1
|
Fateeva A, Eddy K, Chen S. Current State of Melanoma Therapy and Next Steps: Battling Therapeutic Resistance. Cancers (Basel) 2024; 16:1571. [PMID: 38672652 PMCID: PMC11049326 DOI: 10.3390/cancers16081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma is the most aggressive and deadly form of skin cancer due to its high propensity to metastasize to distant organs. Significant progress has been made in the last few decades in melanoma therapeutics, most notably in targeted therapy and immunotherapy. These approaches have greatly improved treatment response outcomes; however, they remain limited in their abilities to hinder disease progression due, in part, to the onset of acquired resistance. In parallel, intrinsic resistance to therapy remains an issue to be resolved. In this review, we summarize currently available therapeutic options for melanoma treatment and focus on possible mechanisms that drive therapeutic resistance. A better understanding of therapy resistance will provide improved rational strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Anna Fateeva
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Kevinn Eddy
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- U.S. Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ 07018, USA
| |
Collapse
|
2
|
Eddy K, Gupta K, Eddin MN, Marinaro C, Putta S, Sauer JM, Chaly A, Freeman KB, Pelletier JC, Fateeva A, Furmanski P, Silk AW, Reitz AB, Zloza A, Chen S. Assessing Longitudinal Treatment Efficacies and Alterations in Molecular Markers Associated with Glutamatergic Signaling and Immune Checkpoint Inhibitors in a Spontaneous Melanoma Mouse Model. JID INNOVATIONS 2024; 4:100262. [PMID: 38445232 PMCID: PMC10914525 DOI: 10.1016/j.xjidi.2024.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 03/07/2024] Open
Abstract
Previous work done by our laboratory described the use of an immunocompetent spontaneous melanoma-prone mouse model, TGS (TG-3/SKH-1), to evaluate treatment outcomes using inhibitors of glutamatergic signaling and immune checkpoint for 18 weeks. We showed a significant therapeutic efficacy with a notable sex-biased response in male mice. In this follow-up 18-week study, the dose of the glutamatergic signaling inhibitor was increased (from 1.7 mg/kg to 25 mg/kg), which resulted in improved responses in female mice but not male mice. The greatest reduction in tumor progression was observed in male mice treated with single-agent troriluzole and anti-PD-1. Furthermore, a randomly selected group of mice was removed from treatment after 18 weeks and maintained for up to an additional 48 weeks demonstrating the utility of the TGS mouse model to perform a ≥1-year preclinical therapeutic study in a physiologically relevant tumor-host environment. Digital spatial imaging analyses were performed in tumors and tumor microenvironments across treatment modalities using antibody panels for immune cell types and immune cell activation. The results suggest that immune cell populations and cytotoxic activities of T cells play critical roles in treatment responses in these mice. Examination of a group of molecular protein markers based on the proposed mechanisms of action of inhibitors of glutamatergic signaling and immune checkpoint showed that alterations in expression levels of xCT, γ-H2AX, EAAT2, PD-L1, and PD-1 are likely associated with the loss of treatment responses. These results suggest the importance of tracking changes in molecular markers associated with the mechanism of action of therapeutics over the course of a longitudinal preclinical therapeutic study in spatial and temporal manners.
Collapse
Affiliation(s)
- Kevinn Eddy
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Graduate Program in Cellular & Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, New Jersey, USA
| | - Kajal Gupta
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Mohamad Naser Eddin
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Christina Marinaro
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Sanjana Putta
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - John Michael Sauer
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Anna Chaly
- Fox Chase Therapeutics Discovery, Doylestown, Pennsylvania, USA
| | | | | | - Anna Fateeva
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Graduate Program in Cellular & Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, New Jersey, USA
| | - Philip Furmanski
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
- Environmental & Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Ann W. Silk
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Allen B. Reitz
- Fox Chase Therapeutics Discovery, Doylestown, Pennsylvania, USA
| | - Andrew Zloza
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Graduate Program in Cellular & Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
- Environmental & Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
3
|
Eddy K, Gupta K, Pelletier JC, Isola AL, Marinaro C, Rasheed MA, Campagnolo J, Eddin MN, Rossi M, Fateeva A, Reuhl K, Shah R, Robinson AK, Chaly A, Freeman KB, Chen W, Diaz J, Furmanski P, Silk AW, Reitz AB, Zloza A, Chen S. A Spontaneous Melanoma Mouse Model Applicable for a Longitudinal Chemotherapy and Immunotherapy Study. J Invest Dermatol 2023; 143:2007-2018.e6. [PMID: 36997110 PMCID: PMC10524215 DOI: 10.1016/j.jid.2023.03.1664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/03/2023] [Accepted: 03/02/2023] [Indexed: 03/31/2023]
Abstract
Mouse models that reflect human disorders provide invaluable tools for the translation of basic science discoveries to clinical therapies. However, many of these in vivo therapeutic studies are short term and do not accurately mimic patient conditions. In this study, we used a fully immunocompetent, transgenic mouse model, TGS, in which the spontaneous development of metastatic melanoma is driven by the ectopic expression of a normal neuronal receptor, mGluR1, as a model to assess longitudinal treatment response (up to 8 months) with an inhibitor of glutamatergic signaling, troriluzole, which is a prodrug of riluzole, plus an antibody against PD-1, an immune checkpoint inhibitor. Our results reveal a sex-biased treatment response that led to improved survival in troriluzole and/or anti-PD-1-treated male mice that correlated with differential CD8+ T cells and CD11b+ myeloid cell populations in the tumor-stromal interface, supporting the notion that this model is a responsive and tractable system for evaluating therapeutic regimens for melanoma in an immunocompetent setting.
Collapse
Affiliation(s)
- Kevinn Eddy
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA; Graduate Program in Cellular and Molecular Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Kajal Gupta
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | | | - Allison L Isola
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA; ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| | - Christina Marinaro
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Maryam Abdur Rasheed
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Joseph Campagnolo
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Mohamad Naser Eddin
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Marco Rossi
- Division of Hematology, Oncology, and Stem Cell Transplant Research, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Anna Fateeva
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA; Graduate Program in Cellular and Molecular Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Kenneth Reuhl
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA; Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
| | - Raj Shah
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA; Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
| | - Ann K Robinson
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Anna Chaly
- Fox Chase Therapeutics Discovery, Doylestown, Pennsylvania, USA
| | - Katie B Freeman
- Fox Chase Therapeutics Discovery, Doylestown, Pennsylvania, USA
| | - Wenjin Chen
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Jesus Diaz
- Division of Hematology, Oncology, and Stem Cell Transplant Research, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Philip Furmanski
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA; Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
| | - Ann W Silk
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Allen B Reitz
- Fox Chase Therapeutics Discovery, Doylestown, Pennsylvania, USA
| | - Andrew Zloza
- Division of Hematology, Oncology, and Stem Cell Transplant Research, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA; Graduate Program in Cellular and Molecular Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA; Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA.
| |
Collapse
|
4
|
Kervarrec T, Lo Bello G, Pissaloux D, Tirode F, Poulalhon N, Samimi M, Houlier A, de la Fouchardière A. GRM1 Gene Fusions as an Alternative Molecular Driver in Blue Nevi and Related Melanomas. Mod Pathol 2023; 36:100264. [PMID: 37391170 DOI: 10.1016/j.modpat.2023.100264] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Activating mutations in GNAQ, GNA11, CYSLTR2, and PLCB4 genes are regarded as the main oncogenic drivers of blue nevi (BN) and blue malignant melanocytic tumors. Here we report 4 cases of blue melanocytic neoplasms devoid of these mutations but harboring GRM1 gene fusions. In this short series, there was no gender predominance (sex ratio, 1). The mean age at diagnosis was 40 years (range, 12-72). Tumors were located on the face (n = 2), forearm (n = 1), and dorsum of the foot (n = 1). Clinically, a plaque-like pre-existing BN was found in 2 cases, including a deep location; another case presented as an Ota nevus. Two cases were diagnosed as melanoma ex-BN, one as an atypical BN, and one as a plaque-like BN. Microscopic examination revealed a dermal proliferation of dendritic melanocytes in a sclerotic stroma. A dermal cellular nodule with atypia and mitotic activity was observed in 3 cases. Genetic investigation by whole exome RNA sequencing revealed MYO10::GRM1 (n = 2) and ZEB2::GRM1 (n = 1) fusions. A GRM1 rearrangement was identified by fluorescence in situ hybridization in the remaining case. SF3B1 comutations were present in the 2 melanomas, and both had a MYO10::GRM1 fusion. Array comparative genomic hybridization was feasible for 3 cases and displayed multiple copy number alterations in the 2 melanomas and limited copy number alterations in the atypical BN, all genomic profiles compatible with those of classical blue lesions. GRM1 was overexpressed in all cases compared with a control group of blue lesions with other typical mutations. Both melanomas rapidly developed visceral metastases following diagnosis, with a fatal outcome in one case and tumor progression under palliative care in the other. These data suggest that GRM1 gene fusions could represent an additional rare oncogenic driver in the setting of BN, mutually exclusive of classical canonical mutations, especially in plaque-type or Ota subtypes.
Collapse
Affiliation(s)
- Thibault Kervarrec
- Department of Pathology, Centre Hospitalier Universitaire de Tours, Tours, France; Biologie des infections à Polyomavirus, INRA UMR 1282 ISP, Université de Tours, Tours, France
| | | | - Daniel Pissaloux
- Department of Biopathology, Centre Léon Bérard, Lyon, France; INSERM U 1052 CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Franck Tirode
- INSERM U 1052 CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Nicolas Poulalhon
- Department of Dermatology, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre-Bénite, France
| | - Mahtab Samimi
- Department of Dermatology, Tours University Hospital, France
| | - Aurélie Houlier
- Department of Biopathology, Centre Léon Bérard, Lyon, France
| | - Arnaud de la Fouchardière
- Division of Pathology, St. Anna Hospital, ASST Lariana, Como, Italy; Department of Biopathology, Centre Léon Bérard, Lyon, France.
| |
Collapse
|
5
|
Role of nerves in neurofibromatosis type 1-related nervous system tumors. Cell Oncol (Dordr) 2022; 45:1137-1153. [PMID: 36327093 DOI: 10.1007/s13402-022-00723-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder that affects nearly 1 in 3000 infants. Neurofibromin inactivation and NF1 gene mutations are involved in various aspects of neuronal function regulation, including neuronal development induction, electrophysiological activity elevation, growth factor expression, and neurotransmitter release. NF1 patients often exhibit a predisposition to tumor development, especially in the nervous system, resulting in the frequent occurrence of peripheral nerve sheath tumors and gliomas. Recent evidence suggests that nerves play a role in the development of multiple tumor types, prompting researchers to investigate the nerve as a vital component in and regulator of the initiation and progression of NF1-related nervous system tumors. CONCLUSION In this review, we summarize existing evidence about the specific effects of NF1 mutation on neurons and emerging research on the role of nerves in neurological tumor development, promising a new set of selective and targeted therapies for NF1-related tumors.
