1
|
Gospodinova K, Petrov V, Stanilov I, Miteva L, Tsachev I, Baymakova M. First molecular evidence of Anaplasma platys infection in a dog (Labrador retriever) from Bulgaria. Open Vet J 2024; 14:3656-3664. [PMID: 39927347 PMCID: PMC11799643 DOI: 10.5455/ovj.2024.v14.i12.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/06/2024] [Indexed: 02/11/2025] Open
Abstract
Background In recent years, the One Health approach and vector-borne diseases have become an increasingly topical problem around the world. In addition, climate change has a significant impact on zoonoses and public health. We present a case report of tick-borne disease in a dog. Case Description A clinical case of Anaplasma platys infection in a 10-year-old female dog (Labrador retriever) is described. Clinical, hematological, biochemical, serological, cytological, and polymerase chain reaction tests supporting the diagnosis have been performed. Conclusion To the best of our knowledge, this is the first report of A. platys from Bulgaria. This report adds to the overall knowledge of Anaplasma spp. in our country and the region of Southeastern Europe.
Collapse
Affiliation(s)
- Krasimira Gospodinova
- Department of Veterinary Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Vladimir Petrov
- Department of Veterinary Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Iskren Stanilov
- Department of Molecular Biology, Immunology and Medical Genetics, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Lyuba Miteva
- Department of Molecular Biology, Immunology and Medical Genetics, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Ilia Tsachev
- Department of Veterinary Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Magdalena Baymakova
- Department of Infectious Diseases, Military Medical Academy, Sofia, Bulgaria
| |
Collapse
|
2
|
Gupta T, Chahota R. Unique ankyrin repeat proteins in the genome of poxviruses-Boon or Wane, a critical review. Gene 2024; 927:148759. [PMID: 38992761 DOI: 10.1016/j.gene.2024.148759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Ankyrin repeat is a 33-amino acid motif commonly observed in eukaryotes and, to a lesser extent, in prokaryotes and archaea and rarely in viruses. This motif plays a crucial role in regulating various cellular processes like the cell cycle, transcription, cell signaling, and inflammatory responses through interactions between proteins. Poxviruses exhibit a distinctive feature of containing multiple ankyrin repeat proteins within their genomes. All the genera of poxviruses possess these proteins except molluscipox virus, crocodylidpox virus, and red squirrel poxvirus. An intriguing characteristic has generated notable interest in studying the functions of these proteins within poxvirus biology. Within poxviruses, ankyrin repeat proteins exhibit a distinct configuration, featuring ankyrin repeats in the N-terminal region and a cellular F-box homolog in the C-terminal region, which enables interactions with the cellular Skp, Cullin, F-box containing ubiquitin ligase complex. Through the examination of experimental evidences and discussions from current literature, this review elucidates the organization and role of ankyrin repeat proteins in poxviruses. Various research studies have highlighted the significant importance of these proteins in poxviral pathogenesis and, acting as factors that enhance virulence. Consequently, they represent viable targets for developing genetically altered viruses with decreased virulence, thus displaying potential as candidates for vaccines and antiviral therapeutic development contributing to safer and more effective strategies against poxviral infections.
Collapse
Affiliation(s)
- Tania Gupta
- Department of Veterinary Microbiology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab, 141012 India; Department of Veterinary Microbiology, DGCN College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, 176062 India
| | - Rajesh Chahota
- Department of Veterinary Microbiology, DGCN College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, 176062 India.
| |
Collapse
|
3
|
Lind MCH, Naimi WA, Chiarelli TJ, Sparrer T, Ghosh M, Shapiro L, Carlyon JA. Anaplasma phagocytophilum invasin AipA interacts with CD13 to elicit Src kinase signaling that promotes infection. mBio 2024; 15:e0156124. [PMID: 39324816 PMCID: PMC11481542 DOI: 10.1128/mbio.01561-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
Host-microbe interactions that facilitate entry into mammalian cells are essential for obligate intracellular bacterial survival and pathogenesis. Anaplasma phagocytophilum is an obligate intracellular bacterium that invades neutrophils to cause granulocytic anaplasmosis. The invasin-receptor pairs and signaling events that induce Anaplasma uptake are inadequately defined. A. phagocytophilum invasion protein A orchestrates entry via residues 9-21 (AipA9-21) engaging an unknown receptor. Yeast two-hybrid screening suggested that AipA binds within C-terminal amino acids 851-967 of CD13 (aminopeptidase N), a multifunctional protein that, when crosslinked, initiates Src kinase and Syk signaling that culminates in endocytosis. Co-immunoprecipitation validated the interaction and confirmed that it requires the AipA N-terminus. CD13 ectopic expression on non-phagocytic cells increased susceptibility to A. phagocytophilum infection. Antibody blocking and enzymatic inhibition experiments found that the microbe exploits CD13 but not its ectopeptidase activity to infect myeloid cells. A. phagocytophilum induces Src and Syk phosphorylation during invasion. Inhibitor treatment established that Src is key for A. phagocytophilum infection, while Syk is dispensable and oriented the pathogen-invoked signaling pathway by showing that Src is activated before Syk. Disrupting the AipA-CD13 interaction with AipA9-21 or CD13781-967 antibody inhibited Src and Syk phosphorylation and also infection. CD13 crosslinking antibody that induces Src and Syk signaling restored infectivity of anti-AipA9-21-treated A. phagocytophilum. The bacterium poorly infected CD13 knockout mice, providing the first demonstration that CD13 is important for microbial infection in vivo. Overall, A. phagocytophilum AipA9-21 binds CD13 to induce Src signaling that mediates uptake into host cells, and CD13 is critical for infection in vivo. IMPORTANCE Diverse microbes engage CD13 to infect host cells. Yet invasin-CD13 interactions, the signaling they invoke for pathogen entry, and the relevance of CD13 to infection in vivo are underexplored. Dissecting these concepts would advance fundamental understanding of a convergently evolved infection strategy and could have translational benefits. Anaplasma phagocytophilum infects neutrophils to cause granulocytic anaplasmosis, an emerging disease for which there is no vaccine and few therapeutic options. We found that A. phagocytophilum uses its surface protein and recently identified protective immunogen, AipA, to bind CD13 to elicit Src kinase signaling, which is critical for infection. We elucidated the AipA CD13 binding domain, which CD13 region AipA engages, and established that CD13 is key for A. phagocytophilum infection in vivo. Disrupting the AipA-CD13 interaction could be utilized to prevent granulocytic anaplasmosis and offers a model that could be applied to protect against multiple infectious diseases.
Collapse
Affiliation(s)
- Mary Clark H. Lind
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Waheeda A. Naimi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Travis J. Chiarelli
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Tavis Sparrer
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Mallika Ghosh
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Linda Shapiro
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
4
|
Hamilton WC, Newton ILG. crANKing up the infection: ankyrin domains in Rickettsiales and their role in host manipulation. Infect Immun 2024; 92:e0005924. [PMID: 39212405 PMCID: PMC11475675 DOI: 10.1128/iai.00059-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Intracellular bacteria use secreted effector proteins to modify host biology and facilitate infection. For many of these microbes, a particular eukaryotic domain-the ankyrin repeat (ANK)-plays a central role in specifying the host proteins and pathways targeted by the microbe. While we understand much of how some ANKs function in model organisms like Legionella and Coxiella, the understudied Rickettsiales species harbor many proteins with ANKs, some of which play critical roles during infection. This minireview is meant to organize and summarize the research progress made in understanding some of these Rickettsiales ANKs as well as document some of the techniques that have driven much of this progress.
Collapse
Affiliation(s)
| | - Irene L G Newton
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
5
|
Chien RC, Mingqun L, Yan Q, Randolph N, Huang W, Wellman M, Toribio R, Rikihisa Y. Strains of Anaplasma phagocytophilum from horses in Ohio are related to isolates from humans in the northeastern USA. Microbiol Spectr 2023; 11:e0263223. [PMID: 37882777 PMCID: PMC10715102 DOI: 10.1128/spectrum.02632-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE The tick-borne obligatory intracellular bacterium Anaplasma phagocytophilum infects humans as well as domesticated and wild animals, causing a febrile disease collectively called granulocytic anaplasmosis. The epidemiology and the host species specificity and zoonotic potential of A. phagocytophilum strains remain unclear. In this study, ankA (encoding ankyrin A) and p44 gene sequences of A. phagocytophilum were determined in clinical specimens from horses in Ohio and compared with those found in A. phagocytophilum strains from various hosts and geographic regions. With increasing numbers of seropositive horses, the study points out the unrecognized prevalence and uncharacterized strains of A. phagocytophilum infection in horses and the importance of A. phagocytophilum molecular testing for the prevention of equine and human granulocytic anaplasmosis.
Collapse
Affiliation(s)
- Rory C Chien
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Infectious Diseases Institute, The Ohio State University , Columbus, Ohio, USA
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University , Columbus, Ohio, USA
| | - Lin Mingqun
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Infectious Diseases Institute, The Ohio State University , Columbus, Ohio, USA
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University , Columbus, Ohio, USA
| | - Qi Yan
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Infectious Diseases Institute, The Ohio State University , Columbus, Ohio, USA
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University , Columbus, Ohio, USA
| | - Nina Randolph
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University , Columbus, Ohio, USA
| | - Weiyan Huang
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Infectious Diseases Institute, The Ohio State University , Columbus, Ohio, USA
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University , Columbus, Ohio, USA
| | - Maxey Wellman
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University , Columbus, Ohio, USA
| | - Ramiro Toribio
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University , Columbus, Ohio, USA
| | - Yasuko Rikihisa
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Infectious Diseases Institute, The Ohio State University , Columbus, Ohio, USA
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University , Columbus, Ohio, USA
| |
Collapse
|
6
|
Hoffman T, Olsen B, Lundkvist Å. The Biological and Ecological Features of Northbound Migratory Birds, Ticks, and Tick-Borne Microorganisms in the African-Western Palearctic. Microorganisms 2023; 11:microorganisms11010158. [PMID: 36677450 PMCID: PMC9866947 DOI: 10.3390/microorganisms11010158] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Identifying the species that act as hosts, vectors, and vehicles of vector-borne pathogens is vital for revealing the transmission cycles, dispersal mechanisms, and establishment of vector-borne pathogens in nature. Ticks are common vectors for pathogens causing human and animal diseases, and they transmit a greater variety of pathogenic agents than any other arthropod vector group. Ticks depend on the movements by their vertebrate hosts for their dispersal, and tick species with long feeding periods are more likely to be transported over long distances. Wild birds are commonly parasitized by ticks, and their migration patterns enable the long-distance range expansion of ticks. The African-Palearctic migration system is one of the world's largest migrations systems. African-Western Palearctic birds create natural links between the African, European, and Asian continents when they migrate biannually between breeding grounds in the Palearctic and wintering grounds in Africa and thereby connect different biomes. Climate is an important geographical determinant of ticks, and with global warming, the distribution range and abundance of ticks in the Western Palearctic may increase. The introduction of exotic ticks and their microorganisms into the Western Palearctic via avian vehicles might therefore pose a greater risk for the public and animal health in the future.
