1
|
Liu X, Cao B, Zhang B, Zhao D, Gao Z, Xia T, Zhang Y, Zhu Y, Gong B. Open stomata 1 and phosphate starvation response 1 regulate tomato root system architecture during heterogeneous phosphate availability. Int J Biol Macromol 2025; 316:144611. [PMID: 40414396 DOI: 10.1016/j.ijbiomac.2025.144611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/16/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Plants frequently encounter uneven phosphate (Pi) distribution, yet most studies focuses on uniform low-Pi conditions. SUCROSE NONFERMENTING1-RELATED KINASE 2.6 (SnRK2.6) protein, also known as Open stomata 1 (OST1), is well-characterized in ABA signaling and stress responses. However, its role in low-Pi response is poorly understood. We investigated root system architecture (RSA) remodeling under uneven Pi distribution. Using split-root tomato plants with half roots in sufficient Pi (+Pi) and half in low Pi (-Pi), we observed low-Pi responses in both root sectors. Local low-Pi triggered the ABA accumulation in the local root regions, generating spatially distinct OST1 expression patterns. In mechanism, phosphate starvation response 1 (PHR1) directly binds to the OST1 promoter, activating its expression its expression under low-Pi conditions. This localized OST1 transcriptional regulation mediated both local and systemic RSA adaptations. Crucially, these Pi-responsive RSA remodeling were completely absent in ost1 and notabilis (not) mutants. These findings demonstrate that spatial phosphate availability shapes tomato root architecture through ABA-dependent OST1 activation and PHR1-mediated transcriptional regulation, identifying a previously unknown adaptive response to nutrient heterogeneity.
Collapse
Affiliation(s)
- Xiaoqian Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Bili Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Beibei Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Dan Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Ziyuan Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Tianchen Xia
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yucheng Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yingfang Zhu
- School of Life Sciences, Henan University, Kaifeng 475001, China.
| | - Biao Gong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
2
|
Katsuhama N, Sakoda K, Kimura H, Shimizu Y, Sakai Y, Nagata K, Abe M, Terashima I, Yamori W. PROTON ATPASE TRANSLOCATION CONTROL 1-mediated H + -ATPase translocation boosts plant growth under drought by optimizing root and leaf functions. PNAS NEXUS 2025; 4:pgaf151. [PMID: 40406609 PMCID: PMC12096363 DOI: 10.1093/pnasnexus/pgaf151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 05/02/2025] [Indexed: 05/26/2025]
Abstract
Optimizing leaf photosynthesis and root water and mineral uptake in crops during drought is crucial for enhancing agricultural productivity under climate change. Although plasma membrane H + -ATPase plays a key role in plant physiological processes, its overexpression alone does not consistently improve growth. While PROTON ATPASE TRANSLOCATION CONTROL 1 (PATROL1) regulates H + -ATPase translocation in response to various environmental stimuli in leaves, its function in roots remains largely unknown. Here, we show that H + -ATPase was coimmunoprecipitated with PATROL1 in roots of Arabidopsis thaliana. Under hyperosmotic stress, PATROL1 overexpression line had significantly greater root length and lateral root numbers than wild type (WT) and knockout lines. Micrografting between WT and PATROL1 knockout or overexpression lines showed that PATROL1 is indispensable in both shoots and roots, indicating that root uptake and leaf photosynthesis are simultaneous limiting factors for plant growth under soil water deficit. Compared with the WT, PATROL1 overexpression in whole plants resulted in a 41% increase in shoot dry weight and a 43% increase in shoot nitrogen content under drought conditions. These findings highlight the potential of H + -ATPase regulation in both roots and shoots as a new strategy to improve plant productivity, particularly under drought conditions.
Collapse
Affiliation(s)
- Naoya Katsuhama
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazuma Sakoda
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Haruki Kimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yutaro Shimizu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Sustainable Resource Science, RIKEN, Wako 351-0198, Japan
| | - Yuuki Sakai
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Kenji Nagata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Mitsutomo Abe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Ichiro Terashima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Wataru Yamori
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
Jiang Z, van Zanten M, Sasidharan R. Mechanisms of plant acclimation to multiple abiotic stresses. Commun Biol 2025; 8:655. [PMID: 40269242 PMCID: PMC12019247 DOI: 10.1038/s42003-025-08077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
Plants frequently encounter a range of abiotic stresses and their combinations. Even though stresses rarely occur in isolation, research on plant stress resilience typically focuses on single environmental stressors. Plant responses to abiotic stress combinations are often distinct from corresponding individual stresses. Factors determining the outcomes of combined stresses are complex and multifaceted. In this review, we summarize advancements in our understanding of the mechanisms underlying plant responses to co-occurring (combined and sequential) abiotic stresses, focusing on morphological, physiological, developmental, and molecular aspects. Comprehensive understanding of plant acclimation, including the signaling and response mechanisms to combined and individual stresses, can contribute to the development of strategies for enhancing plant resilience in dynamic environments.
Collapse
Affiliation(s)
- Zhang Jiang
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, The Netherlands
| | - Martijn van Zanten
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, The Netherlands.
| | - Rashmi Sasidharan
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Liao Z, Chen B, Boubakri H, Farooq M, Mur LAJ, Urano D, Teo CH, Tan BC, Hasan MDM, Aslam MM, Tahir MY, Fan J. The regulatory role of phytohormones in plant drought tolerance. PLANTA 2025; 261:98. [PMID: 40153011 DOI: 10.1007/s00425-025-04671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/09/2025] [Indexed: 03/30/2025]
Abstract
MAIN CONCLUSION This paper highlights the role of various signaling hormones in drought stress tolerance. It explains how phytohormones act and interact under drought conditions. Drought stress significantly impairs plant growth, development and productivity. The likelihood of adverse impacts of drought will increase due to variations in global climate patterns. Phytohormones serve as key regulators of drought tolerance mechanisms in plants. The in-depth understanding of the role and signaling of such hormones is thus of great significance for plant stress management. In this review, we conducted a bibliometric analysis and thematic mapping of recent research on drought and phytohormones, and phytohormone interactions. It is assumed that different classes of phytohormones such as abscisic acid (ABA), auxins (IAA), cytokinins (CTK), ethylene (ETH), gibberellic acid (GA), brassinosteroids (BRs), salicylates (SA), jasmonates (JA), and strigolactones (SLs) play a pivotal role in drought resistance mechanisms in many crops. The present work highlights recent advances in plant responses to drought and uncovers the recent functions of phytohormones in the establishment of drought-specific tolerance strategies. It also deciphers the various interactions between phytohormones allowing plant adaptation to drought stress. Overall, this review highlights recent and original discoveries useful for developing new strategies to improve plant resistance to drought.
Collapse
Affiliation(s)
- Zhenqi Liao
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of the Ministry of Education, Northwest a&F University, Yangling, 712100, Shaanxi, China
| | - Beibei Chen
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hatem Boubakri
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-Lif, Tunisia.
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Luis Alejandro Jose Mur
- Department of Life Science, Aberystwyth University, Penglais Campus, Aberystwyth, Wales, SY23 2DA, UK
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
| | - Chee How Teo
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - M D Mahadi Hasan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Mehtab Muhammad Aslam
- Division of Plant Sciences and Technology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Muhammad Yahya Tahir
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&d of Fine Chemicals of Guizhou University, Guiyang, 550025, Guizhou, China
| | - Junliang Fan
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of the Ministry of Education, Northwest a&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Wang D, Xu K, Chen S, Wang L, Lou Q, Zhong C, Wang Y, Li T, Cheng H, Luo L, Chen L. Stress-responsive plasma membrane H +-ATPases regulate deep rooting in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112394. [PMID: 39827950 DOI: 10.1016/j.plantsci.2025.112394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Agricultural production is severely affected by environmental stresses such as drought, and deep rooting is an important factor enhancing crop drought avoidance. H+-ATPases provide a transmembrane proton gradient and are thought to play a crucial role in plant growth and abiotic stress responses. However, their expression under abiotic stress and function on deep rooting is poorly understood in rice. In this study, the conserved domains, potential phosphorylation sites, and three-dimensional structures of ten Oryza sativa PM H+-ATPases (OSAs) were analyzed. Quantitative PCR analysis revealed different expression patterns of these OSA genes under hormone treatment conditions (e.g., abscisic acid) and abiotic stress conditions (e.g., drought and salt stress). Subcellular localization analysis revealed that most OSA proteins were localized to the cell membrane. Phenotype determination of OSA mutants indicated that the ratio of deep rooting (RDR) of both osa7 and osa8 mutants was significantly reduced compared to that of wild-type rice plants. Additionally, OSA haplotypes in 268 rice accessions were analyzed, and the haplotypes associated with RDR were identified. The present results provide valuable information on crucial domains, expression patterns, and functional identification of OSA paralogs to reveal their role in rice responses to abiotic stress.
Collapse
Affiliation(s)
- Di Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Kai Xu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, China
| | - Shoujun Chen
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, China
| | - Lei Wang
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, China
| | - Qiaojun Lou
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Changsen Zhong
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Yawen Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Tiemei Li
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Huaxiang Cheng
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Lijun Luo
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, China.
| | - Liang Chen
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
6
|
Wu Q, Chen Y, Bi W, Tong B, Wang A, Zhan J, He L, Xiao D. Comprehensive analysis of small RNA, transcriptome, and degradome sequencing: Mapping the miRNA-gene regulatory network for the development of sweet potato tuber roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109510. [PMID: 39837210 DOI: 10.1016/j.plaphy.2025.109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
As an important starch crop, sweet potato has significant practical importance for maintaining food security worldwide. This study identified differential expressed genes associated with the expansion of tuberous roots by comparing the transcriptome across tuberous roots at the initial period (initiated tuberous roots (ITRs), rapid expansion period (tuberous roots (TRs), fibrous roots (FRs) at the seedling stage, and fibrous roots at the adult stage (unexpanded FRs (UFRs)). sRNA-seq and degradome analyses were performed to reveal the role of miRNAs in tuberous root development in sweet potato. A total of 29,633 genes and 510 miRNAs were differential expressed among FRs, ITRs, TRs, and UFRs. Integrated analyses of these data revealed genes involved in metabolism, hormone response, and signal transduction that might participate in the induction of tuberous root formation, while genes involved in carbohydrate and energy metabolism that might participate in the tuberous root swelling. A joint analysis of miRNAs and DEGs related to tuber development revealed by degradome-seq identified twelve miRNA-target gene pairs involved in gene expression process, hormone response, and metabolism of secondary metabolites that might be key regulators of root tuber development in sweet potato. Moreover, the functions of many miRNA-target gene pairs involved in the initiation of root tuber were related to auxin signaling response, and an exogenous hormone treatment experiment was further performed. The results indicated that auxin treatment had the most significant effect on increasing sweet potato yield, suggesting a dominant role of the auxin pathway in the regulation of sweet potato tuberous root development. Additionally, two miRNA-target pairs, miR319-TCP4 and miR172-AP2, which were identified from the degradome, were verified via 5' RNA ligase-mediated rapid amplification of cDNA ends (RLR-RACE) and tobacco transient cotransformation tests, and their expression was impacted by auxin treatment, which further validated the reliability of our multiomics analysis results. Our research provides new insights into the role of miRNAs in sweet potato root tuber development.
