1
|
Apelian S, Martincuks A, Whittum M, Yasukawa M, Nguy L, Mathyk B, Andikyan V, Anderson ML, Rutherford T, Cristea M, Stewart D, Kohut A. PARP Inhibitors in Ovarian Cancer: Resistance Mechanisms, Clinical Evidence, and Evolving Strategies. Biomedicines 2025; 13:1126. [PMID: 40426953 DOI: 10.3390/biomedicines13051126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
The introduction of poly (ADP-ribose) polymerase inhibitors (PARPi) into the management of ovarian cancer has transformed the treatment landscape for patients affected by this malignancy. However, as the use of PARPi expands into both frontline maintenance and recurrence settings, the emergence of drug resistance has become a significant clinical challenge in the treatment of these patients. Although platinum-based chemotherapy (PBC) and PARPi act through different mechanisms-PBC causes DNA damage while PARPi blocks its repair-both depend on the integrity of DNA damage repair (DDR) pathways, leading to overlapping mechanisms of resistance. Here, we review the key resistance mechanisms shared by PARPi and PBC, and then we discuss their clinical implications in the management of patients with ovarian cancer. We also examine clinical rationale supporting the hypothesis that prior PARPi exposure may reduce the efficacy of subsequent PBC in patients experiencing a disease recurrence. Furthermore, we review preliminary clinical data assessing the potential role of PARPi retreatment in patients who have previously progressed on PARPis.
Collapse
Affiliation(s)
- Shant Apelian
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Antons Martincuks
- Department of Immuno-Oncology, City of Hope National Medicinal Center, Duarte, CA 91010, USA
| | - Michelle Whittum
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
| | - Maya Yasukawa
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
| | - Lindsey Nguy
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
| | - Begum Mathyk
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA
| | - Vaagn Andikyan
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
| | - Matthew L Anderson
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
| | - Thomas Rutherford
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
| | | | - Daphne Stewart
- Department of Medicine, Division of Medical Oncology, USC Norris Comprehensive Cancer Center and Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Adrian Kohut
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
| |
Collapse
|
2
|
Vollen K, Alonso JM, Stepanova AN. Beyond a few bases: methods for large DNA insertion and gene targeting in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70099. [PMID: 40121601 PMCID: PMC11930290 DOI: 10.1111/tpj.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025]
Abstract
Genome editing technologies like CRISPR/Cas have greatly accelerated the pace of both fundamental research and translational applications in agriculture. However, many plant biologists are functionally limited to creating small, targeted DNA changes or large, random DNA insertions. The ability to efficiently generate large, yet precise, DNA changes will massively accelerate crop breeding cycles, enabling researchers to more efficiently engineer crops amidst a rapidly changing agricultural landscape. This review provides an overview of existing technologies that allow plant biologists to integrate large DNA sequences within a plant host and some associated technical bottlenecks. Additionally, this review explores a selection of emerging techniques in other host systems to inspire tool development in plants.
Collapse
Affiliation(s)
- Katie Vollen
- Department of Plant BiologyNorth Carolina State UniversityRaleighNorth Carolina27695USA
| | - Jose M. Alonso
- Department of Plant BiologyNorth Carolina State UniversityRaleighNorth Carolina27695USA
| | - Anna N. Stepanova
- Department of Plant BiologyNorth Carolina State UniversityRaleighNorth Carolina27695USA
| |
Collapse
|
3
|
Malik MZ, Dashti M, Jangid A, Channanath A, Elsa John S, Singh RKB, Al-Mulla F, Alphonse Thanaraj T. Complex p53 dynamics regulated by miR-125b in cellular responses to reactive oxidative stress and DNA damage. Brief Bioinform 2024; 26:bbae706. [PMID: 39820247 PMCID: PMC11736902 DOI: 10.1093/bib/bbae706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/27/2024] [Accepted: 12/28/2024] [Indexed: 01/19/2025] Open
Abstract
In response to distinct cellular stresses, the p53 exhibits distinct dynamics. These p53 dynamics subsequently control cell fate. However, different stresses can generate the same p53 dynamics with different cell fate outcomes, suggesting that the integration of dynamic information from other pathways is important for cell fate regulation. The interactions between miRNA-125b, p53, and reactive oxygen species (ROS) are significant in the context of cellular stress responses and apoptosis. However, the regulating mechanism of miR-125b with p53 is not fully studied. The dynamics of p53 and its response to the miR-125b regulation are still open questions. In the present study, we try to answer some of these fundamental questions based on basic model built from available experimental reports. The miR-125b-p53 regulatory network is modeled using a set of 11 molecular species variables. The biochemical network of miR-125b-p53, described by 22 reaction channels, is represented by coupled ordinary differential equations (ODEs) using the mass action law of chemical kinetics. These ODEs are solved numerically using the standard fourth-order Runge-Kutta method to analyze the dynamical behavior of the system. The biochemical network model we designed is based on both experimental and theoretical reported data. The p53 dynamics driven by miR-125b exhibit five distinct dynamical states: first and second stable states, first and second dynamical states, and a sustained oscillation state. These different p53 dynamical states may correspond to various cellular conditions. If the stress induced by miR-125b is weak, the system will be weakly activated, favoring a return to normal functioning. However, if the stress is significantly strong, the system will move to an active state. To sustain this active state, which is far from equilibrium with little scope for returning to normal conditions, the system may transition to an apoptotic state by crossing through other intermediate states, as it is unlikely to regain normal functioning. The p53 dynamical states show a multifractal nature, contributed by both short- and long-range correlations. The networks illustrated from these dynamical states follow hierarchical scale-free features, exhibiting an assortative nature with an absence of the centrality-lethality rule. Furthermore, the active dynamical state is generally closer to hierarchical characteristics and is self-organized. Our research study reveals that significant activity of miR-125b on the p53 regulatory network and its dynamics can only be observed when the system is slightly activated by ROS. However, this process does not necessarily require the direct study of ROS activity. These findings elucidate the mechanisms by which cells integrate signaling pathways with distinct temporal activity patterns to encode stress specificity and direct diverse cell fate decisions.
Collapse
Affiliation(s)
- Md Zubbair Malik
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | - Mohammed Dashti
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | - Amit Jangid
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arshad Channanath
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | - Sumi Elsa John
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | - R K Brojen Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | | |
Collapse
|
4
|
Huhn SC, Chang M, Jiang B, Tang X, Betenbaugh M, Du Z. Genomic features of recombinant CHO clones arising from transposon-based and randomized integration. J Biotechnol 2023; 373:73-81. [PMID: 37271453 DOI: 10.1016/j.jbiotec.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/04/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
The use of transposase in cell line development (CLD) programs has experienced increased popularity over the past decade. However, few studies have described the mechanism of action and the genomic and phenotypic characteristics of clones derived from transposase. Additionally, how these traits impact long-term bioproduction is unknown. Here, we use chromosome painting, deep sequencing, and ddPCR to characterize the unique fingerprints associated with transposase-derived clones. Transposase reduces the cellular pool of transient vector as early as three days post transfection following transfection and expedites stable pool establishment by up to two weeks. Furthermore, recombinant DNA expression is significantly improved up to ∼3 fold along with a greater balance of antibody heavy and light chain transcripts, resulting in higher titers in transposase generated pools. Transposase derived pools contained an often innumerable number of integration sites, representing a vast increase in integration site diversity over randomly generated pools, which were bottlenecked at 1-3 integration sites per pool. These transposase mediated integrations typically occurred in clean singlets, free of genomic scars such as deletions, inversions, and other modifications associated with legacy transfection methods which exhibited higher copy numbers per integration site. Relative declines in gene expression occur with copy number increase in the randomly generated, but not the transposase derived clones. Furthermore, transposase-derived clones were more likely to exhibit enhanced a long term stability profile, including product quality attributes such as mannose-5. This improved stability may result from circumventing mechanisms associated with the silencing of tandem repeats. Thus, transposase-mediated approaches can provide multifaceted molecular and phenotypic advantages in cell line development when compared to legacy random-integration methods.
Collapse
Affiliation(s)
- S C Huhn
- Merck Sharp & Dohme LLC, 126 East Lincoln Avenue P.O. Box 2000, Rahway, NJ 07065, USA.
| | - M Chang
- Merck Sharp & Dohme LLC, 126 East Lincoln Avenue P.O. Box 2000, Rahway, NJ 07065, USA
| | - B Jiang
- Merck Sharp & Dohme LLC, 126 East Lincoln Avenue P.O. Box 2000, Rahway, NJ 07065, USA
| | - X Tang
- Merck Sharp & Dohme LLC, 126 East Lincoln Avenue P.O. Box 2000, Rahway, NJ 07065, USA
| | - M Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Z Du
- Merck Sharp & Dohme LLC, 126 East Lincoln Avenue P.O. Box 2000, Rahway, NJ 07065, USA
| |
Collapse
|
5
|
Limitations of gene editing assessments in human preimplantation embryos. Nat Commun 2023; 14:1219. [PMID: 36882397 PMCID: PMC9992379 DOI: 10.1038/s41467-023-36820-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
Range of DNA repair in response to double-strand breaks induced in human preimplantation embryos remains uncertain due to the complexity of analyzing single- or few-cell samples. Sequencing of such minute DNA input requires a whole genome amplification that can introduce artifacts, including coverage nonuniformity, amplification biases, and allelic dropouts at the target site. We show here that, on average, 26.6% of preexisting heterozygous loci in control single blastomere samples appear as homozygous after whole genome amplification indicative of allelic dropouts. To overcome these limitations, we validate on-target modifications seen in gene edited human embryos in embryonic stem cells. We show that, in addition to frequent indel mutations, biallelic double-strand breaks can also produce large deletions at the target site. Moreover, some embryonic stem cells show copy-neutral loss of heterozygosity at the cleavage site which is likely caused by interallelic gene conversion. However, the frequency of loss of heterozygosity in embryonic stem cells is lower than in blastomeres, suggesting that allelic dropouts is a common whole genome amplification outcome limiting genotyping accuracy in human preimplantation embryos.
Collapse
|
6
|
Hanson RL, Batchelor E. Coordination of MAPK and p53 dynamics in the cellular responses to DNA damage and oxidative stress. Mol Syst Biol 2022; 18:e11401. [PMID: 36472304 PMCID: PMC9724178 DOI: 10.15252/msb.202211401] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
In response to different cellular stresses, the transcription factor p53 undergoes different dynamics. p53 dynamics, in turn, control cell fate. However, distinct stresses can generate the same p53 dynamics but different cell fate outcomes, suggesting integration of dynamic information from other pathways is important for cell fate regulation. To determine how MAPK activities affect p53-mediated responses to DNA breaks and oxidative stress, we simultaneously tracked p53 and either ERK, JNK, or p38 activities in single cells. While p53 dynamics were comparable between the stresses, cell fate outcomes were distinct. Combining MAPK dynamics with p53 dynamics was important for distinguishing between the stresses and for generating temporal ordering of cell fate pathways. Furthermore, cross-talk between MAPKs and p53 controlled the balance between proliferation and cell death. These findings provide insight into how cells integrate signaling pathways with distinct temporal patterns of activity to encode stress specificity and drive different cell fate decisions.