Collapse
Affiliation(s)
- Tove Hoffman
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Correspondence:
| |
Collapse
|
7
|
Kim Y, Wang J, Clemens EG, Grab DJ, Dumler JS. Anaplasma phagocytophilum Ankyrin A Protein (AnkA) Enters the Nucleus Using an Importin-β-, RanGTP-Dependent Mechanism. Front Cell Infect Microbiol 2022; 12:828605. [PMID: 35719343 PMCID: PMC9204287 DOI: 10.3389/fcimb.2022.828605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/20/2022] [Indexed: 12/30/2022] Open
Abstract
Anaplasma phagocytophilum, a tick-borne obligately intracellular bacterium of neutrophils, causes human granulocytic anaplasmosis. Ankyrin A (AnkA), an effector protein with multiple ankyrin repeats (AR) is injected via type IV-secretion into the host neutrophil to gain access to the nucleus where it modifies the epigenome to promote microbial fitness and propagation. AR proteins transported into the host cell nucleus must use at least one of two known eukaryotic pathways, the classical importin β-dependent pathway, and/or the RanGDP- and AR (ankyrin-repeat)-dependent importin β-independent (RaDAR) pathway. Truncation of the first four AnkA N-terminal ARs (AR1-4), but not other regions, prevents AnkA nuclear accumulation. To investigate the mechanism of nuclear import, we created point mutations of AnkA N-terminal ARs, predicted to interfere with RaDAR protein import, and used importazole, a specific inhibitor of the importin α/β, RanGTP-dependent pathway. Nuclear colocalization analysis shows that nuclear localization of AnkA is unaffected by single AR1-4 mutations but is significantly reduced by single mutations in consecutive ARs suggesting RaDAR protein nuclear import. However, AnkA nuclear localization was also decreased with importazole, and with GTPγS. Furthermore, A. phagocytophilum growth in HL-60 cells was completely suppressed with importazole, indicating that A. phagocytophilum propagation requires a β-importin-dependent pathway. A typical classical NLS overlapping AR4 was subsequently identified suggesting the primacy of the importin-α/β system in AnkA nuclear localization. Whether the mutational studies of putative key residues support RaDAR NLS function or simply reflect structural changes that diminish engagement of an AR-NLS-importin pathway needs to be resolved through careful structure-function studies.
Collapse
Affiliation(s)
- Yuri Kim
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Jianyang Wang
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Emily G. Clemens
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Dennis J. Grab
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - J. Stephen Dumler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States,*Correspondence: J. Stephen Dumler,
| |
Collapse
|
8
|
Takano SI, Gotoh Y, Hayashi T. "Candidatus Mesenet longicola": Novel Endosymbionts of Brontispa longissima that Induce Cytoplasmic Incompatibility. MICROBIAL ECOLOGY 2021; 82:512-522. [PMID: 33454808 DOI: 10.1007/s00248-021-01686-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Intracellular bacteria that are mainly transmitted maternally affect their arthropod hosts' biology in various ways. One such effect is known as cytoplasmic incompatibility (CI), and three bacterial species are known to induce CI: Wolbachia, Cardinium hertigii, and a recently found alphaproteobacterial symbiont. To clarify the taxonomic status and provide the foundation for future studies to reveal CI mechanisms and other phenotypes, we investigated genetic and morphological properties of the third CI inducer that we have previously reported inducing CI in the coconut beetle Brontispa longissima. The draft genome of the bacteria was obtained from the oocytes of two isofemale lines of B. longissima infected with the bacteria: one from Japan (GL2) and the other from Vietnam (L5). Genome features of the symbionts (sGL2 and sL5) were highly similar, showing 1.3 Mb in size, 32.1% GC content, and 99.83% average nucleotide sequence. A phylogenetic study based on 43 universal and single-copy phylogenetic marker genes indicates that they formed a distinct clade in the family Anaplasmataceae. 16S rRNA gene sequences indicate that they are different from the closest known relatives, at least at the genus level. Therefore, we propose a new genus and species, "Candidatus Mesenet longicola", for the symbionts of B. longissima. Morphological analyses showed that Ca. M. longicola is an intracellular bacterium that is ellipsoidal to rod-shaped and 0.94 ± 0.26 μm (mean ± SD) in length, and accumulated in the anterior part of the oocyte. Candidates for the Ca. M. longicola genes responsible for CI induction are also described.
Collapse
Affiliation(s)
- Shun-Ichiro Takano
- Faculty of Agriculture, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan.
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
9
|
Noroy C, Meyer DF. The super repertoire of type IV effectors in the pangenome of Ehrlichia spp. provides insights into host-specificity and pathogenesis. PLoS Comput Biol 2021; 17:e1008788. [PMID: 34252087 PMCID: PMC8274917 DOI: 10.1371/journal.pcbi.1008788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022] Open
Abstract
The identification of bacterial effectors is essential to understand how obligatory intracellular bacteria such as Ehrlichia spp. manipulate the host cell for survival and replication. Infection of mammals–including humans–by the intracellular pathogenic bacteria Ehrlichia spp. depends largely on the injection of virulence proteins that hijack host cell processes. Several hypothetical virulence proteins have been identified in Ehrlichia spp., but one so far has been experimentally shown to translocate into host cells via the type IV secretion system. However, the current challenge is to identify most of the type IV effectors (T4Es) to fully understand their role in Ehrlichia spp. virulence and host adaptation. Here, we predict the T4E repertoires of four sequenced Ehrlichia spp. and four other Anaplasmataceae as comparative models (pathogenic Anaplasma spp. and Wolbachia endosymbiont) using previously developed S4TE 2.0 software. This analysis identified 579 predicted T4Es (228 pT4Es for Ehrlichia spp. only). The effector repertoires of Ehrlichia spp. overlapped, thereby defining a conserved core effectome of 92 predicted effectors shared by all strains. In addition, 69 species-specific T4Es were predicted with non-canonical GC% mostly in gene sparse regions of the genomes and we observed a bias in pT4Es according to host-specificity. We also identified new protein domain combinations, suggesting novel effector functions. This work presenting the predicted effector collection of Ehrlichia spp. can serve as a guide for future functional characterisation of effectors and design of alternative control strategies against these bacteria. A fundamental step for the survival and replication of intravacuolar bacterial pathogens is the establishment of a replicative niche inside host cells by the secretion of bacterial effector proteins in the cytoplasm of the infected cells. These effectors manipulate host signaling pathways, thus allowing to escape the host degradative pathway and uptake nutrients required for intracellular replication of bacteria. In this study, we used S4TE2.0 software for high-throughput computational prediction of bacterial type IV effectors in zoonotic bacteria of the Anaplasmataceae family. The analysis of protein architecture of effectors helped us to identify the cellular pathways targeted during the infection process. The demonstration that effectors are modular components with a broad variety of protein architectures nicely explains their pleotropic mode of action and enlightens their function. We showed that bacterial adaptation to a given host during evolution requires a minimal repertoire of candidate effectors although further experimental determination is needed. T4Es are of increasing interest for basic research, including comprehension of hijacked cellular pathways, manipulated innate immunity, and application for therapeutics. Indeed pathogenomics-driven studies, especially on genetically intractable intracellular bacteria such as Anaplasmataceae, have now a substantial impact for the development of host-targeted antimicrobials, as an alternative to antibiotics.
Collapse
Affiliation(s)
- Christophe Noroy
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRA, Univ Montpellier, Montpellier, France
- Université des Antilles, Fouillole, Pointe-à-Pitre, Guadeloupe, France
| | - Damien F. Meyer
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRA, Univ Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
10
|
Patterson LL, Byerly CD, McBride JW. Anaplasmataceae: Dichotomous Autophagic Interplay for Infection. Front Immunol 2021; 12:642771. [PMID: 33912170 PMCID: PMC8075259 DOI: 10.3389/fimmu.2021.642771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a vital conserved degradative process that maintains cellular homeostasis by recycling or eliminating dysfunctional cellular organelles and proteins. More recently, autophagy has become a well-recognized host defense mechanism against intracellular pathogens through a process known as xenophagy. On the host-microbe battlefield many intracellular bacterial pathogens have developed the ability to subvert xenophagy to establish infection. Obligately intracellular bacterial pathogens of the Anaplasmataceae family, including Ehrlichia chaffeensis, Anaplasma phaogocytophilium and Orientia tsutsugamushi have developed a dichotomous strategy to exploit the host autophagic pathway to obtain nutrients while escaping lysosomal destruction for intracellular survival within the host cell. In this review, the recent findings regarding how these master manipulators engage and inhibit autophagy for infection are explored. Future investigation to understand mechanisms used by Anaplasmataceae to exploit autophagy may advance novel antimicrobial therapies and provide new insights into how intracellular microbes exploit autophagy to survive.
Collapse
Affiliation(s)
- LaNisha L Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Caitlan D Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
11
|
Lin M, Xiong Q, Chung M, Daugherty SC, Nagaraj S, Sengamalay N, Ott S, Godinez A, Tallon LJ, Sadzewicz L, Fraser C, Dunning Hotopp JC, Rikihisa Y. Comparative Analysis of Genome of Ehrlichia sp. HF, a Model Bacterium to Study Fatal Human Ehrlichiosis. BMC Genomics 2021; 22:11. [PMID: 33407096 PMCID: PMC7789307 DOI: 10.1186/s12864-020-07309-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The genus Ehrlichia consists of tick-borne obligatory intracellular bacteria that can cause deadly diseases of medical and agricultural importance. Ehrlichia sp. HF, isolated from Ixodes ovatus ticks in Japan [also referred to as I. ovatus Ehrlichia (IOE) agent], causes acute fatal infection in laboratory mice that resembles acute fatal human monocytic ehrlichiosis caused by Ehrlichia chaffeensis. As there is no small laboratory animal model to study fatal human ehrlichiosis, Ehrlichia sp. HF provides a needed disease model. However, the inability to culture Ehrlichia sp. HF and the lack of genomic information have been a barrier to advance this animal model. In addition, Ehrlichia sp. HF has several designations in the literature as it lacks a taxonomically recognized name. RESULTS We stably cultured Ehrlichia sp. HF in canine histiocytic leukemia DH82 cells from the HF strain-infected mice, and determined its complete genome sequence. Ehrlichia sp. HF has a single double-stranded circular chromosome of 1,148,904 bp, which encodes 866 proteins with a similar metabolic potential as E. chaffeensis. Ehrlichia sp. HF encodes homologs of all virulence factors identified in E. chaffeensis, including 23 paralogs of P28/OMP-1 family outer membrane proteins, type IV secretion system apparatus and effector proteins, two-component systems, ankyrin-repeat proteins, and tandem repeat proteins. Ehrlichia sp. HF is a novel species in the genus Ehrlichia, as demonstrated through whole genome comparisons with six representative Ehrlichia species, subspecies, and strains, using average nucleotide identity, digital DNA-DNA hybridization, and core genome alignment sequence identity. CONCLUSIONS The genome of Ehrlichia sp. HF encodes all known virulence factors found in E. chaffeensis, substantiating it as a model Ehrlichia species to study fatal human ehrlichiosis. Comparisons between Ehrlichia sp. HF and E. chaffeensis will enable identification of in vivo virulence factors that are related to host specificity, disease severity, and host inflammatory responses. We propose to name Ehrlichia sp. HF as Ehrlichia japonica sp. nov. (type strain HF), to denote the geographic region where this bacterium was initially isolated.
