1
|
Russo CJ, Husain K, Murugan A. Soft Modes as a Predictive Framework for Low-Dimensional Biological Systems Across Scales. Annu Rev Biophys 2025; 54:401-426. [PMID: 39971349 PMCID: PMC12079786 DOI: 10.1146/annurev-biophys-081624-030543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
All biological systems are subject to perturbations arising from thermal fluctuations, external environments, or mutations. Yet, while biological systems consist of thousands of interacting components, recent high-throughput experiments have shown that their response to perturbations is surprisingly low dimensional: confined to only a few stereotyped changes out of the many possible. In this review, we explore a unifying dynamical systems framework-soft modes-to explain and analyze low dimensionality in biology, from molecules to ecosystems. We argue that this soft mode framework makes nontrivial predictions that generalize classic ideas from developmental biology to disparate systems, namely phenocopying, dual buffering, and global epistasis. While some of these predictions have been borne out in experiments, we discuss how soft modes allow for a surprisingly far-reaching and unifying framework in which to analyze data from protein biophysics to microbial ecology.
Collapse
Affiliation(s)
- Christopher Joel Russo
- James Franck Institute, University of Chicago, Chicago, Illinois, USA
- Program in Biophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Kabir Husain
- James Franck Institute, University of Chicago, Chicago, Illinois, USA
- Department of Physics, University College London, London, United Kingdom
| | - Arvind Murugan
- James Franck Institute, University of Chicago, Chicago, Illinois, USA
- Department of Physics, University of Chicago, Chicago, Illinois, USA;
| |
Collapse
|
2
|
Zhang H, Feng T, Chang Q. Impact of molecular regulation on plant oil synthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 354:112428. [PMID: 39947332 DOI: 10.1016/j.plantsci.2025.112428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 03/01/2025]
Abstract
The synthesis of lipids in plants is essential for their growth and development, and it has wide-ranging applications in various fields, including diet and industry. In the majority of plants, the principal unsaturated fatty acids (UFAs) are three C18 varieties: oleic acid (18:1), linoleic acid (18:2), and α-linolenic acid (18:3). Despite the clear delineation of the principal biosynthetic pathways of fatty acids in plants, numerous unresolved issues persist. The regulation of transcription factors can significantly influence the rate of fatty acid synthesis in plants. Consequently, several transcription factors associated with oil synthesis have been identified in recent years, among which the WRINKLED1 (WRI1) and V-myb avian myeloblastosis viral oncogene homolog (MYB) transcription factors play central roles. This study will explain how plants make essential lipids, bring up many unanswered questions, and describe the regulatory network of many transcription factors involved in oil production, with a focus on recent progress in research related to WRI1 and MYB1. The aim is to provide insights for the biological cultivation of high-quality oilseed crops.
Collapse
Affiliation(s)
- Hansheng Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Tinghui Feng
- College of Life Sciences, Northwest A&F University, 712100, China
| | - Qinxiang Chang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China; Taiyuan University, 030032, China.
| |
Collapse
|
3
|
Skrabalak I, Rajtak A, Malachowska B, Skrzypczak N, Skalina KA, Guha C, Kotarski J, Okla K. Therapy resistance: Modulating evolutionarily conserved heat shock protein machinery in cancer. Cancer Lett 2025; 616:217571. [PMID: 39986370 DOI: 10.1016/j.canlet.2025.217571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Therapy resistance is a major barrier to achieving a cure in cancer patients, often resulting in relapses and mortality. Heat shock proteins (HSPs) are a group of evolutionarily conserved proteins that play a prominent role in the progression of cancer and drug resistance. HSP synthesis is upregulated in cancer cells, facilitating adaptation to various tumor microenvironment (TME) stressors, including nutrient deprivation, exposure to DNA-damaging agents, hypoxia, and immune responses. In this review, we present background information about HSP-mediated cancer therapy resistance. Within this context, we emphasize recent progress in the understanding of HSP machinery, exploring the therapeutic potential of HSPs in cancer treatment.
Collapse
Affiliation(s)
- Ilona Skrabalak
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Alicja Rajtak
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland; IOA, 3 Lotnicza St, 20-322 Lublin, Poland
| | - Beata Malachowska
- Department of Radiation Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Natalia Skrzypczak
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI, USA
| | - Karin A Skalina
- Department of Radiation Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Jan Kotarski
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Karolina Okla
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA; IOA, 3 Lotnicza St, 20-322 Lublin, Poland.
| |
Collapse
|
4
|
Gu J, He Y, He C, Zhang Q, Huang Q, Bai S, Wang R, You Q, Wang L. Advances in the structures, mechanisms and targeting of molecular chaperones. Signal Transduct Target Ther 2025; 10:84. [PMID: 40069202 PMCID: PMC11897415 DOI: 10.1038/s41392-025-02166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 03/15/2025] Open
Abstract
Molecular chaperones, a class of complex client regulatory systems, play significant roles in the prevention of protein misfolding and abnormal aggregation, the modulation of protein homeostasis, and the protection of cells from damage under constantly changing environmental conditions. As the understanding of the biological mechanisms of molecular chaperones has increased, their link with the occurrence and progression of disease has suggested that these proteins are promising targets for therapeutic intervention, drawing intensive interest. Here, we review recent advances in determining the structures of molecular chaperones and heat shock protein 90 (HSP90) chaperone system complexes. We also describe the features of molecular chaperones and shed light on the complicated regulatory mechanism that operates through interactions with various co-chaperones in molecular chaperone cycles. In addition, how molecular chaperones affect diseases by regulating pathogenic proteins has been thoroughly analyzed. Furthermore, we focus on molecular chaperones to systematically discuss recent clinical advances and various drug design strategies in the preclinical stage. Recent studies have identified a variety of novel regulatory strategies targeting molecular chaperone systems with compounds that act through different mechanisms from those of traditional inhibitors. Therefore, as more novel design strategies are developed, targeting molecular chaperones will significantly contribute to the discovery of new potential drugs.
Collapse
Affiliation(s)
- Jinying Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanyi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chenxi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qifei Huang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shangjun Bai
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial TCM Engineering Technology Research Center of Highly Efficient Drug Delivery Systems (DDSs), Nanjing, China.
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
5
|
Parikh RY, Nayak D, Lin H, Gangaraju VK. Drosophila Modulo is essential for transposon silencing and developmental robustness. J Biol Chem 2025; 301:108210. [PMID: 39848495 PMCID: PMC11879677 DOI: 10.1016/j.jbc.2025.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025] Open
Abstract
Transposable element (TE) silencing in the germline is crucial for preserving genome integrity; its absence results in sterility and diminished developmental robustness. The Piwi-interacting RNA (piRNA) pathway is the primary small non-coding RNA mechanism by which TEs are silenced in the germline. Three piRNA binding proteins promote the piRNA pathway function in the germline- P-element-induced wimpy testis (Piwi), Aubergine (Aub), and Argonaute 3 (Ago3). Piwi mediates transcriptional silencing of TEs by promoting the deposition of the heterochromatin mark Histone 3 lysine nine trimethylation (H3K9me3) at TE genomic sites. Aub and Ago3 facilitate post-transcriptional silencing of TEs. Proteins and mechanisms that promote piRNA function in TE silencing are still being discovered. This study demonstrates that the Drosophila Modulo protein, a homolog of mammalian Nucleolin and an epigenetic regulator, is crucial for the enrichment of H3K9me3 at TEs. We show that Modulo interacts with Piwi and operates downstream of the Piwi-piRNA complex's entry into the nucleus. Lack of Modulo function impairs Piwi-interacting protein Panoramix's ability to target transposon RNAs. Furthermore, the reduced function of Modulo in the mother undermines developmental robustness and exacerbates neomorphic Kr[If-1]-induced ectopic eye outgrowths in the offspring. Maternal Modulo enhances developmental robustness by inhibiting TE activation and transcriptome variability associated with intrinsic genetic variation. Thus, Modulo is an essential component of the mechanism that operates in the maternal germline to facilitate TE silencing and ensure developmental robustness in the ensuing generation.
Collapse
Affiliation(s)
- Rasesh Y Parikh
- Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Dhananjaya Nayak
- Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University, New Haven, Connecticut, USA
| | - Vamsi K Gangaraju
- Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
6
|
Diaz Arenas C, Alvarez M, Wilson RH, Shakhnovich EI, Ogbunugafor CB. Protein Quality Control is a Master Modulator of Molecular Evolution in Bacteria. Genome Biol Evol 2025; 17:evaf010. [PMID: 39837347 PMCID: PMC11789785 DOI: 10.1093/gbe/evaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 01/23/2025] Open
Abstract
The bacterial protein quality control (PQC) network comprises a set of genes that promote proteostasis (proteome homeostasis) through proper protein folding and function via chaperones, proteases, and protein translational machinery. It participates in vital cellular processes and influences organismal development and evolution. In this review, we examine the mechanistic bases for how the bacterial PQC network influences molecular evolution. We discuss the relevance of PQC components to contemporary issues in evolutionary biology including epistasis, evolvability, and the navigability of protein space. We examine other areas where proteostasis affects aspects of evolution and physiology, including host-parasite interactions. More generally, we demonstrate that the study of bacterial systems can aid in broader efforts to understand the relationship between genotype and phenotype across the biosphere.
Collapse
Affiliation(s)
- Carolina Diaz Arenas
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Maristella Alvarez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Robert H Wilson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - C Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
7
|
Karras GI, Colombo G, Kravats AN. Hsp90: Bringing it all together. Cell Stress Chaperones 2025; 30:69-79. [PMID: 39889818 PMCID: PMC12013134 DOI: 10.1016/j.cstres.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025] Open
Abstract
Heat-shock protein 90 (Hsp90) is an ancient and multifaceted protein-folding machine essential for most organisms. The past 40 years have uncovered remarkable complexity in the regulation and function of Hsp90, which dwarfs most other machines in the cell in sophistication. Here, we propose four analogies to illustrate Hsp90's sophistication: a multifunctional Swiss Army knife, an automobile engine and its controls, a switchboard acting as a hub and directing signals, and an orchestra conductor setting the tempo of a symphony. Although each of these analogies represents some key Hsp90 activities, none of them captures the entirety of Hsp90's complexity. Together, these roles enable Hsp90 to support both homeostasis and differentiation, both cellular stability and adaptability. At the 11th International Conference on the Hsp90 Chaperone Machine, the consensus was that to understand this major guardian of proteostasis, we need to study how the many facets of Hsp90's function influence each other. We hope that these analogies will help to conceptually integrate the many roles of Hsp90 in proteostasis and help the field develop the practical applications of Hsp90 modulators.