Collapse
Affiliation(s)
- Qiang Wu
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China; Zhengzhou Academy of Agricultural Science and Technology, Zhengzhou, 450006, China
| | - Yuxi Chen
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China
| | - Wenqing Bi
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China
| | - Bin Tong
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Jilin Province Crop Introduction and Breeding Center of New Varieties, Changchun, 130000, China
| | - Aiqin Wang
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China
| | - Jie Zhan
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China
| | - Longfei He
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China.
| | - Dong Xiao
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China.
| |
Collapse
|
7
|
Mahapatra K, Dwivedi S, Mukherjee A, Pradhan AA, Rao KV, Singh D, Bhagavatula L, Datta S. Interplay of light and abscisic acid signaling to modulate plant development. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:730-745. [PMID: 38660968 DOI: 10.1093/jxb/erae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Exogenous light cues and the phytohormone abscisic acid (ABA) regulate several aspects of plant growth and development. In recent years, the role of crosstalk between the light and ABA signaling pathways in regulating different physiological processes has become increasingly evident. This includes regulation of germination and early seedling development, control of stomatal development and conductance, growth, and development of roots, buds, and branches, and regulation of flowering. Light and ABA signaling cascades have various convergence points at both DNA and protein levels. The molecular crosstalk involves several light signaling factors such as HY5, COP1, PIFs, and BBXs that integrate with ABA signaling components such as the PYL receptors and ABI5. In particular, ABI5 and PIF4 promoters are key 'hotspots' for integrating these two pathways. Plants acquired both light and ABA signaling pathways before they colonized land almost 500 million years ago. In this review, we discuss recent advances in the interplay of light and ABA signaling regulating plant development and provide an overview of the evolution of these two pathways.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Shubhi Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Arpan Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Ajar Anupam Pradhan
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Kavuri Venkateswara Rao
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Deeksha Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | | | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| |
Collapse
|
8
|
Xiong Y, Song X, Mehra P, Yu S, Li Q, Tashenmaimaiti D, Bennett M, Kong X, Bhosale R, Huang G. ABA-auxin cascade regulates crop root angle in response to drought. Curr Biol 2025; 35:542-553.e4. [PMID: 39798563 DOI: 10.1016/j.cub.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/15/2024] [Accepted: 12/03/2024] [Indexed: 01/15/2025]
Abstract
Enhancing drought resistance through the manipulation of root system architecture (RSA) in crops represents a crucial strategy for addressing food insecurity challenges. Abscisic acid (ABA) plays important roles in drought tolerance; yet, its molecular mechanisms in regulating RSA, especially in cereal crops, remain unclear. In this study, we report a new mechanism whereby ABA mediates local auxin biosynthesis to regulate root gravitropic response, thereby controlling the alteration of RSA in response to drought in cereal crops. Under drought conditions, wild-type (WT) plants displayed a steep root angle compared with normal conditions, while ABA biosynthetic mutants (mhz4, mhz5, osaba1, and osaba2) showed a significantly shallower crown root angle. Gravitropic assays revealed that ABA biosynthetic mutants have reduced gravitropic responses compared with WT plants. Hormone profiling analysis indicated that the mhz5 mutant has reduced auxin levels in root tips, and exogenous auxin (naphthaleneacetic acid [NAA]) application restored its root gravitropic defects. Consistently, auxin reporter analysis in mhz5 showed a reduced auxin gradient formation in root epidermis during gravitropic bending response compared with WT plants. Furthermore, NAA, rather than ABA, was able to rescue the compromised gravitropic response in the auxin biosynthetic mutant mhz10-1/tryptophan amino transferase2 (ostar2). Additionally, the maize ABA biosynthetic mutant viviparous5 (vp5) also showed gravitropic defects and a shallower seminal root angle than WT plants, which were restored by external auxin treatment. Collectively, we suggest that ABA-induced auxin synthesis governs the root gravitropic machinery, thereby influencing root angle in rice, maize, and possibly other cereal crops.
Collapse
Affiliation(s)
- Yali Xiong
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Song
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Poonam Mehra
- School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Suhang Yu
- School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Qiaoyi Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dilixiadanmu Tashenmaimaiti
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Malcolm Bennett
- School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Xiuzhen Kong
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rahul Bhosale
- School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK.
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
9
|
Jardim-Messeder D, de Souza-Vieira Y, Sachetto-Martins G. Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought. PLANTS (BASEL, SWITZERLAND) 2025; 14:208. [PMID: 39861561 PMCID: PMC11768152 DOI: 10.3390/plants14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development. Hormonal signaling and the maintenance of ROS homeostasis are interconnected, playing indispensable roles in growth, development, and stress responses and orchestrating diverse molecular responses during environmental adversities. Nine principal classes of phytohormones have been categorized: auxins, brassinosteroids, cytokinins, and gibberellins primarily oversee developmental growth regulation, while abscisic acid, ethylene, jasmonic acid, salicylic acid, and strigolactones are the main orchestrators of environmental stress responses. Coordination between phytohormones and transcriptional regulation is crucial for effective plant responses, especially in drought stress. Understanding the interplay of ROS and phytohormones is pivotal for elucidating the molecular mechanisms involved in plant stress responses. This review provides an overview of the intricate relationship between ROS, redox metabolism, and the nine different phytohormones signaling in plants, shedding light on potential strategies for enhancing drought tolerance for sustainable crop production.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ygor de Souza-Vieira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Gilberto Sachetto-Martins
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
10
|
Yang Q, Huang J, Nie X, Tang X, Liao P, Yang Q. Cloning and functional validation of DsWRKY6 gene from Desmodium styracifolium. PLANT SIGNALING & BEHAVIOR 2024; 19:2349868. [PMID: 38743594 PMCID: PMC11095563 DOI: 10.1080/15592324.2024.2349868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/30/2024] [Indexed: 05/16/2024]
Abstract
The purpose of this study was to analyze the role of transcription factor in Desmodium styracifolium, proving that the DsWRKY6 transcription factor was related to the plant phenotypes of Desmodium styracifolium - cv. 'GuangYaoDa1' and it could be used in molecular-assisted breeding. 'GuangYaoDa1' was used as the material and its DNA was the template to clone DsWRKY6, the transgenic Arabidopsis thaliana line was constructed by agrobacterium tumefaciens‑mediated transformation. Transgenic Arabidopsis thaliana was cultivated to study phenotype and physiological and biochemical indexes. Phenotypic observation showed that DsWRKY6 transgenic Arabidopsis thaliana had a faster growth rate while compared with the control group, they had longer lengths of main stem, lateral branches of cauline leaves, and root, but a lower number of cauline leaves and lateral branches of cauline leaves. And it also showed that their flowering and fruiting periods were advanced. The results of physiological and biochemical indexes showed that the relative expressions of DsWRKY6 increased and the abscisic acid content significantly increased in DsWRKY6 transgenic Arabidopsis thaliana compared with the control group. According to the above results, DsWRKY6 could regulate the advancing of flowering and fruiting periods caused by the improvement of abscisic acid content, and expression of the DsWRKY6 transcription factor might be the cause of the upright growth of 'GuangYaoDa1'.
Collapse
Affiliation(s)
- Qilin Yang
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal-Materials, Guangzhou Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinheng Huang
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal-Materials, Guangzhou Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaofeng Nie
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal-Materials, Guangzhou Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - XiaoMin Tang
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal-Materials, Guangzhou Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Peiran Liao
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal-Materials, Guangzhou Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Quan Yang
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal-Materials, Guangzhou Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
11
|
Liao W, Huang Y, Zhong S, Zhang L, Yu K, Yu S, Su P, Jin C, Yang L, Li F. Cadmium uptake and transport in vegetables near a zinc-lead mine: Novel insights from Cd isotope fractionation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136451. [PMID: 39531822 DOI: 10.1016/j.jhazmat.2024.136451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
In this study, Cd isotope analysis was conducted on drought-tolerant (cowpea and sesame) and less drought-tolerant vegetables (water spinach, green pepper, and mung bean) to elucidate the mechanisms underlying Cd uptake and transport. Cd isotopes in plants were identical to or lighter than those in the available pool and exhibited negative fractionation from roots to straws (Δ114/110Cd = -0.22 ‰ to -0.17 ‰) in drought-tolerant vegetables, whereas contrasting results were obtained for less drought-tolerant vegetables (Δ114/110Cd = -0.050 ‰ to 0.39 ‰). Positive Cd isotope fractionation from straws to fruits in drought-tolerant vegetables (Δ114/110Cd = 0.33 ‰ ± 0.03 ‰ and 0.10 ‰ ± 0.03 ‰, respectively) was observed, whereas negligible or negative fractionation was found in less drought-tolerant vegetables (Δ114/110Cd = 0.01 ‰ ± 0.04 ‰ and -0.34 ‰ ± 0.02 ‰, respectively). The vast secretion of organic acids might have led to positive available pool-to-roots and negative roots-to-straws isotope fractionation in drought-tolerant vegetables. In contrast, preferential xylem transport resulted in negative straws-to-fruits isotope fractionation in less drought-tolerant vegetables. This study demonstrated that Cd isotope fractionation in the soil-plant system is associated with plant drought tolerance, and drought-tolerant and less-tolerant plants developed a distinct Cd detoxification mechanism, corresponding to a reversed fractionation of Cd isotopes.
Collapse
Affiliation(s)
- Wen Liao
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou 510515, Guangdong, PR China
| | - Yuanying Huang
- National Research Center for Geoanalysis, Beijing 100037, PR China; Key Laboratory of Ministry of Natural Resources for Eco-geochemistry, Beijing 100037, PR China
| | - Songxiong Zhong
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, PR China.
| | - Longlong Zhang
- National Research Center for Geoanalysis, Beijing 100037, PR China; Key Laboratory of Ministry of Natural Resources for Eco-geochemistry, Beijing 100037, PR China
| | - Kai Yu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Shan Yu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, PR China
| | - Pengji Su
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, PR China
| | - Chao Jin
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, PR China
| | - Lei Yang
- National Research Center for Geoanalysis, Beijing 100037, PR China; Key Laboratory of Ministry of Natural Resources for Eco-geochemistry, Beijing 100037, PR China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, PR China
| |
Collapse
|
12
|
Liu XD, Zeng YY, Hasan MM, Ghimire S, Jiang H, Qi SH, Tian XQ, Fang XW. Diverse functional interactions between ABA and ethylene in plant development and responses to stress. PHYSIOLOGIA PLANTARUM 2024; 176:e70000. [PMID: 39686889 DOI: 10.1111/ppl.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Abscisic acid (ABA) and ethylene are two essential hormones that play crucial roles throughout the entire plant life cycle and in their tolerance to abiotic or biotic stress. In recent decades, increasing research has revealed that, in addition to their individual roles, these two hormones are more likely to function through their interactions, forming a complex regulatory network. More importantly, their functions change and their interactions vary from synergistic to antagonistic depending on the specific plant organ and development stage, which is less focused, compared and systematically summarized. In this review, we first introduce the general synthesis and action signaling pathways of these two plant hormones individually and their interactions in relation to seed dormancy and germination, primary root growth, shoot development, fruit ripening, leaf senescence and abscission, and stomatal movement regulation under both normal and stress conditions. A better understanding of the complex interactions between ABA and ethylene will enhance our knowledge of how plant hormones regulate development and respond to stress and may facilitate the development of crops with higher yields and greater tolerance to stressful environments through tissue-specific genetic modifications in the future.
