1
|
Liu S, Ren Z, Yan M, Ye W, Hu Y. Strategies to enhance the penetration of nanomedicine in solid tumors. Biomaterials 2025; 321:123315. [PMID: 40185056 DOI: 10.1016/j.biomaterials.2025.123315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Nanomedicine was previously regarded as a promising solution in the battle against cancer. Over the past few decades, extensive research has been conducted to exploit nanomedicine for overcoming tumors. Unfortunately, despite these efforts, nanomedicine has not yet demonstrated its ability to cure tumors, and the research on nanomedicine has reached a bottleneck. For a significant period of time, drug delivery strategies have primarily focused on targeting nanomedicine delivery to tumors while neglecting its redistribution within solid tumors. The uneven distribution of nanomedicine within solid tumors results in limited therapeutic effects on most tumor cells and significantly hampers the efficiency of drug delivery and treatment outcomes. Therefore, this review discusses the challenges faced by nanomedicine in penetrating solid tumors and provides an overview of current nanotechnology strategies (alleviating penetration resistance, size regulation, tumor cell transport, and nanomotors) that facilitate enhanced penetration of nanomedicine into solid tumors. Additionally, we discussed the potential role of nanobionics in promoting effective penetration of nanomedicine.
Collapse
Affiliation(s)
- Sen Liu
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Zhendong Ren
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Manqi Yan
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Wei Ye
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
2
|
Ju X, Javorková E, Michalička J, Pumera M. Single-Atom Colloidal Nanorobotics Enhanced Stem Cell Therapy for Corneal Injury Repair. ACS NANO 2025; 19:19095-19115. [PMID: 40359418 PMCID: PMC12120985 DOI: 10.1021/acsnano.4c18874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Abstract
Corneal repair using mesenchymal stem cell therapy faces challenges due to long-term cell survival issues. Here, we design cerium oxide with gold single-atom-based nanorobots (CeSAN-bots) for treating corneal damage in a synergistic combination with stem cells. Powered by glucose, CeSAN-bots exhibit enhanced diffusion and active motion due to the cascade reaction catalyzed by gold and cerium oxide. CeSAN-bots demonstrate a two-fold increase in cellular uptake efficiency into mesenchymal stem cells compared to passive uptake. CeSAN-bots possess intrinsic antioxidant and immunomodulatory properties, promoting corneal regeneration. Validation in a mouse corneal alkali burn model reveals an improvement in corneal clarity restoration when stem cells are incorporated with CeSAN-bots. This work presents a strategy for developing glucose-driven, enzyme-free, single-atom-based ultrasmall nanorobots with promising applications in targeted intracellular delivery in diverse biological environments.
Collapse
Affiliation(s)
- Xiaohui Ju
- Future Energy
and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno61200, Czech Republic
| | - Eliška Javorková
- Department
of Toxicology and Molecular Epidemiology, Institute of Experimental
Medicine, Academy of Sciences of the Czech
Republic, Vídeňská 1083, Prague14200, Czech Republic
- Department
of Cell Biology, Faculty of Science, Charles
University, Viničná
7, Prague12844, Czech Republic
| | - Jan Michalička
- Central European
Institute of Technology, Brno University
of Technology, Purkyňova 123, Brno61200, Czech Republic
| | - Martin Pumera
- Future Energy
and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno61200, Czech Republic
- Advanced
Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical
Engineering and Computer Science, VSB-Technical
University of Ostrava, 17. listopadu 2172/15, Ostrava70800, Czech Republic
- Department
of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung40402, Taiwan
| |
Collapse
|
3
|
Malik VK, Liao CT, Xu C, Daddi-Moussa-Ider A, Pak OS, Young YN, Feng J. Magnetically driven lipid vesicles for directed motion and light-triggered cargo release. NANOSCALE 2025. [PMID: 40396421 DOI: 10.1039/d5nr00942a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Targeted drug delivery and precision medicine offer great promise for enhancing therapeutic efficacy while minimizing systemic toxicity. Among various platforms, lipid-based delivery systems have attracted significant interest due to their intrinsic biocompatibility and their ability to transport hydrophilic, hydrophobic, and amphiphilic compounds. With recent advances in bottom-up synthetic biology and microfluidics, giant unilamellar vesicles (GUVs) have emerged as a versatile candidate for drug delivery. However, achieving controlled and directed motion of GUVs remains a critical challenge. In this study, we conduct a systematic experimental investigation of GUVs encapsulating magnetic particles (magGUVs) subjected to inhomogeneous magnetic fields. We develop a lattice Boltzmann simulation framework to model the propulsion of GUVs driven by an internally encapsulated particle under a constant force, and compare the simulated speeds with experimental measurements. Furthermore, we demonstrate a proof-of-concept integrating directed motion of magGUVs with controlled, localized release of encapsulated contents via light-induced asymmetric oxidation. This work provides a foundation for the design of lipid-based drug delivery vehicles that combine navigational control with on-demand release capabilities, advancing targeted therapeutic strategies in precision medicine.
Collapse
Affiliation(s)
- Vinit Kumar Malik
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA.
| | - Chih-Tang Liao
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA.
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA, 95053 USA
| | - Chenghao Xu
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA.
| | | | - On Shun Pak
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA, 95053 USA
| | - Yuan-Nan Young
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, 07102 USA
| | - Jie Feng
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA.
| |
Collapse
|
4
|
Li X, Zhong S, Pan T, Xiong J, Zhu G, Shi Y, Xin H. Light-powered phagocytic macrophage microrobot (phagobot): both in vitro and in vivo. LIGHT, SCIENCE & APPLICATIONS 2025; 14:202. [PMID: 40383739 PMCID: PMC12086205 DOI: 10.1038/s41377-025-01881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/21/2025] [Accepted: 04/30/2025] [Indexed: 05/20/2025]
Abstract
Micro/nanorobots based on immune cells show great potential for addressing challenging biological and biomedical conditions. However, their powerful innate immune functions, particularly the phagocytosis capabilities, remain a big challenge to fully leverage with the current designs of immune cell-based microrobots. Herein, we report a light-powered phagocytic macrophage microrobot (phagobot), which is capable of robotic navigation toward specific foreign bio-threats and executing precise phagocytosis of these targeted entities under light control. Without genetic modification or nanoengineering of macrophages, the phagobot's "wake-up" program is achieved through direct activation of a resting-state macrophage by a tightly focused near-infrared (NIR) light beam. The phagobot exhibits robotic steering and directional navigation controlled by optical manipulation of the extended pseudopodia within the activated macrophage. It can further execute targeted phagocytic clearance tasks via engulfing various foreign bio-threats, including nanoplastics, microbials, and cancer cell debris. Notably, the phagobot can be constructed in a living larval zebrafish through optical activation and manipulation of the endogenous macrophage, which also exhibits controllable navigation and targeted phagocytic capabilities in vivo. With the intrinsic immune functions of macrophages, our light-powered phagobot represents a novel form of intelligent immune cell-based microrobots, holding many new possibilities for precise immune regulation and treatment for immune-related diseases.
Collapse
Affiliation(s)
- Xing Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Shuhan Zhong
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Ting Pan
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| | - Jianyun Xiong
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Guoshuai Zhu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Yang Shi
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Hongbao Xin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
5
|
Gao Z, Yang Z, Luo M, Pei Z, Xu W, Liu Y, Guo J, Xiang X, Yu Z, Zhao S, Guan J. Trienzyme-in-One Nanoparticle Making Multifunctional Synergistic Nanorobot for Tumor Therapy. SMALL METHODS 2025:e2500142. [PMID: 40351003 DOI: 10.1002/smtd.202500142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/28/2025] [Indexed: 05/14/2025]
Abstract
Current nanoparticle-based drug delivery systems for tumor therapy face significant challenges in intratumoral penetration and cellular internalization, leading to poor therapeutic efficacy. Herein, it is demonstrated that the sequential integration of glucose oxidase (GOx), catalase (CAT), and urease (URE) onto the half surface of biotin-modified Janus nanoparticles via the chemical coupling way produces nanorobots of multifunctionality and synergistic effect (denoted as UCGPJNRs). They can autonomously and powerfully move in tumor microenvironment (TME) by using endogenous urea as a fuel, enabling to penetrate deeper than 0.55 mm into tumor tissues, ≈5.5-fold of the previous counterparts. The UCGPJNRs perform motion-enhanced biotin receptor-mediated endocytosis and endoplasmic reticulum/Golgi apparatus pathway-mediated exocytosis, greatly improving the internalization efficiency of tumor cells. They release NH3 when moving to produce selective toxicity against tumor cells in hypoxic TME. Further, they enhance the glucose consumption by ≈three times due to the motion-accelerated GOx/CAT cascade reaction, disrupting the metabolism against tumor cells on a large area. After intratumorally injecting into tumor-bearing mice, UCGPJNRs can significantly amplify the in vivo tumor growth inhibition rate through their synergistic effect. This work provides a plausible strategy to overcome current limitations in tumor treatment by anchoring multiple bioenzymes on one nanoparticle.
Collapse
Affiliation(s)
- Zhixue Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zili Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Ming Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Ziye Pei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Wentao Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yushan Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jie Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xia Xiang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062, China
| | - Zili Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Suling Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- Research Center for Optoelectromagnetic Functional Materials Technology, Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, 430083, China
| |
Collapse
|
6
|
Dvoriashyna M, Lauga E. Designing optimal elastic filaments for viscous propulsion. SOFT MATTER 2025; 21:3503-3514. [PMID: 40197862 PMCID: PMC11977609 DOI: 10.1039/d4sm01388c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
The propulsion of many eukaryotic cells is generated by flagella, flexible slender filaments that are actively oscillating in space and time. The dynamics of these biological appendages have inspired the design of many types of artificial microswimmers. The magnitude of the filament's viscous propulsion depends on the time-varying shape of the filament, and that shape depends in turn on the spatial distribution of the bending rigidity of the filament. In this work, we rigorously determine the relationship between the mechanical (bending) properties of the filament and the viscous thrust it produces using mathematical optimisation. Specifically, by considering a model system (a slender elastic filament with an oscillating slope at its base), we derive the optimal bending rigidity function along the filament that maximises the time-averaged thrust produced by the actuated filament. Instead of prescribing a specific functional form, we use functional optimisation and adjoint-based variational calculus to formally establish the link between the distribution of bending rigidity and propulsion. The optimal rigidities are found to be stiff near the base, and soft near the distal end, with a spatial distribution that depends critically on the constraints used in the optimisation procedure. These findings may guide the optimal design of future artificial swimmers.
Collapse
Affiliation(s)
- Mariia Dvoriashyna
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Rd, Cambridge CB3 0WA, UK.
- School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Peter Guthrie Tait Rd, Edinburgh EH9 3FD, UK
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Rd, Cambridge CB3 0WA, UK.
| |
Collapse
|
7
|
Gao G, Shao T, Li T, Wang S. Harnessing optical forces with advanced nanophotonic structures: principles and applications. DISCOVER NANO 2025; 20:76. [PMID: 40317364 PMCID: PMC12049358 DOI: 10.1186/s11671-025-04252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/09/2025] [Indexed: 05/07/2025]
Abstract
Non-contact mechanical control of light has given rise to optical manipulation, facilitating diverse light-matter interactions and enabling pioneering applications like optical tweezers. However, the practical adoption of versatile optical tweezing systems remains constrained by the complexity and bulkiness of their optical setups, underscoring the urgent requirement for advancements in miniaturization and functional integration. In this paper, we present innovations in optical manipulation within the nanophotonic domain, including fiber-based and metamaterial tweezers, as well as their emerging applications in manipulating cells and artificial micro-nano robots. Furthermore, we explore interdisciplinary on-chip devices that integrate photonic crystals and optofluidics. By merging optical manipulation with the dynamism of nanophotonics and metamaterials, this work seeks to chart a transformative pathway for the future of optomechanics and beyond.
