1
|
Biojout T, Bergot E, Bernay B, Levallet G, Levallet J. NDR2 kinase: A review of its physiological role and involvement in carcinogenesis. Int J Biol Macromol 2025; 311:143656. [PMID: 40311964 DOI: 10.1016/j.ijbiomac.2025.143656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/04/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
The Hippo kinase, NDR2, plays a key role in the natural history of several human cancers, particularly lung cancer, by regulating processes such as proliferation, apoptosis, migration, invasion, vesicular trafficking, autophagy, ciliogenesis and immune response. To examine the specificity of NDR2's action, interaction and function in physiological or tumoral contexts, we first focus on the structural differences in the amino-acid sequence between NDR1 and NDR2. We then establish a correlation between these NDR1/2 differences and specific post-translational regulation, as well as the distinct action, interactions, and functions of NDR2 in physiological or tumoral paradigms, such as lung cancer. Furthermore, the full set of NDR2 partners and/or substrates remains to be identified. Given that it is hypothesized that NDR2 and its partners may offer new perspectives for anticancer therapies, we emphasize potential clustering or functional enrichment networks among the NDR2-specific interactants. Additionally, we provide an unpublished proteomic comparison of the NDR1 versus NDR2 interactome, focusing on human bronchial epithelial cells (HBEC-3), lung adenocarcinoma cells (H2030), and their brain metastasis-derived counterparts (H2030-BrM3). In conclusion, this study underscores the pivotal role of NDR2 in cancer progression, particularly lung cancer, and helps to better understand their specific functions and interactions in both normal and tumor contexts. The identification of NDR2 partners and substrates remains essential, with the potential to open new avenues for anticancer therapies.
Collapse
Affiliation(s)
- Tiphaine Biojout
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France
| | - Emmanuel Bergot
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France; Centre Hospitalier Universitaire de Caen Normandie, Département de Pneumologie et d'Oncologie thoracique, F-14000 Caen, France
| | - Benoit Bernay
- Université de Caen Normandie - Plateforme PROTEOGEN, US EMerode, 14032 Caen, cedex 5, France
| | - Guénaëlle Levallet
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France; Centre Hospitalier Universitaire de Caen Normandie, Département de Pathologie, F-14000 Caen, France.
| | - Jérôme Levallet
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France
| |
Collapse
|
2
|
Llorente A, Arora GK, Murad R, Emerling BM. Phosphoinositide kinases in cancer: from molecular mechanisms to therapeutic opportunities. Nat Rev Cancer 2025; 25:463-487. [PMID: 40181165 DOI: 10.1038/s41568-025-00810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 04/05/2025]
Abstract
Phosphoinositide kinases, extending beyond the well-known phosphoinositide 3-kinase (PI3K), are key players in the dynamic and site-specific phosphorylation of lipid phosphoinositides. Unlike PI3Ks, phosphatidylinositol 4-kinases (PI4Ks) and phosphatidylinositol phosphate kinases (PIPKs) do not usually exhibit mutational alterations, but mostly show altered expression in tumours, orchestrating a broad spectrum of signalling, metabolic and immune processes, all of which are crucial in the pathogenesis of cancer. Dysregulation of PI4Ks and PIPKs has been associated with various malignancies, which has sparked considerable interest towards their therapeutic targeting. In this Review we summarize the current understanding of the lesser-studied phosphoinositide kinase families, PI4K and PIPK, focusing on their functions and relevance in cancer. In addition, we provide an overview of ongoing efforts driving the preclinical and clinical development of phosphoinositide kinase-targeting molecules.
Collapse
Affiliation(s)
- Alicia Llorente
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Gurpreet K Arora
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rabi Murad
- Bioformatics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Brooke M Emerling
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
3
|
Balla T. Phosphatidylinositol 4-phosphate; A minor lipid with multiple personalities. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159615. [PMID: 40262701 DOI: 10.1016/j.bbalip.2025.159615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
Phosphorylated products of phosphatidylinositol (PI), named Diphosphoinositide (DPI) and triphosphoinositide (TPI) were identified long time ago and found to exhibit high turnover rates based on their rapid 32P-phosphate labeling. The PI kinase activities that were responsible for their production were subsequently identified and found to be associated with different organelle membranes, including the plasma membrane. These activities were then linked with a certain group of cell surface receptors that activated phospholipase C enzymes to hydrolyze PI and used calcium or cGMP as a second messenger. This visionary concept was introduced in the seminal BBA review written by Robert Michell, exactly 50 years ago. The enzymology and functional diversity of PI 4-phosphate (PI4P) (the term that has replaced DPI) has since underwent an expansion that could not have been foreseen. In this review I will attempt to revisit this expansion with some historical reflections celebrating the 50th anniversary of the Michell review.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Martina MG, Rubini D, Radi M, Cagno V. Targeting PI4KB and Src/Abl host kinases as broad-spectrum antiviral strategy: Myth or real opportunity? Antiviral Res 2025; 235:106100. [PMID: 39922541 DOI: 10.1016/j.antiviral.2025.106100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Viruses pose a continuous threat to human health. Limited treatment options exist for current viruses, and the risk of infections with newly emerging or re-emerging viruses is increasing. In a pandemic scenario, having a broad-spectrum antiviral to limit viral spread while developing specific antivirals and vaccines is crucial. Targeting host kinases represents a valuable strategy due to the higher barrier to resistance and the broad-spectrum activity it offers. While cells have redundant kinases for the same biological function, viruses rely on specific kinases for their replication cycle, enabling targeted antiviral action with limited toxicity. This review focuses on two extensively studied kinase targets: the lipid kinase phosphatidylinositol 4-kinase IIIβ (PI4KB) and the tyrosine kinase proteins Src and Abl. Compounds active against these targets are reviewed in terms of the viruses they inhibit, their mechanisms of action and their stage of development. While PI4KB inhibitors have reached clinical trials, those targeting Src and Abl remain largely in the preclinical phase. Nevertheless, opportunities exist to improve potency and further understand the specific roles of these kinases in the life cycle of multiple viruses.
Collapse
Affiliation(s)
- Maria Grazia Martina
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124, Parma, Italy
| | - Daniele Rubini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124, Parma, Italy
| | - Marco Radi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124, Parma, Italy.
| | - Valeria Cagno
- Institute of Microbiology, University Hospital of Lausanne, University of Lausanne, 1011, Lausanne, Switzerland.
| |
Collapse
|
5
|
Fresquez T, Tam BM, Eshelman SC, Moritz OL, Robichaux MA, Deretic D. Rabin8 phosphorylated by NDR2, the canine early retinal degeneration gene product, directs rhodopsin Golgi-to-cilia trafficking. J Cell Sci 2025; 138:JCS263401. [PMID: 39774853 PMCID: PMC11828469 DOI: 10.1242/jcs.263401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
The Rab11-Rabin8-Rab8 ciliogenesis complex regulates the expansion of cilia-derived light-sensing organelles, the rod outer segments, via post-Golgi rhodopsin transport carriers (RTCs). Rabin8 (also known as RAB3IP), an effector of Rab11 proteins and a nucleotide exchange factor (GEF) for Rab8 proteins, is phosphorylated at S272 by NDR2 kinase (also known as STK38L), the canine early retinal degeneration (erd) gene product linked to the human ciliopathy Leber congenital amaurosis (LCA). Here, we define the step at which NDR2 phosphorylates Rabin8 and regulates Rab11-to-Rab8 succession in Xenopus laevis transgenic rod photoreceptors expressing human GFP-Rabin8 and its mutants. GFP-Rabin8 accumulated with endogenous Rabin8 at the Golgi-apposed exit sites (GESs), also known as the trans-Golgi network (TGN). Rabin8 mutants deficient in Rab11 binding prevented membrane association of GFP-Rabin8. GFP-Rabin8 and NDR2 kinase both interacted with the RTC-associated R-SNARE VAMP7 at the trans-Golgi and the GESs. Here, GFP-Rabin8 and the phosphomimetic GFP-Rabin8-S272E integrated into RTCs, which were subsequently functionalized by Rabin8 Rab8 GEF activity. Non-phosphorylatable GFP-Rabin8-S272A caused significant GES enlargement and deformation, possibly leading to unconventional membrane advancement toward the cilium, bypassing RTCs. Rabin8 phosphorylation loss due to an NDR2 gene disruption thereby likely causes dysfunctional rhodopsin Golgi-to-cilia trafficking underlying retinal degeneration and early-onset blindness.
Collapse
Affiliation(s)
- Theresa Fresquez
- Department of Ophthalmology and Visual Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Beatrice M. Tam
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Shannon C. Eshelman
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Orson L. Moritz
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Michael A. Robichaux
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia 26506, USA
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Dusanka Deretic
- Department of Ophthalmology and Visual Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
6
|
Ma X, Li J, Liu N, Banerjee S, Hu X, Wang X, Dong J, Liu K, Yang C, Dong Z. Insights into the distinct membrane targeting mechanisms of WDR91 family proteins. Structure 2024; 32:2287-2300.e4. [PMID: 39426373 DOI: 10.1016/j.str.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
WDR91 and SORF1, members of the WD repeat-containing protein 91 family, control phosphoinositide conversion by inhibiting phosphatidylinositol 3-kinase activity on endosomes, which promotes endosome maturation. Here, we report the crystal structure of the human WDR91 WD40 domain complexed with Rab7 that has an unusual interface at the C-terminus of the Rab7 switch II region. WDR91 is highly selective for Rab7 among the tested GTPases. A LIS1 homology (LisH) motif within the WDR91 N-terminal domain (NTD) mediates self-association and may contribute partly to the augmented interaction between full-length WDR91 and Rab7. Both the Rab7 binding site and the LisH motif are indispensable for WDR91 function in endocytic trafficking. For the WDR91 orthologue SORF1 lacking the C-terminal WD40 domain, a C-terminal amphipathic helix (AH) mediates strong interactions with liposomes containing acidic lipids. During evolution the human WDR91 ancestor gene might have acquired a WD40 domain to replace the AH for endosomal membrane targeting.
Collapse
Affiliation(s)
- Xinli Ma
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450003, China
| | - Jian Li
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450003, China
| | - Nan Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Surajit Banerjee
- Northeastern Collaborative Access Team, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Xiaotong Hu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450003, China
| | - Xiaoyu Wang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450003, China
| | - Jianshu Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450003, China; College of Medicine, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450003, China; College of Medicine, Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
7
|
Sudsat P, Srisala J, Pakotiprapha D, Tapaneeyakorn S, Sritunyalucksana K, Thitamadee S, Charoensutthivarakul S, Itsathitphaisarn O. VP28 interacts with PmRab7 irrespective of its nucleotide state. Sci Rep 2024; 14:27803. [PMID: 39537865 PMCID: PMC11560936 DOI: 10.1038/s41598-024-79310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
In shrimp aquaculture, white spot syndrome virus (WSSV) infections severely impact production. Previous research highlighted the crucial role of the Penaeus monodon Rab7 (PmRab7) protein in WSSV entry, specifically its interaction with the viral envelope protein VP28. PmRab7 exists in two conformations: GDP-bound (inactive) and GTP-bound (active). This study, using ELISA and isothermal titration calorimetry (ITC), reveals that the PmRab7-VP28 interaction occurs irrespective of the nucleotide binding state of PmRab7. Comparing the binding affinity between VP28 and different PmRab7 conformations, including wild-type (WT, 22.5 nM), a fast nucleotide exchange (L129F, 128 nM), a GDP-bound form (T22N, 334 nM), and a favorably GTP-bound form (Q67L, 1990 nM), PmRab7-WT exhibits the strongest binding affinity, especially at a lower temperature (25 °C). The binding of PmRab7-WT and VP28 in the presence of excess nucleotide (WT with excess GDP, 924 nM, and WT with excess GTP, 826 nM) shows a 2-fold higher binding affinity than in the absence (WT, 1920 nM) indicating that the addition of excess nucleotide for PmRab7-WT enhanced the affinity for VP28. Together, these findings support the potential of PmRab7-WT as a promising therapeutic candidate for WSSV control in shrimp. Furthermore, from an industrial point of view, the ITC platform developed to study the VP28-PmRab7 interactions provides a high-throughput method for screening additives for shrimp feed that can inhibit this interaction.