Collapse
Affiliation(s)
- Georgios Ioannis Karras
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston 77030, TX, USA; Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston 77030, TX, USA.
| | | | - Andrea N Kravats
- Department of Chemistry and Biochemistry, Miami University, Oxford 45056, OH, USA.
| |
Collapse
|
8
|
Russo CJ, Husain K, Murugan A. Soft Modes as a Predictive Framework for Low Dimensional Biological Systems across Scales. ARXIV 2024:arXiv:2412.13637v1. [PMID: 39764393 PMCID: PMC11702803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
All biological systems are subject to perturbations: due to thermal fluctuations, external environments, or mutations. Yet, while biological systems are composed of thousands of interacting components, recent high-throughput experiments show that their response to perturbations is surprisingly low-dimensional: confined to only a few stereotyped changes out of the many possible. Here, we explore a unifying dynamical systems framework - soft modes - to explain and analyze low-dimensionality in biology, from molecules to eco-systems. We argue that this one framework of soft modes makes non-trivial predictions that generalize classic ideas from developmental biology to disparate systems, namely: phenocopying, dual buffering, and global epistasis. While some of these predictions have been borne out in experiments, we discuss how soft modes allow for a surprisingly far-reaching and unifying framework in which to analyze data from protein biophysics to microbial ecology.
Collapse
Affiliation(s)
- Christopher Joel Russo
- James Franck Institute, University of Chicago, Chicago, United States
- Program in Biophysical Sciences, University of Chicago, Chicago, United States
| | - Kabir Husain
- James Franck Institute, University of Chicago, Chicago, United States
- Department of Physics, University College London, London, United Kingdom
| | - Arvind Murugan
- James Franck Institute, University of Chicago, Chicago, United States
- Department of Physics, University of Chicago, Chicago, United States
| |
Collapse
|
9
|
Aguilar-Rodríguez J, Jakobson CM, Jarosz DF. The Hsp90 Molecular Chaperone as a Global Modifier of the Genotype-Phenotype-Fitness Map: An Evolutionary Perspective. J Mol Biol 2024; 436:168846. [PMID: 39481633 PMCID: PMC11608137 DOI: 10.1016/j.jmb.2024.168846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Global modifier genes influence the mapping of genotypes onto phenotypes and fitness through their epistatic interactions with genetic variants on a massive scale. The first such factor to be identified, Hsp90, is a highly conserved molecular chaperone that plays a central role in protein homeostasis. Hsp90 is a "hub of hubs" that chaperones proteins engaged in many key cellular and developmental regulatory networks. These clients, which are enriched in kinases, transcription factors, and E3 ubiquitin ligases, drive diverse cellular functions and are themselves highly connected. By contrast to many other hub proteins, the abundance and activity of Hsp90 changes substantially in response to shifting environmental conditions. As a result, Hsp90 modifies the functional impact of many genetic variants simultaneously in a manner that depends on environmental stress. Studies in diverse organisms suggest that this coupling between Hsp90 function and challenging environments exerts a substantial impact on what parts of the genome are visible to natural selection, expanding adaptive opportunities when most needed. In this Perspective, we explore the multifaceted role of Hsp90 as global modifier of the genotype-phenotype-fitness map as well as its implications for evolution in nature and the clinic.
Collapse
Affiliation(s)
- José Aguilar-Rodríguez
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA
| | - Christopher M Jakobson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
Gracia B, Montes P, Huang M, Chen J, Karras GI. HSP90 buffers deleterious genetic variations in BRCA1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623783. [PMID: 39605638 PMCID: PMC11601394 DOI: 10.1101/2024.11.15.623783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Protein-folding chaperone HSP90 buffers genetic variation in diverse organisms, but the clinical significance of HSP90 buffering in disease remains unclear. Here, we show that HSP90 buffers mutations in the BRCT domain of BRCA1. HSP90-buffered BRCA1 mutations encode protein variants that retain interactions with partner proteins and rely on HSP90 for protein stability and function in cell survival. Moreover, HSP90-buffered BRCA1 variants confer PARP inhibitor resistance in cancer cell lines. Low-level HSP90 inhibition alleviates this resistance, revealing a cryptic and mutant-specific HSP90-contingent synthetic lethality. Hence, by stabilizing metastable variants across the entirety of the BRCT domain, HSP90 reduces the clinical severity of BRCA1 mutations allowing them to accumulate in populations. We estimate that HSP90 buffers 11% to 28% of known human BRCA1- BRCT missense mutations. Our work extends the clinical significance of HSP90 buffering to a prevalent class of variations in BRCA1 , pioneering its importance in cancer predisposition and therapy resistance.
Collapse
|
11
|
Keshavarzipour F, Abbasi M, Khorsandi Z, Ardestani M, Sadeghi-Aliabadi H. Design, synthesis and biological studies of new isoxazole compounds as potent Hsp90 inhibitors. Sci Rep 2024; 14:28017. [PMID: 39543364 PMCID: PMC11564562 DOI: 10.1038/s41598-024-79051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Heat shock protein 90 (Hsp90), a molecular chaperone, contributes to the preservation of folding, structure, stability, and function proteins. In this study, novel compounds comprising isoxazole structure were designed, synthesized and their potential ability as Hsp90 inhibitors was validated through docking studies. The active site-based compounds were prepared through a multi-step synthesis process and their chemical structures were characterized employing FT-IR, NMR, and mass spectrometry analysis. Cytotoxic and Hsp90 inhibition activities of synthesized compounds were assessed by MTT assay and ELISA kit, respectively. Based on the obtained results, compound 5 exhibited the highest cytotoxicity (IC50; 14 µM) against cancer cells and reduced Hsp90 expression from 5.54 ng/mL in untreated (normal cells) to 1.56 ng/mL in cancer cells. Moreover, molecular dynamics (MD) simulation results indicated its high affinity to target protein and approved its excellent stability which is essential for exerting an inhibitory effect on cancer cell proliferation.
Collapse
Affiliation(s)
- Fariba Keshavarzipour
- Pharmaceutical Sciences Research Centre, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-7346, Isfahan, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, 791969-1982, Bandar Abbas, Iran
| | - Zahra Khorsandi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746- 7346, Isfahan, Iran
| | - Mina Ardestani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746- 7346, Isfahan, Iran
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746- 7346, Isfahan, Iran.
| |
Collapse
|
12
|
Schmidlin K, Apodaca S, Newell D, Sastokas A, Kinsler G, Geiler-Samerotte K. Distinguishing mutants that resist drugs via different mechanisms by examining fitness tradeoffs. eLife 2024; 13:RP94144. [PMID: 39255191 PMCID: PMC11386965 DOI: 10.7554/elife.94144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
There is growing interest in designing multidrug therapies that leverage tradeoffs to combat resistance. Tradeoffs are common in evolution and occur when, for example, resistance to one drug results in sensitivity to another. Major questions remain about the extent to which tradeoffs are reliable, specifically, whether the mutants that provide resistance to a given drug all suffer similar tradeoffs. This question is difficult because the drug-resistant mutants observed in the clinic, and even those evolved in controlled laboratory settings, are often biased towards those that provide large fitness benefits. Thus, the mutations (and mechanisms) that provide drug resistance may be more diverse than current data suggests. Here, we perform evolution experiments utilizing lineage-tracking to capture a fuller spectrum of mutations that give yeast cells a fitness advantage in fluconazole, a common antifungal drug. We then quantify fitness tradeoffs for each of 774 evolved mutants across 12 environments, finding these mutants group into classes with characteristically different tradeoffs. Their unique tradeoffs may imply that each group of mutants affects fitness through different underlying mechanisms. Some of the groupings we find are surprising. For example, we find some mutants that resist single drugs do not resist their combination, while others do. And some mutants to the same gene have different tradeoffs than others. These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive tradeoffs when designing multidrug treatments. On the other hand, by demonstrating that hundreds of adaptive mutations can be reduced to a few groups with characteristic tradeoffs, our findings may yet empower multidrug strategies that leverage tradeoffs to combat resistance. More generally speaking, by grouping mutants that likely affect fitness through similar underlying mechanisms, our work guides efforts to map the phenotypic effects of mutation.
Collapse
Affiliation(s)
- Kara Schmidlin
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Sam Apodaca
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Daphne Newell
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Alexander Sastokas
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Grant Kinsler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, United States
| | - Kerry Geiler-Samerotte
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| |
Collapse
|
13
|
Condic N, Amiji H, Patel D, Shropshire WC, Lermi NO, Sabha Y, John B, Hanson B, Karras GI. Selection for robust metabolism in domesticated yeasts is driven by adaptation to Hsp90 stress. Science 2024; 385:eadi3048. [PMID: 39052788 PMCID: PMC11410103 DOI: 10.1126/science.adi3048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/31/2023] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
Protein folding both promotes and constrains adaptive evolution. We uncover this surprising duality in the role of the protein-folding chaperone heat shock protein 90 (Hsp90) in maintaining the integrity of yeast metabolism amid proteotoxic stressors within industrial domestication niches. Ethanol disrupts critical Hsp90-dependent metabolic pathways and exerts strong selective pressure for redundant duplications of key genes within these pathways, yielding the classical genomic signatures of beer and bread domestication. This work demonstrates a mechanism of adaptive canalization in an ecology of major economic importance and highlights Hsp90-dependent variation as an important source of phantom heritability in complex traits.
Collapse
Affiliation(s)
- Natalia Condic
- Department of Genetics, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Hatim Amiji
- Department of Genetics, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Dipak Patel
- Department of Genetics, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - William Charles Shropshire
- Center for Infectious Diseases, Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health at Houston, University of Texas Health Science Center, McGovern Medical School; Houston, TX, USA
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center McGovern Medical School; Houston, TX, USA
- Current address: The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Nejla Ozirmak Lermi
- Department of Genetics, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Youssef Sabha
- Department of Genetics, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Beryl John
- Department of Genetics, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Blake Hanson
- Center for Infectious Diseases, Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health at Houston, University of Texas Health Science Center, McGovern Medical School; Houston, TX, USA
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center McGovern Medical School; Houston, TX, USA
| | - Georgios Ioannis Karras
- Department of Genetics, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences; Houston, TX, USA
| |
Collapse
|
14
|
Schmidlin, Apodaca, Newell, Sastokas, Kinsler, Geiler-Samerotte. Distinguishing mutants that resist drugs via different mechanisms by examining fitness tradeoffs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.17.562616. [PMID: 37905147 PMCID: PMC10614906 DOI: 10.1101/2023.10.17.562616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
There is growing interest in designing multidrug therapies that leverage tradeoffs to combat resistance. Tradeoffs are common in evolution and occur when, for example, resistance to one drug results in sensitivity to another. Major questions remain about the extent to which tradeoffs are reliable, specifically, whether the mutants that provide resistance to a given drug all suffer similar tradeoffs. This question is difficult because the drug-resistant mutants observed in the clinic, and even those evolved in controlled laboratory settings, are often biased towards those that provide large fitness benefits. Thus, the mutations (and mechanisms) that provide drug resistance may be more diverse than current data suggests. Here, we perform evolution experiments utilizing lineage-tracking to capture a fuller spectrum of mutations that give yeast cells a fitness advantage in fluconazole, a common antifungal drug. We then quantify fitness tradeoffs for each of 774 evolved mutants across 12 environments, finding these mutants group into 6 classes with characteristically different tradeoffs. Their unique tradeoffs may imply that each group of mutants affects fitness through different underlying mechanisms. Some of the groupings we find are surprising. For example, we find some mutants that resist single drugs do not resist their combination, while others do. And some mutants to the same gene have different tradeoffs than others. These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive tradeoffs when designing multidrug treatments. On the other hand, by demonstrating that hundreds of adaptive mutations can be reduced to a few groups with characteristic tradeoffs, our findings may yet empower multidrug strategies that leverage tradeoffs to combat resistance. More generally speaking, by grouping mutants that likely affect fitness through similar underlying mechanisms, our work guides efforts to map the phenotypic effects of mutation.