Collapse
Affiliation(s)
- Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA.
| | - Qingming Xiong
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Matthew Chung
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sean C Daugherty
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sushma Nagaraj
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Naomi Sengamalay
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sandra Ott
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Al Godinez
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Luke J Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Claire Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Department of Medicine, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Greenebaum Cancer Center, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Yasuko Rikihisa
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA.
| |
Collapse
|
12
|
Nelson CM, Herron MJ, Wang XR, Baldridge GD, Oliver JD, Munderloh UG. Global Transcription Profiles of Anaplasma phagocytophilum at Key Stages of Infection in Tick and Human Cell Lines and Granulocytes. Front Vet Sci 2020; 7:111. [PMID: 32211428 PMCID: PMC7069361 DOI: 10.3389/fvets.2020.00111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/13/2020] [Indexed: 11/17/2022] Open
Abstract
The incidence of human diseases caused by tick-borne pathogens is increasing but little is known about the molecular interactions between the agents and their vectors and hosts. Anaplasma phagocytophilum (Ap) is an obligate intracellular, tick-borne bacterium that causes granulocytic anaplasmosis in humans, dogs, sheep, and horses. In mammals, neutrophil granulocytes are a primary target of infection, and in ticks, Ap has been found in gut and salivary gland cells. To identify bacterial genes that enable Ap to invade and proliferate in human and tick cells, labeled mRNA from Ap bound to or replicating within human and tick cells (lines HL-60 and ISE6), and replicating in primary human granulocytes ex vivo, was hybridized to a custom tiling microarray containing probes representing the entire Ap genome. Probe signal values plotted over a map of the Ap genome revealed antisense transcripts and unannotated genes. Comparisons of transcript levels from each annotated gene between test conditions (e.g., Ap replicating in HL-60 vs. ISE6) identified those that were differentially transcribed, thereby highlighting genes associated with each condition. Bacteria replicating in HL-60 cells upregulated 122 genes compared to those in ISE6, including numerous p44 paralogs, five HGE-14 paralogs, and 32 hypothetical protein genes, of which 47% were predicted to be secreted or localized to the membrane. By comparison, 60% of genes upregulated in ISE6 encoded hypothetical proteins, 60% of which were predicted to be secreted or membrane associated. In granulocytes, Ap upregulated 120 genes compared to HL-60, 33% of them hypothetical and 43% of those predicted to encode secreted or membrane associated proteins. HL-60-grown bacteria binding to HL-60 cells barely responded transcriptionally, while ISE6-grown bacteria binding to ISE6 cells upregulated 48 genes. HL-60-grown bacteria, when incubated with ISE6 cells, upregulated the same genes that were upregulated by ISE6-grown bacteria exposed to uninfected ISE6. Hypothetical genes (constituting about 29% of Ap genes) played a disproportionate role in most infection scenarios, and particular sets of them were consistently upregulated in bacteria binding/entering both ISE6 and HL-60 cells. This suggested that the encoded proteins played central roles in establishing infection in ticks and humans.
Collapse
Affiliation(s)
- Curtis M Nelson
- Department of Entomology, College of Food, Agriculture, and Natural Resource Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Michael J Herron
- Department of Entomology, College of Food, Agriculture, and Natural Resource Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Xin-Ru Wang
- Department of Entomology, College of Food, Agriculture, and Natural Resource Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Gerald D Baldridge
- Department of Entomology, College of Food, Agriculture, and Natural Resource Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Jonathan D Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Ulrike G Munderloh
- Department of Entomology, College of Food, Agriculture, and Natural Resource Sciences, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
13
|
Frank AC. Molecular host mimicry and manipulation in bacterial symbionts. FEMS Microbiol Lett 2019; 366:5342066. [PMID: 30877310 DOI: 10.1093/femsle/fnz038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/18/2019] [Indexed: 12/17/2022] Open
Abstract
It is common among intracellular bacterial pathogens to use eukaryotic-like proteins that mimic and manipulate host cellular processes to promote colonization and intracellular survival. Eukaryotic-like proteins are bacterial proteins with domains that are rare in bacteria, and known to function in the context of a eukaryotic cell. Such proteins can originate through horizontal gene transfer from eukaryotes or, in the case of simple repeat proteins, through convergent evolution. Recent studies of microbiomes associated with several eukaryotic hosts suggest that similar molecular strategies are deployed by cooperative bacteria that interact closely with eukaryotic cells. Some mimics, like ankyrin repeats, leucine rich repeats and tetratricopeptide repeats are shared across diverse symbiotic systems ranging from amoebae to plants, and may have originated early, or evolved independently in multiple systems. Others, like plant-mimicking domains in members of the plant microbiome are likely to be more recent innovations resulting from horizontal gene transfer from the host, or from microbial eukaryotes occupying the same host. Host protein mimics have only been described in a limited set of symbiotic systems, but are likely to be more widespread. Systematic searches for eukaryote-like proteins in symbiont genomes could lead to the discovery of novel mechanisms underlying host-symbiont interactions.
Collapse
Affiliation(s)
- A Carolin Frank
- Life and Environmental Sciences, 5200 North Lake Rd, University of California Merced, Merced, CA 95343, USA.,Sierra Nevada Research Institute, School of Natural Sciences, 5200 North Lake Rd, University of California Merced, Merced, CA 95343, USA
| |
Collapse
|
14
|
Role and Function of the Type IV Secretion System in Anaplasma and Ehrlichia Species. Curr Top Microbiol Immunol 2019; 413:297-321. [PMID: 29536364 DOI: 10.1007/978-3-319-75241-9_12] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The obligatory intracellular pathogens Anaplasma phagocytophilum and Ehrlichia chaffeensis proliferate within membrane-bound vacuoles of human leukocytes and cause potentially fatal emerging infectious diseases. Despite the reductive genome evolution in this group of bacteria, genes encoding the type IV secretion system (T4SS), which is homologous to the VirB/VirD4 system of the plant pathogen Agrobacterium tumefaciens, have been expanded and are highly expressed in A. phagocytophilum and E. chaffeensis in human cells. Of six T4SS effector proteins identified in them, roles and functions have been described so far only for ankyrin repeat domain-containing protein A (AnkA), Anaplasma translocated substrate 1 (Ats-1), and Ehrlichia translocated factor 1 (Etf-1, ECH0825). These effectors are abundantly produced and secreted into the host cytoplasm during infection, but not toxic to host cells. They contain eukaryotic protein motifs or organelle localization signals and have distinct subcellular localization, target to specific host cell molecules to promote infection. Ats-1 and Etf-1 are orthologous proteins, subvert two important innate immune mechanisms against intracellular infection, cellular apoptosis and autophagy, and manipulate autophagy to gain nutrients from host cells. Although Ats-1 and Etf-1 have similar functions and roles in obligatory intracellular infection, they are specifically adapted to the distinct membrane-bound intracellular niche of A. phagocytophilum and E. chaffeensis, respectively. Ectopic expression of these effectors enhances respective bacterial infection, whereas intracellular delivery of antibodies against these effectors or targeted knockdown of the effector with antisense peptide nucleic acid significantly impairs bacterial infection. Thus, both T4SSs have evolved as important survival and nutritional virulence mechanism in these obligatory intracellular bacteria. Future studies on the functions of Anaplasma and Ehrlichia T4SS effector molecules and signaling pathways will undoubtedly advance our understanding of the complex interplay between obligatory intracellular pathogens and their hosts. Such data can be applied toward the treatment and control of anaplasmosis and ehrlichiosis.
Collapse
|
15
|
Diop A, Raoult D, Fournier PE. Paradoxical evolution of rickettsial genomes. Ticks Tick Borne Dis 2018; 10:462-469. [PMID: 30448253 DOI: 10.1016/j.ttbdis.2018.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/08/2018] [Accepted: 11/09/2018] [Indexed: 01/08/2023]
Abstract
Rickettsia species are strictly intracellular bacteria that evolved approximately 150 million years ago from a presumably free-living common ancestor from the order Rickettsiales that followed a transition to an obligate intracellular lifestyle. Rickettsiae are best known as human pathogens vectored by various arthropods causing a range of mild to severe human diseases. As part of their obligate intracellular lifestyle, rickettsial genomes have undergone a convergent evolution that includes a strong genomic reduction resulting from progressive gene degradation, genomic rearrangements as well as a paradoxical expansion of various genetic elements, notably small RNAs and short palindromic elements whose role remains unknown. This reductive evolutionary process is not unique to members of the Rickettsia genus but is common to several human pathogenic bacteria. Gene loss, gene duplication, DNA repeat duplication and horizontal gene transfer all have shaped rickettsial genome evolution. Gene loss mostly involved amino-acid, ATP, LPS and cell wall component biosynthesis and transcriptional regulators, but with a high preservation of toxin-antitoxin (TA) modules, recombination and DNA repair proteins. Surprisingly the most virulent Rickettsia species were shown to have the most drastically reduced and degraded genomes compared to closely related species of milder pathogenesis. In contrast, the less pathogenic species harbored the greatest number of mobile genetic elements. Thus, this distinct evolutionary process observed in Rickettsia species may be correlated with the differences in virulence and pathogenicity observed in these obligate intracellular bacteria. However, future investigations are needed to provide novel insights into the evolution of genome sizes and content, for that a better understanding of the balance between proliferation and elimination of genetic material in these intracellular bacteria is required.