Collapse
|
6
|
Michielon E, de Gruijl TD, Gibbs S. From simplicity to complexity in current melanoma models. Exp Dermatol 2022; 31:1818-1836. [PMID: 36103206 PMCID: PMC10092692 DOI: 10.1111/exd.14675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 12/14/2022]
Abstract
Despite the recent impressive clinical success of immunotherapy against melanoma, development of primary and adaptive resistance against immune checkpoint inhibitors remains a major issue in a large number of treated patients. This highlights the need for melanoma models that replicate the tumor's intricate dynamics in the tumor microenvironment (TME) and associated immune suppression to study possible resistance mechanisms in order to improve current and test novel therapeutics. While two-dimensional melanoma cell cultures have been widely used to perform functional genomics screens in a high-throughput fashion, they are not suitable to answer more complex scientific questions. Melanoma models have also been established in a variety of experimental (humanized) animals. However, due to differences in physiology, such models do not fully represent human melanoma development. Therefore, fully human three-dimensional in vitro models mimicking melanoma cell interactions with the TME are being developed to address this need for more physiologically relevant models. Such models include melanoma organoids, spheroids, and reconstructed human melanoma-in-skin cultures. Still, while major advances have been made to complement and replace animals, these in vitro systems have yet to fully recapitulate human tumor complexity. Lastly, technical advancements have been made in the organ-on-chip field to replicate functions and microstructures of in vivo human tissues and organs. This review summarizes advancements made in understanding and treating melanoma and specifically aims to discuss the progress made towards developing melanoma models, their applications, limitations, and the advances still needed to further facilitate the development of therapeutics.
Collapse
Affiliation(s)
- Elisabetta Michielon
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands.,Department of Medical Oncology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Implications of a Neuronal Receptor Family, Metabotropic Glutamate Receptors, in Cancer Development and Progression. Cells 2022; 11:cells11182857. [PMID: 36139432 PMCID: PMC9496915 DOI: 10.3390/cells11182857] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death, and incidences are increasing globally. Simply defined, cancer is the uncontrolled proliferation of a cell, and depending on the tissue of origin, the cancer etiology, biology, progression, prognosis, and treatment will differ. Carcinogenesis and its progression are associated with genetic factors that can either be inherited and/or acquired and are classified as an oncogene or tumor suppressor. Many of these genetic factors converge on common signaling pathway(s), such as the MAPK and PI3K/AKT pathways. In this review, we will focus on the metabotropic glutamate receptor (mGluR) family, an upstream protein that transmits extracellular signals into the cell and has been shown to regulate many aspects of tumor development and progression. We explore the involvement of members of this receptor family in various cancers that include breast cancer, colorectal cancer, glioma, kidney cancer, melanoma, oral cancer, osteosarcoma, pancreatic cancer, prostate cancer, and T-cell cancers. Intriguingly, depending on the member, mGluRs can either be classified as oncogenes or tumor suppressors, although in general most act as an oncogene. The extensive work done to elucidate the role of mGluRs in various cancers suggests that it might be a viable strategy to therapeutically target glutamatergic signaling.
Collapse
|
8
|
Targeting GPCRs and Their Signaling as a Therapeutic Option in Melanoma. Cancers (Basel) 2022; 14:cancers14030706. [PMID: 35158973 PMCID: PMC8833576 DOI: 10.3390/cancers14030706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Sixteen G-protein-coupled receptors (GPCRs) have been involved in melanogenesis or melanomagenesis. Here, we review these GPCRs, their associated signaling, and therapies. Abstract G-protein-coupled receptors (GPCRs) serve prominent roles in melanocyte lineage physiology, with an impact at all stages of development, as well as on mature melanocyte functions. GPCR ligands are present in the skin and regulate melanocyte homeostasis, including pigmentation. The role of GPCRs in the regulation of pigmentation and, consequently, protection against external aggression, such as ultraviolet radiation, has long been established. However, evidence of new functions of GPCRs directly in melanomagenesis has been highlighted in recent years. GPCRs are coupled, through their intracellular domains, to heterotrimeric G-proteins, which induce cellular signaling through various pathways. Such signaling modulates numerous essential cellular processes that occur during melanomagenesis, including proliferation and migration. GPCR-associated signaling in melanoma can be activated by the binding of paracrine factors to their receptors or directly by activating mutations. In this review, we present melanoma-associated alterations of GPCRs and their downstream signaling and discuss the various preclinical models used to evaluate new therapeutic approaches against GPCR activity in melanoma. Recent striking advances in our understanding of the structure, function, and regulation of GPCRs will undoubtedly broaden melanoma treatment options in the future.
Collapse
|
9
|
Stepanov YV, Golovynska I, Dziubenko NV, Kuznietsova HM, Petriv N, Skrypkina I, Golovynskyi S, Stepanova LI, Stohnii Y, Garmanchuk LV, Ostapchenko LI, Yevsa T, Qu J, Ohulchanskyy TY. NMDA receptor expression during cell transformation process at early stages of liver cancer in rodent models. Am J Physiol Gastrointest Liver Physiol 2022; 322:G142-G153. [PMID: 34851733 DOI: 10.1152/ajpgi.00060.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, which is not sensitive to radiotherapy and chemotherapy and very often experiences postoperative relapse. In this regard, effective screening of liver cancer is considered as the most important and urgent task. The aim of our study was to determine whether N-methyl-D-aspartate receptor (NMDAR) and, in particular, its subunits, can serve as biomarkers to distinguish the precancerous liver at early stages of liver fibrosis. We assessed the development of HCC after 10, 15, and 22 wk using a HCC rat model. The expression of NMDAR subunits was monitored at different stages of HCC by means of immunohistochemistry combined with epifluorescence microscopy imaging, Western blotting, and direct bisulfite sequencing. NMDAR subunits were not found in healthy liver tissues. In contrast, NMDAR subunits, in particular NR1 and NR2B, appeared at the stage of severe liver fibrosis (precancerous liver disease) in rats and were expressed during the development of HCC in rats and mice. Using the direct bisulfite sequencing, we detected that increased expression of NMDAR directly correlated with the demethylation of CpG islands in the promoter region of genes encoding receptor subunits. The obtained results confirmed that NMDAR subunits can serve as new biomarkers of precancerous liver disease, severe fibrosis, and its progression towards HCC.NEW & NOTEWORTHY We have shown NMDAR expression in cell transformation process at early stages of cancer, specifically HCC. The aim of our study was to define the disease stages from precancerous liver disease towards liver cancer progression when NMDAR subunits were expressed/detected. A fibrosis/HCC rat model, immunohistochemistry combined with epifluorescence microscopy imaging, Western blotting was used. The dynamics of appearance of NMDAR subunits, their expression and methylation status during the development of HCC were shown and discussed.
Collapse
Affiliation(s)
- Yurii V Stepanov
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Iuliia Golovynska
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Nataliia V Dziubenko
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Halyna M Kuznietsova
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Nataliia Petriv
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Inessa Skrypkina
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Sergii Golovynskyi
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Liudmyla I Stepanova
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Yevhenii Stohnii
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Liudmyla V Garmanchuk
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Liudmyla I Ostapchenko
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Junle Qu
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Tymish Y Ohulchanskyy
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, People's Republic of China
| |
Collapse
|
10
|
Sharma MD, Pacholczyk R, Shi H, Berrong ZJ, Zakharia Y, Greco A, Chang CSS, Eathiraj S, Kennedy E, Cash T, Bollag RJ, Kolhe R, Sadek R, McGaha TL, Rodriguez P, Mandula J, Blazar BR, Johnson TS, Munn DH. Inhibition of the BTK-IDO-mTOR axis promotes differentiation of monocyte-lineage dendritic cells and enhances anti-tumor T cell immunity. Immunity 2021; 54:2354-2371.e8. [PMID: 34614413 PMCID: PMC8516719 DOI: 10.1016/j.immuni.2021.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/19/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023]
Abstract
Monocytic-lineage inflammatory Ly6c+CD103+ dendritic cells (DCs) promote antitumor immunity, but these DCs are infrequent in tumors, even upon chemotherapy. Here, we examined how targeting pathways that inhibit the differentiation of inflammatory myeloid cells affect antitumor immunity. Pharmacologic inhibition of Bruton's tyrosine kinase (BTK) and the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) or deletion of Btk or Ido1 allowed robust differentiation of inflammatory Ly6c+CD103+ DCs during chemotherapy, promoting antitumor T cell responses and inhibiting tumor growth. Immature Ly6c+c-kit+ precursor cells had epigenetic profiles similar to conventional DC precursors; deletion of Btk or Ido1 promoted differentiation of these cells. Mechanistically, a BTK-IDO axis inhibited a tryptophan-sensitive differentiation pathway driven by GATOR2 and mTORC1, and disruption of the GATOR2 in monocyte-lineage precursors prevented differentiation into inflammatory DCs in vivo. IDO-expressing DCs and monocytic cells were present across a range of human tumors. Thus, a BTK-IDO axis represses differentiation of inflammatory DCs during chemotherapy, with implications for targeted therapies.
Collapse
Affiliation(s)
- Madhav D Sharma
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Rafal Pacholczyk
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zuzana J Berrong
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yousef Zakharia
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Austin Greco
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Chang-Sheng S Chang
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Bioinformatics Shared Resource, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | | | | | - Thomas Cash
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - Roni J Bollag
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ramses Sadek
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Tracy L McGaha
- Department of Immunology, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Paulo Rodriguez
- Immunology Department, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jessica Mandula
- Immunology Department, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Bruce R Blazar
- Department of Pediatrics and Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Theodore S Johnson
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David H Munn
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
11
|
Eddy K, Chen S. Glutamatergic Signaling a Therapeutic Vulnerability in Melanoma. Cancers (Basel) 2021; 13:3874. [PMID: 34359771 PMCID: PMC8345431 DOI: 10.3390/cancers13153874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023] Open
Abstract
Like other cancers, melanomas are associated with the hyperactivation of two major cell signaling cascades, the MAPK and PI3K/AKT pathways. Both pathways are activated by numerous genes implicated in the development and progression of melanomas such as mutated BRAF, RAS, and NF1. Our lab was the first to identify yet another driver of melanoma, Metabotropic Glutamate Receptor 1 (protein: mGluR1, mouse gene: Grm1, human gene: GRM1), upstream of the MAPK and PI3K/AKT pathways. Binding of glutamate, the natural ligand of mGluR1, activates MAPK and PI3K/AKT pathways and sets in motion the deregulated cellular responses in cell growth, cell survival, and cell metastasis. In this review, we will assess the proposed modes of action that mediate the oncogenic properties of mGluR1 in melanoma and possible application of anti-glutamatergic signaling modulator(s) as therapeutic strategy for the treatment of melanomas.
Collapse
Affiliation(s)
- Kevinn Eddy
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Environmental & Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
12
|
Arang N, Gutkind JS. G Protein-Coupled receptors and heterotrimeric G proteins as cancer drivers. FEBS Lett 2021; 594:4201-4232. [PMID: 33270228 DOI: 10.1002/1873-3468.14017] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) and heterotrimeric G proteins play central roles in a diverse array of cellular processes. As such, dysregulation of GPCRs and their coupled heterotrimeric G proteins can dramatically alter the signalling landscape and functional state of a cell. Consistent with their fundamental physiological functions, GPCRs and their effector heterotrimeric G proteins are implicated in some of the most prevalent human diseases, including a complex disease such as cancer that causes significant morbidity and mortality worldwide. GPCR/G protein-mediated signalling impacts oncogenesis at multiple levels by regulating tumour angiogenesis, immune evasion, metastasis, and drug resistance. Here, we summarize the growing body of research on GPCRs and their effector heterotrimeric G proteins as drivers of cancer initiation and progression, and as emerging antitumoural therapeutic targets.