Collapse
Affiliation(s)
- Geze Gao
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Tianhua Shao
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Tianyue Li
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China.
| | - Shuming Wang
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
8
|
Wang Q, Wang B, Chan KF, Song X, Wang Q, Ji F, Su L, Ip BYM, Ko H, Chiu PWY, Leung TWH, Zhang L. Rapid Blood Clot Removal via Remote Delamination and Magnetization of Clot Debris. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415305. [PMID: 40056048 PMCID: PMC12061269 DOI: 10.1002/advs.202415305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/26/2025] [Indexed: 05/10/2025]
Abstract
Micro/nano-scale robotic devices are emerging as a cutting-edge approach for precision intravascular therapies, offering the potential for highly targeted drug delivery. While employing micro/nanorobotics for stroke treatment is a promising strategy due to its ability to localize therapy and minimize drug dosage, current methods require prolonged treatment durations, increasing the risk of nerve tissue necrosis from extended hypoxia. Here a programmable colloidal microswarm capable of rapidly detaching blood clots from the vessel wall is developed, enabling swift recanalization without the need for complete clot degradation. More importantly, the detached clot debris, despite their random shapes, functions as magnetic "debris-robots" and can be efficiently propelled through helical swimming within flowing vessels, followed by retrieval using catheter suction. The entire process-including catheter delivery, controlled locomotion, clot detachment, and retrieval-can be completed in approximately half an hour, significantly saving time compared to the critical "Golden 6 hours" window for stroke treatment. This retrieval procedure greatly minimizes nanoparticle exposure in the bloodstream and lowers the risk of secondary clotting in distal vessels, marking a significant advancement in robotic-assisted thrombolysis.
Collapse
Affiliation(s)
- Qinglong Wang
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenChina
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong Kong (CUHK)Shatin, N.T.Hong KongChina
| | - Ben Wang
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenChina
| | - Kai Fung Chan
- Chow Yuk Ho Technology Center for Innovative MedicineCUHKShatin N.T.Hong KongChina
- Multi‐Scale Medical Robotics CenterHong Kong Science ParkShatin N.T.Hong Kong SARChina
| | - Xin Song
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong Kong (CUHK)Shatin, N.T.Hong KongChina
| | - Qianqian Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro‐Nano Biomedical InstrumentsSchool of Mechanical EngineeringSoutheast UniversityNanjingChina
| | - Fengtong Ji
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong Kong (CUHK)Shatin, N.T.Hong KongChina
| | - Lin Su
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong Kong (CUHK)Shatin, N.T.Hong KongChina
| | | | - Ho Ko
- Division of NeurologyDepartment of Medicine and TherapeuticsCUHKShatin N.T.Hong KongChina
| | - Philip Wai Yan Chiu
- Chow Yuk Ho Technology Center for Innovative MedicineCUHKShatin N.T.Hong KongChina
- Multi‐Scale Medical Robotics CenterHong Kong Science ParkShatin N.T.Hong Kong SARChina
- Department of SurgeryCUHKShatin N.T.Hong KongChina
| | - Thomas Wai Hong Leung
- Division of NeurologyDepartment of Medicine and TherapeuticsCUHKShatin N.T.Hong KongChina
| | - Li Zhang
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong Kong (CUHK)Shatin, N.T.Hong KongChina
- Chow Yuk Ho Technology Center for Innovative MedicineCUHKShatin N.T.Hong KongChina
- Multi‐Scale Medical Robotics CenterHong Kong Science ParkShatin N.T.Hong Kong SARChina
- Department of SurgeryCUHKShatin N.T.Hong KongChina
- CUHK T Stone Robotics InstituteCUHKShatin N.T.Hong KongChina
| |
Collapse
|
9
|
Ding Q, Huang S, Zhang Z, Yu D, Li M, He Q, Mei L. Integration of Photodiagnosis and Therapy Guided by Micro/Nanorobots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2420359. [PMID: 40079099 DOI: 10.1002/adma.202420359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Micro/Nanorobots(MNRs)integrated with phototherapy represent an emerging approach to cancer treatment and hold significant potential for addressing bacterial infections, neurological disorders, cardiovascular diseases, and related conditions. By leveraging micro/nanoscale motor systems in conjunction with phototherapy, these robots enable real-time guidance and monitoring of therapeutic processes, improving drug delivery precision and efficiency. This integration not only enhances the effectiveness of phototherapy but also minimizes damage to surrounding healthy tissues. Nevertheless, clinical translation of MNRs-assisted phototherapy still faces numerous challenges. In this review, recent key developments in the field are comprehensively summarized, the critical roles of MNRs-assisted phototherapy in clinical applications are highlighted, and insights into future directions and the pathway toward large-scale clinical implementation are provided.
Collapse
Affiliation(s)
- Qihang Ding
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Siqi Huang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Zihan Zhang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Donghu Yu
- Brain Glioma Center & Department of Neurosurgery, International Science and Technology Cooperation Base for Research and Clinical techniques for Brain Glioma Diagnosis and Treatment, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ling Mei
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
10
|
Wang B, Shen J, Huang C, Ye Z, He J, Wu X, Guo Z, Zhang L, Xu T. Magnetically driven biohybrid blood hydrogel fibres for personalized intracranial tumour therapy under fluoroscopic tracking. Nat Biomed Eng 2025:10.1038/s41551-025-01382-z. [PMID: 40312457 DOI: 10.1038/s41551-025-01382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/25/2025] [Indexed: 05/03/2025]
Abstract
Small materials with pliability and untethered mobility are particularly suitable for minimally invasive medical interventions inside the body. However, the capabilities and applicability of such soft 'robots' are restricted by foreign-body responses to them and by the need to get them cleared from the body after the intervention. Here we report the development of biodegradable magnetized biohybrid blood hydrogel fibres that evade immune recognition, and their applicability for targeted intracranial tumour therapy with real-time tracking through X-ray fluoroscopy. The gel fibres can be made of the patient's own blood mixed with a small amount of magnetic particles and can be produced in about 15 min. We show that the locomotion of intracranially injected gel fibres through cerebrospinal fluid can be remotely controlled under a magnetic field and fluoroscopically tracked, and that a drug encapsulated in the gels can be released on demand under magnetic control, as we show for the delivery of doxorubicin to intracranial tumours in the minipigs. Biodegradable soft actuatable materials that avoid foreign-body responses may aid the development of personalized targeted interventions.
Collapse
Affiliation(s)
- Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P. R. China.
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, P. R. China
| | - Chenyang Huang
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P. R. China
| | - Zhicheng Ye
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Jiajun He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Xinyu Wu
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P. R. China
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, P. R. China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, P. R. China.
| | - Tiantian Xu
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P. R. China.
- The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P. R. China.
| |
Collapse
|
11
|
Song S, Han H, Wang J, Pu Y, Shao J, Xie J, Che H, van Hest JCM, Cao S. Polymersome-based nanomotors: preparation, motion control, and biomedical applications. Chem Sci 2025; 16:7106-7129. [PMID: 40206551 PMCID: PMC11976864 DOI: 10.1039/d4sc08283d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
Polymersome-based nanomotors represent a cutting-edge development in nanomedicine, merging the unique vesicular properties of polymersomes with the active propulsion capabilities of synthetic nanomotors. As a vesicular structure enclosed by a bilayer membrane, polymersomes can encapsulate both hydrophilic and hydrophobic cargoes. In addition, their physical-chemical properties such as size, morphology, and surface chemistry are highly tunable, which makes them ideal for various biomedical applications. The integration of motility into polymersomes enables them to actively navigate biological environments and overcome physiological barriers, offering significant advantages over passive delivery platforms. Recent breakthroughs in fabrication techniques and motion control strategies, including chemically, enzymatically, and externally driven propulsion, have expanded their potential for drug delivery, biosensing, and therapeutic interventions. Despite these advancements, key challenges remain in optimizing propulsion efficiency, biocompatibility, and in vivo stability to translate these systems into clinical applications. In this perspective, we discuss recent advancements in the preparation and motion control strategies of polymersome-based nanomotors, as well as their biomedical-related applications. The molecular design, fabrication approaches, and nanomedicine-related utilities of polymersome-based nanomotors are highlighted, to envisage the future research directions and further development of these systems into effective, precise, and smart nanomedicines capable of addressing critical biomedical challenges.
Collapse
Affiliation(s)
- Siyu Song
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz Mainz 55128 Germany
| | - Hao Han
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 PR China
| | - Jianhong Wang
- Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology Helix, P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Yubin Pu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 PR China
| | - Jingxin Shao
- Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology Helix, P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu 610041 China
| | - Hailong Che
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology Helix, P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Shoupeng Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 PR China
| |
Collapse
|
12
|
Yang T, Si T, Wu Y, Liu J, Dai L, Lin X, Xuan M, Leng X, He Q. Breaking the Limitation of Laminar Flow in Thrombolytic Therapy with Reconfigurable Vortex-Like Nanobot Swarms. Angew Chem Int Ed Engl 2025; 64:e202425189. [PMID: 39937079 DOI: 10.1002/anie.202425189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/13/2025]
Abstract
Laminar blood flow represents the normal physiological state of blood circulation, but it also acts as a natural physiological barrier for the effective diffusion of drugs to the lesion site. Here, we report a bioinspired strategy in which reconfigurable vortex-like swarms of magnetic swimming nanobots actively disrupt the laminar flow to deliver drugs in a manner similar to how bacteria seek food. The drug was released from the cavity of biodegradable, submicron pentosan flask-like nanobots, aggregates as the dynamic rotating drug fluid under a rotating magnetic field. The vortex-like nanobot swarm successfully overcame the laminar barrier near the thrombus in a rat inferior vena cava stenosis thrombosis model, which was observed by ultrasound blood flow imaging. Furthermore, the clinical feasibility of nanobots swarm for enhancing thrombolytic efficacy through drug aggregation after breaking the laminar flow was further confirmed in a rat deep vein thrombosis model. This bionic active targeting approach overcomes the laminar flow barrier and restricts the release of drugs by the swarm-induced vortex fluid to facilitate targeted drug delivery, which is expected to be an innovative method to enhance drug delivery efficiency.
Collapse
Affiliation(s)
- Tingxin Yang
- School of Medicine and Health, Harbin Institute of Technology, Xidazhi Street No. 92, Harbin, 150001, China
| | - Tieyan Si
- School of Physics, Harbin Institute of Technology, Xidazhi Street 92, Harbin, 150001, China
| | - Yingjie Wu
- School of Medicine and Health, Harbin Institute of Technology, Xidazhi Street No. 92, Harbin, 150001, China
| | - Jinhong Liu
- Department of Ultrasound Imaging, The Second Affiliated Hospital of Harbin Medical University, Ultrasound molecular imaging Joint laboratory of Heilongjiang Province (International Cooperation), Xuefu Street No. 246, Harbin, 150086, China
| | - Luru Dai
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Street, Wenzhou, 325000, China
| | - Xiankun Lin
- School of Medicine and Health, Harbin Institute of Technology, Xidazhi Street No. 92, Harbin, 150001, China
| | - Mingjun Xuan
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Street, Wenzhou, 325000, China
| | - Xiaoping Leng
- Department of Ultrasound Imaging, The Second Affiliated Hospital of Harbin Medical University, Ultrasound molecular imaging Joint laboratory of Heilongjiang Province (International Cooperation), Xuefu Street No. 246, Harbin, 150086, China
| | - Qiang He
- School of Medicine and Health, Harbin Institute of Technology, Xidazhi Street No. 92, Harbin, 150001, China
| |
Collapse
|
13
|
Gao C, Feng Y, Liu S, Chen B, Ding M, Du D, Zhang W, Wilson DA, Tu Y, Peng F. Light-Driven Artificial Cell Micromotors for Degenerative Knee Osteoarthritis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416349. [PMID: 40025988 DOI: 10.1002/adma.202416349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/02/2025] [Indexed: 03/04/2025]
Abstract
Combining artificial cellular compartmentalization and intelligent motion benefits of micro/nanomotors, light is used as energy input to construct an artificial cell-based micromotor capable of photosynthetic anabolism and intelligent directional movement. This system is assembled from phospholipids functionalized with F-ATP synthase and molybdenum disulfide (MoS2) nanoparticles (Vesical@MoS2-ATPase). The underlying mechanism involves the generation of protons (H+) through photo-hydrolysis of MoS2 nanoparticles within vesicles, which generates a local electroosmotic flow inside the vesicles and drives the negatively charged MoS2 toward light. The established proton gradient across the phospholipid membrane, in turn, drives the ATP synthase to catalyze ATP production. Both in vitro and in vivo models demonstrate that the micromotor can elevate local intracellular ATP levels upon light and improve the metabolism of denatured chondrocytes. This cell mimicry, with capabilities of migration and biosynthesis, emerges as a promising platform for the next generation of functional bio-interface.
