1
|
Brunschwiler F, Nakka S, Guerra J, Guarda G. A Ménage à trois: NLRC5, immunity, and metabolism. Front Immunol 2024; 15:1426620. [PMID: 39035010 PMCID: PMC11257985 DOI: 10.3389/fimmu.2024.1426620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
The nucleotide-binding and oligomerization domain-like receptors (NLRs) NLR family CARD domain-containing protein 5 (NLRC5) and Class II Major Histocompatibility Complex Transactivator (CIITA) are transcriptional regulators of major histocompatibility complex (MHC) class I and class II genes, respectively. MHC molecules are central players in our immune system, allowing the detection of hazardous 'non-self' antigens and, thus, the recognition and elimination of infected or transformed cells from the organism. Recently, CIITA and NLRC5 have emerged as regulators of selected genes of the butyrophilin (BTN) family that interestingly are located in the extended MHC locus. BTNs are transmembrane proteins exhibiting structural similarities to B7 family co-modulatory molecules. The family member BTN2A2, which indeed contributes to the control of T cell activation, was found to be transcriptionally regulated by CIITA. NLRC5 emerged instead as an important regulator of the BTN3A1, BTN3A2, and BTN3A3 genes. Together with BTN2A1, BTN3As regulate non-conventional Vγ9Vδ2 T cell responses triggered by selected metabolites of microbial origin or accumulating in hematologic cancer cells. Even if endogenous metabolites conform to the canonical definition of 'self', metabolically abnormal cells can represent a danger for the organism and should be recognized and controlled by immune system cells. Collectively, new data on the role of NLRC5 in the expression of BTN3As link the mechanisms regulating canonical 'non-self' presentation and those marking cells with abnormal metabolic configurations for immune recognition, an evolutionary parallel that we discuss in this perspective review.
Collapse
Affiliation(s)
| | | | - Jessica Guerra
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Greta Guarda
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| |
Collapse
|
2
|
Chou WC, Jha S, Linhoff MW, Ting JPY. The NLR gene family: from discovery to present day. Nat Rev Immunol 2023; 23:635-654. [PMID: 36973360 PMCID: PMC11171412 DOI: 10.1038/s41577-023-00849-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/29/2023]
Abstract
The mammalian NLR gene family was first reported over 20 years ago, although several genes that were later grouped into the family were already known at that time. Although it is widely known that NLRs include inflammasome receptors and/or sensors that promote the maturation of caspase 1, IL-1β, IL-18 and gasdermin D to drive inflammation and cell death, the other functions of NLR family members are less well appreciated by the scientific community. Examples include MHC class II transactivator (CIITA), a master transcriptional activator of MHC class II genes, which was the first mammalian NBD-LRR-containing protein to be identified, and NLRC5, which regulates the expression of MHC class I genes. Other NLRs govern key inflammatory signalling pathways or interferon responses, and several NLR family members serve as negative regulators of innate immune responses. Multiple NLRs regulate the balance of cell death, cell survival, autophagy, mitophagy and even cellular metabolism. Perhaps the least discussed group of NLRs are those with functions in the mammalian reproductive system. The focus of this Review is to provide a synopsis of the NLR family, including both the intensively studied and the underappreciated members. We focus on the function, structure and disease relevance of NLRs and highlight issues that have received less attention in the NLR field. We hope this may serve as an impetus for future research on the conventional and non-conventional roles of NLRs within and beyond the immune system.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Michael W Linhoff
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Structural aspects of the MHC expression control system. Biophys Chem 2022; 284:106781. [PMID: 35228036 PMCID: PMC8941990 DOI: 10.1016/j.bpc.2022.106781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/04/2022] [Accepted: 02/13/2022] [Indexed: 12/11/2022]
Abstract
The major histocompatibility complex (MHC) spans innate and adaptive immunity by presenting antigenic peptides to CD4+ and CD8+ T cells. Multiple transcription factors form an enhanceosome complex on the MHC promoter and recruit transcriptional machinery to activate gene transcription. Immune signals such as interferon-γ (IFN-γ) control MHC level by up-regulating components of the enhanceosome complex. As MHC plays crucial roles in immune regulation, alterations in the MHC enhanceosome structure will alter the pace of rapid immune responses at the transcription level and lead to various diseases related to the immune system. In this review, we discuss the current understanding of the MHC enhanceosome, with a focus on the structures of MHC enhanceosome components and the molecular basis of MHC enhanceosome assembly.
Collapse
|
4
|
Cao X, Cordova AF, Li L. Therapeutic Interventions Targeting Innate Immune Receptors: A Balancing Act. Chem Rev 2021; 122:3414-3458. [PMID: 34870969 DOI: 10.1021/acs.chemrev.1c00716] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The innate immune system is an organism's first line of defense against an onslaught of internal and external threats. The downstream adaptive immune system has been a popular target for therapeutic intervention, while there is a relative paucity of therapeutics targeting the innate immune system. However, the innate immune system plays a critical role in many human diseases, such as microbial infection, cancer, and autoimmunity, highlighting the need for ongoing therapeutic research. In this review, we discuss the major innate immune pathways and detail the molecular strategies underpinning successful therapeutics targeting each pathway as well as previous and ongoing efforts. We will also discuss any recent discoveries that could inform the development of novel therapeutic strategies. As our understanding of the innate immune system continues to develop, we envision that therapies harnessing the power of the innate immune system will become the mainstay of treatment for a wide variety of human diseases.
Collapse
|
5
|
León Machado JA, Steimle V. The MHC Class II Transactivator CIITA: Not (Quite) the Odd-One-Out Anymore among NLR Proteins. Int J Mol Sci 2021; 22:1074. [PMID: 33499042 PMCID: PMC7866136 DOI: 10.3390/ijms22031074] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
In this review, we discuss the major histocompatibility complex (MHC) class II transactivator (CIITA), which is the master regulator of MHC class II gene expression. CIITA is the founding member of the mammalian nucleotide-binding and leucine-rich-repeat (NLR) protein family but stood apart for a long time as the only transcriptional regulator. More recently, it was found that its closest homolog, NLRC5 (NLR protein caspase activation and recruitment domain (CARD)-containing 5), is a regulator of MHC-I gene expression. Both act as non-DNA-binding activators through multiple protein-protein interactions with an MHC enhanceosome complex that binds cooperatively to a highly conserved combinatorial cis-acting module. Thus, the regulation of MHC-II expression is regulated largely through the differential expression of CIITA. In addition to the well-defined role of CIITA in MHC-II GENE regulation, we will discuss several other aspects of CIITA functions, such as its role in cancer, its role as a viral restriction element contributing to intrinsic immunity, and lastly, its very recently discovered role as an inhibitor of Ebola and SARS-Cov-2 virus replication. We will briefly touch upon the recently discovered role of NLRP3 as a transcriptional regulator, which suggests that transcriptional regulation is, after all, not such an unusual feature for NLR proteins.
Collapse
Affiliation(s)
| | - Viktor Steimle
- Département de Biologie, Université de Sherbrooke, 2500 Boul., Sherbrooke, QC J1K 2R1, Canada;
| |
Collapse
|
6
|
Lu XB, Wang ZX, Liu SB, Zhang XY, Lu LF, Li S, Chen DD, Nie P, Zhang YA. Interferon Regulatory Factors 1 and 2 Play Different Roles in MHC II Expression Mediated by CIITA in Grass Carp, Ctenopharyngodon idella. Front Immunol 2019; 10:1106. [PMID: 31191518 PMCID: PMC6540827 DOI: 10.3389/fimmu.2019.01106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/01/2019] [Indexed: 01/22/2023] Open
Abstract
Expression of major histocompatibility complex class II (MHC II) molecules, which determines both the immune repertoire during development and subsequent triggering of immune responses, is always under the control of a unique (MHC class II) transactivator, CIITA. The IFN-γ-inducible MHC II expression has been extensively and thoroughly studied in humans, but not in bony fish. In this study, the characterization of CIITA was identified and its functional domains were analyzed in grass carp. The absence of GAS and E-box in the promoter region of grass carp CIITA, might imply that the cooperative interaction between STAT1 and USF1 to active the CIITA expression, found in mammals, is not present in bony fish. After the transfection of IFN-γ or IFN-γ rel, only IFN-γ could induce MHC II expression mediated by CIITA. Moreover, interferon regulatory factor (IRF) 2, which cooperates with IRF1 to active the CIITA promoter IV expression in mammals, played an antagonistic role to IRF1 in the activation of grass carp CIITA. These data suggested that grass carp, compared with mammals, has both conservative and unique mechanisms in the regulation of MHC II expression.
Collapse
Affiliation(s)
- Xiao-Bing Lu
- Chinese Academy of Sciences, Institute of Hydrobiology, Wuhan, China.,College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhao-Xi Wang
- Chinese Academy of Sciences, Institute of Hydrobiology, Wuhan, China.,College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shu-Bo Liu
- Chinese Academy of Sciences, Institute of Hydrobiology, Wuhan, China.,College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiang-Yang Zhang
- Chinese Academy of Sciences, Institute of Hydrobiology, Wuhan, China.,College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Long-Feng Lu
- Chinese Academy of Sciences, Institute of Hydrobiology, Wuhan, China
| | - Shun Li
- Chinese Academy of Sciences, Institute of Hydrobiology, Wuhan, China
| | - Dan-Dan Chen
- Chinese Academy of Sciences, Institute of Hydrobiology, Wuhan, China
| | - Pin Nie
- Chinese Academy of Sciences, Institute of Hydrobiology, Wuhan, China
| | - Yong-An Zhang
- Chinese Academy of Sciences, Institute of Hydrobiology, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
7
|
Vijayan S, Sidiq T, Yousuf S, van den Elsen PJ, Kobayashi KS. Class I transactivator, NLRC5: a central player in the MHC class I pathway and cancer immune surveillance. Immunogenetics 2019; 71:273-282. [PMID: 30706093 DOI: 10.1007/s00251-019-01106-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
Major histocompatibility complex (MHC) class I and class II molecules play critical roles in the activation of the adaptive immune system by presenting antigens to CD8+ and CD4+ T cells, respectively. Although it has been well known that CIITA (MHC class II transactivator), an NLR (nucleotide-binding domain, leucine-rich-repeat containing) protein, as a master regulator of MHC class II gene expression, the mechanism of MHC class I gene transactivation was unclear. Recently, another NLR protein, NLRC5 (NLR family, CARD domain-containing 5), was identified as an MHC class I transactivator (CITA). NLRC5 is a critical regulator for the transcriptional activation of MHC class I genes and other genes involved in the MHC class I antigen presentation pathway. CITA/NLRC5 plays a crucial role in human cancer immunity through the recruitment and activation of tumor killing CD8+ T cells. Here, we discuss the molecular function and mechanism of CITA/NLRC5 in the MHC class I pathway and its role in cancer.