Collapse
Affiliation(s)
- Nadia Arang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - J Silvio Gutkind
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
13
|
Nonhomologous end-joining repair is likely involved in the repair of double-stranded DNA breaks induced by riluzole in melanoma cells. Melanoma Res 2021; 30:303-308. [PMID: 31855905 DOI: 10.1097/cmr.0000000000000652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Our group described the oncogenic potential of a normal neuronal receptor, metabotropic glutamate receptor 1 (GRM1/mGluR1, gene/protein), when aberrantly expressed in melanocytes led to cell transformation in vitro and spontaneous metastatic tumors in vivo. Earlier, we demonstrated the accumulation of phosphorylated histone H2AX (γH2AX), a marker for DNA damage when mGluR1-expressing melanoma cells were treated with a functional inhibitor, riluzole. The precise mechanisms on how riluzole induces DNA damage in these cells are unknown. In an attempt to begin to identify possible DNA repair pathways that may be involved in riluzole-induced DNA damage, we took advantage of specific inhibitors to two well-known DNA repair pathways, homologous recombination and nonhomologous end joining (NHEJ) repair pathways. Using flow cytometry and a fluorescent antibody to γH2AX, our results demonstrate that NHEJ is likely to be the preferred DNA repair pathway to restore DNA double-stranded breaks induced by riluzole in mGluR1-expressing melanoma cells.
Collapse
|
14
|
Eddy K, Shah R, Chen S. Decoding Melanoma Development and Progression: Identification of Therapeutic Vulnerabilities. Front Oncol 2021; 10:626129. [PMID: 33614507 PMCID: PMC7891057 DOI: 10.3389/fonc.2020.626129] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Melanoma, a cancer of the skin, arises from transformed melanocytes. Melanoma has the highest mutational burden of any cancer partially attributed to UV induced DNA damage. Localized melanoma is “curable” by surgical resection and is followed by radiation therapy to eliminate any remaining cancer cells. Targeted therapies against components of the MAPK signaling cascade and immunotherapies which block immune checkpoints have shown remarkable clinical responses, however with the onset of resistance in most patients, and, disease relapse, these patients eventually become refractory to treatments. Although great advances have been made in our understanding of the metastatic process in cancers including melanoma, therapy failure suggests that much remains to be learned and understood about the multi-step process of tumor metastasis. In this review we provide an overview of melanocytic transformation into malignant melanoma and key molecular events that occur during this evolution. A better understanding of the complex processes entailing cancer cell dissemination will improve the mechanistic driven design of therapies that target specific steps involved in cancer metastasis to improve clinical response rates and overall survival in all cancer patients.
Collapse
Affiliation(s)
- Kevinn Eddy
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ, United States.,Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ, United States
| | - Raj Shah
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ, United States.,Joint Graduate Program in Toxicology, Rutgers University, Piscataway, NJ, United States
| | - Suzie Chen
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ, United States.,Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ, United States.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Environmental & Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
15
|
Eddy K, Chen S. Overcoming Immune Evasion in Melanoma. Int J Mol Sci 2020; 21:E8984. [PMID: 33256089 PMCID: PMC7730443 DOI: 10.3390/ijms21238984] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most aggressive and dangerous form of skin cancer that develops from transformed melanocytes. It is crucial to identify melanoma at its early stages, in situ, as it is "curable" at this stage. However, after metastasis, it is difficult to treat and the five-year survival is only 25%. In recent years, a better understanding of the etiology of melanoma and its progression has made it possible for the development of targeted therapeutics, such as vemurafenib and immunotherapies, to treat advanced melanomas. In this review, we focus on the molecular mechanisms that mediate melanoma development and progression, with a special focus on the immune evasion strategies utilized by melanomas, to evade host immune surveillances. The proposed mechanism of action and the roles of immunotherapeutic agents, ipilimumab, nivolumab, pembrolizumab, and atezolizumab, adoptive T- cell therapy plus T-VEC in the treatment of advanced melanoma are discussed. In this review, we implore that a better understanding of the steps that mediate melanoma onset and progression, immune evasion strategies exploited by these tumor cells, and the identification of biomarkers to predict treatment response are critical in the design of improved strategies to improve clinical outcomes for patients with this deadly disease.
Collapse
Affiliation(s)
- Kevinn Eddy
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Environmental & Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
16
|
Mollazadeh H, Mohtashami E, Mousavi SH, Soukhtanloo M, Vahedi MM, Hosseini A, Afshari AR, Sahebkar A. Deciphering the Role of Glutamate Signaling in Glioblastoma Multiforme: Current Therapeutic Modalities and Future Directions. Curr Pharm Des 2020; 26:4777-4788. [DOI: 10.2174/1381612826666200603132456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022]
Abstract
As the most popular intrinsic neoplasm throughout the brain, glioblastoma multiforme (GBM) is resistant
to existing therapies. Due to its invasive nature, GBM shows a poor prognosis despite aggressive surgery
and chemoradiation. Therefore, identifying and understanding the critical molecules of GBM can help develop
new therapeutic strategies. Glutamatergic signaling dysfunction has been well documented in neurodegenerative
diseases as well as in GBM. Inhibition of glutamate receptor activation or extracellular glutamate release by specific
antagonists inhibits cell development, invasion, and migration and contributes to apoptosis and autophagy in
GBM cells. This review outlines the current knowledge of glutamate signaling involvement and current therapeutic
modalities for the treatment of GBM.
Collapse
Affiliation(s)
- Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed H. Mousavi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad M. Vahedi
- Department of Pharmacology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R. Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | |
Collapse
|
17
|
Metabolic Signaling Cascades Prompted by Glutaminolysis in Cancer. Cancers (Basel) 2020; 12:cancers12092624. [PMID: 32937954 PMCID: PMC7565600 DOI: 10.3390/cancers12092624] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 01/09/2023] Open
Abstract
Simple Summary Within the last few years, accumulating evidences suggest the involvement of altered metabolisms in human diseases including cancer. Metabolism is defined as the sum of biochemical processes in living organisms that produce and consume energy. Tumor growth requires restructuring of cellular metabolism to meet the increasing demand for building blocks to support the ever-increasing cancer cell numbers. The principle of perturbed metabolism in tumors is known for 50–60 years, it regains greater appreciation within the last few years with the realization that there is interdependency between metabolism and all aspects of cellular function including regulation and control of cell growth. Tumor cells do not need stimulation signals from the surrounding environment to promote cell proliferation; in some cases, the tumor cells can generate their own growth signals. In order to support the continuous tumor cell growth even under stressful conditions, a change in metabolism is necessary to fulfill the continuous demand for energy and building blocks. A better understanding of the relationship between tumor environment and altered cell metabolisms will provide valuable insights to design innovative approaches to limit the supply of energy and macromolecules for the treatment of cancer including melanoma. Abstract Aberrant glutamatergic signaling has been implicated in altered metabolic activity and the demand to synthesize biomass in several types of cancer including melanoma. In the last decade, there has been a significant contribution to our understanding of metabolic pathways. An increasing number of studies are now emphasizing the importance of glutamate functioning as a signaling molecule and a building block for cancer progression. To that end, our group has previously illustrated the role of glutamatergic signaling mediated by metabotropic glutamate receptor 1 (GRM1) in neoplastic transformation of melanocytes in vitro and spontaneous development of metastatic melanoma in vivo. Glutamate, the natural ligand of GRM1, is one of the most abundant amino acids in humans and the predominant excitatory neurotransmitter in the central nervous system. Elevated levels of glutaminolytic mitochondrial tricarboxylic acid (TCA) cycle intermediates, especially glutamate, have been reported in numerous cancer cells. Herein, we highlight and critically review metabolic bottlenecks that are prevalent during tumor evolution along with therapeutic implications of limiting glutamate bioavailability in tumors.
Collapse
|
18
|
Khan AJ, LaCava S, Mehta M, Schiff D, Thandoni A, Jhawar S, Danish S, Haffty BG, Chen S. The glutamate release inhibitor riluzole increases DNA damage and enhances cytotoxicity in human glioma cells, in vitro and in vivo. Oncotarget 2019; 10:2824-2834. [PMID: 31073373 PMCID: PMC6497458 DOI: 10.18632/oncotarget.26854] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/23/2019] [Indexed: 11/25/2022] Open
Abstract
Purpose High-grade gliomas are lethal malignancies that cause morbidity and mortality due to local progression rather than metastatic spread. Our group has previously demonstrated that human GRM1 (hGRM1) is ectopically expressed in melanocytes leading to a transformed phenotype. Riluzole, a glutamate release inhibitor, leads to apoptotic cell death via DNA damage. Recent work has demonstrated the pathological significance of the related mGluR3/GRM3 (protein or gene: hGRM3) in gliomas. We evaluated the effect of riluzole on glioma cells. Experimental Design Western blot analysis and immunofluorescence was performed to assess for GRM3 expression in commercially available and patient-derived glioma cells and for functional analysis of GRM3 using receptor agonist/antagonists and downstream effectors, ERK and AKT phosphorylation, as the read-out. Glutamate secretion by glioma cells was measured using ELISA. Flank and intracranial mouse xenograft models were used to assess growth delay with the glutamate release inhibitor, riluzole (RIL). Immunofluorescence was used to evaluate 53BP1 or γ-H2AX foci after RIL. Results GRM3 was expressed in most tested glioma samples, and strongly expressed in some. Glioma cells were found to secrete glutamate in the extracellular space and to respond to receptor stimulation by activating downstream ERK. This signaling was abrogated by pretreatment with RIL. Treatment with RIL caused an increase in DNA damage markers, and an increase in cellular cytotoxicity in vitro and in vivo. Conclusions We have demonstrated that pretreatment with the glutamate-release inhibitor riluzole sensitizes glioma cells to radiation and leads to greater cytotoxicity; these results have clinical implications for patients with glioblastoma.
Collapse
Affiliation(s)
- Atif J Khan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Department of Radiation Oncology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Stephanie LaCava
- Department of Radiation Oncology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.,Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Monal Mehta
- Department of Radiation Oncology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Devora Schiff
- Department of Radiation Oncology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Aditya Thandoni
- Department of Radiation Oncology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Sachin Jhawar
- Department of Radiation Oncology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Shabbar Danish
- Department of Surgery, Division of Neurosurgery, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Bruce G Haffty
- Department of Radiation Oncology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
19
|
Shah R, Singh SJ, Eddy K, Filipp FV, Chen S. Concurrent Targeting of Glutaminolysis and Metabotropic Glutamate Receptor 1 (GRM1) Reduces Glutamate Bioavailability in GRM1 + Melanoma. Cancer Res 2019; 79:1799-1809. [PMID: 30987979 PMCID: PMC6469683 DOI: 10.1158/0008-5472.can-18-1500] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/15/2018] [Accepted: 02/21/2019] [Indexed: 12/31/2022]
Abstract
Aberrant glutamatergic signaling has been implicated in altered metabolic activity in many cancer types, including malignant melanoma. Previously, we have illustrated the role of metabotropic glutamate receptor 1 (GRM1) in neoplastic transformation of melanocytes in vitro and spontaneous metastatic melanoma in vivo. In this study, we showed that autocrine stimulation constitutively activates the GRM1 receptor and its downstream mitogenic signaling. GRM1-activated (GRM1+) melanomas exhibited significantly increased expression of glutaminase (GLS), which catalyzes the first step in the conversion of glutamine to glutamate. In cultured GRM1+ melanoma cell lines, CB-839, a potent, selective, and orally bioavailable inhibitor of GLS, suppressed cell proliferation, while riluzole, an inhibitor of glutamate release, promoted apoptotic cell death in vitro and in vivo. Combined treatment with CB-839 and riluzole treatment proved to be superior to single-agent treatment, restricting glutamate bioavailability and leading to effective suppression of tumor cell proliferation in vitro and tumor progression in vivo. Hyperactivation of GRM1 in malignant melanoma is an oncogenic driver, which acts independently of canonical melanoma proto-oncogenes, BRAF or NRAS. Overall, these results indicate that expression of GRM1 promotes a metabolic phenotype that supports increased glutamate production and autocrine glutamatergic signaling, which can be pharmacologically targeted by decreasing glutamate bioavailability and the GLS-dependent glutamine to glutamate conversion. SIGNIFICANCE: These findings demonstrate that targeting glutaminolytic glutamate bioavailability is an effective therapeutic strategy for GRM1-activated tumors.