Collapse
Affiliation(s)
- Patcha Sudsat
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
| | - Jiraporn Srisala
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Klong Neung, Klong Luang, Pathum Thani, 12120, Thailand
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
- Center for Excellence in Protein and Enzyme Technology (CPET), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Satita Tapaneeyakorn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Kallaya Sritunyalucksana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Klong Neung, Klong Luang, Pathum Thani, 12120, Thailand
- Center of Excellence in Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Siripong Thitamadee
- Center of Excellence in Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
- Analytical Sciences and National Doping Test Institute, Mahidol University, Bangkok, 10400, Thailand
| | - Sitthivut Charoensutthivarakul
- School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Ornchuma Itsathitphaisarn
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand.
- Center of Excellence in Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
8
|
Manjunatha UH, Lakshminarayana SB, Jumani RS, Chao AT, Young JM, Gable JE, Knapp M, Hanna I, Galarneau JR, Cantwell J, Kulkarni U, Turner M, Lu P, Darrell KH, Watson LC, Chan K, Patra D, Mamo M, Luu C, Cuellar C, Shaul J, Xiao L, Chen YB, Carney SK, Lakshman J, Osborne CS, Zambriski JA, Aziz N, Sarko C, Diagana TT. Cryptosporidium PI(4)K inhibitor EDI048 is a gut-restricted parasiticidal agent to treat paediatric enteric cryptosporidiosis. Nat Microbiol 2024; 9:2817-2835. [PMID: 39379634 PMCID: PMC11522000 DOI: 10.1038/s41564-024-01810-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/15/2024] [Indexed: 10/10/2024]
Abstract
Diarrhoeal disease caused by Cryptosporidium is a major cause of morbidity and mortality in young and malnourished children from low- and middle-income countries, with no vaccine or effective treatment. Here we describe the discovery of EDI048, a Cryptosporidium PI(4)K inhibitor, designed to be active at the infection site in the gastrointestinal tract and undergo rapid metabolism in the liver. By using mutational analysis and crystal structure, we show that EDI048 binds to highly conserved amino acid residues in the ATP-binding site. EDI048 is orally efficacious in an immunocompromised mouse model despite negligible circulating concentrations, thus demonstrating that gastrointestinal exposure is necessary and sufficient for efficacy. In neonatal calves, a clinical model of cryptosporidiosis, EDI048 treatment resulted in rapid resolution of diarrhoea and significant reduction in faecal oocyst shedding. Safety and pharmacological studies demonstrated predictable metabolism and low systemic exposure of EDI048, providing a substantial safety margin required for a paediatric indication. EDI048 is a promising clinical candidate for the treatment of life-threatening paediatric cryptosporidiosis.
Collapse
Affiliation(s)
| | | | - Rajiv S Jumani
- Global Health, Biomedical Research, Novartis, Emeryville, CA, USA
| | - Alexander T Chao
- Global Health, Biomedical Research, Novartis, Emeryville, CA, USA
| | | | - Jonathan E Gable
- Global Health, Biomedical Research, Novartis, Emeryville, CA, USA
| | - Mark Knapp
- Biomedical Research, Novartis, Emeryville, CA, USA
| | - Imad Hanna
- Biomedical Research, Novartis, East Hanover, NJ, USA
| | | | | | | | | | - Peichao Lu
- Biomedical Research, Novartis, Emeryville, CA, USA
| | - Kristen H Darrell
- Global Health, Biomedical Research, Novartis, Emeryville, CA, USA
- Metagenomi, Inc., Emeryville, CA, USA
| | - Lucy C Watson
- Global Health, Biomedical Research, Novartis, Emeryville, CA, USA
| | - Katherine Chan
- Global Health, Biomedical Research, Novartis, Emeryville, CA, USA
| | - Debjani Patra
- Global Health, Biomedical Research, Novartis, Emeryville, CA, USA
| | | | | | | | - Jacob Shaul
- Biomedical Research, Novartis, Emeryville, CA, USA
- Absci Corporation, Vancouver, WA, USA
| | - Linda Xiao
- Global Health, Biomedical Research, Novartis, Emeryville, CA, USA
| | - Ying-Bo Chen
- Global Health, Biomedical Research, Novartis, Emeryville, CA, USA
| | - Shannon K Carney
- Department of Population Health Sciences, College of Veterinary Medicine, Center for One Health Research, Blacksburg, VA, USA
- Cornell University, College of Veterinary Medicine, Department of Population Medicine and Diagnostic Sciences, Ithaca, NY, USA
| | - Jay Lakshman
- Novartis Pharmaceutical Corporation, East Hanover, NJ, USA
| | - Colin S Osborne
- Global Health, Biomedical Research, Novartis, Emeryville, CA, USA
| | - Jennifer A Zambriski
- Department of Population Health Sciences, College of Veterinary Medicine, Center for One Health Research, Blacksburg, VA, USA
- Veterinarians for Global Solutions, Washington, DC, USA
| | - Natasha Aziz
- Global Health, Biomedical Research, Novartis, Emeryville, CA, USA
- Genentech Research and Early Development, South San Francisco, CA, USA
| | | | | |
Collapse
|
9
|
Simsek Papur O, Glatz JFC, Luiken JJFP. Protein kinase-D1 and downstream signaling mechanisms involved in GLUT4 translocation in cardiac muscle. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119748. [PMID: 38723678 DOI: 10.1016/j.bbamcr.2024.119748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 02/21/2024] [Accepted: 04/29/2024] [Indexed: 05/20/2024]
Abstract
The Ser/Thr kinase protein kinase-D1 (PKD1) is involved in induction of various cell physiological processes in the heart such as myocellular hypertrophy and inflammation, which may turn maladaptive during long-term stimulation. Of special interest is a key role of PKD1 in the regulation of cardiac substrate metabolism. Glucose and fatty acids are the most important substrates for cardiac energy provision, and the ratio at which they are utilized determines the health status of the heart. Cardiac glucose uptake is mainly regulated by translocation of the glucose transporter GLUT4 from intracellular stores (endosomes) to the sarcolemma, and fatty acid uptake via a parallel translocation of fatty acid transporter CD36 from endosomes to the sarcolemma. PKD1 is involved in the regulation of GLUT4 translocation, but not CD36 translocation, giving it the ability to modulate glucose uptake without affecting fatty acid uptake, thereby altering the cardiac substrate balance. PKD1 would therefore serve as an attractive target to combat cardiac metabolic diseases with a tilted substrate balance, such as diabetic cardiomyopathy. However, PKD1 activation also elicits cardiac hypertrophy and inflammation. Therefore, identification of the events upstream and downstream of PKD1 may provide superior therapeutic targets to alter the cardiac substrate balance. Recent studies have identified the lipid kinase phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ) as signaling hub downstream of PKD1 to selectively stimulate GLUT4-mediated myocardial glucose uptake without inducing hypertrophy. Taken together, the PKD1 signaling pathway serves a pivotal role in cardiac glucose metabolism and is a promising target to selectively modulate glucose uptake in cardiac disease.
Collapse
Affiliation(s)
- Ozlenen Simsek Papur
- Department of Molecular Medicine, Institute of Health Science, Dokuz Eylül University, Izmir, Turkey
| | - Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Center(+), Maastricht, the Netherlands
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Center(+), Maastricht, the Netherlands.
| |
Collapse
|
10
|
Prever L, Squillero G, Hirsch E, Gulluni F. Linking phosphoinositide function to mitosis. Cell Rep 2024; 43:114273. [PMID: 38843397 DOI: 10.1016/j.celrep.2024.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024] Open
Abstract
Phosphoinositides (PtdIns) are a family of differentially phosphorylated lipid second messengers localized to the cytoplasmic leaflet of both plasma and intracellular membranes. Kinases and phosphatases can selectively modify the PtdIns composition of different cellular compartments, leading to the recruitment of specific binding proteins, which control cellular homeostasis and proliferation. Thus, while PtdIns affect cell growth and survival during interphase, they are also emerging as key drivers in multiple temporally defined membrane remodeling events of mitosis, like cell rounding, spindle orientation, cytokinesis, and abscission. In this review, we summarize and discuss what is known about PtdIns function during mitosis and how alterations in the production and removal of PtdIns can interfere with proper cell division.
Collapse
Affiliation(s)
- Lorenzo Prever
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy
| | - Gabriele Squillero
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy
| | - Emilio Hirsch
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy.
| | - Federico Gulluni
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy.
| |
Collapse
|
11
|
Zhao H, Kong F, Yu W, Zhao H, Zhang J, Zhou J, Meng X. Locational and functional characterization of PI4KB in the mouse embryo. J Cell Physiol 2024; 239:e31195. [PMID: 38230579 DOI: 10.1002/jcp.31195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Phosphatidylinositol 4-kinase beta (PI4KB) is a member of the PI4K family, which is mainly enriched and functions in the Golgi apparatus. The kinase domain of PI4KB catalyzes the phosphorylation of phosphatidylinositol to form phosphatidylinositol 4-phosphate, a process that regulates various sub-cellular events, such as non-vesicular cholesterol and ceramide transport, protein glycosylation, and vesicle transport, as well as cytoplasmic division. In this study, a strain of PI4KB knockout mouse, immunofluorescence, reverse transcription polymerase chain reaction and microinjection were used to characterize the cytological location and biological function of PI4KB in the mouse embryos. we found that knocking down Pi4kb in mouse embryos resulted in embryonic lethality at around embryonic day (E) 7.5. Additionally, we observed dramatic fluctuations in PI4KB expression during the development of preimplantation embryos, with high expression in the 4-cell and morula stages. PI4KB colocalized with the Golgi marker protein TGN46 in the perinuclear and cytoplasmic regions in early blastomeres. Postimplantation, PI4KB was highly expressed in the epiblast of E7.5 embryos. Treatment of embryos with PI4KB inhibitors was found to inhibit the development of the morula into a blastocyst and the normal progression of cytoplasmic division during the formation of a 4-cell embryo. These findings suggest that PI4KB plays an important role in mouse embryogenesis by regulating various intracellular vital functions of embryonic cells.