Collapse
Affiliation(s)
- Schmidlin
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| | - Apodaca
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| | - Newell
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| | - Sastokas
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| | - Kinsler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Geiler-Samerotte
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| |
Collapse
|
15
|
Tawfeeq MT, Voordeckers K, van den Berg P, Govers SK, Michiels J, Verstrepen KJ. Mutational robustness and the role of buffer genes in evolvability. EMBO J 2024; 43:2294-2307. [PMID: 38719995 PMCID: PMC11183146 DOI: 10.1038/s44318-024-00109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 06/19/2024] Open
Abstract
Organisms rely on mutations to fuel adaptive evolution. However, many mutations impose a negative effect on fitness. Cells may have therefore evolved mechanisms that affect the phenotypic effects of mutations, thus conferring mutational robustness. Specifically, so-called buffer genes are hypothesized to interact directly or indirectly with genetic variation and reduce its effect on fitness. Environmental or genetic perturbations can change the interaction between buffer genes and genetic variation, thereby unmasking the genetic variation's phenotypic effects and thus providing a source of variation for natural selection to act on. This review provides an overview of our understanding of mutational robustness and buffer genes, with the chaperone gene HSP90 as a key example. It discusses whether buffer genes merely affect standing variation or also interact with de novo mutations, how mutational robustness could influence evolution, and whether mutational robustness might be an evolved trait or rather a mere side-effect of complex genetic interactions.
Collapse
Affiliation(s)
- Mohammed T Tawfeeq
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Karin Voordeckers
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Pieter van den Berg
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Jan Michiels
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Kevin J Verstrepen
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium.
| |
Collapse
|
16
|
Hale JJ, Matsui T, Goldstein I, Mullis MN, Roy KR, Ville CN, Miller D, Wang C, Reynolds T, Steinmetz LM, Levy SF, Ehrenreich IM. Genome-scale analysis of interactions between genetic perturbations and natural variation. Nat Commun 2024; 15:4234. [PMID: 38762544 PMCID: PMC11102447 DOI: 10.1038/s41467-024-48626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 04/30/2024] [Indexed: 05/20/2024] Open
Abstract
Interactions between genetic perturbations and segregating loci can cause perturbations to show different phenotypic effects across genetically distinct individuals. To study these interactions on a genome scale in many individuals, we used combinatorial DNA barcode sequencing to measure the fitness effects of 8046 CRISPRi perturbations targeting 1721 distinct genes in 169 yeast cross progeny (or segregants). We identified 460 genes whose perturbation has different effects across segregants. Several factors caused perturbations to show variable effects, including baseline segregant fitness, the mean effect of a perturbation across segregants, and interacting loci. We mapped 234 interacting loci and found four hub loci that interact with many different perturbations. Perturbations that interact with a given hub exhibit similar epistatic relationships with the hub and show enrichment for cellular processes that may mediate these interactions. These results suggest that an individual's response to perturbations is shaped by a network of perturbation-locus interactions that cannot be measured by approaches that examine perturbations or natural variation alone.
Collapse
Affiliation(s)
- Joseph J Hale
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Takeshi Matsui
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Ilan Goldstein
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Martin N Mullis
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kevin R Roy
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher Ne Ville
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Darach Miller
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Charley Wang
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Trevor Reynolds
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Sasha F Levy
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
- BacStitch DNA, Los Altos, CA, USA.
| | - Ian M Ehrenreich
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
17
|
Zhao P, Wang C, Sun S, Wang X, Balch WE. Tracing genetic diversity captures the molecular basis of misfolding disease. Nat Commun 2024; 15:3333. [PMID: 38637533 PMCID: PMC11026414 DOI: 10.1038/s41467-024-47520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Genetic variation in human populations can result in the misfolding and aggregation of proteins, giving rise to systemic and neurodegenerative diseases that require management by proteostasis. Here, we define the role of GRP94, the endoplasmic reticulum Hsp90 chaperone paralog, in managing alpha-1-antitrypsin deficiency on a residue-by-residue basis using Gaussian process regression-based machine learning to profile the spatial covariance relationships that dictate protein folding arising from sequence variants in the population. Covariance analysis suggests a role for the ATPase activity of GRP94 in controlling the N- to C-terminal cooperative folding of alpha-1-antitrypsin responsible for the correction of liver aggregation and lung-disease phenotypes of alpha-1-antitrypsin deficiency. Gaussian process-based spatial covariance profiling provides a standard model built on covariant principles to evaluate the role of proteostasis components in guiding information flow from genome to proteome in response to genetic variation, potentially allowing us to intervene in the onset and progression of complex multi-system human diseases.
Collapse
Affiliation(s)
- Pei Zhao
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Chao Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA.
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Shuhong Sun
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Collaborative Innovation Center for Cancer Personalized Medicine, and Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Xi Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - William E Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
18
|
Montrose K, Lac DT, Burnetti AJ, Tong K, Bozdag GO, Hukkanen M, Ratcliff WC, Saarikangas J. Proteostatic tuning underpins the evolution of novel multicellular traits. SCIENCE ADVANCES 2024; 10:eadn2706. [PMID: 38457507 PMCID: PMC10923498 DOI: 10.1126/sciadv.adn2706] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
The evolution of multicellularity paved the way for the origin of complex life on Earth, but little is known about the mechanistic basis of early multicellular evolution. Here, we examine the molecular basis of multicellular adaptation in the multicellularity long-term evolution experiment (MuLTEE). We demonstrate that cellular elongation, a key adaptation underpinning increased biophysical toughness and organismal size, is convergently driven by down-regulation of the chaperone Hsp90. Mechanistically, Hsp90-mediated morphogenesis operates by destabilizing the cyclin-dependent kinase Cdc28, resulting in delayed mitosis and prolonged polarized growth. Reinstatement of Hsp90 or Cdc28 expression resulted in shortened cells that formed smaller groups with reduced multicellular fitness. Together, our results show how ancient protein folding systems can be tuned to drive rapid evolution at a new level of biological individuality by revealing novel developmental phenotypes.
Collapse
Affiliation(s)
- Kristopher Montrose
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Dung T. Lac
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anthony J. Burnetti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kai Tong
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences (QBioS), Georgia Institute of Technology, Atlanta, GA, USA
| | - G. Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mikaela Hukkanen
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Juha Saarikangas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Montrose K, Lac DT, Burnetti AJ, Tong K, Ozan Bozdag G, Hukkanen M, Ratcliff WC, Saarikangas J. Proteostatic tuning underpins the evolution of novel multicellular traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.31.543183. [PMID: 37333256 PMCID: PMC10274739 DOI: 10.1101/2023.05.31.543183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The evolution of multicellularity paved the way for the origin of complex life on Earth, but little is known about the mechanistic basis of early multicellular evolution. Here, we examine the molecular basis of multicellular adaptation in the Multicellularity Long Term Evolution Experiment (MuLTEE). We demonstrate that cellular elongation, a key adaptation underpinning increased biophysical toughness and organismal size, is convergently driven by downregulation of the chaperone Hsp90. Mechanistically, Hsp90-mediated morphogenesis operates by destabilizing the cyclin-dependent kinase Cdc28, resulting in delayed mitosis and prolonged polarized growth. Reinstatement of Hsp90 or Cdc28 expression resulted in shortened cells that formed smaller groups with reduced multicellular fitness. Together, our results show how ancient protein folding systems can be tuned to drive rapid evolution at a new level of biological individuality by revealing novel developmental phenotypes.
Collapse
Affiliation(s)
- Kristopher Montrose
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki
- Faculty of Biological and Environmental Sciences, University of Helsinki
| | - Dung T. Lac
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anthony J. Burnetti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kai Tong
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki
- Faculty of Biological and Environmental Sciences, University of Helsinki
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences (QBioS)
| | - G. Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mikaela Hukkanen
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki
- Faculty of Biological and Environmental Sciences, University of Helsinki
| | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Juha Saarikangas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki
- Faculty of Biological and Environmental Sciences, University of Helsinki
| |
Collapse
|
20
|
Hale JJ, Matsui T, Goldstein I, Mullis MN, Roy KR, Ville CN, Miller D, Wang C, Reynolds T, Steinmetz LM, Levy SF, Ehrenreich IM. Genome-scale analysis of interactions between genetic perturbations and natural variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.06.539663. [PMID: 38293072 PMCID: PMC10827069 DOI: 10.1101/2023.05.06.539663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Interactions between genetic perturbations and segregating loci can cause perturbations to show different phenotypic effects across genetically distinct individuals. To study these interactions on a genome scale in many individuals, we used combinatorial DNA barcode sequencing to measure the fitness effects of 7,700 CRISPRi perturbations targeting 1,712 distinct genes in 169 yeast cross progeny (or segregants). We identified 460 genes whose perturbation has different effects across segregants. Several factors caused perturbations to show variable effects, including baseline segregant fitness, the mean effect of a perturbation across segregants, and interacting loci. We mapped 234 interacting loci and found four hub loci that interact with many different perturbations. Perturbations that interact with a given hub exhibit similar epistatic relationships with the hub and show enrichment for cellular processes that may mediate these interactions. These results suggest that an individual's response to perturbations is shaped by a network of perturbation-locus interactions that cannot be measured by approaches that examine perturbations or natural variation alone.