Collapse
Affiliation(s)
- Raj Shah
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Department of Chemical Biology, Rutgers University, Piscataway, New Jersey
- Joint Graduate Program in Toxicology, Rutgers University, Piscataway, New Jersey
| | - Simar J Singh
- St. George's University, School of Medicine, Grenada, West Indies
| | - Kevinn Eddy
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Department of Chemical Biology, Rutgers University, Piscataway, New Jersey
| | - Fabian V Filipp
- Cancer Systems Biology, Institute of Computational Biology, Helmholtz Zentrum München, München, Germany.
- School of Life Sciences Weihenstephan, Technical University München, Freising, Germany
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Department of Chemical Biology, Rutgers University, Piscataway, New Jersey.
- Joint Graduate Program in Toxicology, Rutgers University, Piscataway, New Jersey
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
20
|
Participation of xCT in melanoma cell proliferation in vitro and tumorigenesis in vivo. Oncogenesis 2018; 7:86. [PMID: 30425240 PMCID: PMC6234219 DOI: 10.1038/s41389-018-0098-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/24/2018] [Indexed: 11/25/2022] Open
Abstract
Our research group demonstrated that riluzole, an inhibitor of glutamatergic signaling reduced melanoma cell proliferation in vitro and tumor progression in vivo. The underlying mechanisms of riluzole are largely unknown. Microarray analyses on two human melanoma cell lines revealed that riluzole stimulates expression of the cystine-glutamate amino acid antiporter, xCT (SLC7A11). Western immunoblot analysis from cultured human melanoma or normal melanocytic cells showed that xCT was significantly overexpressed in most melanomas, but not normal cells. Studies using human tumor biopsy samples demonstrated that overexpression of xCT was correlated with cancer stage and progression. To further investigate if xCT is involved in melanoma cell growth, we derived several stable clones through transfection of exogenous xCT to melanoma cells that originally showed very low expression of xCT. The elevated xCT expression promoted cell proliferation in vitro and inversely, these melanoma clones showed a dose-dependent decrease in cell proliferation in response to riluzole treatment. Xenograft studies showed that these clones formed very aggressive tumors at a higher rate compared to vector controls. Conversely, treatment of xenograft-bearing animals with riluzole down-regulated xCT expression suggesting that xCT is a molecular target of riluzole. Furthermore, protein lysates from tumor biopsies of patients that participated in a riluzole monotherapy phase II clinical trial showed a reduction in xCT levels in post-treatment specimens from patients with stable disease. Taken together, our results show that xCT may be utilized as a marker to monitor patients undergoing riluzole-based chemotherapies.
Collapse
|
21
|
Dalley CB, Wroblewska B, Wolfe BB, Wroblewski JT. The Role of Metabotropic Glutamate Receptor 1 Dependent Signaling in Glioma Viability. J Pharmacol Exp Ther 2018; 367:59-70. [PMID: 30054311 DOI: 10.1124/jpet.118.250159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022] Open
Abstract
Glioma refers to malignant central nervous system tumors that have histologic characteristics in common with glial cells. The most prevalent type, glioblastoma multiforme, is associated with a poor prognosis and few treatment options. On the basis of reports of aberrant expression of mGluR1 mRNA in glioma, evidence that melanoma growth is directly influenced by glutamate metabotropic receptor 1 (mGluR1), and characterization of β-arrestin-dependent prosurvival signaling by this receptor, this study investigated the hypothesis that glioma cell lines aberrantly express mGluR1 and depend on mGluR1-mediated signaling to maintain viability and proliferation. Three glioma cell lines (Hs683, A172, and U87) were tested to confirm mGluR1 mRNA expression and the dependence of glioma cell viability on glutamate. Pharmacologic and genetic evidence is presented that suggests mGluR1 signaling specifically supports glioma proliferation and viability. For example, selective noncompetitive antagonists of mGluR1, CPCCOEt and JNJ16259685, decreased the viability of these cells in a dose-dependent manner, and glutamate metabotropic receptor 1 gene silencing significantly reduced glioma cell proliferation. Also, results of an anchorage-independent growth assay suggested that noncompetitive antagonism of mGluR1 may decrease the tumorigenic potential of Hs683 glioma cells. Finally, data are provided that support the hypothesis that a β-arrestin-dependent signaling cascade may be involved in glutamate-stimulated viability in glioma cells and that ligand bias may exist at mGluR1 expressed in these cells. Taken together, the results strongly suggest that mGluR1 may act as a proto-oncogene in glioma and be a viable drug target in glioma treatment.
Collapse
Affiliation(s)
- Carrie Bowman Dalley
- The Wroblewski Laboratory, Department of Pharmacology and Physiology (C.B.D., B.W., B.B.W., J.T.W.) and School of Nursing and Health Studies (C.B.D.), Georgetown University Medical Center, Washington, District of Columbia
| | - Barbara Wroblewska
- The Wroblewski Laboratory, Department of Pharmacology and Physiology (C.B.D., B.W., B.B.W., J.T.W.) and School of Nursing and Health Studies (C.B.D.), Georgetown University Medical Center, Washington, District of Columbia
| | - Barry B Wolfe
- The Wroblewski Laboratory, Department of Pharmacology and Physiology (C.B.D., B.W., B.B.W., J.T.W.) and School of Nursing and Health Studies (C.B.D.), Georgetown University Medical Center, Washington, District of Columbia
| | - Jarda T Wroblewski
- The Wroblewski Laboratory, Department of Pharmacology and Physiology (C.B.D., B.W., B.B.W., J.T.W.) and School of Nursing and Health Studies (C.B.D.), Georgetown University Medical Center, Washington, District of Columbia
| |
Collapse
|
22
|
Jantas D, Grygier B, Gołda S, Chwastek J, Zatorska J, Tertil M. An endogenous and ectopic expression of metabotropic glutamate receptor 8 (mGluR8) inhibits proliferation and increases chemosensitivity of human neuroblastoma and glioma cells. Cancer Lett 2018; 432:1-16. [DOI: 10.1016/j.canlet.2018.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/06/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022]
|
23
|
Jantas D, Grygier B, Zatorska J, Lasoń W. Allosteric and Orthosteric Activators of mGluR8 Differentially Affect the Chemotherapeutic-Induced Human Neuroblastoma SH-SY5Y Cell Damage: The Impact of Cell Differentiation State. Basic Clin Pharmacol Toxicol 2018; 123:443-451. [PMID: 29753314 DOI: 10.1111/bcpt.13041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/29/2018] [Indexed: 12/25/2022]
Abstract
The participation of group III metabotropic glutamate receptors (mGluRs) in cancer growth and progression is still an understudied issue. Based on our recent data on high expression of mGluR8 in human neuroblastoma SH-SY5Y cells, in this study, we evaluated the effect of an mGluR8-specific positive allosteric modulator (PAM: AZ12216052) and orthosteric agonist [(S)-3,4-DCPG ((S)-3,4-dicarboxyphenylglycine)] on chemotherapeutic (doxorubicin, irinotecan or cisplatin)-evoked cell damage in undifferentiated (UN-) and retinoic acid-differentiated (RA-) SH-SY5Y cells. The data showed that AZ12216052 as well as a group III mGluR antagonist (UBP1112) but not (S)-3,4-DCPG partially inhibited the cell damage evoked by doxorubicin, irinotecan or cisplatin in UN-SH-SY5Y cells. In RA-SH-SY5Y, we observed only a modest protective effect of mGluR8 PAM. In contrast, both types of mGluR8 activators significantly enhanced toxic effects of doxorubicin and irinotecan in RA-SH-SY5Y cells. These data suggest that in undifferentiated neuroblastoma malignant cells, some mGluR8 modulators can decrease cytotoxic effects of chemotherapeutics which exclude them from the group of putative anticancer agents. On the other hand, in SH-SY5Y cells differentiated to a more mature neuron-like phenotype, that is non-malignant cells, the mGluR8 activators can aggravate the chemotherapeutic neurotoxicity which is a well-known undesired effect of these drugs. Our pharmacological data add new observations to the unexplored field of research on the role of mGluR8 in cancer, pointing to complexity of response which could be mediated by particular types of mGluR8 ligands at least in neuroblastoma cells.
Collapse
Affiliation(s)
- Danuta Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Beata Grygier
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Justyna Zatorska
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Władysław Lasoń
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
24
|
Isola AL, Eddy K, Zembrzuski K, Goydos JS, Chen S. Exosomes released by metabotropic glutamate receptor 1 (GRM1) expressing melanoma cells increase cell migration and invasiveness. Oncotarget 2018; 9:1187-1199. [PMID: 29416686 PMCID: PMC5787429 DOI: 10.18632/oncotarget.23455] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes are naturally occurring membrane-bound nanovesicles generated constitutively and released by various cell types, and often in higher quantities by tumor cells. Exosomes may facilitate communication between the primary tumor and its local microenvironment, supporting cell invasion and other early events in metastasis. A neuronal receptor, metabotropic glutamate receptor 1 (GRM1), when ectopically expressed in melanocytes, induces in vitro melanocytic transformation and spontaneous malignant melanoma development in vivo in a transgenic mouse model. Our earlier studies showed that genetic modulation in GRM1 expression by siRNA or disruption of GRM1-mediated glutamate signaling interfere with downstream effectors resulting in a decrease in both cell proliferation in vitro and tumor progression in vivo. In this study, we sought to determine whether exosome formation might play a role in GRM1 mediated melanoma development and progression. To test this, we utilized in vitro cultured cells in which GRM1 expression and function could be modulated by pharmacological and genetic means and determined effects on exosome production. We also tested the effects of exosomes from GRM1 expressing melanoma cells on growth, migration and invasion of GRM1 negative cells. Our results show that although GRM1 expression has no influence on exosome quantity, exosomes produced by GRM1-positive cells modulate the ability of the recipient cell to migrate, invade and exhibit anchorage-independent cell growth.
Collapse
Affiliation(s)
- Allison L. Isola
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University, Piscataway, NJ 08854, USA
- Joint Graduate Program in Toxicology, Rutgers, The State University, Piscataway, NJ 08854, USA
| | - Kevinn Eddy
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University, Piscataway, NJ 08854, USA
| | - Krzysztof Zembrzuski
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University, Piscataway, NJ 08854, USA
| | - James S. Goydos
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University, Piscataway, NJ 08854, USA
- Joint Graduate Program in Toxicology, Rutgers, The State University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
25
|
Wei W, Ehlerding EB, Lan X, Luo Q, Cai W. PET and SPECT imaging of melanoma: the state of the art. Eur J Nucl Med Mol Imaging 2018; 45:132-150. [PMID: 29085965 PMCID: PMC5700861 DOI: 10.1007/s00259-017-3839-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Melanoma represents the most aggressive form of skin cancer, and its incidence continues to rise worldwide. 18F-FDG PET imaging has transformed diagnostic nuclear medicine and has become an essential component in the management of melanoma, but still has its drawbacks. With the rapid growth in the field of nuclear medicine and molecular imaging, a variety of promising probes that enable early diagnosis and detection of melanoma have been developed. The substantial preclinical success of melanin- and peptide-based probes has recently resulted in the translation of several radiotracers to clinical settings for noninvasive imaging and treatment of melanoma in humans. In this review, we focus on the latest developments in radiolabeled molecular imaging probes for melanoma in preclinical and clinical settings, and discuss the challenges and opportunities for future development.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA
| | - Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China.
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China.