Collapse
Affiliation(s)
- Saptha Vijayan
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Tabasum Sidiq
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Suhail Yousuf
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Peter J van den Elsen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.,Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Koichi S Kobayashi
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, 77843, USA. .,Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| |
Collapse
|
8
|
Tilburgs T, Meissner TB, Ferreira LMR, Mulder A, Musunuru K, Ye J, Strominger JL. NLRP2 is a suppressor of NF-ƙB signaling and HLA-C expression in human trophoblasts†,‡. Biol Reprod 2018; 96:831-842. [PMID: 28340094 DOI: 10.1093/biolre/iox009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/28/2017] [Indexed: 01/06/2023] Open
Abstract
During pregnancy, fetal extravillous trophoblasts (EVT) play a key role in the regulation of maternal T cell and NK cell responses. EVT display a unique combination of human leukocyte antigens (HLA); EVT do not express HLA-A and HLA-B, but do express HLA-C, HLA-E, and HLA-G. The mechanisms establishing this unique HLA expression pattern have not been fully elucidated. The major histocompatibility complex (MHC) class I and class II transcriptional activators NLRC5 and CIITA are expressed neither by EVT nor by the EVT model cell line JEG3, which has an MHC expression pattern identical to that of EVT. Therefore, other MHC regulators must be present to control HLA-C, HLA-E, and HLA-G expression in these cells. CIITA and NLRC5 are both members of the nucleotide-binding domain, leucine-rich repeat (NLR) family of proteins. Another member of this family, NLRP2, is highly expressed by EVT and JEG3, but not in maternal decidual stromal cells. In this study, transcription activator-like effector nuclease technology was used to delete NLRP2 in JEG3. Furthermore, lentiviral delivery of shRNA was used to knockdown NLRP2 in JEG3 and primary EVT. Upon NLRP2 deletion, Tumor Necrosis Factor-α (TNFα)-induced phosphorylation of NF-KB p65 increased in JEG3 and EVT, and more surprisingly a significant increase in constitutive HLA-C expression was observed in JEG3. These data suggest a broader role for NLR family members in the regulation of MHC expression during inflammation, thus forming a bridge between innate and adaptive immune responses. As suppressor of proinflammatory responses, NLRP2 may contribute to preventing unwanted antifetal responses.
Collapse
Affiliation(s)
- Tamara Tilburgs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Torsten B Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Leonardo M R Ferreira
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Arend Mulder
- Department of Immunohematology and Blood transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Kiran Musunuru
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Junqiang Ye
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York, USA
| | - Jack L Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Ellison MA, Gearheart CM, Porter CC, Ambruso DR. IFN-γ alters the expression of diverse immunity related genes in a cell culture model designed to represent maturing neutrophils. PLoS One 2017; 12:e0185956. [PMID: 28982143 PMCID: PMC5628906 DOI: 10.1371/journal.pone.0185956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/24/2017] [Indexed: 12/20/2022] Open
Abstract
The cytokine interferon-γ (IFN-γ) is approved as a drug to treat chronic granulomatous disease (CGD) and osteopetrosis and is also used in hyperimmunoglobulin E syndromes. Patients with CGD have defects in proteins of the NOX2 NADPH oxidase system. This leads to reduced production of microbicidal ROS by PMNs and recurrent life threatening infections. The goal of this study was to better understand how IFN-γ might support phagocyte function in these diseases, and to obtain information that might expand potential uses for IFN-γ. Neutrophils mature in the bone marrow and then enter the blood where they quickly undergo apoptotic cell death with a half-life of only 5–10 hours. Therefore we reasoned that IFN-γ might exert its effects on neutrophils via prolonged exposure to cells undergoing maturation in the marrow rather than by its brief exposure to short-lived circulating cells. To explore this possibility we made use of PLB-985 cells, a myeloblast-like myeloid cell line that can be differentiated into a mature, neutrophil-like state by treatment with various agents including DMSO. In initial studies we investigated transcription and protein expression in PLB-985 cells undergoing maturation in the presence or absence of IFN-γ. We observed IFN-γ induced differences in expression of genes known to be involved in classical aspects of neutrophil function (transmigration, chemotaxis, phagocytosis, killing and pattern recognition) as well as genes involved in apoptosis and other mechanisms that regulating neutrophil number. We also observed differences for genes involved in the major histocompatibility complex I (MHCI) and MHCII systems whose involvement in neutrophil function is controversial and not well defined. Finally, we observed significant changes in expression of genes encoding guanylate binding proteins (Gbps) that are known to have roles in immunity but which have not as yet been linked to neutrophil function. We propose that changes in the expression within these classes of genes could help explain the immune supportive effects of IFN-γ. Next we explored if the effect of IFN-γ on expression of these genes is dependent on whether the cells are undergoing maturation; to do this we compared the effects of IFN-γ on cells cultured with and without DMSO. For a subset of genes the expression level changes caused by IFN-γ were much greater in maturing cells than non-maturing cells. These findings indicate that developmental changes associated with cell maturation can modulate the effects of IFN-γ but that this is gene specific. Since the effects of IFN-γ depend on whether cells are maturing, the gene expression changes observed in this study must be due to more than just prolonged application of IFN-γ and are instead the result of interplay between cell maturation and changes caused by the chemokine. This supports our hypothesis that the effects of IFN-γ on developing neutrophils in the bone marrow may be very different from its effects on mature cells in the blood. Collectively the findings in this study enhance our understanding of the effects of IFN-γ on maturing myeloid cells and indicate possible mechanisms by which this cytokine could support immune function.
Collapse
Affiliation(s)
- Michael A. Ellison
- Department of Pediatrics, University of Colorado Denver, The Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Christy M. Gearheart
- Department of Pediatrics, University of Colorado Denver, The Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Christopher C. Porter
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Daniel R. Ambruso
- Department of Pediatrics, University of Colorado Denver, The Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Pathology, University of Colorado Denver, The Anschutz Medical Campus, Aurora, Colorado, United States of America
- The Center for Cancer and Blood Disorders, Transfusion Services, Children's Hospital Colorado, Aurora, Colorado, United States of America
- Hematology/Oncology and Bone Marrow Transplantation Laboratories, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
10
|
Downs I, Vijayan S, Sidiq T, Kobayashi KS. CITA/NLRC5: A critical transcriptional regulator of MHC class I gene expression. Biofactors 2016; 42:349-57. [PMID: 27087581 DOI: 10.1002/biof.1285] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 01/01/2023]
Abstract
Major histocompatibility complex (MHC) class I and class II molecules play essential roles in the development and activation of the human adaptive immune system. An NLR protein, CIITA (MHC class II transactivator) has been recognized as a master regulator of MHC class II gene expression, albeit knowledge about the regulatory mechanism of MHC class I gene expression had been limited. Recently identified MHC class I transactivator (CITA), or NLRC5, also belongs to the NLR protein family and constitutes a critical regulator for the transcriptional activation of MHC class I genes. In addition to MHC class I genes, CITA/NLRC5 induces the expression of β2 -microglobulin, TAP1 and LMP2, essential components of the MHC class I antigen presentation pathway. Therefore, CITA/NLRC5 and CIITA are transcriptional regulators that orchestrate the concerted expression of critical components in the MHC class I and class II pathways, respectively. © 2016 BioFactors, 42(4):349-357, 2016.
Collapse
Affiliation(s)
- Isaac Downs
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX
| | - Saptha Vijayan
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX
| | - Tabasum Sidiq
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX
| | - Koichi S Kobayashi
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX
| |
Collapse
|
11
|
Xu Z, Cheng K, Li X, Yang J, Xu S, Cao X, Hu X, Xie W, Yuan L, Ambrose M, Chen G, Mi H, Luo D. Transcriptional and Post-transcriptional Modulation of SQU and KEW Activities in the Control of Dorsal-Ventral Asymmetric Flower Development in Lotus japonicus. MOLECULAR PLANT 2016; 9:722-736. [PMID: 26854849 DOI: 10.1016/j.molp.2016.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 01/16/2016] [Accepted: 01/30/2016] [Indexed: 06/05/2023]
Abstract
In Papilionoideae legume, Lotus japonicus, the development of dorsal-ventral (DV) asymmetric flowers is mainly controlled by two TB1/CYCLOIDEA/PCF (TCP) genes, SQUARED STANDARD (SQU) and KEELED WINGS IN LOTUS (KEW), which determine dorsal and lateral identities, respectively. However, the molecular basis of how these two highly homologous genes orchestrate their diverse functions remains unclear. Here, we analyzed their expression levels, and investigated the transcriptional activities of SQU and KEW. We demonstrated that SQU possesses both activation and repression activities, while KEW acts only as an activator. They form homo- and heterodimers, and then collaboratively regulate their expression at the transcription level. Furthermore, we identified two types of post-transcriptional modifications, phosphorylation and ATP/GTP binding, both of which could affect their transcriptional activities. Mutations in ATP/GTP binding motifs of SQU and KEW lead to failure of phosphorylation, and transgenic plants bearing the mutant proteins display defective DV asymmetric flower development, indicating that the two conjugate modifications are essential for their diverse functions. Altogether, SQU and KEW activities are precisely modulated at both transcription and post-transcription levels, which might link DV asymmetric flower development to different physiological status and/or signaling pathways.
Collapse
Affiliation(s)
- Zhiyong Xu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Modality of LFIA, Research and Application Marketing, Healthcare Group of General Electric, China Technology Park, Shanghai 201203, China
| | - Kai Cheng
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Li
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shilei Xu
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Hospital and Institute, Tianjin 300060, China
| | - Xiangling Cao
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaohe Hu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei Xie
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Mike Ambrose
- Department of Crop Genetics, John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - Genyun Chen
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Da Luo
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
12
|
Abstract
Eukaryotes have evolved strategies to detect microbial intrusion and instruct immune responses to limit damage from infection. Recognition of microbes and cellular damage relies on the detection of microbe-associated molecular patterns (MAMPs, also called PAMPS, or pathogen-associated molecular patterns) and so-called "danger signals" by various families of host pattern recognition receptors (PRRs). Members of the recently identified protein family of nucleotide-binding domain andleucine-rich-repeat-containing proteins (NLR), including Nod1, Nod2, NLRP3, and NLRC4, have been shown to detect specific microbial motifs and danger signals for regulating host inflammatory responses. Moreover, with the discovery that polymorphisms in NOD1, NOD2, NLRP1, and NLRP3 are associated with susceptibility to chronic inflammatory disorders, the view has emerged that NLRs act not only as sensors butalso can serve as signaling platforms for instructing and balancing host immune responses. In this chapter, we explore the functions of these intracellular innate immune receptors and examine their implication in inflammatory diseases.