Collapse
Affiliation(s)
- Xu-Dong Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Yuan-Yuan Zeng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Md Mahadi Hasan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Shantwana Ghimire
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Hui Jiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Shi-Hua Qi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xue-Qian Tian
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiang-Wen Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Li L, Jia L, Duan X, Lv Y, Ye C, Ding C, Zhang Y, Qi W, Motte H, Beeckman T, Luo L, Xuan W. A nitrogen-responsive cytokinin oxidase/dehydrogenase regulates root response to high ammonium in rice. THE NEW PHYTOLOGIST 2024; 244:1391-1407. [PMID: 39297368 DOI: 10.1111/nph.20128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/27/2024] [Indexed: 10/18/2024]
Abstract
Plant root system is significantly influenced by high soil levels of ammonium nitrogen, leading to reduced root elongation and enhanced lateral root branching. In Arabidopsis, these processes have been reported to be mediated by phytohormones and their downstream signaling pathways, while the controlling mechanisms remain elusive in crops. Through a transcriptome analysis of roots subjected to high/low ammonium treatments, we identified a cytokinin oxidase/dehydrogenase encoding gene, CKX3, whose expression is induced by high ammonium. Knocking out CKX3 and its homologue CKX8 results in shorter seminal roots, fewer lateral roots, and reduced sensitivity to high ammonium. Endogenous cytokinin levels are elevated by high ammonium or in ckx3 mutants. Cytokinin application results in shorter seminal roots and fewer lateral roots in wild-type, mimicking the root responses of ckx3 mutants to high ammonium. Furthermore, CKX3 is transcriptionally activated by type-B RR25 and RR26, and ckx3 mutants have reduced auxin content and signaling in roots under low ammonium. This study identified RR25/26-CKX3-cytokinin as a signal module that mediates root responses to external ammonium by modulating of auxin signaling in the root meristem and lateral root primordium. This highlights the critical role of cytokinin metabolism in regulating rice root development in response to ammonium.
Collapse
Affiliation(s)
- Lun Li
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Letian Jia
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingliang Duan
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanda Lv
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Chengyu Ye
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengqiang Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095, China
- Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing, 210095, China
| | - Yuwen Zhang
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weicong Qi
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Ghent, B-9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Ghent, B-9052, Belgium
| | - Le Luo
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Xuan
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
14
|
Liu X, Ali S, Yang L, He T, Pang G, Shaik MR, Assal ME, Hussain SA, Khan MN. Optimized irrigation practices with fertilizer utilization strategies to improve photo-fluorescence efficiency, vascular bundles and maize production in semi-arid regions. Heliyon 2024; 10:e39222. [PMID: 39492901 PMCID: PMC11530790 DOI: 10.1016/j.heliyon.2024.e39222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
The mechanism of irrigation models combined with fertilizer utilization strategies under the biodegradable film mulching could greatly promote crop photosynthesis, vascular bundles structure; resource utilization and maize production are unclear in semi-arid areas. Unfortunately, this mechanism provides a scientific basis for improving irrigation and fertilizer utilization. A field study was carried out during 2021-2022 years. Seven treatments were established: two nitrogen levels: low-N (150 kg N ha-1) and high-N (300 kg N ha-1) combined with three different irrigation models: drip irrigation (DI), ridge irrigation (RI) and border irrigation (BI) under the biodegradable film mulching with (CK) treatment have no irrigation, fertilizer and mulching. Our results revealed that DIH treatment considerably increased soil water storage, enhanced photosynthesis rate (Pn) of maize by mainly to facilitate stomatal opening compared to the rest of all treatments. In addition, it also enhances the differentiation of the vascular bundle system and maintains its post silk function under better environmental conditions, greatly improving nitrogen storage in soil and plants, and enhancing maize productivity. DIH and RIH treatments significantly increased net photosynthesis rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), maximum quantum yield of PSII photochemistry (Fv/Fm), and effective quantum yield of PSII photochemistry (ΦPSII), photochemical quenching (qP), non-photochemical quenching (NPQ), and yield were observed, but evapotranspiration (ET) decreased at different growth stages. The results showed that DIH treatment was an effective tillage strategy, which increased biomass yield by 32.6 %, grain yield by 46.0 %, water use efficiency (WUE) by 46.2 %, and nitrogen use efficiency (NUE) by 86.4 % compared to other treatments. Given these results, thus we recommend the drip irrigation combined with a high-N level under a biodegradable film mulching increase photo-fluorescence efficiency, maize production and resource utilization efficiency in semi-arid regions.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Shanxi Center of Technology Innovation for Compound Condiment, Jinzhong, 030801, China
- Shanxi Provincial High Institutions Solid State Brewing Engineering Research Center, Jinzhong, 030801, China
| | - Shahzad Ali
- College of Chemistry and Material Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Liyu Yang
- College of Chemistry and Material Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Tao He
- College of Chemistry and Material Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Gang Pang
- College of Chemistry and Material Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed E. Assal
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box - 2454, Riyadh, 11451, Saudi Arabia
| | - Mudassar Nawaz Khan
- Department of Biotechnology & Genetic Engineering, Hazara University Mansehra, Pakistan
| |
Collapse
|
15
|
Aljeddani GS, Hamouda RA, Abdelsattar AM, Heikal YM. Stress-Responsive Gene Expression, Metabolic, Physiological, and Agronomic Responses by Consortium Nano-Silica with Trichoderma against Drought Stress in Bread Wheat. Int J Mol Sci 2024; 25:10954. [PMID: 39456738 PMCID: PMC11507820 DOI: 10.3390/ijms252010954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The exploitation of drought is a critical worldwide challenge that influences wheat growth and productivity. This study aimed to investigate a synergistic amendment strategy for drought using the single and combined application of plant growth-promoting microorganisms (PGPM) (Trichoderma harzianum) and biogenic silica nanoparticles (SiO2NPs) from rice husk ash (RHA) on Saudi Arabia's Spring wheat Summit cultivar (Triticum aestivum L.) for 102 DAS (days after sowing). The significant improvement was due to the application of 600 ppm SiO2NPs and T. harzianum + 600 ppm SiO2NPs, which enhanced the physiological properties of chlorophyll a, carotenoids, total pigments, osmolytes, and antioxidant contents of drought-stressed wheat plants as adaptive strategies. The results suggest that the expression of the studied genes (TaP5CS1, TaZFP34, TaWRKY1, TaMPK3, TaLEA, and the wheat housekeeping gene TaActin) in wheat remarkably enhanced wheat tolerance to drought stress. We discovered that the genes and metabolites involved significantly contributed to defense responses, making them potential targets for assessing drought tolerance levels. The drought tolerance indices of wheat were revealed by the mean productivity (MP), stress sensitivity index (SSI), yield stability index (YSI), and stress tolerance index (STI). We employed four databases, such as BAR, InterPro, phytozome, and the KEGG pathway, to predict and decipher the putative domains in prior gene sequencing. As a result, we discovered that these genes may be involved in a range of important biological functions in specific tissues at different developmental stages, including response to drought stress, proline accumulation, plant growth and development, and defense response. In conclusion, the sole and/or dual T. harzianum application to the wheat cultivar improved drought tolerance strength. These findings could be insightful data for wheat production in Saudi Arabia under various water regimes.
Collapse
Affiliation(s)
- Ghalia S. Aljeddani
- Department of Biology, Collage of Science, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Ragaa A. Hamouda
- Department of Applied Radiologic Technology, College of Applied Medical Sciences, University of Jeddah, Jeddah 23218, Saudi Arabia;
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt
| | - Amal M. Abdelsattar
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| | - Yasmin M. Heikal
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
16
|
Huang J, Xuan X, Xu D, Wen Y. Dual-Mediated Roles of H +-ATPase in Alleviating the Phytotoxicity of Imazethapyr to Nontarget Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19333-19341. [PMID: 39183467 DOI: 10.1021/acs.jafc.4c06062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The regulation solutions and mechanisms of reducing pesticide phytotoxicity to nontarget plants are not well-defined and detailed. Here, we have proposed a new detoxification strategy to control the toxic effects of herbicide imazethapyr (IM) induced in wheat seedlings from the perspective of the plasma membrane (PM) H+-ATPase. We found that the changes in PM H+-ATPase activity have a regulatory effect on the phytotoxic effects induced by IM in plants. Treatment with PM H+-ATPase activators restored the reduced auxin content and photosynthetic efficiency caused by IM, thereby promoting plant growth. Application of a PM H+-ATPase inhibitor further reduced phosphorus content and significantly increased 2,4-dihydroxy-7-methoxy-2H,1,4-benzoxazin-3(4H)one (DIMBOA) and jasmonic acid levels. These effects indicate that auxin and DIMBOA may regulate plant growth trends and detoxification effects mediated by PM H+-ATPase. This work opens a new strategy for regulating herbicide toxicity to nontarget plants from the PM H+-ATPase.
Collapse
Affiliation(s)
- Jinye Huang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuan Xuan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Dongmei Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Mandal D, Datta S, Mitra S, Nag Chaudhuri R. ABSCISIC ACID INSENSITIVE 3 promotes auxin signalling by regulating SHY2 expression to control primary root growth in response to dehydration stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5111-5129. [PMID: 38770693 DOI: 10.1093/jxb/erae237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Plants combat dehydration stress through different strategies including root architectural changes. Here we show that when exposed to varying levels of dehydration stress, primary root growth in Arabidopsis is modulated by regulating root meristem activity. Abscisic acid (ABA) in concert with auxin signalling adjust primary root growth according to stress levels. ABSCISIC ACID INSENSITIVE 3 (ABI3), an ABA-responsive transcription factor, stands at the intersection of ABA and auxin signalling and fine-tunes primary root growth in response to dehydration stress. Under low ABA or dehydration stress, induction of ABI3 expression promotes auxin signalling by decreasing expression of SHY2, a negative regulator of auxin response. This further enhances the expression of auxin transporter gene PIN1 and cell cycle gene CYCB1;1, resulting in an increase in primary root meristem size and root length. Higher levels of dehydration stress or ABA repress ABI3 expression and promote ABSCISIC ACID INSENSITIVE 5 (ABI5) expression. This elevates SHY2 expression, thereby impairing primary root meristem activity and retarding root growth. Notably, ABI5 can promote SHY2 expression only in the absence of ABI3. Such ABA concentration-dependent expression of ABI3 therefore functions as a regulatory sensor of dehydration stress levels and orchestrates primary root growth by coordinating its downstream regulation.
Collapse
Affiliation(s)
- Drishti Mandal
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| | - Saptarshi Datta
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| | - Sicon Mitra
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| | - Ronita Nag Chaudhuri
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| |
Collapse
|
18
|
Li Y, Jiang S, Hong Y, Yao Z, Chen Y, Zhu M, Ding J, Li C, Zhu X, Xu W, Guo W, Zhu N, Zhang J. Transcriptomic and Hormonal Changes in Wheat Roots Enhance Growth under Moderate Soil Drying. Int J Mol Sci 2024; 25:9157. [PMID: 39273103 PMCID: PMC11395032 DOI: 10.3390/ijms25179157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Understanding the mechanisms that regulate plant root growth under soil drying is an important challenge in root biology. We observed that moderate soil drying promotes wheat root growth. To understand whether metabolic and hormonic changes are involved in this regulation, we performed transcriptome sequencing on wheat roots under well-watered and moderate soil drying conditions. The genes upregulated in wheat roots under soil drying were mainly involved in starch and sucrose metabolism and benzoxazinoid biosynthesis. Various plant hormone-related genes were differentially expressed during soil drying. Quantification of the plant hormones under these conditions showed that the concentrations of abscisic acid (ABA), cis-zeatin (CZ), and indole-3-acetic acid (IAA) significantly increased during soil drying, whereas the concentrations of salicylic (SA), jasmonic (JA), and glycosylated salicylic (SAG) acids significantly decreased. Correlation analysis of total root length and phytohormones indicated that CZ, ABA, and IAA are positively associated with wheat root length. These results suggest that changes in metabolic pathways and plant hormones caused by moderate soil drying help wheat roots grow into deeper soil layers.