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA.
| |
Collapse
|
26
|
Chen HC, Sierra J, Yu LJ, Cerchio R, Wall BA, Goydos J, Chen S. Activation of Grm1 expression by mutated BRaf (V600E) in vitro and in vivo. Oncotarget 2017; 9:5861-5875. [PMID: 29464040 PMCID: PMC5814180 DOI: 10.18632/oncotarget.23637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/08/2017] [Indexed: 11/25/2022] Open
Abstract
Our laboratory previously showed that ectopic expression of Grm1 is sufficient to induce spontaneous melanoma formation with 100% penetrance in transgenic mouse model, TG-3, which harbors wild-type BRaf. Studies identified Grm1 expression in human melanoma cell lines and primary to secondary metastatic melanoma biopsies having wild-type or mutated BRaf, but not in normal melanocytes or benign nevi. Grm1 expression was detected in tissues from mice genetically engineered with inducible melanocyte-specific BRafV600E. Additionally, stable clones derived from introduction of exogenous BRafV600E in mouse melanocytes also showed Grm1 expression, which was not detected in the parental or empty vector-derived cells, suggesting that expression of BRafV600E could activate Grm1 expression. Despite aberrant Grm1 expression in the inducible, melanocyte-specific BRafV600E mice, no tumors formed. However, in older mice, the melanocytes underwent senescence, as demonstrated previously by others. It was proposed that upregulated p15 and TGFβ contributed to the senescence phenotype. In contrast, in older TG-3 mice the levels of p15 and TGFβ remained the same or lower. Taken together, these results suggest the temporal regulation on the expression of "oncogenes" such as Grm1 or BRafV600E is critical in the future fate of the cells. If BRafV600E is turned on first, Grm1 expression can be induced, but this is not sufficient to result in development of melanoma; the cells undergo senescence. In contrast, if ectopic expression of Grm1 is turned on first, then regardless of wild-type or mutated BRaf in the melanocytes melanoma development is the consequence.
Collapse
Affiliation(s)
- Ho-Chung Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway 08854, NJ, USA
| | - Jairo Sierra
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway 08854, NJ, USA.,Rutgers-GSBS at Robert Wood Johnson Medical School, Piscataway 08854, NJ, USA
| | - Lumeng Jenny Yu
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway 08854, NJ, USA
| | - Robert Cerchio
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway 08854, NJ, USA.,Pharmacology and Toxicology Graduate Program, Rutgers University, Piscataway 08854, NJ, USA
| | - Brian A Wall
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway 08854, NJ, USA.,Global Product Safety, Colgate-Palmolive Company, Piscataway 08854, NJ, USA
| | - James Goydos
- Rutgers-GSBS at Robert Wood Johnson Medical School, Piscataway 08854, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick 08903, NJ, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway 08854, NJ, USA.,Rutgers-GSBS at Robert Wood Johnson Medical School, Piscataway 08854, NJ, USA.,Pharmacology and Toxicology Graduate Program, Rutgers University, Piscataway 08854, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick 08903, NJ, USA
| |
Collapse
|
27
|
Rees CL, White CM, Ascoli GA. Neurochemical Markers in the Mammalian Brain: Structure, Roles in Synaptic Communication, and Pharmacological Relevance. Curr Med Chem 2017; 24:3077-3103. [PMID: 28413962 PMCID: PMC5646670 DOI: 10.2174/0929867324666170414163506] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/15/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Knowledge of molecular marker (typically protein or mRNA) expression in neural systems can provide insight to the chemical blueprint of signal processing and transmission, assist in tracking developmental or pathological progressions, and yield key information regarding potential medicinal targets. These markers are particularly relevant in the mammalian brain in the light of its unsurpassed cellular diversity. Accordingly, molecular expression profiling is rapidly becoming a major approach to classify neuron types. Despite a profusion of research, however, the biological functions of molecular markers commonly used to distinguish neuron types remain incompletely understood. Furthermore, most molecular markers of mammalian neuron types are also present in other organs, therefore complicating considerations of their potential pharmacological interactions. OBJECTIVE Here, we survey 15 prominent neurochemical markers from five categories, namely membrane transporters, calcium-binding proteins, neuropeptides, receptors, and extracellular matrix proteins, explaining their relation and relevance to synaptic communication. METHOD For each marker, we summarize fundamental structural features, cellular functionality, distributions within and outside the brain, as well as known drug effectors and mechanisms of action. CONCLUSION This essential primer thus links together the cellular complexity of the brain, the chemical properties of key molecular players in neurotransmission, and possible biomedical opportunities.
Collapse
Affiliation(s)
- Christopher L. Rees
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Charise M. White
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Giorgio A. Ascoli
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| |
Collapse
|
28
|
Isola AL, Eddy K, Chen S. Biology, Therapy and Implications of Tumor Exosomes in the Progression of Melanoma. Cancers (Basel) 2016; 8:E110. [PMID: 27941674 PMCID: PMC5187508 DOI: 10.3390/cancers8120110] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/17/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Cancer is the second leading cause of death in the United States, and about 6% of the estimated cancer diagnoses this year will be melanoma cases. Melanomas are derived from transformation of the pigment producing cells of the skin, melanocytes. Early stage melanoma is usually curable by surgical resection, but late stage or subsequent secondary metastatic tumors are treated with some success with chemotherapies, radiation and/or immunotherapies. Most cancer patients die from metastatic disease, which is especially the case in melanoma. A better understanding of tumor metastasis will provide insights and guide rational therapeutic designs. Recently, the importance of melanoma-derived exosomes in the progression of that cancer has become more apparent, namely, their role in various stages of metastasis, including the induction of migration, invasion, primary niche manipulation, immune modulation and pre-metastatic niche formation. This review focuses on the critical roles that melanoma exosomes play in the progression of this deadly disease.
Collapse
Affiliation(s)
- Allison L Isola
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, the State University, Piscataway, NJ 08854, USA.
- Joint Graduate Program in Toxicology, Rutgers, The State University, Piscataway, NJ 08854, USA.
| | - Kevinn Eddy
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, the State University, Piscataway, NJ 08854, USA.
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, the State University, Piscataway, NJ 08854, USA.
- Joint Graduate Program in Toxicology, Rutgers, The State University, Piscataway, NJ 08854, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
29
|
Speyer CL, Nassar MA, Hachem AH, Bukhsh MA, Jafry WS, Khansa RM, Gorski DH. Riluzole mediates anti-tumor properties in breast cancer cells independent of metabotropic glutamate receptor-1. Breast Cancer Res Treat 2016; 157:217-228. [DOI: 10.1007/s10549-016-3816-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/23/2016] [Indexed: 02/05/2023]
|
30
|
Isola AL, Chen S. Exosomes: The Link between GPCR Activation and Metastatic Potential? Front Genet 2016; 7:56. [PMID: 27092178 PMCID: PMC4824768 DOI: 10.3389/fgene.2016.00056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022] Open
Abstract
The activation of G-Protein Coupled Receptors (GPCRs) by their respective ligands initiates a cascade of multiple signaling processes within the cell, regulating growth, metabolism and other essential cellular functions. Dysregulation and aberrant expression of these GPCRs and their subsequent signaling cascades are associated with many different types of pathologies, including cancer. The main life threatening complication in patients diagnosed with cancer is the dissemination of cells from the primary tumor to distant vital organs within the body, metastasis. Communication between the primary tumor, immune system, and the site of future metastasis are some of the key events in the early stages of metastasis. It has been postulated that the communication is mediated by nanovesicles that, under non-pathological conditions, are released by normal cells to relay signals to other cells in the body. These nanovesicles are called exosomes, and are utilized by the tumor cell to influence changes within the recipient cell, such as bone marrow progenitor cells, and cells within the site of future metastatic growth, in order to prepare the site for colonization. Tumor cells have been shown to release an increased number of exosomes when compared to their normal cell counterpart. Exosome production and release are regulated by proteins involved in localization, degradation and size of the multivesicular body, whose function may be altered within cancer cells, resulting in the release of an increased number of these vesicles. This review investigates the possibility of GPCR signaling cascades acting as the upstream activator of proteins involved in exosome production and release, linking a commonly targeted trans-membrane protein class with cellular communication utilized by tumor cells in early stages of metastasis.
Collapse
Affiliation(s)
- Allison L Isola
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers the State UniversityPiscataway, NJ, USA; Joint Graduate Program in Toxicology, Environmental and Occupational Health Sciences Institute, Rutgers the State UniversityPiscataway, NJ, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers the State UniversityPiscataway, NJ, USA; Joint Graduate Program in Toxicology, Environmental and Occupational Health Sciences Institute, Rutgers the State UniversityPiscataway, NJ, USA; Rutgers Cancer Institute of New JerseyNew Brunswick, NJ, USA
| |
Collapse
|
31
|
Yu LJ, Wall BA, Wangari-Talbot J, Chen S. Metabotropic glutamate receptors in cancer. Neuropharmacology 2016; 115:193-202. [PMID: 26896755 DOI: 10.1016/j.neuropharm.2016.02.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/07/2016] [Accepted: 02/09/2016] [Indexed: 01/31/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) are widely known for their roles in synaptic signaling. However, accumulating evidence suggests roles of mGluRs in human malignancies in addition to synaptic transmission. Somatic cell homeostasis presents intriguing possibilities of mGluRs and glutamate signaling as novel targets for human cancers. More recently, aberrant glutamate signaling has been shown to participate in the transformation and maintenance of various cancer types, including glioma, melanoma skin cancer, breast cancer, and prostate cancer, indicating that genes encoding mGluRs, GRMs, can function as oncogenes. Here, we provide a review on the interactions of mGluRs and their ligand, glutamate, in processes that promote the growth of tumors of neuronal and non-neuronal origins. Further, we discuss the evolution of riluzole, a glutamate release inhibitor approved for amyotrophic lateral sclerosis (ALS), but now fashioned as an mGluR1 inhibitor for melanoma therapy and as a radio-sensitizer for tumors that have metastasized to the brain. With the success of riluzole, it is not far-fetched to believe that other drugs that may act directly or indirectly on other mGluRs can be beneficial for multiple applications. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- Lumeng J Yu
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, NJ, USA
| | - Brian A Wall
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, NJ, USA; Global Product Safety, Colgate-Palmolive Company, Piscataway, NJ, USA
| | - Janet Wangari-Talbot
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, NJ, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, NJ, USA; The Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| |
Collapse
|
32
|
Rab32 and Rab38 genes in chordate pigmentation: an evolutionary perspective. BMC Evol Biol 2016; 16:26. [PMID: 26818140 PMCID: PMC4728774 DOI: 10.1186/s12862-016-0596-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/18/2016] [Indexed: 11/25/2022] Open
Abstract
Background The regulation of cellular membrane trafficking in all eukaryotes is a very complex mechanism, mostly regulated by the Rab family proteins. Among all membrane-enclosed organelles, melanosomes are the cellular site for synthesis, storage and transport of melanin granules, making them an excellent model for studies on organelle biogenesis and motility. Specific Rab proteins, as Rab32 and Rab38, have been shown to play a key role in melanosome biogenesis. We analysed the Rab32 and Rab38 genes in the teleost zebrafish and in the cephalochordate amphioxus, gaining insight on their evolutionary history following gene and genome duplications. Results We studied the molecular evolution of Rab supergroup III in deuterostomes by phylogenetic reconstruction, intron and synteny conservation. We discovered a novel amino acid stretch, named FALK, shared by three related classes belonging to Rab supergroup III: Rab7L1, Rab32LO and Rab32/Rab38. Among these, we demonstrated that the Rab32LO class, already present in the last common eukaryotic ancestor, was lost in urochordates and vertebrates. Synteny shows that one zebrafish gene, Rab38a, which is expressed in pigmented cells, retained the linkage with tyrosinase, a protein essential for pigmentation. Moreover, the chromosomal linkage of Rab32 or Rab38 with a member of the glutamate receptor metabotropic (Grm) family has been retained in all analysed gnathostomes, suggesting a conserved microsynteny in the vertebrate ancestor. Expression patterns of Rab32 and Rab38 genes in zebrafish, and Rab32/38 in amphioxus, indicate their involvement in development of pigmented cells and notochord. Conclusions Phylogenetic, intron conservation and synteny analyses point towards an evolutionary scenario based on a duplication of a single invertebrate Rab32/38 gene giving rise to vertebrate Rab32 and Rab38. The expression patterns of Rab38 paralogues highlight sub-functionalization event. Finally, the discovery of a chromosomal linkage between the Rab32 or Rab38 gene with a Grm opens new perspectives on possible conserved bystander gene regulation across the vertebrate evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0596-1) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Atypical signaling of metabotropic glutamate receptor 1 in human melanoma cells. Biochem Pharmacol 2015; 98:182-9. [PMID: 26291396 DOI: 10.1016/j.bcp.2015.08.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/12/2015] [Indexed: 11/21/2022]
Abstract
The metabotropic glutamate 1 (mGlu1) receptor has emerged as a novel target for the treatment of metastatic melanoma and various other cancers. Our laboratory has demonstrated that a selective, non-competitive mGlu1 receptor antagonist slows human melanoma growth in vitro and in vivo. In this study, we sought to determine if the activation of a canonical G protein-dependent signal transduction cascade, which is often used as an output of mGlu1 receptor activity in neuronal cells, correlated with mGlu1 receptor-mediated melanoma cell viability. Glutamate, the endogenous ligand of mGlu1 receptors, significantly increased melanoma cell viability, but did not stimulate phosphoinositide (PI) hydrolysis in several human melanoma cell lines. In contrast, melanoma cell viability was not increased by quisqualate, a highly potent mGlu1 receptor agonist, or DHPG, a selective group I mGlu receptor agonist. Similarly to glutamate, quisqualate also failed to stimulate PI hydrolysis in mGlu1 receptor-expressing melanoma cells. These results suggest that the canonical G protein-dependent signal transduction cascade is not coupled to mGlu1 receptors in all human melanoma cells. On the other hand, dynamin inhibition selectively decreased viability of mGlu1 receptor-expressing melanoma cells, suggesting that a mechanism requiring internalization may control melanoma cell viability. Taken together, these data demonstrate that the approaches commonly used to study mGlu1 receptor function and signaling in other systems may be inappropriate for studying mGlu1 receptor-mediated melanoma cell viability.