Collapse
Affiliation(s)
- Awa Diop
- UMR VITROME, Aix-Marseille University, IRD, Service de Santé des Armées, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Uuniversitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Didier Raoult
- UMR MEPHI, Aix-Marseille University, IRD, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Uuniversitaire Méditerranée Infection, Marseille, France
| | - Pierre-Edouard Fournier
- UMR VITROME, Aix-Marseille University, IRD, Service de Santé des Armées, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Uuniversitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
16
|
Trost CN, Lindsay LR, Dibernardo A, Chilton NB. Three genetically distinct clades of Anaplasma phagocytophilum in Ixodes scapularis. Ticks Tick Borne Dis 2018; 9:1518-1527. [DOI: 10.1016/j.ttbdis.2018.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
|
17
|
Diop A, Raoult D, Fournier PE. Rickettsial genomics and the paradigm of genome reduction associated with increased virulence. Microbes Infect 2018; 20:401-409. [DOI: 10.1016/j.micinf.2017.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/06/2017] [Accepted: 11/15/2017] [Indexed: 11/29/2022]
|
18
|
Weber MM, Faris R. Subversion of the Endocytic and Secretory Pathways by Bacterial Effector Proteins. Front Cell Dev Biol 2018; 6:1. [PMID: 29417046 PMCID: PMC5787570 DOI: 10.3389/fcell.2018.00001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/09/2018] [Indexed: 12/22/2022] Open
Abstract
Intracellular bacteria have developed numerous strategies to hijack host vesicular trafficking pathways to form their unique replicative niches. To promote intracellular replication, the bacteria must interact with host organelles and modulate host signaling pathways to acquire nutrients and membrane for the growing parasitophorous vacuole all while suppressing activation of the immune response. To facilitate host cell subversion, bacterial pathogens use specialized secretion systems to deliver bacterial virulence factors, termed effectors, into the host cell that mimic, agonize, and/or antagonize the function of host proteins. In this review we will discuss how bacterial effector proteins from Coxiella burnetii, Brucella abortus, Salmonella enterica serovar Typhimurium, Legionella pneumophila, Chlamydia trachomatis, and Orientia tsutsugamushi manipulate the endocytic and secretory pathways. Understanding how bacterial effector proteins manipulate host processes not only gives us keen insight into bacterial pathogenesis, but also enhances our understanding of how eukaryotic membrane trafficking is regulated.
Collapse
Affiliation(s)
- Mary M Weber
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Robert Faris
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
19
|
Battilani M, De Arcangeli S, Balboni A, Dondi F. Genetic diversity and molecular epidemiology of Anaplasma. INFECTION GENETICS AND EVOLUTION 2017; 49:195-211. [PMID: 28122249 DOI: 10.1016/j.meegid.2017.01.021] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 11/25/2022]
Abstract
Anaplasma are obligate intracellular bacteria of cells of haematopoietic origin and are aetiological agents of tick-borne diseases of both veterinary and medical interest common in both tropical and temperate regions. The recent disclosure of their zoonotic potential has greatly increased interest in the study of these bacteria, leading to the recent reorganisation of Rickettsia taxonomy and to the possible discovery of new species belonging to the genus Anaplasma. This review is particularly focused on the common and unique characteristics of Anaplasma marginale and Anaplasma phagocytophilum, with an emphasis on genetic diversity and evolution, and the main distinguishing features of the diseases caused by the different Anaplasma spp. are described as well.
Collapse
Affiliation(s)
- Mara Battilani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, Bo, Italy.
| | - Stefano De Arcangeli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, Bo, Italy
| | - Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, Bo, Italy
| | - Francesco Dondi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, Bo, Italy
| |
Collapse
|
20
|
Wang GH, Sun BF, Xiong TL, Wang YK, Murfin KE, Xiao JH, Huang DW. Bacteriophage WO Can Mediate Horizontal Gene Transfer in Endosymbiotic Wolbachia Genomes. Front Microbiol 2016; 7:1867. [PMID: 27965627 PMCID: PMC5126046 DOI: 10.3389/fmicb.2016.01867] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/07/2016] [Indexed: 11/26/2022] Open
Abstract
Phage-mediated horizontal gene transfer (HGT) is common in free-living bacteria, and many transferred genes can play a significant role in their new bacterial hosts. However, there are few reports concerning phage-mediated HGT in endosymbionts (obligate intracellular bacteria within animal or plant hosts), such as Wolbachia. The Wolbachia-infecting temperate phage WO can actively shift among Wolbachia genomes and has the potential to mediate HGT between Wolbachia strains. In the present study, we extend previous findings by validating that the phage WO can mediate transfer of non-phage genes. To do so, we utilized bioinformatic, phylogenetic, and molecular analyses based on all sequenced Wolbachia and phage WO genomes. Our results show that the phage WO can mediate HGT between Wolbachia strains, regardless of whether the transferred genes originate from Wolbachia or other unrelated bacteria.
Collapse
Affiliation(s)
- Guan H Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| | - Bao F Sun
- Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China
| | - Tuan L Xiong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| | - Yan K Wang
- College of Life Sciences, Hebei University Baoding, China
| | - Kristen E Murfin
- Section of Infectious Diseases, Yale University School of Medicine New Haven, CT, USA
| | - Jin H Xiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| | - Da W Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, Hebei UniversityBaoding, China
| |
Collapse
|
21
|
Dumler JS, Sinclair SH, Pappas-Brown V, Shetty AC. Genome-Wide Anaplasma phagocytophilum AnkA-DNA Interactions Are Enriched in Intergenic Regions and Gene Promoters and Correlate with Infection-Induced Differential Gene Expression. Front Cell Infect Microbiol 2016; 6:97. [PMID: 27703927 PMCID: PMC5028410 DOI: 10.3389/fcimb.2016.00097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/26/2016] [Indexed: 12/16/2022] Open
Abstract
Anaplasma phagocytophilum, an obligate intracellular prokaryote, infects neutrophils, and alters cardinal functions via reprogrammed transcription. Large contiguous regions of neutrophil chromosomes are differentially expressed during infection. Secreted A. phagocytophilum effector AnkA transits into the neutrophil or granulocyte nucleus to complex with DNA in heterochromatin across all chromosomes. AnkA binds to gene promoters to dampen cis-transcription and also has features of matrix attachment region (MAR)-binding proteins that regulate three-dimensional chromatin architecture and coordinate transcriptional programs encoded in topologically-associated chromatin domains. We hypothesize that identification of additional AnkA binding sites will better delineate how A. phagocytophilum infection results in reprogramming of the neutrophil genome. Using AnkA-binding ChIP-seq, we showed that AnkA binds broadly throughout all chromosomes in a reproducible pattern, especially at: (i) intergenic regions predicted to be MARs; (ii) within predicted lamina-associated domains; and (iii) at promoters ≤ 3000 bp upstream of transcriptional start sites. These findings provide genome-wide support for AnkA as a regulator of cis-gene transcription. Moreover, the dominant mark of AnkA in distal intergenic regions known to be AT-enriched, coupled with frequent enrichment in the nuclear lamina, provides strong support for its role as a MAR-binding protein and genome “re-organizer.” AnkA must be considered a prime candidate to promote neutrophil reprogramming and subsequent functional changes that belie improved microbial fitness and pathogenicity.
Collapse
Affiliation(s)
- J Stephen Dumler
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | | | - Valeria Pappas-Brown
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Amol C Shetty
- Informatics Resource Center, Institute for Genome Sciences, University of Maryland Baltimore, MD, USA
| |
Collapse
|
22
|
Longevity-modulating effects of symbiosis: insights from Drosophila–Wolbachia interaction. Biogerontology 2016; 17:785-803. [DOI: 10.1007/s10522-016-9653-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 05/18/2016] [Indexed: 01/30/2023]
|
23
|
Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy. Nat Rev Microbiol 2015; 14:5-19. [PMID: 26594043 DOI: 10.1038/nrmicro.2015.1] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many bacterial pathogens have evolved the ability to subvert and exploit host functions in order to enter and replicate in eukaryotic cells. For example, bacteria have developed specific mechanisms to target eukaryotic organelles such as the nucleus, the mitochondria, the endoplasmic reticulum and the Golgi apparatus. In this Review, we highlight the most recent advances in our understanding of the mechanisms that bacterial pathogens use to target these organelles. We also discuss how these strategies allow bacteria to manipulate host functions and to ultimately enable bacterial infection.
Collapse
|
24
|
Dynamics of Wolbachia pipientis Gene Expression Across the Drosophila melanogaster Life Cycle. G3-GENES GENOMES GENETICS 2015; 5:2843-56. [PMID: 26497146 PMCID: PMC4683655 DOI: 10.1534/g3.115.021931] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Symbiotic interactions between microbes and their multicellular hosts have manifold biological consequences. To better understand how bacteria maintain symbiotic associations with animal hosts, we analyzed genome-wide gene expression for the endosymbiotic α-proteobacteria Wolbachia pipientis across the entire life cycle of Drosophila melanogaster. We found that the majority of Wolbachia genes are expressed stably across the D. melanogaster life cycle, but that 7.8% of Wolbachia genes exhibit robust stage- or sex-specific expression differences when studied in the whole-organism context. Differentially-expressed Wolbachia genes are typically up-regulated after Drosophila embryogenesis and include many bacterial membrane, secretion system, and ankyrin repeat-containing proteins. Sex-biased genes are often organized as small operons of uncharacterized genes and are mainly up-regulated in adult Drosophila males in an age-dependent manner. We also systematically investigated expression levels of previously-reported candidate genes thought to be involved in host-microbe interaction, including those in the WO-A and WO-B prophages and in the Octomom region, which has been implicated in regulating bacterial titer and pathogenicity. Our work provides comprehensive insight into the developmental dynamics of gene expression for a widespread endosymbiont in its natural host context, and shows that public gene expression data harbor rich resources to probe the functional basis of the Wolbachia-Drosophila symbiosis and annotate the transcriptional outputs of the Wolbachia genome.
Collapse
|
25
|
Flores HA, Bubnell JE, Aquadro CF, Barbash DA. The Drosophila bag of marbles Gene Interacts Genetically with Wolbachia and Shows Female-Specific Effects of Divergence. PLoS Genet 2015; 11:e1005453. [PMID: 26291077 PMCID: PMC4546362 DOI: 10.1371/journal.pgen.1005453] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/20/2015] [Indexed: 01/09/2023] Open
Abstract
Many reproductive proteins from diverse taxa evolve rapidly and adaptively. These proteins are typically involved in late stages of reproduction such as sperm development and fertilization, and are more often functional in males than females. Surprisingly, many germline stem cell (GSC) regulatory genes, which are essential for the earliest stages of reproduction, also evolve adaptively in Drosophila. One example is the bag of marbles (bam) gene, which is required for GSC differentiation and germline cyst development in females and for regulating mitotic divisions and entry to spermatocyte differentiation in males. Here we show that the extensive divergence of bam between Drosophila melanogaster and D. simulans affects bam function in females but has no apparent effect in males. We further find that infection with Wolbachia pipientis, an endosymbiotic bacterium that can affect host reproduction through various mechanisms, partially suppresses female sterility caused by bam mutations in D. melanogaster and interacts differentially with bam orthologs from D. melanogaster and D. simulans. We propose that the adaptive evolution of bam has been driven at least in part by the long-term interactions between Drosophila species and Wolbachia. More generally, we suggest that microbial infections of the germline may explain the unexpected pattern of evolution of several GSC regulatory genes.