Collapse
Affiliation(s)
- Haoyu Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Centre for Cell Structure and Function, Shandong Normal University, Jinan, China
| | - Fengyun Kong
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weikai Yu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Centre for Cell Structure and Function, Shandong Normal University, Jinan, China
| | - Huijie Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Centre for Cell Structure and Function, Shandong Normal University, Jinan, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Centre for Cell Structure and Function, Shandong Normal University, Jinan, China
| | - Xiaoqian Meng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Centre for Cell Structure and Function, Shandong Normal University, Jinan, China
| |
Collapse
|
12
|
Papaioannou P, Wallace MJ, Malhotra N, Mohler PJ, El Refaey M. Biochemical Structure and Function of TRAPP Complexes in the Cardiac System. JACC Basic Transl Sci 2023; 8:1599-1612. [PMID: 38205348 PMCID: PMC10774597 DOI: 10.1016/j.jacbts.2023.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/14/2023] [Indexed: 01/12/2024]
Abstract
Trafficking protein particle (TRAPP) is well reported to play a role in the trafficking of protein products within the Golgi and endoplasmic reticulum. Dysfunction in TRAPP has been associated with disorders in the nervous and cardiovascular systems, but the majority of literature focuses on TRAPP function in the nervous system solely. Here, we highlight the known pathways of TRAPP and hypothesize potential impacts of TRAPP dysfunction on the cardiovascular system, particularly the role of TRAPP as a guanine-nucleotide exchange factor for Rab1 and Rab11. We also review the various cardiovascular phenotypes associated with changes in TRAPP complexes and their subunits.
Collapse
Affiliation(s)
- Peter Papaioannou
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Michael J. Wallace
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Nipun Malhotra
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Peter J. Mohler
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mona El Refaey
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
13
|
Arabiotorre A, Bankaitis VA, Grabon A. Regulation of phosphoinositide metabolism in Apicomplexan parasites. Front Cell Dev Biol 2023; 11:1163574. [PMID: 37791074 PMCID: PMC10543664 DOI: 10.3389/fcell.2023.1163574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/11/2023] [Indexed: 10/05/2023] Open
Abstract
Phosphoinositides are a biologically essential class of phospholipids that contribute to organelle membrane identity, modulate membrane trafficking pathways, and are central components of major signal transduction pathways that operate on the cytosolic face of intracellular membranes in eukaryotes. Apicomplexans (such as Toxoplasma gondii and Plasmodium spp.) are obligate intracellular parasites that are important causative agents of disease in animals and humans. Recent advances in molecular and cell biology of Apicomplexan parasites reveal important roles for phosphoinositide signaling in key aspects of parasitosis. These include invasion of host cells, intracellular survival and replication, egress from host cells, and extracellular motility. As Apicomplexans have adapted to the organization of essential signaling pathways to accommodate their complex parasitic lifestyle, these organisms offer experimentally tractable systems for studying the evolution, conservation, and repurposing of phosphoinositide signaling. In this review, we describe the regulatory mechanisms that control the spatial and temporal regulation of phosphoinositides in the Apicomplexan parasites Plasmodium and T. gondii. We further discuss the similarities and differences presented by Apicomplexan phosphoinositide signaling relative to how these pathways are regulated in other eukaryotic organisms.
Collapse
Affiliation(s)
- Angela Arabiotorre
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
| | - Vytas A. Bankaitis
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
- Department of Biochemistry and Biophysics Texas A&M University College Station, College Station, TX, United States
- Department of Chemistry Texas A&M University College Station, College Station, TX, United States
| | - Aby Grabon
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
| |
Collapse
|
14
|
Burke JE, Triscott J, Emerling BM, Hammond GRV. Beyond PI3Ks: targeting phosphoinositide kinases in disease. Nat Rev Drug Discov 2023; 22:357-386. [PMID: 36376561 PMCID: PMC9663198 DOI: 10.1038/s41573-022-00582-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Lipid phosphoinositides are master regulators of almost all aspects of a cell's life and death and are generated by the tightly regulated activity of phosphoinositide kinases. Although extensive efforts have focused on drugging class I phosphoinositide 3-kinases (PI3Ks), recent years have revealed opportunities for targeting almost all phosphoinositide kinases in human diseases, including cancer, immunodeficiencies, viral infection and neurodegenerative disease. This has led to widespread efforts in the clinical development of potent and selective inhibitors of phosphoinositide kinases. This Review summarizes our current understanding of the molecular basis for the involvement of phosphoinositide kinases in disease and assesses the preclinical and clinical development of phosphoinositide kinase inhibitors.
Collapse
Affiliation(s)
- John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Joanna Triscott
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Fang R, Jiang Q, Jia X, Jiang Z. ARMH3-mediated recruitment of PI4KB directs Golgi-to-endosome trafficking and activation of the antiviral effector STING. Immunity 2023; 56:500-515.e6. [PMID: 36921576 DOI: 10.1016/j.immuni.2023.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/30/2022] [Accepted: 01/26/2023] [Indexed: 03/15/2023]
Abstract
The cGAS-STING pathway mediates cytoplasmic DNA-triggered innate immunity. STING activation is initiated by cyclic-GMP-AMP (cGAMP)-induced translocation from the endoplasmic reticulum and sulfated glycosaminoglycans-induced polymerization at the Golgi. Here, we examine the mechanisms underlying STING transport and activation beyond the Golgi. A genome-wide CRISPR-Cas9 screen identified Armadillo-like helical domain-containing protein 3 (ARMH3) as critical for STING activation. Upon cGAMP-triggered translocation, ARMH3 interacted with STING at the Golgi and recruited phosphatidylinositol 4-kinase beta (PI4KB) to synthesize PI4P, which directed STING Golgi-to-endosome trafficking via PI4P-binding proteins AP-1 and GGA2. Disrupting PI4P-dependent lipid transport through RNAi of other PI4P-binding proteins impaired STING activation. Consistently, disturbed lipid composition inhibited STING activation, whereas aberrantly elevated cellular PI4P led to cGAS-independent STING activation. Armh3fl/fllLyzCre/Cre mice were susceptible to DNA virus challenge in vivo. Thus, ARMH3 bridges STING and PIK4B to generate PI4P for STING transportation and activation, an interaction conserved in all eukaryotes.
Collapse
Affiliation(s)
- Run Fang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Qifei Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xinying Jia
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
16
|
McPhail JA, Burke JE. Molecular mechanisms of PI4K regulation and their involvement in viral replication. Traffic 2023; 24:131-145. [PMID: 35579216 DOI: 10.1111/tra.12841] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
Lipid phosphoinositides are master signaling molecules in eukaryotic cells and key markers of organelle identity. Because of these important roles, the kinases and phosphatases that generate phosphoinositides must be tightly regulated. Viruses can manipulate this regulation, with the Type III phosphatidylinositol 4-kinases (PI4KA and PI4KB) being hijacked by many RNA viruses to mediate their intracellular replication through the formation of phosphatidylinositol 4-phosphate (PI4P)-enriched replication organelles (ROs). Different viruses have evolved unique approaches toward activating PI4K enzymes to form ROs, through both direct binding of PI4Ks and modulation of PI4K accessory proteins. This review will focus on PI4KA and PI4KB and discuss their roles in signaling, functions in membrane trafficking and manipulation by viruses. Our focus will be the molecular basis for how PI4KA and PI4KB are activated by both protein-binding partners and post-translational modifications, with an emphasis on understanding the different molecular mechanisms viruses have evolved to usurp PI4Ks. We will also discuss the chemical tools available to study the role of PI4Ks in viral infection.
Collapse
Affiliation(s)
- Jacob A McPhail
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Thibodeau MC, Harris NJ, Jenkins ML, Parson MAH, Evans JT, Scott MK, Shaw AL, Pokorný D, Leonard TA, Burke JE. Molecular basis for the recruitment of the Rab effector protein WDR44 by the GTPase Rab11. J Biol Chem 2023; 299:102764. [PMID: 36463963 PMCID: PMC9808001 DOI: 10.1016/j.jbc.2022.102764] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The formation of complexes between Rab11 and its effectors regulates multiple aspects of membrane trafficking, including recycling and ciliogenesis. WD repeat-containing protein 44 (WDR44) is a structurally uncharacterized Rab11 effector that regulates ciliogenesis by competing with prociliogenesis factors for Rab11 binding. Here, we present a detailed biochemical and biophysical characterization of the WDR44-Rab11 complex and define specific residues mediating binding. Using AlphaFold2 modeling and hydrogen/deuterium exchange mass spectrometry, we generated a molecular model of the Rab11-WDR44 complex. The Rab11-binding domain of WDR44 interacts with switch I, switch II, and the interswitch region of Rab11. Extensive mutagenesis of evolutionarily conserved residues in WDR44 at the interface identified numerous complex-disrupting mutations. Using hydrogen/deuterium exchange mass spectrometry, we found that the dynamics of the WDR44-Rab11 interface are distinct from the Rab11 effector FIP3, with WDR44 forming a more extensive interface with the switch II helix of Rab11 compared with FIP3. The WDR44 interaction was specific to Rab11 over evolutionarily similar Rabs, with mutations defining the molecular basis of Rab11 specificity. Finally, WDR44 can be phosphorylated by Sgk3, with this leading to reorganization of the Rab11-binding surface on WDR44. Overall, our results provide molecular detail on how WDR44 interacts with Rab11 and how Rab11 can form distinct effector complexes that regulate membrane trafficking events.
Collapse
Affiliation(s)
- Matthew C Thibodeau
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Matthew A H Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - John T Evans
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Mackenzie K Scott
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Alexandria L Shaw
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Pokorný
- Max Perutz Labs, Department of Structural and Computational Biology, Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Thomas A Leonard
- Max Perutz Labs, Department of Structural and Computational Biology, Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
18
|
Investigating how intrinsically disordered regions contribute to protein function using HDX-MS. Biochem Soc Trans 2022; 50:1607-1617. [DOI: 10.1042/bst20220206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022]
Abstract
A large amount of the human proteome is composed of highly dynamic regions that do not adopt a single static conformation. These regions are defined as intrinsically disordered, and they are found in a third of all eukaryotic proteins. They play instrumental roles in many aspects of protein signaling, but can be challenging to characterize by biophysical methods. Intriguingly, many of these regions can adopt stable secondary structure upon interaction with a variety of binding partners, including proteins, lipids, and ligands. This review will discuss the application of Hydrogen-deuterium exchange mass spectrometry (HDX-MS) as a powerful biophysical tool that is particularly well suited for structural and functional characterization of intrinsically disordered regions in proteins. A focus will be on the theory of hydrogen exchange, and its practical application to identify disordered regions, as well as characterize how they participate in protein–protein and protein–membrane interfaces. A particular emphasis will be on how HDX-MS data can be presented specifically tailored for analysis of intrinsically disordered regions, as well as the technical aspects that are critical to consider when designing HDX-MS experiments for proteins containing intrinsically disordered regions.
Collapse
|
19
|
Jani RA, Di Cicco A, Keren-Kaplan T, Vale-Costa S, Hamaoui D, Hurbain I, Tsai FC, Di Marco M, Macé AS, Zhu Y, Amorim MJ, Bassereau P, Bonifacino JS, Subtil A, Marks MS, Lévy D, Raposo G, Delevoye C. PI4P and BLOC-1 remodel endosomal membranes into tubules. J Biophys Biochem Cytol 2022; 221:213508. [PMID: 36169638 PMCID: PMC9524204 DOI: 10.1083/jcb.202110132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 07/25/2022] [Accepted: 08/31/2022] [Indexed: 12/11/2022] Open
Abstract
Intracellular trafficking is mediated by transport carriers that originate by membrane remodeling from donor organelles. Tubular carriers contribute to the flux of membrane lipids and proteins to acceptor organelles, but how lipids and proteins impose a tubular geometry on the carriers is incompletely understood. Using imaging approaches on cells and in vitro membrane systems, we show that phosphatidylinositol-4-phosphate (PI4P) and biogenesis of lysosome-related organelles complex 1 (BLOC-1) govern the formation, stability, and functions of recycling endosomal tubules. In vitro, BLOC-1 binds and tubulates negatively charged membranes, including those containing PI4P. In cells, endosomal PI4P production by type II PI4-kinases is needed to form and stabilize BLOC-1-dependent recycling endosomal tubules. Decreased PI4KIIs expression impairs the recycling of endosomal cargoes and the life cycles of intracellular pathogens such as Chlamydia bacteria and influenza virus that exploit the membrane dynamics of recycling endosomes. This study demonstrates how a phospholipid and a protein complex coordinate the remodeling of cellular membranes into functional tubules.