Collapse
|
34
|
Yu LJ, Wall BA, Chen S. The current management of brain metastasis in melanoma: a focus on riluzole. Expert Rev Neurother 2015; 15:779-92. [PMID: 26092602 DOI: 10.1586/14737175.2015.1055321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brain metastasis is a common endpoint in human malignant melanoma, and the prognosis for patients remains poor despite advancements in therapy. Current treatment for melanoma metastatic to the brain is grouped into those providing symptomatic relief such as corticosteroids and antiepileptic agents, to those that are disease modifying. Related to the latter group, recent studies have demonstrated that aberrant glutamate signaling plays a role in the transformation and maintenance of various cancer types, including melanoma. Glutamate secretion from these and surrounding cells have been found to stimulate regulatory pathways that control tumor growth, proliferation and survival in vitro and in vivo. The antiglutamatergic actions of an inhibitor of glutamate release, riluzole, have been detected by its ability to clear glutamate from the synapse, and it has been shown to inhibit glutamate release rather than directly inhibiting glutamate receptors. Preclinical studies have demonstrated the ability of riluzole to act as a radiosensitizing agent in melanoma. The effect of riluzole on downstream glutamatergic signaling has pointed to cross talk between the metabotropic G-protein-coupled glutamate receptors implicated in a subset of human melanomas with other signaling pathways, including apoptotic, angiogenic, ROS and cell invasion mechanisms, thus establishing its potential to be further explored in combination therapy regimens for both primary human melanoma and melanoma metastatic to the brain.
Collapse
Affiliation(s)
- Lumeng J Yu
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, the State University, Piscataway, NJ, 08854, USA
| | | | | |
Collapse
|
35
|
Gelb T, Pshenichkin S, Rodriguez OC, Hathaway HA, Grajkowska E, DiRaddo JO, Wroblewska B, Yasuda RP, Albanese C, Wolfe BB, Wroblewski JT. Metabotropic glutamate receptor 1 acts as a dependence receptor creating a requirement for glutamate to sustain the viability and growth of human melanomas. Oncogene 2015; 34:2711-20. [PMID: 25065592 PMCID: PMC5853109 DOI: 10.1038/onc.2014.231] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/14/2014] [Accepted: 06/20/2014] [Indexed: 12/21/2022]
Abstract
Metabotropic glutamate 1 (mGlu) receptor has been proposed as a target for the treatment of metastatic melanoma. Studies have demonstrated that inhibiting the release of glutamate (the natural ligand of mGlu1 receptors), results in a decrease of melanoma tumor growth in mGlu1 receptor-expressing melanomas. Here we demonstrate that mGlu1 receptors, which have been previously characterized as oncogenes, also behave like dependence receptors by creating a dependence on glutamate for sustained cell viability. In the mGlu1 receptor-expressing melanoma cell lines SK-MEL-2 (SK2) and SK-MEL-5 (SK5), we show that glutamate is both necessary and sufficient to maintain cell viability, regardless of underlying genetic mutations. Addition of glutamate increased DNA synthesis, whereas removal of glutamate not only suppressed DNA synthesis but also promoted cell death in SK2 and SK5 melanoma cells. Using genetic and pharmacological inhibitors, we established that this effect of glutamate is mediated by the activation of mGlu1 receptors. The stimulatory potential of mGlu1 receptors was further confirmed in vivo in a melanoma cell xenograft model. In this model, subcutaneous injection of SK5 cells with short hairpin RNA-targeted downregulation of mGlu1 receptors resulted in a decrease in the rate of tumor growth relative to control. We also demonstrate for the first time that a selective mGlu1 receptor antagonist JNJ16259685 ((3,4-Dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone) slows SK2 and SK5 melanoma tumor growth in vivo. Taken together, these data suggest that pharmacological inhibition of mGlu1 receptors may be a novel approach for the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- T Gelb
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - S Pshenichkin
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - O C Rodriguez
- Department of Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - H A Hathaway
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - E Grajkowska
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - J O DiRaddo
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - B Wroblewska
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - R P Yasuda
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - C Albanese
- Department of Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - B B Wolfe
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - J T Wroblewski
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
36
|
Teh JLF, Shah R, La Cava S, Dolfi SC, Mehta MS, Kongara S, Price S, Ganesan S, Reuhl KR, Hirshfield KM, Karantza V, Chen S. Metabotropic glutamate receptor 1 disrupts mammary acinar architecture and initiates malignant transformation of mammary epithelial cells. Breast Cancer Res Treat 2015; 151:57-73. [PMID: 25859923 DOI: 10.1007/s10549-015-3365-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/31/2015] [Indexed: 01/20/2023]
Abstract
Metabotropic glutamate receptor 1 (mGluR1/Grm1) is a member of the G-protein-coupled receptor superfamily, which was once thought to only participate in synaptic transmission and neuronal excitability, but has more recently been implicated in non-neuronal tissue functions. We previously described the oncogenic properties of Grm1 in cultured melanocytes in vitro and in spontaneous melanoma development with 100 % penetrance in vivo. Aberrant mGluR1 expression was detected in 60-80 % of human melanoma cell lines and biopsy samples. As most human cancers are of epithelial origin, we utilized immortalized mouse mammary epithelial cells (iMMECs) as a model system to study the transformative properties of Grm1. We introduced Grm1 into iMMECs and isolated several stable mGluR1-expressing clones. Phenotypic alterations in mammary acinar architecture were assessed using three-dimensional morphogenesis assays. We found that mGluR1-expressing iMMECs exhibited delayed lumen formation in association with decreased central acinar cell death, disrupted cell polarity, and a dramatic increase in the activation of the mitogen-activated protein kinase pathway. Orthotopic implantation of mGluR1-expressing iMMEC clones into mammary fat pads of immunodeficient nude mice resulted in mammary tumor formation in vivo. Persistent mGluR1 expression was required for the maintenance of the tumorigenic phenotypes in vitro and in vivo, as demonstrated by an inducible Grm1-silencing RNA system. Furthermore, mGluR1 was found be expressed in human breast cancer cell lines and breast tumor biopsies. Elevated levels of extracellular glutamate were observed in mGluR1-expressing breast cancer cell lines and concurrent treatment of MCF7 xenografts with glutamate release inhibitor, riluzole, and an AKT inhibitor led to suppression of tumor progression. Our results are likely relevant to human breast cancer, highlighting a putative role of mGluR1 in the pathophysiology of breast cancer and the potential of mGluR1 as a novel therapeutic target.
Collapse
Affiliation(s)
- Jessica L F Teh
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fujinaga M, Xie L, Yamasaki T, Yui J, Shimoda Y, Hatori A, Kumata K, Zhang Y, Nengaki N, Kawamura K, Zhang MR. Synthesis and Evaluation of 4-Halogeno-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-[11C]methylbenzamide for Imaging of Metabotropic Glutamate 1 Receptor in Melanoma. J Med Chem 2015; 58:1513-23. [DOI: 10.1021/jm501845n] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masayuki Fujinaga
- Molecular
Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Lin Xie
- Molecular
Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomoteru Yamasaki
- Molecular
Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Joji Yui
- Molecular
Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yoko Shimoda
- Molecular
Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akiko Hatori
- Molecular
Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Katsushi Kumata
- Molecular
Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yiding Zhang
- Molecular
Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nobuki Nengaki
- Molecular
Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- SHI Accelerator
Service Co. Ltd., 5-9-11 Kitashinagawa, Shinagawa-ku, Tokyo 141-8686, Japan
| | - Kazunori Kawamura
- Molecular
Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Molecular
Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
38
|
Gelb T, Hathaway HA, Wroblewski JT. Triple threat treatment: Exploiting the dependence receptor properties of metabotropic glutamate receptor 1 against melanoma. Mol Cell Oncol 2014; 1:e969163. [PMID: 27308372 PMCID: PMC4905213 DOI: 10.4161/23723548.2014.969163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 08/22/2014] [Accepted: 08/22/2014] [Indexed: 11/19/2022]
Abstract
Melanoma cells that express metabotropic glutamate 1 (mGlu1) receptors depend on glutamate for their survival and proliferation. The dependence receptor properties of mGlu1 allow us to propose and justify three promising approaches for melanoma treatment: glutamate depletion, mGlu1 receptor antagonism, and targeting of mGlu1 receptor signaling.
Collapse
Affiliation(s)
- Tara Gelb
- Department of Pharmacology and Physiology; Georgetown University ; Washington, DC USA
| | - Hannah A Hathaway
- Department of Pharmacology and Physiology; Georgetown University ; Washington, DC USA
| | - Jarda T Wroblewski
- Department of Pharmacology and Physiology; Georgetown University ; Washington, DC USA
| |
Collapse
|
39
|
Stepulak A, Rola R, Polberg K, Ikonomidou C. Glutamate and its receptors in cancer. J Neural Transm (Vienna) 2014; 121:933-44. [PMID: 24610491 PMCID: PMC4133641 DOI: 10.1007/s00702-014-1182-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/19/2014] [Indexed: 01/29/2023]
Abstract
Glutamate, a nonessential amino acid, is a major bioenergetic substrate for proliferating normal and neoplastic cells on one hand and an excitatory neurotransmitter that is actively involved in biosynthetic, bioenergetic, metabolic, and oncogenic signaling pathways on the other. It exerts its action through a family of receptors consisting of metabotropic glutamate receptors (mGluRs) and ionotropic glutamate receptors (iGluRs), both of which have been implicated previously in a broad spectrum of acute and chronic neurodegenerative diseases. In this review, we discuss existing data on the role of glutamate as a growth factor for neoplastic cells, the expression of glutamate receptors in various types of benign and malignant neoplasms, and the potential roles that GluRs play in cancer development and progression along with their clinical significance. We conclude that glutamate-related receptors and their signaling pathways may provide novel therapeutic opportunities for a variety of malignant human diseases.
