes to develop plant cultivars with improved Pi uptake and use efficiency.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Meiju Deng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinlu Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|