Collapse
Affiliation(s)
- Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Shuqiu Jiang
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yonghui Hong
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Zixuan Yao
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yadi Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Min Zhu
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jinfeng Ding
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Chunyan Li
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xinkai Zhu
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crop, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenshan Guo
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Nanyan Zhu
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
19
|
Voothuluru P, Wu Y, Sharp RE. Not so hidden anymore: Advances and challenges in understanding root growth under water deficits. THE PLANT CELL 2024; 36:1377-1409. [PMID: 38382086 PMCID: PMC11062450 DOI: 10.1093/plcell/koae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Limited water availability is a major environmental factor constraining plant development and crop yields. One of the prominent adaptations of plants to water deficits is the maintenance of root growth that enables sustained access to soil water. Despite early recognition of the adaptive significance of root growth maintenance under water deficits, progress in understanding has been hampered by the inherent complexity of root systems and their interactions with the soil environment. We highlight selected milestones in the understanding of root growth responses to water deficits, with emphasis on founding studies that have shaped current knowledge and set the stage for further investigation. We revisit the concept of integrated biophysical and metabolic regulation of plant growth and use this framework to review central growth-regulatory processes occurring within root growth zones under water stress at subcellular to organ scales. Key topics include the primary processes of modifications of cell wall-yielding properties and osmotic adjustment, as well as regulatory roles of abscisic acid and its interactions with other hormones. We include consideration of long-recognized responses for which detailed mechanistic understanding has been elusive until recently, for example hydrotropism, and identify gaps in knowledge, ongoing challenges, and opportunities for future research.
Collapse
Affiliation(s)
- Priya Voothuluru
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Yajun Wu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Robert E Sharp
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
20
|
Yang L, Hu X, Ren M, Ma F, Fu J, Cui H. Stem-cell-expressed DEVIL-like small peptides maintain root growth under abiotic stress via abscisic acid signaling. PLANT PHYSIOLOGY 2024; 194:2372-2386. [PMID: 38096479 DOI: 10.1093/plphys/kiad659] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/13/2023] [Indexed: 04/02/2024]
Abstract
Stem cells are essential to plant growth and development. Through data mining, we identified five DEVIL-like (DVL) small peptide genes that are preferentially expressed in the quiescent center of Arabidopsis (Arabidopsis thaliana) root but whose functions are unknown. When overexpressed, these genes caused a dramatic decrease in root length and pleiotropic phenotypes in the shoot. No root-growth defect was observed in the single-gene mutants, but the quintuple mutant exhibited slightly longer roots than the wild type (WT). Through transcriptome analysis with DVL20-overexpressing plants, we found that many genes involved in abscisic acid (ABA) signaling were regulated by these peptides. Consistent with this finding, we demonstrated that, relative to the WT, DVL20-overexpressing plants were more tolerant whereas the quintuple mutant was more sensitive to ABA. Using RT-qPCR, we showed that ABA signaling-associated genes were affected in an opposite manner when the plants were grown in normal or ABA-containing medium. Strikingly, ectopic expression of ABA signaling genes such as PYRABACTIN RESISTANCE 1-LIKE (PYL) 4, 5, or 6 or suppression of HIGHLY ABA-INDUCED 2 (HAI2) and MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE 18 (MAPKKK18) not only largely rescued the root growth defects in DVL20-overexpressing plants in normal growth condition but also conferred tolerance to ABA. Based on these results, we propose that DVL1, 2, 5, 8 and 20 function redundantly in root stem-cell maintenance under abiotic stress, and this role is achieved via ABA signaling.
Collapse
Affiliation(s)
- Liyun Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaochen Hu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengfei Ren
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Ma
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Fu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongchang Cui
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
21
|
Zhang W, Wu M, Zhong X, Liu Y, Yang X, Cai W, Zhu K, Zhang H, Gu J, Wang Z, Liu L, Zhang J, Yang J. Involvement of brassinosteroids and abscisic acid in spikelet degeneration in rice under soil drying during meiosis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1580-1600. [PMID: 38035729 DOI: 10.1093/jxb/erad461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Spikelet degeneration in rice (Oryza sativa L.) is a serious physiological defect, and can be regulated by soil moisture status and phytohormones. This study investigated the possibility that brassinosteroids (BRs) in collaboration with abscisic acid (ABA) are involved in mediating the effect of soil drying during meiosis on spikelet degeneration in rice. Three rice cultivars were field grown and three irrigation regimes including well watered (WW), moderate soil drying (MD), and severe soil drying (SD) were imposed during meiosis. MD significantly decreased spikelet degeneration in comparison with WW, due mainly to the alleviation in oxidative damage via enhancing ascorbate-glutathione (AsA-GSH) cycle activity in young panicles, and SD exhibited the opposite effects. Enhanced AsA-GSH cycle strength, decreased oxidative stress, and spikelet degeneration rate were closely associated with the synergistically elevated BR and ABA levels in young panicles in MD. In contrast, low BR and excessive ABA levels led to an increase in spikelet degeneration in SD. The three cultivars exhibited the same tendencies. The intrinsic link among AsA-GSH cycle, oxidative stress, spikelet degeneration rate, and BR and ABA levels was further verified by using transgenic rice lines and chemical regulators. BRs or ABA play a unique role in regulating spikelet degeneration. Synergistically increased BR and ABA levels in MD could work together to strengthen AsA-GSH cycle activity, leading to a reduction in oxidative damage and spikelet degeneration. On the other hand, a severe imbalance between low BR and excessive ABA levels may have contributed to the opposite effects in SD.
Collapse
Affiliation(s)
- Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Mengyin Wu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xiaohan Zhong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Ying Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xinxin Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Wei Cai
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Kuanyu Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Junfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
22
|
Li Y, Chen Y, Jiang S, Dai H, Xu W, Zhang Q, Zhang J, Dodd IC, Yuan W. ABA is required for differential cell wall acidification associated with root hydrotropic bending in tomato. PLANT, CELL & ENVIRONMENT 2024; 47:38-48. [PMID: 37705239 DOI: 10.1111/pce.14720] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/15/2023]
Abstract
Hydrotropism is an important adaptation of plant roots to the uneven distribution of water, with current research mainly focused on Arabidopsis thaliana. To examine hydrotropism in tomato (Solanum lycopersicum) primary roots, we used RNA sequencing to determine gene expression of root tips (apical 5 mm) on dry and wet sides of hydrostimulated roots grown on agar plates. Hydrostimulation enhances cell division and expansion on the dry side compared with the wet side of the root tip. In hydrostimulated roots, the abscisic acid (ABA) biosynthesis gene ABA4 was induced more on the dry than the wet side of root tips. The ABA biosynthesis inhibitor Fluridone and the ABA-deficient mutant notabilis (not) significantly decreased hydrotropic curvature. Wild-type, but not the ABA biosynthesis mutant not, root tips showed asymmetric H+ efflux, with greater efflux on the dry than on the wet side of root tips. Thus, ABA mediates asymmetric H+ efflux, allowing the root to bend towards the wet side to take up more water.
Collapse
Affiliation(s)
- Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yadi Chen
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Shuqiu Jiang
- Jiangsu Key Laboratory of Crop Genomics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Hui Dai
- Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan Fuzhou, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan Fuzhou, China
| | - Qian Zhang
- Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan Fuzhou, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Wei Yuan
- Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan Fuzhou, China
| |
Collapse
|
23
|
Pahal S, Srivastava H, Saxena S, Tribhuvan KU, Kaila T, Sharma S, Grewal S, Singh NK, Gaikwad K. Comparative transcriptome analysis of two contrasting genotypes provides new insights into the drought response mechanism in pigeon pea (Cajanus cajan L. Millsp.). Genes Genomics 2024; 46:65-94. [PMID: 37985548 DOI: 10.1007/s13258-023-01460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Despite plant's ability to adapt and withstand challenging environments, drought poses a severe threat to their growth and development. Although pigeon pea is already quite resistant to drought, the prolonged dehydration induced by the aberrant climate poses a serious threat to their survival and productivity. OBJECTIVE Comparative physiological and transcriptome analyses of drought-tolerant (CO5) and drought-sensitive (CO1) pigeon pea genotypes subjected to drought stress were carried out in order to understand the molecular basis of drought tolerance in pigeon pea. METHODS The transcriptomic analysis allowed us to examine how drought affects the gene expression of C. cajan. Using bioinformatics tools, the unigenes were de novo assembled, annotated, and functionally evaluated. Additionally, a homology-based sequence search against the droughtDB database was performed to identify the orthologs of the DEGs. RESULTS 1102 potential drought-responsive genes were found to be differentially expressed genes (DEGs) between drought-tolerant and drought-sensitive genotypes. These included Abscisic acid insensitive 5 (ABI5), Nuclear transcription factor Y subunit A-7 (NF-YA7), WD40 repeat-containing protein 55 (WDR55), Anthocyanidin reductase (ANR) and Zinc-finger homeodomain protein 6 (ZF-HD6) and were highly expressed in the tolerant genotype. Further, GO analysis revealed that the most enriched classes belonged to biosynthetic and metabolic processes in the biological process category, binding and catalytic activity in the molecular function category and nucleus and protein-containing complex in the cellular component category. Results of KEGG pathway analysis revealed that the DEGs were significantly abundant in signalling pathways such as plant hormone signal transduction and MAPK signalling pathways. Consequently, in our investigation, we have identified and validated by qPCR a group of genes involved in signal reception and propagation, stress-specific TFs, and basal regulatory genes associated with drought response. CONCLUSION In conclusion, our comprehensive transcriptome dataset enabled the discovery of candidate genes connected to pathways involved in pigeon pea drought response. Our research uncovered a number of unidentified genes and transcription factors that could be used to understand and improve susceptibility to drought.
Collapse
Affiliation(s)
- Suman Pahal
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | | | - Swati Saxena
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | | | - Tanvi Kaila
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Sapna Grewal
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India.
| | - Nagendra K Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, India.
| |
Collapse
|
24
|
Li Y, Wang L, Chen Y, Zhang J, Xu W. Recovery of root hydrotropism in miz1 mutant by eliminating root gravitropism. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154144. [PMID: 38104389 DOI: 10.1016/j.jplph.2023.154144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Mizu-kussei1 (MIZ1) plays a crucial role in root hydrotropism, but it is still unclear whether auxin-mediated gravitropism is involved in MIZ1-modulated root hydrotropism. This study aimed to investigate whether the hydrotropism of the Arabidopsis miz1 mutants could be restored through pharmacological inhibition of auxin transport or genetic modification in root gravitropism. Our findings indicate that the hydrotropic defects of miz1 mutant can be partly recovered by using an auxin transport inhibitor. Furthermore, miz1/pin2 double mutants exhibit more pronounced defects in root gravitropism compared to the wild type, while still displaying a normal hydrotropic response similar to the wild type. These results suggest that the elimination of gravitropism enables miz1 roots to become hydrotropically responsive to moisture gradients.
Collapse
Affiliation(s)
- Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Lulu Wang
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Yadi Chen
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China.
| |
Collapse
|
25
|
Sharma M, Marhava P. Regulation of PIN polarity in response to abiotic stress. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102445. [PMID: 37714753 DOI: 10.1016/j.pbi.2023.102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023]
Abstract
Plants have evolved robust adaptive mechanisms to withstand the ever-changing environment. Tightly regulated distribution of the hormone auxin throughout the plant body controls an impressive variety of developmental processes that tailor plant growth and morphology to environmental conditions. The proper flow and directionality of auxin between cells is mainly governed by asymmetrically localized efflux carriers - PINs - ensuring proper coordination of developmental processes in plants. Discerning the molecular players and cellular dynamics involved in the establishment and maintenance of PINs in specific membrane domains, as well as their ability to readjust in response to abiotic stressors is essential for understanding how plants balance adaptability and stability. While much is known about how PINs get polarized, there is still limited knowledge about how abiotic stresses alter PIN polarity by acting on these systems. In this review, we focus on the current understanding of mechanisms involved in (re)establishing and maintaining PIN polarity under abiotic stresses.