Collapse
Affiliation(s)
- Heather A. Flores
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jaclyn E. Bubnell
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Charles F. Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Daniel A. Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Rennoll-Bankert KE, Garcia-Garcia JC, Sinclair SH, Dumler JS. Chromatin-bound bacterial effector ankyrin A recruits histone deacetylase 1 and modifies host gene expression. Cell Microbiol 2015; 17:1640-52. [PMID: 25996657 DOI: 10.1111/cmi.12461] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/11/2015] [Accepted: 05/17/2015] [Indexed: 11/29/2022]
Abstract
Control of host epigenetics is becoming evident as a mechanism by which symbionts and pathogens survive. Anaplasma phagocytophilum, an obligate intracellular bacterium, down-regulates multiple host defence genes where histone deacetylase 1 (HDAC1) binds and histone 3 is deacetylated at their promoters, including the NADPH oxidase component, CYBB. How HDAC1 is targeted to defence gene promoters is unknown. Ankyrin A (AnkA), an A. phagocytophilum type IV secretion system effector, enters the granulocyte nucleus, binds stretches of AT-rich DNA and alters transcription of antimicrobial defence genes, including down-regulation of CYBB. Here we found AnkA binds to a predicted matrix attachment region in the proximal CYBB promoter. Using the CYBB promoter as a model of cis-gene silencing, we interrogated the mechanism of AnkA-mediated CYBB repression. The N-terminus of AnkA was critical for nuclear localization, the central ANK repeats and C-terminus were important for DNA binding, and most promoter activity localized to the central ANK repeats. Furthermore, a direct interaction between AnkA and HDAC1 was detected at the CYBB promoter, and was critical for AnkA-mediated CYBB repression. This novel microbial manipulation of host chromatin and gene expression provides important evidence of the direct effects that prokaryotic nuclear effectors can exert over host transcription and function.
Collapse
Affiliation(s)
- Kristen E Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Sara H Sinclair
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.,Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Stephen Dumler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.,Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Walker DH, Dumler JS. The role of CD8 T lymphocytes in rickettsial infections. Semin Immunopathol 2015; 37:289-99. [PMID: 25823954 DOI: 10.1007/s00281-015-0480-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/15/2015] [Indexed: 12/01/2022]
Abstract
Arthropod-borne obligately intracellular bacteria pose a difficult challenge to the immune system. The genera Rickettsia, Orientia, Ehrlichia, and Anaplasma evolved mechanisms of immune evasion, and each interacts differently with the immune system. The roles of CD8 T cells include protective immunity and immunopathology. In Rickettsia infections, CD8 T cells are protective mediated in part by cytotoxicity toward infected cells. In contrast, TNF-α overproduction by CD8 T cells is pathogenic in lethal ehrlichiosis by induction of apoptosis/necrosis in hepatocytes. Yet, CD8 T cells, along with CD4 T cells and antibodies, also contribute to protective immunity in ehrlichial infections. In granulocytic anaplasmosis, CD8 T cells impact pathogen control modestly but could contribute to immunopathology by virtue of their dysfunction. While preliminary evidence indicates that CD8 T cells are important in protection against Orientia tsutsugamushi, mechanistic studies have been neglected. Valid animal models will enable experiments to elucidate protective and pathologic immune mechanisms. The public health need for vaccines against these agents of human disease, most clearly O. tsutsugamushi, and the veterinary diseases, canine monocytotropic ehrlichiosis (Ehrlichia canis), heartwater (Ehrlichia ruminantium), and bovine anaplasmosis (A. marginale), requires detailed immunity and immunopathology investigations, including the roles of CD8 T lymphocytes.
Collapse
Affiliation(s)
- David H Walker
- Department of Pathology, Director, UTMB Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555-0609, USA,
| | | |
Collapse
|
28
|
Matei IA, Kalmár Z, Magdaş C, Magdaş V, Toriay H, Dumitrache MO, Ionică AM, D'Amico G, Sándor AD, Mărcuţan DI, Domşa C, Gherman CM, Mihalca AD. Anaplasma phagocytophilum in questing Ixodes ricinus ticks from Romania. Ticks Tick Borne Dis 2015; 6:408-13. [PMID: 25838178 DOI: 10.1016/j.ttbdis.2015.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/21/2015] [Accepted: 03/09/2015] [Indexed: 12/24/2022]
Abstract
Granulocytic anaplasmosis is a common vector-borne disease of humans and animals with natural transmission cycle that involves tick vectors, among which Ixodes ricinus is the most important. The present paper reports the prevalence and geographical distribution of A. phagocytophilum in 10,438 questing Ixodes ricinus ticks collected at 113 locations from 40 counties of Romania. The unfed ticks were examined for the presence of A. phagocytophilum by PCR targeting a portion of ankA gene. The overall prevalence of infection was 3.42%, with local prevalences ranging between 0.29% and 22.45%, with an average prevalence of 5.39% in the infected localities. The infection with A. phagocytophilum was detected in 72 out of 113 localities and in 34 out of 40 counties. The highest prevalence was recorded in females followed by males and nymphs. The results and the distribution model have shown a large distribution of A. phagocytophilum, covering Romania's entire territory. This study is the first large scale survey of the presence of A. phagocytophilum in questing I. ricinus ticks from Romania.
Collapse
Affiliation(s)
- Ioana Adriana Matei
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Department of Parasitology and Parasitic Diseases, Cluj Napoca, Cluj, Romania.
| | - Zsuzsa Kalmár
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Department of Parasitology and Parasitic Diseases, Cluj Napoca, Cluj, Romania
| | - Cristian Magdaş
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Department of Parasitology and Parasitic Diseases, Cluj Napoca, Cluj, Romania
| | - Virginia Magdaş
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Department of Parasitology and Parasitic Diseases, Cluj Napoca, Cluj, Romania
| | - Hortenzia Toriay
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Department of Parasitology and Parasitic Diseases, Cluj Napoca, Cluj, Romania
| | - Mirabela Oana Dumitrache
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Department of Parasitology and Parasitic Diseases, Cluj Napoca, Cluj, Romania
| | - Angela Monica Ionică
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Department of Parasitology and Parasitic Diseases, Cluj Napoca, Cluj, Romania
| | - Gianluca D'Amico
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Department of Parasitology and Parasitic Diseases, Cluj Napoca, Cluj, Romania
| | - Attila D Sándor
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Department of Parasitology and Parasitic Diseases, Cluj Napoca, Cluj, Romania
| | - Daniel Ioan Mărcuţan
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Department of Parasitology and Parasitic Diseases, Cluj Napoca, Cluj, Romania
| | - Cristian Domşa
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Department of Parasitology and Parasitic Diseases, Cluj Napoca, Cluj, Romania
| | - Călin Mircea Gherman
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Department of Parasitology and Parasitic Diseases, Cluj Napoca, Cluj, Romania
| | - Andrei Daniel Mihalca
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Department of Parasitology and Parasitic Diseases, Cluj Napoca, Cluj, Romania
| |
Collapse
|
29
|
Sinclair SHG, Garcia-Garcia JC, Dumler JS. Bioinformatic and mass spectrometry identification of Anaplasma phagocytophilum proteins translocated into host cell nuclei. Front Microbiol 2015; 6:55. [PMID: 25705208 PMCID: PMC4319465 DOI: 10.3389/fmicb.2015.00055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/16/2015] [Indexed: 12/22/2022] Open
Abstract
Obligate intracellular bacteria have an arsenal of proteins that alter host cells to establish and maintain a hospitable environment for replication. Anaplasma phagocytophilum secrets Ankyrin A (AnkA), via a type IV secretion system, which translocates to the nucleus of its host cell, human neutrophils. A. phagocytophilum-infected neutrophils have dramatically altered phenotypes in part explained by AnkA-induced transcriptional alterations. However, it is unlikely that AnkA is the sole effector to account for infection-induced transcriptional changes. We developed a simple method combining bioinformatics and iTRAQ protein profiling to identify potential bacterial-derived nuclear-translocated proteins that could impact transcriptional programming in host cells. This approach identified 50 A. phagocytophilum candidate genes or proteins. The encoding genes were cloned to create GFP fusion protein-expressing clones that were transfected into HEK-293T cells. We confirmed nuclear translocation of six proteins: APH_0062, RplE, Hup, APH_0382, APH_0385, and APH_0455. Of the six, APH_0455 was identified as a type IV secretion substrate and is now under investigation as a potential nucleomodulin. Additionally, application of this approach to other intracellular bacteria such as Mycobacterium tuberculosis, Chlamydia trachomatis and other intracellular bacteria identified multiple candidate genes to be investigated.
Collapse
Affiliation(s)
- Sara H G Sinclair
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pathology, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pathology, University of Maryland School of Medicine Baltimore, MD, USA ; Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Jose C Garcia-Garcia
- Department of Pathology, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Procter and Gamble Co. Cincinnati, OH, USA
| | - J Stephen Dumler
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pathology, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pathology, University of Maryland School of Medicine Baltimore, MD, USA ; Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|
30
|
Wang GH, Niu LM, Ma GC, Xiao JH, Huang DW. Large proportion of genes in one cryptic WO prophage genome are actively and sex-specifically transcribed in a fig wasp species. BMC Genomics 2014; 15:893. [PMID: 25311369 PMCID: PMC4201733 DOI: 10.1186/1471-2164-15-893] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/03/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cryptic prophages are genetically defective in their induction and propagation, and are simply regarded as genetic remnants. There are several putative cryptic WO prophages in the sequenced Wolbachia genomes. Whether they are lytic is unclear and their functions are poorly understood. Only three open reading frames (ORFs) in cryptic WO prophages have been reported to be actively transcribed. RESULTS In this study, we comprehensively examined the transcription of the only cryptic WO prophage (WOSol) in a Wolbachia strain that infects a fig wasp, Ceratosolen solmsi (Agaonidae, Chalcidoidea). By analyzing the transcriptions of all the ORFs of WOSol in both sexes of C. solmsi, using qualitative and quantitative methods, we demonstrated that i) a high percentage of ORFs are actively transcribed (59%, 17/29); ii) the expression of these ORFs is highly sex-specific, with a strong male bias (three in females and 15 in males); iii) an ank (ankyrin-domain-containing) gene actively transcribed in both wasp sexes is more highly expressed in males. CONCLUSIONS A large proportion of the genes in the cryptic WO prophage WOSol are expressed, which overturns the concept that cryptic prophages are simply genetically defective. The highly sex-specific expression patterns of these genes in the host suggest that they play important roles in Wolbachia biology and its reproductive manipulation of its insect host, particularly through the males.