Collapse
Affiliation(s)
- Ryan L Hanson
- Department of Integrative Biology and PhysiologyUniversity of MinnesotaMinneapolisMNUSA
| | - Eric Batchelor
- Department of Integrative Biology and PhysiologyUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
7
|
Wilson C, Murnane JP. High-throughput screen to identify compounds that prevent or target telomere loss in human cancer cells. NAR Cancer 2022; 4:zcac029. [PMID: 36196242 PMCID: PMC9527662 DOI: 10.1093/narcan/zcac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 11/14/2022] Open
Abstract
Chromosome instability (CIN) is an early step in carcinogenesis that promotes tumor cell progression and resistance to therapy. Using plasmids integrated adjacent to telomeres, we have previously demonstrated that the sensitivity of subtelomeric regions to DNA double-strand breaks (DSBs) contributes to telomere loss and CIN in cancer. A high-throughput screen was created to identify compounds that affect telomere loss due to subtelomeric DSBs introduced by I-SceI endonuclease, as detected by cells expressing green fluorescent protein (GFP). A screen of a library of 1832 biologically-active compounds identified a variety of compounds that increase or decrease the number of GFP-positive cells following activation of I-SceI. A curated screen done in triplicate at various concentrations found that inhibition of classical nonhomologous end joining (C-NHEJ) increased DSB-induced telomere loss, demonstrating that C-NHEJ is functional in subtelomeric regions. Compounds that decreased DSB-induced telomere loss included inhibitors of mTOR, p38 and tankyrase, consistent with our earlier hypothesis that the sensitivity of subtelomeric regions to DSBs is a result of inappropriate resection during repair. Although this assay was also designed to identify compounds that selectively target cells experiencing telomere loss and/or chromosome instability, no compounds of this type were identified in the current screen.
Collapse
Affiliation(s)
- Chris Wilson
- Department of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, CA 94143, USA
| | - John P Murnane
- To whom correspondence should be addressed. Tel: +1 415 680 4434;
| |
Collapse
|
8
|
Suzuki S, Chosa K, Barillà C, Yao M, Zuffardi O, Kai H, Shuto T, Suico MA, Kan YW, Sargent RG, Gruenert DC. Seamless Gene Correction in the Human Cystic Fibrosis Transmembrane Conductance Regulator Locus by Vector Replacement and Vector Insertion Events. Front Genome Ed 2022; 4:843885. [PMID: 35465025 PMCID: PMC9019469 DOI: 10.3389/fgeed.2022.843885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Gene correction via homology directed repair (HDR) in patient-derived induced pluripotent stem (iPS) cells for regenerative medicine are becoming a more realistic approach to develop personalized and mutation-specific therapeutic strategies due to current developments in gene editing and iPSC technology. Cystic fibrosis (CF) is the most common inherited disease in the Caucasian population, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Since CF causes significant multi-organ damage and with over 2,000 reported CFTR mutations, CF patients could be one prominent population benefiting from gene and cell therapies. When considering gene-editing techniques for clinical applications, seamless gene corrections of the responsible mutations, restoring native "wildtype" DNA sequence without remnants of drug selectable markers or unwanted DNA sequence changes, would be the most desirable approach. Result: The studies reported here describe the seamless correction of the W1282X CFTR mutation using CRISPR/Cas9 nickases (Cas9n) in iPS cells derived from a CF patient homozygous for the W1282X Class I CFTR mutation. In addition to the expected HDR vector replacement product, we discovered another class of HDR products resulting from vector insertion events that created partial duplications of the CFTR exon 23 region. These vector insertion events were removed via intrachromosomal homologous recombination (IHR) enhanced by double nicking with CRISPR/Cas9n which resulted in the seamless correction of CFTR exon 23 in CF-iPS cells. Conclusion: We show here the removal of the drug resistance cassette and generation of seamless gene corrected cell lines by two independent processes: by treatment with the PiggyBac (PB) transposase in vector replacements or by IHR between the tandemly duplicated CFTR gene sequences.
Collapse
Affiliation(s)
- Shingo Suzuki
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Keisuke Chosa
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Cristina Barillà
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Michael Yao
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuet W. Kan
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Institutes for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - R. Geoffrey Sargent
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
- GeneTether Inc., San Lorenzo, CA, United States
| | - Dieter C. Gruenert
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
- Institutes for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
- Department of Pediatrics, University of Vermont College of Medicine, Burlington, VT, United States
| |
Collapse
|
9
|
Hacker L, Capdeville N, Feller L, Enderle-Kukla J, Dorn A, Puchta H. The DNA-dependent protease AtWSS1A suppresses persistent double strand break formation during replication. THE NEW PHYTOLOGIST 2022; 233:1172-1187. [PMID: 34761387 DOI: 10.1111/nph.17848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The protease WSS1A is an important factor in the repair of DNA-protein crosslinks in plants. Here we show that the loss of WSS1A leads to a reduction of 45S rDNA repeats and chromosomal fragmentation in Arabidopsis. Moreover, in the absence of any factor of the RTR (RECQ4A/TOP3α/RMI1/2) complex, which is involved in the dissolution of DNA replication intermediates, WSS1A becomes essential for viability. If WSS1A loss is combined with loss of the classical (c) or alternative (a) nonhomologous end joining (NHEJ) pathways of double-strand break (DSB) repair, the resulting mutants show proliferation defects and enhanced chromosome fragmentation, which is especially aggravated in the absence of aNHEJ. This indicates that WSS1A is involved either in the suppression of DSB formation or in DSB repair itself. To test the latter we induced DSB by CRISPR/Cas9 at different loci in wild-type and mutant cells and analyzed their repair by deep sequencing. However, no change in the quality of the repair events and only a slight increase in their quantity was found. Thus, by removing complex DNA-protein structures, WSS1A seems to be required for the repair of replication intermediates which would otherwise be resolved into persistent DSB leading to genome instability.
Collapse
Affiliation(s)
- Leonie Hacker
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Niklas Capdeville
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Laura Feller
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Janina Enderle-Kukla
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Annika Dorn
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| |
Collapse
|
10
|
Danner E, Lebedin M, de la Rosa K, Kühn R. A homology independent sequence replacement strategy in human cells using a CRISPR nuclease. Open Biol 2021; 11:200283. [PMID: 33499763 PMCID: PMC7881171 DOI: 10.1098/rsob.200283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023] Open
Abstract
Precision genomic alterations largely rely on homology directed repair (HDR), but targeting without homology using the non-homologous end-joining (NHEJ) pathway has gained attention as a promising alternative. Previous studies demonstrated precise insertions formed by the ligation of donor DNA into a targeted genomic double-strand break in both dividing and non-dividing cells. Here, we demonstrate the use of NHEJ repair to replace genomic segments with donor sequences; we name this method 'Replace' editing (Rational end-joining protocol delivering a targeted sequence exchange). Using CRISPR/Cas9, we create two genomic breaks and ligate a donor sequence in-between. This exchange of a genomic for a donor sequence uses neither microhomology nor homology arms. We target four loci in cell lines and show successful exchange of exons in 16-54% of human cells. Using linear amplification methods and deep sequencing, we quantify the diversity of outcomes following Replace editing and profile the ligated interfaces. The ability to replace exons or other genomic sequences in cells not efficiently modified by HDR holds promise for both basic research and medicine.
Collapse
Affiliation(s)
- Eric Danner
- Max Delbrück Center for Molecular Medicine of the Helmholtz Association, Berlin, Germany
| | | | | | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine of the Helmholtz Association, Berlin, Germany
| |
Collapse
|
11
|
Stinson BM, Moreno AT, Walter JC, Loparo JJ. A Mechanism to Minimize Errors during Non-homologous End Joining. Mol Cell 2019; 77:1080-1091.e8. [PMID: 31862156 DOI: 10.1016/j.molcel.2019.11.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/09/2019] [Accepted: 11/22/2019] [Indexed: 01/15/2023]
Abstract
Enzymatic processing of DNA underlies all DNA repair, yet inappropriate DNA processing must be avoided. In vertebrates, double-strand breaks are repaired predominantly by non-homologous end joining (NHEJ), which directly ligates DNA ends. NHEJ has the potential to be highly mutagenic because it uses DNA polymerases, nucleases, and other enzymes that modify incompatible DNA ends to allow their ligation. Using frog egg extracts that recapitulate NHEJ, we show that end processing requires the formation of a "short-range synaptic complex" in which DNA ends are closely aligned in a ligation-competent state. Furthermore, single-molecule imaging directly demonstrates that processing occurs within the short-range complex. This confinement of end processing to a ligation-competent complex ensures that DNA ends undergo ligation as soon as they become compatible, thereby minimizing mutagenesis. Our results illustrate how the coordination of enzymatic catalysis with higher-order structural organization of substrate maximizes the fidelity of DNA repair.
Collapse
Affiliation(s)
- Benjamin M Stinson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew T Moreno
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Mallett DR, Chang M, Cheng X, Bezanilla M. Efficient and modular CRISPR-Cas9 vector system for Physcomitrella patens. PLANT DIRECT 2019; 3:e00168. [PMID: 31523744 PMCID: PMC6739617 DOI: 10.1002/pld3.168] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/29/2019] [Accepted: 08/20/2019] [Indexed: 05/20/2023]
Abstract
CRISPR-Cas9 has been shown to be a valuable tool in recent years, allowing researchers to precisely edit the genome using an RNA-guided nuclease to initiate double-strand breaks. Until recently, classical RAD51-mediated homologous recombination has been a powerful tool for gene targeting in the moss Physcomitrella patens. However, CRISPR-Cas9-mediated genome editing in P. patens was shown to be more efficient than traditional homologous recombination (Plant Biotechnology Journal, 15, 2017, 122). CRISPR-Cas9 provides the opportunity to efficiently edit the genome at multiple loci as well as integrate sequences at precise locations in the genome using a simple transient transformation. To fully take advantage of CRISPR-Cas9 genome editing in P. patens, here we describe the generation and use of a flexible and modular CRISPR-Cas9 vector system. Without the need for gene synthesis, this vector system enables editing of up to 12 loci simultaneously. Using this system, we generated multiple lines that had null alleles at four distant loci. We also found that targeting multiple sites within a single locus can produce larger deletions, but the success of this depends on individual protospacers. To take advantage of homology-directed repair, we developed modular vectors to rapidly generate DNA donor plasmids to efficiently introduce DNA sequences encoding for fluorescent proteins at the 5' and 3' ends of gene coding regions. With regard to homology-directed repair experiments, we found that if the protospacer sequence remains on the DNA donor plasmid, then Cas9 cleaves the plasmid target as well as the genomic target. This can reduce the efficiency of introducing sequences into the genome. Furthermore, to ensure the generation of a null allele near the Cas9 cleavage site, we generated a homology plasmid harboring a "stop codon cassette" with downstream near-effortless genotyping.