Collapse
Affiliation(s)
- Manvi Sharma
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Petra Marhava
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden.
| |
Collapse
|
26
|
de Freitas Pereira M, Cohen D, Auer L, Aubry N, Bogeat-Triboulot MB, Buré C, Engle NL, Jolivet Y, Kohler A, Novák O, Pavlović I, Priault P, Tschaplinski TJ, Hummel I, Vaultier MN, Veneault-Fourrey C. Ectomycorrhizal symbiosis prepares its host locally and systemically for abiotic cue signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1784-1803. [PMID: 37715981 DOI: 10.1111/tpj.16465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Tree growth and survival are dependent on their ability to perceive signals, integrate them, and trigger timely and fitted molecular and growth responses. While ectomycorrhizal symbiosis is a predominant tree-microbe interaction in forest ecosystems, little is known about how and to what extent it helps trees cope with environmental changes. We hypothesized that the presence of Laccaria bicolor influences abiotic cue perception by Populus trichocarpa and the ensuing signaling cascade. We submitted ectomycorrhizal or non-ectomycorrhizal P. trichocarpa cuttings to short-term cessation of watering or ozone fumigation to focus on signaling networks before the onset of any physiological damage. Poplar gene expression, metabolite levels, and hormone levels were measured in several organs (roots, leaves, mycorrhizas) and integrated into networks. We discriminated the signal responses modified or maintained by ectomycorrhization. Ectomycorrhizas buffered hormonal changes in response to short-term environmental variations systemically prepared the root system for further fungal colonization and alleviated part of the root abscisic acid (ABA) signaling. The presence of ectomycorrhizas in the roots also modified the leaf multi-omics landscape and ozone responses, most likely through rewiring of the molecular drivers of photosynthesis and the calcium signaling pathway. In conclusion, P. trichocarpa-L. bicolor symbiosis results in a systemic remodeling of the host's signaling networks in response to abiotic changes. In addition, ectomycorrhizal, hormonal, metabolic, and transcriptomic blueprints are maintained in response to abiotic cues, suggesting that ectomycorrhizas are less responsive than non-mycorrhizal roots to abiotic challenges.
Collapse
Affiliation(s)
| | - David Cohen
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | - Lucas Auer
- Université de Lorraine, INRAE, Laboratory of Excellence ARBRE, UMR Interactions Arbres/Microorganismes, F-54000, Nancy, France
| | - Nathalie Aubry
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | | | - Cyril Buré
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | - Nancy L Engle
- Plant Systems Biology Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Yves Jolivet
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, Laboratory of Excellence ARBRE, UMR Interactions Arbres/Microorganismes, F-54000, Nancy, France
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Iva Pavlović
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Pierrick Priault
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | - Timothy J Tschaplinski
- Plant Systems Biology Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Irène Hummel
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | | | - Claire Veneault-Fourrey
- Université de Lorraine, INRAE, Laboratory of Excellence ARBRE, UMR Interactions Arbres/Microorganismes, F-54000, Nancy, France
| |
Collapse
|
27
|
Sharma A, Gupta A, Ramakrishnan M, Ha CV, Zheng B, Bhardwaj M, Tran LSP. Roles of abscisic acid and auxin in plants during drought: A molecular point of view. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108129. [PMID: 37897894 DOI: 10.1016/j.plaphy.2023.108129] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Plant responses to drought are mediated by hormones like ABA (abscisic acid) and auxin. These hormones regulate plant drought responses by modulating various physiological and biological processes via cell signaling. ABA accumulation and signaling are central to plant drought responses. Auxin also regulates plant adaptive responses to drought, especially via signal transduction mediated by the interaction between ABA and auxin. In this review, we explored the interactive roles of ABA and auxin in the modulation of stomatal movement, root traits and accumulation of reactive oxygen species associated with drought tolerance.
Collapse
Affiliation(s)
- Anket Sharma
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Aarti Gupta
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Chien Van Ha
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Mamta Bhardwaj
- Department of Botany, Hindu Girls College, Maharshi Dayanand University, Sonipat, 131001, India
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
28
|
Dalal M, Mansi, Mayandi K. Zoom-in to molecular mechanisms underlying root growth and function under heterogeneous soil environment and abiotic stresses. PLANTA 2023; 258:108. [PMID: 37898971 DOI: 10.1007/s00425-023-04262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023]
Abstract
MAIN CONCLUSION The review describes tissue-specific and non-cell autonomous molecular responses regulating the root system architecture and function in plants. Phenotypic plasticity of roots relies on specific molecular and tissue specific responses towards local and microscale heterogeneity in edaphic factors. Unlike gravitropism, hydrotropism in Arabidopsis is regulated by MIZU KUSSIE1 (MIZ1)-dependent asymmetric distribution of cytokinin and activation of Arabidopsis response regulators, ARR16 and ARR17 on the lower water potential side of the root leading to higher cell division and root bending. The cortex specific role of Abscisic acid (ABA)-activated SNF1-related protein kinase 2.2 (SnRK2.2) and MIZ1 in elongation zone is emerging for hydrotropic curvature. Halotropism involves clathrin-mediated internalization of PIN FORMED 2 (PIN2) proteins at the side facing higher salt concentration in the root tip, and ABA-activated SnRK2.6 mediated phosphorylation of cortical microtubule-associated protein Spiral2-like (SP2L) in the root transition zone, which results in anisotropic cell expansion and root bending away from higher salt. In hydropatterning, Indole-3-acetic acid 3 (IAA3) interacts with SUMOylated-ARF7 (Auxin response factor 7) and prevents expression of Lateral organ boundaries-domain 16 (LBD16) in air-side of the root, while on wet side of the root, IAA3 cannot repress the non-SUMOylated-ARF7 thereby leading to LBD16 expression and lateral root development. In root vasculature, ABA induces expression of microRNA165/microRNA166 in endodermis, which moves into the stele to target class III Homeodomain leucine zipper protein (HD-ZIP III) mRNA in non-cell autonomous manner. The bidirectional gradient of microRNA165/6 and HD-ZIP III mRNA regulates xylem patterning under stress. Understanding the tissue specific molecular mechanisms regulating the root responses under heterogeneous and stress environments will help in designing climate-resilient crops.
Collapse
Affiliation(s)
- Monika Dalal
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| | - Mansi
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Karthikeyan Mayandi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
29
|
Duan P, Liu X, Niu G, Jia N, Wen T, Zeng J, Chen Q, Zhang J, Xue C, Shen Q, Yuan J. Application of coronarin enhances maize drought tolerance by affecting interactions between rhizosphere fungal community and metabolites. Comput Struct Biotechnol J 2023; 21:5273-5284. [PMID: 37954150 PMCID: PMC10632596 DOI: 10.1016/j.csbj.2023.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/05/2023] [Accepted: 10/21/2023] [Indexed: 11/14/2023] Open
Abstract
Coronarin (COR), an analog of jasmonic acid, has been shown to enhance the tolerance of plants to drought. However, the effects of COR on the interactions among microorganisms associated with plant roots and their implications for enhancing the drought tolerance of plants remain unclear. Here, we studied the effects of applying COR on the microorganisms associated with plant roots and the rhizosphere metabolome. Treatment with COR affected the fungal community of the rhizosphere by inducing changes in the rhizosphere metabolome, which enhanced the drought tolerance of plants. However, treatment with COR had no significant effect on root microorganisms or rhizosphere bacteria. Specifically, the application of COR resulted in a significant reduction in the relative abundance of metabolites, such as mucic acid, 1,4-cyclohexanedione, 4-acetylbutyric acid, Ribonic acid, palmitic acid, and stearic acid, in maize roots under drought conditions; COR application also led to increases in the abundance of drought-resistant fungal microorganisms, including Rhizopus, and the assembly of a highly drought-resistant rhizosphere fungal network, which enhanced the drought tolerance of plants. Overall, the results of our study indicate that COR application positively regulates interactions between plants and microbes and increases the drought tolerance of plants.
Collapse
Affiliation(s)
- Pengfei Duan
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China
| | - Xiaoyu Liu
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoqing Niu
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Nanyu Jia
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Wen
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - JianGuo Zeng
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiaowei Chen
- Chengdu Kentu Agricultural Technology Co., Ltd., Chengdu 610000, China
| | - Jian Zhang
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Green Intelligent Fertilizer Innovation, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210031, China
| | - Chao Xue
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Yuan
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
30
|
Bączek-Kwinta R, Janowiak F, Simlat M, Antonkiewicz J. Involvement of Dynamic Adjustment of ABA, Proline and Sugar Levels in Rhizomes in Effective Acclimation of Solidago gigantea to Contrasting Weather and Soil Conditions in the Country of Invasion. Int J Mol Sci 2023; 24:15368. [PMID: 37895047 PMCID: PMC10607263 DOI: 10.3390/ijms242015368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Giant goldenrod (Solidago gigantea Aiton) is one of the most invasive plant species occurring in Europe. Since little is known about the molecular mechanisms contributing to its invasiveness, we examined the natural dynamics of the content of rhizome compounds, which can be crucial for plant resistance and adaptation to environmental stress. We focused on rhizomes because they are the main vector of giant goldenrod dispersion in invaded lands. Water-soluble sugars, proline, and abscisic acid (ABA) were quantified in rhizomes, as well as ABA in the rhizosphere from three different but geographically close natural locations in Poland (50°04'11.3″ N, 19°50'40.2″ E) under extreme light, thermal, and soil conditions, in early spring, late summer, and late autumn. The genetic diversity of plants between locations was checked using the random amplified polymorphic DNA (RAPD) markers. Sugar and proline content was assayed spectrophotometrically, and abscisic acid (ABA) with the ELISA immunomethod. It can be assumed that the accumulation of sugars in giant goldenrod rhizomes facilitated the process of plant adaptation to adverse environmental conditions (high temperature and/or water scarcity) caused by extreme weather in summer and autumn. The same was true for high levels of proline and ABA in summer. On the other hand, the lowering of proline and ABA in autumn did not confirm the previous assumptions about their synthesis in rhizomes during the acquisition of frost resistance by giant goldenrod. However, in the location with intensive sunlight and most extreme soil conditions, a constant amount of ABA in rhizomes was noticed as well as its exudation into the rhizosphere. This research indicates that soluble sugars, proline, and ABA alterations in rhizomes can participate in the mechanism of acclimation of S. gigantea to specific soil and meteorological conditions in the country of invasion irrespective of plant genetic variation.
Collapse
Affiliation(s)
- Renata Bączek-Kwinta
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, ul. Podłużna 3, ul. Łobzowska 24, 30-239 Kraków, Poland;
| | - Franciszek Janowiak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, ul. Niezapominajek 21, 30-239 Kraków, Poland;
| | - Magdalena Simlat
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, ul. Podłużna 3, ul. Łobzowska 24, 30-239 Kraków, Poland;
| | - Jacek Antonkiewicz
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland;
| |
Collapse
|
31
|
Tarbajova V, Kolackova M, Chaloupsky P, Dobesova M, Capal P, Pilat Z, Samek O, Zemanek P, Svec P, Sterbova DS, Vaculovicova M, Richtera L, Pérez-de-Mora A, Adam V, Huska D. Physiological and transcriptome profiling of Chlorella sorokiniana: A study on azo dye wastewater decolorization. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132450. [PMID: 37708651 DOI: 10.1016/j.jhazmat.2023.132450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Over decades, synthetic dyes have become increasingly dominated by azo dyes posing a significant environmental risk due to their toxicity. Microalgae-based systems may offer an alternative for treatment of azo dye effluents to conventional physical-chemical methods. Here, microalgae were tested to decolorize industrial azo dye wastewater (ADW). Chlorella sorokiniana showed the highest decolorization efficiency in a preliminary screening test. Subsequently, the optimization of the experimental design resulted in 70% decolorization in a photobioreactor. Tolerance of this strain was evidenced using multiple approaches (growth and chlorophyll content assays, scanning electron microscopy (SEM), and antioxidant level measurements). Raman microspectroscopy was employed for the quantification of ADW-specific compounds accumulated by the microalgal biomass. Finally, RNA-seq revealed the transcriptome profile of C. sorokiniana exposed to ADW for 72 h. Activated DNA repair and primary metabolism provided sufficient energy for microalgal growth to overcome the adverse toxic conditions. Furthermore, several transporter genes, oxidoreductases-, and glycosyltransferases-encoding genes were upregulated to effectively sequestrate and detoxify the ADW. This work demonstrates the potential utilization of C. sorokiniana as a tolerant strain for industrial wastewater treatment, emphasizing the regulation of its molecular mechanisms to cope with unfavorable growth conditions.