Collapse
Affiliation(s)
- Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University in Lublin, ul. Chodzki 1, 20-093, Lublin, Poland,
| | | | | | | |
Collapse
|
40
|
Schiffner S, Braunger BM, de Jel MM, Coupland SE, Tamm ER, Bosserhoff AK. Tg(Grm1) transgenic mice: a murine model that mimics spontaneous uveal melanoma in humans? Exp Eye Res 2014; 127:59-68. [PMID: 25051141 DOI: 10.1016/j.exer.2014.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 07/11/2014] [Accepted: 07/12/2014] [Indexed: 10/25/2022]
Abstract
Although rare, uveal melanoma (UM) is the most common primary intraocular tumor in adults. About half of UM patients develop metastatic disease typically in the liver and die within a short period, due to ineffective systemic therapies. UM has unique and distinct genetic features predictive of metastasis. Animal models are required to improve our understanding of therapeutic options in disseminated UM. Since spontaneous murine UM models are lacking, our aim was to analyze the suitability of the established transgenic melanoma mouse model Tg(Grm1) as a new UM model system. We demonstrated that adult Grm1 transgenic mice develop choroidal thickening and uveal melanocytic neoplasia with expression of the melanocytic markers S100B and MelanA. Further, we showed that GRM1 is expressed in human UM, similar to skin melanoma. This study presents a new mouse model for spontaneous UM and suggests that the glutamate signaling pathway is a possible target for UM therapy.
Collapse
Affiliation(s)
- Susanne Schiffner
- University of Regensburg, Institute of Pathology, Molecular Pathology, Franz-Joseph-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Barbara M Braunger
- University of Regensburg, Institute of Human Anatomy and Embryology, Universitaetsstraße 31, 93053 Regensburg, Germany
| | - Miriam M de Jel
- University of Regensburg, Institute of Pathology, Molecular Pathology, Franz-Joseph-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Sarah E Coupland
- University of Liverpool, Institute of Translational Medicine, Molecular and Clinical Cancer Medicine, Daulby Street, Liverpool L69 3GA, United Kingdom
| | - Ernst R Tamm
- University of Regensburg, Institute of Human Anatomy and Embryology, Universitaetsstraße 31, 93053 Regensburg, Germany
| | - Anja K Bosserhoff
- University of Regensburg, Institute of Pathology, Molecular Pathology, Franz-Joseph-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
41
|
Teh JLF, Shah R, Shin SS, Wen Y, Mehnert JM, Goydos J, Chen S. Metabotropic glutamate receptor 1 mediates melanocyte transformation via transactivation of insulin-like growth factor 1 receptor. Pigment Cell Melanoma Res 2014; 27:621-9. [PMID: 24628914 DOI: 10.1111/pcmr.12237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 03/10/2014] [Indexed: 12/19/2022]
Abstract
Our laboratory previously described the oncogenic properties of metabotropic glutamate receptor 1 (mGluR1) in melanocytes. mGluR1 transformed immortalized mouse melanocytes in vitro and induced vigorous tumor formation in vivo. Subsequently, we observed the activation of PI3K/AKT in mGluR1-mediated melanocytic tumorigenesis in vivo. In particular, we identified AKT2 being the predominant isoform contributing to the activation of AKT. Suppression of Grm1 or AKT2 using an inducible Tet-R siRNA system resulted in a 60 or 30% reduction, respectively, in in vivo tumorigenesis. We show that simultaneous downregulation of Grm1 plus AKT2 results in a reduction of approximately 80% in tumor volumes, suggesting that both mGluR1 and AKT2 contribute to the tumorigenic phenotype in vivo. The discrepancy between the mild in vitro transformation characteristics and the aggressive in vivo tumorigenic phenotypes of these stable mGluR1-melanocytic clones led us to investigate the possible involvement of other growth factors. Here, we highlight a potential crosstalk network between mGluR1 and tyrosine kinase, insulin-like growth factor 1 receptor (IGF-1R).
Collapse
Affiliation(s)
- Jessica L F Teh
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Xie L, Yui J, Fujinaga M, Hatori A, Yamasaki T, Kumata K, Wakizaka H, Furutsuka K, Takei M, Jin ZH, Furukawa T, Kawamura K, Zhang MR. Molecular imaging of ectopic metabotropic glutamate 1 receptor in melanoma with a positron emission tomography radioprobe (18) F-FITM. Int J Cancer 2014; 135:1852-9. [PMID: 24643962 DOI: 10.1002/ijc.28842] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/25/2014] [Indexed: 11/09/2022]
Abstract
Oncoimaging using positron emission tomography (PET) with a specific radioprobe would facilitate individualized cancer management. Evidence indicates that ectopically expressed metabotropic glutamate 1 (mGlu1) receptor independently induces melanocyte carcinogenesis, and it is therefore becoming an important target for personalized diagnosis and treatment strategies for melanomas. Here, we report the development of an oncoprotein-based PET imaging platform in melanomas for noninvasive visualization and quantification of mGlu1 with a novel mGlu1-specific radioprobe, 4-(18)F-fluoro-N-[4-[6-(isopropyl amino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide ((18)F-FITM). (18)F-FITM shows excellent pharmacokinetics, namely the dense and specific accumulation in mGlu1-positive melanomas versus mGlu1-negative hepatoma and normal tissues. Furthermore, the accumulation levels of radioactivity corresponded to the extent of tumor and to levels of mGlu1 protein expression in melanomas and melanoma metastasis. The (18)F-FITM PET imaging platform, as a noninvasive personalized diagnostic tool, is expected to open a new avenue for defining individualized therapeutic strategies, clinical trials, patient management and understanding mGlu1-triggered oncologic events in melanomas.
Collapse
Affiliation(s)
- Lin Xie
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wen Y, Li J, Koo J, Shin SS, Lin Y, Jeong BS, Mehnert JM, Chen S, Cohen-Sola KA, Goydos JS. Activation of the glutamate receptor GRM1 enhances angiogenic signaling to drive melanoma progression. Cancer Res 2014; 74:2499-509. [PMID: 24491800 DOI: 10.1158/0008-5472.can-13-1531] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Glutamate-triggered signal transduction is thought to contribute widely to cancer pathogenesis. In melanoma, overexpression of the metabotropic glutamate receptor (GRM)-1 occurs frequently and its ectopic expression in melanocytes is sufficient for neoplastic transformation. Clinical evaluation of the GRM1 signaling inhibitor riluzole in patients with advanced melanoma has demonstrated tumor regressions that are associated with a suppression of the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathways. Together, these results prompted us to investigate the downstream consequences of GRM1 signaling and its disruption in more detail. We found that melanoma cells with enhanced GRM1 expression generated larger tumors in vivo marked by more abundant blood vessels. Media conditioned by these cells in vitro contained relatively higher concentrations of interleukin-8 and VEGF due to GRM1-mediated activation of the AKT-mTOR-HIF1 pathway. In clinical specimens from patients receiving riluzole, we confirmed an inhibition of MAPK and PI3K/AKT activation in posttreatment as compared with pretreatment tumor specimens, which exhibited a decreased density of blood vessels. Together, our results demonstrate that GRM1 activation triggers proangiogenic signaling in melanoma, offering a mechanistic rationale to design treatment strategies for the most suitable combinatorial use of GRM1 inhibitors in patients.
Collapse
Affiliation(s)
- Yu Wen
- Authors' Affiliations: Division of Surgical Oncology, Department of Surgery; Division of Medical Oncology, Department of Medicine, Rutgers Robert Wood Johnson Medical School; Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway; and Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Metabotropic glutamate receptor-1 contributes to progression in triple negative breast cancer. PLoS One 2014; 9:e81126. [PMID: 24404125 PMCID: PMC3880256 DOI: 10.1371/journal.pone.0081126] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/09/2013] [Indexed: 12/31/2022] Open
Abstract
TNBC is an aggressive breast cancer subtype that does not express hormone receptors (estrogen and progesterone receptors, ER and PR) or amplified human epidermal growth factor receptor type 2 (HER2), and there currently exist no targeted therapies effective against it. Consequently, finding new molecular targets in triple negative breast cancer (TNBC) is critical to improving patient outcomes. Previously, we have detected the expression of metabotropic glutamate receptor-1 (gene: GRM1; protein: mGluR1) in TNBC and observed that targeting glutamatergic signaling inhibits TNBC growth both in vitro and in vivo. In this study, we explored how mGluR1 contributes to TNBC progression, using the isogenic MCF10 progression series, which models breast carcinogenesis from nontransformed epithelium to malignant basal-like breast cancer. We observed that mGluR1 is expressed in human breast cancer and that in MCF10A cells, which model nontransformed mammary epithelium, but not in MCF10AT1 cells, which model atypical ductal hyperplasia, mGluR1 overexpression results in increased proliferation, anchorage-independent growth, and invasiveness. In contrast, mGluR1 knockdown results in a decrease in these activities in malignant MCF10CA1d cells. Similarly, pharmacologic inhibition of glutamatergic signaling in MCF10CA1d cells results in a decrease in proliferation and anchorage-independent growth. Finally, transduction of MCF10AT1 cells, which express c-Ha-ras, using a lentiviral construct expressing GRM1 results in transformation to carcinoma in 90% of resultant xenografts. We conclude that mGluR1 cooperates with other factors in hyperplastic mammary epithelium to contribute to TNBC progression and therefore propose that glutamatergic signaling represents a promising new molecular target for TNBC therapy.
Collapse
|
45
|
Kunz M. Oncogenes in melanoma: an update. Eur J Cell Biol 2013; 93:1-10. [PMID: 24468268 DOI: 10.1016/j.ejcb.2013.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 12/13/2022] Open
Abstract
Melanoma is a highly aggressive tumour with poor prognosis in the metastatic stage. BRAF, NRAS, and KIT are three well-known oncogenes involved in melanoma pathogenesis. Targeting of mutated BRAF kinase has recently been shown to significantly improve overall survival of metastatic melanoma patients, underscoring the particular role of this oncogene in melanoma biology. However, recurrences regularly occur within several months, which supposedly involve further oncogenes. Moreover, oncogenic driver mutations have not been described for up to 30% of all melanomas. In order to obtain a more complete picture of the mutational landscape of melanoma, more recent studies used high-throughput DNA sequencing technologies. A number of new oncogene candidates such as MAPK1/2, ERBB4, GRIN2A, GRM3, RAC1, and PREX2 were identified. Their particular role in melanoma biology is currently under investigation. Evidence for the functional relevance of some of these new oncogene candidates has been provided in in vitro and in vivo experiments. However, these findings await further validation in clinical studies. This review provides an overview on well-known melanoma oncogenes and new oncogene candidates, based on recent high-throughput sequencing studies. The list of genes discussed herein is of course not complete but highlights some of the most significant of recent findings in this area. The new candidates may support more individualized treatment approaches for metastatic melanoma patients in the future.