Collapse
Affiliation(s)
- Darren R. Mallett
- Department of Biological SciencesDartmouth CollegeHanoverNew Hampshire
| | - Mingqin Chang
- Department of Biological SciencesDartmouth CollegeHanoverNew Hampshire
- Plant Biology Graduate ProgramUniversity of MassachusettsAmherstMassachusetts
| | - Xiaohang Cheng
- Department of Biological SciencesDartmouth CollegeHanoverNew Hampshire
| | | |
Collapse
|
13
|
DNA Repair Deficiency in Breast Cancer: Opportunities for Immunotherapy. JOURNAL OF ONCOLOGY 2019; 2019:4325105. [PMID: 31320901 PMCID: PMC6607732 DOI: 10.1155/2019/4325105] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/04/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Abstract
Historically the development of anticancer treatments has been focused on their effect on tumor cells alone. However, newer treatments have shifted attention to targets on immune cells, resulting in dramatic responses. The effect of DNA repair deficiency on the microenvironment remains an area of key interest. Moreover, established therapies such as DNA damaging treatments such as chemotherapy and PARP inhibitors further modify the tumor microenvironment. Here we describe DNA repair pathways in breast cancer and activation of innate immune pathways in DNA repair deficiency, in particular, the STING (STimulator of INterferon Genes) pathway. Breast tumors with DNA repair deficiency are associated with upregulation of immune checkpoints including PD-L1 (Programmed Death Ligand-1) and may represent a target population for single agent or combination immunotherapy treatment.
Collapse
|
14
|
O'Brien AR, Wilson LOW, Burgio G, Bauer DC. Unlocking HDR-mediated nucleotide editing by identifying high-efficiency target sites using machine learning. Sci Rep 2019; 9:2788. [PMID: 30808944 PMCID: PMC6391469 DOI: 10.1038/s41598-019-39142-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022] Open
Abstract
Editing individual nucleotides is a crucial component for validating genomic disease association. It is currently hampered by CRISPR-Cas-mediated "base editing" being limited to certain nucleotide changes, and only achievable within a small window around CRISPR-Cas target sites. The more versatile alternative, HDR (homology directed repair), has a 3-fold lower efficiency with known optimization factors being largely immutable in experiments. Here, we investigated the variable efficiency-governing factors on a novel mouse dataset using machine learning. We found the sequence composition of the single-stranded oligodeoxynucleotide (ssODN), i.e. the repair template, to be a governing factor. Furthermore, different regions of the ssODN have variable influence, which reflects the underlying mechanism of the repair process. Our model improves HDR efficiency by 83% compared to traditionally chosen targets. Using our findings, we developed CUNE (Computational Universal Nucleotide Editor), which enables users to identify and design the optimal targeting strategy using traditional base editing or - for-the-first-time - HDR-mediated nucleotide changes.
Collapse
Affiliation(s)
- Aidan R O'Brien
- CSIRO, Sydney, NSW, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | | | - Gaetan Burgio
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| | | |
Collapse
|
15
|
Liu X, Wang M, Qin Y, Shi X, Cong P, Chen Y, He Z. Targeted integration in human cells through single crossover mediated by ZFN or CRISPR/Cas9. BMC Biotechnol 2018; 18:66. [PMID: 30340581 PMCID: PMC6194632 DOI: 10.1186/s12896-018-0474-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 09/28/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Targeted DNA integration is widely used in basic research and commercial applications because it eliminates positional effects on transgene expression. Targeted integration in mammalian cells is generally achieved through a double crossover event between the genome and a linear donor containing two homology arms flanking the gene of interest. However, this strategy is generally less efficient at introducing larger DNA fragments. Using the homology-independent NHEJ mechanism has recently been shown to improve efficiency of integrating larger DNA fragments at targeted sites, but integration through this mechanism is direction-independent. Therefore, developing new methods for direction-dependent integration with improved efficiency is desired. RESULTS We generated site-specific double-strand breaks using ZFNs or CRISPR/Cas9 in the human CCR5 gene and a donor plasmid containing a 1.6-kb fragment homologous to the CCR5 gene in the genome. These DSBs efficiently drove the direction-dependent integration of 6.4-kb plasmids into the genomes of two human cell lines through single-crossover recombination. The integration was direction-dependent and resulted in the duplication of the homology region in the genome, allowing the integration of another copy of the donor plasmid. The CRISPR/Cas9 system tended to disrupt the sgRNA-binding site within the duplicated homology region, preventing the integration of another plasmid donor. In contrast, ZFNs were less likely to completely disrupt their binding sites, allowing the successive integration of additional plasmid donor copies. This could be useful in promoting multi-copy integration for high-level expression of recombinant proteins. Targeted integration through single crossover recombination was highly efficient (frequency: 33%) as revealed by Southern blot analysis of clonal cells. This is more efficient than a previously described NHEJ-based method (0.17-0.45%) that was used to knock in an approximately 5-kb long DNA fragment. CONCLUSION We developed a method for the direction-dependent integration of large DNA fragments through single crossover recombination. We compared and contrasted our method to a previously reported technique for the direction-independent integration of DNA cassettes into the genomes of cultured cells via NHEJ. Our method, due to its directionality and ability to efficiently integrate large fragments, is an attractive strategy for both basic research and industrial application.
Collapse
Affiliation(s)
- Xiaofeng Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Min Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yufeng Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Xuan Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
16
|
Smith LJ, Wright J, Clark G, Ul-Hasan T, Jin X, Fong A, Chandra M, St Martin T, Rubin H, Knowlton D, Ellsworth JL, Fong Y, Wong KK, Chatterjee S. Stem cell-derived clade F AAVs mediate high-efficiency homologous recombination-based genome editing. Proc Natl Acad Sci U S A 2018; 115:E7379-E7388. [PMID: 30018062 PMCID: PMC6077703 DOI: 10.1073/pnas.1802343115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The precise correction of genetic mutations at the nucleotide level is an attractive permanent therapeutic strategy for human disease. However, despite significant progress, challenges to efficient and accurate genome editing persist. Here, we report a genome editing platform based upon a class of hematopoietic stem cell (HSC)-derived clade F adeno-associated virus (AAV), which does not require prior nuclease-mediated DNA breaks and functions exclusively through BRCA2-dependent homologous recombination. Genome editing is guided by complementary homology arms and is highly accurate and seamless, with no evidence of on-target mutations, including insertion/deletions or inclusion of AAV inverted terminal repeats. Efficient genome editing was demonstrated at different loci within the human genome, including a safe harbor locus, AAVS1, and the therapeutically relevant IL2RG gene, and at the murine Rosa26 locus. HSC-derived AAV vector (AAVHSC)-mediated genome editing was robust in primary human cells, including CD34+ cells, adult liver, hepatic endothelial cells, and myocytes. Importantly, high-efficiency gene editing was achieved in vivo upon a single i.v. injection of AAVHSC editing vectors in mice. Thus, clade F AAV-mediated genome editing represents a promising, highly efficient, precise, single-component approach that enables the development of therapeutic in vivo genome editing for the treatment of a multitude of human gene-based diseases.
Collapse
Affiliation(s)
- Laura J Smith
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | | | - Gabriella Clark
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Taihra Ul-Hasan
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Xiangyang Jin
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Abigail Fong
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Manasa Chandra
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | | | | | | | | | - Yuman Fong
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Kamehameha K Wong
- Department of Hematology and Stem Cell Transplantation, City of Hope Medical Center, Duarte, CA 91010
| | - Saswati Chatterjee
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010;
| |
Collapse
|
17
|
Buerstmayr M, Steiner B, Wagner C, Schwarz P, Brugger K, Barabaschi D, Volante A, Valè G, Cattivelli L, Buerstmayr H. High-resolution mapping of the pericentromeric region on wheat chromosome arm 5AS harbouring the Fusarium head blight resistance QTL Qfhs.ifa-5A. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1046-1056. [PMID: 29024288 PMCID: PMC5902775 DOI: 10.1111/pbi.12850] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/17/2017] [Accepted: 10/08/2017] [Indexed: 05/24/2023]
Abstract
The Qfhs.ifa-5A allele, contributing to enhanced Fusarium head blight resistance in wheat, resides in a low-recombinogenic region of chromosome 5A close to the centromere. A near-isogenic RIL population segregating for the Qfhs.ifa-5A resistance allele was developed and among 3650 lines as few as four recombined within the pericentromeric C-5AS1-0.40 bin, yielding only a single recombination point. Genetic mapping of the pericentromeric region using a recombination-dependent approach was thus not successful. To facilitate fine-mapping the physically large Qfhs.ifa-5A interval, two gamma-irradiated deletion panels were generated: (i) seeds of line NIL3 carrying the Qfhs.ifa-5A resistance allele in an otherwise susceptible background were irradiated and plants thereof were selfed to obtain deletions in homozygous state and (ii) a radiation hybrid panel was produced using irradiated pollen of the wheat line Chinese Spring (CS) for pollinating the CS-nullisomic5Atetrasomic5B. In total, 5157 radiation selfing and 276 radiation hybrid plants were screened for deletions on 5AS and plants containing deletions were analysed using 102 5AS-specific markers. Combining genotypic information of both panels yielded an 817-fold map improvement (cR/cM) for the centromeric bin and was 389-fold increased across the Qfhs.ifa-5A interval compared to the genetic map, with an average map resolution of 0.77 Mb/cR. We successfully proved that the RH mapping technique can effectively resolve marker order in low-recombining regions, including pericentromeric intervals, and simultaneously allow developing an in vivo panel of sister lines differing for induced deletions across the Qfhs.ifa-5A interval that can be used for phenotyping.