Collapse
Affiliation(s)
- Vladimira Tarbajova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Pavel Chaloupsky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Marketa Dobesova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Petr Capal
- Institute of Experimental Botany, Centre of the Region Hana for Biotechnological and Agricultural Research, Slechtitelu 241/27, 783 71 Olomouc, Czech Republic
| | - Zdenek Pilat
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic
| | - Ota Samek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic
| | - Pavel Zemanek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Dagmar Skopalova Sterbova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Alfredo Pérez-de-Mora
- Department of Soil and Groundwater, TAUW GmbH, Landsbergerstr. 404, 81241 Munich, Germany
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic.
| |
Collapse
|
32
|
Licaj I, Felice D, Germinario C, Zanotti C, Fiorillo A, Marra M, Rocco M. An artificial intelligence-integrated analysis of the effect of drought stress on root traits of "modern" and "ancient" wheat varieties. FRONTIERS IN PLANT SCIENCE 2023; 14:1241281. [PMID: 37900753 PMCID: PMC10613089 DOI: 10.3389/fpls.2023.1241281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023]
Abstract
Due to drought stress, durum wheat production in the Mediterranean basin will be severely affected in the coming years. Durum wheat cultivation relies on a few genetically uniform "modern" varieties, more productive but less tolerant to stresses, and "traditional" varieties, still representing a source of genetic biodiversity for drought tolerance. Root architecture plasticity is crucial for plant adaptation to drought stress and the relationship linking root structures to drought is complex and still largely under-explored. In this study, we examined the effect of drought stress on the roots' characteristics of the "traditional" Saragolla cultivar and the "modern" Svevo. By means of "SmartRoot" software, we demonstrated that drought stress affected primary and lateral roots as well as root hair at different extents in Saragolla and Svevo cultivars. Indeed, we observed that under drought stress Saragolla possibly revamped its root architecture, by significantly increasing the length of lateral roots, and the length/density of root hairs compared to the Svevo cultivar. Scanning Electron Microscopy analysis of root anatomical traits demonstrated that under drought stress a greater stele area and an increase of the xylem lumen size vessel occurred in Saragolla, indicating that the Saragolla variety had a more efficient adaptive response to osmotic stress than the Svevo. Furthermore, for the analysis of root structural data, Artificial Intelligence (AI) algorithms have been used: Their application allowed to predict from root structural traits modified by the osmotic stress the type of cultivar observed and to infer the relationship stress-cultivar type, thus demonstrating that root structural traits are clear and incontrovertible indicators of the higher tolerance to osmotic stress of the Saragolla cultivar. Finally, to obtain an integrated view of root morphogenesis, phytohormone levels were investigated. According to the phenotypic effects, under drought stress,a larger increase in IAA and ABA levels, as well as a more pronounced reduction in GA levels occurred in Saragolla as compared to Svevo. In conclusion, these results show that the root growth and hormonal profile of Saragolla are less affected by osmotic stress than those of Svevo, demonstrating the great potential of ancient varieties as reservoirs of genetic variability for improving crop responses to environmental stresses.
Collapse
Affiliation(s)
- Ilva Licaj
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Domenico Felice
- Department of Management Engineering, Polytechnic of Milan, Milan, Italy
| | - Chiara Germinario
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | | | - Anna Fiorillo
- Department of Biology, University of Tor Vergata, Rome, Italy
| | - Mauro Marra
- Department of Biology, University of Tor Vergata, Rome, Italy
| | - Mariapina Rocco
- Department of Science and Technology, University of Sannio, Benevento, Italy
| |
Collapse
|
33
|
Bilal S, Saad Jan S, Shahid M, Asaf S, Khan AL, Lubna, Al-Rawahi A, Lee IJ, AL-Harrasi A. Novel Insights into Exogenous Phytohormones: Central Regulators in the Modulation of Physiological, Biochemical, and Molecular Responses in Rice under Metal(loid) Stress. Metabolites 2023; 13:1036. [PMID: 37887361 PMCID: PMC10608868 DOI: 10.3390/metabo13101036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
Rice (Oryza sativa) is a research model for monocotyledonous plants. Rice is also one of the major staple foods and the primary crop for more than half of the world's population. Increasing industrial activities and the use of different fertilizers and pesticides containing heavy metals (HMs) contribute to the contamination of agriculture fields. HM contamination is among the leading causes that affect the health of rice plants by limiting their growth and causing plant death. Phytohormones have a crucial role in stress-coping mechanisms and in determining a range of plant development and growth aspects during heavy metal stress. This review summarizes the role of different exogenous applications of phytohormones including auxin, cytokinin, gibberellins, ethylene, abscisic acid, strigolactones, jasmonates, brassinosteroids, and salicylic acids in rice plants for mitigating heavy metal stress via manipulation of their stress-related physiological and biochemical processes, and alterations of signaling and biosynthesis of genes. Exogenous administration of phytohormones and regulation of endogenous levels by targeting their biosynthesis/signaling machineries is a potential strategy for protecting rice from HM stress. The current review primarily emphasizes the key mechanistic phytohormonal-mediated strategies for reducing the adverse effects of HM toxicity in rice. Herein, we have provided comprehensive evidence for the effective role of exogenous phytohormones in employing defense responses and tolerance in rice to the phytotoxic effects of HM toxicity along with endogenous hormonal crosstalk for modulation of subcellular mechanisms and modification of stress-related signaling pathways, and uptake and translocation of metals. Altogether, this information offers a systematic understanding of how phytohormones modulate a plant's tolerance to heavy metals and may assist in directing the development of new approaches to strengthen rice plant resistance to HM toxicity.
Collapse
Affiliation(s)
- Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Syed Saad Jan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Shahid
- Agriculture Research Institute, Khyber Pakhtunkhwa, Mingora 19130, Pakistan
| | - Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA
| | - Lubna
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - In-Jung Lee
- Department of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ahmed AL-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
34
|
Zhao Z, Wu S, Gao H, Tang W, Wu X, Zhang B. The BR signaling pathway regulates primary root development and drought stress response by suppressing the expression of PLT1 and PLT2 in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1187605. [PMID: 37441172 PMCID: PMC10333506 DOI: 10.3389/fpls.2023.1187605] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/02/2023] [Indexed: 07/15/2023]
Abstract
Introduction With the warming global climate, drought stress has become an important abiotic stress factor limiting plant growth and crop yield. As the most rapidly drought-sensing organs of plants, roots undergo a series of changes to enhance their ability to absorb water, but the molecular mechanism is unclear. Results and methods In this study, we found that PLT1 and PLT2, two important transcription factors of root development in Arabidopsis thaliana, are involved in the plant response to drought and are inhibited by BR signaling. PLT1- and PLT2-overexpressing plants showed greater drought tolerance than wild-type plants. Furthermore, we found that BZR1 could bind to the promoter of PLT1 and inhibit its transcriptional activity in vitro and in vivo. PLT1 and PLT2 were regulated by BR signaling in root development and PLT2 could partially rescue the drought sensitivity of bes1-D. In addition, RNA-seq data analysis showed that BR-regulated root genes and PLT1/2 target genes were also regulated by drought; for example, CIPK3, RCI2A, PCaP1, PIP1;5, ERF61 were downregulated by drought and PLT1/2 but upregulated by BR treatment; AAP4, WRKY60, and AT5G19970 were downregulated by PLT1/2 but upregulated by drought and BR treatment; and RGL2 was upregulated by drought and PLT1/2 but downregulated by BR treatment. Discussion Our findings not only reveal the mechanism by which BR signaling coordinates root growth and drought tolerance by suppressing the expression of PLT1 and PLT2 but also elucidates the relationship between drought and root development. The current study thus provides an important theoretical basis for the improvement of crop yield under drought conditions.
Collapse
Affiliation(s)
- Zhiying Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuting Wu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Han Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Wenqiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xuedan Wu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Baowen Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
35
|
Li H, Duijts K, Pasini C, van Santen JE, Lamers J, de Zeeuw T, Verstappen F, Wang N, Zeeman SC, Santelia D, Zhang Y, Testerink C. Effective root responses to salinity stress include maintained cell expansion and carbon allocation. THE NEW PHYTOLOGIST 2023; 238:1942-1956. [PMID: 36908088 DOI: 10.1111/nph.18873] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/25/2023] [Indexed: 05/04/2023]
Abstract
Acclimation of root growth is vital for plants to survive salt stress. Halophytes are great examples of plants that thrive even under severe salinity, but their salt tolerance mechanisms, especially those mediated by root responses, are still largely unknown. We compared root growth responses of the halophyte Schrenkiella parvula with its glycophytic relative species Arabidopsis thaliana under salt stress and performed transcriptomic analysis of S. parvula roots to identify possible gene regulatory networks underlying their physiological responses. Schrenkiella parvula roots do not avoid salt and experience less growth inhibition under salt stress. Salt-induced abscisic acid levels were higher in S. parvula roots compared with Arabidopsis. Root transcriptomic analysis of S. parvula revealed the induction of sugar transporters and genes regulating cell expansion and suberization under salt stress. 14 C-labeled carbon partitioning analyses showed that S. parvula continued allocating carbon to roots from shoots under salt stress while carbon barely allocated to Arabidopsis roots. Further physiological investigation revealed that S. parvula roots maintained root cell expansion and enhanced suberization under severe salt stress. In summary, roots of S. parvula deploy multiple physiological and developmental adjustments under salt stress to maintain growth, providing new avenues to improve salt tolerance of plants using root-specific strategies.
Collapse
Affiliation(s)
- Hongfei Li
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Kilian Duijts
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Carlo Pasini
- Institute of Integrative Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Joyce E van Santen
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Jasper Lamers
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Thijs de Zeeuw
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Francel Verstappen
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Nan Wang
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Diana Santelia
- Institute of Integrative Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| |
Collapse
|
36
|
Xu Y, Qian X, Li K, Zhou T, Tian Y, Yuan L, Wang Z, Yang J. Differential roles of abscisic acid in maize roots in the adaptation to soil drought. Food Energy Secur 2023. [DOI: 10.1002/fes3.458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
37
|
Shankar R, Dwivedi AK, Singh V, Jain M. Genome-wide discovery of genetic variations between rice cultivars with contrasting drought stress response and their potential functional relevance. PHYSIOLOGIA PLANTARUM 2023; 175:e13879. [PMID: 36805564 DOI: 10.1111/ppl.13879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Drought stress is a serious threat to rice productivity. Investigating genetic variations between drought-tolerant (DT) and drought-sensitive (DS) rice cultivars may decipher the candidate genes/regulatory regions involved in drought stress tolerance/response. In this study, whole-genome resequencing data of four DS and five DT rice cultivars were analyzed. We identified a total of approximately 4.8 million single nucleotide polymorphisms (SNPs) and 0.54 million insertions/deletions (InDels). The genetic variations (162,638 SNPs and 17,217 InDels) differentiating DS and DT rice cultivars were found to be unevenly distributed throughout the rice genome; however, they were more frequent near the transcription start and stop sites than in the genic regions. The cis-regulatory motifs representing the binding sites of stress-related transcription factors (MYB, HB, bZIP, ERF, ARR, and AREB) harboring the SNPs/InDels in the promoter regions of a few differentially expressed genes (DEGs) were identified. Importantly, many of these DEGs were located within the drought-associated quantitative trait loci. Overall, this study provides a valuable large-scale genotyping resource and facilitates the discovery of candidate genes associated with drought stress tolerance in rice.