Collapse
Affiliation(s)
- Chao Gao
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ye Feng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Suyi Liu
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Bin Chen
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Miaomiao Ding
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Dailing Du
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wenjing Zhang
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Nijmegen, AJ 6525, The Netherlands
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
14
|
George M, Boukherroub R, Sanyal A, Szunerits S. Treatment of lung diseases via nanoparticles and nanorobots: Are these viable alternatives to overcome current treatments? Mater Today Bio 2025; 31:101616. [PMID: 40124344 PMCID: PMC11930446 DOI: 10.1016/j.mtbio.2025.101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Challenges Respiratory diseases remain challenging to treat, with current efforts primarily focused on managing symptoms rather than maintaining overall lung health. Traditional treatment methods, such as oral or parenteral administration of antiviral, antibacterial, and anti-inflammatory drugs, face limitations. These include difficulty in delivering therapeutic agents to pathogens residing deep in the airways and the risk of severe side effects due to high systemic drug concentrations. The growing threat of drug-resistant pathogens further complicates infection management. Advancements The lung's large surface area offers an attractive target for inhalation-based drug delivery. Nanoparticles (NP) enable uniform and sustained drug distribution across the alveolar network, overcoming challenges posed by complex lung anatomy. Recent breakthroughs in nanorobots (NR) have demonstrated precise navigation through biological environments, delivering therapies directly to affected lung areas with enhanced accuracy. Nanotechnology has also shown promise in treating lung cancer, with nanoparticles engineered to overcome biological barriers, improve drug solubility, and enable controlled drug release. Future scope This review explores the progress of NP and NR in addressing challenges in pulmonary drug delivery. These innovations allow targeted delivery of nucleic acids, drugs, or peptides to the pulmonary epithelium with unprecedented accuracy, offering significant potential for improving therapeutic effectiveness in respiratory disorders.
Collapse
Affiliation(s)
- Meekha George
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University (DPU), Viktor-Kaplan-Straße 2, Geb. E, 2700, Wiener Neustadt, Austria
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique, Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, 34342, Istanbul, Turkey
| | - Sabine Szunerits
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University (DPU), Viktor-Kaplan-Straße 2, Geb. E, 2700, Wiener Neustadt, Austria
- Univ. Lille, CNRS, Univ. Polytechnique, Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| |
Collapse
|
15
|
Gupta DS, Tomar DA, Manohar DL, Panwar DP. Nanobots: The current scenario. Crit Rev Oncol Hematol 2025; 208:104652. [PMID: 39929350 DOI: 10.1016/j.critrevonc.2025.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
The detection and treatment of cancer could be completely transformed by the application of nanotechnology. New nanoscale targeting methods have emerged as a result of advancements in materials science and protein engineering, giving cancer patients new hope. Only a small number of nanocarriers have been approved for clinical usage in targeting cancer cells, despite the fact that many have been licensed for human studies. We examine a few of the approved formulations in this study and talk about the difficulties in transferring laboratory results to clinical settings. This review emphasises the inherent challenges in cancer therapy as well as the different nanocarriers and chemicals that can be used for specific tumour targeting. Future advancements in cancer detection and therapy could be facilitated by nanotechnology, but still the area remains vast and more clinical as well as laboratory trails are the need of the hour to overcome the present barriers and align the discovery of the potential application of nanobots from a mere lab work to a full-fledged clinical and translational work.
Collapse
Affiliation(s)
- Dr Shalini Gupta
- Department of Oral Pathology and Microbiology, King George's Medical University, Lucknow 226003, India.
| | - Dr Arushi Tomar
- Department of Oral Pathology and Microbiology, King George's Medical University, Lucknow 226003, India
| | - Dr Lakshmi Manohar
- Department of Oral Pathology and Microbiology, King George's Medical University, Lucknow 226003, India
| | - Dr Payal Panwar
- Department of Oral Pathology and Microbiology, King George's Medical University, Lucknow 226003, India
| |
Collapse
|
16
|
Zhou H, Yuan M, Zhang T. A Bibliometric Analysis and Systematic Review of Research Advances in In Situ Gel Drug Delivery Systems from 2003 to 2023. Pharmaceutics 2025; 17:451. [PMID: 40284446 PMCID: PMC12030373 DOI: 10.3390/pharmaceutics17040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Objective: We aimed analyze research trends in in situ gel drug delivery systems. Methods: Studies from 2003 to 2023 were systematically obtained from the Web of Science database and analyzed using VOSviewer software to evaluate publication trends, citation patterns, and collaborative networks. Results: A total of 990 articles were reviewed. There has been a significant increase in publications since 2019, with the highest number of publications occurring in 2023. China was the leading country in terms of publication output. Cairo University and King Abdulaziz University were identified as the top contributing institutions. Key researchers included Zhao, Xia, Hosny, and Kim. The research primarily focused on developing new formulations, optimizing materials (e.g., biocompatible and biodegradable materials), and exploring clinical applications such as nasal-brain delivery for Alzheimer's treatment. Conclusions: In situ gel systems have gained widespread use in clinical practice due to their ability to provide prolonged drug release and enhance patient compliance. This area remains crucial for future research, particularly in formulation design and administration methods.
Collapse
Affiliation(s)
| | - Mingqing Yuan
- Guangxi Key Laboratory of Special Biomedicine, Medical School of Guangxi University, Nanning 530004, China; (H.Z.); (T.Z.)
| | | |
Collapse
|
17
|
Ding M, Chen B, Wilson DA, Tu Y, Peng F. From Autonomous Chemical Micro-/Nanomotors to Rationally Engineered Bio-Interfaces. Angew Chem Int Ed Engl 2025; 64:e202423207. [PMID: 39905915 DOI: 10.1002/anie.202423207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Indexed: 02/06/2025]
Abstract
Developing micro-/nanomotors that convert a chemical energy input into a local gradient field and motion is an appealing but challenging task that holds particular promise for the intersection of materials and nanoengineering. Over the past two decades, remarkable advancements have refined these out-of-equilibrium chemically powered micro-/nanomotors, enabling them to orchestrate in situ chemical transformations that dynamically change local environments. The ionic products, radicals, gases, and electric fields from these active materials reshape the microenvironment, paving the way for ecofriendly disease interventions. This review discusses the state-of-the-art reactions that propel these energy-consuming micro-/nanomotors and elucidates the emerging implications of their products on biological systems. Particular emphasis has been placed on their potential for neural modulation, reactive oxygen species (ROS) regulation, synergistic tumor therapy, antibacterial strategies, and tissue regeneration. Collectively, these sketches provide a landscape of therapeutic modalities, heralding a new era of biomedicine. By harnessing the in situ product field of this active matter, we envision a paradigm shift toward active therapies that transcend conventional approaches, promising breakthroughs in disease diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Miaomiao Ding
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Bin Chen
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, The Netherland
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
18
|
Wang R, Wang Z, Zhang M, Zhong D, Zhou M. Application of photosensitive microalgae in targeted tumor therapy. Adv Drug Deliv Rev 2025; 219:115519. [PMID: 39955076 DOI: 10.1016/j.addr.2025.115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 02/17/2025]
Abstract
Microalgae present a novel and multifaceted approach to cancer therapy by modulating the tumor-associated microbiome (TAM) and the tumor microenvironment (TME). Through their ability to restore gut microbiota balance, reduce inflammation, and enhance immune responses, microalgae contribute to improved cancer treatment outcomes. As photosynthetic microorganisms, microalgae exhibit inherent anti-tumor, antioxidant, and immune-regulating properties, making them valuable in photodynamic therapy and tumor imaging due to their capacity to generate reactive oxygen species. Additionally, microalgae serve as effective drug delivery vehicles, leveraging their biocompatibility and unique structural properties to target the TME more precisely. Microalgae-based microrobots further expand their therapeutic potential by autonomously navigating complex biological environments, offering a promising future for precision-targeted cancer treatments. We position microalgae as a multifunctional agent capable of modulating TAM, offering novel strategies to enhance TME and improve the efficacy of cancer therapies.
Collapse
Affiliation(s)
- Ruoxi Wang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310029, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China; Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Haining 314400, China
| | - Zhouyue Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Min Zhang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Danni Zhong
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310029, China; Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China; Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Haining 314400, China.
| |
Collapse
|
19
|
Lu L, Bai S, Shi J, Zhang H, Hou G, Wang W, Sun S, Huang T, Jia Y, Granovsky A, Nikolai P, Wu Z, Xie H, Wu H. Bacteria Flagella-Mimicking Polymer Multilayer Magnetic Microrobots. SMALL METHODS 2025; 9:e2401558. [PMID: 39838737 DOI: 10.1002/smtd.202401558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/06/2025] [Indexed: 01/23/2025]
Abstract
Mass production of biomedical microrobots demands expensive and complex preparation techniques and versatile biocompatible materials. Learning from natural bacteria flagella, the study demonstrates a magnetic polymer multilayer cylindrical microrobot that bestows the controllable propulsion upon an external rotating magnetic field with uniform intensity. The magnetic microrobots are constructed by template-assisted layer-by-layer technique and subsequent functionalization of magnetic particles onto the large opening of the microrobots. Geometric variables of the polymer microrobots, such as the diameter and wall thickness, can be controlled by selection of porous template and layers of assembly. The microrobots perform controllable propulsion through the manipulation of magnetic field. The comparative analysis of the movement behavior reveals that the deformation of microrobots may be attributed to the propulsion upon rotating magnetic field, which is similar to that of natural bacteria. The influence of actuation and frequency on the velocity of the microrobots is studied. Such polymer multilayer magnetic microrobots may provide a novel concept to develop rapidly delivering drug therapeutic agents for diverse practical biomedical uses.
Collapse
Affiliation(s)
- Liang Lu
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150006, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150006, China
| | - Shuang Bai
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150006, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150006, China
| | - Jiaqi Shi
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Hutao Zhang
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China
| | - Gang Hou
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wei Wang
- College of Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shoubin Sun
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China
| | - Tianyun Huang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150006, China
- Department of Advanced Manufacturing and Robotics, College of Engineering, and State Key Laboratory for Turbulence and Complex Systems, Peking University, Beijing, 100091, China
| | - Yuxin Jia
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
| | - Alexander Granovsky
- Magnetism Department, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Perov Nikolai
- Magnetism Department, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Zhiguang Wu
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150006, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150006, China
| | - Hui Xie
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150006, China
| | - He Wu
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
20
|
Ali S, Khan MH, Zuhra Z, Wang J. Innovative materials that behave like robots to combat plastic pollution. MATERIALS HORIZONS 2025. [PMID: 40145310 DOI: 10.1039/d4mh01772b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
The growing plastic pollution crisis demands novel approaches, with innovative materials that mimic robotic behaviors emerging as a promising solution. This approach explores the development and application of smart materials that can autonomously engage in plastic waste removal, functioning like robots under various environmental conditions. We focus on materials activated by light, magnetic fields, chemical fuels, and ion exchange, which are designed to target and remove plastic waste efficiently. The key properties of these materials, such as self-activation, adaptability, and precision that enable them to function autonomously in waste management systems, are examined. The integration of these innovative materials offers significant advantages, including faster waste processing, reduced human exposure to hazardous waste, and enhanced sorting accuracy. Additionally, this review evaluates the environmental impact, scalability, and cost-effectiveness of these materials in comparison to traditional methods. Finally, the potential of these materials to play a central role in sustainable plastic waste management and contribute to a circular economy is discussed.