Collapse
Affiliation(s)
- Maria Buerstmayr
- Department of Agrobiotechnology TullnBOKU ‐ University of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Barbara Steiner
- Department of Agrobiotechnology TullnBOKU ‐ University of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Christian Wagner
- Department of Agrobiotechnology TullnBOKU ‐ University of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Petra Schwarz
- Department of Agrobiotechnology TullnBOKU ‐ University of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Klaus Brugger
- Department of Agrobiotechnology TullnBOKU ‐ University of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Delfina Barabaschi
- Council for Agricultural Research and Economics (CREA)Genomics Research CentreFiorenzuola d'ArdaItaly
| | - Andrea Volante
- Council for Agricultural Research and Economics (CREA)Research Centre for Cereal and Industrial CropsVercelliItaly
| | - Giampiero Valè
- Council for Agricultural Research and Economics (CREA)Research Centre for Cereal and Industrial CropsVercelliItaly
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics (CREA)Genomics Research CentreFiorenzuola d'ArdaItaly
| | - Hermann Buerstmayr
- Department of Agrobiotechnology TullnBOKU ‐ University of Natural Resources and Life Sciences, ViennaTullnAustria
| |
Collapse
|
18
|
Kaur B, Valach M, Peña-Diaz P, Moreira S, Keeling PJ, Burger G, Lukeš J, Faktorová D. Transformation of Diplonema papillatum, the type species of the highly diverse and abundant marine microeukaryotes Diplonemida (Euglenozoa). Environ Microbiol 2018; 20:1030-1040. [PMID: 29318727 DOI: 10.1111/1462-2920.14041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 11/30/2022]
Abstract
Diplonema papillatum is the type species of diplonemids, which are among the most abundant and diverse heterotrophic microeukaryotes in the world's oceans. Diplonemids are also known for a unique form of post-transcriptional processing in mitochondria. However, the lack of reverse genetics methodologies in these protists has hampered elucidation of their cellular and molecular biology. Here we report a protocol for D. papillatum transformation. We have identified several antibiotics to which D. papillatum is sensitive and thus are suitable selectable markers, and focus in particular on puromycin. Constructs were designed encoding antibiotic resistance markers, fluorescent tags, and additional genomic sequences from D. papillatum to facilitate vector integration into chromosomes. We established conditions for effective electroporation, and demonstrate that electroporated constructs can be stably integrated in the D. papillatum nuclear genome. In D. papillatum transformants, the heterologous puromycin resistance gene is transcribed into mRNA and translated into protein, as determined by Southern hybridization, reverse transcription, and Western blot analyses. This is the first documented case of transformation in a euglenozoan protist outside the well-studied kinetoplastids, making D. papillatum a genetically tractable organism and potentially a model system for marine microeukaryotes.
Collapse
Affiliation(s)
- Binnypreet Kaur
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Matus Valach
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Sandrine Moreira
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Patrick J Keeling
- Botany Department, University of British Columbia, Vancouver, Canada
| | - Gertraud Burger
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
19
|
Rueppell O, Kuster R, Miller K, Fouks B, Rubio Correa S, Collazo J, Phaincharoen M, Tingek S, Koeniger N. A New Metazoan Recombination Rate Record and Consistently High Recombination Rates in the Honey Bee Genus Apis Accompanied by Frequent Inversions but Not Translocations. Genome Biol Evol 2018; 8:3653-3660. [PMID: 28173114 PMCID: PMC5521732 DOI: 10.1093/gbe/evw269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 12/31/2022] Open
Abstract
Western honey bees (Apis mellifera) far exceed the commonly observed 1–2 meiotic recombination events per chromosome and exhibit the highest Metazoan recombination rate (20 cM/Mb) described thus far. However, the reasons for this exceptional rate of recombination are not sufficiently understood. In a comparative study, we report on the newly constructed genomic linkage maps of Apis florea and Apis dorsata that represent the two honey bee lineages without recombination rate estimates so far. Each linkage map was generated de novo, based on SNP genotypes of haploid male offspring of a single female. The A. florea map spans 4,782 cM with 1,279 markers in 16 linkage groups. The A. dorsata map is 5,762 cM long and contains 1,189 markers in 16 linkage groups. Respectively, these map sizes result in average recombination rate estimates of 20.8 and 25.1 cM/Mb. Synteny analyses indicate that frequent intra-chromosomal rearrangements but no translocations among chromosomes accompany the high rates of recombination during the independent evolution of the three major honey bee lineages. Our results imply a common cause for the evolution of very high recombination rates in Apis. Our findings also suggest that frequent homologous recombination during meiosis might increase ectopic recombination and rearrangements within but not between chromosomes. It remains to be investigated whether the resulting inversions may have been important in the evolutionary differentiation between honey bee species.
Collapse
Affiliation(s)
- Olav Rueppell
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Ryan Kuster
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Katelyn Miller
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Bertrand Fouks
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Sara Rubio Correa
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Juan Collazo
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Mananya Phaincharoen
- Ratchaburi Campus, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Salim Tingek
- Agricultural Research Station, Tenom, Sabah, Malaysia
| | - Nikolaus Koeniger
- Molecular Ecology, Institute of Biology/Zoology, Martin-Luther-University Halle-Wittenberg, Halle an der Saale, Germany
| |
Collapse
|
20
|
Luukkonen TM, Mehrjouy MM, Pöyhönen M, Anttonen A, Lahermo P, Ellonen P, Paulin L, Tommerup N, Palotie A, Varilo T. Breakpoint mapping and haplotype analysis of translocation t(1;12)(q43;q21.1) in two apparently independent families with vascular phenotypes. Mol Genet Genomic Med 2018; 6:56-68. [PMID: 29168350 PMCID: PMC5823676 DOI: 10.1002/mgg3.346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The risk of serious congenital anomaly for de novo balanced translocations is estimated to be at least 6%. We identified two apparently independent families with a balanced t(1;12)(q43;q21.1) as an outcome of a "Systematic Survey of Balanced Chromosomal Rearrangements in Finns." In the first family, carriers (n = 6) manifest with learning problems in childhood, and later with unexplained neurological symptoms (chronic headache, balance problems, tremor, fatigue) and cerebral infarctions in their 50s. In the second family, two carriers suffer from tetralogy of Fallot, one from transient ischemic attack and one from migraine. The translocation cosegregates with these vascular phenotypes and neurological symptoms. METHODS AND RESULTS We narrowed down the breakpoint regions using mate pair sequencing. We observed conserved haplotypes around the breakpoints, pointing out that this translocation has arisen only once. The chromosome 1 breakpoint truncates a CHRM3 processed transcript, and is flanked by the 5' end of CHRM3 and the 3' end of RYR2. TRHDE, KCNC2, and ATXN7L3B flank the chromosome 12 breakpoint. CONCLUSIONS This study demonstrates a balanced t(1;12)(q43;q21.1) with conserved haplotypes on the derived chromosomes. The translocation seems to result in vascular phenotype, with or without neurological symptoms, in at least two families. We suggest that the translocation influences the positional expression of CHRM3, RYR2, TRHDE, KCNC2, and/or ATXN7L3B.
Collapse
Affiliation(s)
- Tiia Maria Luukkonen
- Institute for molecular medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
- Department of HealthNational Institute for Health and WelfareHelsinkiFinland
| | - Mana M. Mehrjouy
- Wilhelm Johannsen Centre for Functional Genome ResearchDepartment of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Minna Pöyhönen
- Clinical GeneticsHelsinki University HospitalUniversity of HelsinkiHelsinkiFinland
- Department of Medical GeneticsUniversity of HelsinkiHelsinkiFinland
| | | | - Päivi Lahermo
- Institute for molecular medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
| | - Pekka Ellonen
- Institute for molecular medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
| | - Lars Paulin
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Niels Tommerup
- Wilhelm Johannsen Centre for Functional Genome ResearchDepartment of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Aarno Palotie
- Institute for molecular medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
- Broad Institute of Harvard and MITCambridgeMAUSA
| | - Teppo Varilo
- Department of HealthNational Institute for Health and WelfareHelsinkiFinland
- Department of Medical GeneticsUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
21
|
Hahn F, Eisenhut M, Mantegazza O, Weber APM. Homology-Directed Repair of a Defective Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. FRONTIERS IN PLANT SCIENCE 2018; 9:424. [PMID: 29675030 PMCID: PMC5895730 DOI: 10.3389/fpls.2018.00424] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/16/2018] [Indexed: 05/18/2023]
Abstract
The CRISPR/Cas9 system has emerged as a powerful tool for targeted genome editing in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell's own repair machinery either by the non-homologous end joining pathway or by homologous recombination (HR). While the first repair mechanism results in random mutations at the double-strand break site, HR uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double-strand break repair by HR are very low. In this study, we compared two methods that have been reported to enhance frequencies of HR in plants. The first method boosts the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting (IPGT) approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of HR events, we aimed at restoring trichome formation in a glabrous Arabidopsis mutant by repairing a defective glabrous1 gene. Using this efficient visual marker, we were able to regenerate plants repaired by HR at frequencies of 0.12% using the IPGT approach, while both approaches using viral replicons did not yield any trichome-bearing plants.
Collapse
|
22
|
SIRT1 inhibition impairs non-homologous end joining DNA damage repair by increasing Ku70 acetylation in chronic myeloid leukemia cells. Oncotarget 2017; 7:13538-50. [PMID: 26646449 PMCID: PMC4924659 DOI: 10.18632/oncotarget.6455] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/14/2015] [Indexed: 12/20/2022] Open
Abstract
Most chemotherapeutic agents for leukemia are DNA damaging agents. However, DNA lesions can be repaired by activities of DNA repair systems. Increasing evidence have shown that enhanced DNA damage repair capacity contributes to chemotherapy resistance in leukemia cells. Thus, targeting DNA repair mechanisms is a promising strategy for novel leukemia treatment. SIRT1 expressions were downregulated by lentivirus-delivered SIRT1 shRNA in myeloid leukemia cells. SIRT1 mRNA and protein levels were analyzed by real-time PCR and Western blot, respectively. Flow cytometry was carried out to analyze cell cycle progression, apoptosis and DNA damage repair efficiency. DNA damage levels were assessed by alkaline comet assay, and H2AX phosphorylation was analyzed by immunoblotting and immunofluorescence. A mouse leukemia model was established by transplanting lentivirus-infected K562 cells containing SIRT1 shRNA into sublethally irradiated NOD/SCID mice, and tumorigenesis was evaluated by detecting tumor weights and mice survival. SIRT1 expressions were upregulated in myeloid leukemic patients. Downregulation of SIRT1 by RNAi promoted etoposide-induced DNA damage in myeloid leukemia cells accompanied by reduced NHEJ activity, and increased Ku70 acetylation. Furthermore, SIRT1 knockdown resulted in cell cycle arrest, induction of apoptosis and reduction of K562 cell proliferation accompanied by enhanced p53 and FOXO1 acetylation in K562 cells after etoposide treatment. Importantly, SIRT1 downregulation reduced the tumorigenesis ability of K562 cells in mouse xenografts following chemotherapy treatment. These results revealed that SIRT1 promotes the NHEJ repair pathway by deacetylating Ku70 in K562 cells, suggesting that SIRT1 is a novel therapeutic target for treating myeloid leukemia.