Collapse
Affiliation(s)
| | | | | | - Jin-Hua Xiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | | |
Collapse
|
31
|
Min CK, Kwon YJ, Ha NY, Cho BA, Kim JM, Kwon EK, Kim YS, Choi MS, Kim IS, Cho NH. Multiple Orientia tsutsugamushi ankyrin repeat proteins interact with SCF1 ubiquitin ligase complex and eukaryotic elongation factor 1 α. PLoS One 2014; 9:e105652. [PMID: 25166298 PMCID: PMC4148323 DOI: 10.1371/journal.pone.0105652] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/22/2014] [Indexed: 11/30/2022] Open
Abstract
Background Orientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracellular bacterium. Previously, a large number of genes that encode proteins containing eukaryotic protein-protein interaction motifs such as ankyrin-repeat (Ank) domains were identified in the O. tsutsugamushi genome. However, little is known about the Ank protein function in O. tsutsugamushi. Methodology/Principal Findings To characterize the function of Ank proteins, we investigated a group of Ank proteins containing an F-box–like domain in the C-terminus in addition to the Ank domains. All nine selected ank genes were expressed at the transcriptional level in host cells infected with O. tsutsugamushi, and specific antibody responses against three Ank proteins were detected in the serum from human patients, indicating an active expression of the bacterial Ank proteins post infection. When ectopically expressed in HeLa cells, the Ank proteins of O. tsutsugamushi were consistently found in the nucleus and/or cytoplasm. In GST pull-down assays, multiple Ank proteins specifically interacted with Cullin1 and Skp1, core components of the SCF1 ubiquitin ligase complex, as well as the eukaryotic elongation factor 1 α (EF1α). Moreover, one Ank protein co-localized with the identified host targets and induced downregulation of EF1α potentially via enhanced ubiquitination. The downregulation of EF1α was observed consistently in diverse host cell types infected with O. tsutsugamushi. Conclusion/Significance These results suggest that conserved targeting and subsequent degradation of EF1α by multiple O. tsutsugamushi Ank proteins could be a novel bacterial strategy for replication and/or pathogenesis during mammalian host infection.
Collapse
Affiliation(s)
- Chan-Ki Min
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ye-Jin Kwon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Na-Young Ha
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bon-A Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jo-Min Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun-Kyung Kwon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yeon-Sook Kim
- Divisions of Infectious Diseases, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Myung-Sik Choi
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ik-Sang Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
32
|
Sinclair SH, Rennoll-Bankert KE, Dumler JS. Effector bottleneck: microbial reprogramming of parasitized host cell transcription by epigenetic remodeling of chromatin structure. Front Genet 2014; 5:274. [PMID: 25177343 PMCID: PMC4132484 DOI: 10.3389/fgene.2014.00274] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/26/2014] [Indexed: 12/25/2022] Open
Abstract
Obligate intracellular pathogenic bacteria evolved to manipulate their host cells with a limited range of proteins constrained by their compact genomes. The harsh environment of a phagocytic defense cell is one that challenges the majority of commensal and pathogenic bacteria; yet, these are the obligatory vertebrate homes for important pathogenic species in the Anaplasmataceae family. Survival requires that the parasite fundamentally alter the native functions of the cell to allow its entry, intracellular replication, and transmission to a hematophagous arthropod. The small genomic repertoires encode several eukaryotic-like proteins, including ankyrin A (AnkA) of Anaplasma phagocytophilum and Ank200 and tandem-repeat containing proteins of Ehrlichia chaffeensis that localize to the host cell nucleus and directly bind DNA. As a model, A. phagocytophilum AnkA appears to directly alter host cell gene expression by recruiting chromatin modifying enzymes such as histone deacetylases and methyltransferases or by acting directly on transcription in cis. While cis binding could feasibly alter limited ranges of genes and cellular functions, the complex and dramatic alterations in transcription observed with infection are difficult to explain on the basis of individually targeted genes. We hypothesize that nucleomodulins can act broadly, even genome-wide, to affect entire chromosomal neighborhoods and topologically associating chromatin domains by recruiting chromatin remodeling complexes or by altering the folding patterns of chromatin that bring distant regulatory regions together to coordinate control of transcriptional reprogramming. This review focuses on the A. phagocytophilum nucleomodulin AnkA, how it impacts host cell transcriptional responses, and current investigations that seek to determine how these multifunctional eukaryotic-like proteins facilitate epigenetic alterations and cellular reprogramming at the chromosomal level.
Collapse
Affiliation(s)
- Sara H Sinclair
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore Baltimore, MD, USA ; Department of Pathology, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pathology, School of Medicine, University of Maryland Baltimore Baltimore, MD, USA
| | - Kristen E Rennoll-Bankert
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore Baltimore, MD, USA ; Department of Pathology, The Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - J S Dumler
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore Baltimore, MD, USA ; Department of Pathology, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pathology, School of Medicine, University of Maryland Baltimore Baltimore, MD, USA
| |
Collapse
|
33
|
Brelsfoard C, Tsiamis G, Falchetto M, Gomulski LM, Telleria E, Alam U, Doudoumis V, Scolari F, Benoit JB, Swain M, Takac P, Malacrida AR, Bourtzis K, Aksoy S. Presence of extensive Wolbachia symbiont insertions discovered in the genome of its host Glossina morsitans morsitans. PLoS Negl Trop Dis 2014; 8:e2728. [PMID: 24763283 PMCID: PMC3998919 DOI: 10.1371/journal.pntd.0002728] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/20/2014] [Indexed: 11/24/2022] Open
Abstract
Tsetse flies (Glossina spp.) are the cyclical vectors of Trypanosoma spp., which are unicellular parasites responsible for multiple diseases, including nagana in livestock and sleeping sickness in humans in Africa. Glossina species, including Glossina morsitans morsitans (Gmm), for which the Whole Genome Sequence (WGS) is now available, have established symbiotic associations with three endosymbionts: Wigglesworthia glossinidia, Sodalis glossinidius and Wolbachia pipientis (Wolbachia). The presence of Wolbachia in both natural and laboratory populations of Glossina species, including the presence of horizontal gene transfer (HGT) events in a laboratory colony of Gmm, has already been shown. We herein report on the draft genome sequence of the cytoplasmic Wolbachia endosymbiont (cytWol) associated with Gmm. By in silico and molecular and cytogenetic analysis, we discovered and validated the presence of multiple insertions of Wolbachia (chrWol) in the host Gmm genome. We identified at least two large insertions of chrWol, 527,507 and 484,123 bp in size, from Gmm WGS data. Southern hybridizations confirmed the presence of Wolbachia insertions in Gmm genome, and FISH revealed multiple insertions located on the two sex chromosomes (X and Y), as well as on the supernumerary B-chromosomes. We compare the chrWol insertions to the cytWol draft genome in an attempt to clarify the evolutionary history of the HGT events. We discuss our findings in light of the evolution of Wolbachia infections in the tsetse fly and their potential impacts on the control of tsetse populations and trypanosomiasis. African trypanosomes are transmitted to man and animals by tsetse fly, a blood sucking insect. Tsetse flies include all Glossina species with the genome of Glossina morsitans morsitans (Gmm) being sequenced under the International Glossina Genome Initiative. The endosymbionts Wigglesworthia glossinidia, Sodalis glossinidius and Wolbachia pipientis (Wolbachia) have been found to establish symbiotic associations with Gmm. Wolbachia is known to be present in natural and laboratory populations of Glossina species. In this study we report the genome sequence of the Wolbachia strain that is associated with Gmm. With the aid of in silico and molecular and cytogenetic analyses, multiple insertions of the Wolbachia genome were revealed and confirmed in Gmm chromosome. Comparison of the cytoplasmic Wolbachia draft genome and the chromosomal insertions enabled us to infer the evolutionary history of the Wolbachia horizontal transfer events. These findings are discussed in relation to their impact on the development of Wolbachia-based strategies for the control of tsetse flies and trypanosomiasis.
Collapse
Affiliation(s)
- Corey Brelsfoard
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Natural Sciences, St. Catharine College, St. Catharine, Kentucky, United States of America
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Marco Falchetto
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italia
| | - Ludvik M. Gomulski
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italia
| | - Erich Telleria
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Uzma Alam
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Vangelis Doudoumis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Francesca Scolari
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italia
| | - Joshua B. Benoit
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Biological Sciences, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Martin Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, United Kingdom
| | - Peter Takac
- Institute of Zoology, Section of Molecular and Applied Zoology, Slovak Academy of Science, Bratislava, Slovakia
| | - Anna R. Malacrida
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italia
| | - Kostas Bourtzis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
- Biomedical Sciences Research Center Al. Fleming, Vari, Greece
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- * E-mail: (KB); (SA)
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- * E-mail: (KB); (SA)
| |
Collapse
|
34
|
Abstract
Human granulocytic anaplasmosis, formerly known as human granulocytic ehrlichiosis, is caused by the microorganism Anaplasma phagocytophilum that is transmitted by Ixodes tick bites. The disease state ranges from subclinical to fatal but may be difficult to differentiate from other febrile conditions without specific tests. Rapid and early diagnosis is important since the infection may be fatal and specific antibiotic therapy is required. The bacterium is an obligate intracellular pathogen of neutrophils. Thus, early diagnosis is best achieved by amplification of nucleic acids from the blood. An increasing number of potential gene targets for diagnostic assays have been described and the incipient release of an Anaplasma phagocytophilum genome sequence will not only help to better understand the disease but may facilitate improvements in diagnostic strategies.
Collapse
Affiliation(s)
- J Stephen Dumler
- Department of Pathology, The Johns Hopkins Medical Institutions, Ross Research Building, Room 624, 720 Rutland Avenue, Baltimore, MD 21205 USA.
| | | |
Collapse
|
35
|
Pinto SB, Stainton K, Harris S, Kambris Z, Sutton ER, Bonsall MB, Parkhill J, Sinkins SP. Transcriptional regulation of Culex pipiens mosquitoes by Wolbachia influences cytoplasmic incompatibility. PLoS Pathog 2013; 9:e1003647. [PMID: 24204251 PMCID: PMC3814344 DOI: 10.1371/journal.ppat.1003647] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 08/06/2013] [Indexed: 11/23/2022] Open
Abstract
Cytoplasmic incompatibility (CI) induced by the endosymbiont Wolbachia pipientis causes complex patterns of crossing sterility between populations of the Culex pipiens group of mosquitoes. The molecular basis of the phenotype is yet to be defined. In order to investigate what host changes may underlie CI at the molecular level, we examined the transcription of a homolog of the Drosophila melanogaster gene grauzone that encodes a zinc finger protein and acts as a regulator of female meiosis, in which mutations can cause sterility. Upregulation was observed in Wolbachia-infected C. pipiens group individuals relative to Wolbachia-cured lines and the level of upregulation differed between lines that were reproductively incompatible. Knockdown analysis of this gene using RNAi showed an effect on hatch rates in a Wolbachia infected Culex molestus line. Furthermore, in later stages of development an effect on developmental progression in CI embryos occurs in bidirectionally incompatible crosses. The genome of a wPip Wolbachia strain variant from Culex molestus was sequenced and compared with the genome of a wPip variant with which it was incompatible. Three genes in inserted or deleted regions were newly identified in the C. molestus wPip genome, one of which is a transcriptional regulator labelled wtrM. When this gene was transfected into adult Culex mosquitoes, upregulation of the grauzone homolog was observed. These data suggest that Wolbachia-mediated regulation of host gene expression is a component of the mechanism of cytoplasmic incompatibility. Wolbachia are maternally inherited bacteria that manipulate invertebrate reproduction. Cytoplasmic incompatibility is embryo death that occurs when males carrying Wolbachia mate with females that do not, or that carry a different Wolbachia variant; its mechanism is poorly understood. In Culex mosquitoes, in the presence of Wolbachia a gene related to a Drosophila melanogaster gene, grauzone, which has been shown to act as a regulator of the meiotic cell cycle, showed an elevated level of expression. When lower levels of expression were achieved through RNA interference, embryo hatch rates were affected and the stage of development at which embryo death occurs was altered. To find Wolbachia genes that influence cytoplasmic incompatibility, we compared the genomes of two variants of Wolbachia from Culex that produce cytoplasmic incompatibility with one another. Although most segments of these genomes were very similar, one newly identified gene is predicted to be a regulator of gene transcription. We cloned this gene into a plasmid, expressed it in adult mosquitoes and found higher levels of expression of the Culex grauzone homolog. This suggests that the Wolbachia transcriptional regulator may play an important role in manipulating the host in order to induce cytoplasmic incompatibility.