Collapse
|
13
|
Radian AD, Khare S, Chu LH, Dorfleutner A, Stehlik C. ATP binding by NLRP7 is required for inflammasome activation in response to bacterial lipopeptides. Mol Immunol 2015; 67:294-302. [PMID: 26143398 DOI: 10.1016/j.molimm.2015.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 02/07/2023]
Abstract
Nucleotide-binding oligimerization domain (NOD)-like receptors (NLRs) are pattern recognition receptors (PRRs) involved in innate immune responses. NLRs encode a central nucleotide-binding domain (NBD) consisting of the NAIP, CIITA, HET-E and TP1 (NACHT) domain and the NACHT associated domain (NAD), which facilitates receptor oligomerization and downstream inflammasome signaling. The NBD contains highly conserved regions, known as Walker motifs, that are required for nucleotide binding and hydrolysis. The NLR containing a PYRIN domain (PYD) 7 (NLRP7) has been recently shown to assemble an ASC and caspase-1-containing high molecular weight inflammasome complex in response to microbial acylated lipopeptides and Staphylococcus aureus infection. However, the molecular mechanism responsible for NLRP7 inflammasome activation is still elusive. Here we demonstrate that the NBD of NLRP7 is an ATP binding domain and has ATPase activity. We further show that an intact nucleotide-binding Walker A motif is required for NBD-mediated nucleotide binding and hydrolysis, oligomerization, and NLRP7 inflammasome formation and activity. Accordingly, THP-1 cells expressing a mutated Walker A motif display defective NLRP7 inflammasome activation, interleukin (IL)-1β release and pyroptosis in response to acylated lipopeptides and S. aureus infection. Taken together, our results provide novel insights into the mechanism of NLRP7 inflammasome assembly.
Collapse
Affiliation(s)
- Alexander D Radian
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Driskill Graduate Program in Life Sciences (DGP), Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sonal Khare
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lan H Chu
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Driskill Graduate Program in Life Sciences (DGP), Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
14
|
Fang M, Li P, Wu X, Xu Y. Class II transactivator (CIITA) mediates transcriptional repression of pdk4 gene by interacting with hypermethylated in cancer 1 (HIC1). J Biomed Res 2015; 29:308-15. [PMID: 26243517 PMCID: PMC4547379 DOI: 10.7555/jbr.29.20150055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/09/2015] [Indexed: 12/30/2022] Open
Abstract
Increased accumulation and/or impaired utilization of fatty acid in extra-adipose tissues are implicated in the pathogenesis of insulin resistance and type 2 diabetes. Pyruvate dehydrogenase kinase 4 (Pdk4) is a key enzyme involved in fatty oxidation and energy expenditure, and its expression can be repressed by pro-inflammatory stimuli. Previously, we have shown that class II transactivator (CIITA) mediates the adverse effect of interferon gamma (IFN-γ) in skeletal muscle cells by cooperating with hypermethylated in cancer 1 (HIC1) to repress silent information regulator 1 (SIRT1) transcription. Building upon this finding, we report here that CIITA interacted with HIC1 via the GTP-binding domain (GBD) while HIC1 interacted with CIITA via the BTB/POZ domain. The GBD domain was required for CIITA to repress SIRT1 transcription probably acting as a bridge for CIITA to bind to HIC1 and consequently to bind to the SIRT1 promoter. IFN-γ stimulation, CIITA over-expression, or HIC1 over-expression repressed Pdk4 promoter activity while silencing either CIITA or HIC1 normalized Pdk4 expression in the presence of IFN-γ. An increase in SIRT1 expression or activity partially rescued Pdk4 expression in the presence of CIITA, but SIRT1 inhibition abrogated Pdk4 normalization even in the absence of CIITA. Taken together, our data have identified a HIC1-CIITA-SIRT1 axis that regulates Pdk4 transcription in response to IFN-γ stimulation.
Collapse
Affiliation(s)
- Mingming Fang
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology.,Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, Jiangsu 210029, China
| | - Ping Li
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology.,Department of Gastroenterology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Xiaoyan Wu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology.,Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology.,Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
15
|
Chiu E, Gold T, Fettig V, LeVasseur MT, Cressman DE. Identification of a nuclear export sequence in the MHC CIITA. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:6102-11. [PMID: 25948812 DOI: 10.4049/jimmunol.1402026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 04/02/2015] [Indexed: 01/15/2023]
Abstract
Initiation of an immune response through expression of MHC class II and related genes is under the control of the CIITA. Normally found in both the cytoplasm and nucleus, CIITA is tightly controlled by a variety of posttranslational modifications as well as interactions with other nuclear and cytoplasmic factors, whereas disruption of this dual subcellular localization impairs CIITA functioning and expression of target genes. Although CIITA has well-defined domains necessary for its nuclear import, the region responsible for the translocation of CIITA from the nucleus has not been characterized. In this study, we identify a leucine-rich motif at residues 717-724 that bears strong homology to known nuclear export sequence (NES) domains. Mutation of this region renders CIITA insensitive to treatment with leptomycin B, an inhibitor of nuclear export, whereas fusion of this domain to a heterologous GFP is sufficient to induce its export to the cytoplasm or cause its retention in the nucleus following leptomycin B treatment. Point mutations of specific leucine residues within the NES disrupt the normal subcellular distribution of the full-length CIITA, impair its ability to interact with the nuclear export factor CRM1, and enhance CIITA-induced gene expression from an MHC class II gene promoter. IFN-γ stimulation of class II genes is further enhanced by inhibiting the nuclear export of endogenous CIITA. Collectively, these data demonstrate the first identification of a specific NES within CIITA and place it among the other protein domains that contribute to the posttranslational regulation of CIITA activity.
Collapse
Affiliation(s)
- Emily Chiu
- Department of Biology, Sarah Lawrence College, Bronxville, NY 10708
| | - Theresa Gold
- Department of Biology, Sarah Lawrence College, Bronxville, NY 10708
| | - Veronica Fettig
- Department of Biology, Sarah Lawrence College, Bronxville, NY 10708
| | | | - Drew E Cressman
- Department of Biology, Sarah Lawrence College, Bronxville, NY 10708
| |
Collapse
|
16
|
Structural models of zebrafish (Danio rerio) NOD1 and NOD2 NACHT domains suggest differential ATP binding orientations: insights from computational modeling, docking and molecular dynamics simulations. PLoS One 2015; 10:e0121415. [PMID: 25811192 PMCID: PMC4374677 DOI: 10.1371/journal.pone.0121415] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/01/2015] [Indexed: 11/25/2022] Open
Abstract
Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and NOD2 are cytosolic pattern recognition receptors playing pivotal roles in innate immune signaling. NOD1 and NOD2 recognize bacterial peptidoglycan derivatives iE-DAP and MDP, respectively and undergoes conformational alternation and ATP-dependent self-oligomerization of NACHT domain followed by downstream signaling. Lack of structural adequacy of NACHT domain confines our understanding about the NOD-mediated signaling mechanism. Here, we predicted the structure of NACHT domain of both NOD1 and NOD2 from model organism zebrafish (Danio rerio) using computational methods. Our study highlighted the differential ATP binding modes in NOD1 and NOD2. In NOD1, γ-phosphate of ATP faced toward the central nucleotide binding cavity like NLRC4, whereas in NOD2 the cavity was occupied by adenine moiety. The conserved ‘Lysine’ at Walker A formed hydrogen bonds (H-bonds) and Aspartic acid (Walker B) formed electrostatic interaction with ATP. At Sensor 1, Arg328 of NOD1 exhibited an H-bond with ATP, whereas corresponding Arg404 of NOD2 did not. ‘Proline’ of GxP motif (Pro386 of NOD1 and Pro464 of NOD2) interacted with adenine moiety and His511 at Sensor 2 of NOD1 interacted with γ-phosphate group of ATP. In contrast, His579 of NOD2 interacted with the adenine moiety having a relatively inverted orientation. Our findings are well supplemented with the molecular interaction of ATP with NLRC4, and consistent with mutagenesis data reported for human, which indicates evolutionary shared NOD signaling mechanism. Together, this study provides novel insights into ATP binding mechanism, and highlights the differential ATP binding modes in zebrafish NOD1 and NOD2.
Collapse
|
17
|
Nikbakht Brujeni G, Khosravi M. Molecular characterization of chicken class II transactivator gene. Immunogenetics 2014; 67:39-49. [PMID: 25339383 DOI: 10.1007/s00251-014-0810-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 10/14/2014] [Indexed: 11/24/2022]
Abstract
Class II transactivator (CIITA) is an effective transcriptional factor regulating various genes in the immune system. Since the detection of CIITA in 1993, there has been considerable progress toward understanding its role as an activator of MHC II genes in human and mouse; however, there is little knowledge of this gene in other animals such as chicken. Molecular characterization of the chicken CIITA gene transcript was performed to determine its sequence and expression in different tissues. The CIITA cDNA was first generated through reverse transcriptase-polymerase chain reaction (RT-PCR) from Cobb chicken spleen cell RNA, using oligonucleotide primers based on the predicted cDNA sequence. The effect of the immune system stimulation on the CIITA gene expression in kidney, liver, thymus, and spleen were assessed by semi-quantitative RT-PCR analysis. A partial cDNA sequence (1,688 bp) encoding part of the NACHT domain followed by seven of the transactivator and one of the NLS domains were obtained. Comparison of the deduced amino acid sequence with other CIITAs reveals high level of similarities in amino acid composition, secondary structure and phosphorylation sites. Furthermore, in comparison to the Red Jungle Fowl (RJF) sequence, we found 17 single nucleotide polymorphisms in Cobb broiler chicken, ten of which were reported for the first time. Gene expression analysis indicated that CIITA RNA amounts increased in all the examined tissues following stimulation with Brucella antigen. This investigation may indicate that CIITA molecule has an important role in the chicken immune responses as well as human and other animals.