Collapse
Affiliation(s)
- Joseph J. Hale
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Takeshi Matsui
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Ilan Goldstein
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Martin N. Mullis
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Kevin R. Roy
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Chris Ne Ville
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Darach Miller
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Charley Wang
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Trevor Reynolds
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Lars M. Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Sasha F. Levy
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Present address: BacStitch DNA, Los Altos, California, USA
| | - Ian M. Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
21
|
Ciriello G, Magnani L, Aitken SJ, Akkari L, Behjati S, Hanahan D, Landau DA, Lopez-Bigas N, Lupiáñez DG, Marine JC, Martin-Villalba A, Natoli G, Obenauf AC, Oricchio E, Scaffidi P, Sottoriva A, Swarbrick A, Tonon G, Vanharanta S, Zuber J. Cancer Evolution: A Multifaceted Affair. Cancer Discov 2024; 14:36-48. [PMID: 38047596 PMCID: PMC10784746 DOI: 10.1158/2159-8290.cd-23-0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023]
Abstract
Cancer cells adapt and survive through the acquisition and selection of molecular modifications. This process defines cancer evolution. Building on a theoretical framework based on heritable genetic changes has provided insights into the mechanisms supporting cancer evolution. However, cancer hallmarks also emerge via heritable nongenetic mechanisms, including epigenetic and chromatin topological changes, and interactions between tumor cells and the tumor microenvironment. Recent findings on tumor evolutionary mechanisms draw a multifaceted picture where heterogeneous forces interact and influence each other while shaping tumor progression. A comprehensive characterization of the cancer evolutionary toolkit is required to improve personalized medicine and biomarker discovery. SIGNIFICANCE Tumor evolution is fueled by multiple enabling mechanisms. Importantly, genetic instability, epigenetic reprogramming, and interactions with the tumor microenvironment are neither alternative nor independent evolutionary mechanisms. As demonstrated by findings highlighted in this perspective, experimental and theoretical approaches must account for multiple evolutionary mechanisms and their interactions to ultimately understand, predict, and steer tumor evolution.
Collapse
Affiliation(s)
- Giovanni Ciriello
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Luca Magnani
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
- Breast Epigenetic Plasticity and Evolution Laboratory, Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Sarah J. Aitken
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Leila Akkari
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - Douglas Hanahan
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Dan A. Landau
- New York Genome Center, New York, New York
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Darío G. Lupiáñez
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium
| | - Ana Martin-Villalba
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), Heidelberg, Germany
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Anna C. Obenauf
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Elisa Oricchio
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Paola Scaffidi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Cancer Epigenetic Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrea Sottoriva
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Alexander Swarbrick
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Giovanni Tonon
- Vita-Salute San Raffaele University, Milan, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sakari Vanharanta
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
- Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
22
|
Li XH, Yu CWH, Gomez-Navarro N, Stancheva V, Zhu H, Murthy A, Wozny M, Malhotra K, Johnson CM, Blackledge M, Santhanam B, Liu W, Huang J, Freund SMV, Miller EA, Babu MM. Dynamic conformational changes of a tardigrade group-3 late embryogenesis abundant protein modulate membrane biophysical properties. PNAS NEXUS 2024; 3:pgae006. [PMID: 38269070 PMCID: PMC10808001 DOI: 10.1093/pnasnexus/pgae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024]
Abstract
A number of intrinsically disordered proteins (IDPs) encoded in stress-tolerant organisms, such as tardigrade, can confer fitness advantage and abiotic stress tolerance when heterologously expressed. Tardigrade-specific disordered proteins including the cytosolic-abundant heat-soluble proteins are proposed to confer stress tolerance through vitrification or gelation, whereas evolutionarily conserved IDPs in tardigrades may contribute to stress tolerance through other biophysical mechanisms. In this study, we characterized the mechanism of action of an evolutionarily conserved, tardigrade IDP, HeLEA1, which belongs to the group-3 late embryogenesis abundant (LEA) protein family. HeLEA1 homologs are found across different kingdoms of life. HeLEA1 is intrinsically disordered in solution but shows a propensity for helical structure across its entire sequence. HeLEA1 interacts with negatively charged membranes via dynamic disorder-to-helical transition, mainly driven by electrostatic interactions. Membrane interaction of HeLEA1 is shown to ameliorate excess surface tension and lipid packing defects. HeLEA1 localizes to the mitochondrial matrix when expressed in yeast and interacts with model membranes mimicking inner mitochondrial membrane. Yeast expressing HeLEA1 shows enhanced tolerance to hyperosmotic stress under nonfermentative growth and increased mitochondrial membrane potential. Evolutionary analysis suggests that although HeLEA1 homologs have diverged their sequences to localize to different subcellular organelles, all homologs maintain a weak hydrophobic moment that is characteristic of weak and reversible membrane interaction. We suggest that such dynamic and weak protein-membrane interaction buffering alterations in lipid packing could be a conserved strategy for regulating membrane properties and represent a general biophysical solution for stress tolerance across the domains of life.
Collapse
Affiliation(s)
- Xiao-Han Li
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Conny W H Yu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - Hongni Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Andal Murthy
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Michael Wozny
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Ketan Malhotra
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Martin Blackledge
- Université Grenoble Alpes, CNRS, Commissariat à l’Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Balaji Santhanam
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Structural Biology, Center of Excellence for Data-Driven Discovery, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wei Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Structural Biology, Center of Excellence for Data-Driven Discovery, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
23
|
Wei M, Liu J, Wang S, Wang X, Liu H, Ma Q, Wang J, Shi W. Genetic Diversity and Phylogenetic Analysis of Zygophyllum loczyi in Northwest China's Deserts Based on the Resequencing of the Genome. Genes (Basel) 2023; 14:2152. [PMID: 38136974 PMCID: PMC10742952 DOI: 10.3390/genes14122152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
In order to study the genetics of local adaptation in all main deserts of northwest China, whole genomes of 169 individuals were resequenced, which covers 20 populations of Zygophyllum loczyi (Zygophyllales: Zygophylaceae). We describe more than 15 million single nucleotide polymorphisms and numerous InDels. The expected heterozygosity and PIC values associated with local adaptation varied significantly across biogeographic regions. Variation in environmental factors contributes largely to the population genetic structure of Z. loczyi. Bayesian analysis performed with STRUCTURE defined four genetic clusters, while the results of principle component analysis were similar. Our results shows that the Qaidam Desert group appears to be diverging into two branches characterized by significant geographic separation and gene flow with two neighboring deserts. Geological data assume that it is possible that the Taklamakan Desert was the original distribution site, and Z. loczyi could have migrated later on and expanded within other desert areas. The above findings provide insights into the processes involved in biogeography, phylogeny, and differentiation within the northwest deserts of China.
Collapse
Affiliation(s)
- Mengmeng Wei
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable, Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China; (M.W.); (J.L.); (X.W.); (J.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingdian Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable, Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China; (M.W.); (J.L.); (X.W.); (J.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Suoming Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (S.W.); (H.L.); (Q.M.)
| | - Xiyong Wang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable, Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China; (M.W.); (J.L.); (X.W.); (J.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Turpan Eremophytes Botanic Garden, The Chinese Academy of Sciences, Turpan 838008, China
| | - Haisuang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (S.W.); (H.L.); (Q.M.)
| | - Qing Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (S.W.); (H.L.); (Q.M.)
| | - Jiancheng Wang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable, Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China; (M.W.); (J.L.); (X.W.); (J.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Turpan Eremophytes Botanic Garden, The Chinese Academy of Sciences, Turpan 838008, China
| | - Wei Shi
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable, Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China; (M.W.); (J.L.); (X.W.); (J.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Turpan Eremophytes Botanic Garden, The Chinese Academy of Sciences, Turpan 838008, China
| |
Collapse
|
24
|
Dorrity MW, Saunders LM, Duran M, Srivatsan SR, Barkan E, Jackson DL, Sattler SM, Ewing B, Queitsch C, Shendure J, Raible DW, Kimelman D, Trapnell C. Proteostasis governs differential temperature sensitivity across embryonic cell types. Cell 2023; 186:5015-5027.e12. [PMID: 37949057 PMCID: PMC11178971 DOI: 10.1016/j.cell.2023.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/29/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Embryonic development is remarkably robust, but temperature stress can degrade its ability to generate animals with invariant anatomy. Phenotypes associated with environmental stress suggest that some cell types are more sensitive to stress than others, but the basis of this sensitivity is unknown. Here, we characterize hundreds of individual zebrafish embryos under temperature stress using whole-animal single-cell RNA sequencing (RNA-seq) to identify cell types and molecular programs driving phenotypic variability. We find that temperature perturbs the normal proportions and gene expression programs of numerous cell types and also introduces asynchrony in developmental timing. The notochord is particularly sensitive to temperature, which we map to a specialized cell type: sheath cells. These cells accumulate misfolded protein at elevated temperature, leading to a cascading structural failure of the notochord and anatomic defects. Our study demonstrates that whole-animal single-cell RNA-seq can identify mechanisms for developmental robustness and pinpoint cell types that constitute key failure points.
Collapse
Affiliation(s)
- Michael W Dorrity
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Structural and Computational Biology, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Lauren M Saunders
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Madeleine Duran
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sanjay R Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Eliza Barkan
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dana L Jackson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sydney M Sattler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Brent Ewing
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - David W Raible
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
25
|
Jakobson CM, Aguilar-Rodríguez J, Jarosz DF. Hsp90 shapes adaptation by controlling the fitness consequences of regulatory variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564848. [PMID: 37961536 PMCID: PMC10634948 DOI: 10.1101/2023.10.30.564848] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The essential stress-responsive chaperone Hsp90 impacts development and adaptation from microbes to humans. Yet despite evidence of its role in evolution, pathogenesis, and oncogenic transformation, the molecular mechanisms by which Hsp90 alters the consequences of mutations remain vigorously debated. Here we exploit the power of nucleotide-resolution genetic mapping in Saccharomyces cerevisiae to uncover more than 1,000 natural variant-to-phenotype associations governed by this molecular chaperone. Strikingly, Hsp90 more frequently modified the phenotypic effects of cis-regulatory variation than variants that altered protein sequence. Moreover, these interactions made the largest contribution to Hsp90-dependent heredity. Nearly all interacting variants-both regulatory and protein-coding-fell within clients of Hsp90 or targets of its direct binding partners. Hsp90 activity affected mutations in evolutionarily young genes, segmental deletions, and heterozygotes, highlighting its influence on variation central to evolutionary novelty. Reconciling the diverse epistatic effects of this chaperone, synthetic transcriptional regulation and reconstructions of natural alleles by genome editing revealed a central role for Hsp90 in regulating the fundamental relationship between activity and phenotype. Our findings establish that non-coding variation is a core driver of Hsp90's influence on heredity, offering a mechanistic explanation for the chaperone's strong effects on evolution and development across species.