Collapse
Affiliation(s)
- Sofia B. Pinto
- Peter Medawar Building for Pathogen Research and Nuffield Department of Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Kirsty Stainton
- Peter Medawar Building for Pathogen Research and Nuffield Department of Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Simon Harris
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Zakaria Kambris
- Peter Medawar Building for Pathogen Research and Nuffield Department of Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Elizabeth R. Sutton
- Peter Medawar Building for Pathogen Research and Nuffield Department of Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Julian Parkhill
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Steven P. Sinkins
- Peter Medawar Building for Pathogen Research and Nuffield Department of Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Meyer DF, Noroy C, Moumène A, Raffaele S, Albina E, Vachiéry N. Searching algorithm for type IV secretion system effectors 1.0: a tool for predicting type IV effectors and exploring their genomic context. Nucleic Acids Res 2013; 41:9218-29. [PMID: 23945940 PMCID: PMC3814349 DOI: 10.1093/nar/gkt718] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Type IV effectors (T4Es) are proteins produced by pathogenic bacteria to manipulate host cell gene expression and processes, divert the cell machinery for their own profit and circumvent the immune responses. T4Es have been characterized for some bacteria but many remain to be discovered. To help biologists identify putative T4Es from the complete genome of α- and γ-proteobacteria, we developed a Perl-based command line bioinformatics tool called S4TE (searching algorithm for type-IV secretion system effectors). The tool predicts and ranks T4E candidates by using a combination of 13 sequence characteristics, including homology to known effectors, homology to eukaryotic domains, presence of subcellular localization signals or secretion signals, etc. S4TE software is modular, and specific motif searches are run independently before ultimate combination of the outputs to generate a score and sort the strongest T4Es candidates. The user keeps the possibility to adjust various searching parameters such as the weight of each module, the selection threshold or the input databases. The algorithm also provides a GC% and local gene density analysis, which strengthen the selection of T4E candidates. S4TE is a unique predicting tool for T4Es, finding its utility upstream from experimental biology.
Collapse
Affiliation(s)
- Damien F Meyer
- CIRAD, UMR CMAEE, F-97170 Petit-Bourg, Guadeloupe, France, INRA, UMR1309 CMAEE, F-34398, Montpellier, France, Université des Antilles et de la Guyane, 97159 Pointe-à-Pitre cedex, Guadeloupe, France, INRA, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan, France and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan, France
| | | | | | | | | | | |
Collapse
|
37
|
Rennoll-Bankert KE, Dumler JS. Lessons from Anaplasma phagocytophilum: chromatin remodeling by bacterial effectors. Infect Disord Drug Targets 2013; 12:380-7. [PMID: 23082961 PMCID: PMC3664514 DOI: 10.2174/187152612804142242] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/27/2012] [Accepted: 08/27/2012] [Indexed: 02/06/2023]
Abstract
Bacterial pathogens can alter global host gene expression via histone modifications and chromatin remodeling in order to subvert host responses, including those involved with innate immunity, allowing for bacterial survival. Shigella flexneri, Listeria monocytogenes, Chlamydia trachomatis, and Anaplasma phagocytophilum express effector proteins that modify host histones and chromatin structure. A. phagocytophilum modulates granulocyte respiratory burst in part by dampening transcription of several key phagocyte oxidase genes. The A. phagocytophilum protein AnkA localizes to the myeloid cell nucleus where it binds AT-rich regions in the CYBB promoter and decreases its transcription. AT-rich regions of DNA are characteristic of matrix attachment regions (MARs) which are critical for chromatin structure and transcription. MAR-binding proteins, such as SATB1, interact with histone modifying enzymes resulting in altered gene expression. With A. phagocytophilum infection, histone deacetylase 1 (HDAC1) expression is increased and histone H3 acetylation is decreased at the CYBB promoter, suggesting a role for AnkA in altering host epigenetics and modulating gene transcription, at this, and perhaps other loci. This review will focus on how bacterial pathogens alter host epigenetics, by specifically examining A. phagocytophilum AnkA cis-regulation of CYBB transcription and epigenetic changes associated with infection.
Collapse
|
38
|
Siozios S, Ioannidis P, Klasson L, Andersson SGE, Braig HR, Bourtzis K. The diversity and evolution of Wolbachia ankyrin repeat domain genes. PLoS One 2013; 8:e55390. [PMID: 23390535 PMCID: PMC3563639 DOI: 10.1371/journal.pone.0055390] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/21/2012] [Indexed: 11/25/2022] Open
Abstract
Ankyrin repeat domain-encoding genes are common in the eukaryotic and viral domains of life, but they are rare in bacteria, the exception being a few obligate or facultative intracellular Proteobacteria species. Despite having a reduced genome, the arthropod strains of the alphaproteobacterium Wolbachia contain an unusually high number of ankyrin repeat domain-encoding genes ranging from 23 in wMel to 60 in wPip strain. This group of genes has attracted considerable attention for their astonishing large number as well as for the fact that ankyrin proteins are known to participate in protein-protein interactions, suggesting that they play a critical role in the molecular mechanism that determines host-Wolbachia symbiotic interactions. We present a comparative evolutionary analysis of the wMel-related ankyrin repeat domain-encoding genes present in different Drosophila-Wolbachia associations. Our results show that the ankyrin repeat domain-encoding genes change in size by expansion and contraction mediated by short directly repeated sequences. We provide examples of intra-genic recombination events and show that these genes are likely to be horizontally transferred between strains with the aid of bacteriophages. These results confirm previous findings that the Wolbachia genomes are evolutionary mosaics and illustrate the potential that these bacteria have to generate diversity in proteins potentially involved in the symbiotic interactions.
Collapse
Affiliation(s)
- Stefanos Siozios
- Department of Environmental and Natural Resources Management, University of Western Greece, Agrinio, Greece
| | - Panagiotis Ioannidis
- Department of Environmental and Natural Resources Management, University of Western Greece, Agrinio, Greece
| | - Lisa Klasson
- Department of Molecular Evolution, Uppsala University, Uppsala, Sweden
| | | | - Henk R. Braig
- School of Biological Sciences Bangor University, Bangor Gwynedd, United Kingdom
| | - Kostas Bourtzis
- Department of Environmental and Natural Resources Management, University of Western Greece, Agrinio, Greece
- Biomedical Sciences Research Center Al. Fleming, Vari, Greece
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
39
|
Burgess H, Chilton NB, Krakowetz CN, Williams C, Lohmann K. Granulocytic anaplasmosis in a horse from Saskatchewan. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2012; 53:886-888. [PMID: 23372198 PMCID: PMC3398529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This report describes a case of equine granulocytic anaplasmosis in a horse from Saskatchewan. Morulae were visualized within blood neutrophils, and the diagnosis was confirmed by polymerase chain reaction (PCR). The organism was identified as the human pathogenic strain of Anaplasma phagocytophilum by PCR and DNA sequencing of 3 independent genes.
Collapse
|
40
|
Arnold R, Boonen K, Sun MG, Kim PM. Computational analysis of interactomes: current and future perspectives for bioinformatics approaches to model the host-pathogen interaction space. Methods 2012; 57:508-18. [PMID: 22750305 PMCID: PMC7128575 DOI: 10.1016/j.ymeth.2012.06.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 11/05/2022] Open
Abstract
Bacterial and viral pathogens affect their eukaryotic host partly by interacting with proteins of the host cell. Hence, to investigate infection from a systems' perspective we need to construct complete and accurate host-pathogen protein-protein interaction networks. Because of the paucity of available data and the cost associated with experimental approaches, any construction and analysis of such a network in the near future has to rely on computational predictions. Specifically, this challenge consists of a number of sub-problems: First, prediction of possible pathogen interactors (e.g. effector proteins) is necessary for bacteria and protozoa. Second, the prospective host binding partners have to be determined and finally, the impact on the host cell analyzed. This review gives an overview of current bioinformatics approaches to obtain and understand host-pathogen interactions. As an application example of the methods covered, we predict host-pathogen interactions of Salmonella and discuss the value of these predictions as a prospective for further research.
Collapse
Affiliation(s)
- Roland Arnold
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada M5S 3E1
| | - Kurt Boonen
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada M5S 3E1
| | - Mark G.F. Sun
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada M5S 3E1
| | - Philip M. Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada M5S 3E1
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada M5S 3E1
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 3E1
- Department of Computer Science, University of Toronto, Toronto, ON, Canada M5S 3E1
| |
Collapse
|
41
|
Roellig DM, Fang QQ. Detection of Anaplasma phagocytophilum in ixodid ticks from equine-inhabited sites in the Southeastern United States. Vector Borne Zoonotic Dis 2012; 12:330-2. [PMID: 22214269 DOI: 10.1089/vbz.2011.0757] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anaplasma phagocytophilum is a vector-borne, obligate intracellular bacterium that invades the neutrophils and eosinophils of infected individuals, causing granulocytic anaplasmosis. Equine cases have previously been reported in the United States from California, Florida, and Connecticut, but limited surveillance studies in the Southeast have been conducted. The objective of this study was to determine A. phagocytophilum prevalence in Ixodes scapularis ticks at southeastern U.S. horse-inhabited sites to evaluate the potential risk for equine exposure to A. phagocytophilum-infected ticks in these areas. Samples of I. scapularis were collected from selected barrier islands and Georgia mainland sites where feral and domestic equine populations are present, respectively. Ticks were individually tested for infection by amplification of the A. phagocytophilum ankA gene. The collective prevalence of A. phagocytophilum in I. scapularis ticks was 20% (n=808).