Collapse
Affiliation(s)
- Gholamreza Nikbakht Brujeni
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran,
| | | |
Collapse
|
18
|
Devaiah BN, Singer DS. CIITA and Its Dual Roles in MHC Gene Transcription. Front Immunol 2013; 4:476. [PMID: 24391648 PMCID: PMC3868913 DOI: 10.3389/fimmu.2013.00476] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/07/2013] [Indexed: 01/07/2023] Open
Abstract
Class II transactivator (CIITA) is a transcriptional coactivator that regulates γ-interferon-activated transcription of Major Histocompatibility Complex (MHC) class I and II genes. As such, it plays a critical role in immune responses: CIITA deficiency results in aberrant MHC gene expression and consequently in autoimmune diseases such as Type II bare lymphocyte syndrome. Although CIITA does not bind DNA directly, it regulates MHC transcription in two distinct ways - as a transcriptional activator and as a general transcription factor. As an activator, CIITA nucleates an enhanceosome consisting of the DNA binding transcription factors RFX, cyclic AMP response element binding protein, and NF-Y. As a general transcription factor, CIITA functionally replaces the TFIID component, TAF1. Like TAF1, CIITA possesses acetyltransferase (AT) and kinase activities, both of which contribute to proper transcription of MHC class I and II genes. The substrate specificity and regulation of the CIITA AT and kinase activities also parallel those of TAF1. In addition, CIITA is tightly regulated by its various regulatory domains that undergo phosphorylation and influence its targeted localization. Thus, a complex picture of the mechanisms regulating CIITA function is emerging suggesting that CIITA has dual roles in transcriptional regulation which are summarized in this review.
Collapse
Affiliation(s)
| | - Dinah S Singer
- Experimental Immunology Branch, National Cancer Institute, NIH , Bethesda, MD , USA
| |
Collapse
|
19
|
Neerincx A, Castro W, Guarda G, Kufer TA. NLRC5, at the Heart of Antigen Presentation. Front Immunol 2013; 4:397. [PMID: 24319445 PMCID: PMC3837245 DOI: 10.3389/fimmu.2013.00397] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/07/2013] [Indexed: 01/25/2023] Open
Abstract
Nucleotide-binding domain and leucine-rich repeat containing receptors (NLRs) are intracellular proteins mainly involved in pathogen recognition, inflammatory responses, and cell death. Until recently, the function of the family member NLR caspase recruitment domain (CARD) containing 5 (NLRC5) has been a matter of debate. It is now clear that NLRC5 acts as a transcriptional regulator of the major-histocompatibility complex class I. In this review we detail the development of our understanding of NLRC5 function, discussing both the accepted and the controversial aspects of NLRC5 activity. We give insight into the molecular mechanisms, and the potential implications, of NLRC5 function in health and disease.
Collapse
Affiliation(s)
- Andreas Neerincx
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne , Cologne , Germany
| | | | | | | |
Collapse
|
20
|
Abstract
Nucleotide-binding and leucine rich repeat domain-containing proteins (NLRs) are central to the formation of many inflammasome complexes. Several inflammasome forming NLR proteins are known to be ATPases, but the nucleotide binding specificity of many remains to be characterized. The oligomerization of NLR proteins and assembly of inflammasomes require the ATP (or other nucleotide) binding activity of the NLR proteins. Quantitative and qualitative studies of the nucleotide binding properties of these proteins are useful tools in studying the regulation of inflammasome activity, and are outlined in this Chapter.
Collapse
|
21
|
Zurek B, Schoultz I, Neerincx A, Napolitano LM, Birkner K, Bennek E, Sellge G, Lerm M, Meroni G, Söderholm JD, Kufer TA. TRIM27 negatively regulates NOD2 by ubiquitination and proteasomal degradation. PLoS One 2012; 7:e41255. [PMID: 22829933 PMCID: PMC3400628 DOI: 10.1371/journal.pone.0041255] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 06/19/2012] [Indexed: 01/07/2023] Open
Abstract
NOD2, the nucleotide-binding domain and leucine-rich repeat containing gene family (NLR) member 2 is involved in mediating antimicrobial responses. Dysfunctional NOD2 activity can lead to severe inflammatory disorders, but the regulation of NOD2 is still poorly understood. Recently, proteins of the tripartite motif (TRIM) protein family have emerged as regulators of innate immune responses by acting as E3 ubiquitin ligases. We identified TRIM27 as a new specific binding partner for NOD2. We show that NOD2 physically interacts with TRIM27 via the nucleotide-binding domain, and that NOD2 activation enhances this interaction. Dependent on functional TRIM27, ectopically expressed NOD2 is ubiquitinated with K48-linked ubiquitin chains followed by proteasomal degradation. Accordingly, TRIM27 affects NOD2-mediated pro-inflammatory responses. NOD2 mutations are linked to susceptibility to Crohn's disease. We found that TRIM27 expression is increased in Crohn's disease patients, underscoring a physiological role of TRIM27 in regulating NOD2 signaling. In HeLa cells, TRIM27 is partially localized in the nucleus. We revealed that ectopically expressed NOD2 can shuttle to the nucleus in a Walker A dependent manner, suggesting that NOD2 and TRIM27 might functionally cooperate in the nucleus. We conclude that TRIM27 negatively regulates NOD2-mediated signaling by degradation of NOD2 and suggest that TRIM27 could be a new target for therapeutic intervention in NOD2-associated diseases.
Collapse
Affiliation(s)
- Birte Zurek
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Ida Schoultz
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden, and Department of Surgery, Linköping, Sweden
| | - Andreas Neerincx
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Luisa M. Napolitano
- Cluster in Biomedicine (CBM), AREA Science Park, Trieste, Italy
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Katharina Birkner
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Eveline Bennek
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Gernot Sellge
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Maria Lerm
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden, and Department of Surgery, Linköping, Sweden
| | - Germana Meroni
- Cluster in Biomedicine (CBM), AREA Science Park, Trieste, Italy
| | - Johan D. Söderholm
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden, and Department of Surgery, Linköping, Sweden
| | - Thomas A. Kufer
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
22
|
Mo J, Boyle JP, Howard CB, Monie TP, Davis BK, Duncan JA. Pathogen sensing by nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is mediated by direct binding to muramyl dipeptide and ATP. J Biol Chem 2012; 287:23057-67. [PMID: 22549783 PMCID: PMC3391102 DOI: 10.1074/jbc.m112.344283] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/11/2012] [Indexed: 11/07/2022] Open
Abstract
Nucleotide binding and oligomerization domain-containing protein 2 (NOD2/Card15) is an intracellular protein that is involved in the recognition of bacterial cell wall-derived muramyl dipeptide. Mutations in the gene encoding NOD2 are associated with inherited inflammatory disorders, including Crohn disease and Blau syndrome. NOD2 is a member of the nucleotide-binding domain and leucine-rich repeat-containing protein gene (NLR) family. Nucleotide binding is thought to play a critical role in signaling by NLR family members. However, the molecular mechanisms underlying signal transduction by these proteins remain largely unknown. Mutations in the nucleotide-binding domain of NOD2 have been shown to alter its signal transduction properties in response to muramyl dipeptide in cellular assays. Using purified recombinant protein, we now demonstrate that NOD2 binds and hydrolyzes ATP. Additionally, we have found that the purified recombinant protein is able to bind directly to muramyl dipeptide and can associate with known NOD2-interacting proteins in vitro. Binding of NOD2 to muramyl dipeptide and homo-oligomerization of NOD2 are enhanced by ATP binding, suggesting a model of the molecular mechanism for signal transduction that involves binding of nucleotide followed by binding of muramyl dipeptide and oligomerization of NOD2 into a signaling complex. These findings set the stage for further studies into the molecular mechanisms that underlie detection of muramyl dipeptide and assembly of NOD2-containing signaling complexes.
Collapse
Affiliation(s)
- Jinyao Mo
- From the Department of Medicine, Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina 27599-7030
| | - Joseph P. Boyle
- the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Tom P. Monie
- the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Beckley K. Davis
- the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295, and
| | - Joseph A. Duncan
- From the Department of Medicine, Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina 27599-7030
- the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295, and
- the Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599-7365
| |
Collapse
|
23
|
Robbins GR, Truax AD, Davis BK, Zhang L, Brickey WJ, Ting JPY. Regulation of class I major histocompatibility complex (MHC) by nucleotide-binding domain, leucine-rich repeat-containing (NLR) proteins. J Biol Chem 2012; 287:24294-303. [PMID: 22645137 DOI: 10.1074/jbc.m112.364604] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most of the nucleotide-binding domain, leucine-rich repeat (NLR) proteins regulate responses to microbial and damage-associated products. Class II transactivator (CIITA) has a distinct function as the master regulator of class II major histocompatibility complex (MHC-II) transcription. Recently, human NLRC5 was found to regulate MHC-I in cell lines; however, a host of conflicting positive and negative functions has been attributed to this protein. To address the function of NLRC5 in a physiologic setting, we generated an Nlrc5(-/-) strain that contains a deletion in the exon that encodes the nucleotide-binding domain. We have not detected a role for this protein in cytokine induction by pathogen-associated molecular patterns and viruses. However, Nlrc5(-/-) cells showed a dramatic decrease of classical (H-2K) and nonclassical (Tla) MHC-I expression by T/B lymphocytes, natural killer (NK) cells, and myeloid-monocytic lineages. As a comparison, CIITA did not affect mouse MHC-I expression. Nlrc5(-/-) splenocytes and bone marrow-derived macrophages were able to up-regulate MHC-I in response to IFN-γ; however, the absolute levels of MHC-I expression were significantly lower than WT controls. Chromatin immunoprecipitation of IFN-γ-treated cells indicates that Nlrc5 reduced the silencing H3K27me3 histone modification, but did not affect the activating AcH3 modification on a MHC-I promoter. In summary, we conclude that Nlrc5 is important in the regulation of MHC-I expression by reducing H3K27me3 on MHC-I promoter and joins CIITA as an NLR subfamily that controls MHC gene transcription.
Collapse
Affiliation(s)
- Gregory R Robbins
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, the Institute of Inflammatory Diseases and Center of Translational Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | | | |
Collapse
|
24
|
Bonardi V, Cherkis K, Nishimura MT, Dangl JL. A new eye on NLR proteins: focused on clarity or diffused by complexity? Curr Opin Immunol 2012; 24:41-50. [PMID: 22305607 DOI: 10.1016/j.coi.2011.12.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/21/2011] [Indexed: 11/26/2022]
Abstract
The nucleotide-binding domain leucine-rich repeat proteins (NLRs) represent the major class of intracellular innate immune receptors in plants and animals. Understanding their functions is a major challenge in immunology. This review highlights recent efforts toward elucidating NLR functions in human and plants. We compare unconventional aspects of NLR proteins across the two kingdoms. We review recent advances describing P-loop independent activation, nuclear-cytoplasmic trafficking, oligomerization and multimerization requirements for signaling, and for expanded functions beyond pathogen recognition by several NLR proteins.