Collapse
Affiliation(s)
- Shafqat Ali
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China.
| | - Muhammad Haris Khan
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Zareen Zuhra
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Jinfeng Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
21
|
Shanei M, Wang G, Johansson P, Volpe G, Käll M. Harnessing Photon Recoil for Enhanced Torque on Light-Driven Metarotors. NANO LETTERS 2025; 25:4832-4837. [PMID: 40033159 PMCID: PMC11951154 DOI: 10.1021/acs.nanolett.4c06410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Contact-free rotation of microscopic objects in aqueous environments based on optical forces is a powerful concept in the development of light-driven microrobots, micromachines, torque transducers, and rheological sensors. Here, we demonstrate freely movable quasi-two-dimensional metasurface rotors with lateral dimensions up to 100 μm while still exhibiting controllable and steady rotation when submerged in water. The metarotors utilize photon recoil to produce strong optical torque by deflecting low-intensity laser light toward high angles via long lever arms, which amplify the creation of orbital angular momentum. We find that the torque generated by a single metarotor can be used to rotate hundreds of passive microparticles present in solution, suggesting potential applications as particle mixers in microfluidics and microbiology. Further development might involve utilizing metarotors as components in future microrobots for biomedicine and beyond.
Collapse
Affiliation(s)
- Mahdi Shanei
- Department
of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Gan Wang
- Department
of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Peter Johansson
- School
of Science and Technology, Örebro
University, 701 82 Örebro, Sweden
| | - Giovanni Volpe
- Department
of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Mikael Käll
- Department
of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
22
|
Jeon H, Park K, Sun JY, Kim HY. Particle-armored liquid robots. SCIENCE ADVANCES 2025; 11:eadt5888. [PMID: 40117360 PMCID: PMC11927607 DOI: 10.1126/sciadv.adt5888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/18/2025] [Indexed: 03/23/2025]
Abstract
It is challenging to emulate biological forms and functions with artificial machines: Fluidity and adaptability seen in cellular organisms, characterized by their ability to deform, split, merge, and engulf, are hard to recapitulate with traditional rigid robotic structures. A promising avenue to tackle this problem is harnessing the supreme deformability of liquids while providing stable yet flexible shells around them. Here, we report a highly robust liquid-particle composite, named a Particle-armored liquid roBot (PB), featuring a liquid blob coated with unusually abundant superhydrophobic particles. The enhanced deformability and structural stability of our millimetric PBs enable a range of versatile robotic functions, such as navigating through complex environments, engulfing and transporting cargoes, merging, and adapting to various environments. We use both theoretical analysis and experimental approaches to develop a framework for predicting the shape evolution, dynamics, and robotic functions of PBs. The forms and functions of our liquid robots mark an essential hallmark toward miniature biomachines that perform like cells.
Collapse
Affiliation(s)
- Hyobin Jeon
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Keunhwan Park
- Department of Mechanical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Jeong-Yun Sun
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Young Kim
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
23
|
Goyal R, Behera J, Mandal P, Ghosh A. Externally controlled intermittent randomization enables complex navigation of multiple nanobots. Nat Commun 2025; 16:2700. [PMID: 40108155 PMCID: PMC11923227 DOI: 10.1038/s41467-025-58092-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
Selective control of single untethered robots within a collection is trivial in macroscale robotics since it is possible to address and actuate individual entities using various communication schemes. This strategy does not work at reduced (sub-µm) length scales, where the global field cannot differentiate or control a single nanobot selectively from within a collection of indistinguishable objects. Here, we propose and demonstrate strategies where identical magnetic nanobots can be selectively and independently actuated using global control fields.
Collapse
Affiliation(s)
- Rahul Goyal
- Max Planck Institute for Medical Research, Heidelberg, Germany
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Jyotiprakash Behera
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India.
- Department of Physics, Indian Institute of Science, Bangalore, India.
| | - Pranay Mandal
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ambarish Ghosh
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India.
- Department of Physics, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
24
|
Nishiguchi D, Shiratani S, Takeuchi KA, Aranson IS. Vortex reversal is a precursor of confined bacterial turbulence. Proc Natl Acad Sci U S A 2025; 122:e2414446122. [PMID: 40085657 PMCID: PMC11929451 DOI: 10.1073/pnas.2414446122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/31/2025] [Indexed: 03/16/2025] Open
Abstract
Active turbulence, or chaotic self-organized collective motion, is often observed in concentrated suspensions of motile bacteria and other systems of self-propelled interacting agents. To date, there is no fundamental understanding of how geometrical confinement orchestrates active turbulence and alters its physical properties. Here, by combining large-scale experiments, computer modeling, and analytical theory, we have identified a generic sequence of transitions occurring in bacterial suspensions confined in cylindrical wells of varying radii. With increasing the well's radius, we observed that persistent vortex motion gives way to periodic vortex reversals, four-vortex pulsations, and then well-developed active turbulence. Using computational modeling and analytical theory, we have shown that vortex reversal results from the nonlinear interaction of the first three azimuthal modes that become unstable with the radius increase. The analytical results account for our key experimental findings. To further validate our approach, we reconstructed equations of motion from experimental data. Our findings shed light on the universal properties of confined bacterial active matter and can be applied to various biological and synthetic active systems.
Collapse
Affiliation(s)
- Daiki Nishiguchi
- Department of Physics, School of Science, Institute of Science Tokyo, Meguro-ku, Tokyo152–8551, Japan
- Department of Physics, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113–0033, Japan
| | - Sora Shiratani
- Department of Physics, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113–0033, Japan
| | - Kazumasa A. Takeuchi
- Department of Physics, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113–0033, Japan
- Institute for Physics of Intelligence, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113–0033, Japan
| | - Igor S. Aranson
- Department of Physics, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113–0033, Japan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
- Department of Mathematics, The Pennsylvania State University, University Park, PA16802
| |
Collapse
|
25
|
Sun B, Guo J, Hao B, Cao Y, Chan TKF, Sun M, Sung JJY, Zhang L. Liquid-bodied antibiofilm robot with switchable viscoelastic response for biofilm eradication on complex surface topographies. SCIENCE ADVANCES 2025; 11:eadt8213. [PMID: 40073138 PMCID: PMC11900878 DOI: 10.1126/sciadv.adt8213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
Recalcitrant biofilm infections pose a great challenge to human health. Micro- and nanorobots have been used to eliminate biofilm infections in hard-to-reach regions inside the body. However, applying antibiofilm robots under physiological conditions is limited by the conflicting demands of accessibility and driving force. Here, we introduce a liquid-bodied antibiofilm robot constructed by a dynamically cross-linked magnetic hydrogel. Leveraging the viscoelastic response of the robot enables it to adapt to complex surface topographies such as medical meshes and stents. Upon actuation, the robot can mechanically destroy the biofilm matrix, chemically deactivate bacterial cells, and collect disrupted biofilm debris. The robot's antibiofilm performance is studied in vitro and demonstrated on a medical mesh and a biliary stent. Tracking and navigation under endoscopy and x-ray imaging in an ex vivo porcine bile duct are demonstrated. Last, in vivo antibiofilm treatment is conducted by indwelling infected stents into mice's abdominal cavity and clearing the biofilm infection using the proposed robot.
Collapse
Affiliation(s)
- Bonan Sun
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junjia Guo
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bo Hao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yanfei Cao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tony K. F. Chan
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mengmeng Sun
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Joseph J. Y. Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
- CUHK T. Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
26
|
Zeng B, Lai J, Chen J, Huang Y, Guo Q, Huang C, Li X, Wu C, Li S, Tang J. Photothermal Cavitation-Driven Micromotor to Penetrate Cell Membrane. J Am Chem Soc 2025; 147:8906-8916. [PMID: 40013591 PMCID: PMC11912328 DOI: 10.1021/jacs.5c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
Photothermally driven micro/nanomotors efficiently convert light into mechanical motion, making them highly attractive for biomedical applications due to their exceptional biocompatibility and safety. However, one mystery of the photothermally driven micro/nanomotor is the wide range of reported light intensities applied, ranging from 1 W cm-2 to over 105 W cm-2. To address this mystery, we systematically investigated the propulsion of a carbon microbottle-based micromotor under three illumination conditions: continuous laser, pulsed laser, and scanning laser, where a new cavitation-driven mechanism is identified. Using a high-speed camera, we find that the instantaneous deposition of laser energy on the micromotors can lead to transient and localized evaporation of the solvent, creating cavitation bubbles to drive micromotors with ultrafast speed, where instantaneous velocity over 1 m s-1 is observed. Through precise modulation of the scanning orientation and intensity of the laser, directional propulsion and targeted explosions of the microbottles are achieved, where the instant force is strong enough to penetrate live cell membranes. Finally, the cavitation-driven micromotors are exploited as gene transfection tools, where targeted cytoplasmic transfection is demonstrated.
Collapse
Affiliation(s)
- Binglin Zeng
- Department
of Chemistry, The University of Hong Kong, Kowloon, Hong Kong 999077, China
- HKU-CAS
Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Jialin Lai
- Department
of Chemistry, The University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Jingyuan Chen
- Department
of Chemistry, The University of Hong Kong, Kowloon, Hong Kong 999077, China
- Materials
Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518000, China
| | - Yaxin Huang
- Department
of Chemistry, The University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Qingxin Guo
- Department
of Chemistry, The University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Chao Huang
- Department
of Chemistry, The University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Xiaofeng Li
- Department
of Chemistry, The University of Hong Kong, Kowloon, Hong Kong 999077, China
- Materials
Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518000, China
| | - Changjin Wu
- Department
of Mechanical Engineering, The University
of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Shuai Li
- College
of Shipbuilding Engineering, Harbin Engineering
University, Harbin 150001, China
| | - Jinyao Tang
- Department
of Chemistry, The University of Hong Kong, Kowloon, Hong Kong 999077, China
- HKU-CAS
Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Kowloon, Hong Kong 999077, China
- State
Key Laboratory of Synthetic Chemistry, The
University of Hong Kong, Kowloon, Hong Kong 999077, China
- Materials
Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518000, China
| |
Collapse
|
27
|
Shao J, Luo Y, Wu H, Wang J, Zhou X, Er S, Cao S, Sun H, Pérez Garza HH, Zheng H, Friedrich H, Abdelmohsen LKEA, van Hest JCM. Designing polymersomes with surface-integrated nanoparticles through hierarchical phase separation. Nat Commun 2025; 16:2445. [PMID: 40069209 PMCID: PMC11897236 DOI: 10.1038/s41467-025-57711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/28/2025] [Indexed: 03/15/2025] Open
Abstract
Polymersomes with surface-integrated nanoparticles, in which a smaller sphere is attached to a larger capsule, are typically formed through complex processes like membrane deformation, polymerization, or membrane functionalization. This complexity restricts facile application of this unusual topology, for example in drug delivery or nanomotor science. Our study introduces a robust method for crafting polymersomes with surface-integrated nanoparticles using a hierarchical phase separation approach. By co-assembling block copolymers with aromatic aggregation-induced emission (AIE) moieties as side chains and photothermal-responsive guest molecules (PTM), spontaneous sequential phase separation processes occur that lead to their controlled formation. Polymer-rich liquid droplets form first, followed by internal phase separation of the guest molecules, which determines the formation of asymmetric morphology. This mechanism is elucidated in detail using liquid-phase transmission and cryogenic transmission electron microscopy (LP-TEM and cryo-TEM) and corroborated by theoretical simulations of the interaction forces between the block copolymers and guest molecules. Finally, the application potential of polymersomes with surface-integrated nanoparticles as nanomotors is demonstrated.