Collapse
Affiliation(s)
- Dawn M Roellig
- Department of Biological Sciences, Georgia Southern University, Statesboro, GA, USA.
| | | |
Collapse
|
42
|
Rar V, Golovljova I. Anaplasma, Ehrlichia, and “Candidatus Neoehrlichia” bacteria: Pathogenicity, biodiversity, and molecular genetic characteristics, a review. INFECTION GENETICS AND EVOLUTION 2011; 11:1842-61. [DOI: 10.1016/j.meegid.2011.09.019] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/23/2011] [Accepted: 09/23/2011] [Indexed: 12/18/2022]
|
43
|
Troese MJ, Kahlon A, Ragland SA, Ottens AK, Ojogun N, Nelson KT, Walker NJ, Borjesson DL, Carlyon JA. Proteomic analysis of Anaplasma phagocytophilum during infection of human myeloid cells identifies a protein that is pronouncedly upregulated on the infectious dense-cored cell. Infect Immun 2011; 79:4696-707. [PMID: 21844238 PMCID: PMC3257945 DOI: 10.1128/iai.05658-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/02/2011] [Indexed: 01/31/2023] Open
Abstract
Anaplasma phagocytophilum is an obligate intracellular bacterium that invades neutrophils to cause the emerging infectious disease human granulocytic anaplasmosis. A. phagocytophilum undergoes a biphasic developmental cycle, transitioning between an infectious dense-cored cell (DC) and a noninfectious reticulate cell (RC). To gain insights into the organism's biology and pathogenesis during human myeloid cell infection, we conducted proteomic analyses on A. phagocytophilum organisms purified from HL-60 cells. A total of 324 proteins were unambiguously identified, thereby verifying 23.7% of the predicted A. phagocytophilum proteome. Fifty-three identified proteins had been previously annotated as hypothetical or conserved hypothetical. The second most abundant gene product, after the well-studied major surface protein 2 (P44), was the hitherto hypothetical protein APH_1235. APH_1235 homologs are found in other Anaplasma and Ehrlichia species but not in other bacteria. The aph_1235 RNA level is increased 70-fold in the DC form relative to that in the RC form. Transcriptional upregulation of and our ability to detect APH_1235 correlate with RC to DC transition, DC exit from host cells, and subsequent DC binding and entry during the next round of infection. Immunoelectron microscopy pronouncedly detects APH_1235 on DC organisms, while detection on RC bacteria minimally, at best, exceeds background. This work represents an extensive study of the A. phagocytophilum proteome, discerns the complement of proteins that is generated during survival within human myeloid cells, and identifies APH_1235 as the first known protein that is pronouncedly upregulated on the infectious DC form.
Collapse
Affiliation(s)
| | | | | | - Andrew K. Ottens
- Anatomy and Neurobiology
- Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | | | - Kristina T. Nelson
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia
| | - Naomi J. Walker
- Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine, Davis, California 95616
| | - Dori L. Borjesson
- Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine, Davis, California 95616
| | | |
Collapse
|
44
|
Voth DE. ThANKs for the repeat: Intracellular pathogens exploit a common eukaryotic domain. CELLULAR LOGISTICS 2011; 1:128-132. [PMID: 22279611 DOI: 10.4161/cl.1.4.18738] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 12/31/2022]
Abstract
Bacterial pathogens are renowned cell biologists that subvert detrimental host responses by manipulating eukaryotic protein function. A select group of pathogens use a specialized type IV secretion system (T4SS) as a conduit to deliver an arsenal of proteins into the host cytosol where they interact with host proteins. The translocated "effectors" have garnered increased attention because they uncover novel aspects of host-pathogen interactions at the subcellular level. This review presents a group of effectors termed Anks that possess eukaryotic-like ankyrin repeat domains that mediate proteinprotein interactions and are critical for effector function. Interestingly, most known prokaryotic Anks are produced by bacteria that devote much of their time to replicating inside eukaryotic cells. Ank proteins represent a fascinating and versatile family of effectors exploited by bacterial pathogens and are proving useful as tools to study eukaryotic cell biology.
Collapse
Affiliation(s)
- Daniel E Voth
- Department of Microbiology and Immunology; University of Arkansas for Medical Sciences; Little Rock, AR USA
| |
Collapse
|
45
|
Mechanisms of obligatory intracellular infection with Anaplasma phagocytophilum. Clin Microbiol Rev 2011; 24:469-89. [PMID: 21734244 PMCID: PMC3131063 DOI: 10.1128/cmr.00064-10] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Anaplasma phagocytophilum persists in nature by cycling between mammals and ticks. Human infection by the bite of an infected tick leads to a potentially fatal emerging disease called human granulocytic anaplasmosis. A. phagocytophilum is an obligatory intracellular bacterium that replicates inside mammalian granulocytes and the salivary gland and midgut cells of ticks. A. phagocytophilum evolved the remarkable ability to hijack the regulatory system of host cells. A. phagocytophilum alters vesicular traffic to create an intracellular membrane-bound compartment that allows replication in seclusion from lysosomes. The bacterium downregulates or actively inhibits a number of innate immune responses of mammalian host cells, and it upregulates cellular cholesterol uptake to acquire cholesterol for survival. It also upregulates several genes critical for the infection of ticks, and it prolongs tick survival at freezing temperatures. Several host factors that exacerbate infection have been identified, including interleukin-8 (IL-8) and cholesterol. Host factors that overcome infection include IL-12 and gamma interferon (IFN-γ). Two bacterial type IV secretion effectors and several bacterial proteins that associate with inclusion membranes have been identified. An understanding of the molecular mechanisms underlying A. phagocytophilum infection will foster the development of creative ideas to prevent or treat this emerging tick-borne disease.
Collapse
|
46
|
Wolbachia and the biological control of mosquito-borne disease. EMBO Rep 2011; 12:508-18. [PMID: 21546911 DOI: 10.1038/embor.2011.84] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/12/2011] [Indexed: 12/22/2022] Open
Abstract
Mosquito-borne diseases such as malaria, dengue fever and filariasis cause an enormous health burden to people living in tropical and subtropical regions of the world. Despite years of intense effort to control them, many of these diseases are increasing in prevalence, geographical distribution and severity, and options to control them are limited. The transinfection of mosquitos with the maternally inherited, endosymbiotic bacteria Wolbachia is a promising new biocontrol approach. Fruit fly Wolbachia strains can invade and sustain themselves in mosquito populations, reduce adult lifespan, affect mosquito reproduction and interfere with pathogen replication. Wolbachia-infected Aedes aegypti mosquitoes have been released in areas of Australia in which outbreaks of dengue fever occur, as a prelude to the application of this technology in dengue-endemic areas of south-east Asia.
Collapse
|
47
|
Lin M, Kikuchi T, Brewer HM, Norbeck AD, Rikihisa Y. Global proteomic analysis of two tick-borne emerging zoonotic agents: anaplasma phagocytophilum and ehrlichia chaffeensis. Front Microbiol 2011; 2:24. [PMID: 21687416 PMCID: PMC3109344 DOI: 10.3389/fmicb.2011.00024] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 01/31/2011] [Indexed: 11/29/2022] Open
Abstract
Anaplasma phagocytophilum and Ehrlichia chaffeensis are obligatory intracellular α-proteobacteria that infect human leukocytes and cause potentially fatal emerging zoonoses. In the present study, we determined global protein expression profiles of these bacteria cultured in the human promyelocytic leukemia cell line, HL-60. Mass spectrometric (MS) analyses identified a total of 1,212 A. phagocytophilum and 1,021 E. chaffeensis proteins, representing 89.3 and 92.3% of the predicted bacterial proteomes, respectively. Nearly all bacterial proteins (≥99%) with known functions were expressed, whereas only approximately 80% of “hypothetical” proteins were detected in infected human cells. Quantitative MS/MS analyses indicated that highly expressed proteins in both bacteria included chaperones, enzymes involved in biosynthesis and metabolism, and outer membrane proteins, such as A. phagocytophilum P44 and E. chaffeensis P28/OMP-1. Among 113 A. phagocytophilum p44 paralogous genes, 110 of them were expressed and 88 of them were encoded by pseudogenes. In addition, bacterial infection of HL-60 cells up-regulated the expression of human proteins involved mostly in cytoskeleton components, vesicular trafficking, cell signaling, and energy metabolism, but down-regulated some pattern recognition receptors involved in innate immunity. Our proteomics data represent a comprehensive analysis of A. phagocytophilum and E. chaffeensis proteomes, and provide a quantitative view of human host protein expression profiles regulated by bacterial infection. The availability of these proteomic data will provide new insights into biology and pathogenesis of these obligatory intracellular pathogens.
Collapse
Affiliation(s)
- Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University Columbus, OH, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
Human ehrlichiosis and anaplasmosis are acute febrile tick-borne diseases caused by various members of the genera Ehrlichia and Anaplasma (Anaplasmataceae). Human monocytotropic ehrlichiosis has become one of the most prevalent life-threatening tick-borne disease in the United States. Ehrlichiosis and anaplasmosis are becoming more frequently diagnosed as the cause of human infections, as animal reservoirs and tick vectors have increased in number and humans have inhabited areas where reservoir and tick populations are high. Ehrlichia chaffeensis, the etiologic agent of human monocytotropic ehrlichiosis (HME), is an emerging zoonosis that causes clinical manifestations ranging from a mild febrile illness to a fulminant disease characterized by multiorgan system failure. Anaplasma phagocytophilum causes human granulocytotropic anaplasmosis (HGA), previously known as human granulocytotropic ehrlichiosis. This article reviews recent advances in the understanding of ehrlichial diseases related to microbiology, epidemiology, diagnosis, pathogenesis, immunity, and treatment of the 2 prevalent tick-borne diseases found in the United States, HME and HGA.
Collapse
|
49
|
Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, Salamov A, Terry A, Yamada T, Dunigan DD, Grigoriev IV, Claverie JM, Van Etten JL. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. THE PLANT CELL 2010; 22:2943-55. [PMID: 20852019 PMCID: PMC2965543 DOI: 10.1105/tpc.110.076406] [Citation(s) in RCA: 343] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/15/2010] [Accepted: 09/01/2010] [Indexed: 05/18/2023]
Abstract
Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias. Although Chlorella species have been assumed to be asexual and nonmotile, the NC64A genome encodes all the known meiosis-specific proteins and a subset of proteins found in flagella. We hypothesize that Chlorella might have retained a flagella-derived structure that could be involved in sexual reproduction. Furthermore, a survey of phytohormone pathways in chlorophyte algae identified algal orthologs of Arabidopsis thaliana genes involved in hormone biosynthesis and signaling, suggesting that these functions were established prior to the evolution of land plants. We show that the ability of Chlorella to produce chitinous cell walls likely resulted from the capture of metabolic genes by horizontal gene transfer from algal viruses, prokaryotes, or fungi. Analysis of the NC64A genome substantially advances our understanding of the green lineage evolution, including the genomic interplay with viruses and symbiosis between eukaryotes.
Collapse
Affiliation(s)
- Guillaume Blanc
- Centre National de la Recherche Scientifique, Laboratoire Information Génomique et Structurale UPR2589, Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Merhej V, Raoult D. Rickettsial evolution in the light of comparative genomics. Biol Rev Camb Philos Soc 2010; 86:379-405. [DOI: 10.1111/j.1469-185x.2010.00151.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|