Collapse
|
23
|
Reh WA, Nairn RS, Lowery MP, Vasquez KM. The homologous recombination protein RAD51D protects the genome from large deletions. Nucleic Acids Res 2017; 45:1835-1847. [PMID: 27924006 PMCID: PMC5389663 DOI: 10.1093/nar/gkw1204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022] Open
Abstract
Homologous recombination (HR) is a DNA double-strand break (DSB) repair pathway that protects the genome from chromosomal instability. RAD51 mediator proteins (i.e. paralogs) are critical for efficient HR in mammalian cells. However, how HR-deficient cells process DSBs is not clear. Here, we utilized a loss-of-function HR-reporter substrate to simultaneously monitor HR-mediated gene conversion and non-conservative mutation events. The assay is designed around a heteroallelic duplication of the Aprt gene at its endogenous locus in isogenic Chinese hamster ovary cell lines. We found that RAD51D-deficient cells had a reduced capacity for HR-mediated gene conversion both spontaneously and in response to I-SceI-induced DSBs. Further, RAD51D-deficiency shifted DSB repair toward highly deleterious single-strand annealing (SSA) and end-joining processes that led to the loss of large chromosomal segments surrounding site-specific DSBs at an exceptionally high frequency. Deletions in the proximity of the break were due to a non-homologous end-joining pathway, while larger deletions were processed via a SSA pathway. Overall, our data revealed that, in addition to leading to chromosomal abnormalities, RAD51D-deficiency resulted in a high frequency of deletions advancing our understanding of how a RAD51 paralog is involved in maintaining genomic stability and how its deficiency may predispose cells to tumorigenesis.
Collapse
Affiliation(s)
- Wade A Reh
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| | - Rodney S Nairn
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center Science Park, Smithville, TX 78957, USA
| | - Megan P Lowery
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center Science Park, Smithville, TX 78957, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| |
Collapse
|
24
|
Hay EA, Knowles C, Kolb A, MacKenzie A. Using the CRISPR/Cas9 system to understand neuropeptide biology and regulation. Neuropeptides 2017; 64:19-25. [PMID: 28038787 PMCID: PMC5645574 DOI: 10.1016/j.npep.2016.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/29/2016] [Indexed: 11/21/2022]
Abstract
Neuropeptides and their receptors play a role in physiological responses such as appetite, stress and inflammatory pain. With neuropeptides having such diverse and important physiological roles, knocking-out the genes encoding them, their receptors, parts of their regulatory sequences, or reproducing disease associated polymorphic variants are important steps in studying neuropeptides and how they may contribute to disease. Previously, knock-outs were generated using methods such as targeted homologous recombination in embryonic stem cells but this method is costly and time-consuming. The CRISPR/Cas9 system has rapidly taken over the genome editing field and will advance our understanding of neuropeptide genes and their regulation. With CRISPR/Cas9 technology, the time and costs involved in producing transgenic animal models, is greatly reduced. In this review, we describe how the system can be used to manipulate genomic sequences by "knock-out" or "knock-in" mutations in cell lines or in animal models. We also discuss the specificity of the system and methods to limit off-target effects. When combined with the availability of genome sequences, CRISPR/Cas9 directed genome editing in vitro and in vivo, promises to provide a deeper understanding of the biology of the neuropeptides in health and disease than has ever been available before.
Collapse
|
25
|
Yang S, Wang XQ. XLF-mediated NHEJ activity in hepatocellular carcinoma therapy resistance. BMC Cancer 2017; 17:344. [PMID: 28526069 PMCID: PMC5437682 DOI: 10.1186/s12885-017-3345-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 05/11/2017] [Indexed: 11/16/2022] Open
Abstract
Background DNA repair pathways are used by cancer cells to overcome many standard anticancer treatments, causing therapy resistance. Here, we investigated the role of XRCC4-like factor (XLF), a core member of the non-homologous end joining (NHEJ) repair pathway, in chemoresistance in hepatocellular carcinoma (HCC). Methods qRT-PCR analysis and western blotting were performed to detect expression levels of genes and proteins related to NHEJ. NHEJ repair capacity was assessed in vitro (cell-free) and in vivo by monitoring the activity of the NHEJ pathway. Cell viability and IC50 assays were used to measure sensitivity to drug therapy. A xenograft HCC model was used to develop methods of targeting XLF-induced chemosensitization. Clinicopathological analysis was conducted on patients with HCC treated with transarterial chemoembolization (TACE). Results Many conventional cancer chemotherapeutics induce DNA double-strand breaks (DSBs). HCC cells respond to these breaks by increasing their NHEJ activity, resulting in resistance. XLF-knockdown cells show an inhibition of NHEJ activity in both cell-free and live-cell assays as well as a high level of unrepaired cellular DSBs. These results indicate that XLF facilitates DNA end-joining and therefore promotes NHEJ activity in cancer cells. Consequently, knockdown of XLF significantly chemosensitized resistant cells both in vitro and in xenograft tumors. A low rate of XLF genomic alteration was found in patients with primary HCC, but XLF expression was induced after drug treatment. Clinically, a high level of XLF expression is significantly associated with advanced HCC and shorter overall survival. Conclusion Chemotherapy-induced overexpression of XLF and XLF-mediated enhancements in NHEJ activity contribute to chemoresistance in HCC cells and patients with HCC. Targeting XLF to modulate DSB repair could enhance drug sensitivity and may be a therapeutically useful addition to conventional therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3345-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sitian Yang
- Department of Surgery, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Xiao Qi Wang
- Department of Surgery, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China. .,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
26
|
Plaza Reyes A, Lanner F. Towards a CRISPR view of early human development: applications, limitations and ethical concerns of genome editing in human embryos. Development 2017; 144:3-7. [DOI: 10.1242/dev.139683] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developmental biologists have become increasingly aware that the wealth of knowledge generated through genetic studies of pre-implantation mouse development might not easily be translated to the human embryo. Comparative studies have been fueled by recent technological advances in single-cell analysis, allowing in-depth analysis of the human embryo. This field could shortly gain more momentum as novel genome editing technologies might, for the first time, also allow functional genetic studies in the human embryo. In this Spotlight article, we summarize the CRISPR-Cas9 genome editing system and discuss its potential applications and limitations in human pre-implantation embryos, and the ethical considerations thereof.
Collapse
Affiliation(s)
- Alvaro Plaza Reyes
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm 14186, Sweden
| | - Fredrik Lanner
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm 14186, Sweden
| |
Collapse
|
27
|
Cao J, Lin G, Gong Y, Pan P, Ma Y, Huang P, Ying M, Hou T, He Q, Yang B. DNA-PKcs, a novel functional target of acriflavine, mediates acriflavine's p53-dependent synergistic anti-tumor efficiency with melphalan. Cancer Lett 2016; 383:115-124. [DOI: 10.1016/j.canlet.2016.09.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
|
28
|
Jokić M, Vlašić I, Rinneburger M, Klümper N, Spiro J, Vogel W, Offermann A, Kümpers C, Fritz C, Schmitt A, Riabinska A, Wittersheim M, Michels S, Ozretić L, Florin A, Welcker D, Akyuz MD, Nowak M, Erkel M, Wolf J, Büttner R, Schumacher B, Thomale J, Persigehl T, Maintz D, Perner S, Reinhardt HC. Ercc1 Deficiency Promotes Tumorigenesis and Increases Cisplatin Sensitivity in a Tp53 Context-Specific Manner. Mol Cancer Res 2016; 14:1110-1123. [PMID: 27514406 DOI: 10.1158/1541-7786.mcr-16-0094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/18/2016] [Accepted: 07/06/2016] [Indexed: 11/16/2022]
Abstract
KRAS-mutant lung adenocarcinoma is among the most common cancer entities and, in advanced stages, typically displays poor prognosis due to acquired resistance against chemotherapy, which is still largely based on cisplatin-containing combination regimens. Mechanisms of cisplatin resistance have been extensively investigated, and ERCC1 has emerged as a key player due to its central role in the repair of cisplatin-induced DNA lesions. However, clinical data have not unequivocally confirmed ERCC1 status as a predictor of the response to cisplatin treatment. Therefore, we employed an autochthonous mouse model of Kras-driven lung adenocarcinoma resembling human lung adenocarcinoma to investigate the role of Ercc1 in the response to cisplatin treatment. Our data show that Ercc1 deficiency in Tp53-deficient murine lung adenocarcinoma induces a more aggressive tumor phenotype that displays enhanced sensitivity to cisplatin treatment. Furthermore, tumors that relapsed after cisplatin treatment in our model develop a robust etoposide sensitivity that is independent of the Ercc1 status and depends solely on previous cisplatin exposure. Our results provide a solid rationale for further investigation of the possibility of preselection of lung adenocarcinoma patients according to the functional ERCC1- and mutational TP53 status, where functionally ERCC1-incompetent patients might benefit from sequential cisplatin and etoposide chemotherapy. IMPLICATIONS This study provides a solid rationale for the stratification of lung adenocarcinoma patients according to the functional ERCC1- and mutational TP53 status, where functionally ERCC1-incompetent patients could benefit from sequential cisplatin and etoposide chemotherapy. Mol Cancer Res; 14(11); 1110-23. ©2016 AACR.
Collapse
Affiliation(s)
- Mladen Jokić
- Department I of Internal Medicine, University Hospital of Cologne, Weyertal 115B, 50931, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Weyertal 115B, 50931, Cologne, Germany
| | - Ignacija Vlašić
- Department I of Internal Medicine, University Hospital of Cologne, Weyertal 115B, 50931, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Weyertal 115B, 50931, Cologne, Germany
| | - Miriam Rinneburger
- Department I of Internal Medicine, University Hospital of Cologne, Weyertal 115B, 50931, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Weyertal 115B, 50931, Cologne, Germany
| | - Niklas Klümper
- Pathology of the University Medical Center Schleswig-Holstein, Campus Luebeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23538 Luebeck and 23845 Borstel, Germany
| | - Judith Spiro
- Department of Radiology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Wenzel Vogel
- Pathology of the University Medical Center Schleswig-Holstein, Campus Luebeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23538 Luebeck and 23845 Borstel, Germany
| | - Anne Offermann
- Pathology of the University Medical Center Schleswig-Holstein, Campus Luebeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23538 Luebeck and 23845 Borstel, Germany
| | - Christiane Kümpers
- Pathology of the University Medical Center Schleswig-Holstein, Campus Luebeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23538 Luebeck and 23845 Borstel, Germany
| | - Christian Fritz
- Department I of Internal Medicine, University Hospital of Cologne, Weyertal 115B, 50931, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Weyertal 115B, 50931, Cologne, Germany
| | - Anna Schmitt
- Department I of Internal Medicine, University Hospital of Cologne, Weyertal 115B, 50931, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Weyertal 115B, 50931, Cologne, Germany
| | - Arina Riabinska
- Department I of Internal Medicine, University Hospital of Cologne, Weyertal 115B, 50931, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Weyertal 115B, 50931, Cologne, Germany
| | - Maike Wittersheim
- Institute of Pathology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Sebastian Michels
- Department I of Internal Medicine, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Luka Ozretić
- Institute of Pathology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Alexandra Florin
- Institute of Pathology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Daniela Welcker
- Department I of Internal Medicine, University Hospital of Cologne, Weyertal 115B, 50931, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Weyertal 115B, 50931, Cologne, Germany.,Department II of Internal Medicine, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Mehmet Deniz Akyuz
- Institute for genome stability in ageing and disease, CECAD Research Center, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Michael Nowak
- Institute of Pathology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Martin Erkel
- Institute for Cell Biology, University Hospital Essen, Hufelandstraβe 55, 45122, Essen, Germany
| | - Jürgen Wolf
- Department I of Internal Medicine, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Björn Schumacher
- Institute for genome stability in ageing and disease, CECAD Research Center, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Jürgen Thomale
- Institute for Cell Biology, University Hospital Essen, Hufelandstraβe 55, 45122, Essen, Germany
| | - Thorsten Persigehl
- Department of Radiology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - David Maintz
- Department of Radiology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Sven Perner
- Pathology of the University Medical Center Schleswig-Holstein, Campus Luebeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23538 Luebeck and 23845 Borstel, Germany
| | - Hans Christian Reinhardt
- Department I of Internal Medicine, University Hospital of Cologne, Weyertal 115B, 50931, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Weyertal 115B, 50931, Cologne, Germany
| |
Collapse
|
29
|
|
30
|
Abstract
Genome editing is the process of precisely modifying the nucleotide sequence of the genome. It has provided a powerful approach to research questions but, with the development of a new set of tools, it is now possible to achieve frequencies of genome editing that are high enough to be useful therapeutically. Genome editing is being developed to treat not only monogenic diseases but also infectious diseases and diseases that have both a genetic and an environmental component.