Collapse
Affiliation(s)
- Riddhi Atul Jani
- Institut Curie, Université PSL, CNRS, UMR144, Structure and Membrane Compartments, Paris, France
| | - Aurélie Di Cicco
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, Paris, France.,Institut Curie, Université PSL, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Tal Keren-Kaplan
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Silvia Vale-Costa
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Daniel Hamaoui
- Institut Pasteur, Université de Paris Cité, CNRS UMR3691, Cellular biology of microbial infection, Paris, France
| | - Ilse Hurbain
- Institut Curie, Université PSL, CNRS, UMR144, Structure and Membrane Compartments, Paris, France.,Institut Curie, Université PSL, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, Paris, France
| | - Mathilde Di Marco
- Institut Curie, Université PSL, CNRS, UMR144, Structure and Membrane Compartments, Paris, France
| | - Anne-Sophie Macé
- Institut Curie, Université PSL, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Yueyao Zhu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research Centre, Palma de Cima, Lisboa, Portugal
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, Paris, France
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Agathe Subtil
- Institut Pasteur, Université de Paris Cité, CNRS UMR3691, Cellular biology of microbial infection, Paris, France
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel Lévy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, Paris, France.,Institut Curie, Université PSL, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Graça Raposo
- Institut Curie, Université PSL, CNRS, UMR144, Structure and Membrane Compartments, Paris, France.,Institut Curie, Université PSL, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Cédric Delevoye
- Institut Curie, Université PSL, CNRS, UMR144, Structure and Membrane Compartments, Paris, France.,Institut Curie, Université PSL, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| |
Collapse
|
20
|
Pinar M, Alonso A, de los Ríos V, Bravo-Plaza I, de la Gandara Á, Galindo A, Arias-Palomo E, Peñalva MÁ. The type V myosin-containing complex HUM is a RAB11 effector powering movement of secretory vesicles. iScience 2022; 25:104514. [PMID: 35754728 PMCID: PMC9213775 DOI: 10.1016/j.isci.2022.104514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 05/26/2022] [Indexed: 01/01/2023] Open
Abstract
In the apex-directed RAB11 exocytic pathway of Aspergillus nidulans, kinesin-1/KinA conveys secretory vesicles (SVs) to the hyphal tip, where they are transferred to the type V myosin MyoE. MyoE concentrates SVs at an apical store located underneath the PM resembling the presynaptic active zone. A rod-shaped RAB11 effector, UDS1, and the intrinsically disordered and coiled-coil HMSV associate with MyoE in a stable HUM (HMSV-UDS1-MyoE) complex recruited by RAB11 to SVs through an interaction network involving RAB11 and HUM components, with the MyoE globular tail domain (GTD) binding both HMSV and RAB11-GTP and RAB11-GTP binding both the MyoE-GTD and UDS1. UDS1 bridges RAB11-GTP to HMSV, an avid interactor of the MyoE-GTD. The interaction between the UDS1-HMSV sub-complex and RAB11-GTP can be reconstituted in vitro. Ablating UDS1 or HMSV impairs actomyosin-mediated transport of SVs to the apex, resulting in spreading of RAB11 SVs across the apical dome as KinA/microtubule-dependent transport gains prominence.
Collapse
Affiliation(s)
- Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Alonso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Vivian de los Ríos
- Proteomics Facility, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ignacio Bravo-Plaza
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Álvaro de la Gandara
- Department of Chemical and Structural Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Antonio Galindo
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, CB2 0QH Cambridge, UK
| | - Ernesto Arias-Palomo
- Department of Chemical and Structural Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Miguel Á. Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Corresponding author
| |
Collapse
|
21
|
A mechanism for exocyst-mediated tethering via Arf6 and PIP5K1C-driven phosphoinositide conversion. Curr Biol 2022; 32:2821-2833.e6. [PMID: 35609603 PMCID: PMC9382030 DOI: 10.1016/j.cub.2022.04.089] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/08/2022] [Accepted: 04/28/2022] [Indexed: 11/22/2022]
Abstract
Polarized trafficking is necessary for the development of eukaryotes and is regulated by a conserved molecular machinery. Late steps of cargo delivery are mediated by the exocyst complex, which integrates lipid and protein components to tether vesicles for plasma membrane fusion. However, the molecular mechanisms of this process are poorly defined. Here, we reconstitute functional octameric human exocyst, demonstrating the basis for holocomplex coalescence and biochemically stable subcomplexes. We determine that each subcomplex independently binds to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), which is minimally sufficient for membrane tethering. Through reconstitution and epithelial cell biology experiments, we show that Arf6-mediated recruitment of the lipid kinase PIP5K1C rapidly converts phosphatidylinositol 4-phosphate (PI(4)P) to PI(4,5)P2, driving exocyst recruitment and membrane tethering. These results provide a molecular mechanism of exocyst-mediated tethering and a unique functional requirement for phosphoinositide signaling on late-stage vesicles in the vicinity of the plasma membrane. Complete reconstitution and subunit connectivity of the human exocyst complex Binding to PI(4,5)P2 in trans by each subcomplex enables membrane tethering PI(4)P to PI(4,5)P2 conversion is sufficient for exocyst recruitment and tethering Arf6 controls phosphoinositide conversion by PIP5K1C in cells and in vitro
Collapse
|
22
|
Rab33b-exocyst interaction mediates localized secretion for focal adhesion turnover and cell migration. iScience 2022; 25:104250. [PMID: 35521520 PMCID: PMC9061791 DOI: 10.1016/j.isci.2022.104250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/17/2022] [Accepted: 04/08/2022] [Indexed: 12/19/2022] Open
Abstract
Rab proteins are well known regulators of intracellular trafficking; however, more and more studies point to their function also in other cellular processes, including cell migration. In this work, we have performed an siRNA screen to identify Rab proteins that influence cell migration. The screen revealed Rab33b as the strongest candidate that affected cell motility. Rab33b has been previously reported to localize at the Golgi apparatus to regulate Golgi-to-ER retrograde trafficking and Golgi homeostasis. We revealed that Rab33b also mediates post-Golgi transport to the plasma membrane. We further identified Exoc6, a subunit of the exocyst complex, as an interactor of Rab33b. Moreover, our data indicate that Rab33b regulates focal adhesion dynamics by modulating the delivery of cargo such as integrins to focal adhesions. Altogether, our results demonstrate a role for Rab33b in cell migration by regulating the delivery of integrins to focal adhesions through the interaction with Exoc6. RNAi screen reveals a role for Rab33b in cell migration Rab33b influences focal adhesion dynamics Rab33b interacts with the exocyst subunit Exoc6 Rab33b together with Exoc6 mediates the delivery of β1 integrin to adhesion points
Collapse
|
23
|
Adebayo J, Ceravolo I, Gyebi G, Olorundare E, Babatunde A, Penna-Coutinho J, Koketsu M, Krettli A. Iloneoside, an antimalarial pregnane glycoside isolated from Gongronema latifolium leaf, potentiates the activity of chloroquine against multidrug resistant Plasmodium falciparum. Mol Biochem Parasitol 2022; 249:111474. [DOI: 10.1016/j.molbiopara.2022.111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 10/18/2022]
|
24
|
Dong L, Qu X, Zhao Y, Wang B. Prediction of Binding Free Energy of Protein-Ligand Complexes with a Hybrid Molecular Mechanics/Generalized Born Surface Area and Machine Learning Method. ACS OMEGA 2021; 6:32938-32947. [PMID: 34901645 PMCID: PMC8655939 DOI: 10.1021/acsomega.1c04996] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Accurate prediction of protein-ligand binding free energies is important in enzyme engineering and drug discovery. The molecular mechanics/generalized Born surface area (MM/GBSA) approach is widely used to estimate ligand-binding affinities, but its performance heavily relies on the accuracy of its energy components. A hybrid strategy combining MM/GBSA and machine learning (ML) has been developed to predict the binding free energies of protein-ligand systems. Based on the MM/GBSA energy terms and several features associated with protein-ligand interactions, our ML-based scoring function, GXLE, shows much better performance than MM/GBSA without entropy. In particular, the good transferability of the GXLE model is highlighted by its good performance in ranking power for prediction of the binding affinity of different ligands for either the docked structures or crystal structures. The GXLE scoring function and its code are freely available and can be used to correct the binding free energies computed by MM/GBSA.
Collapse
Affiliation(s)
- Lina Dong
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| | - Xiaoyang Qu
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| | - Yuan Zhao
- The
Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R.
China
| | - Binju Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| |
Collapse
|
25
|
Li YP, Mikrani R, Hu YF, Faran Ashraf Baig MM, Abbas M, Akhtar F, Xu M. Research progress of phosphatidylinositol 4-kinase and its inhibitors in inflammatory diseases. Eur J Pharmacol 2021; 907:174300. [PMID: 34217706 DOI: 10.1016/j.ejphar.2021.174300] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023]
Abstract
Phosphatidylinositol 4-kinase (PI4K) is a lipid kinase that can catalyze the transfer of phosphate group from ATP to the inositol ring of phosphatidylinositol (PtdIns) resulting in the phosphorylation of PtdIns at 4-OH sites, to generate phosphatidylinositol 4-phosphate (PI4P). Studies on biological functions reveal that PI4K is closely related to the occurrence and development of various inflammatory diseases such as obesity, cancer, viral infections, malaria, Alzheimer's disease, etc. PI4K-related inhibitors have been found to have the effects of inhibiting virus replication, anti-cancer, treating malaria and reducing rejection in organ transplants, among which MMV390048, an anti-malaria drug, has entered phase II clinical trial. This review discusses the classification, structure, distribution and related inhibitors of PI4K and their role in the progression of cancer, viral replication, and other inflammation induced diseases to explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Yan-Ping Li
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Reyaj Mikrani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Yi-Fan Hu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mirza Muhammad Faran Ashraf Baig
- Laboratory of Biomedical Engineering for Novel Bio-functional and Pharmaceutical Nano-materials, Prince Philip Dental Hospital, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Muhammad Abbas
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Fahad Akhtar
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
26
|
Highland CM, Fromme JC. Arf1 directly recruits the Pik1-Frq1 PI4K complex to regulate the final stages of Golgi maturation. Mol Biol Cell 2021; 32:1064-1080. [PMID: 33788598 PMCID: PMC8101487 DOI: 10.1091/mbc.e21-02-0069] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
Proper Golgi complex function depends on the activity of Arf1, a GTPase whose effectors assemble and transport outgoing vesicles. Phosphatidylinositol 4-phosphate (PI4P) generated at the Golgi by the conserved PI 4-kinase Pik1 (PI4KIIIβ) is also essential for Golgi function, although its precise roles in vesicle formation are less clear. Arf1 has been reported to regulate PI4P production, but whether Pik1 is a direct Arf1 effector is not established. Using a combination of live-cell time-lapse imaging analyses, acute PI4P depletion experiments, and in vitro protein-protein interaction assays on Golgi-mimetic membranes, we present evidence for a model in which Arf1 initiates the final stages of Golgi maturation by tightly controlling PI4P production through direct recruitment of the Pik1-Frq1 PI4-kinase complex. This PI4P serves as a critical signal for AP-1 and secretory vesicle formation, the final events at maturing Golgi compartments. This work therefore establishes the regulatory and temporal context surrounding Golgi PI4P production and its precise roles in Golgi maturation.