Collapse
Affiliation(s)
- Christopher M. Jakobson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally
| | - José Aguilar-Rodríguez
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- These authors contributed equally
| | - Daniel F. Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
26
|
Robbins N, Cowen LE. Roles of Hsp90 in Candida albicans morphogenesis and virulence. Curr Opin Microbiol 2023; 75:102351. [PMID: 37399670 PMCID: PMC11016340 DOI: 10.1016/j.mib.2023.102351] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 07/05/2023]
Abstract
Hsp90 is a conserved molecular chaperone that facilitates the folding and function of hundreds of client proteins, many of which serve as core hubs of signal transduction networks. Hsp90 has a critical role in virulence of the opportunistic fungal pathogen Candida albicans, which exists as a natural commensal of the human microbiota and is a leading cause of invasive fungal infections, particularly in immunocompromised individuals. The ability of C. albicans to cause disease is tightly coupled to its capacity to undergo a morphogenetic transition between yeast and filamentous forms. Here, we describe the complex mechanisms by which Hsp90 regulates C. albicans morphogenesis and virulence, and explore the potential of targeting fungal Hsp90 as a therapeutic strategy to combat fungal infections.
Collapse
Affiliation(s)
- Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
27
|
Kovuri P, Yadav A, Sinha H. Role of genetic architecture in phenotypic plasticity. Trends Genet 2023; 39:703-714. [PMID: 37173192 DOI: 10.1016/j.tig.2023.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
Phenotypic plasticity, the ability of an organism to display different phenotypes across environments, is widespread in nature. Plasticity aids survival in novel environments. Herein, we review studies from yeast that allow us to start uncovering the genetic architecture of phenotypic plasticity. Genetic variants and their interactions impact the phenotype in different environments, and distinct environments modulate the impact of genetic variants and their interactions on the phenotype. Because of this, certain hidden genetic variation is expressed in specific genetic and environmental backgrounds. A better understanding of the genetic mechanisms of phenotypic plasticity will help to determine short- and long-term responses to selection and how wide variation in disease manifestation occurs in human populations.
Collapse
Affiliation(s)
- Purnima Kovuri
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India; Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai, India; Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India
| | - Anupama Yadav
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Himanshu Sinha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India; Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai, India; Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India.
| |
Collapse
|
28
|
Rönnberg H. Signal Transduction Inhibitors. THERAPEUTIC STRATEGIES IN VETERINARY ONCOLOGY 2023:89-110. [DOI: 10.1079/9781789245820.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Patel D, Amiji H, Shropshire W, Condic N, Lermi NO, Sabha Y, John B, Hanson B, Karras GI. Ethanol Drives Evolution of Hsp90-Dependent Robustness by Redundancy in Yeast Domestication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.547572. [PMID: 37745611 PMCID: PMC10516021 DOI: 10.1101/2023.07.21.547572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Protein folding promotes and constrains adaptive evolution. We uncover this surprising duality in the role the protein-folding chaperone Hsp90 plays in mediating the interplay between proteome and the genome which acts to maintain the integrity of yeast metabolism in the face of proteotoxic stressors in anthropic niches. Of great industrial relevance, ethanol concentrations generated by fermentation in the making of beer and bread disrupt critical Hsp90-dependent nodes of metabolism and exert strong selective pressure for increased copy number of key genes encoding components of these nodes, yielding the classical genetic signatures of beer and bread domestication. This work establishes a mechanism of adaptive canalization in an ecology of major economic significance and highlights Hsp90-contingent variation as an important source of phantom heritability in complex traits.
Collapse
|
30
|
Hung PH, Liao CW, Ko FH, Tsai HK, Leu JY. Differential Hsp90-dependent gene expression is strain-specific and common among yeast strains. iScience 2023; 26:106635. [PMID: 37138775 PMCID: PMC10149407 DOI: 10.1016/j.isci.2023.106635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/21/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023] Open
Abstract
Enhanced phenotypic diversity increases a population's likelihood of surviving catastrophic conditions. Hsp90, an essential molecular chaperone and a central network hub in eukaryotes, has been observed to suppress or enhance the effects of genetic variation on phenotypic diversity in response to environmental cues. Because many Hsp90-interacting genes are involved in signaling transduction pathways and transcriptional regulation, we tested how common Hsp90-dependent differential gene expression is in natural populations. Many genes exhibited Hsp90-dependent strain-specific differential expression in five diverse yeast strains. We further identified transcription factors (TFs) potentially contributing to variable expression. We found that on Hsp90 inhibition or environmental stress, activities or abundances of Hsp90-dependent TFs varied among strains, resulting in differential strain-specific expression of their target genes, which consequently led to phenotypic diversity. We provide evidence that individual strains can readily display specific Hsp90-dependent gene expression, suggesting that the evolutionary impacts of Hsp90 are widespread in nature.
Collapse
Affiliation(s)
- Po-Hsiang Hung
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Wei Liao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Fu-Hsuan Ko
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Huai-Kuang Tsai
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
- Corresponding author
| | - Jun-Yi Leu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
- Corresponding author
| |
Collapse
|
31
|
Everman ER, Macdonald SJ, Kelly JK. The genetic basis of adaptation to copper pollution in Drosophila melanogaster. Front Genet 2023; 14:1144221. [PMID: 37082199 PMCID: PMC10110907 DOI: 10.3389/fgene.2023.1144221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/21/2023] [Indexed: 04/22/2023] Open
Abstract
Introduction: Heavy metal pollutants can have long lasting negative impacts on ecosystem health and can shape the evolution of species. The persistent and ubiquitous nature of heavy metal pollution provides an opportunity to characterize the genetic mechanisms that contribute to metal resistance in natural populations. Methods: We examined variation in resistance to copper, a common heavy metal contaminant, using wild collections of the model organism Drosophila melanogaster. Flies were collected from multiple sites that varied in copper contamination risk. We characterized phenotypic variation in copper resistance within and among populations using bulked segregant analysis to identify regions of the genome that contribute to copper resistance. Results and Discussion: Copper resistance varied among wild populations with a clear correspondence between resistance level and historical exposure to copper. We identified 288 SNPs distributed across the genome associated with copper resistance. Many SNPs had population-specific effects, but some had consistent effects on copper resistance in all populations. Significant SNPs map to several novel candidate genes involved in refolding disrupted proteins, energy production, and mitochondrial function. We also identified one SNP with consistent effects on copper resistance in all populations near CG11825, a gene involved in copper homeostasis and copper resistance. We compared the genetic signatures of copper resistance in the wild-derived populations to genetic control of copper resistance in the Drosophila Synthetic Population Resource (DSPR) and the Drosophila Genetic Reference Panel (DGRP), two copper-naïve laboratory populations. In addition to CG11825, which was identified as a candidate gene in the wild-derived populations and previously in the DSPR, there was modest overlap of copper-associated SNPs between the wild-derived populations and laboratory populations. Thirty-one SNPs associated with copper resistance in wild-derived populations fell within regions of the genome that were associated with copper resistance in the DSPR in a prior study. Collectively, our results demonstrate that the genetic control of copper resistance is highly polygenic, and that several loci can be clearly linked to genes involved in heavy metal toxicity response. The mixture of parallel and population-specific SNPs points to a complex interplay between genetic background and the selection regime that modifies the effects of genetic variation on copper resistance.
Collapse
Affiliation(s)
| | - Stuart J. Macdonald
- Molecular Biosciences, University of Kansas, Lawrence, KS, United States
- Center for Computational Biology, University of Kansas, Lawrence, KS, United States
| | - John K. Kelly
- Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
32
|
Dantzer B. Frank Beach Award Winner: The centrality of the hypothalamic-pituitary-adrenal axis in dealing with environmental change across temporal scales. Horm Behav 2023; 150:105311. [PMID: 36707334 DOI: 10.1016/j.yhbeh.2023.105311] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
Understanding if and how individuals and populations cope with environmental change is an enduring question in evolutionary ecology that has renewed importance given the pace of change in the Anthropocene. Two evolutionary strategies of coping with environmental change may be particularly important in rapidly changing environments: adaptive phenotypic plasticity and/or bet hedging. Adaptive plasticity could enable individuals to match their phenotypes to the expected environment if there is an accurate cue predicting the selective environment. Diversifying bet hedging involves the production of seemingly random phenotypes in an unpredictable environment, some of which may be adaptive. Here, I review the central role of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoids (GCs) in enabling vertebrates to cope with environmental change through adaptive plasticity and bet hedging. I first describe how the HPA axis mediates three types of adaptive plasticity to cope with environmental change (evasion, tolerance, recovery) over short timescales (e.g., 1-3 generations) before discussing how the implications of GCs on phenotype integration may depend upon the timescale under consideration. GCs can promote adaptive phenotypic integration, but their effects on phenotypic co-variation could also limit the dimensions of phenotypic space explored by animals over longer timescales. Finally, I discuss how organismal responses to environmental stressors can act as a bet hedging mechanism and therefore enhance evolvability by increasing genetic or phenotypic variability or reducing patterns of genetic and phenotypic co-variance. Together, this emphasizes the crucial role of the HPA axis in understanding fundamental questions in evolutionary ecology.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, MI 48109 Ann Arbor, MI, USA; Department of Ecology and Evolutionary Biology, University of Michigan, MI 48109, Ann Arbor, MI, USA.
| |
Collapse
|
33
|
Lemus T, Mason GA, Bubb KL, Alexandre CM, Queitsch C, Cuperus JT. AGO1 and HSP90 buffer different genetic variants in Arabidopsis thaliana. Genetics 2023; 223:iyac163. [PMID: 36303325 PMCID: PMC9910400 DOI: 10.1093/genetics/iyac163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/18/2022] [Indexed: 11/14/2022] Open
Abstract
Argonaute 1 (AGO1), the principal protein component of microRNA-mediated regulation, plays a key role in plant growth and development. AGO1 physically interacts with the chaperone HSP90, which buffers cryptic genetic variation in plants and animals. We sought to determine whether genetic perturbation of AGO1 in Arabidopsis thaliana would also reveal cryptic genetic variation, and if so, whether AGO1-dependent loci overlap with those dependent on HSP90. To address these questions, we introgressed a hypomorphic mutant allele of AGO1 into a set of mapping lines derived from the commonly used Arabidopsis strains Col-0 and Ler. Although we identified several cases in which AGO1 buffered genetic variation, none of the AGO1-dependent loci overlapped with those buffered by HSP90 for the traits assayed. We focused on 1 buffered locus where AGO1 perturbation uncoupled the traits days to flowering and rosette leaf number, which are otherwise closely correlated. Using a bulk segregant approach, we identified a nonfunctional Ler hua2 mutant allele as the causal AGO1-buffered polymorphism. Introduction of a nonfunctional hua2 allele into a Col-0 ago1 mutant background recapitulated the Ler-dependent ago1 phenotype, implying that coupling of these traits involves different molecular players in these closely related strains. Taken together, our findings demonstrate that even though AGO1 and HSP90 buffer genetic variation in the same traits, these robustness regulators interact epistatically with different genetic loci, suggesting that higher-order epistasis is uncommon. Plain Language Summary Argonaute 1 (AGO1), a key player in plant development, interacts with the chaperone HSP90, which buffers environmental and genetic variation. We found that AGO1 buffers environmental and genetic variation in the same traits; however, AGO1-dependent and HSP90-dependent loci do not overlap. Detailed analysis of a buffered locus found that a nonfunctional HUA2 allele decouples days to flowering and rosette leaf number in an AGO1-dependent manner, suggesting that the AGO1-dependent buffering acts at the network level.