Collapse
Affiliation(s)
- Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
46
|
Mehta MS, Dolfi SC, Bronfenbrener R, Bilal E, Chen C, Moore D, Lin Y, Rahim H, Aisner S, Kersellius RD, Teh J, Chen S, Toppmeyer DL, Medina DJ, Ganesan S, Vazquez A, Hirshfield KM. Metabotropic glutamate receptor 1 expression and its polymorphic variants associate with breast cancer phenotypes. PLoS One 2013; 8:e69851. [PMID: 23922822 PMCID: PMC3724883 DOI: 10.1371/journal.pone.0069851] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/12/2013] [Indexed: 12/22/2022] Open
Abstract
Several epidemiological studies have suggested a link between melanoma and breast cancer. Metabotropic glutamate receptor 1 (GRM1), which is involved in many cellular processes including proliferation and differentiation, has been implicated in melanomagenesis, with ectopic expression of GRM1 causing malignant transformation of melanocytes. This study was undertaken to evaluate GRM1 expression and polymorphic variants in GRM1 for associations with breast cancer phenotypes. Three single nucleotide polymorphisms (SNPs) in GRM1 were evaluated for associations with breast cancer clinicopathologic variables. GRM1 expression was evaluated in human normal and cancerous breast tissue and for in vitro response to hormonal manipulation. Genotyping was performed on genomic DNA from over 1,000 breast cancer patients. Rs6923492 and rs362962 genotypes associated with age at diagnosis that was highly dependent upon the breast cancer molecular phenotype. The rs362962 TT genotype also associated with risk of estrogen receptor or progesterone receptor positive breast cancer. In vitro analysis showed increased GRM1 expression in breast cancer cells treated with estrogen or the combination of estrogen and progesterone, but reduced GRM1 expression with tamoxifen treatment. Evaluation of GRM1 expression in human breast tumor specimens demonstrated significant correlations between GRM1 staining with tissue type and molecular features. Furthermore, analysis of gene expression data from primary breast tumors showed that high GRM1 expression correlated with a shorter distant metastasis-free survival as compared to low GRM1 expression in tamoxifen-treated patients. Additionally, induced knockdown of GRM1 in an estrogen receptor positive breast cancer cell line correlated with reduced cell proliferation. Taken together, these findings suggest a functional role for GRM1 in breast cancer.
Collapse
Affiliation(s)
- Madhura S. Mehta
- Division of Medical Oncology, Department of Medicine, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Sonia C. Dolfi
- Division of Medical Oncology, Department of Medicine, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Roman Bronfenbrener
- Division of Medical Oncology, Department of Medicine, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Erhan Bilal
- Division of Medical Oncology, Department of Medicine, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Chunxia Chen
- Department of Biometrics, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Dirk Moore
- Department of Biometrics, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Yong Lin
- Department of Biometrics, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Hussein Rahim
- Division of Medical Oncology, Department of Medicine, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Seena Aisner
- Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry of New Jersey - New Jersey Medical School, Newark, New Jersey, United States of America
| | - Romona D. Kersellius
- Division of Medical Oncology, Department of Medicine, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Jessica Teh
- Department of Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Suzie Chen
- Department of Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Deborah L. Toppmeyer
- Division of Medical Oncology, Department of Medicine, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Dan J. Medina
- Division of Medical Oncology, Department of Medicine, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Shridar Ganesan
- Division of Medical Oncology, Department of Medicine, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Alexei Vazquez
- Department of Radiation Oncology, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey- Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Kim M. Hirshfield
- Division of Medical Oncology, Department of Medicine, The Cancer Institute of New Jersey/University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
47
|
Hill VK, Gartner JJ, Samuels Y, Goldstein AM. The genetics of melanoma: recent advances. Annu Rev Genomics Hum Genet 2013; 14:257-79. [PMID: 23875803 DOI: 10.1146/annurev-genom-091212-153429] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cutaneous malignant melanoma results from the interplay of genetic, host, and environmental factors. Genetic factors implicated in melanoma etiology include inherited high-, intermediate-, and low-risk susceptibility genes as well as numerous somatic mutations in melanoma tumors. CDKN2A is the major high-risk melanoma susceptibility gene identified to date. Recent identification of low-risk loci has been accomplished predominantly through genome-wide association studies. Whole-exome and whole-genome studies have identified numerous genes somatically altered in melanoma tumors and highlighted a higher mutation load in melanoma tumors compared with those in other cancers. This higher load is believed to be attributable to the preponderance of cytosine-to-thymine nucleotide substitutions as a result of UV radiation exposure. Technological advances, particularly next-generation sequencing, have increased the opportunities for germline and somatic gene discovery in melanoma and are opening up new avenues for understanding melanoma pathogenesis as well as leading to new opportunities for treatment.
Collapse
Affiliation(s)
- Victoria K Hill
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
48
|
Cifola I, Pietrelli A, Consolandi C, Severgnini M, Mangano E, Russo V, De Bellis G, Battaglia C. Comprehensive genomic characterization of cutaneous malignant melanoma cell lines derived from metastatic lesions by whole-exome sequencing and SNP array profiling. PLoS One 2013; 8:e63597. [PMID: 23704925 PMCID: PMC3660556 DOI: 10.1371/journal.pone.0063597] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/04/2013] [Indexed: 02/08/2023] Open
Abstract
Cutaneous malignant melanoma is the most fatal skin cancer and although improved comprehension of its pathogenic pathways allowed to realize some effective molecular targeted therapies, novel targets and drugs are still needed. Aiming to add genetic information potentially useful for novel targets discovery, we performed an extensive genomic characterization by whole-exome sequencing and SNP array profiling of six cutaneous melanoma cell lines derived from metastatic patients. We obtained a total of 3,325 novel coding single nucleotide variants, including 2,172 non-synonymous variants. We catalogued the coding mutations according to Sanger COSMIC database and to a manually curated list including genes involved in melanoma pathways identified by mining recent literature. Besides confirming the presence of known melanoma driver mutations (BRAF(V600E), NRAS(Q61R) ), we identified novel mutated genes involved in signalling pathways crucial for melanoma pathogenesis and already addressed by current targeted therapies (such as MAPK and glutamate pathways). We also identified mutations in four genes (MUC19, PAICS, RBMXL1, KIF23) never reported in melanoma, which might deserve further investigations. All data are available to the entire research community in our Melanoma Exome Database (at https://155.253.6.64/MExDB/). In summary, these cell lines are valuable biological tools to improve the genetic comprehension of this complex cancer disease and to study functional relevance of individual mutational events, and these findings could provide insights potentially useful for identification of novel therapeutic targets for cutaneous malignant melanoma.
Collapse
Affiliation(s)
- Ingrid Cifola
- Institute for Biomedical Technologies, National Research Council, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Goraczniak R, Wall BA, Behlke MA, Lennox KA, Ho ES, Zaphiros NH, Jakubowski C, Patel NR, Zhao S, Magaway C, Subbie SA, Jenny Yu L, LaCava S, Reuhl KR, Chen S, Gunderson SI. U1 Adaptor Oligonucleotides Targeting BCL2 and GRM1 Suppress Growth of Human Melanoma Xenografts In Vivo. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e92. [PMID: 23673539 PMCID: PMC4817935 DOI: 10.1038/mtna.2013.24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/03/2013] [Indexed: 12/23/2022]
Abstract
U1 Adaptor is a recently discovered oligonucleotide-based gene-silencing technology with a unique mechanism of action that targets nuclear pre-mRNA processing. U1 Adaptors have two distinct functional domains, both of which must be present on the same oligonucleotide to exert their gene-silencing function. Here, we present the first in vivo use of U1 Adaptors by targeting two different human genes implicated in melanomagenesis, B-cell lymphoma 2 (BCL2) and metabotropic glutamate receptor 1 (GRM1), in a human melanoma cell xenograft mouse model system. Using a newly developed dendrimer delivery system, anti-BCL2 U1 Adaptors were very potent and suppressed tumor growth at doses as low as 34 µg/kg with twice weekly intravenous (iv) administration. Anti-GRM1 U1 Adaptors suppressed tumor xenograft growth with similar potency. Mechanism of action was demonstrated by showing target gene suppression in tumors and by observing that negative control U1 Adaptors with just one functional domain show no tumor suppression activity. The anti-BCL2 and anti-GRM1 treatments were equally effective against cell lines harboring either wild-type or a mutant V600E B-RAF allele, the most common mutation in melanoma. Treatment of normal immune-competent mice (C57BL6) indicated no organ toxicity or immune stimulation. These proof-of-concept studies represent an in-depth (over 800 mice in ~108 treatment groups) validation that U1 Adaptors are a highly potent gene-silencing therapeutic and open the way for their further development to treat other human diseases.Molecular Therapy - Nucleic Acids (2013) 2, e92; doi:10.1038/mtna.2013.24; published online 14 May 2013.
Collapse
Affiliation(s)
| | - Brian A Wall
- Department of Chemical Biology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
| | - Mark A Behlke
- Integrated DNA Technologies Inc., Coralville, Iowa, USA
| | - Kim A Lennox
- Integrated DNA Technologies Inc., Coralville, Iowa, USA
| | - Eric S Ho
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA
| | - Nikolas H Zaphiros
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA
| | - Christopher Jakubowski
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA
| | - Neil R Patel
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA
| | - Steven Zhao
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA
| | - Carlo Magaway
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA
| | - Stacey A Subbie
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA
| | - Lumeng Jenny Yu
- Department of Chemical Biology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
| | - Stephanie LaCava
- Department of Chemical Biology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
| | - Kenneth R Reuhl
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
| | - Suzie Chen
- Department of Chemical Biology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
| | - Samuel I Gunderson
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
50
|
Esseltine JL, Willard MD, Wulur IH, Lajiness ME, Barber TD, Ferguson SSG. Somatic mutations in GRM1 in cancer alter metabotropic glutamate receptor 1 intracellular localization and signaling. Mol Pharmacol 2013; 83:770-80. [PMID: 23303475 DOI: 10.1124/mol.112.081695] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The activity of metabotropic glutamate receptors (mGluRs) is known to be altered as the consequence of neurodegenerative diseases such as Alzheimer, Parkinson, and Huntington disease. However, little attention has been paid to this receptor family's potential link with cancer. Recent reports indicate altered mGluR signaling in various tumor types, and several somatic mutations in mGluR1a in lung cancer were recently described. Group 1 mGluRs (mGluR1a and mGluR5) are coupled primarily to Gαq, leading to the activation of phospholipase C and to the formation of diacylglycerol and inositol 1,4,5-trisphosphate, leading to the release of Ca(2+) from intracellular stores and protein kinase C (PKC) activation. In the present study, we investigated the intracellular localization and G protein-dependent and -independent signaling of eight GRM1 (mGluR1a) somatic mutations. Two mutants found in close proximity to the glutamate binding domain and cysteine-rich region (R375G and G396V) show both decreased cell surface expression and basal inositol phosphate (IP) formation. However, R375G shows increased ERK1/2 activation in response to quisqualate stimulation. A mutant located directly in the glutamate binding site (A168V) shows increased quisqualate-induced IP formation and, similar to R375G, increased ERK1/2 activation. Additionally, a mutation in the G protein-coupled receptor kinase 2/PKC regulatory region (R696W) shows decreased ERK1/2 activation, whereas a mutation within the Homer binding region in the carboxyl-terminal tail (P1148L) does not alter the intracellular localization of the receptor, but it induces changes in cellular morphology and exhibits reduced ERK1/2 activation. Taken together, these results suggest that mGluR1a signaling in cancer is disrupted by somatic mutations with multiple downstream consequences.
Collapse
Affiliation(s)
- Jessica L Esseltine
- Molecular Brain Research Group, Robarts Research Institute and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|