Collapse
Affiliation(s)
- Vera Bonardi
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | | | | | | |
Collapse
|
25
|
Meissner TB, Li A, Liu YJ, Gagnon E, Kobayashi KS. The nucleotide-binding domain of NLRC5 is critical for nuclear import and transactivation activity. Biochem Biophys Res Commun 2012; 418:786-91. [PMID: 22310711 DOI: 10.1016/j.bbrc.2012.01.104] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/23/2012] [Indexed: 11/15/2022]
Abstract
Major histocompatibility complex (MHC) class I and class II are crucial for the function of the human adaptive immune system. A member of the NLR (nucleotide-binding domain, leucine-rich repeat) protein family, NLRC5, has recently been identified as a transcriptional regulator of MHC class I and related genes. While a 'master regulator' of MHC class II genes, CIITA, has long been known, NLRC5 specifically associates with and transactivates the proximal promoters of MHC class I genes. In this study, we analyzed the molecular requirements of NLRC5 nuclear import and transactivation activity. We show that NLRC5-mediated MHC class I gene induction requires an intact nuclear localization signal and nuclear distribution of NLRC5. In addition, we find that the nucleotide-binding domain (NBD) of NLRC5 is critical not only for nuclear translocation but also for the transactivation of MHC class I genes. Changing the cellular localization of NLRC5 is likely to immediately impact MHC class I expression as well as MHC class I-mediated antigen presentation. NLRC5 may thus provide a promising target for the modulation of MHC class I antigen presentation, especially in the setting of transplant medicine.
Collapse
Affiliation(s)
- Torsten B Meissner
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, MA 02215, United States
| | | | | | | | | |
Collapse
|
26
|
Plant intracellular innate immune receptor Resistance to Pseudomonas syringae pv. maculicola 1 (RPM1) is activated at, and functions on, the plasma membrane. Proc Natl Acad Sci U S A 2011; 108:7619-24. [PMID: 21490299 DOI: 10.1073/pnas.1104410108] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Plants deploy intracellular innate immune receptors to recognize pathogens and initiate disease resistance. These nucleotide-binding, leucine-rich repeat (NB-LRR) proteins are activated by pathogen effector proteins that are delivered into the host cell to suppress host defense responses. Little is known about the sites and mechanisms of NB-LRR activation, but some NB-LRR proteins can function inside the plant nucleus. We demonstrate that RPM1 is activated on the plasma membrane and does not relocalize to the nucleus. An autoactive RPM1(D505V) allele that recapitulates key features of normal RPM1 activation also resides on the plasma membrane. There is no detectable relocalization of activated RPM1 to the nucleus. Hindering potential nuclear entry of RPM1-Myc did not affect either its effector-triggered hypersensitive-response (HR) cell death or its disease resistance functions, further suggesting that nuclear translocation is not required for RPM1 function. RPM1 tethered onto the plasma membrane with a dual acylated N-terminal epitope tag retained the ability to mediate HR, consistent with this RPM1 function being activated on the plasma membrane. Plant NB-LRR proteins can thus function at various locations in the cell.
Collapse
|
27
|
Porter KA, Kelley LN, Nekorchuk MD, Jones JH, Hahn AB, de Noronha CMC, Harton JA, Duus KM. CIITA enhances HIV-1 attachment to CD4+ T cells leading to enhanced infection and cell depletion. THE JOURNAL OF IMMUNOLOGY 2010; 185:6480-8. [PMID: 21041720 DOI: 10.4049/jimmunol.1000830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Activated CD4(+) T cells are more susceptible to HIV infection than resting T cells; the reason for this remains unresolved. Induction of CIITA and subsequent expression of the MHC class II isotype HLA-DR are hallmarks of CD4(+) T cell activation; therefore, we investigated the role of CIITA expression in T cells during HIV infection. CIITA-expressing SupT1 cells display enhanced virion attachment in a gp160/CD4-dependent manner, which results in increased HIV infection, virus release, and T cell depletion. Although increased attachment and infection of T cells correlated with HLA-DR surface expression, Ab blocking, transient expression of HLA-DR without CIITA, and short hairpin RNA knockdown demonstrate that HLA-DR does not directly enhance susceptibility of CIITA-expressing cells to HIV infection. Further analysis of the remaining MHC class II isotypes, HLA-DP and HLA-DQ, MHC class I isotypes, HLA-A, HLA-B, and HLA-C, and the class II Ag presentation genes, invariant chain and HLA-DM, demonstrate that these proteins likely do not contribute to CIITA enhancement of HIV infection. Finally, we demonstrate that in activated primary CD4(+) T cells as HLA-DR/CIITA expression increases there is a corresponding increase in virion attachment. Overall, this work suggests that induction of CIITA expression upon CD4(+) T cell activation contributes to enhanced attachment, infection, virus release, and cell death through an undefined CIITA transcription product that may serve as a new antiviral target.
Collapse
Affiliation(s)
- Kristen A Porter
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Porter KA, Kelley LN, George A, Harton JA, Duus KM. Class II transactivator (CIITA) enhances cytoplasmic processing of HIV-1 Pr55Gag. PLoS One 2010; 5:e11304. [PMID: 20585587 PMCID: PMC2892040 DOI: 10.1371/journal.pone.0011304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 05/26/2010] [Indexed: 11/18/2022] Open
Abstract
Background The Pr55gag (Gag) polyprotein of HIV serves as a scaffold for virion assembly and is thus essential for progeny virion budding and maturation. Gag localizes to the plasma membrane (PM) and membranes of late endosomes, allowing for release of infectious virus directly from the cell membrane and/or upon exocytosis. The host factors involved in Gag trafficking to these sites are largely unknown. Upon activation, CD4+ T cells, the primary target of HIV infection, express the class II transcriptional activator (CIITA) and therefore the MHC class II isotype, HLA-DR. Similar to Gag, HLA-DR localizes to the PM and at the membranes of endosomes and specialized vesicular MHC class II compartments (MIICs). In HIV producer cells, transient HLA-DR expression induces intracellular Gag accumulation and impairs virus release. Methodology/Principal Findings Here we demonstrate that both stable and transient expression of CIITA in HIV producer cells does not induce HLA-DR-associated intracellular retention of Gag, but does increase the infectivity of virions. However, neither of these phenomena is due to recapitulation of the class II antigen presentation pathway or CIITA-mediated transcriptional activation of virus genes. Interestingly, we demonstrate that CIITA, apart from its transcriptional effects, acts cytoplasmically to enhance Pr160gag-pol (Gag-Pol) levels and thereby the viral protease and Gag processing, accounting for the increased infectivity of virions from CIITA-expressing cells. Conclusions/Significance This study demonstrates that CIITA enhances HIV Gag processing, and provides the first evidence of a novel, post-transcriptional, cytoplasmic function for a well-known transactivator.
Collapse
Affiliation(s)
- Kristen A. Porter
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Lauren N. Kelley
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Annette George
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Jonathan A. Harton
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Karen M. Duus
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Sugamata R, Suetake H, Kikuchi K, Suzuki Y. Teleost B7 expressed on monocytes regulates T cell responses. THE JOURNAL OF IMMUNOLOGY 2009; 182:6799-806. [PMID: 19454675 DOI: 10.4049/jimmunol.0803371] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In mammals, professional APCs induce adaptive immunity via the activation of T cells. During this process, B7 family molecules present upon APCs are known to play crucial roles in optimal T cell stimulation. In contrast, the confirmation of APCs in a nonmammalian vertebrate has yet to be achieved. To obtain further insights into the evolutionary origin of APCs, we have identified three members of the B7 family in the teleost Takifugu rubripes (fugu): B7-H1/DC, B7-H3, and B7-H4. The three fugu B7s were expressed on the surface of blood monocytes. The B7(+) monocytes, which are composed of at least two distinct populations, expressed the MHC class II component gene. The fugu B7 molecules bound to activated T cells, indicating that putative B7 receptors were expressed upon T cells. Fugu B7-H1/DC inhibited T cell proliferation concomitant with increasing levels of both IL-10 and IFN-gamma expression, whereas both B7-H3 and B7-H4 promoted T cell growth following IL-2 induction and the suppression of IL-10. These observations indicate that fugu B7s regulate T cell responses via receptors upon T cells. We suggest that fish B7(+) monocytes are APCs and that a costimulatory system has already developed in fish via the evolutionary process.
Collapse
Affiliation(s)
- Ryuichi Sugamata
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Hamamatsu, Japan
| | | | | | | |
Collapse
|
30
|
Danot O, Marquenet E, Vidal-Ingigliardi D, Richet E. Wheel of Life, Wheel of Death: A Mechanistic Insight into Signaling by STAND Proteins. Structure 2009; 17:172-82. [PMID: 19217388 DOI: 10.1016/j.str.2009.01.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 12/12/2008] [Accepted: 01/14/2009] [Indexed: 11/26/2022]
Abstract
The signal transduction ATPases with numerous domains (STAND) represent a newly recognized class of widespread, sophisticated ATPases that are related to the AAA+ proteins and that function as signaling hubs. These proteins control diverse biological processes in bacteria and eukaryotes, including gene expression, apoptosis, and innate immunity responses. They function as tightly regulated switches, with the off and on positions corresponding to a long-lived monomeric, ADP-bound form and a multimeric, ATP-bound form, respectively. Inducer binding to the sensor domain activates the protein by promoting ADP for ATP exchange, probably through removal of an intramolecular inhibitory interaction, whereas ATP hydrolysis turns off the protein. One key component of the switch is a three-domain module carrying the ATPase activity (nucleotide-binding oligomerization domain [NOD]). Analysis of the atomic structures of four crystallized nucleotide-bound NOD modules provides an unprecedented insight into the NOD conformational changes underlying the activation process.