Collapse
Affiliation(s)
- Tzitziki Lemus
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Grace Alex Mason
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Kerry L Bubb
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | | | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
34
|
García-Gomez BI, Sánchez TA, Cano SN, do Nascimento NA, Bravo A, Soberón M. Insect chaperones Hsp70 and Hsp90 cooperatively enhance toxicity of Bacillus thuringiensis Cry1A toxins and counteract insect resistance. Front Immunol 2023; 14:1151943. [PMID: 37153577 PMCID: PMC10157212 DOI: 10.3389/fimmu.2023.1151943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Bacillus thuringiensis (Bt) produces different insecticidal proteins effective for pest control. Among them, Cry insecticidal proteins have been used in transgenic plants for the control of insect pests. However, evolution of resistance by insects endangers this technology. Previous work showed that the lepidopteran insect Plutella xylostella PxHsp90 chaperone enhanced the toxicity of Bt Cry1A protoxins by protecting them from degradation by the larval gut proteases and by enhancing binding of the protoxin to its receptors present in larval midgut cells. In this work, we show that PxHsp70 chaperone also protects Cry1Ab protoxin from gut proteases degradation, enhancing Cry1Ab toxicity. We also show that both PxHsp70 and PxHsp90 chaperones act cooperatively, increasing toxicity and the binding of Cry1Ab439D mutant, affected in binding to midgut receptors, to cadherin receptor. Also, insect chaperones recovered toxicity of Cry1Ac protein to a Cry1Ac-highly resistant P. xylostella population, NO-QAGE, that has a disruptive mutation in an ABCC2 transporter linked to Cry1Ac resistance. These data show that Bt hijacked an important cellular function for enhancing its infection capability, making use of insect cellular chaperones for enhancing Cry toxicity and for lowering the evolution of insect resistance to these toxins.
Collapse
|
35
|
Fu TT, Sun YB, Gao W, Long CB, Yang CH, Yang XW, Zhang Y, Lan XQ, Huang S, Jin JQ, Murphy RW, Zhang Y, Lai R, Hillis DM, Zhang YP, Che J. The highest-elevation frog provides insights into mechanisms and evolution of defenses against high UV radiation. Proc Natl Acad Sci U S A 2022; 119:e2212406119. [PMID: 36346846 PMCID: PMC9674958 DOI: 10.1073/pnas.2212406119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Defense against ultraviolet (UV) radiation exposure is essential for survival, especially in high-elevation species. Although some specific genes involved in UV response have been reported, the full view of UV defense mechanisms remains largely unexplored. Herein, we used integrated approaches to analyze UV responses in the highest-elevation frog, Nanorana parkeri. We show less damage and more efficient antioxidant activity in skin of this frog than those of its lower-elevation relatives after UV exposure. We also reveal genes related to UV defense and a corresponding temporal expression pattern in N. parkeri. Genomic and metabolomic analysis along with large-scale transcriptomic profiling revealed a time-dependent coordinated defense mechanism in N. parkeri. We also identified several microRNAs that play important regulatory roles, especially in decreasing the expression levels of cell cycle genes. Moreover, multiple defense genes (i.e., TYR for melanogenesis) exhibit positive selection with function-enhancing substitutions. Thus, both expression shifts and gene mutations contribute to UV adaptation in N. parkeri. Our work demonstrates a genetic framework for evolution of UV defense in a natural environment.
Collapse
Affiliation(s)
- Ting-Ting Fu
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Department of Integrative Biology and Biodiversity Center, University of Texas at Austin, Austin, TX 78712, U.S.A.
| | - Yan-Bo Sun
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wei Gao
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Cheng-Bo Long
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Chun-Hua Yang
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xin-Wang Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yi Zhang
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xin-Qiang Lan
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Song Huang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jie-Qiong Jin
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Robert W. Murphy
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - David M. Hillis
- Department of Integrative Biology and Biodiversity Center, University of Texas at Austin, Austin, TX 78712, U.S.A.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Jing Che
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
36
|
Persson K, Stenberg S, Tamás MJ, Warringer J. Adaptation of the yeast gene knockout collection is near-perfectly predicted by fitness and diminishing return epistasis. G3 (BETHESDA, MD.) 2022; 12:6694849. [PMID: 36083011 PMCID: PMC9635671 DOI: 10.1093/g3journal/jkac240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/29/2022] [Indexed: 05/31/2023]
Abstract
Adaptive evolution of clonally dividing cells and microbes is the ultimate cause of cancer and infectious diseases. The possibility of constraining the adaptation of cell populations, by inhibiting proteins enhancing the evolvability, has therefore attracted interest. However, our current understanding of how genes influence adaptation kinetics is limited, partly because accurately measuring adaptation for many cell populations is challenging. We used a high-throughput adaptive laboratory evolution platform to track the adaptation of >18,000 cell populations corresponding to single-gene deletion strains in the haploid yeast deletion collection. We report that the preadaptation fitness of gene knockouts near-perfectly (R2= 0.91) predicts their adaptation to arsenic, leaving at the most a marginal role for dedicated evolvability gene functions. We tracked the adaptation of another >23,000 gene knockout populations to a diverse range of selection pressures and generalized the almost perfect (R2=0.72-0.98) capacity of preadaptation fitness to predict adaptation. We also reconstructed mutations in FPS1, ASK10, and ARR3, which together account for almost all arsenic adaptation in wild-type cells, in gene deletions covering a broad fitness range and show that the predictability of arsenic adaptation can be understood as a by global epistasis, where excluding arsenic is more beneficial to arsenic unfit cells. The paucity of genes with a meaningful evolvability effect on adaptation diminishes the prospects of developing adjuvant drugs aiming to slow antimicrobial and chemotherapy resistance.
Collapse
Affiliation(s)
- Karl Persson
- Corresponding author: Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden.
| | - Simon Stenberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Jonas Warringer
- Corresponding author: Department of Chemistry and Molecular Biology, University of Gothenburg, PO Box 462, 40530 Gothenburg, Sweden.
| |
Collapse
|
37
|
Scheffer H, Coate JE, Ho EKH, Schaack S. Thermal stress and mutation accumulation increase heat shock protein expression in Daphnia. Evol Ecol 2022; 36:829-844. [PMID: 36193163 PMCID: PMC9522699 DOI: 10.1007/s10682-022-10209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022]
Abstract
Understanding the short- and long-term consequences of climate change is a major challenge in biology. For aquatic organisms, temperature changes and drought can lead to thermal stress and habitat loss, both of which can ultimately lead to higher mutation rates. Here, we examine the effect of high temperature and mutation accumulation on gene expression at two loci from the heat shock protein (HSP) gene family, HSP60 and HSP90. HSPs have been posited to serve as 'mutational capacitors' given their role as molecular chaperones involved in protein folding and degradation, thus buffering against a wide range of cellular stress and destabilization. We assayed changes in HSP expression across 5 genotypes of Daphnia magna, a sentinel species in ecology and environmental biology, with and without acute exposure to thermal stress and accumulated mutations. Across genotypes, HSP expression increased ~ 6× in response to heat and ~ 4× with mutation accumulation, individually. Both factors simultaneously (lineages with high mutation loads exposed to high heat) increased gene expression ~ 23×-much more than that predicted by an additive model. Our results corroborate suggestions that HSPs can buffer against not only the effects of heat, but also mutations-a combination of factors both likely to increase in a warming world. Supplementary Information The online version contains supplementary material available at 10.1007/s10682-022-10209-1.
Collapse
Affiliation(s)
- Henry Scheffer
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| | - Jeremy E. Coate
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| | - Eddie K. H. Ho
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| | - Sarah Schaack
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| |
Collapse
|
38
|
Vujovic F, Hunter N, Farahani RM. Cellular self-organization: An overdrive in Cambrian diversity? Bioessays 2022; 44:e2200033. [PMID: 35900058 DOI: 10.1002/bies.202200033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022]
Abstract
During the early Cambrian period metazoan life forms diverged at an accelerated rate to occupy multiple ecological niches on earth. A variety of explanations have been proposed to address this major evolutionary phenomenon termed the "Cambrian explosion." While most hypotheses address environmental, developmental, and ecological factors that facilitated evolutionary innovations, the biological basis for accelerated emergence of species diversity in the Cambrian period remains largely conjectural. Herein, we posit that morphogenesis by self-organization enables the uncoupling of genomic mutational landscape from phenotypic diversification. Evidence is provided for a two-tiered interpretation of genomic changes in metazoan animals wherein mutations not only impact upon function of individual cells, but also alter the self-organization outcome during developmental morphogenesis. We provide evidence that the morphological impacts of mutations on self-organization could remain repressed if associated with an unmet negative energetic cost. We posit that accelerated morphological diversification in transition to the Cambrian period has occurred by emergence of dormant (i.e., reserved) morphological novelties whose molecular underpinnings were seeded in the Precambrian period.
Collapse
Affiliation(s)
- Filip Vujovic
- IDR/Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Neil Hunter
- IDR/Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Ramin M Farahani
- IDR/Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
39
|
Tadmor E, Juravel K, Morin S, Santos-Garcia D. Evolved transcriptional responses and their trade-offs after long-term adaptation of Bemisia tabaci to a marginally-suitable host. Genome Biol Evol 2022; 14:6649882. [PMID: 35880721 PMCID: PMC9372648 DOI: 10.1093/gbe/evac118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 11/14/2022] Open
Abstract
Although generalist insect herbivores can migrate and rapidly adapt to a broad range of host plants, they can face significant difficulties when accidentally migrating to novel and marginally-suitable hosts. What happens, both in performance and gene expression regulation, if these marginally-suitable hosts must be used for multiple generations before migration to a suitable host can take place, largely remains unknown. In this study, we established multigenerational colonies of the whitefly Bemisia tabaci, a generalist phloem-feeding species, adapted to a marginally-suitable host (habanero pepper) or an optimal host (cotton). We used reciprocal host tests to estimate the differences in performance of the populations on both hosts under optimal (30 oC) and mild-stressful (24 oC) temperature conditions, and documented the associated transcriptomic changes. The habanero pepper-adapted population greatly improved its performance on habanero pepper but did not reach its performance level on cotton, the original host. It also showed reduced performance on cotton, relative to the non-adapted population, and an antagonistic effect of the lower-temperature stressor. The transcriptomic data revealed that most of the expression changes, associated with long-term adaptation to habanero pepper, can be categorized as "evolved" with no initial plastic response. Three molecular functions dominated: enhanced formation of cuticle structural constituents, enhanced activity of oxidation-reduction processes involved in neutralization of phytotoxins and reduced production of proteins from the cathepsin B family. Taken together, these findings indicate that generalist insects can adapt to novel host plants by modifying the expression of a relatively small set of specific molecular functions.