Collapse
Affiliation(s)
- Carolyn M. Highland
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - J. Christopher Fromme
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
27
|
Wong LH, Edgar JR, Martello A, Ferguson BJ, Eden ER. Exploiting Connections for Viral Replication. Front Cell Dev Biol 2021; 9:640456. [PMID: 33816489 PMCID: PMC8012536 DOI: 10.3389/fcell.2021.640456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the COVID-19 (coronavirus disease 2019) pandemic, is a positive strand RNA (+RNA) virus. Like other +RNA viruses, SARS-CoV-2 is dependent on host cell metabolic machinery to survive and replicate, remodeling cellular membranes to generate sites of viral replication. Viral RNA-containing double-membrane vesicles (DMVs) are a striking feature of +RNA viral replication and are abundant in SARS-CoV-2-infected cells. Their generation involves rewiring of host lipid metabolism, including lipid biosynthetic pathways. Viruses can also redirect lipids from host cell organelles; lipid exchange at membrane contact sites, where the membranes of adjacent organelles are in close apposition, has been implicated in the replication of several +RNA viruses. Here we review current understanding of DMV biogenesis. With a focus on the exploitation of contact site machinery by +RNA viruses to generate replication organelles, we discuss evidence that similar mechanisms support SARS-CoV-2 replication, protecting its RNA from the host cell immune response.
Collapse
Affiliation(s)
| | - James R. Edgar
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Brian J. Ferguson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Emily R. Eden
- UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
28
|
Arendse LB, Wyllie S, Chibale K, Gilbert IH. Plasmodium Kinases as Potential Drug Targets for Malaria: Challenges and Opportunities. ACS Infect Dis 2021; 7:518-534. [PMID: 33590753 PMCID: PMC7961706 DOI: 10.1021/acsinfecdis.0c00724] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 12/30/2022]
Abstract
Protein and phosphoinositide kinases have been successfully exploited as drug targets in various disease areas, principally in oncology. In malaria, several protein kinases are under investigation as potential drug targets, and an inhibitor of Plasmodium phosphatidylinositol 4-kinase type III beta (PI4KIIIβ) is currently in phase 2 clinical studies. In this Perspective, we review the potential of kinases as drug targets for the treatment of malaria. Kinases are known to be readily druggable, and many are essential for parasite survival. A key challenge in the design of Plasmodium kinase inhibitors is obtaining selectivity over the corresponding human orthologue(s) and other human kinases due to the highly conserved nature of the shared ATP binding site. Notwithstanding this, there are some notable differences between the Plasmodium and human kinome that may be exploitable. There is also the potential for designed polypharmacology, where several Plasmodium kinases are inhibited by the same drug. Prior to starting the drug discovery process, it is important to carefully assess potential kinase targets to ensure that the inhibition of the desired kinase will kill the parasites in the required life-cycle stages with a sufficiently fast rate of kill. Here, we highlight key target attributes and experimental approaches to consider and summarize the progress that has been made targeting Plasmodium PI4KIIIβ, cGMP-dependent protein kinase, and cyclin-dependent-like kinase 3.
Collapse
Affiliation(s)
- Lauren B. Arendse
- Drug
Discovery and Development Centre (H3D), South African Medical Research
Council Drug Discovery and Development Research Unit, Department of
Chemistry, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town, Western Cape 7701, South Africa
| | - Susan Wyllie
- Wellcome
Centre for Anti-Infectives Research, Division of Biological Chemistry
and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Kelly Chibale
- Drug
Discovery and Development Centre (H3D), South African Medical Research
Council Drug Discovery and Development Research Unit, Department of
Chemistry, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town, Western Cape 7701, South Africa
| | - Ian H. Gilbert
- Wellcome
Centre for Anti-Infectives Research, Division of Biological Chemistry
and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
29
|
Jackson T, Belsham GJ. Picornaviruses: A View from 3A. Viruses 2021; 13:v13030456. [PMID: 33799649 PMCID: PMC7999760 DOI: 10.3390/v13030456] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Picornaviruses are comprised of a positive-sense RNA genome surrounded by a protein shell (or capsid). They are ubiquitous in vertebrates and cause a wide range of important human and animal diseases. The genome encodes a single large polyprotein that is processed to structural (capsid) and non-structural proteins. The non-structural proteins have key functions within the viral replication complex. Some, such as 3Dpol (the RNA dependent RNA polymerase) have conserved functions and participate directly in replicating the viral genome, whereas others, such as 3A, have accessory roles. The 3A proteins are highly divergent across the Picornaviridae and have specific roles both within and outside of the replication complex, which differ between the different genera. These roles include subverting host proteins to generate replication organelles and inhibition of cellular functions (such as protein secretion) to influence virus replication efficiency and the host response to infection. In addition, 3A proteins are associated with the determination of host range. However, recent observations have challenged some of the roles assigned to 3A and suggest that other viral proteins may carry them out. In this review, we revisit the roles of 3A in the picornavirus life cycle. The 3AB precursor and mature 3A have distinct functions during viral replication and, therefore, we have also included discussion of some of the roles assigned to 3AB.
Collapse
Affiliation(s)
- Terry Jackson
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, UK;
| | - Graham J. Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Correspondence:
| |
Collapse
|
30
|
Tábara LC, Morris JL, Prudent J. The Complex Dance of Organelles during Mitochondrial Division. Trends Cell Biol 2021; 31:241-253. [PMID: 33446409 DOI: 10.1016/j.tcb.2020.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/28/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
Mitochondria are dynamic organelles that undergo cycles of fission and fusion events depending on cellular requirements. During mitochondrial division, the GTPase dynamin-related protein-1 is recruited to endoplasmic reticulum (ER)-induced mitochondrial constriction sites where it drives fission. However, the events required to complete scission of mitochondrial membranes are not well understood. Here, we emphasize the recently described roles for Golgi-derived phosphatidylinositol 4-phosphate (PI4P)-containing vesicles in the last steps of mitochondrial division. We then propose how trans-Golgi network vesicles at mitochondria-ER contact sites and PI4P generation could mechanistically execute mitochondrial division, by recruiting PI4P effectors and/or the actin nucleation machinery. Finally, we speculate on mechanisms to explain why such a complex dance of different organelles is required to facilitate the remodelling of mitochondrial membranes.
Collapse
Affiliation(s)
- Luis-Carlos Tábara
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Jordan L Morris
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
31
|
Kučka M, Gonzalez-Iglesias AE, Tomić M, Prévide RM, Smiljanic K, Sokanovic SJ, Fletcher PA, Sherman A, Balla T, Stojilkovic SS. Calcium-Prolactin Secretion Coupling in Rat Pituitary Lactotrophs Is Controlled by PI4-Kinase Alpha. Front Endocrinol (Lausanne) 2021; 12:790441. [PMID: 35058881 PMCID: PMC8764672 DOI: 10.3389/fendo.2021.790441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
The role of calcium, but not of other intracellular signaling molecules, in the release of pituitary hormones by exocytosis is well established. Here, we analyzed the contribution of phosphatidylinositol kinases (PIKs) to calcium-driven prolactin (PRL) release in pituitary lactotrophs: PI4Ks - which control PI4P production, PIP5Ks - which synthesize PI(4, 5)P2 by phosphorylating the D-5 position of the inositol ring of PI4P, and PI3KCs - which phosphorylate PI(4, 5)P2 to generate PI(3, 4, 5)P3. We used common and PIK-specific inhibitors to evaluate the strength of calcium-secretion coupling in rat lactotrophs. Gene expression was analyzed by single-cell RNA sequencing and qRT-PCR analysis; intracellular and released hormones were assessed by radioimmunoassay and ELISA; and single-cell calcium signaling was recorded by Fura 2 imaging. Single-cell RNA sequencing revealed the expression of Pi4ka, Pi4kb, Pi4k2a, Pi4k2b, Pip5k1a, Pip5k1c, and Pik3ca, as well as Pikfyve and Pip4k2c, in lactotrophs. Wortmannin, a PI3K and PI4K inhibitor, but not LY294002, a PI3K inhibitor, blocked spontaneous action potential driven PRL release with a half-time of ~20 min when applied in 10 µM concentration, leading to accumulation of intracellular PRL content. Wortmannin also inhibited increase in PRL release by high potassium, the calcium channel agonist Bay K8644, and calcium mobilizing thyrotropin-releasing hormone without affecting accompanying calcium signaling. GSK-A1, a specific inhibitor of PI4KA, also inhibited calcium-driven PRL secretion without affecting calcium signaling and Prl expression. In contrast, PIK93, a specific inhibitor of PI4KB, and ISA2011B and UNC3230, specific inhibitors of PIP5K1A and PIP5K1C, respectively, did not affect PRL release. These experiments revealed a key role of PI4KA in calcium-secretion coupling in pituitary lactotrophs downstream of voltage-gated and PI(4, 5)P2-dependent calcium signaling.
Collapse
Affiliation(s)
- Marek Kučka
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Arturo E. Gonzalez-Iglesias
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Melanija Tomić
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Rafael M. Prévide
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Kosara Smiljanic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Srdjan J. Sokanovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Patrick A. Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Tamas Balla
- Section on Molecular Signal Transduction, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Stanko S. Stojilkovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Stanko S. Stojilkovic,
| |
Collapse
|
32
|
Jenkins ML, Harris NJ, Dalwadi U, Fleming KD, Ziemianowicz DS, Rafiei A, Martin EM, Schriemer DC, Yip CK, Burke JE. The substrate specificity of the human TRAPPII complex's Rab-guanine nucleotide exchange factor activity. Commun Biol 2020; 3:735. [PMID: 33277614 PMCID: PMC7719173 DOI: 10.1038/s42003-020-01459-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
The TRAnsport Protein Particle (TRAPP) complexes act as Guanine nucleotide exchange factors (GEFs) for Rab GTPases, which are master regulators of membrane trafficking in eukaryotic cells. In metazoans, there are two large multi-protein TRAPP complexes: TRAPPII and TRAPPIII, with the TRAPPII complex able to activate both Rab1 and Rab11. Here we present detailed biochemical characterisation of Rab-GEF specificity of the human TRAPPII complex, and molecular insight into Rab binding. GEF assays of the TRAPPII complex against a panel of 20 different Rab GTPases revealed GEF activity on Rab43 and Rab19. Electron microscopy and chemical cross-linking revealed the architecture of mammalian TRAPPII. Hydrogen deuterium exchange MS showed that Rab1, Rab11 and Rab43 share a conserved binding interface. Clinical mutations in Rab11, and phosphomimics of Rab43, showed decreased TRAPPII GEF mediated exchange. Finally, we designed a Rab11 mutation that maintained TRAPPII-mediated GEF activity while decreasing activity of the Rab11-GEF SH3BP5, providing a tool to dissect Rab11 signalling. Overall, our results provide insight into the GTPase specificity of TRAPPII, and how clinical mutations disrupt this regulation. Here the authors reveal unique structural organization of the mammalian TRAPPII complex, which is critical in regulating membrane trafficking. They find that TRAPPII serves as a guanine nucleotide exchange factor for unexpected Rab GTPases such as Rab43 and Rab19.