Collapse
Affiliation(s)
- Jingxin Shao
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Yingtong Luo
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Hanglong Wu
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Center for Multiscale Electron Microscopy (CMEM), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jianhong Wang
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Xuan Zhou
- DIFFER-Dutch Institute for Fundamental Energy Research, Eindhoven, The Netherlands
| | - Süleyman Er
- DIFFER-Dutch Institute for Fundamental Energy Research, Eindhoven, The Netherlands
| | - Shoupeng Cao
- College of Polymer Science and Engineering, Sichuan University, Chengdu, PR China
| | - Hongyu Sun
- DENSsolutions B.V., Delft, The Netherlands
| | | | | | - Heiner Friedrich
- Department of Chemical Engineering and Chemistry, Center for Multiscale Electron Microscopy (CMEM), Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Loai K E A Abdelmohsen
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Jan C M van Hest
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
28
|
Ruiz-González N, Esporrín-Ubieto D, Kim ID, Wang J, Sánchez S. Micro- and Nanomotors: Engineered Tools for Targeted and Efficient Biomedicine. ACS NANO 2025; 19:8411-8432. [PMID: 39996616 PMCID: PMC11912581 DOI: 10.1021/acsnano.4c12726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025]
Abstract
Over the past two decades, nanotechnology has made significant progress toward the development and applications of micromotors (MMs) and nanomotors (NMs). Characterized by their capability to self-propel and swim in fluids, they have emerged as promising tools in various fields, particularly in biomedicine. This Review presents an overview of the current state of MMs and NMs, their motion in viscous media and complex environments, their interaction with biological barriers, and potential therapeutical applications. We identify the choice of appropriate administration routes to reach their target location as a key aspect of the success of MMs and NMs in biomedical applications. Looking ahead, we envision NMs playing a key role in treating diverse medical disorders, as recent proof-of-concept in vivo studies demonstrate their distinct capabilities and versatility. However, addressing regulatory, scalability, biocompatibility, and safety concerns remains imperative for the successful translation of NMs into clinical trials and industrial-scale production. This work provides a guideline for researchers, guiding them through the current landscape, challenges, and prospects of using MMs and NMs in biomedicine, thereby encouraging their responsible development and positioning in the future of nanomedicine. Furthermore, we outline critical areas for further research, including studies on biocompatibility, safety, and methods to overcome physical obstacles.
Collapse
Affiliation(s)
- Noelia Ruiz-González
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science
and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
- Facultat
de Física, Universitat de Barcelona
(UB). C. Martí I Franques, 1-11, 08028 Barcelona, Spain
| | - David Esporrín-Ubieto
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science
and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Il-Doo Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Joseph Wang
- Department
of Nanoengineering, University of California
San Diego, La Jolla, California 92093, United States
| | - Samuel Sánchez
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science
and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudies Avancats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
29
|
Wang S, Chen X, Liu Y, Jiang Y, Li J, Ren L, Wang J, Wang Z, Li Y, Wu H, Zhang Y, Gao Y, Wang L. Hybrid Biomembrane-Functionalized Nanorobots Penetrate the Vitreous Body of the Eye for the Treatment of Retinal Vein Occlusion. ACS NANO 2025; 19:7728-7741. [PMID: 39964811 DOI: 10.1021/acsnano.4c12327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Intravitreal injections of antivascular endothelial growth factor (VEGF) agents are the primary method for treating retinal vein occlusion (RVO). However, the complex structure of eye anatomy presents ocular barriers that impede drug delivery. Additionally, these drugs only manage the complications associated with RVO and fail to address the underlying cause of vessel occlusions. Here, we describe a method that utilizes functionalized magnetically driven nanorobots to overcome ocular barriers and treat RVO. These nanorobots are developed using a hybrid biomembrane that combines stem cell membranes with liposome-derived membranes, enveloping perfluorohexane, iron oxide nanoparticles, and l-arginine. After intravitreal injection, the nanorobots can move directionally through and penetrate the vitreous body to reach the retina, driven by an external magnetic field. Subsequently, the nanorobots actively target the inflammation sites at occluded vessels due to the presence of stem cell membranes. In a rat model of RVO, enhanced targeting and accumulation in ischemic retinal vessels were demonstrated following intravitreal injections. Furthermore, the application of ultrasound triggers the release of l-arginine at the site of occlusion, stimulating the production of nitric oxide, which promotes vasodilation and restores blood flow, thereby achieving excellent therapeutic efficacy for RVO. We believe these methods hold significant promise for overcoming challenges in ocular drug delivery and effectively treating RVO in clinical applications.
Collapse
Affiliation(s)
- Siyu Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xinmeng Chen
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yewei Liu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yishuo Jiang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jie Li
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Lili Ren
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jiahui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Zhixuan Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yichong Li
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Haoan Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yu Gao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
30
|
Te Vrugt M, Wittkowski R. Metareview: a survey of active matter reviews. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2025; 48:12. [PMID: 40035927 PMCID: PMC11880143 DOI: 10.1140/epje/s10189-024-00466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/04/2024] [Indexed: 03/06/2025]
Abstract
In the past years, the amount of research on active matter has grown extremely rapidly, a fact that is reflected in particular by the existence of more than 1000 reviews on this topic. Moreover, the field has become very diverse, ranging from theoretical studies of the statistical mechanics of active particles to applied work on medical applications of microrobots and from biological systems to artificial swimmers. This makes it very difficult to get an overview over the field as a whole. Here, we provide such an overview in the form of a metareview article that surveys the existing review articles and books on active matter. Thereby, this article provides a useful starting point for finding literature about a specific topic.
Collapse
Affiliation(s)
- Michael Te Vrugt
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA, UK
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128, Mainz, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Universität Münster, 48149, Münster, Germany.
| |
Collapse
|
31
|
Zhang L, Wang S, Hou Y. Magnetic Micro/nanorobots in Cancer Theranostics: From Designed Fabrication to Diverse Applications. ACS NANO 2025; 19:7444-7481. [PMID: 39970007 DOI: 10.1021/acsnano.4c10382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Cancer poses a substantial threat and a serious challenge to public human health, driving the promotion of sophisticated technologies for cancer therapy. While conventional chemotherapy has bottlenecks such as low delivery efficiency, strong toxic side effects, and tumor enrichment barriers, magnetic micro/nanorobots (MNRs) emerge as promising therapeutic candidates that provide alternative strategies for cancer therapy. MNR is a kind of human-made machine that is micro- or nanosized, is reasonably designed, and performs command tasks through self-actuated or externally controlled propulsion mechanisms, which can be potentially applied in cancer theranostics. Here, this review first introduces the components that constitute a typical magnetic MNR, including the body part, the driving part, the control part, the function part, and the sensing part. Subsequently, this review elucidates representative fabrication methods to construct magnetic MNRs from top-down approaches to bottom-up approaches, covering injection molding, self-rolling, melt electrospinning writing, deposition, biotemplate method, lithography, assembling, 3D printing, and chemical synthesis. Furthermore, this review focuses on multiple applications of magnetic MNRs facing cancer diagnosis and treatment, encompassing imaging, quantification, drug release, synergy with typical therapies, cell manipulation, and surgical assistance. Then, this review systematically elaborates on the biocompatibility and biosafety of magnetic MNRs. Finally, the challenges faced by magnetic MNRs are discussed alongside future research directions. This review is intended to provide scientific guidance that may improve the comprehension and cognition of cancer theranostics through the platform of magnetic MNRs, promoting and prospering the practical application development of magnetic MNRs.
Collapse
Affiliation(s)
- Lin Zhang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shuren Wang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
32
|
Jiang J, Hu J, Li M, Luo M, Dong B, Sitti M, Yan X. NIR-II Fluorescent Thermophoretic Nanomotors for Superficial Tumor Photothermal Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417440. [PMID: 39895191 PMCID: PMC11899490 DOI: 10.1002/adma.202417440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/27/2024] [Indexed: 02/04/2025]
Abstract
Peritumoral subcutaneous injection has been highly envisioned as an efficient yet low-risk administration of photothermal agents for superficial tumor photothermal therapy. However, obstructed by complex subcutaneous tissue, the delivery of injected photothermal agents to the specific tumor remains a critical issue. Herein, the study reports a polydopamine (PDA)-encapsulated spherical core/shell nanomotor with fluorescent indocyanine green (ICG) immobilized on its PDA shell. Upon the first near-infrared (NIR-I) irradiation, this motor can generate favorable photothermal heat, and meantime, emit a robust ICG fluorescence in the second near-infrared window (NIR-II). The heat turns the motor into an active photothermal agent able to perform thermophoretic propulsion along the irradiation direction in subcutaneous tissue, while the ICG fluorescence can direct the subcutaneous propulsion of motors toward specific tumor through real-time NIR-II imaging. These functions endow the motor with the ability of moving to tumor after being injected at peritumoral site, enabling an enhanced photothermal therapy (PTT). The results demonstrated herein suggest an integrated nanorobotic tool for the superficial PTT using peritumoral administration, highlighting an NIR-II imaging-directed subcutaneous propulsion.
Collapse
Affiliation(s)
- Jiwei Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123China
| | - Jing Hu
- State Key Laboratory of Vaccines for Infectious DiseasesCenter for Molecular Imaging and Translational MedicineXiang An Biomedicine LaboratorySchool of Public HealthXiamen UniversityXiamen361005China
| | - Mingtong Li
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical EngineeringInstitute of Biomedical Engineering and Health SciencesSchool of Medical and Health EngineeringChangzhou UniversityChangzhouJiangsu213164China
| | - Bin Dong
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123China
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- School of Medicine and College of EngineeringKoç UniversityIstanbul34450Turkey
| | - Xiaohui Yan
- State Key Laboratory of Vaccines for Infectious DiseasesCenter for Molecular Imaging and Translational MedicineXiang An Biomedicine LaboratorySchool of Public HealthXiamen UniversityXiamen361005China
| |
Collapse
|
33
|
Li WW, Yu ZL, Jia J. Urease-powered micro/nanomotors: Current progress and challenges. J Pharm Anal 2025; 15:101095. [PMID: 40177066 PMCID: PMC11964642 DOI: 10.1016/j.jpha.2024.101095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/26/2024] [Accepted: 09/02/2024] [Indexed: 04/05/2025] Open
Abstract
Enzyme-powered micro/nanomotors (MNMs) (EMNMs) use natural enzymes to facilitate the decomposition of fuels, including hydrogen peroxide (H2O2), glucose, triglycerides, and urea to provide power. EMNMs can achieve self-propulsion through the in situ utilization of biofuels without additional fuels, exhibiting excellent biocompatibility and significant potential for application in the biomedical field. Compared with H2O2, which may cause oxidative damage to the body, urea exhibits superior biosafety characteristics. Presently, urease-powered MNMs (UMNMs) have made notable progress in their applications in the biomedical field and have garnered considerable attention from researchers. In this review, we present the latest advancements in the biomedical field of UMNMs, primarily focusing on: 1) diverse materials used for constructing the fundamental framework of motors; 2) control of motor movement through the regulation of enzymatic reaction rates; and 3) research directions for the clinical application of motors, including in vivo imaging, biomarker detection, cancer treatment, optical therapy, overcoming biological barriers, antibacterial interventions, antithrombotic strategies, and gastric disease management. Despite showing immense potential in biomedical applications, there are still several challenges impeding its practical implementation, such as maintaining activity in the in vivo environment while accurately targeting specific sites to achieve the desired clinical therapeutic effects.