Collapse
Affiliation(s)
- Olivier Danot
- Institut Pasteur, Molecular Genetics Unit and CNRS URA2172, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
31
|
Voong LN, Slater AR, Kratovac S, Cressman DE. Mitogen-activated protein kinase ERK1/2 regulates the class II transactivator. J Biol Chem 2008; 283:9031-9. [PMID: 18245089 PMCID: PMC2431044 DOI: 10.1074/jbc.m706487200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 01/31/2008] [Indexed: 01/12/2023] Open
Abstract
The expression of major histocompatibility class II genes is necessary for proper antigen presentation and induction of an immune response. This expression is initiated by the class II transactivator, CIITA. The establishment of the active form of CIITA is controlled by a series of post-translational events, including GTP binding, ubiquitination, and dimerization. However, the role of phosphorylation is less clearly defined as are the consequences of phosphorylation on CIITA activity and the identity of the kinases involved. In this study we show that the extracellular signal-regulated kinases 1 and 2 (ERK1/2) interact directly with CIITA, targeting serine residues in the amino terminus of the protein, including serine 288. Inhibition of this phosphorylation by dominant-negative forms of ERK or by treatment of cells with the ERK inhibitor PD98059 resulted in the increase in CIITA-mediated gene expression from a class II promoter, enhanced the nuclear concentration of CIITA, and impaired its ability to bind to the nuclear export factor, CRM1. In contrast, inhibition of ERK1/2 activity had little effect on serine-to-alanine mutant forms of CIITA. These data suggest a model whereby ERK1/2-mediated phosphorylation of CIITA down-regulates CIITA activity by priming it for nuclear export, thus providing a means for cells to tightly regulate the extent of antigen presentation.
Collapse
Affiliation(s)
- Lilien N Voong
- Department of Biology, Sarah Lawrence College, 1 Mead Way, Bronxville, NY 10708, USA
| | | | | | | |
Collapse
|
32
|
Bewry NN, Bolick SCE, Wright KL, Harton JA. GTP-dependent recruitment of CIITA to the class II major histocompatibility complex promoter. J Biol Chem 2007; 282:26178-84. [PMID: 17623662 DOI: 10.1074/jbc.m611747200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously established that the class II transactivator CIITA binds GTP and disruption of the GTP binding ability of CIITA results in increased cytoplasmic CIITA, loss of nuclear CIITA, and thus diminished class II major histocompatibility complex transcription. Because of its role in facilitating nuclear localization, whether GTP binding is also required for CIITA-mediated transactivation of major histocompatibility class II genes remains unclear. We now show that recruitment of CIITA to the human leukocyte antigen (HLA)-DR promoter and activation of HLA-DR transcription is also GTP-dependent. After restoration of nuclear expression, CIITA mutants defective in GTP binding lack full transcriptional activation capacity. Although the availability of the activation domain of CIITA is unaltered, GTP mutants no longer cooperate with CREB-binding protein, p300, and pCAF and are defective in recruitment to the HLA-DR promoter.
Collapse
Affiliation(s)
- Nadine N Bewry
- Department of Molecular Medicine, H. Lee Moffitt Cancer Center, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
33
|
Duncan JA, Bergstralh DT, Wang Y, Willingham SB, Ye Z, Zimmermann AG, Ting JPY. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci U S A 2007; 104:8041-6. [PMID: 17483456 PMCID: PMC1876568 DOI: 10.1073/pnas.0611496104] [Citation(s) in RCA: 404] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The CATERPILLER (CLR/NLR) gene family encodes a family of putative nucleotide-binding proteins important for host defense. Although nucleotide binding is thought to be central to this family, this aspect is largely unstudied. The CATERPILLER protein cryopyrin/NALP3 regulates IL-1beta processing by assembling the multimeric inflammasome complex. Mutations within the exon encoding the nucleotide-binding domain are associated with hereditary periodic fevers characterized by constitutive IL-1beta production. We demonstrate that purified cryopyrin binds ATP, dATP, and ATP-agarose, but not CTP, GTP, or UTP, and exhibits ATPase activity. Mutation of the nucleotide-binding domain reduces ATP binding, caspase-1 activation, IL-1beta production, cell death, macromolecular complex formation, self-association, and association with the inflammasome component ASC. Disruption of nucleotide binding abolishes the constitutive activation of disease-associated mutants, identifying nucleotide binding by cryopyrin as a potential target for antiinflammatory pharmacologic intervention.
Collapse
Affiliation(s)
| | - Daniel T. Bergstralh
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295
| | - Yanhong Wang
- *Department of Medicine, Division of Infectious Diseases
| | - Stephen B. Willingham
- Program in Genetics and Molecular Biology
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295
| | | | - Albert G. Zimmermann
- Department of Microbiology–Immunology, and
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295
| | - Jenny Pan-Yun Ting
- Program in Genetics and Molecular Biology
- Department of Microbiology–Immunology, and
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
van Ooijen G, van den Burg HA, Cornelissen BJC, Takken FLW. Structure and function of resistance proteins in solanaceous plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2007; 45:43-72. [PMID: 17367271 DOI: 10.1146/annurev.phyto.45.062806.094430] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Gene-for-gene resistance in plants is based on the presence of a resistance (R) gene in the host and a matching Avirulence (Avr) gene in the pathogen. Many R genes have been cloned over the past two decades, mostly from the Solanaceae. The gene products, called R proteins, display modular domain structures. R protein function has recently been shown to require dynamic interactions between the various domains. In addition to these intramolecular interactions, R proteins interact with other proteins to form signaling complexes that are able to activate an innate immune response that arrests proliferation of the invading pathogen, thereby conferring disease resistance. In this review, we summarize current understanding of R protein structure and function, as well as the molecular mechanisms underlying the activation of defense signaling processes. As well as being a rich source for R genes, Solanaceae are a leading model system in which to study inter- and intramolecular interactions of R proteins.
Collapse
Affiliation(s)
- Gerben van Ooijen
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GB Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
35
|
Tosi G, Pilotti E, Mortara L, Barbaro ADL, Casoli C, Accolla RS. Inhibition of human T cell leukemia virus type 2 replication by the suppressive action of class II transactivator and nuclear factor Y. Proc Natl Acad Sci U S A 2006; 103:12861-6. [PMID: 16908858 PMCID: PMC1568938 DOI: 10.1073/pnas.0601589103] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2006] [Indexed: 11/18/2022] Open
Abstract
The master regulator of MHC-II gene transcription, class II transactivator (CIITA), acts as a potent inhibitor of human T cell leukemia virus type 2 (HTLV-2) replication by blocking the activity of the viral Tax-2 transactivator. Here, we show that this inhibitory effect takes place at the nuclear level and maps to the N-terminal 1-321 region of CIITA, where we identified a minimal domain, from positions 64-144, that is strictly required to suppress Tax-2 function. Furthermore, we show that Tax-2 specifically cooperates with cAMP response element binding protein-binding protein (CBP) and p300, but not with p300/CBP-associated factor, to enhance transcription from the viral promoter. This finding represents a unique difference with respect to Tax-1, which uses all three coactivators to transactivate the human T cell leukemia virus type 1 LTR. Direct sequestering of CBP or p300 is not the primary mechanism by which CIITA causes suppression of Tax-2. Interestingly, we found that the transcription factor nuclear factor Y, which interacts with CIITA to increase transcription of MHC-II genes, exerts a negative regulatory action on the Tax-2-mediated HTLV-2 LTR transactivation. Thus, CIITA may inhibit Tax-2 function, at least in part, through nuclear factor Y. These findings demonstrate the dual defensive role of CIITA against pathogens: it increases the antigen-presenting function for viral determinants and suppresses HTLV-2 replication in infected cells.
Collapse
Affiliation(s)
- Giovanna Tosi
- *Department of Clinical and Biological Sciences, University of Insubria, 21100 Varese, Italy; and
| | - Elisabetta Pilotti
- Department of Clinical Medicine, Nephrology, and Health Sciences, University of Parma, 43100 Parma, Italy
| | - Lorenzo Mortara
- *Department of Clinical and Biological Sciences, University of Insubria, 21100 Varese, Italy; and
| | - Andrea De Lerma Barbaro
- *Department of Clinical and Biological Sciences, University of Insubria, 21100 Varese, Italy; and
| | - Claudio Casoli
- Department of Clinical Medicine, Nephrology, and Health Sciences, University of Parma, 43100 Parma, Italy
| | - Roberto S. Accolla
- *Department of Clinical and Biological Sciences, University of Insubria, 21100 Varese, Italy; and
| |
Collapse
|
36
|
Ting JPY, Kastner DL, Hoffman HM. CATERPILLERs, pyrin and hereditary immunological disorders. Nat Rev Immunol 2006; 6:183-95. [PMID: 16498449 DOI: 10.1038/nri1788] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The newly described CATERPILLER family (also known as NOD-LRR or NACHT-LRR) is comprised of proteins with a nucleotide-binding domain and a leucine-rich region. This family has gained rapid prominence because of its demonstrated and anticipated roles in immunity, cell death and growth, and diseases. CATERPILLER proteins are structurally similar to a subgroup of plant-disease-resistance (R) proteins and to the apoptotic protease activating factor 1 (APAF1). They provide positive and negative signals for the control of immune and inflammatory responses, and might represent intracellular sensors of pathogen products. Most importantly, they are genetically linked to several human immunological disorders.
Collapse
Affiliation(s)
- Jenny P-Y Ting
- Department of Microbiology-Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
37
|
Krawczyk M, Reith W. Regulation of MHC class II expression, a unique regulatory system identified by the study of a primary immunodeficiency disease. ACTA ACUST UNITED AC 2006; 67:183-97. [PMID: 16573555 DOI: 10.1111/j.1399-0039.2006.00557.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Major histocompatibility complex class II (MHC-II) molecules are of central importance for adaptive immunity. Defective MHC-II expression causes a severe immunodeficiency disease called bare lymphocyte syndrome (BLS). Studies of the molecular defects underlying BLS have been pivotal for characterization of the regulatory system controlling the transcription of MHC-II genes. The precisely controlled pattern of MHC-II gene expression is achieved by a very peculiar and highly specialized molecular machinery that involves the interplay between ubiquitous DNA-binding transcription factors and a highly unusual, tightly regulated, non-DNA-binding coactivator called the MHC class II transactivator (CIITA). CIITA single handedly coordinates practically all aspects of MHC-II gene regulation and has therefore been dubbed the master controller of MHC-II expression. Several of the unusual features of the MHC-II regulatory system may be a consequence of the fact that CIITA originated from an ancient family of cytoplasmic proteins involved in inflammation and innate immunity. The function of CIITA in transcriptional regulation of MHC-II genes could thus be a recent acquisition by an ancestral protein having a role in an unrelated system.