Collapse
Affiliation(s)
- Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Udit Dalwadi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Kaelin D Fleming
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Daniel S Ziemianowicz
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Atefeh Rafiei
- Department of Chemistry, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Emily M Martin
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Department of Chemistry, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada. .,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
33
|
The 14-3-3 Proteins as Important Allosteric Regulators of Protein Kinases. Int J Mol Sci 2020; 21:ijms21228824. [PMID: 33233473 PMCID: PMC7700312 DOI: 10.3390/ijms21228824] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphorylation by kinases governs many key cellular and extracellular processes, such as transcription, cell cycle progression, differentiation, secretion and apoptosis. Unsurprisingly, tight and precise kinase regulation is a prerequisite for normal cell functioning, whereas kinase dysregulation often leads to disease. Moreover, the functions of many kinases are regulated through protein–protein interactions, which in turn are mediated by phosphorylated motifs and often involve associations with the scaffolding and chaperon protein 14-3-3. Therefore, the aim of this review article is to provide an overview of the state of the art on 14-3-3-mediated kinase regulation, focusing on the most recent mechanistic insights into these important protein–protein interactions and discussing in detail both their structural aspects and functional consequences.
Collapse
|
34
|
Fienberg S, Eyermann CJ, Arendse LB, Basarab GS, McPhail JA, Burke JE, Chibale K. Structural Basis for Inhibitor Potency and Selectivity of Plasmodium falciparum Phosphatidylinositol 4-Kinase Inhibitors. ACS Infect Dis 2020; 6:3048-3063. [PMID: 32966036 DOI: 10.1021/acsinfecdis.0c00566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Plasmodium falciparum phosphatidylinositol 4-kinase (PfPI4K) has emerged as a promising new drug target for novel antimalarial therapeutics. In the absence of a reliable high-resolution three-dimensional structure, a homology model of PfPI4K was built as a tool for structure-based drug design. This homology model has been validated against three distinct chemical series of potent inhibitors using docking and energy minimizations to elucidate the interactions crucial for PI4K inhibition and potent antiplasmodium activity. Despite its potential as an antimalarial target, the similarity between PfPI4K and structurally related human kinases poses a risk for human off-target kinase activity and associated toxicity. Comparative docking between PfPI4K and human phosphoinositide kinases (PIKs) presents compelling evidence for the origins of selectivity. This in-depth analysis of the PfPI4K homology model, the binding modes of the inhibitors, and the interactions responsible for selectivity over human kinases provides a powerful template for future optimization of Plasmodium PI4K inhibitors.
Collapse
Affiliation(s)
- Stephen Fienberg
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Charles J. Eyermann
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Lauren B. Arendse
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town Faculty of Health Science, Observatory, Cape Town 7935, South Africa
| | - Gregory S. Basarab
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Jacob A. McPhail
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - John E. Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town Faculty of Health Science, Observatory, Cape Town 7935, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
35
|
Myelination of peripheral nerves is controlled by PI4KB through regulation of Schwann cell Golgi function. Proc Natl Acad Sci U S A 2020; 117:28102-28113. [PMID: 33106410 DOI: 10.1073/pnas.2007432117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Better understanding myelination of peripheral nerves would benefit patients affected by peripheral neuropathies, including Charcot-Marie-Tooth disease. Little is known about the role the Golgi compartment plays in Schwann cell (SC) functions. Here, we studied the role of Golgi in myelination of peripheral nerves in mice through SC-specific genetic inactivation of phosphatidylinositol 4-kinase beta (PI4KB), a Golgi-associated lipid kinase. Sciatic nerves of such mice showed thinner myelin of large diameter axons and gross aberrations in myelin organization affecting the nodes of Ranvier, the Schmidt-Lanterman incisures, and Cajal bands. Nonmyelinating SCs showed a striking inability to engulf small diameter nerve fibers. SCs of mutant mice showed a distorted Golgi morphology and disappearance of OSBP at the cis-Golgi compartment, together with a complete loss of GOLPH3 from the entire Golgi. Accordingly, the cholesterol and sphingomyelin contents of sciatic nerves were greatly reduced and so was the number of caveolae observed in SCs. Although the conduction velocity of sciatic nerves of mutant mice showed an 80% decrease, the mice displayed only subtle impairment in their motor functions. Our analysis revealed that Golgi functions supported by PI4KB are critically important for proper myelination through control of lipid metabolism, protein glycosylation, and organization of microvilli in the nodes of Ranvier of peripheral nerves.
Collapse
|
36
|
Carriles AA, Mills A, Muñoz-Alonso MJ, Gutiérrez D, Domínguez JM, Hermoso JA, Gago F. Structural Cues for Understanding eEF1A2 Moonlighting. Chembiochem 2020; 22:374-391. [PMID: 32875694 DOI: 10.1002/cbic.202000516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/01/2020] [Indexed: 12/16/2022]
Abstract
Spontaneous mutations in the EEF1A2 gene cause epilepsy and severe neurological disabilities in children. The crystal structure of eEF1A2 protein purified from rabbit skeletal muscle reveals a post-translationally modified dimer that provides information about the sites of interaction with numerous binding partners, including itself, and maps these mutations onto the dimer and tetramer interfaces. The spatial locations of the side chain carboxylates of Glu301 and Glu374, to which phosphatidylethanolamine is uniquely attached via an amide bond, define the anchoring points of eEF1A2 to cellular membranes and interorganellar membrane contact sites. Additional bioinformatic and molecular modeling results provide novel structural insight into the demonstrated binding of eEF1A2 to SH3 domains, the common MAPK docking groove, filamentous actin, and phosphatidylinositol-4 kinase IIIβ. In this new light, the role of eEF1A2 as an ancient, multifaceted, and articulated G protein at the crossroads of autophagy, oncogenesis and viral replication appears very distant from the "canonical" one of delivering aminoacyl-tRNAs to the ribosome that has dominated the scene and much of the thinking for many decades.
Collapse
Affiliation(s)
- Alejandra A Carriles
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano" CSIC, 28006, Madrid, Spain.,Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Scientific Institute San Raffaele, 20132, Milan, Italy
| | - Alberto Mills
- Department of Biomedical Sciences and "Unidad Asociada IQM-CSIC", School of Medicine and Health Sciences, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | - María-José Muñoz-Alonso
- Department of Cell Biology and Pharmacogenomics, PharmaMar S.A.U., 28770, Colmenar Viejo, Madrid, Spain
| | - Dolores Gutiérrez
- Proteomics Unit, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Juan M Domínguez
- Department of Cell Biology and Pharmacogenomics, PharmaMar S.A.U., 28770, Colmenar Viejo, Madrid, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano" CSIC, 28006, Madrid, Spain
| | - Federico Gago
- Department of Biomedical Sciences and "Unidad Asociada IQM-CSIC", School of Medicine and Health Sciences, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
37
|
Lipp NF, Ikhlef S, Milanini J, Drin G. Lipid Exchangers: Cellular Functions and Mechanistic Links With Phosphoinositide Metabolism. Front Cell Dev Biol 2020; 8:663. [PMID: 32793602 PMCID: PMC7385082 DOI: 10.3389/fcell.2020.00663] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/01/2020] [Indexed: 12/28/2022] Open
Abstract
Lipids are amphiphilic molecules that self-assemble to form biological membranes. Thousands of lipid species coexist in the cell and, once combined, define organelle identity. Due to recent progress in lipidomic analysis, we now know how lipid composition is finely tuned in different subcellular regions. Along with lipid synthesis, remodeling and flip-flop, lipid transfer is one of the active processes that regulates this intracellular lipid distribution. It is mediated by Lipid Transfer Proteins (LTPs) that precisely move certain lipid species across the cytosol and between the organelles. A particular subset of LTPs from three families (Sec14, PITP, OSBP/ORP/Osh) act as lipid exchangers. A striking feature of these exchangers is that they use phosphatidylinositol or phosphoinositides (PIPs) as a lipid ligand and thereby have specific links with PIP metabolism and are thus able to both control the lipid composition of cellular membranes and their signaling capacity. As a result, they play pivotal roles in cellular processes such as vesicular trafficking and signal transduction at the plasma membrane. Recent data have shown that some PIPs are used as energy by lipid exchangers to generate lipid gradients between organelles. Here we describe the importance of lipid counter-exchange in the cell, its structural basis, and presumed links with pathologies.
Collapse
Affiliation(s)
- Nicolas-Frédéric Lipp
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Souade Ikhlef
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Julie Milanini
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Guillaume Drin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| |
Collapse
|
38
|
Sternberg AR, Roepe PD. Heterologous Expression, Purification, and Functional Analysis of the Plasmodium falciparum Phosphatidylinositol 4-Kinase IIIβ. Biochemistry 2020; 59:2494-2506. [PMID: 32543181 DOI: 10.1021/acs.biochem.0c00259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recently, we heterologously expressed, purified, and analyzed the function of the sole Plasmodium falciparum phosphatidylinositol 3-kinase (PI3K), found that the enzyme is a "class III" or "Vps34" PI3K, and found that it is irreversibly inhibited by Fe2+-mediated covalent, nonspecific interactions with the leading antimalarial drug, dihydroartemisinin [Hassett, M. R., et al. (2017) Biochemistry 56, 4335-4345]. One of several P. falciparum phosphatidylinositol 4-kinases [putative IIIβ isoform (PfPI4KIIIβ)] has generated similar interest as a druggable target; however, no validation of the mechanism of action for putative PfPI4K inhibitors has yet been possible due to the lack of purified PfPI4KIIIβ. We therefore codon optimized the pfpi4kIIIβ gene, successfully expressed the protein in yeast, and purified an N-lobe catalytic domain PfPI4KIIIβ protein. Using an enzyme-linked immunosorbent assay strategy previously perfected for analysis of PfPI3K (PfVps34), we measured the apparent initial rate, Km,app(ATP), and other enzyme characteristics and found full activity for the construct and that PfPI4KIIIβ activity is most consistent with the class IIIβ designation. Because several novel antimalarial drug candidates with different chemical scaffolds have been proposed to target PfPI4KIIIβ, we titrated enzyme inhibition for these candidates versus purified PfPI4KIIIβ and PfVps34. We also analyzed the activity versus purified PfPI4KIIIβ mutants previously expressed in P. falciparum selected for resistance to these drugs. Interestingly, we found that a putative PfPI4KIIIβ inhibitor currently in advanced trials (MMV390048; MMV '0048) is a potent inhibitor of both PfVps34 and PfPI4KIIIβ. These data are helpful for further preclinical optimization of an exciting new class of P. falciparum PI kinase inhibitor ("PfPIKi") antimalarial drugs.