Collapse
Affiliation(s)
- Matthew H Porteus
- Department of Pediatrics, Stanford University, Welch Road, Stanford, CA, 94305, USA.
| |
Collapse
|
31
|
Abstract
The ability to manipulate the genome with precise spatial and nucleotide resolution (genome editing) has been a powerful research tool. In the past decade, the tools and expertise for using genome editing in human somatic cells and pluripotent cells have increased to such an extent that the approach is now being developed widely as a strategy to treat human disease. The fundamental process depends on creating a site-specific DNA double-strand break (DSB) in the genome and then allowing the cell's endogenous DSB repair machinery to fix the break such that precise nucleotide changes are made to the DNA sequence. With the development and discovery of several different nuclease platforms and increasing knowledge of the parameters affecting different genome editing outcomes, genome editing frequencies now reach therapeutic relevance for a wide variety of diseases. Moreover, there is a series of complementary approaches to assessing the safety and toxicity of any genome editing process, irrespective of the underlying nuclease used. Finally, the development of genome editing has raised the issue of whether it should be used to engineer the human germline. Although such an approach could clearly prevent the birth of people with devastating and destructive genetic diseases, questions remain about whether human society is morally responsible enough to use this tool.
Collapse
Affiliation(s)
- Matthew Porteus
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, California 94305;
| |
Collapse
|
32
|
Gravells P, Ahrabi S, Vangala RK, Tomita K, Brash JT, Brustle LA, Chung C, Hong JM, Kaloudi A, Humphrey TC, Porter ACG. Use of the HPRT gene to study nuclease-induced DNA double-strand break repair. Hum Mol Genet 2015; 24:7097-110. [PMID: 26423459 PMCID: PMC4654060 DOI: 10.1093/hmg/ddv409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/23/2015] [Indexed: 12/17/2022] Open
Abstract
Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated into the genome. Multiple reporter constructs have been developed to detect various DSBR pathways. Here, using a single endogenous reporter gene, the X-chromosomal disease gene encoding hypoxanthine phosphoribosyltransferase (HPRT), we monitor the relative utilization of three DSBR pathways following cleavage by I-SceI or CRISPR/Cas9 nucleases. For I-SceI, our estimated frequencies of accurate or mutagenic non-homologous end-joining and gene correction by homologous recombination are 4.1, 1.5 and 0.16%, respectively. Unexpectedly, I-SceI and Cas9 induced markedly different DSBR profiles. Also, using an I-SceI-sensitive HPRT minigene, we show that gene correction is more efficient when using long double-stranded DNA than single- or double-stranded oligonucleotides. Finally, using both endogenous HPRT and exogenous reporters, we validate novel cell cycle phase-specific I-SceI derivatives for investigating cell cycle variations in DSBR. The results obtained using these novel approaches provide new insights into template design for gene correction and the relationships between multiple DSBR pathways at a single endogenous disease gene.
Collapse
Affiliation(s)
- Polly Gravells
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Sara Ahrabi
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Rajani K Vangala
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Kazunori Tomita
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - James T Brash
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Lena A Brustle
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Christopher Chung
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Julia M Hong
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Aikaterini Kaloudi
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Timothy C Humphrey
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Andrew C G Porter
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| |
Collapse
|
33
|
Li L, Ye S, Yang M, Yu W, Fan Z, Zhang H, Hu J, Liang A, Zhang W. SIRT1 downregulation enhances chemosensitivity and survival of adult T-cell leukemia-lymphoma cells by reducing DNA double-strand repair. Oncol Rep 2015; 34:2935-42. [PMID: 26398583 DOI: 10.3892/or.2015.4287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/10/2015] [Indexed: 11/06/2022] Open
Abstract
Most chemotherapy drugs used for the treatment of adult T-cell leukemia-lymphoma (ATL) cause cell death directly by inducing DNA damage, which can be repaired via several DNA repair pathways. Enhanced activity of DNA damage repair systems contributes to ATL resistance to chemotherapies. Targeting DNA repair pathways is a promising strategy for the sensitization of ATL cells to chemotherapeutic drugs. in the present study, inhibition of SIRT1 deacetylase by shRNA sensitized Jurkat cells to etoposide by reducing the activity of non-homologous end joining (NHEJ) and homologous recombination (HR). Silencing of SIRT1 deacetylase by shRNA resulted in enhanced apoptosis and cell cycle arrest, while reduced colony formation of Jurkat cells after etoposide treatment was accompanied by elevated acetylation of FOXO1. Furthermore, inhibition of SIRT1 led to decreased activity of DNA damage repair by NHEJ and HR, accompanied by increased Ku70 acetylation. Furthermore, SIRT1 downregulation prolonged the survival time of Jurkat-xenografted mice. These results suggested that SIRT1 promotes DNA double‑strand repair pathways in Jurkat cells by deacetylating Ku70, and increases cell proliferation by deacetylating FOXO1. The results suggest that SIRT1 is a potential target for the development of combinatorial treatment for ATL.
Collapse
Affiliation(s)
- Liang Li
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Shiguang Ye
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Meng Yang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Wenlei Yu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Zhuoyi Fan
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Hong Zhang
- Clinical Pharmacology Department, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jiong Hu
- Department of Hematology and Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Wenjun Zhang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
34
|
Genome editing in mouse spermatogonial stem/progenitor cells using engineered nucleases. PLoS One 2014; 9:e112652. [PMID: 25409432 PMCID: PMC4237364 DOI: 10.1371/journal.pone.0112652] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/10/2014] [Indexed: 01/09/2023] Open
Abstract
Editing the genome to create specific sequence modifications is a powerful way to study gene function and promises future applicability to gene therapy. Creation of precise modifications requires homologous recombination, a very rare event in most cell types that can be stimulated by introducing a double strand break near the target sequence. One method to create a double strand break in a particular sequence is with a custom designed nuclease. We used engineered nucleases to stimulate homologous recombination to correct a mutant gene in mouse "GS" (germline stem) cells, testicular derived cell cultures containing spermatogonial stem cells and progenitor cells. We demonstrated that gene-corrected cells maintained several properties of spermatogonial stem/progenitor cells including the ability to colonize following testicular transplantation. This proof of concept for genome editing in GS cells impacts both cell therapy and basic research given the potential for GS cells to be propagated in vitro, contribute to the germline in vivo following testicular transplantation or become reprogrammed to pluripotency in vitro.
Collapse
|
35
|
Sandoval IM, Price BA, Gross AK, Chan F, Sammons JD, Wilson JH, Wensel TG. Abrupt onset of mutations in a developmentally regulated gene during terminal differentiation of post-mitotic photoreceptor neurons in mice. PLoS One 2014; 9:e108135. [PMID: 25264759 PMCID: PMC4180260 DOI: 10.1371/journal.pone.0108135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/18/2014] [Indexed: 11/22/2022] Open
Abstract
For sensitive detection of rare gene repair events in terminally differentiated photoreceptors, we generated a knockin mouse model by replacing one mouse rhodopsin allele with a form of the human rhodopsin gene that causes a severe, early-onset form of retinitis pigmentosa. The human gene contains a premature stop codon at position 344 (Q344X), cDNA encoding the enhanced green fluorescent protein (EGFP) at its 3′ end, and a modified 5′ untranslated region to reduce translation rate so that the mutant protein does not induce retinal degeneration. Mutations that eliminate the stop codon express a human rhodopsin-EGFP fusion protein (hRho-GFP), which can be readily detected by fluorescence microscopy. Spontaneous mutations were observed at a frequency of about one per retina; in every case, they gave rise to single fluorescent rod cells, indicating that each mutation occurred during or after the last mitotic division. Additionally, the number of fluorescent rods did not increase with age, suggesting that the rhodopsin gene in mature rod cells is less sensitive to mutation than it is in developing rods. Thus, there is a brief developmental window, coinciding with the transcriptional activation of the rhodopsin locus, in which somatic mutations of the rhodopsin gene abruptly begin to appear.
Collapse
Affiliation(s)
- Ivette M. Sandoval
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, Texas, United States of America
| | - Brandee A. Price
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alecia K. Gross
- Department of Vision Science, University of Alabama Birmingham, Birmingham, Alabama, United States of America
| | - Fung Chan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, Texas, United States of America
| | - Joshua D. Sammons
- Department of Vision Science, University of Alabama Birmingham, Birmingham, Alabama, United States of America
| | - John H. Wilson
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Theodore G. Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
36
|
Gasparini P, Lovat F, Fassan M, Casadei L, Cascione L, Jacob NK, Carasi S, Palmieri D, Costinean S, Shapiro CL, Huebner K, Croce CM. Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation. Proc Natl Acad Sci U S A 2014; 111:4536-4541. [PMID: 24616504 PMCID: PMC3970505 DOI: 10.1073/pnas.1402604111] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell survival after DNA damage relies on DNA repair, the abrogation of which causes genomic instability and development of cancer. However, defective DNA repair in cancer cells can be exploited for cancer therapy using DNA-damaging agents. DNA double-strand breaks are the major lethal lesions induced by ionizing radiation (IR) and can be efficiently repaired by DNA homologous recombination, a system that requires numerous factors including the recombinase RAD51 (RAD51). Therapies combined with adjuvant radiotherapy have been demonstrated to improve the survival of triple-negative breast cancer patients; however, such therapy is challenged by the emergence of resistance in tumor cells. It is, therefore, essential to develop novel therapeutic strategies to overcome radioresistance and improve radiosensitivity. In this study we show that overexpression of microRNA 155 (miR-155) in human breast cancer cells reduces the levels of RAD51 and affects the cellular response to IR. miR-155 directly targets the 3'-untranslated region of RAD51. Overexpression of miR-155 decreased the efficiency of homologous recombination repair and enhanced sensitivity to IR in vitro and in vivo. High miR-155 levels were associated with lower RAD51 expression and with better overall survival of patients in a large series of triple-negative breast cancers. Taken together, our findings indicate that miR-155 regulates DNA repair activity and sensitivity to IR by repressing RAD51 in breast cancer. Testing for expression levels of miR-155 may be useful in the identification of breast cancer patients who will benefit from an IR-based therapeutic approach.