Collapse
Affiliation(s)
- Rama Shankar
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Anuj Kumar Dwivedi
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Vikram Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
38
|
Liu B, Zhang J, Ye N. Noninvasive micro-test technology: monitoring ion and molecular flow in plants. TRENDS IN PLANT SCIENCE 2023; 28:123-124. [PMID: 36379847 DOI: 10.1016/j.tplants.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Bohan Liu
- Key Laboratory of Crop Physiological and Molecular Biology, Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Nenghui Ye
- Key Laboratory of Crop Physiological and Molecular Biology, Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
39
|
Cheng C, Steinman AD, Xue Q, Wan X, Xie L. The disruption of calcium and hydrogen ion homeostasis of submerged macrophyte Vallisneria natans (Lour.) Hara caused by microcystin-LR. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106377. [PMID: 36563584 DOI: 10.1016/j.aquatox.2022.106377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/20/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Aquatic plants play an important role in maintaining lake water status and ecosystem stability, but the effect of the cyanotoxin microcystin (MC) on ion homeostasis in aquatic plants and the resulting adverse consequences remains unclear. This study used non-invasive micro-test technology to detect the effect of MC-LR on homeostasis of calcium (Ca2+) and hydrogen ions (H+) in Vallisneria natans (Lour.) Hara, and examined the relationship between ion homeostasis and physiological indicators. Results showed that 1) MC-LR was enriched in V. natans tissues, with greater absorption in roots than in leaves, and 2) MC-LR induced a sustained and dose-dependent Ca2+ efflux from leaves and recoverable Ca2+ efflux from roots. Although H+-ATPase of leaves and roots was activated by MC-LR, the effluent of H+ from roots and influent of H+ into leaves was enhanced. By affecting the homeostasis of Ca2+ and H+, MC-LR directly or indirectly affected accumulation of nutrients essential for maintaining normal growth: accumulation of nitrogen, magnesium, phosphorus, calcium, iron, and zinc decreased in leaves; calcium, magnesium, and zinc decreased in roots; and potassium showed an increase in both leaves and roots. Microscopy revealed MC-LR results in leaf swelling and reduced accumulation of protein and starch, presumably due to changes in nutrient processes. In addition, efflux of Ca2+ and reduced accumulation of transition metals resulted in decreased ROS levels in leaves and roots. The disruption of ionic homeostasis in aquatic plants can be caused by as small a concentration as 1 μg/L MC-LR, indicating potential ecological impacts caused by microcystin need greater attention.
Collapse
Affiliation(s)
- Chen Cheng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alan D Steinman
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI, USA
| | - Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiang Wan
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
40
|
Wang K, Xu F, Yuan W, Ding Y, Sun L, Feng Z, Liu X, Xu W, Zhang J, Wang F. Elevated
CO
2
enhances rice root growth under alternate wetting and drying irrigation by involving
ABA
response: Evidence from the seedling stage. Food Energy Secur 2022. [DOI: 10.1002/fes3.442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Ke Wang
- Institute of Soil and Fertilizer Fujian Academy of Agricultural Sciences Fuzhou China
| | - Feiyun Xu
- College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop Fujian Agriculture and Forestry University Fuzhou China
| | - Wei Yuan
- College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop Fujian Agriculture and Forestry University Fuzhou China
| | - Yexin Ding
- College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop Fujian Agriculture and Forestry University Fuzhou China
| | - Leyun Sun
- College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop Fujian Agriculture and Forestry University Fuzhou China
| | - Zhiwei Feng
- College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop Fujian Agriculture and Forestry University Fuzhou China
| | - Xin Liu
- College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop Fujian Agriculture and Forestry University Fuzhou China
| | - Weifeng Xu
- College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop Fujian Agriculture and Forestry University Fuzhou China
| | - Jianhua Zhang
- Department of Biology Hong Kong Baptist University Hong Kong China
| | - Fei Wang
- Institute of Soil and Fertilizer Fujian Academy of Agricultural Sciences Fuzhou China
| |
Collapse
|
41
|
Overexpression of a Plasma Membrane H +-ATPase Gene OSA1 Stimulates the Uptake of Primary Macronutrients in Rice Roots. Int J Mol Sci 2022; 23:ijms232213904. [PMID: 36430382 PMCID: PMC9697395 DOI: 10.3390/ijms232213904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Plasma membrane (PM) H+-ATPase is a master enzyme involved in various plant physiological processes, such as stomatal movements in leaves and nutrient uptake and transport in roots. Overexpression of Oryza sativa PM H+-ATPase 1 (OSA1) has been known to increase NH4+ uptake in rice roots. Although electrophysiological and pharmacological experiments have shown that the transport of many substances is dependent on the proton motive force provided by PM H+-ATPase, the exact role of PM H+-ATPase on the uptake of nutrients in plant roots, especially for the primary macronutrients N, P, and K, is still largely unknown. Here, we used OSA1 overexpression lines (OSA1-oxs) and gene-knockout osa1 mutants to investigate the effect of modulation of PM H+-ATPase on the absorption of N, P, and K nutrients through the use of a nutrient-exhaustive method and noninvasive microtest technology (NMT) in rice roots. Our results showed that under different concentrations of P and K, the uptake rates of P and K were enhanced in OSA1-oxs; by contrast, the uptake rates of P and K were significantly reduced in roots of osa1 mutants when compared with wild-type. In addition, the net influx rates of NH4+ and K+, as well as the efflux rate of H+, were enhanced in OSA1-oxs and suppressed in osa1 mutants under low concentration conditions. In summary, this study indicated that overexpression of OSA1 stimulated the uptake rate of N, P, and K and promoted flux rates of cations (i.e., H+, NH4+, and K+) in rice roots. These results may provide a novel insight into improving the coordinated utilization of macronutrients in crop plants.
Collapse
|
42
|
Abscisic Acid May Play a Critical Role in the Moderating Effect of Epichloë Endophyte on Achnatherum inebrians under Drought Stress. J Fungi (Basel) 2022; 8:jof8111140. [PMID: 36354907 PMCID: PMC9698257 DOI: 10.3390/jof8111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 11/30/2022] Open
Abstract
Water scarcity is a major constraint that adversely affects plant development and growth. Abscisic acid (ABA) is a plant stress hormone that is rapidly synthesized and can induce stomatal closure to conserve water, thereby alleviating the drought stress of plants. The Epichloë endophyte enhances the drought tolerance of Achnatherum inebrians (drunken horse grass, DHG). To better understand how the Epichloë endophyte enhances drought tolerance, DHG plants without (EF) and with (EI), an Epichloë endophyte, were grown under 20% and 60% soil water conditions (SWC), and the leaves of the three treatments of EF and EI plants were sprayed with ABA solution (1 mg/L); fluridone (FLU), the ABA biosynthesis inhibitor solution (1 mg/L); and distilled water, respectively. Four-weeks later, the results indicated that the exogenous ABA application promoted plant growth, stomatal conductance, and photosynthetic rate, while the opposite effect occurred with plants sprayed with FLU. The differences between EI and EF plants in tiller number, height, chlorophyll content, stomata conductance, and photosynthetic rate were highest when sprayed with ABA. Thus, it is concluded that ABA might be involved in the moderating effect of Epichloë endophytes on DHG plants exposed to drought by maintaining growth and improving photosynthetic efficiency.
Collapse
|
43
|
Kumar S, Shah SH, Vimala Y, Jatav HS, Ahmad P, Chen Y, Siddique KHM. Abscisic acid: Metabolism, transport, crosstalk with other plant growth regulators, and its role in heavy metal stress mitigation. FRONTIERS IN PLANT SCIENCE 2022; 13:972856. [PMID: 36186053 PMCID: PMC9515544 DOI: 10.3389/fpls.2022.972856] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/17/2022] [Indexed: 05/06/2023]
Abstract
Heavy metal (HM) stress is threatening agricultural crops, ecological systems, and human health worldwide. HM toxicity adversely affects plant growth, physiological processes, and crop productivity by disturbing cellular ionic balance, metabolic balance, cell membrane integrity, and protein and enzyme activities. Plants under HM stress intrinsically develop mechanisms to counter the adversities of HM but not prevent them. However, the exogenous application of abscisic acid (ABA) is a strategy for boosting the tolerance capacity of plants against HM toxicity by improving osmolyte accumulation and antioxidant machinery. ABA is an essential plant growth regulator that modulates various plant growth and metabolic processes, including seed development and germination, vegetative growth, stomatal regulation, flowering, and leaf senescence under diverse environmental conditions. This review summarizes ABA biosynthesis, signaling, transport, and catabolism in plant tissues and the adverse effects of HM stress on crop plants. Moreover, we describe the role of ABA in mitigating HM stress and elucidating the interplay of ABA with other plant growth regulators.
Collapse
Affiliation(s)
- Sandeep Kumar
- Plant Physiology and Tissue Culture Laboratory, Department of Botany, Chaudhary Charan Singh University, Meerut, India
| | - Sajad Hussain Shah
- Plant Physiology and Tissue Culture Laboratory, Department of Botany, Chaudhary Charan Singh University, Meerut, India
| | - Yerramilli Vimala
- Plant Physiology and Tissue Culture Laboratory, Department of Botany, Chaudhary Charan Singh University, Meerut, India
| | - Hanuman Singh Jatav
- Soil Science and Agricultural Chemistry, Sri Karan Narendra Agriculture University Jobner, Jaipur, India
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Jammu and Kashmir, India
| | - Yinglong Chen
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
44
|
Yang X, Zhu X, Wei J, Li W, Wang H, Xu Y, Yang Z, Xu C, Li P. Primary root response to combined drought and heat stress is regulated via salicylic acid metabolism in maize. BMC PLANT BIOLOGY 2022; 22:417. [PMID: 36038847 PMCID: PMC9425997 DOI: 10.1186/s12870-022-03805-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/18/2022] [Indexed: 05/22/2023]
Abstract
The primary root is the first organ to perceive the stress signals for abiotic stress. In this study, maize plants subjected to drought, heat and combined stresses displayed a significantly reduced primary root length. Metabolic and transcriptional analyses detected 72 and 5,469 differentially expressed metabolites and genes in response to stress conditions, respectively. The functional annotation of differentially expressed metabolites and genes indicated that primary root development was mediated by pathways involving phenylalanine metabolism, hormone metabolism and signaling under stress conditions. Furthermore, we found that the concentration of salicylic acid and two precursors, shikimic acid and phenylalanine, showed rapid negative accumulation after all three stresses. The expression levels of some key genes involved in salicylic acid metabolism and signal transduction were differentially expressed under stress conditions. This study extends our understanding of the mechanism of primary root responses to abiotic stress tolerance in maize.
Collapse
Affiliation(s)
- Xiaoyi Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xinjie Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Jie Wei
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai'an, 223001, Jiangsu, China
| | - Wentao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Houmiao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yang Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
45
|
Crop Root Responses to Drought Stress: Molecular Mechanisms, Nutrient Regulations, and Interactions with Microorganisms in the Rhizosphere. Int J Mol Sci 2022; 23:ijms23169310. [PMID: 36012575 PMCID: PMC9409098 DOI: 10.3390/ijms23169310] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Roots play important roles in determining crop development under drought. Under such conditions, the molecular mechanisms underlying key responses and interactions with the rhizosphere in crop roots remain limited compared with model species such as Arabidopsis. This article reviews the molecular mechanisms of the morphological, physiological, and metabolic responses to drought stress in typical crop roots, along with the regulation of soil nutrients and microorganisms to these responses. Firstly, we summarize how root growth and architecture are regulated by essential genes and metabolic processes under water-deficit conditions. Secondly, the functions of the fundamental plant hormone, abscisic acid, on regulating crop root growth under drought are highlighted. Moreover, we discuss how the responses of crop roots to altered water status are impacted by nutrients, and vice versa. Finally, this article explores current knowledge of the feedback between plant and soil microbial responses to drought and the manipulation of rhizosphere microbes for improving the resilience of crop production to water stress. Through these insights, we conclude that to gain a more comprehensive understanding of drought adaption mechanisms in crop roots, future studies should have a network view, linking key responses of roots with environmental factors.