Collapse
Affiliation(s)
- Anna R Sternberg
- Department of Chemistry and Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, 37th & O Street Northwest, Washington, D.C. 20057, United States
| | - Paul D Roepe
- Department of Chemistry and Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, 37th & O Street Northwest, Washington, D.C. 20057, United States
| |
Collapse
|
39
|
Colodette NM, Franco LS, Maia RC, Fokoue HH, Sant'Anna CMR, Barreiro EJ. Novel phosphatidylinositol 4-kinases III beta (PI4KIIIβ) inhibitors discovered by virtual screening using free energy models. J Comput Aided Mol Des 2020; 34:1091-1103. [PMID: 32601839 PMCID: PMC7324290 DOI: 10.1007/s10822-020-00327-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
Herein, the LASSBio Chemical Library is presented as a valuable source of compounds for screening to identify hits suitable for subsequent hit-to-lead optimization stages. A feature of the LASSBio Chemical Library worth highlighting is the fact that it is a smart library designed by medicinal chemists with pharmacological activity as the main priority. The great majority of the compounds part of this library have shown in vivo activity in animal models, which is an indication that they possess overall favorable bioavailability properties and, hence, adequate pharmacokinetic profiles. This, in turn, is supported by the fact that approximately 85% of the compounds are compliant with Lipinski's rule of five and ca. 95% are compliant with Veber's rules, two important guidelines for oral bioavailability. In this work it is presented a virtual screening methodology combining a pharmacophore-based model and an empirical Gibbs free energy-based model for the ligand-protein interaction to explore the LASSBio Chemical Library as a source of new hits for the inhibition of the phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ) enzyme, which is related to the development of viral infections (including enteroviruses, SARS coronavirus, and hepatitis C virus), cancers and neurological diseases. The approach resulted in the identification of two hits, LASSBio-1799 (7) and LASSBio-1814 (10), which inhibited the target enzyme with IC50 values of 3.66 μM and IC50 and 6.09 μM, respectively. This study also enabled the determination of the structural requirements for interactions with the active site of PI4KIIIβ, demonstrating the importance of both acceptor and donor hydrogen bonding groups for forming interactions with binding site residues Val598 and Lys549.
Collapse
Affiliation(s)
- Natalie M Colodette
- LASSBio - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Avenida Carlos Chagas Filho 373, Rio de Janeiro, RJ, ZIP 21941-910, Brazil.,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Lucas S Franco
- LASSBio - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Avenida Carlos Chagas Filho 373, Rio de Janeiro, RJ, ZIP 21941-910, Brazil.,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Rodolfo C Maia
- LASSBio - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Avenida Carlos Chagas Filho 373, Rio de Janeiro, RJ, ZIP 21941-910, Brazil
| | - Harold H Fokoue
- LASSBio - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Avenida Carlos Chagas Filho 373, Rio de Janeiro, RJ, ZIP 21941-910, Brazil
| | - Carlos Mauricio R Sant'Anna
- LASSBio - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Avenida Carlos Chagas Filho 373, Rio de Janeiro, RJ, ZIP 21941-910, Brazil.,Departamento de Química Fundamental, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Rodovia BR465, km 7, Seropédica, RJ, ZIP 23897-000, Brazil
| | - Eliezer J Barreiro
- LASSBio - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Avenida Carlos Chagas Filho 373, Rio de Janeiro, RJ, ZIP 21941-910, Brazil. .,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro, RJ, Brazil. .,Programa de Pesquisas em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
40
|
Bilodeau P, Jacobsen D, Law-Vinh D, Lee JM. Phosphatidylinositol 4-kinase III beta regulates cell shape, migration, and focal adhesion number. Mol Biol Cell 2020; 31:1904-1916. [PMID: 32583740 PMCID: PMC7525810 DOI: 10.1091/mbc.e19-11-0600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cell shape is regulated by cell adhesion and cytoskeletal and membrane dynamics. Cell shape, adhesion, and motility have a complex relationship and understanding them is important in understanding developmental patterning and embryogenesis. Here we show that the lipid kinase phosphatidylinositol 4-kinase III beta (PI4KIIIβ) regulates cell shape, migration, and focal adhesion (FA) number. PI4KIIIβ generates phosphatidylinositol 4-phosphate (PI4P) from phosphatidylinositol and is highly expressed in a subset of human breast cancers. PI4KIIIβ and the PI4P it generates regulate a variety of cellular functions, ranging from control of Golgi structure, fly fertility, and Akt signaling. Here, we show that loss of PI4KIIIβ expression decreases cell migration and alters cell shape in NIH3T3 fibroblasts. The changes are accompanied by an increase in the number of FA in cells lacking PI4KIIIβ. Furthermore, we find that PI4P-containing vesicles move to the migratory leading edge during migration and that some of these vesicles tether to and fuse with FA. Fusion is associated with FA disassembly. This suggests a novel regulatory role for PI4KIIIβ and PI4P in cell adhesion and cell shape maintenance.
Collapse
Affiliation(s)
- Patricia Bilodeau
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Daniel Jacobsen
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Denise Law-Vinh
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jonathan M Lee
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
41
|
Patil H, Hughes KR, Lemgruber L, Philip N, Dickens N, Starnes GL, Waters AP. Zygote morphogenesis but not the establishment of cell polarity in Plasmodium berghei is controlled by the small GTPase, RAB11A. PLoS Pathog 2020; 16:e1008091. [PMID: 32463831 PMCID: PMC7255598 DOI: 10.1371/journal.ppat.1008091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/29/2020] [Indexed: 11/19/2022] Open
Abstract
Plasmodium species are apicomplexan parasites whose zoites are polarized cells with a marked apical organisation where the organelles associated with host cell invasion and colonization reside. Plasmodium gametes mate in the mosquito midgut to form the spherical and presumed apolar zygote that morphs during the following 24 hours into a polarized, elongated and motile zoite form, the ookinete. Endocytosis-mediated protein transport is generally necessary for the establishment and maintenance of polarity in epithelial cells and neurons, and the small GTPase RAB11A is an important regulator of protein transport via recycling endosomes. PbRAB11A is essential in blood stage asexual of Plasmodium. Therefore, a promoter swap strategy was employed to down-regulate PbRAB11A expression in gametocytes and zygotes of the rodent malaria parasite, Plasmodium berghei which demonstrated the essential role of RAB11A in ookinete development. The approach revealed that lack of PbRAB11A had no effect on gamete production and fertility rates however, the zygote to ookinete transition was almost totally inhibited and transmission through the mosquito was prevented. Lack of PbRAB11A did not prevent meiosis and mitosis, nor the establishment of polarity as indicated by the correct formation and positioning of the Inner Membrane Complex (IMC) and apical complex. However, morphological maturation was prevented and parasites remained spherical and immotile and furthermore, they were impaired in the secretion and distribution of microneme cargo. The data are consistent with the previously proposed model of RAB11A endosome mediated delivery of plasma membrane in Toxoplasma gondii if not its role in IMC formation and implicate it in microneme function.
Collapse
Affiliation(s)
- Harshal Patil
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Katie R. Hughes
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Leandro Lemgruber
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Nisha Philip
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Nicholas Dickens
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - G. Lucas Starnes
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Andrew. P. Waters
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Venugopal K, Chehade S, Werkmeister E, Barois N, Periz J, Lafont F, Tardieux I, Khalife J, Langsley G, Meissner M, Marion S. Rab11A regulates dense granule transport and secretion during Toxoplasma gondii invasion of host cells and parasite replication. PLoS Pathog 2020; 16:e1008106. [PMID: 32463830 PMCID: PMC7255593 DOI: 10.1371/journal.ppat.1008106] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/10/2020] [Indexed: 12/31/2022] Open
Abstract
Toxoplasma gondii possesses an armada of secreted virulent factors that enable parasite invasion and survival into host cells. These factors are contained in specific secretory organelles, the rhoptries, micronemes and dense granules that release their content upon host cell recognition. Dense granules are secreted in a constitutive manner during parasite replication and play a crucial role in modulating host metabolic and immune responses. While the molecular mechanisms triggering rhoptry and microneme release upon host cell adhesion have been well studied, constitutive secretion remains a poorly explored aspect of T. gondii vesicular trafficking. Here, we investigated the role of the small GTPase Rab11A, a known regulator of exocytosis in eukaryotic cells. Our data revealed an essential role of Rab11A in promoting the cytoskeleton driven transport of dense granules and the release of their content into the vacuolar space. Rab11A also regulates transmembrane protein trafficking and localization during parasite replication, indicating a broader role of Rab11A in cargo exocytosis at the plasma membrane. Moreover, we found that Rab11A also regulates extracellular parasite motility and adhesion to host cells. In line with these findings, MIC2 secretion was altered in Rab11A-defective parasites, which also exhibited severe morphological defects. Strikingly, by live imaging we observed a polarized accumulation of Rab11A-positive vesicles and dense granules at the apical pole of extracellular motile and invading parasites suggesting that apically polarized Rab11A-dependent delivery of cargo regulates early secretory events during parasite entry into host cells. Toxoplasma gondii (T. gondii) is a highly prevalent parasite infecting a wide range of animals as well as humans. T. gondii secretes numerous virulent factors contained in specific organelles, termed the rhoptries, micronemes and dense granules. These factors are released upon host cell recognition and enable parasite invasion and subsequent development into an intracellular vacuole. In particular, dense granules contain critical effectors that modulate intrinsic defenses of infected host cells ensuring parasite survival and dissemination. The mechanisms regulating dense granule secretion have not been elucidated. In this study, we unraveled a novel role for the T. gondii GTPase Rab11A in promoting dense granule transport along the parasite cytoskeleton and their content release into the vacuolar space during parasite replication. We also found that T. gondii Rab11A regulates extracellular parasite motility and adhesion to host cells suggesting a broader role in distinct secretory pathways essential for parasite virulence.
Collapse
Affiliation(s)
- Kannan Venugopal
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Sylia Chehade
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Elisabeth Werkmeister
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Nicolas Barois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Javier Periz
- Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Frank Lafont
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Isabelle Tardieux
- Institute for Advanced Biosciences (IAB), Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Jamal Khalife
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Gordon Langsley
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes—Sorbonne Paris Cité, France, INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Markus Meissner
- Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sabrina Marion
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
- * E-mail:
| |
Collapse
|
43
|
Stalder D, Gershlick DC. Direct trafficking pathways from the Golgi apparatus to the plasma membrane. Semin Cell Dev Biol 2020; 107:112-125. [PMID: 32317144 PMCID: PMC7152905 DOI: 10.1016/j.semcdb.2020.04.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
In eukaryotic cells, protein sorting is a highly regulated mechanism important for many physiological events. After synthesis in the endoplasmic reticulum and trafficking to the Golgi apparatus, proteins sort to many different cellular destinations including the endolysosomal system and the extracellular space. Secreted proteins need to be delivered directly to the cell surface. Sorting of secreted proteins from the Golgi apparatus has been a topic of interest for over thirty years, yet there is still no clear understanding of the machinery that forms the post-Golgi carriers. Most evidence points to these post-Golgi carriers being tubular pleomorphic structures that bud from the trans-face of the Golgi. In this review, we present the background studies and highlight the key components of this pathway, we then discuss the machinery implicated in the formation of these carriers, their translocation across the cytosol, and their fusion at the plasma membrane.