Collapse
Affiliation(s)
- Ella Tadmor
- Department of Entomology, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Ksenia Juravel
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Morin
- Department of Entomology, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Diego Santos-Garcia
- Laboratory of Biometry and Evolutionary Biology University Lyon 1 - UMR CNRS 5558, Villeurbanne, France
| |
Collapse
|
40
|
Rix RR, Cutler GC. Review of molecular and biochemical responses during stress induced stimulation and hormesis in insects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154085. [PMID: 35218848 DOI: 10.1016/j.scitotenv.2022.154085] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The biphasic hormetic response to stress, defined by low-dose stimulation and high-dose inhibition is frequently observed in insects. Various molecular and biochemical responses associated with hormesis in insects have been reported in many studies, but no synthesis of all these findings has been undertaken. We conducted a systematic literature review, analyzing papers demonstrating phenotypic stimulatory effect(s) following exposure to stress where molecular or biochemical response(s) were also examined. Responses observed included stimulation of reproduction, survival and longevity, growth and development, and tolerance to temperature, chemical, or starvation and desiccation, in response to stressors including pesticides, oxidative stress, temperature, crowding and starvation, and radiation. Phenotypic stimulation ranged from <25% increased above controls to >100%. Reproductive stimulation was frequently <25% increased above controls, while stimulated temperature tolerance was frequently >100% increased. Molecular and biochemical responses had obvious direct connections to phenotypic responses in many cases, although not in all instances. Increased expression of heat shock proteins occurred in association with stimulated temperature tolerance, and increased expression of detoxification genes with stimulated pesticide or chemical tolerance, but also stimulated reproduction. Changes in the expression or activity of antioxidants were frequently associated with stimulation of longevity and reproduction. Stress induced changes in vitellogenin and juvenile hormone and genes in the IIS/TOR signalling pathway - which are directly responsible for regulating growth, development, and reproduction - were also reported. Our analysis showed that coordination of expression of genes or proteins associated with protection from oxidative stress and DNA and protein damage is important in the hormetic responses of insects.
Collapse
Affiliation(s)
- Rachel R Rix
- Department of Plant, Food, and Environmental Science, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada.
| | - G Christopher Cutler
- Department of Plant, Food, and Environmental Science, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
41
|
Cairns J, Borse F, Mononen T, Hiltunen T, Mustonen V. Strong selective environments determine evolutionary outcome in time‐dependent fitness seascapes. Evol Lett 2022; 6:266-279. [PMID: 35784450 PMCID: PMC9233173 DOI: 10.1002/evl3.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 11/07/2022] Open
Abstract
The impact of fitness landscape features on evolutionary outcomes has attracted considerable interest in recent decades. However, evolution often occurs under time‐dependent selection in so‐called fitness seascapes where the landscape is under flux. Fitness seascapes are an inherent feature of natural environments, where the landscape changes owing both to the intrinsic fitness consequences of previous adaptations and extrinsic changes in selected traits caused by new environments. The complexity of such seascapes may curb the predictability of evolution. However, empirical efforts to test this question using a comprehensive set of regimes are lacking. Here, we employed an in vitro microbial model system to investigate differences in evolutionary outcomes between time‐invariant and time‐dependent environments, including all possible temporal permutations, with three subinhibitory antimicrobials and a viral parasite (phage) as selective agents. Expectedly, time‐invariant environments caused stronger directional selection for resistances compared to time‐dependent environments. Intriguingly, however, multidrug resistance outcomes in both cases were largely driven by two strong selective agents (rifampicin and phage) out of four agents in total. These agents either caused cross‐resistance or obscured the phenotypic effect of other resistance mutations, modulating the evolutionary outcome overall in time‐invariant environments and as a function of exposure epoch in time‐dependent environments. This suggests that identifying strong selective agents and their pleiotropic effects is critical for predicting evolution in fitness seascapes, with ramifications for evolutionarily informed strategies to mitigate drug resistance evolution.
Collapse
Affiliation(s)
- Johannes Cairns
- Organismal and Evolutionary Biology Research Programme (OEB), Department of Computer Science University of Helsinki Helsinki 00014 Finland
- Department of Microbiology University of Helsinki Helsinki 00014 Finland
- Department of Biology University of Turku Turku 20014 Finland
| | - Florian Borse
- Organismal and Evolutionary Biology Research Programme (OEB), Department of Computer Science University of Helsinki Helsinki 00014 Finland
| | - Tommi Mononen
- Organismal and Evolutionary Biology Research Programme (OEB), Department of Computer Science University of Helsinki Helsinki 00014 Finland
| | - Teppo Hiltunen
- Department of Microbiology University of Helsinki Helsinki 00014 Finland
- Department of Biology University of Turku Turku 20014 Finland
| | - Ville Mustonen
- Organismal and Evolutionary Biology Research Programme (OEB), Department of Computer Science University of Helsinki Helsinki 00014 Finland
- Institute of Biotechnology University of Helsinki Helsinki 00014 Finland
| |
Collapse
|
42
|
Schell R, Hale JJ, Mullis MN, Matsui T, Foree R, Ehrenreich IM. Genetic basis of a spontaneous mutation’s expressivity. Genetics 2022; 220:6515283. [PMID: 35078232 PMCID: PMC8893249 DOI: 10.1093/genetics/iyac013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/19/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Genetic background often influences the phenotypic consequences of mutations, resulting in variable expressivity. How standing genetic variants collectively cause this phenomenon is not fully understood. Here, we comprehensively identify loci in a budding yeast cross that impact the growth of individuals carrying a spontaneous missense mutation in the nuclear-encoded mitochondrial ribosomal gene MRP20. Initial results suggested that a single large effect locus influences the mutation’s expressivity, with one allele causing inviability in mutants. However, further experiments revealed this simplicity was an illusion. In fact, many additional loci shape the mutation’s expressivity, collectively leading to a wide spectrum of mutational responses. These results exemplify how complex combinations of alleles can produce a diversity of qualitative and quantitative responses to the same mutation.
Collapse
Affiliation(s)
- Rachel Schell
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Joseph J Hale
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Martin N Mullis
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Takeshi Matsui
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ryan Foree
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ian M Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
43
|
Liu Q, Tu G, Hu Y, Jiang Q, Liu J, Lin S, Yu Z, Li G, Wu X, Tang Y, Huang X, Xu J, Liu Y, Wu L. Discovery of BP3 as an efficacious proteolysis targeting chimera (PROTAC) degrader of HSP90 for treating breast cancer. Eur J Med Chem 2022; 228:114013. [PMID: 34864330 DOI: 10.1016/j.ejmech.2021.114013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
Heat shock protein 90 (HSP90) is involved in the stabilization and activation of oncoproteins, rendering it essential for oncogenic transformation. However, the HSP90 inhibitors evaluated to date have not led to the expected effects in cancer therapy. Herein, we systematically described the design, synthesis, and evaluation of HSP90 degraders based upon the proteolysis-targeting chimera (PROTAC) strategy. The results showed that the candidate compound 16b (BP3) potently degraded HSP90 and effectively inhibited the growth of human breast cancer cells. When used as a single agent, BP3 led to effective tumor suppression in mice. These findings demonstrate that our HSP90-targeting PROTAC strategy has potential novel applications in breast cancer therapy.
Collapse
Affiliation(s)
- Quanyu Liu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Institute of Materia Medica, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, PR China
| | - Guihui Tu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, PR China
| | - Yan Hu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Department of Public Technology Service Center, Fujian Medical University (FMU), Fuzhou, PR China
| | - Qingna Jiang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, PR China
| | - Jingwen Liu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, PR China
| | - Shanshan Lin
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, PR China
| | - Zelei Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, PR China
| | - Ge Li
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, PR China
| | - Xinhua Wu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, PR China
| | - Yuanling Tang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, PR China
| | - Xiuwang Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, PR China; Department of Public Technology Service Center, Fujian Medical University (FMU), Fuzhou, PR China
| | - Jianhua Xu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Institute of Materia Medica, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, PR China
| | - Yang Liu
- Institute of Materia Medica, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, PR China; Department of Pharmacochemistry, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China
| | - Lixian Wu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China; Institute of Materia Medica, Fujian Medical University (FMU), Fuzhou, PR China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, PR China.
| |
Collapse
|
44
|
Short AK, Thai CW, Chen Y, Kamei N, Pham AL, Birnie MT, Bolton JL, Mortazavi A, Baram TZ. Single-Cell Transcriptional Changes in Hypothalamic Corticotropin-Releasing Factor-Expressing Neurons After Early-Life Adversity Inform Enduring Alterations in Vulnerabilities to Stress. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 3:99-109. [PMID: 36712559 PMCID: PMC9874075 DOI: 10.1016/j.bpsgos.2021.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 12/03/2021] [Indexed: 02/01/2023] Open
Abstract
Background Mental health and vulnerabilities to neuropsychiatric disorders involve the interplay of genes and environment, particularly during sensitive developmental periods. Early-life adversity (ELA) and stress promote vulnerabilities to stress-related affective disorders, yet it is unknown how transient ELA dictates lifelong neuroendocrine and behavioral reactions to stress. The population of hypothalamic corticotropin-releasing factor (CRF)-expressing neurons that regulate stress responses is a promising candidate to mediate the long-lasting influences of ELA on stress-related behavioral and hormonal responses via enduring transcriptional and epigenetic mechanisms. Methods Capitalizing on a well-characterized model of ELA, we examined ELA-induced changes in gene expression profiles of CRF-expressing neurons in the hypothalamic paraventricular nucleus of developing male mice. We used single-cell RNA sequencing on isolated CRF-expressing neurons. We determined the enduring functional consequences of transcriptional changes on stress reactivity in adult ELA mice, including hormonal responses to acute stress, adrenal weights as a measure of chronic stress, and behaviors in the looming shadow threat task. Results Single-cell transcriptomics identified distinct and novel CRF-expressing neuronal populations, characterized by both their gene expression repertoire and their neurotransmitter profiles. ELA-provoked expression changes were selective to specific subpopulations and affected genes involved in neuronal differentiation, synapse formation, energy metabolism, and cellular responses to stress and injury. Importantly, these expression changes were impactful, apparent from adrenal hypertrophy and augmented behavioral responses to stress in adulthood. Conclusions We uncover a novel repertoire of stress-regulating CRF cell types differentially affected by ELA and resulting in augmented stress vulnerability, with relevance to the origins of stress-related affective disorders.