Collapse
Affiliation(s)
- Wen-Wen Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jun Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
34
|
Bouzari N, Nasseri R, Huang J, Ganguly S, Tang XS, Mekonnen TH, Aghakhani A, Shahsavan H. Hybrid Zwitterionic Hydrogels with Encoded Differential Swelling and Programmed Deformation for Small-Scale Robotics. SMALL METHODS 2025; 9:e2400812. [PMID: 39044713 PMCID: PMC11926519 DOI: 10.1002/smtd.202400812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Stimuli-responsive shape-morphing hydrogels with self-healing and tunable physiochemical properties are excellent candidates for functional building blocks of untethered small-scale soft robots. With mechanical properties similar to soft organs and tissues, such robots enable minimally invasive medical procedures, such as cargo/cell transportation. In this work, responsive hydrogels based on zwitterionic/acrylate chemistry with self-healing and stimuli-responsiveness are synthesized. Such hydrogels are then judiciously cut and pasted to form hybrid constructs with predetermined swelling and elastic anisotropy. This method is used to program hydrogel constructs with predetermined 2D-to-3D deformation upon exposure to different environmental ionic strengths. Untethered soft robotic functionalities are demonstrated, such as actuation, magnetic locomotion, and targeted transport of soft and light cargo in flooded media. The proposed hydrogel expands the repertoire of functional materials for fabricating small-scale soft robots.
Collapse
Affiliation(s)
- Negin Bouzari
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Rasool Nasseri
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Junting Huang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Sayan Ganguly
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Xiaowu Shirley Tang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Institute of Polymer Research, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Amirreza Aghakhani
- Institute of Biomaterials and Biomolecular Systems (IBBS), University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Hamed Shahsavan
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
35
|
Wang J, Polyviou A, Scheerstra JF, Cao S, Fusi AD, Shao J, van Hest JCM. Dual-driven biodegradable nanomotors for enhanced cellular uptake. J Mater Chem B 2025; 13:2820-2825. [PMID: 39871811 DOI: 10.1039/d4tb02633k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Hybrid nano-sized motors with navigation and self-actuation capabilities have emerged as promising nanocarriers for a wide range of delivery, sensing, and diagnostic applications due to their unique ability to achieve controllable locomotion within a complex biological environment such as tissue. However, most current nanomotors typically operate using a single driving mode, whereas propulsion induced by both external and local stimuli could be more beneficial to achieve efficient motility in a biomedical setting. In this work, we present a hybrid nanomotor by functionalizing biodegradable stomatocytes with platinum nanoparticles (Pt NPs). These Pt NPs enable two distinct propulsion mechanisms. First, near-infrared (NIR) laser irradiation causes plasmonic heating, which, due to the asymmetric shape of the stomatocytes, creates a temperature gradient around the nanomotors. Second, the catalytic properties of the Pt NPs allow them to convert hydrogen peroxide into water and oxygen, generating a chemical gradient that serves as an additional driving force. Hydrogen peroxide is thereby locally produced from endogenous glucose by a co-encapsulated enzyme, glucose oxidase. The motile features are employed to achieve enhanced accumulation within tumor cells. This nanomotor design offers a versatile approach for developing dual stimuli-responsive nanomotors that operate more effectively in complex environments.
Collapse
Affiliation(s)
- Jianhong Wang
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
| | - Andreas Polyviou
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
| | - Jari F Scheerstra
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
| | - Shoupeng Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Alexander D Fusi
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
| | - Jingxin Shao
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
| | - Jan C M van Hest
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
36
|
Liu Z, Liu F, Feng D, Li W, Tan X, Yang N, Liang Y, Chen N, Cheng Q, Ge L. Microwave-Responsive Engineered Platelet Microneedle Patch for Deep Tumor Penetration and Precision Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10457-10469. [PMID: 39908125 DOI: 10.1021/acsami.4c20896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Controllable and precise delivery of therapeutic agents is critical for effective tumor therapy. However, tumor targeting and the deep penetration of drugs remain among the most challenging issues in achieving controlled delivery. Herein, a novel engineered platelet microneedle patch with a microwave-responsive magnetic biometal-organic framework is proposed to facilitate the combination of the engineered platelet and microwave hyperthermia, enhancing deep drug penetration into tumors and enabling precision therapy. The prepared magnetic biometal-organic framework as nanomedicine exhibits excellent microwave thermal effects. The engineered platelets could be activated in the tumor microenvironment to release PMPs and nanomedicines combined with microwave hyperthermia for enhancing both cell uptake and deep drug penetration into tumors. The developed separable microneedle patch system allows the microneedle tip to be quickly detached from the backing layer and retained within the target tissue for repeated local cancer hyperthermia treatments. By integration of engineered platelets into the microneedle patch, the transdermal deep delivery of drugs could be effectively enhanced for local microwave thermochemotherapy of tumors. This work represents the first attempt to graft microwave-responsive inorganic nanomedicines onto platelets as cell drugs, offering a novel strategy for precise drug delivery activated by microwave thermal therapy.
Collapse
Affiliation(s)
- Zonghao Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
- Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Fangzhou Liu
- Department of Head & Neck Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Diyi Feng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Weikun Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Xin Tan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Ning Yang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Yanling Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Nuoya Chen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Qiang Cheng
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, P. R. China
| | - Liqin Ge
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
- Advanced Ocean Institute of Southeast University, Nantong 226000, P.R. China
| |
Collapse
|
37
|
Weerarathna IN, Kumar P, Dzoagbe HY, Kiwanuka L. Advancements in Micro/Nanorobots in Medicine: Design, Actuation, and Transformative Application. ACS OMEGA 2025; 10:5214-5250. [PMID: 39989765 PMCID: PMC11840590 DOI: 10.1021/acsomega.4c09806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/25/2025]
Abstract
In light of the ongoing technological transformation, embracing advancements that foster shared benefits is essential. Nanorobots, a breakthrough within nanotechnology, have demonstrated significant potential in fields such as medicine, where diagnostic and therapeutic applications are the primary focus areas. This review provides a comprehensive overview of nanotechnology, robots, and their evolving role in medical applications, particularly highlighting the use of nanorobots. Various design strategies and operational principles, including sensors, actuators, and nanocontrollers, are discussed based on prior research. Key nanorobot medical applications include biomedical imaging, biosensing, minimally invasive surgery, and targeted drug delivery, each utilizing advanced actuation technologies to enhance precision. The paper further examines recent progress in micro/nanorobot actuation and addresses important considerations for the future, including biocompatibility, control, navigation, delivery, targeting, safety, and ethical implications. This review offers a holistic perspective on how nanorobots can reshape medical practices, paving the way for precision medicine and improved patient outcomes.
Collapse
Affiliation(s)
- Induni Nayodhara Weerarathna
- Department
of Biomedical Sciences, Datta Meghe Institute
of Higher Education and Research (Deemed to be University), Wardha, Maharashtra-442001, India
| | - Praveen Kumar
- Department
of Computer Science and Medical Engineering, Datta Meghe Institute of Higher Education and Research (Deemed to
be University), Wardha, Maharashtra-442001, India
| | - Hellen Yayra Dzoagbe
- Datta
Meghe College of Pharmacy, Datta Meghe Institute of Higher Education
and Research, (Deemed to be University), Wardha, Maharashtra-442001, India
| | - Lydia Kiwanuka
- Department
of Medical Radiology and Imaging Technology, Datta Meghe Institute of Higher Education and Research (Deemed to
be University), Wardha, Maharashtra-442001, India
| |
Collapse
|
38
|
Ressnerova A, Heger Z, Pumera M. Translational nanorobotics breaking through biological membranes. Chem Soc Rev 2025; 54:1924-1956. [PMID: 39807638 DOI: 10.1039/d4cs00483c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In the dynamic realm of translational nanorobotics, the endeavor to develop nanorobots carrying therapeutics in rational in vivo applications necessitates a profound understanding of the biological landscape of the human body and its complexity. Within this landscape, biological membranes stand as critical barriers to the successful delivery of therapeutic cargo to the target site. Their crossing is not only a challenge for nanorobotics but also a pivotal criterion for the clinical success of therapeutic-carrying nanorobots. Nevertheless, despite their urgency, strategies for membrane crossing in translational nanorobotics remain relatively underrepresented in the scientific literature, signaling an opportunity for further research and innovation. This review focuses on nanorobots with various propulsion mechanisms from chemical and physical to hybrid mechanisms, and it identifies and describes four essential biological membranes that represent the barriers needed to be crossed in the therapeutic journey of nanorobots in in vivo applications. First is the entry point into the blood stream, which is the skin or mucosa or intravenous injection; next is the exit from the bloodstream across the endothelium to the target site; further is the entry to the cell through the plasma membrane and, finally, the escape from the lysosome, which otherwise destroys the cargo. The review also discusses design challenges inherent in translating nanorobot technologies to real-world applications and provides a critical overview of documented membrane crossings. The aim is to underscore the need for further interdisciplinary collaborations between chemists, materials scientists and chemical biologists in this vital domain of translational nanorobotics that has the potential to revolutionize the field of precision medicine.
Collapse
Affiliation(s)
- Alzbeta Ressnerova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.
- Research Group for Molecular Biology and Nanomedicine, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Zbynek Heger
- Research Group for Molecular Biology and Nanomedicine, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Center of Advanced Innovation Technologies, Faculty of Materials Science and Technology, VSB - Technical University of Ostrava, 17. Listopadu 2172/15, 70800 Ostrava, Czech Republic
| | - Martin Pumera
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| |
Collapse
|
39
|
Zhao W, Wang S, Zhou Y, Li Y, Tang S, Zheng Y, Zhu P. Programmable assemblies of photothermal anisotropic micromotors for multimodal motion. MATERIALS HORIZONS 2025; 12:1168-1178. [PMID: 39789938 DOI: 10.1039/d4mh01346h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Light-driven micromotors with multiple motion modes offer significantly greater application potential than single-mode micromotors. However, achieving such versatility often requires complex structural designs and precise light focusing on specific micromotor regions, presenting challenges for dynamic operations and microscale precisions. This study introduces programmable assemblies of anisotropic micromotors driven by the photothermal Marangoni effect, produced in bulk via microfluidic technology. Under full-area near-infrared (NIR) irradiation, the micromotor exhibits multiple motion modes, including translation and revolution, while micromotor assemblies display additional rotational motion. Self-assembly of these micromotors is highly controllable and programmable, enabling easy customization of assembled structures to achieve desired motion modes. These features are expected to advance the development of various intelligent self-propelling systems, using multimodal individual micromotors as foundational building blocks.
Collapse
Affiliation(s)
- Wenchang Zhao
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Shiyu Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Ying Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Yanhong Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Shuxian Tang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Yutong Zheng
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
40
|
Fu B, Luo D, Li C, Feng Y, Liang W. Advances in micro-/nanorobots for cancer diagnosis and treatment: propulsion mechanisms, early detection, and cancer therapy. Front Chem 2025; 13:1537917. [PMID: 39981265 PMCID: PMC11839623 DOI: 10.3389/fchem.2025.1537917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
In recent years, medical micro-/nanorobots (MNRs) have emerged as a promising technology for diagnosing and treating malignant tumors. MNRs enable precise, targeted actions at the cellular level, addressing several limitations of conventional cancer diagnosis and treatment, such as insufficient early diagnosis, nonspecific drug delivery, and chemoresistance. This review provides an in-depth discussion of the propulsion mechanisms of MNRs, including chemical fuels, external fields (light, ultrasound, magnetism), biological propulsion, and hybrid methods, highlighting their respective advantages and limitations. Additionally, we discuss novel approaches for tumor diagnosis, precision surgery, and drug delivery, emphasizing their potential clinical applications. Despite significant advancements, challenges such as biocompatibility, propulsion efficiency, and clinical translation persist. This review examines the current state of MNR applications and outlines future directions for their development, with the aim of enhancing their diagnostic and therapeutic efficacy and facilitating their integration into clinical practice.