Collapse
Key Words
- ATP, adenosine triphosphate
- BFA, Brefeldin A
- CARTS, CARriers of the TGN to the cell Surface
- CI-MPR, cation-independent mannose-6 phosphate receptor
- Constitutive Secretion
- CtBP3/BARS, C-terminus binding protein 3/BFA adenosine diphosphate–ribosylated substrate
- ER, endoplasmic reticulum
- GPI-anchored proteins, glycosylphosphatidylinositol-anchored proteins
- GlcCer, glucosylceramidetol
- Golgi to plasma membrane sorting
- PAUF, pancreatic adenocarcinoma up-regulated factor
- PKD, Protein Kinase D
- RUSH, retention using selective hooks
- SBP, streptavidin-binding peptide
- SM, sphingomyelin
- SNARE, soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor
- SPCA1, secretory pathway calcium ATPase 1
- Secretion
- TGN, trans-Golgi Network
- TIRF, total internal reflection fluorescence
- VSV, vesicular stomatitis virus
- pleomorphic tubular carriers
- post-Golgi carriers
- ts, temperature sensitive
Collapse
Affiliation(s)
- Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
44
|
Abstract
Posttranslational modifications (PTMs) are important physiological means to regulate the activities and structures of central regulatory proteins in health and disease. Small GTPases have been recognized as important molecules that are targeted by PTMs during infections of mammalian cells by bacterial pathogens. The enzymes DrrA/SidM and AnkX from Legionella pneumophila AMPylate and phosphocholinate Rab1b during infection, respectively. Cdc42 is AMPylated by IbpA from Histophilus somni at tyrosine 32 or by VopS from Vibrio parahaemolyticus at threonine 35. These modifications take place in the important regulatory switch I or switch II regions of the GTPases. Since Rab1b and Cdc42 are central regulators of intracellular vesicular trafficking and of the actin cytoskeleton, their modifications by bacterial pathogens have a profound impact on the course of infection. Here, we addressed the biochemical and structural consequences of GTPase AMPylation and phosphocholination. By combining biochemical experiments and NMR analysis, we demonstrate that AMPylation can overrule the activity state of Rab1b that is commonly dictated by binding to guanosine diphosphate or guanosine triphosphate. Thus, PTMs may exert conformational control over small GTPases and may add another previously unrecognized layer of activity control to this important regulatory protein family.
Collapse
|
45
|
McPhail JA, Lyoo H, Pemberton JG, Hoffmann RM, van Elst W, Strating JRPM, Jenkins ML, Stariha JTB, Powell CJ, Boulanger MJ, Balla T, van Kuppeveld FJM, Burke JE. Characterization of the c10orf76-PI4KB complex and its necessity for Golgi PI4P levels and enterovirus replication. EMBO Rep 2020; 21:e48441. [PMID: 31829496 PMCID: PMC7001497 DOI: 10.15252/embr.201948441] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/25/2019] [Accepted: 11/11/2019] [Indexed: 11/09/2022] Open
Abstract
The lipid kinase PI4KB, which generates phosphatidylinositol 4-phosphate (PI4P), is a key enzyme in regulating membrane transport and is also hijacked by multiple picornaviruses to mediate viral replication. PI4KB can interact with multiple protein binding partners, which are differentially manipulated by picornaviruses to facilitate replication. The protein c10orf76 is a PI4KB-associated protein that increases PI4P levels at the Golgi and is essential for the viral replication of specific enteroviruses. We used hydrogen-deuterium exchange mass spectrometry to characterize the c10orf76-PI4KB complex and reveal that binding is mediated by the kinase linker of PI4KB, with formation of the heterodimeric complex modulated by PKA-dependent phosphorylation. Complex-disrupting mutations demonstrate that PI4KB is required for membrane recruitment of c10orf76 to the Golgi, and that an intact c10orf76-PI4KB complex is required for the replication of c10orf76-dependent enteroviruses. Intriguingly, c10orf76 also contributed to proper Arf1 activation at the Golgi, providing a putative mechanism for the c10orf76-dependent increase in PI4P levels at the Golgi.
Collapse
Affiliation(s)
- Jacob A McPhail
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanada
| | - Heyrhyoung Lyoo
- Department of Infectious Diseases & ImmunologyVirology DivisionFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Joshua G Pemberton
- Section on Molecular Signal TransductionEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Reece M Hoffmann
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanada
| | - Wendy van Elst
- Department of Infectious Diseases & ImmunologyVirology DivisionFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Jeroen RPM Strating
- Department of Infectious Diseases & ImmunologyVirology DivisionFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Meredith L Jenkins
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanada
| | - Jordan TB Stariha
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanada
| | - Cameron J Powell
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanada
| | - Martin J Boulanger
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanada
| | - Tamas Balla
- Section on Molecular Signal TransductionEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Frank JM van Kuppeveld
- Department of Infectious Diseases & ImmunologyVirology DivisionFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - John E Burke
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanada
| |
Collapse
|
46
|
McPhail JA, Burke JE. Drugging the Phosphoinositide 3-Kinase (PI3K) and Phosphatidylinositol 4-Kinase (PI4K) Family of Enzymes for Treatment of Cancer, Immune Disorders, and Viral/Parasitic Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:203-222. [DOI: 10.1007/978-3-030-50621-6_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Anandapadamanaban M, Masson GR, Perisic O, Berndt A, Kaufman J, Johnson CM, Santhanam B, Rogala KB, Sabatini DM, Williams RL. Architecture of human Rag GTPase heterodimers and their complex with mTORC1. Science 2019; 366:203-210. [PMID: 31601764 PMCID: PMC6795536 DOI: 10.1126/science.aax3939] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
The Rag guanosine triphosphatases (GTPases) recruit the master kinase mTORC1 to lysosomes to regulate cell growth and proliferation in response to amino acid availability. The nucleotide state of Rag heterodimers is critical for their association with mTORC1. Our cryo-electron microscopy structure of RagA/RagC in complex with mTORC1 shows the details of RagA/RagC binding to the RAPTOR subunit of mTORC1 and explains why only the RagAGTP/RagCGDP nucleotide state binds mTORC1. Previous kinetic studies suggested that GTP binding to one Rag locks the heterodimer to prevent GTP binding to the other. Our crystal structures and dynamics of RagA/RagC show the mechanism for this locking and explain how oncogenic hotspot mutations disrupt this process. In contrast to allosteric activation by RHEB, Rag heterodimer binding does not change mTORC1 conformation and activates mTORC1 by targeting it to lysosomes.
Collapse
Affiliation(s)
| | - Glenn R Masson
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Olga Perisic
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Alex Berndt
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | | | - Kacper B Rogala
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | |
Collapse
|
48
|
Aguiar AC, de Sousa LR, Garcia CR, Oliva G, Guido RV. New Molecular Targets and Strategies for Antimalarial Discovery. Curr Med Chem 2019; 26:4380-4402. [DOI: 10.2174/0929867324666170830103003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023]
Abstract
Malaria remains a major health problem, especially because of the emergence
of resistant P. falciparum strains to artemisinin derivatives. In this context, safe and affordable
antimalarial drugs are desperately needed. New proteins have been investigated
as molecular targets for research and development of innovative compounds with welldefined
mechanism of action. In this review, we highlight genetically and clinically validated
plasmodial proteins as drug targets for the next generation of therapeutics. The enzymes
described herein are involved in hemoglobin hydrolysis, the invasion process,
elongation factors for protein synthesis, pyrimidine biosynthesis, post-translational modifications
such as prenylation, phosphorylation and histone acetylation, generation of ATP
in mitochondrial metabolism and aminoacylation of RNAs. Significant advances on proteomics,
genetics, structural biology, computational and biophysical methods provided
invaluable molecular and structural information about these drug targets. Based on this,
several strategies and models have been applied to identify and improve lead compounds.
This review presents the recent progresses in the discovery of antimalarial drug candidates,
highlighting the approaches, challenges, and perspectives to deliver affordable, safe
and low single-dose medicines to treat malaria.
Collapse
Affiliation(s)
- Anna Caroline Aguiar
- Sao Carlos Institute of Physics, University of Sao Paulo, PO Box 369, 13560-970, Sao Carlos, SP, Brazil
| | - Lorena R.F. de Sousa
- Sao Carlos Institute of Physics, University of Sao Paulo, PO Box 369, 13560-970, Sao Carlos, SP, Brazil
| | - Celia R.S. Garcia
- Physiology Department, Bioscience Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Glaucius Oliva
- Sao Carlos Institute of Physics, University of Sao Paulo, PO Box 369, 13560-970, Sao Carlos, SP, Brazil
| | - Rafael V.C. Guido
- Sao Carlos Institute of Physics, University of Sao Paulo, PO Box 369, 13560-970, Sao Carlos, SP, Brazil
| |
Collapse
|
49
|
The Great Escape: how phosphatidylinositol 4-kinases and PI4P promote vesicle exit from the Golgi (and drive cancer). Biochem J 2019; 476:2321-2346. [DOI: 10.1042/bcj20180622] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is a membrane glycerophospholipid and a major regulator of the characteristic appearance of the Golgi complex as well as its vesicular trafficking, signalling and metabolic functions. Phosphatidylinositol 4-kinases, and in particular the PI4KIIIβ isoform, act in concert with PI4P to recruit macromolecular complexes to initiate the biogenesis of trafficking vesicles for several Golgi exit routes. Dysregulation of Golgi PI4P metabolism and the PI4P protein interactome features in many cancers and is often associated with tumour progression and a poor prognosis. Increased expression of PI4P-binding proteins, such as GOLPH3 or PITPNC1, induces a malignant secretory phenotype and the release of proteins that can remodel the extracellular matrix, promote angiogenesis and enhance cell motility. Aberrant Golgi PI4P metabolism can also result in the impaired post-translational modification of proteins required for focal adhesion formation and cell–matrix interactions, thereby potentiating the development of aggressive metastatic and invasive tumours. Altered expression of the Golgi-targeted PI 4-kinases, PI4KIIIβ, PI4KIIα and PI4KIIβ, or the PI4P phosphate Sac1, can also modulate oncogenic signalling through effects on TGN-endosomal trafficking. A Golgi trafficking role for a PIP 5-kinase has been recently described, which indicates that PI4P is not the only functionally important phosphoinositide at this subcellular location. This review charts new developments in our understanding of phosphatidylinositol 4-kinase function at the Golgi and how PI4P-dependent trafficking can be deregulated in malignant disease.
Collapse
|
50
|
Gillingham AK, Bertram J, Begum F, Munro S. In vivo identification of GTPase interactors by mitochondrial relocalization and proximity biotinylation. eLife 2019; 8:45916. [PMID: 31294692 PMCID: PMC6639074 DOI: 10.7554/elife.45916] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
The GTPases of the Ras superfamily regulate cell growth, membrane traffic and the cytoskeleton, and a wide range of diseases are caused by mutations in particular members. They function as switchable landmarks with the active GTP-bound form recruiting to the membrane a specific set of effector proteins. The GTPases are precisely controlled by regulators that promote acquisition of GTP (GEFs) or its hydrolysis to GDP (GAPs). We report here MitoID, a method for identifying effectors and regulators by performing in vivo proximity biotinylation with mitochondrially-localized forms of the GTPases. Applying this to 11 human Rab GTPases identified many known effectors and GAPs, as well as putative novel effectors, with examples of the latter validated for Rab2, Rab5, Rab9 and Rab11. MitoID can also efficiently identify effectors and GAPs of Rho and Ras family GTPases such as Cdc42, RhoA, Rheb, and N-Ras, and can identify GEFs by use of GDP-bound forms.
Collapse
Affiliation(s)
| | - Jessie Bertram
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Farida Begum
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|