Collapse
Affiliation(s)
- Pierluigi Gasparini
- Department of Molecular Virology, Immunology and Medical Genetics, Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Francesca Lovat
- Department of Molecular Virology, Immunology and Medical Genetics, Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Matteo Fassan
- Department of Molecular Virology, Immunology and Medical Genetics, Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
- Applied Research on Cancer Network (ARC-NET) Research Centre, University and Hospital Trust of Verona, Verona 37126, Italy
| | - Lucia Casadei
- Department of Molecular Virology, Immunology and Medical Genetics, Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Luciano Cascione
- Department of Molecular Virology, Immunology and Medical Genetics, Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Bellinzona 6500, Switzerland
| | - Naduparambil K. Jacob
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Stefania Carasi
- Department of Molecular Virology, Immunology and Medical Genetics, Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Dario Palmieri
- Department of Molecular Virology, Immunology and Medical Genetics, Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Stefan Costinean
- Department of Pathology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210; and
| | - Charles L. Shapiro
- Division of Medical Oncology and the Breast Program, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Kay Huebner
- Department of Molecular Virology, Immunology and Medical Genetics, Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
37
|
Abbotts R, Thompson N, Madhusudan S. DNA repair in cancer: emerging targets for personalized therapy. Cancer Manag Res 2014; 6:77-92. [PMID: 24600246 PMCID: PMC3933425 DOI: 10.2147/cmar.s50497] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Genomic deoxyribonucleic acid (DNA) is under constant threat from endogenous and exogenous DNA damaging agents. Mammalian cells have evolved highly conserved DNA repair machinery to process DNA damage and maintain genomic integrity. Impaired DNA repair is a major driver for carcinogenesis and could promote aggressive cancer biology. Interestingly, in established tumors, DNA repair activity is required to counteract oxidative DNA damage that is prevalent in the tumor microenvironment. Emerging clinical data provide compelling evidence that overexpression of DNA repair factors may have prognostic and predictive significance in patients. More recently, DNA repair inhibition has emerged as a promising target for anticancer therapy. Synthetic lethality exploits intergene relationships where the loss of function of either of two related genes is nonlethal, but loss of both causes cell death. Exploiting this approach by targeting DNA repair has emerged as a promising strategy for personalized cancer therapy. In the current review, we focus on recent advances with a particular focus on synthetic lethality targeting in cancer.
Collapse
Affiliation(s)
- Rachel Abbotts
- University of Nottingham, Academic Unit of Oncology, Division of Oncology, School of Medicine, Nottingham University Hospitals, City Hospital Campus, Nottingham, UK
| | - Nicola Thompson
- University of Nottingham, Academic Unit of Oncology, Division of Oncology, School of Medicine, Nottingham University Hospitals, City Hospital Campus, Nottingham, UK
| | - Srinivasan Madhusudan
- University of Nottingham, Academic Unit of Oncology, Division of Oncology, School of Medicine, Nottingham University Hospitals, City Hospital Campus, Nottingham, UK
| |
Collapse
|
38
|
Zhang W, Wang D, Liu S, Zheng X, Ji H, Xia H, Mao Q. Multiple copies of a linear donor fragment released in situ from a vector improve the efficiency of zinc-finger nuclease-mediated genome editing. Gene Ther 2014; 21:282-8. [PMID: 24430236 DOI: 10.1038/gt.2013.83] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/08/2013] [Accepted: 12/09/2013] [Indexed: 11/09/2022]
Abstract
Homologous recombination (HR) is a strategy for genetic correction. The efficiency of HR can be increased by creating a targeted double-strand break (DSB) via zinc-finger nucleases (ZFNs) and/or by introducing linear donor DNA intracellularly. Some studies have suggested that increased copy numbers of linear donor DNA may further improve HR efficiency. However, the introduction of multiple copies of a linear donor fragment remains a challenge, particularly in cell types with low transfection efficiency. In this study, we developed a vector that carries tandem repeats of a donor fragment, with each repeat flanked by ZFN target sequence fragments (TSFs). The cleavage of the flanking TSF sequence by ZFN would lead to the release of multiple linear fragment. We demonstrated that this novel vector carrying five copies of a linearizable donor fragment, when co-transfected with a ZFN-expressing vector in 293 cells, showed improved HR efficiency about 30 times, as compared with vector carry nonlinearizable donor. For the application of gene therapy, we then introduced this system into an adenoviral vector, which also revealed markedly improved ZFN-mediated HR efficiency in cells. The novel strategies presented here have the potential to promote the application of ZFNs in both basic research and disease therapy.
Collapse
Affiliation(s)
- W Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - D Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - S Liu
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - X Zheng
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - H Ji
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - H Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Q Mao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
39
|
Hull R. Replication of Plant Viruses. PLANT VIROLOGY 2014. [PMCID: PMC7184227 DOI: 10.1016/b978-0-12-384871-0.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Viruses replicate using both their own genetic information and host cell components and machinery. The different genome types have different replication pathways which contain controls on linking the process with translation and movement around the cell as well as not compromising the infected cell. This chapter discusses the replication mechanisms, faults in replication and replication of viruses co-infecting cells. Viruses replicate using both their own genetic information and host cell components and machinery. The different genome types have different replication pathways which contain controls on linking the process with translation and movement around the cell as well as not compromising the infected cell. This chapter discusses the replication mechanisms, faults in replication and replication of viruses coinfecting cells.
Collapse
|
40
|
Nuclease-mediated double-strand break (DSB) enhancement of small fragment homologous recombination (SFHR) gene modification in human-induced pluripotent stem cells (hiPSCs). Methods Mol Biol 2014; 1114:279-90. [PMID: 24557910 DOI: 10.1007/978-1-62703-761-7_18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent developments in methods to specifically modify genomic DNA using sequence-specific endonucleases and donor DNA have opened the door to a new therapeutic paradigm for cell and gene therapy of inherited diseases. Sequence-specific endonucleases, in particular transcription activator-like (TAL) effector nucleases (TALENs), have been coupled with polynucleotide small/short DNA fragments (SDFs) to correct the most common mutation in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene, a 3-base-pair deletion at codon 508 (delF508), in induced pluripotent stem (iPS) cells. The studies presented here describe the generation of candidate TALENs and their co-transfection with wild-type (wt) CFTR-SDFs into CF-iPS cells homozygous for the delF508 mutation. Using an allele-specific PCR (AS-PCR)-based cyclic enrichment protocol, clonal populations of corrected CF-iPS cells were isolated and expanded.
Collapse
|
41
|
Sakogawa K, Aoki Y, Misumi K, Hamai Y, Emi M, Hihara J, Shi L, Kono K, Horikoshi Y, Sun J, Ikura T, Okada M, Tashiro S. Involvement of homologous recombination in the synergism between cisplatin and poly (ADP-ribose) polymerase inhibition. Cancer Sci 2013; 104:1593-9. [PMID: 24033642 DOI: 10.1111/cas.12281] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/31/2013] [Accepted: 08/29/2013] [Indexed: 01/10/2023] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) plays a critical role in responding to DNA damage, by activating DNA repair pathways responsible for cellular survival. Inhibition of PARP is used to treat certain solid cancers, such as breast and ovarian cancers. However, its effectiveness with other solid cancers, such as esophageal squamous cell carcinoma (ESCC), has not been clarified. We evaluated the effects of PARP inhibition on the survival of human esophageal cancer cells, with a special focus on the induction and repair of DNA double-strand breaks. The effects were monitored by colony formation assays and DNA damage responses, with immunofluorescence staining of γH2AX and RAD51. We found that PARP inhibition synergized with cisplatin, and the cells were highly sensitive, in a similar manner to the combination of cisplatin and 5-fluorouracil (5-FU). Comparable increases in RAD51 foci formation were observed after each combined treatment with cisplatin and either 3-aminobenzamide (3-AB) or 5-FU in three human esophageal cancer cell lines, TE11, TE14, and TE15. In addition, decreasing the amount of RAD51 by RNA interference rendered the TE11 cells even more hypersensitive to these treatments. Our findings suggested that the homologous recombinational repair pathway may be involved in the synergism between cisplatin and either 3-AB or 5-FU, and that 3-AB and 5-FU may similarly modify the cisplatin-induced DNA damage to types requiring the recruitment of RAD51 proteins for their repair. Understanding these mechanisms could be useful for improving the clinical outcome of ESCC patients who suffer from aggressive disease that presently lacks effective treatment options.
Collapse
Affiliation(s)
- Kenji Sakogawa
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan; Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Repair of chromosomal double-strand breaks by precise ligation in human cells. DNA Repair (Amst) 2013; 12:480-7. [PMID: 23707303 DOI: 10.1016/j.dnarep.2013.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 04/05/2013] [Accepted: 04/19/2013] [Indexed: 01/19/2023]
Abstract
Double-strand breaks (DSBs), a common type of DNA lesion, occur daily in human cells as a result of both endogenous and exogenous damaging agents. DSBs are repaired in two general ways: by the homology-dependent, error-free pathways of homologous recombination (HR) and by the homology-independent, error-prone pathways of nonhomologous end-joining (NHEJ), with NHEJ predominating in most cells. DSBs with compatible ends can be re-joined in vitro with DNA ligase alone, which raises the question of whether such DSBs require the more elaborate machinery of NHEJ to be repaired in cells. Here we report that chromosomal DSBs with compatible ends introduced by the rare-cutting endonuclease, ISceI, are repaired by precise ligation nearly 100% of the time in human cells. Precise ligation depends on the classical NHEJ components Ku70, XRCC4, and DNA ligase IV, since siRNA knockdowns of these factors significantly reduced the efficiency of precise ligation. Interestingly, knockdown of the tumor suppressors p53 or BRCA1 showed similar effects as the knockdowns of NHEJ factors. In contrast, knockdown of components involved in alternative NHEJ, mismatch repair, nucleotide excision repair, and single-strand break repair did not reduce precise ligation. In summary, our results demonstrate that DSBs in human cells are efficiently repaired by precise ligation, which requires classical NHEJ components and is enhanced by p53 and BRCA1.