Collapse
Affiliation(s)
- Baiyang Fu
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Luo
- College of Automotive and Mechanical Engineering, Harbin Cambridge University, Harbin, China
| | - Chao Li
- Department of Rheumatology and Immunology, Daqing Oilfield General Hospital, Daqing, China
| | - Yiwen Feng
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Wenlong Liang
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
41
|
Wang Z, Wang C, Ji Y, Yang M, Li C, Li M, Yang J, Tang H, Luo X, Hao H, Liu Z, Chen K, Chang Y, Yuan H, Feng L, Xing G, Li J. Magnetically driven bionic nanorobots enhance chemotherapeutic efficacy and the tumor immune response via precise targeting. Innovation (N Y) 2025; 6:100777. [PMID: 39991478 PMCID: PMC11846086 DOI: 10.1016/j.xinn.2024.100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
We developed magnetically driven bionic drug-loaded nanorobots (MDNs) to accurately target tumors and deliver chemotherapy agents using a customized three-dimensional (3D) magnetic manipulation platform (MMP) system to precisely control their movement mode. MDNs were based on polyethylene glycol-modified homogeneous ultrasmall iron oxide nanoparticles (7.02 ± 0.18 nm). Doxorubicin (12% ± 2% [w/w]) was encapsulated in MDNs by an imide bond. MDNs could imitate the movement mode of a school of wild herrings (e.g., re-dispersion/arrangement/vortex/directional movement) to adapt to the changing and complex physiological environment through the 3D MMP system. MDNs overcame blood flow resistance and biological barriers using optimized magnetic driving properties according to in vivo imaging (magnetic resonance imaging and fluorescence) and histopathology. The performance of fabricated MDNs was verified through cells and tumor-bearing mouse models. The MDNs showed high efficiency of drug delivery and targeting at the tumor site (>10-fold), lower toxicity than free doxorubicin (5 mg/kg body weight), activated immune response in the tumor site, and significantly lengthened survival for mice. The synergistic interaction between MDNs and the 3D MMP system underscores the immense potential of this drug delivery system, indicating a potential revolution in the field of tumor chemotherapy.
Collapse
Affiliation(s)
- Zhijie Wang
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chutian Wang
- School of Mechanical Engineering and Automation, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Ying Ji
- Institute of Textiles and Clothing, School of Fashion and Textiles, Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Mingxin Yang
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chan Li
- School of Mechanical Engineering and Automation, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Mengyao Li
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingru Yang
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Tang
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianwei Luo
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyang Hao
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhicai Liu
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Chen
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Chang
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Yuan
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Gengmei Xing
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Li
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Song X, Gul A, Zhao H, Qian R, Fang L, Huang C, Xi L, Wang L, Cheang UK. Hybrid Membrane Biomimetic Photothermal Nanorobots for Enhanced Chemodynamic-Chemotherapy-Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5784-5798. [PMID: 39818731 DOI: 10.1021/acsami.4c16960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Glioblastoma multiforme (GBM) is a highly invasive and fatal brain tumor with a grim prognosis, where current treatment modalities, including postoperative radiotherapy and temozolomide chemotherapy, yield a median survival of only 15 months. The challenges of tumor heterogeneity, drug resistance, and the blood-brain barrier necessitate innovative therapeutic approaches. This study introduces a strategy employing biomimetic magnetic nanorobots encapsulated with hybrid membranes derived from platelets and M1 macrophages to enhance blood-brain barrier penetration and target GBM. The nanorobots encapsulate a polypyrrole/Fe3O4 nanocomplex (PPy@F) for photothermal therapy (PTT) and promote the Fenton reaction of Fe3O4 to generate chemodynamic therapy (CDT). Additionally, temozolomide and PD-L1 antibody (SNTSESF) act as chemotherapy drug and immune checkpoint inhibitor, respectively. The biomimetic design leverages the functional properties of cell membranes to improve the blood residence time and tumor targeting. The integration of PTT and CDT aims to transform "cold" tumors into "hot" tumors, thereby enhancing immunotherapeutic efficacy. This multifaceted approach, PTT, CT, CDT, and immune checkpoint blockade therapy, offers a promising strategy for the treatment of GBM.
Collapse
Affiliation(s)
- Xiaoxia Song
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Reproductive Medicine Centre, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China
| | - Aaiza Gul
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hongkai Zhao
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Rongxin Qian
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lijun Fang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuanxiu Huang
- Reproductive Medicine Centre, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Liping Wang
- Reproductive Medicine Centre, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China
| | - U Kei Cheang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
43
|
Tran HH, Xiang Z, Oh MJ, Liu Y, Ren Z, Chen C, Jaruchotiratanasakul N, Kikkawa JM, Lee D, Koo H, Steager E. Robotic Microcapsule Assemblies with Adaptive Mobility for Targeted Treatment of Rugged Biological Microenvironments. ACS NANO 2025; 19:3265-3281. [PMID: 39803835 PMCID: PMC11781029 DOI: 10.1021/acsnano.4c11686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/29/2025]
Abstract
Microrobots are poised to transform biomedicine by enabling precise, noninvasive procedures. However, current magnetic microrobots, composed of solid monolithic particles, present fundamental challenges in engineering intersubunit interactions, limiting their collective effectiveness in navigating irregular biological terrains and confined spaces. To address this, we design hierarchically assembled microrobots with multiaxis mobility and collective adaptability by engineering the potential magnetic interaction energy between subunits to create stable, self-reconfigurable structures capable of carrying and protecting cargo internally. Using double emulsion templates and magnetic control techniques, we confine 10 nm iron oxide and 15 nm silica nanoparticles within the shell of 100 μm microcapsules that form multiunit robotic collectives. Unexpectedly, we find that asymmetric localization of iron oxide nanoparticles in the microcapsules enhances the intercapsule potential energy, creating stable connections under rotating magnetic fields without altering the magnetic susceptibility. These robotic microcapsule collectives exhibit emergent behaviors, self-reconfiguring into kinematic chain-like structures to traverse complex obstacles, arched confinements, and adhesive, rugged biological tissues that typically impede microscale systems. By harnessing these functions, we demonstrate targeted antifungal delivery using a localized biofilm model on mucosal tissues, showing effective killing ofCandida without binding or causing physical damage to host cells. Our findings show how hierarchical assembly can produce cargo-carrying microrobots with collective, self-adaptive mobility for traversing complex biological environments, advancing targeted delivery for biomedical applications.
Collapse
Affiliation(s)
- Hong Huy Tran
- Center
for Innovation & Precision Dentistry, School of Dental Medicine,
School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Biofilm
Research Laboratories, Levy Center for Oral Health, School of Dental
Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemical and Biomolecular Engineering, School of Engineering and
Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zhenting Xiang
- Center
for Innovation & Precision Dentistry, School of Dental Medicine,
School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Biofilm
Research Laboratories, Levy Center for Oral Health, School of Dental
Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Min Jun Oh
- Center
for Innovation & Precision Dentistry, School of Dental Medicine,
School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Biofilm
Research Laboratories, Levy Center for Oral Health, School of Dental
Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemical and Biomolecular Engineering, School of Engineering and
Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yuan Liu
- Center
for Innovation & Precision Dentistry, School of Dental Medicine,
School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Biofilm
Research Laboratories, Levy Center for Oral Health, School of Dental
Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zhi Ren
- Center
for Innovation & Precision Dentistry, School of Dental Medicine,
School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Biofilm
Research Laboratories, Levy Center for Oral Health, School of Dental
Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chider Chen
- Department
of Oral and Maxillofacial Surgery and Pharmacology, School of Dental
Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nadasinee Jaruchotiratanasakul
- Center
for Innovation & Precision Dentistry, School of Dental Medicine,
School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Biofilm
Research Laboratories, Levy Center for Oral Health, School of Dental
Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Operative Dentistry and Endodontics, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - James M. Kikkawa
- Department
of Physics and Astronomy, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Center
for Innovation & Precision Dentistry, School of Dental Medicine,
School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemical and Biomolecular Engineering, School of Engineering and
Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hyun Koo
- Center
for Innovation & Precision Dentistry, School of Dental Medicine,
School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Biofilm
Research Laboratories, Levy Center for Oral Health, School of Dental
Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Edward Steager
- Center
for Innovation & Precision Dentistry, School of Dental Medicine,
School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Biofilm
Research Laboratories, Levy Center for Oral Health, School of Dental
Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- GRASP Laboratory, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
44
|
Yuan Y, Wu X, Kalleshappa B, Pumera M. Light-Programmable g-C 3N 4 Microrobots with Negative Photogravitaxis for Photocatalytic Antibiotic Degradation. RESEARCH (WASHINGTON, D.C.) 2025; 8:0565. [PMID: 39877466 PMCID: PMC11772662 DOI: 10.34133/research.0565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025]
Abstract
Microrobots enhance contact with pollutants through their movement and flow-induced mixing, substantially improving wastewater treatment efficiency beyond traditional diffusion-limited methods. g-C3N4 is an affordable and environmentally friendly photocatalyst that has been extensively researched in various fields such as biomedicine and environmental remediation. However, compared to other photocatalytic materials like TiO2 and ZnO, which are widely used in the fabrication of micro- and nanorobots, research on g-C3N4 for these applications is still in its early stages. This work presents microrobots entirely based on g-C3N4 microtubes, which can initiate autonomous movement when exposed to ultraviolet and visible light. We observed distinct motion behaviors of the microrobots under light irradiation of different wavelengths. Specifically, under ultraviolet light, the microrobots exhibit negative photogravitaxis, while under visible light, they demonstrate a combination of 3-dimensional motion and 2-dimensional motion. Therefore, the wavelength of the light can be used for programming the motion style of the microrobots and subsequently their application. We show that the microrobots can effectively degrade the antibiotic tetracycline, displaying their potential for antibiotic removal. This exploration of autonomous motion behaviors under different wavelength conditions helps to expand research on g-C3N4-based microrobots and their potential for environmental remediation.
Collapse
Affiliation(s)
- Yunhuan Yuan
- Future Energy and Innovation Laboratory, Central European Institute of Technology,
Brno University of Technology, Brno 61200, Czech Republic
| | - Xianghua Wu
- Future Energy and Innovation Laboratory, Central European Institute of Technology,
Brno University of Technology, Brno 61200, Czech Republic
| | - Bindu Kalleshappa
- Future Energy and Innovation Laboratory, Central European Institute of Technology,
Brno University of Technology, Brno 61200, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology,
Brno University of Technology, Brno 61200, Czech Republic
- Department of Medical Research, China Medical University Hospital,
China Medical University, Taichung TW-40402, Taiwan
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science,
VSB – Technical University of Ostrava, Ostrava 70800, Czech Republic
| |
Collapse
|
45
|
Li Z, Guo Z, Zhang F, Sun L, Luan H, Fang Z, Dedrick JL, Zhang Y, Tang C, Zhu A, Yu Y, Ding S, Wang D, Chang AY, Yin L, Russell LM, Gao W, Fang RH, Zhang L, Wang J. Inhalable biohybrid microrobots: a non-invasive approach for lung treatment. Nat Commun 2025; 16:666. [PMID: 39809831 PMCID: PMC11733022 DOI: 10.1038/s41467-025-56032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Amidst the rising prevalence of respiratory diseases, the importance of effective lung treatment modalities is more critical than ever. However, current drug delivery systems face significant limitations that impede their efficacy and therapeutic outcome. Biohybrid microrobots have shown considerable promise for active in vivo drug delivery, especially for pulmonary applications via intratracheal routes. However, the invasive nature of intratracheal administration poses barriers to its clinical translation. Herein, we report on an efficient non-invasive inhalation-based method of delivering microrobots to the lungs. A nebulizer is employed to encapsulate picoeukaryote algae microrobots within small aerosol particles, enabling them to reach the lower respiratory tract. Post nebulization, the microrobots retain their motility (~55 μm s-1) to help achieve a homogeneous lung distribution and long-term retention exceeding five days in the lungs. Therapeutic efficacy is demonstrated in a mouse model of acute methicillin-resistant Staphylococcus aureus pneumonia using this pulmonary inhalation approach to deliver microrobots functionalized with platelet membrane-coated polymeric nanoparticles loaded with vancomycin. These promising findings underscore the benefits of inhalable biohybrid microrobots in a setting that does not require anesthesia, highlighting the substantial translational potential of this delivery system for routine clinical applications.