Collapse
Affiliation(s)
- M Krawczyk
- University of Geneva Medical School, CMU, Switzerland
| | | |
Collapse
|
38
|
Drozina G, Kohoutek J, Jabrane-Ferrat N, Peterlin BM. Expression of MHC II genes. Curr Top Microbiol Immunol 2005; 290:147-70. [PMID: 16480042 DOI: 10.1007/3-540-26363-2_7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Innate and adaptive immunity are connected via antigen processing and presentation (APP), which results in the presentation of antigenic peptides to T cells in the complex with the major histocompatibility (MHC) determinants. MHC class II (MHC II) determinants present antigens to CD4+ T cells, which are the main regulators of the immune response. Their genes are transcribed from compact promoters that form first the MHC II enhanceosome, which contains DNA-bound activators and then the MHC II transcriptosome with the addition of the class II transactivator (CIITA). CIITA is the master regulator of MHC II transcription. It is expressed constitutively in dendritic cells (DC) and mature B cells and is inducible in most other cell types. Three isoforms of CIITA exist, depending on cell type and inducing signals. CIITA is regulated at the levels of transcription and post-translational modifications, which are still not very clear. Inappropriate immune responses are found in several diseases, including cancer and autoimmunity. Since CIITA regulates the expression of MHC II genes, it is involved directly in the regulation of the immune response. The knowledge of CIITA will facilitate the manipulation of the immune response and might contribute to the treatment of these diseases.
Collapse
Affiliation(s)
- G Drozina
- Department of Medicine, Rosalind Russell Medical Research Center, University of California, San Francisco 94143, USA.
| | | | | | | |
Collapse
|
39
|
Ting JPY, Davis BK. CATERPILLER: a novel gene family important in immunity, cell death, and diseases. Annu Rev Immunol 2005; 23:387-414. [PMID: 15771576 DOI: 10.1146/annurev.immunol.23.021704.115616] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The newly discovered CATERPILLER (CLR) gene family encodes proteins with a variable but limited number of N-terminal domains, followed by a nucleotide-binding domain (NBD) and leucine-rich repeats (LRR). The N-terminal domain consists of transactivation, CARD, Pyrin, or BIR domains, with a minority containing undefined domains. These proteins are remarkably similar in structure to the TIR-NBD-LRR and CC-NBD-LRR disease resistance (R) proteins that mediate immune responses in plants. The NBD-LRR architecture is conserved in plants and vertebrates, but only remnants are found in worms and flies. The CLRs regulate inflammatory and apoptotic responses, and some act as sensors that detect pathogen products. Several CLR genes have been genetically linked to susceptibility to immunologic disorders. We describe prominent family members, including CIITA, CARD4/NOD1, NOD2/CARD15, CIAS1, CARD7/NALP1, and NAIP, in more detail. We also discuss implied roles of these proteins in diversifying immune detection and in providing a check-and-balance during inflammation.
Collapse
Affiliation(s)
- Jenny P-Y Ting
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
40
|
De Lerma Barbaro A, Procopio FA, Mortara L, Tosi G, Accolla RS. The MHC class II transactivator (CIITA) mRNA stability is critical for the HLA class II gene expression in myelomonocytic cells. Eur J Immunol 2005; 35:603-11. [PMID: 15627980 DOI: 10.1002/eji.200425378] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The human promyelocytic U937 cells express detectable levels of MHC class II (MHC-II) molecules. Treatment with 12-o--tetradecanoyl phorbol 13-acetate (TPA), inducing macrophage-like differentiation, produces a dramatic decrease of MHC-II expression as result of down-modulation of the activation of immune response gene 1 (AIR-1)-encoded MHC-II transactivator (CIITA). This event is specific, as MHC class I remains unaffected. Similar results are observed with U937 cells expressing an exogenous full-length CIITA. Molecular studies demonstrate that TPA treatment affects the stability of CIITA mRNA rather than CIITA transcription. Importantly, cis-acting elements within the distal 650 bp of the 1035-bp 3' untranslated region (3'UTR, nucleotides 3509-4543) are associated to transcript instability. Transcription inhibitors actinomycin D and 5,6-dichlororibofuranosyl benzimidazole, and the translation inhibitor cycloheximide significantly rescue the accumulation of CIITA mRNA in TPA-treated cells. A similar effect is also observed after treatment with staurosporine and the PKC-specific inhibitor GF109203X. The instability of CIITA mRNA produced by TPA in U937 cells is not seen in B cells. These results demonstrate the presence of an additional level of control of MHC-II expression in the macrophage cell lineage depending upon the control of CIITA mRNA stability, most likely mediated by differentiation-induced, 3'UTR-interacting factors which require kinase activity for their destabilizing function.
Collapse
Affiliation(s)
- Andrea De Lerma Barbaro
- Department of Clinical and Biological Sciences, School of Medicine, University of Insubria, Varese, Italy
| | | | | | | | | |
Collapse
|
41
|
Leipe DD, Koonin EV, Aravind L. STAND, a Class of P-Loop NTPases Including Animal and Plant Regulators of Programmed Cell Death: Multiple, Complex Domain Architectures, Unusual Phyletic Patterns, and Evolution by Horizontal Gene Transfer. J Mol Biol 2004; 343:1-28. [PMID: 15381417 DOI: 10.1016/j.jmb.2004.08.023] [Citation(s) in RCA: 331] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 07/27/2004] [Accepted: 08/10/2004] [Indexed: 10/26/2022]
Abstract
Using sequence profile analysis and sequence-based structure predictions, we define a previously unrecognized, widespread class of P-loop NTPases. The signal transduction ATPases with numerous domains (STAND) class includes the AP-ATPases (animal apoptosis regulators CED4/Apaf-1, plant disease resistance proteins, and bacterial AfsR-like transcription regulators) and NACHT NTPases (e.g. NAIP, TLP1, Het-E-1) that have been studied extensively in the context of apoptosis, pathogen response in animals and plants, and transcriptional regulation in bacteria. We show that, in addition to these well-characterized protein families, the STAND class includes several other groups of (predicted) NTPase domains from diverse signaling and transcription regulatory proteins from bacteria and eukaryotes, and three Archaea-specific families. We identified the STAND domain in several biologically well-characterized proteins that have not been suspected to have NTPase activity, including soluble adenylyl cyclases, nephrocystin 3 (implicated in polycystic kidney disease), and Rolling pebble (a regulator of muscle development); these findings are expected to facilitate elucidation of the functions of these proteins. The STAND class belongs to the additional strand, catalytic E division of P-loop NTPases together with the AAA+ ATPases, RecA/helicase-related ATPases, ABC-ATPases, and VirD4/PilT-like ATPases. The STAND proteins are distinguished from other P-loop NTPases by the presence of unique sequence motifs associated with the N-terminal helix and the core strand-4, as well as a C-terminal helical bundle that is fused to the NTPase domain. This helical module contains a signature GxP motif in the loop between the two distal helices. With the exception of the archaeal families, almost all STAND NTPases are multidomain proteins containing three or more domains. In addition to the NTPase domain, these proteins typically contain DNA-binding or protein-binding domains, superstructure-forming repeats, such as WD40 and TPR, and enzymatic domains involved in signal transduction, including adenylate cyclases and kinases. By analogy to the AAA+ ATPases, it can be predicted that STAND NTPases use the C-terminal helical bundle as a "lever" to transmit the conformational changes brought about by NTP hydrolysis to effector domains. STAND NTPases represent a novel paradigm in signal transduction, whereby adaptor, regulatory switch, scaffolding, and, in some cases, signal-generating moieties are combined into a single polypeptide. The STAND class consists of 14 distinct families, and the evolutionary history of most of these families is riddled with dramatic instances of lineage-specific expansion and apparent horizontal gene transfer. The STAND NTPases are most abundant in developmentally and organizationally complex prokaryotes and eukaryotes. Transfer of genes for STAND NTPases from bacteria to eukaryotes on several occasions might have played a significant role in the evolution of eukaryotic signaling systems.
Collapse
Affiliation(s)
- Detlef D Leipe
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
42
|
Abstract
The tumor oncoproteins HRAS, KRAS, and NRAS are the founding members of a larger family of at least 35 related human proteins. Using a somewhat broader definition of sequence similarity reveals a more extended superfamily of more than 170 RAS-related proteins. The RAS superfamily of GTP (guanosine triphosphate) hydrolysis-coupled signal transduction relay proteins can be subclassified into RAS, RHO, RAB, and ARF families, as well as the closely related Galpha family. The members of each family can, in turn, be arranged into evolutionarily conserved branches. These groupings reflect structural, biochemical, and functional conservation. Recent findings have provided insights into the signaling characteristics of representative members of most RAS superfamily branches. The analysis presented here may serve as a guide for predicting the function of numerous uncharacterized superfamily members. Also described are guanosine triphosphatases (GTPases) distinct from members of the RAS superfamily. These related proteins employ GTP binding and GTPase domains in diverse structural contexts, expanding the scope of their function in humans.
Collapse
|
43
|
Xu Y, Wang L, Butticè G, Sengupta PK, Smith BD. Major histocompatibility class II transactivator (CIITA) mediates repression of collagen (COL1A2) transcription by interferon gamma (IFN-gamma). J Biol Chem 2004; 279:41319-32. [PMID: 15247294 DOI: 10.1074/jbc.m404174200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon gamma (IFN-gamma) plays an important role during inflammation by repressing collagen and activating major histocompatibility class II (MHC-II) expression. Activation of MHC-II by IFN-gamma requires regulatory factor for X-box 5 (RFX5) complex as well as class II transactivator (CIITA). We have shown that the RFX family binds to the COL1A2 transcription start site, and the RFX5 complex represses COL1A2 gene expression during IFN-gamma response. In this report, we demonstrate that CIITA is a key mediator of COL1A2 repression by IFN-gamma. IFN-gamma up-regulates the expression of CIITA in a time-dependent manner in lung fibroblasts and promotes CIITA protein occupancy on COL1A2 transcription start site in vivo as judged by chromatin immunoprecipitation (ChIP) assays. There are coordinate decreases in the occupancy of RNA polymerase II on the collagen transcription start site with increasing CIITA occupancy during IFN-gamma treatment. In addition, we are able to specifically knockdown the IFN-gamma-stimulated expression of CIITA utilizing short hairpin interference RNA (shRNA) against CIITA. This leads to the alleviation of COL1A2 repression and MHC-II activation by IFN-gamma. RFX5 recruits CIITA to the collagen site as evidenced by DNA affinity chromatography. The presence of RFX5 complex proteins enhances the collagen repression by CIITA reaching levels occurring during IFN-gamma treatment. Co-expression of CIITA with deletion mutations and collagen promoter constructs demonstrates that CIITA represses collagen promoter mainly through its N-terminal region including the acidic domain and the proline/serine/threonine domain. Our data suggest that CIITA is a crucial member of a repressor complex responsible for mediating COL1A2 transcription repression by IFN-gamma.