Collapse
|
46
|
Yang Y, Wassie M, Liu NF, Deng H, Zeng YB, Xu Q, Hu LX. Genotypic-specific hormonal reprogramming and crosstalk are crucial for root growth and salt tolerance in bermudagrass ( Cynodon dactylon). FRONTIERS IN PLANT SCIENCE 2022; 13:956410. [PMID: 35991415 PMCID: PMC9386360 DOI: 10.3389/fpls.2022.956410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Salt stress is one of the major abiotic factors limiting the productivity of bermudagrass (Cynodon dactylon). However, the role of hormonal reprogramming and crosstalk in regulating root growth and salt tolerance in bermudagrass was not reported. Here, we examined the physiological and hormonal responses of two contrasting bermudagrass genotypes; 'C43,' salt-tolerant 'C198' salt-sensitive. Under salt stress, 'C43' had better membrane stability and higher photosynthetic activity than the 'C198.' Salt stress promoted root growth and improved root/shoot ratio and root activity in 'C43,' but the root growth of 'C198' was inhibited by salt stress, leading to diminished root activity. The two bermudagrass genotypes also showed critical differences in hormonal responses, especially in the roots. The root contents of indole-3-acetic acid (IAA), cytokinin derivatives, such as trans-zeatin riboside (tZR) and dihydrozeatin riboside (DHZR) were increased in 'C43,' but decreased in 'C198' when exposed to salt stress. The root growth rate was positively correlated with the root IAA, tZR and DHZR, indicating their crucial role in root growth under salt stress. The expressions of TAA/YUCCA and CYP735A involved in IAA and tZR biosynthesis were induced by salt stress in 'C43,' but inhibited in 'C198,' leading to reduced hormone accumulations. Salt stress decreased the iP, tZ, and DHZ content in the roots of both genotypes, and no significant difference was observed between the two genotypes. Salt stress reduced the content of GA3 in both genotypes by inhibiting GA20ox and GA2ox genes, which could be attributed to the reduced shoot growth in both genotypes. The increased ABA level by salt stress was significantly higher in 'C198' than 'C43.' Furthermore, there were positive and negative correlations between different hormones and root growth, suggesting that root growth could be regulated by complex hormonal reprogramming and crosstalk. This study provides a foundation for understanding the underlying mechanisms of hormonal-mediated root growth and salt tolerance in bermudagrass.
Collapse
Affiliation(s)
- Yong Yang
- College of Physical Education, Changsha University, Changsha, China
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Misganaw Wassie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Ning-fang Liu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Hui Deng
- College of Physical Education, Changsha University, Changsha, China
| | - Yi-bing Zeng
- College of Physical Education, Changsha University, Changsha, China
| | - Qian Xu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
- Grassland Research Center of Hunan Province, Changsha, China
| | - Long-xing Hu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
- Grassland Research Center of Hunan Province, Changsha, China
| |
Collapse
|
47
|
Sánchez-Bermúdez M, del Pozo JC, Pernas M. Effects of Combined Abiotic Stresses Related to Climate Change on Root Growth in Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:918537. [PMID: 35845642 PMCID: PMC9284278 DOI: 10.3389/fpls.2022.918537] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Climate change is a major threat to crop productivity that negatively affects food security worldwide. Increase in global temperatures are usually accompanied by drought, flooding and changes in soil nutrients composition that dramatically reduced crop yields. Against the backdrop of climate change, human population increase and subsequent rise in food demand, finding new solutions for crop adaptation to environmental stresses is essential. The effects of single abiotic stress on crops have been widely studied, but in the field abiotic stresses tend to occur in combination rather than individually. Physiological, metabolic and molecular responses of crops to combined abiotic stresses seem to be significantly different to individual stresses. Although in recent years an increasing number of studies have addressed the effects of abiotic stress combinations, the information related to the root system response is still scarce. Roots are the underground organs that directly contact with the soil and sense many of these abiotic stresses. Understanding the effects of abiotic stress combinations in the root system would help to find new breeding tools to develop more resilient crops. This review will summarize the current knowledge regarding the effects of combined abiotic stress in the root system in crops. First, we will provide a general overview of root responses to particular abiotic stresses. Then, we will describe how these root responses are integrated when crops are challenged to the combination of different abiotic stress. We will focus on the main changes on root system architecture (RSA) and physiology influencing crop productivity and yield and convey the latest information on the key molecular, hormonal and genetic regulatory pathways underlying root responses to these combinatorial stresses. Finally, we will discuss possible directions for future research and the main challenges needed to be tackled to translate this knowledge into useful tools to enhance crop tolerance.
Collapse
|
48
|
Abstract
H+-ATPases, including the phosphorylated intermediate-type (P-type) and vacuolar-type (V-type) H+-ATPases, are important ATP-driven proton pumps that generate membrane potential and provide proton motive force for secondary active transport. P- and V-type H+-ATPases have distinct structures and subcellular localizations and play various roles in growth and stress responses. A P-type H+-ATPase is mainly regulated at the posttranslational level by phosphorylation and dephosphorylation of residues in its autoinhibitory C terminus. The expression and activity of both P- and V-type H+-ATPases are highly regulated by hormones and environmental cues. In this review, we summarize the recent advances in understanding of the evolution, regulation, and physiological roles of P- and V-type H+-ATPases, which coordinate and are involved in plant growth and stress adaptation. Understanding the different roles and the regulatory mechanisms of P- and V-type H+-ATPases provides a new perspective for improving plant growth and stress tolerance by modulating the activity of H+-ATPases, which will mitigate the increasing environmental stress conditions associated with ongoing global climate change.
Collapse
Affiliation(s)
- Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Feiyun Xu
- Center for Plant Water-Use and Nutrition Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China;
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University of Giessen, Giessen, Germany
| | - Weifeng Xu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- Center for Plant Water-Use and Nutrition Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China;
| |
Collapse
|
49
|
Ghani MI, Ali A, Atif MJ, Ali M, Amin B, Cheng Z. Arbuscular Mycorrhizal Fungi and Dry Raw Garlic Stalk Amendment Alleviate Continuous Monocropping Growth and Photosynthetic Declines in Eggplant by Bolstering Its Antioxidant System and Accumulation of Osmolytes and Secondary Metabolites. FRONTIERS IN PLANT SCIENCE 2022; 13:849521. [PMID: 35432401 PMCID: PMC9008779 DOI: 10.3389/fpls.2022.849521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/14/2022] [Indexed: 05/03/2023]
Abstract
Vegetable production under plastic sheds severely threatens regional eco-sustainability via anthropogenic activities (excessive use of agrochemicals, pesticides) and problems associated with replanting. Long-term successive cropping across growing seasons induces continuous cropping stress, whose effects manifest as diminished plant growth. Therefore, it is imperative that we develop environmentally sustainable approaches, such as replacing agrochemicals with vegetable waste like dry raw garlic stalk (DRGS) or use biofertilizers like arbuscular mycorrhizal fungi (AMF) (e.g., Diversispora epigaea). In this study, the influence of AMF on the growth, biochemical attributes, antioxidant defense system, phytohormones, accumulation of osmolytes, phenols, and mineral elements in eggplant grown on DRGS-amended soils under continuous monocropping (CMC) was studied. The results showed that inoculation with AMF or the DRGS amendment could improve the pigments' content, photosynthesis, and antioxidant defense system; augmented phytohormones synthesis (except for ABA), and increased the leaves' mineral nutrients. These parameters were enhanced most by the combined application of AMF and DRGS, which also increased the concentration of osmolytes, including proline, sugars, and free amino acids in eggplant when compared with the control. Furthermore, either AMF and DRGS alone, or in combination, ameliorated the induced stress from continuous cropping by reducing the incidence of Fusarium wilt and production of ROS (reactive oxygen species); lipid peroxidation underwent maximal reduction in plants grown under the combined treatments. The AMF, DRGS, and AMF + DRGS exhibited a lower disease severity index (33.46, 36.42, and 43.01%), respectively, over control. Hence, inoculation with AMF coupled with DRGS amendment alters the photosynthetic attributes in eggplant through the upregulation of its antioxidant system and greater accumulation of osmolytes, which led to the improved growth and yield of eggplant.
Collapse
Affiliation(s)
| | - Ahmad Ali
- College of Horticulture, Northwest A&F University, Xianyang, China
| | - Muhammad Jawaad Atif
- College of Horticulture, Northwest A&F University, Xianyang, China
- Horticultural Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Xianyang, China
| | - Bakht Amin
- College of Horticulture, Northwest A&F University, Xianyang, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Xianyang, China
| |
Collapse
|
50
|
Xu F, Liao H, Zhang Y, Yao M, Liu J, Sun L, Zhang X, Yang J, Wang K, Wang X, Ding Y, Liu C, Rensing C, Zhang J, Yeh K, Xu W. Coordination of root auxin with the fungus Piriformospora indica and bacterium Bacillus cereus enhances rice rhizosheath formation under soil drying. THE ISME JOURNAL 2022; 16:801-811. [PMID: 34621017 PMCID: PMC8857228 DOI: 10.1038/s41396-021-01133-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/10/2022]
Abstract
Moderate soil drying (MSD) is a promising agricultural technique that can reduce water consumption and enhance rhizosheath formation promoting drought resistance in plants. The endophytic fungus Piriformospora indica (P. indica) with high auxin production may be beneficial for rhizosheath formation. However, the integrated role of P. indica with native soil microbiome in rhizosheath formation is unclear. Here, we investigated the roles of P. indica and native bacteria on rice rhizosheath formation under MSD using high-throughput sequencing and rice mutants. Under MSD, rice rhizosheath formation was significantly increased by around 30% with P. indica inoculation. Auxins in rice roots and P. indica were responsible for the rhizosheath formation under MSD. Next, the abundance of the genus Bacillus, known as plant growth-promoting rhizobacteria, was enriched in the rice rhizosheath and root endosphere with P. indica inoculation under MSD. Moreover, the abundance of Bacillus cereus (B. cereus) with high auxin production was further increased by P. indica inoculation. After inoculation with both P. indica and B. cereus, rhizosheath formation in wild-type or auxin efflux carrier OsPIN2 complemented line rice was higher than that of the ospin2 mutant. Together, our results suggest that the interaction of the endophytic fungus P. indica with the native soil bacterium B. cereus favors rice rhizosheath formation by auxins modulation in rice and microbes under MSD. This finding reveals a cooperative contribution of P. indica and native microbiota in rice rhizosheath formation under moderate soil drying, which is important for improving water use in agriculture.
Collapse
Affiliation(s)
- Feiyun Xu
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Hanpeng Liao
- grid.256111.00000 0004 1760 2876Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yingjiao Zhang
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Minjie Yao
- grid.256111.00000 0004 1760 2876Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jianping Liu
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Leyun Sun
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xue Zhang
- grid.256111.00000 0004 1760 2876Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jinyong Yang
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Ke Wang
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiaoyun Wang
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yexin Ding
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Chen Liu
- grid.256111.00000 0004 1760 2876Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Christopher Rensing
- grid.256111.00000 0004 1760 2876Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jianhua Zhang
- grid.221309.b0000 0004 1764 5980Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Kaiwun Yeh
- grid.19188.390000 0004 0546 0241Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|