Collapse
Affiliation(s)
- Zhengxing Li
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA
- Program in Materials Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Zhongyuan Guo
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA
| | - Fangyu Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA
| | - Lei Sun
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA
| | - Hao Luan
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA
- Program in Materials Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Zheng Fang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA
| | - Jeramy L Dedrick
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Yichen Zhang
- Program in Materials Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Christine Tang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA
| | - Audrey Zhu
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA
| | - Yiyan Yu
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA
| | - Shichao Ding
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA
| | - Dan Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA
| | - An-Yi Chang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA
| | - Lu Yin
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA
| | - Lynn M Russell
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Weiwei Gao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA
| | - Ronnie H Fang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Liangfang Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA.
- Program in Materials Science and Engineering, University of California San Diego, La Jolla, CA, USA.
| | - Joseph Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA.
- Program in Materials Science and Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
46
|
De Corato M, Martínez-Lera P. Enhanced rotational diffusion and spontaneous rotation of an active Janus disk in a complex fluid. SOFT MATTER 2025; 21:186-197. [PMID: 39636056 DOI: 10.1039/d4sm01142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Active colloids and self-propelled particles moving through microstructured fluids can display different behavior compared to what is observed in simple fluids. As they are driven out of equilibrium in complex fluids they can experience enhanced translational and rotational diffusion as well as instabilities. In this work, we study the deterministic and the Brownian rotational dynamics of an active Janus disk propelling at a constant speed through a complex fluid. The interactions between the Janus disk and the complex fluid are modeled using a fluctuating advection-diffusion equation, which we solve using the finite element method. Motivated by experiments, we focus on the case of a complex fluid comprising molecules that are much smaller than the size of the active disk but much bigger than the solvent. Using numerical simulations, we elucidate the interplay between active motion and fluid microstructure that leads to enhanced rotational diffusion and spontaneous rotation observed in experiments employing Janus colloids in polymer solutions. By increasing the propulsion speed of the Janus disk, the simulations predict the onset of a spontaneous rotation and an increase of the rotational diffusion coefficient by orders of magnitude compared to its equilibrium value. These phenomena depend strongly on the number density of the constituents of the complex fluid and their interactions with the two sides of the Janus disk. Given the simplicity of our model, we expect that our findings will apply to a wide range of active systems propelling through complex media.
Collapse
Affiliation(s)
- Marco De Corato
- Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
| | - Paula Martínez-Lera
- Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
47
|
Zhang Y, Deng X, Xia L, Liang J, Chen M, Xu X, Chen W, Ding J, Yu C, Liu L, Xiang Y, Lin Y, Duan F, Feng W, Chen Y, Gao X. Living Therapeutics for Synergistic Hydrogen-Photothermal Cancer Treatment by Photosynthetic Bacteria. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408807. [PMID: 39495651 PMCID: PMC11714200 DOI: 10.1002/advs.202408807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Indexed: 11/06/2024]
Abstract
Hydrogen gas (H2) therapy, recognized for its inherent biosafety, holds significant promise as an anti-cancer strategy. However, the efficacy of H2 treatment modalities is compromised by their reliance on systemic gas administration or chemical reactions generation, which suffers from low efficiency, poor targeting, and suboptimal utilization. In this study, living therapeutics are employed using photosynthetic bacteria Rhodobacter sphaeroides for in situ H2 production combined with near-infrared (NIR) mediated photothermal therapy. Living R. sphaeroides exhibits strong absorption in the NIR spectrum, effectively converting light energy into thermal energy while concurrently generating H2. This dual functionality facilitates the targeted induction of tumor cell death and substantially reduces collateral damage to adjacent normal tissues. The findings reveal that integrating hydrogen therapy with photothermal effects, mediated through photosynthetic bacteria, provides a robust, dual-modality approach that enhances the overall efficacy of tumor treatments. This living therapeutic strategy not only leverages the therapeutic potential of both hydrogen and photothermal therapeutic modalities but also protects healthy tissues, marking a significant advancement in cancer therapy techniques.
Collapse
Affiliation(s)
- Yingyi Zhang
- Department of PharmacologySchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
- Key Laboratory of Quantitative Synthetic BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academic of ScienceShenzhen518000P. R. China
| | - Xiaolian Deng
- Department of PharmacologySchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
- Key Laboratory of Quantitative Synthetic BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academic of ScienceShenzhen518000P. R. China
| | - Lili Xia
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Jianghui Liang
- Department of PharmacologySchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Meng Chen
- Key Laboratory of Quantitative Synthetic BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academic of ScienceShenzhen518000P. R. China
| | - Xiaoling Xu
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityZhejiang310016P. R. China
- Key laboratory for accurate diagnosis and treatment of abdominal infection in Zhejiang provinceSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityZhejiang310016P. R. China
| | - Wei Chen
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityZhejiang310016P. R. China
- Key laboratory for accurate diagnosis and treatment of abdominal infection in Zhejiang provinceSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityZhejiang310016P. R. China
| | - Jianwei Ding
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117585Singapore
| | - Chengjie Yu
- Department of PharmacologySchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Limei Liu
- Department of PharmacologySchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
- Key Laboratory of Quantitative Synthetic BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academic of ScienceShenzhen518000P. R. China
| | - Yang Xiang
- Department of PharmacologySchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
- Key Laboratory of Quantitative Synthetic BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academic of ScienceShenzhen518000P. R. China
| | - Yiliang Lin
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117585Singapore
| | - Fangfang Duan
- Department of PharmacologySchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Wei Feng
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Xiang Gao
- Key Laboratory of Quantitative Synthetic BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academic of ScienceShenzhen518000P. R. China
| |
Collapse
|
48
|
Parhi R, Garg A. Recent Advances in 4D Printing: A Review of Current Smart Materials, Technologies, and Drug Delivery Systems. Curr Pharm Des 2025; 31:1180-1204. [PMID: 39702931 DOI: 10.2174/0113816128341715241216060613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024]
Abstract
Research on shape memory materials (SMM) or smart materials, along with advancements in printing technology, has transformed three-dimensional (3D) printing into what we now refer to as 4D printing. In this context, the addition of time as a fourth dimension enhances 3D printing. 4D printing involves the creation of 3D-printed objects that can change their shapes into complex geometries when influenced by external stimuli such as temperature, light, or pH over time. Currently, the use of smart materials in 4D printing is being explored extensively across various fields, including automotive, wearable electronics, soft robotics, food, mechatronics, textiles, biomedicine, and pharmaceuticals. A particular focus is on designing and fabricating smart drug delivery systems (DDS). This review discusses the evolution of 3D printing into 4D printing, highlighting the differences between the two. It covers the history and fundamentals of 4D printing, the integration of machine learning in 4D printing, and the types of materials used, such as stimuli-responsive materials (SRMs), hydrogels, liquid crystal elastomers, and active composites. Moreover, it presents various 4D printing techniques. Additionally, the review highlights several smart DDS that have been fabricated using 4D printing techniques. These include tablets, capsules, grippers, scaffolds, robots, hydrogels, microneedles, stents, bandages, dressings, and other devices aimed at esophageal retention, gastro-retention, and intravesical DDS. Lastly, it elucidates the current limitations and future directions of 4D printing.
Collapse
Affiliation(s)
- Rabinarayan Parhi
- Department of Pharmaceutical Sciences, Susruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar-788011, Assam, India
| | - Anuj Garg
- Institute of Pharmaceutical Research, GLA University, Mathura-Delhi Road, Mathura-281406, Uttar Pradesh, India
| |
Collapse
|
49
|
He T, Yang Y, Chen X. A Lifetime of Catalytic Micro-/Nanomotors. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:13. [PMID: 39791773 PMCID: PMC11723389 DOI: 10.3390/nano15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Microscopic and nanoscopic motors, often referred to as micro-/nanomotors, are autonomous devices capable of converting chemical energy from their surroundings into mechanical motion or forces necessary for propulsion. These devices draw inspiration from natural biomolecular motor proteins, and in recent years, synthetic micro-/nanomotors have attracted significant attention. Among these, catalytic micro-/nanomotors have emerged as a prominent area of research. Despite considerable progress in their design and functionality, several obstacles remain, especially regarding the development of biocompatible materials and fuels, the integration of intelligent control systems, and the translation of these motors into practical applications. Thus, a comprehensive understanding of the current advancements in catalytic micro-/nanomotors is critical. This review aims to provide an in-depth overview of their fabrication techniques, propulsion mechanisms, key influencing factors, control methodologies, and potential applications. Furthermore, we examine their physical and hydrodynamic properties in fluidic environments to optimize propulsion efficiency. Lastly, we evaluate their biosafety and biocompatibility to facilitate their use in biological systems. The review also addresses key challenges and proposes potential solutions to advance their practical deployment.
Collapse
Affiliation(s)
| | | | - Xuebo Chen
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (T.H.); (Y.Y.)
| |
Collapse
|
50
|
Li Y, Wu Y, He Q. Positive Chemotactic Flasklike Colloidal Motors Propelled by Rotary F oF 1-ATP Synthases. RESEARCH (WASHINGTON, D.C.) 2024; 7:0566. [PMID: 39717462 PMCID: PMC11665525 DOI: 10.34133/research.0566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
Living microorganisms can perform directed migration for foraging in response to a chemoattractant gradient. We report a biomimetic strategy that rotary FoF1-ATPase (adenosine triphosphatase)-propelled flasklike colloidal motors exhibit positive chemotaxis resembling the chemotactic behavior of bacteria. The streamlined flasklike colloidal particles are fabricated through polymerization, expansion, surface rupture, and re-polymerizing nanoemulsions composed of triblock copolymers and ribose. The as-synthesized particles enable the incorporation of thylakoid vesicles into the cavity, ensuring a geometric asymmetric nanoarchitecture. The chemical gradient in the neck channel across flasklike colloidal motors facilitates autonomous movement at a speed of 1.19 μm/s in a ΔpH value of 4. Computer simulations reveal the self-actuated flasklike colloidal motors driven by self-diffusiophoretic force. These flasklike colloidal motors display positive directional motion along an adenosine diphosphate (ADP) concentration gradient during adenosine triphosphate (ATP) synthesis. The positive chemotaxis is ascribed that the phosphorylation reaction occurring inside colloidal motors generates 2 distinct phoretic torques at the bottom and the opening owing to the diffusion of ADP, thereby a continuous reorientation motion. Such a biophysical strategy that nanosized rotary protein molecular motors propel the directional movement of a flasklike colloidal motor holds promise for designing new types of biomedical swimming nanobots.
Collapse
Affiliation(s)
| | - Yingjie Wu
- School of Medicine and Health,
Harbin Institute of Technology, Harbin 150001, China
| | - Qiang He
- School of Medicine and Health,
Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|