Collapse
Affiliation(s)
- Yong Xu
- Department of Biochemistry, Boston University School of Medicine and the Veterans Administration Boston Healthcare System, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
44
|
Greer SF, Harton JA, Linhoff MW, Janczak CA, Ting JPY, Cressman DE. Serine Residues 286, 288, and 293 within the CIITA: A Mechanism for Down-Regulating CIITA Activity through Phosphorylation. THE JOURNAL OF IMMUNOLOGY 2004; 173:376-83. [PMID: 15210796 DOI: 10.4049/jimmunol.173.1.376] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CIITA is the primary factor activating the expression of the class II MHC genes necessary for the exogenous pathway of Ag processing and presentation. Strict control of CIITA is necessary to regulate MHC class II gene expression and induction of an immune response. We show in this study that the nuclear localized form of CIITA is a predominantly phosphorylated form of the protein, whereas cytoplasmic CIITA is predominantly unphosphorylated. Novel phosphorylation sites were determined to be located within a region that contains serine residues 286, 288, and 293. Double mutations of these residues increased nuclear CIITA, indicating that these sites are not required for nuclear import. CIITA-bearing mutations of these serine residues significantly increased endogenous MHC class II expression, but did not significantly enhance trans-activation from a MHC class II promoter, indicating that these phosphorylation sites may be important for gene activation from intact chromatin rather than artificial plasmid-based promoters. These data suggest a model for CIITA function in which phosphorylation of these specific sites in CIITA in the nucleus serves to down-regulate CIITA activity.
Collapse
Affiliation(s)
- Susanna F Greer
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
More than a half a century ago, interferons (IFN) were identified as antiviral cytokines. Since that discovery, IFN have been in the forefront of basic and clinical cytokine research. The pleiotropic nature of these cytokines continues to engage a large number of investigators to define their actions further. IFN paved the way for discovery of Janus tyrosine kinase (JAK)-signal transducing activators of transcription (STAT) pathways. A number of important tumor suppressive pathways are controlled by IFN. Several infectious pathogens counteract IFN-induced signaling pathways. Recent studies indicate that IFN activate several new protein kinases, including the MAP kinase family, and downstream transcription factors. This review not only details the established IFN signaling paradigms but also provides insights into emerging alternate signaling pathways and mechanisms of pathogen-induced signaling interference.
Collapse
Affiliation(s)
- Dhananjaya V Kalvakolanu
- Molecular and Cellular Biology Graduate Program, Greenebaum Cancer Center, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
46
|
Albrecht M, Domingues FS, Schreiber S, Lengauer T. Structural localization of disease-associated sequence variations in the NACHT and LRR domains of PYPAF1 and NOD2. FEBS Lett 2003; 554:520-8. [PMID: 14623123 DOI: 10.1016/s0014-5793(03)01222-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several autoinflammatory diseases with distinct clinical manifestations have been associated with sequence variations in the gene products PYPAF1/CIAS1 and NOD2/CARD15. Both proteins belong to the PYD/CARD-containing family of apoptosis regulators and activators of pro-inflammatory caspases. To gain insight into the dysfunctional role of sequence alterations, we assembled a structure-based multiple sequence alignment of family members and related proteins. This allowed us to analyze the putative effect of the alterations on the function of nucleotide-binding (NACHT) and leucine-rich repeat (LRR) domains shared by the family members. In support of this analysis, we carefully selected template structures for the NACHT and LRR domains and mapped the genetic variations onto 3D domain models. Additionally, we propose a model of the NACHT and LRR domain complex. Our study revealed that many of the disease-associated sequence variants are located close to highly conserved sequence regions of functional relevance and are spatially adjacent in the predicted 3D structure. The implications on the domain functions such as NTP-hydrolysis or oligomerization are discussed.
Collapse
Affiliation(s)
- Mario Albrecht
- Max-Planck-Institute for Informatics, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany.
| | | | | | | |
Collapse
|
47
|
Day NE, Ugai H, Yokoyama KK, Ichiki AT. K-562 cells lack MHC class II expression due to an alternatively spliced CIITA transcript with a truncated coding region. Leuk Res 2003; 27:1027-38. [PMID: 12859996 DOI: 10.1016/s0145-2126(03)00072-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The focus of this study was to determine the functional capacity of class II transactivator (CIITA), a regulatory factor of major histocompatibility complex (MHC) class II genes, in K-562 cells. We show that CIITA mRNA is present in K-562 cells and the interferon-gamma (IFN-gamma)-inducible CIITA promoter-IV exhibits low levels of basal activity, which is greatly enhanced upon treatment with IFN-gamma. Further study revealed that the CIITA cDNA contains an insertion of genomic sequence, which introduces a stop codon. The truncated coding region of the CIITA transcript in K-562 cells provides a possible explanation for the absence of MHC class II molecules.
Collapse
Affiliation(s)
- Noel E Day
- Department of Medical Genetics, Graduate School of Medicine, The University of Tennessee Medical Center, 1924 Alcoa Highway, Knoxville, TN 37920, USA
| | | | | | | |
Collapse
|
48
|
Radosevich M, Ono SJ. Novel mechanisms of class II major histocompatibility complex gene regulation. Immunol Res 2003; 27:85-106. [PMID: 12637770 DOI: 10.1385/ir:27:1:85] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Class II MHC molecules present processed peptides from exogenous antigens to CD4+ helper T lymphocytes. In so doing, they are central to immunity, driving both the humoral and cell mediated arms of the immune response. Class II MHC molecules, and the genes encoding them, are expressed primarily in cells of the immune system (B cells, thymic epithelial cells, activated T cells and professional antigen presenting cells). The expression is also under developmental control. Research over the past 20 years have provided a clear understanding of the cis-elements and transcription factors that regulate the expression of Class II MHC genes. Perhaps the most critical advance has been the discovery of CIITA, a non- DNA binding activator of transcription that is a master control gene for class II gene expression. Current research is focused on understanding the situations where class II MHC gene expression occurs in a CIITA-independent pathway, and the molecular basis for this expression. Finally, significant emphasis is being placed on targeting class II MHC transcription factors to either inhibit or stimulate the immune response to transplanted tissue or in cell based vaccines. This communication outlines recent advances in this field and discusses likely areas for future research.
Collapse
Affiliation(s)
- Michael Radosevich
- Department of Immunology, Institute of Ophthalmology, University College London, University of London, London, UK
| | | |
Collapse
|
49
|
Kuchtey J, Pennini M, Pai RK, Harding CV. CpG DNA induces a class II transactivator-independent increase in class II MHC by stabilizing class II MHC mRNA in B lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2320-5. [PMID: 12928377 DOI: 10.4049/jimmunol.171.5.2320] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microbial products, such as CpG DNA and LPS, enhance class II MHC (MHC-II) expression and Ag presentation by dendritic cells, but this effect does not occur with macrophages and is largely unexplored in B cells. Although MHC-II expression is influenced by transcriptional regulation, which is governed by class II transactivator (CIITA) in all cells, microbial products enhance MHC-II expression by dendritic cells in part by increasing MHC-II protein stability. In this study, we show that the CpG-induced increase in MHC-II expression by B lymphocytes is not due to protein stabilization or changes in CIITA expression or activity, but instead is due to increased stability of MHC-II mRNA. This CIITA-independent mechanism adds a new layer of complexity to regulation of MHC-II and may increase T cell help for B cell Ab responses to microbial or vaccine Ags.
Collapse
Affiliation(s)
- John Kuchtey
- Department of Pathology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
50
|
Quinn G, Bower R, Dos-Santos Cruz G, Giovino M, Xu Y, Patience C, Schuurman HJ. Structural and functional characteristics of a dominant-negative isoform of porcine MHC class II transactivator. EUROPEAN JOURNAL OF IMMUNOGENETICS : OFFICIAL JOURNAL OF THE BRITISH SOCIETY FOR HISTOCOMPATIBILITY AND IMMUNOGENETICS 2003; 30:259-70. [PMID: 12919287 DOI: 10.1046/j.1365-2370.2003.00397.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The MHC class II transactivator, CIITA, is critical for MHC class II gene expression in all species studied to date. We isolated an interferon (IFN)-gamma-inducible isoform of porcine CIITA (pCIITA') encoding a protein of 566 amino acids (aa) with significant homology to human CIITA (hCIITA). Analysis indicated that pCIITA' lacks the entire GTP-binding domain that is important for nuclear translocation and activation of target genes by hCIITA. In pCIITA' this region is replaced by a 14-aa motif with homology to several signalling peptide sequences. Expression of pCIITA' in porcine (ST-IOWA) and human (HeLa) cell lines resulted in suppression of IFN-gamma-stimulated MHC class II gene expression, at the protein and mRNA levels. We also identified two IFN-gamma-inducible variants of hCIITA, hCIITAlo and hCIITA' from Hela cells, both exhibiting dominant-negative suppression of MHC class II gene expression. Interestingly, hCIITA' encodes a predicted protein of 546 aa with a strikingly similar organization to pCIITA' including the 14-aa GTP-binding domain-replacement motif in which 10 out of 14 amino acids are identical to the pig sequence. Expression of hCIITA' and hCIITAlo sequences in Hela cells suppressed IFN-gamma-induced MHC class II gene expression. hCIITAlo, a predicted 303-aa protein with deleted GTP-binding and carboxy-terminal domain, displayed a more subtle suppression of IFN-gamma-induced MHC class II expression. These in vitro data indicate that there may be a role in vivo for isoforms of CIITA that can suppress full-length CIITA-mediated MHC class II gene expression. Both humans and now, potentially, pigs are candidate donors for organ and tissue allografts and xenografts, respectively. Regulation of MHC class II gene expression by manipulation of CIITA isoform expression in humans and pigs may provide a useful strategy for attenuation of T-cell-mediated cellular rejection.
Collapse
Affiliation(s)
- G Quinn
- Imutran Limited, A Novartis Pharma AG Co, Cambridge, UK.
| | | | | | | | | | | | | |
Collapse
|