Collapse
Affiliation(s)
- Annabel K. Short
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Christina W. Thai
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
| | - Yuncai Chen
- Department of Pediatrics, University of California Irvine, Irvine, California
| | - Noriko Kamei
- Department of Pediatrics, University of California Irvine, Irvine, California
| | - Aidan L. Pham
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Matthew T. Birnie
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Jessica L. Bolton
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
| | - Tallie Z. Baram
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California,Department of Neurology, University of California Irvine, Irvine, California,Address correspondence to Tallie Z. Baram, M.D., Ph.D.
| |
Collapse
|
45
|
A Label-Free Proteomic and Complementary Metabolomic Analysis of Leaves of the Resurrection Plant Xerophytaschlechteri during Dehydration. Life (Basel) 2021; 11:life11111242. [PMID: 34833116 PMCID: PMC8624122 DOI: 10.3390/life11111242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Vegetative desiccation tolerance, or the ability to survive the loss of ~95% relative water content (RWC), is rare in angiosperms, with these being commonly called resurrection plants. It is a complex multigenic and multi-factorial trait, with its understanding requiring a comprehensive systems biology approach. The aim of the current study was to conduct a label-free proteomic analysis of leaves of the resurrection plant Xerophyta schlechteri in response to desiccation. A targeted metabolomics approach was validated and correlated to the proteomics, contributing the missing link in studies on this species. Three physiological stages were identified: an early response to drying, during which the leaf tissues declined from full turgor to a RWC of ~80–70%, a mid-response in which the RWC declined to 40% and a late response where the tissues declined to 10% RWC. We identified 517 distinct proteins that were differentially expressed, of which 253 proteins were upregulated and 264 were downregulated in response to the three drying stages. Metabolomics analyses, which included monitoring the levels of a selection of phytohormones, amino acids, sugars, sugar alcohols, fatty acids and organic acids in response to dehydration, correlated with some of the proteomic differences, giving insight into the biological processes apparently involved in desiccation tolerance in this species.
Collapse
|
46
|
Crunden JL, Diezmann S. Hsp90 interaction networks in fungi-tools and techniques. FEMS Yeast Res 2021; 21:6413543. [PMID: 34718512 PMCID: PMC8599792 DOI: 10.1093/femsyr/foab054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023] Open
Abstract
Heat-shock protein 90 (Hsp90) is a central regulator of cellular proteostasis. It stabilizes numerous proteins that are involved in fundamental processes of life, including cell growth, cell-cycle progression and the environmental response. In addition to stabilizing proteins, Hsp90 governs gene expression and controls the release of cryptic genetic variation. Given its central role in evolution and development, it is important to identify proteins and genes that interact with Hsp90. This requires sophisticated genetic and biochemical tools, including extensive mutant collections, suitable epitope tags, proteomics approaches and Hsp90-specific pharmacological inhibitors for chemogenomic screens. These usually only exist in model organisms, such as the yeast Saccharomyces cerevisiae. Yet, the importance of other fungal species, such as Candida albicans and Cryptococcus neoformans, as serious human pathogens accelerated the development of genetic tools to study their virulence and stress response pathways. These tools can also be exploited to map Hsp90 interaction networks. Here, we review tools and techniques for Hsp90 network mapping available in different fungi and provide a summary of existing mapping efforts. Mapping Hsp90 networks in fungal species spanning >500 million years of evolution provides a unique vantage point, allowing tracking of the evolutionary history of eukaryotic Hsp90 networks.
Collapse
Affiliation(s)
- Julia L Crunden
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Stephanie Diezmann
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
47
|
D'Aguillo M, Hazelwood C, Quarles B, Donohue K. Genetic Consequences of Biologically Altered Environments. J Hered 2021; 113:26-36. [PMID: 34534330 DOI: 10.1093/jhered/esab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/16/2021] [Indexed: 11/14/2022] Open
Abstract
Evolvable traits of organisms can alter the environment those organisms experience. While it is well appreciated that those modified environments can influence natural selection to which organisms are exposed, they can also influence the expression of genetic variances and covariances of traits under selection. When genetic variance and covariance change in response to changes in the evolving, modified environment, rates and outcomes of evolution also change. Here we discuss the basic mechanisms whereby organisms modify their environments, review how those modified environments have been shown to alter genetic variance and covariance, and discuss potential evolutionary consequences of such dynamics. With these dynamics, responses to selection can be more rapid and sustained, leading to more extreme phenotypes, or they can be slower and truncated, leading to more conserved phenotypes. Patterns of correlated selection can also change, leading to greater or less evolutionary independence of traits, or even causing convergence or divergence of traits, even when selection on them is consistent across environments. Developing evolutionary models that incorporate changes in genetic variances and covariances when environments themselves evolve requires developing methods to predict how genetic parameters respond to environments-frequently multifactorial environments. It also requires a population-level analysis of how traits of collections of individuals modify environments for themselves and/or others in a population, possibly in spatially explicit ways. Despite the challenges of elucidating the mechanisms and nuances of these processes, even qualitative predictions of how environment-modifying traits alter evolutionary potential are likely to improve projections of evolutionary outcomes.
Collapse
Affiliation(s)
- Michelle D'Aguillo
- Department of Biology, Duke University, Durham, NC, USA.,Department of Biological Sciences, Wesleyan University, Middletown, CT, USA
| | - Caleb Hazelwood
- Department of Biology, Duke University, Durham, NC, USA.,Department of Philosophy, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
48
|
Dernovšek J, Zajec Ž, Durcik M, Mašič LP, Gobec M, Zidar N, Tomašič T. Structure-Activity Relationships of Benzothiazole-Based Hsp90 C-Terminal-Domain Inhibitors. Pharmaceutics 2021; 13:pharmaceutics13081283. [PMID: 34452244 PMCID: PMC8400049 DOI: 10.3390/pharmaceutics13081283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a chaperone responsible for the maturation of many cancer-related proteins, and is therefore an important target for the design of new anticancer agents. Several Hsp90 N-terminal domain inhibitors have been evaluated in clinical trials, but none have been approved as cancer therapies. This is partly due to induction of the heat shock response, which can be avoided using Hsp90 C-terminal-domain (CTD) inhibition. Several structural features have been shown to be useful in the design of Hsp90 CTD inhibitors, including an aromatic ring, a cationic center and the benzothiazole moiety. This study established a previously unknown link between these structural motifs. Using ligand-based design methodologies and structure-based pharmacophore models, a library of 29 benzothiazole-based Hsp90 CTD inhibitors was prepared, and their antiproliferative activities were evaluated in MCF-7 breast cancer cells. Several showed low-micromolar IC50, with the most potent being compounds 5g and 9i (IC50, 2.8 ± 0.1, 3.9 ± 0.1 μM, respectively). Based on these results, a ligand-based structure-activity relationship model was built, and molecular dynamics simulation was performed to elaborate the binding mode of compound 9i. Moreover, compound 9i showed degradation of Hsp90 client proteins and no induction of the heat shock response.
Collapse
|
49
|
Cervantes PW, Corton JC. A Gene Expression Biomarker Predicts Heat Shock Factor 1 Activation in a Gene Expression Compendium. Chem Res Toxicol 2021; 34:1721-1737. [PMID: 34170685 DOI: 10.1021/acs.chemrestox.0c00510] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The United States Environmental Protection Agency (US EPA) recently developed a tiered testing strategy to use advances in high-throughput transcriptomics (HTTr) testing to identify molecular targets of thousands of environmental chemicals that can be linked to adverse outcomes. Here, we describe a method that uses a gene expression biomarker to predict chemical activation of heat shock factor 1 (HSF1), a transcription factor critical for proteome maintenance. The HSF1 biomarker was built from transcript profiles derived from A375 cells exposed to a HSF1-activating heat shock protein (HSP) 90 inhibitor in the presence or absence of HSF1 expression. The resultant 44 identified genes included those that (1) are dependent on HSF1 for regulation, (2) have direct interactions with HSF1 assessed by ChIP-Seq, and (3) are in the molecular chaperone family. To test for accuracy, the biomarker was compared in a pairwise manner to gene lists derived from treatments with known HSF1 activity (HSP and proteasomal inhibitors) using the correlation-based Running Fisher test; the balanced accuracy for prediction was 96%. A microarray compendium consisting of 12,092 microarray comparisons from human cells exposed to 2670 individual chemicals was screened using our approach; 112 and 19 chemicals were identified as putative HSF1 activators or suppressors, respectively, and most appear to be novel modulators. A large percentage of the chemical treatments that induced HSF1 also induced oxidant-activated NRF2 (∼46%). For five compounds or mixtures, we found that NRF2 activation occurred at lower concentrations or at earlier times than HSF1 activation, supporting the concept of a tiered cellular protection system dependent on the level of chemical-induced stress. The approach described here could be used to identify environmentally relevant chemical HSF1 activators in HTTr data sets.
Collapse
Affiliation(s)
- Patrick W Cervantes
- Center for Computational Toxicology and Exposure, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| | - J Christopher Corton
- Center for Computational Toxicology and Exposure, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
50
|
Cote-Hammarlof PA, Fragata I, Flynn J, Mavor D, Zeldovich KB, Bank C, Bolon DNA. The Adaptive Potential of the Middle Domain of Yeast Hsp90. Mol Biol Evol 2021; 38:368-379. [PMID: 32871012 PMCID: PMC7826181 DOI: 10.1093/molbev/msaa211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The distribution of fitness effects (DFEs) of new mutations across different environments quantifies the potential for adaptation in a given environment and its cost in others. So far, results regarding the cost of adaptation across environments have been mixed, and most studies have sampled random mutations across different genes. Here, we quantify systematically how costs of adaptation vary along a large stretch of protein sequence by studying the distribution of fitness effects of the same ≈2,300 amino-acid changing mutations obtained from deep mutational scanning of 119 amino acids in the middle domain of the heat shock protein Hsp90 in five environments. This region is known to be important for client binding, stabilization of the Hsp90 dimer, stabilization of the N-terminal-Middle and Middle-C-terminal interdomains, and regulation of ATPase–chaperone activity. Interestingly, we find that fitness correlates well across diverse stressful environments, with the exception of one environment, diamide. Consistent with this result, we find little cost of adaptation; on average only one in seven beneficial mutations is deleterious in another environment. We identify a hotspot of beneficial mutations in a region of the protein that is located within an allosteric center. The identified protein regions that are enriched in beneficial, deleterious, and costly mutations coincide with residues that are involved in the stabilization of Hsp90 interdomains and stabilization of client-binding interfaces, or residues that are involved in ATPase–chaperone activity of Hsp90. Thus, our study yields information regarding the role and adaptive potential of a protein sequence that complements and extends known structural information.
Collapse
Affiliation(s)
| | - Inês Fragata
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Julia Flynn
- University of Massachusetts Medical School, Worcester, MA
| | - David Mavor
- University of Massachusetts Medical School, Worcester, MA
| | | | - Claudia Bank
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Institute of Ecology and Evolution, University of Bern, Switzerland
| | | |
Collapse
|