Collapse
|
44
|
Kutanzi K, Kovalchuk O. Exposure to estrogen and ionizing radiation causes epigenetic dysregulation, activation of mitogen-activated protein kinase pathways, and genome instability in the mammary gland of ACI rats. Cancer Biol Ther 2013; 14:564-73. [PMID: 23792640 DOI: 10.4161/cbt.24599] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The impact of environmental mutagens and carcinogens on the mammary gland has recently received a lot of attention. Among the most generally accepted carcinogenic agents identified as factors that may increase breast cancer incidence are ionizing radiation and elevated estrogen levels. However, the molecular mechanisms of mammary gland aberrations associated with radiation and estrogen exposure still need to be further elucidated, especially the interplay between elevated hormone levels and radiation. Therefore, in the present study, we investigated molecular changes induced in rat mammary gland tissue by estrogen, ionizing radiation, and the combined action of these two carcinogens using a well-established ACI rat model. We found that continuous exposure of intact female ACI rats to elevated levels of estrogen or to both estrogen and radiation resulted in significant hyperproliferative changes in rat mammary glands. In contrast, radiation exposure alone did not induce hyperplasia. Interestingly, despite the obvious disparity in mammary gland morphology, we did not detect significant differences in the levels of genomic methylation among animals exposed to estrogen, radiation, or both agents together. Specifically, we observed a significant global genomic hypomethylation at 6 weeks of exposure. However, by 12 and 18 weeks, the levels of global DNA methylation returned to those of age-matched controls. We also found that combined exposure to radiation and estrogen significantly altered the levels of histone H3 and H4 methylation and acetylation. Most importantly, we for the first time demonstrated that estrogen and radiation exposure caused a significant induction of p42/44 MAPK and p38 pathways that was paralleled by elevated levels of H3S10 phosphorylation, a well-established biomarker of genome and chromosome instability. The precise role of MAPK pathways and their inter-relationship with H3S10 phosphorylation and genome instability in mammary gland tissues needs to be explored further.
Collapse
Affiliation(s)
- Kristy Kutanzi
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | | |
Collapse
|
45
|
Ellis BL, Hirsch ML, Porter SN, Samulski RJ, Porteus MH. Zinc-finger nuclease-mediated gene correction using single AAV vector transduction and enhancement by Food and Drug Administration-approved drugs. Gene Ther 2013; 20:35-42. [PMID: 22257934 PMCID: PMC4957644 DOI: 10.1038/gt.2011.211] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 11/08/2022]
Abstract
An emerging strategy for the treatment of monogenic diseases uses genetic engineering to precisely correct the mutation(s) at the genome level. Recent advancements in this technology have demonstrated therapeutic levels of gene correction using a zinc-finger nuclease (ZFN)-induced DNA double-strand break in conjunction with an exogenous DNA donor substrate. This strategy requires efficient nucleic acid delivery and among viral vectors, recombinant adeno-associated virus (rAAV) has demonstrated clinical success without pathology. However, a major limitation of rAAV is the small DNA packaging capacity and to date, the use of rAAV for ZFN gene delivery has yet to be reported. Theoretically, an ideal situation is to deliver both ZFNs and the repair substrate in a single vector to avoid inefficient gene targeting and unwanted mutagenesis, both complications of a rAAV co-transduction strategy. Therefore, a rAAV format was generated in which a single polypeptide encodes the ZFN monomers connected by a ribosome skipping 2A peptide and furin cleavage sequence. On the basis of this arrangement, a DNA repair substrate of 750 nucleotides was also included in this vector. Efficient polypeptide processing to discrete ZFNs is demonstrated, as well as the ability of this single vector format to stimulate efficient gene targeting in a human cell line and mouse model derived fibroblasts. Additionally, we increased rAAV-mediated gene correction up to sixfold using a combination of Food and Drug Administration-approved drugs, which act at the level of AAV vector transduction. Collectively, these experiments demonstrate the ability to deliver ZFNs and a repair substrate by a single AAV vector and offer insights for the optimization of rAAV-mediated gene correction using drug therapy.
Collapse
Affiliation(s)
- BL Ellis
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - ML Hirsch
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - SN Porter
- Department of Pediatrics, Stanford Medical School, Stanford, CA, USA
| | - RJ Samulski
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - MH Porteus
- Department of Pediatrics, Stanford Medical School, Stanford, CA, USA
| |
Collapse
|
46
|
Fenina M, Simon-Chazottes D, Vandormael-Pournin S, Soueid J, Langa F, Cohen-Tannoudji M, Bernard BA, Panthier JJ. I-SceI-mediated double-strand break does not increase the frequency of homologous recombination at the Dct locus in mouse embryonic stem cells. PLoS One 2012; 7:e39895. [PMID: 22761925 PMCID: PMC3383693 DOI: 10.1371/journal.pone.0039895] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/28/2012] [Indexed: 11/20/2022] Open
Abstract
Targeted induction of double-strand breaks (DSBs) at natural endogenous loci was shown to increase the rate of gene replacement by homologous recombination in mouse embryonic stem cells. The gene encoding dopachrome tautomerase (Dct) is specifically expressed in melanocytes and their precursors. To construct a genetic tool allowing the replacement of Dct gene by any gene of interest, we generated an embryonic stem cell line carrying the recognition site for the yeast I-SceI meganuclease embedded in the Dct genomic segment. The embryonic stem cell line was electroporated with an I-SceI expression plasmid, and a template for the DSB-repair process that carried sequence homologies to the Dct target. The I-SceI meganuclease was indeed able to introduce a DSB at the Dct locus in live embryonic stem cells. However, the level of gene targeting was not improved by the DSB induction, indicating a limited capacity of I-SceI to mediate homologous recombination at the Dct locus. These data suggest that homologous recombination by meganuclease-induced DSB may be locus dependent in mammalian cells.
Collapse
Affiliation(s)
- Myriam Fenina
- Mouse functional Genetics, Institut Pasteur, Paris, France
- CNRS URA 2578, Institut Pasteur, Paris, France
- Life Sciences Department, L’Oréal Recherche and Innovation, Clichy, France
| | - Dominique Simon-Chazottes
- Mouse functional Genetics, Institut Pasteur, Paris, France
- CNRS URA 2578, Institut Pasteur, Paris, France
| | | | - Jihane Soueid
- Mouse functional Genetics, Institut Pasteur, Paris, France
- CNRS URA 2578, Institut Pasteur, Paris, France
| | - Francina Langa
- Mouse Genetics Engineering Center, Institut Pasteur, Paris, France
| | - Michel Cohen-Tannoudji
- Mouse functional Genetics, Institut Pasteur, Paris, France
- CNRS URA 2578, Institut Pasteur, Paris, France
| | - Bruno A. Bernard
- Life Sciences Department, L’Oréal Recherche and Innovation, Clichy, France
| | - Jean-Jacques Panthier
- Mouse functional Genetics, Institut Pasteur, Paris, France
- CNRS URA 2578, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
47
|
Porteus M. Homologous recombination-based gene therapy for the primary immunodeficiencies. Ann N Y Acad Sci 2012; 1246:131-40. [PMID: 22236437 DOI: 10.1111/j.1749-6632.2011.06314.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The devastating nature of primary immunodeficiencies, the ability to cure primary immunodeficiencies by bone marrow transplantation, the ability of a small number of gene-corrected cells to reconstitute the immune system, and the overall suboptimal results of bone marrow transplantation for most patients with primary immunodeficiencies make the development of gene therapy for this class of diseases important. While there has been clear clinical benefit for a number of patients from viral-based gene therapy strategies, there have also been a significant number of serious adverse events, including the development of leukemia, from the approach. In this review, I discuss the development of nuclease-stimulated, homologous recombination-based approaches as a novel gene therapy strategy for the primary immunodeficiencies.
Collapse
Affiliation(s)
- Matthew Porteus
- Department of Pediatrics, Divisions of Cancer Biology, Hematology/Oncology, Human Gene Therapy, Stanford University, Stanford, California, USA.
| |
Collapse
|
48
|
Gruenert DC, Sargent RG. Virus-mediated Genetic Surgery: Homologous Recombination With a Little "Helper" From My Friends. MOLECULAR THERAPY. NUCLEIC ACIDS 2012; 1:e2. [PMID: 23344619 PMCID: PMC3381596 DOI: 10.1038/mtna.2011.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Dieter C Gruenert
- 1] Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, California, USA [2] Department of Laboratory Medicine, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Helen Diller Family Comprehensive Cancer Center, Institute for Human Genetics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
49
|
Rahn JJ, Adair GM, Nairn RS. Use of gene targeting to study recombination in mammalian cell DNA repair mutants. Methods Mol Biol 2012; 920:445-470. [PMID: 22941622 DOI: 10.1007/978-1-61779-998-3_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The study of gene function has been greatly facilitated by the development of strategies to modify genomic DNA. Gene targeting is one of the most successfully applied techniques used to examine the roles of specific genes in a wide variety of model systems from yeast to mammals. Our laboratory has pioneered the use of the Chinese hamster ovary (CHO) cell culture model system to study pathways of DNA repair and recombination at the hemizygous CHO APRT locus. By using a simple and effective gene targeting method, we have generated a number of DNA repair-deficient cell lines that have been used in targeted recombination experiments to investigate pathways of recombinational repair in somatic mammalian cells. These methods can be readily customized to generate a variety of cell lines deficient in specific genes of interest and can be applied to study the roles of other DNA repair proteins in pathways of mammalian recombinational repair.
Collapse
Affiliation(s)
- Jennifer J Rahn
- Department of Molecular Carcinogenesis, Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
50
|
Mannuss A, Trapp O, Puchta H. Gene regulation in response to DNA damage. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:154-65. [PMID: 21867786 DOI: 10.1016/j.bbagrm.2011.08.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/25/2011] [Accepted: 08/04/2011] [Indexed: 11/17/2022]
Abstract
To deal with different kinds of DNA damages, there are a number of repair pathways that must be carefully orchestrated to guarantee genomic stability. Many proteins that play a role in DNA repair are involved in multiple pathways and need to be tightly regulated to conduct the functions required for efficient repair of different DNA damage types, such as double strand breaks or DNA crosslinks caused by radiation or genotoxins. While most of the factors involved in DNA repair are conserved throughout the different kingdoms, recent results have shown that the regulation of their expression is variable between different organisms. In the following paper, we give an overview of what is currently known about regulating factors and gene expression in response to DNA damage and put this knowledge in context with the different DNA repair pathways in plants. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.
Collapse
Affiliation(s)
- Anja Mannuss
- Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | |
Collapse
|